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shminarayanan, Tibor Szabó, Uli Wagner, and Yoshio Okamoto. In par-
ticular, I am very thankful to Ingo Schurr (for tons of good moments)
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Adiecha, Béatrice Goetz, Joachim Dietiker and Miriam Kündig, together
with a dozen of anonymous Tango dancers all over the world changed a
lot inside me.

Last but not least, I would like to thank my parents, Elisabeth
Zumthor and Franz Fischer, for their lively and lovely support.



Abstract

This subject of this thesis is the miniball problem which asks for the
smallest ball that contains a set of balls in d-dimensional Euclidean space.

We try to answer three main questions concerning this problem.
What structural properties does the ‘miniball’ exhibit? What practical
algorithms can be used to compute it? And how efficiently can instances
in high dimensions be tackled? In all these questions, it is of interest how
the problem and algorithms for it compare to the more specific variant
of the problem in which all input balls are points (all radii zero).

In connection with the first question, we show that many of the al-
ready known properties of the miniball of points translate also to the
miniball of balls. However, some important properties (that allow for
subexponential algorithms in the point case, for instance) do not gener-
alize, and we provide counterexamples and appropriate new characteri-
zations for the balls case.

The change in structure between the point and ball case also reflects
itself in the algorithmic picture, and we demonstrate that Welzl’s algo-
rithm does not work for balls in general, and likewise a known reduction
to unique sink orientations does not apply either. Our main result here
is that under a simple general-position assumption, both the correctness
of Welzl’s algorithm and a reduction to unique sink orientations can be
established. The result has an appealing geometric interpretation and
practical significance in that it allows for pivoting algorithms to solve the
problem; the latter have the potential of being very fast in practice. As
a byproduct, we develop a deeper (but not yet complete) understanding
of the general applicability of Welzl’s algorithm to certain optimization
problems on the combinatorial cube.

Our contributions concerning the last question are twofold. One the
one side, we provide a combinatorial, simplex-like algorithm for the point
case that turns out to be very efficient and robust in practice and for
which we can show that in theory it does not cycle. On the other hand,
we formulate the problem with balls as input as a mathematical pro-
gram and show that the latter can be solved in subexponential time by
using Gärtner’s algorithm for abstract optimization problems. In fact,
our method works for other convex mathematical programs as well, and
as a second application of it we present a subexponential algorithm for
finding the distance between two convex hulls of balls.



Zusammenfassung

Diese Arbeit beschäftigt sich mit dem Miniballproblem, welches nach der
kleinsten Kugel verlangt, die eine gegebene Menge von Kugeln im d-di-
mensionalen Euklidschen Raum einschließt. Drei Fragen versuchen wir
zu beantworten: Welche strukturellen Eigenschaften weist der ‘Miniball’
auf? Wie kann man ihn in der Praxis schnell berechnen? Und wie verhält
sich die Komplexität des Problems in hohen Dimensionen? Von speziel-
lem Interesse ist dabei, wie sich das Problem und die Algorithmen von
der Variante unterscheiden, in welcher alle Eingabekugeln Punkte sind.

Im Zusammenhang mit der ersten Frage zeigen wir, daß sich viele der
schon bekannten Eigenschaften des Miniball von Punkten auf den Ballfall
übertragen lassen. Einige wichtige Merkmale jedoch—sie ermöglichen es
zum Beispiel, das Problem im Punktfall in subexponentieller Zeit zu
lösen—verallgemeinern sich nicht, was wir anhand von Gegenbeispielen
und angepaßten Charakterisierungen aufzeigen.

Der strukturelle Unterschied zwischen dem Punkt- und Ballfall drückt
sich auch in den Algorithmen aus. Wir stellen fest, daß Welzl’s Punkt-
Algorithmus für Bälle nicht mehr funktioniert und gleichfalls eine Reduk-
tion zu Unique Sink Orientations (USO) scheitert. Unser Beitrag dazu
zeigt auf, daß eine einfache Annahme über die Lage der Eingabekugeln
sowohl die Korrektheit von Welzl’s Algorithmus garantiert als auch eine
Reduktion zum USO-Problem ermöglicht. Das Resultat kommt mit einer
anschaulichen geometrischen Erklärung und ist von praktischer Bedeu-
tung, da damit Pivotieralgorithmen angewandt werden können, die in der
Praxis oft sehr schnell sind. Als Nebenprodukt entwickeln wir ein tieferes
(aber noch unvollständiges) Verständnis für jene Optimierungsprobleme,
auf welche Welzl’s Algorithmus angewandt werden kann.

Unser Beitrag zur dritten Frage ist zweigeteilt. Zum einen liefern wir
einen kombinatorischen, Simplex-artigen Algorithmus für den Punktfall.
Dieser ist in der Praxis sehr effizient und robust, und wir beweisen, daß
er nicht ‘zykeln’ kann. Zum anderen formulieren wir dass ursprüngliche
Problem als mathematisches Programm und zeigen, daß sich dieses mit-
tels Gärtner’s Algorithmus für Abstract Optimization Problems in subex-
ponentieller Zeit lösen läßt. Die resultierende Methode erfaßt auch an-
dere mathematische Programme, insbesondere erhalten wir einen subex-
ponentiellen Algorithmus zur Berechnung der Distanz zwischen den kon-
vexen Hüllen zweier Kugelmengen.
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Notation

N . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . the natural numbers including 0
Rd . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . the d-dimensional Euclidean space
Rd

+ . . . . . . . . . . . . . . . . . . . . . . . . the positive orthant {x ∈ Rd | x ≥ 0} of Rd

im(f) . . . . . . . . . . . . . . . . . . the image {f(x) | x ∈ dom(f)} of a function f
sgn(α) . . . . . . . . . . . . . . . . . . the sign of a real number α (with sgn(0) = 0)
Uδ(x) . . . . . . . . . . . . . . . the open δ-neighborhood {x′ ∈ Rd | ‖x′ − x‖ < δ}

of the point x ∈ Rd for real radius δ > 0
U̇δ(x) . . . . . . . . . . . . . . . . . . the dotted neighborhood Uδ(x) \ {x} of x ∈ Rd

2T . . . . . . . . . . . . . . . . . . . . . . . {V | V ⊆ T}, i.e., the power set of the set T
U ⊕ V . . . . . . . . . . . . . . . . . . the symmetric difference of the sets U and V
U ⊆ V . . . . . . . . . . . . . . . . . . . . . . .U is any subset of V (U = V is possible)
U ⊂ V . . . . . . . . . . . . . .U is a proper subset of V (U = V is not possible)
E[X] . . . . . . . . . . . . . . . . . . . . . . . . the expectation of the random variable X
Ω . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . a totally quasiordered set (see p. 15)
±⋊⋉ . . . . . . . . the maximal and minimal element in a quasiordered set Ω
[a] . . . . . . . . . . . . . the equivalence class of a ∈ Ω under relation ∼ (p. 16)
[A,B] . . . . . . . {X | A ⊇ X ⊇ B}, i.e., the set interval between A and B
C [A,B] . . . . . . . . . . . . . . . . . . . . . . . . . . . . the cube spanned by A ⊇ B (p. 28)
F (C) . . . . . . . . . . . . . . . . . . . . . . . . .the set of all faces of the cube C (p. 29)
conv(P ) . . . . . . . . . . . . . . . . . . . . . . . . . the convex hull of a pointset P ⊆ Rd

aff(P ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . the affine hull of a pointset P ⊆ Rd

B(c, ρ) . . . . . . . . the d-dimensional ball {x ∈ Rd | ‖x− c‖2 ≤ ρ2} (p. 49)
cB , ρB . . . . . . . . . . . . . . . . . . . the center and radius, respectively, of ball B
∂B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . the boundary of a ball B (p. 50)
CT . . . . . . . . . the set {cB | B ∈ T} of centers of the balls from the set T
mb(T ) . . . . . . . . . . . . . . . . . . . . . . the miniball of a set T of balls (p. 49/98)
b(U, V ) . . . . . . . . . . . . . . . the set of balls that contain U and to which the

vii



viii Notation

balls in V are internally tangent (p. 56/98)
mb(U, V ) . . . . . . . . . . . . . . . . the set of smallest balls in b(U, V ) (p. 56/98)
mbp(U) . . . . . . . . . . . . . . . the set mb(U ∪ {p}, {p}), p a point (p. 57/100)
cb(T ) . . . . . . . . . . . . . . . . . . . . . . . . . . . the circumball of a nonempty affinely

independent pointset T ⊂ Rd, or of a set T of balls (p. 58)
cc(T ) . . . . . . . . .the circumcenter of T , i.e., the center of the ball cb(T )
sB(D) . . . . . . . . . . . . . . . . the support point of a ball B w.r.t. a larger ball

D ∈ b({B}, {B}), i.e., the single point in ∂B ∩ ∂D (p. 61)
suppD(T ) . . . . . . . . . . . . . the set {sB(D) | B ∈ T} for a ball D ∈ b(T, T )

larger than every ball in T (p. 61)
tangD(T ) . . . . . . . . . . . . . . . . . the subset of the balls T that are internally

tangent to the ball D (p. 67)
Id . . . . . . . . . . . . . . . . . . . the identity matrix (with d rows and d columns)
∇f . . . . . . . . . . . the gradient (a column vector) of a function f : Rn → R

Vectors, points, and scalars. In order to avoid confusion between vec-
tors, points, and scalars, we try to stick to Arabic letters for points and
vectors and use Greek ones for scalars.

Notation for mathematical programs. A mathematical program P is
the problem of minimizing a real function f : Rn → R ∪ {∞} over a
domain X ⊆ Rn, which is called the feasibility region of P. The problem
P is called convex if the domain X is a convex set and f is a convex
function over X . A point x ∈ Rn is called feasible (or, a solution of P)
if x ∈ X ; it is called finite if f(x) <∞.

A (local) minimizer of P is a point x ∈ X for which there exists a
real δ > 0 such that x′ ∈ Uδ(x) implies

f(x′) ≥ f(x) (1)

for all x′ ∈ X ; x is called a strict minimizer if (1) holds with strict
inequality. A global minimizer of P is a point x ∈ X such that (1) holds
for all points x′ ∈ X . In this case, x is also called an optimal solution of
P. Whenever we say that a point (optimally) solves P we mean that x
is a minimizer of P; for convenience, we drop the word ‘optimally.’



Chapter 1

Introduction

The subject of this thesis is the miniball problem which asks for the the
smallest closed ball that contains a given finite set of objects (points or
balls) in d-dimensional Euclidean space (Fig. 1.1). We focus on exact
(i.e., not approximate) and combinatorial algorithms.

This chapter reviews previous results and lists the contributions con-
tained in this thesis.

1.1 Background

History. The miniball problem has a long history dating back to 1857
when Sylvester posed it for points in the plane [83]. Many applications
have popped up since then, including collision detection [48], the com-
putation of bounding sphere hierarchies for the rendering of complex
scenes, culling (e.g. for visualization of molecular models [87]), facility
location and surveillance [58], automated manufacturing [46], similarity
search in feature spaces [57], and medical irradiation [65]. Some appli-
cations require the problem to be solved in high dimensions, examples
being tuning of support vector machines [14], high-dimensional cluster-
ing [7, 15], and farthest neighbor approximation [42].

On the algorithmic side many different approaches have been pur-
sued, starting with Sylvester’s geometric procedure [84] which he at-
tributed to Pierce and which Chrystal rediscovered some years later [18].

1
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p1

p2

p3

p4

p5

p6

mb(T )

p1

p2p3

p4

p5

p6

mb(T )

Figure 1.1. Two examples in the plane R2 of the (dashed) miniball
mb(T ) for a pointset T = {p1, . . . , p6}. Throughout the thesis, points
and balls of zero radius are drawn as ‘ ’.

Many papers followed (e.g. [58, 4, 25], [76] with a fix [9], [49, 81]; see also
the historical remarks in [12]). Of particular importance was Megiddo’s
algorithm [62] as it was the first to compute the miniball of a pointset
in linear time for fixed dimension. Megiddo and Dyer later observed
that the O(n)-bound also applies to the case when the input objects are
balls [63, 22]. In both cases, however, the algorithm does not work ‘out of
the box’ because the prune-and-search technique underlying it requires
systems of constant-degree algebraic equations to be solved, rendering
an implementation difficult.

The first ‘practical’ algorithm to achieve a linear running time was
a simple and elegant randomized procedure published by Welzl in 1991,
computing the smallest enclosing ball of a pointset [86]. Welzl’s al-
gorithm was inspired by an idea Seidel [74] devised for solving linear
programming (lp), the problem that asks for the ‘lowest1’ point in the
intersection of a set of halfspaces. In contrast to other miniball algo-
rithms for points, Welzl’s algorithm is easy to implement, robust against
degeneracies [33], and very efficient in small dimensions (d ≤ 20, say).

In the following years, Matoušek, Sharir & Welzl enhanced the algo-
rithm (its underlying method by Seidel, respectively) and developed and
analyzed a new randomized algorithm for lp. The resulting MSW-algo-
rithm achieved a subexponential expected running time for lp [61, 60]
which was, together with an independently obtained result by Kalai [50],
a great breakthrough in the area. Surprisingly, the algorithm only uses

1A precise definition of this and all other notions in this preamble (and in the
preambles of subsequent chapters) will be given later, of course.
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very little structure of lp itself and therefore works for other problems
too, as long as they share a few basic properties with lp. The miniball
problem in particular is such an LP-type problem.

So far, we have only mentioned exact algorithms—and we will re-
strict ourselves to such methods in this thesis. We would like to remark,
however, that several very efficient approximation algorithms have been
proposed in the literature. Some of these build on general, iterative op-
timization techniques, refer for instance to the papers [88, 89]. Recently,
a new, very successful approach has been pursued: the core set method
finds a small subset of the input objects—a core set—approximately
spanning the same smallest enclosing ball as the input itself; for this, it
repeatedly calls an (approximate) solver for small instances [56, 1, 3].
More concretely, this approach gives a polynomial-time algorithm of
complexity O(dn/ǫ+f(ǫ)) for computing an enclosing ball whose radius
is by a factor of at most 1 + ǫ larger than the radius of the optimal ball.

The combinatorial view. The emphasis in this thesis lies on (exact)
combinatorial algorithms; to see what we mean by this, let us look at
the miniball problem for points. We claim that instead of looking for a
ball that encloses the pointset T , it suffices to find an inclusion-minimal2

set B ⊆ T whose miniball has the same radius as the miniball of T . It
takes some simple calculations (we will do them in Sec. 5.2) in order to
verify that the miniball of such a set B—we denote this ball by mb(B)—
is easy to compute, and that mb(B) coincides with the miniball of the
points T . In Fig. 1.1 for instance, we want to find the set {p1, p4, p5} (for
the left example) and {p1, p4} (in case of the right example). Observe
that this new formulation of the problem is discrete in the sense that the
task is to select an ‘optimal’ subset among the finitely many subsets of
T , in contrast to the original task of choosing the ‘optimal’ ball among
all enclosing balls of T (which is an infinite set).

LP-type problems. The above combinatorial formulation of the miniball
already makes the problem fit into Matoušek, Sharir & Welzl’s LP-type
framework. To illustrate this, we again stick (for the purpose of this
introduction) to pointsets T as our input objects and observe that for
any subsets U ′ ⊆ U ⊆ T of the input points T ,

2A set is inclusion-minimal with some property P if it fulfills P but none of its
proper subsets does.



4 Chapter 1. Introduction

(i) the miniball of U has a radius that is at least as large as the radius
of the miniball of U ′, and

(ii) if the miniball of U has a larger radius than the miniball of U ′ then
there exists some point p ∈ U not contained in the miniball of U ′.

Given this, the miniball problem appears as follows. There is some
ground set T (the input points) with some function w : 2T → R assigning
to every subset U of the ground set a value (the radius of the miniball
of U). The goal is to find an inclusion-minimal subset of the ground
set with largest value, where we may exploit properties (i) and (ii) from
above. The former says that the function w must increase if we add
constraints (i.e., points) to its argument, and the latter requires that
whenever we notice a ‘global change’ (the fact that w(U ′) < w(U) for
U ′ ⊆ U), there exists a single element that witnesses the change ‘locally’
(the fact that the gap w(U ′) < w(U ′ ∪ {p}) opens up for some p ∈ U).
Problems exhibiting such monotonicity and locality are called LP-type
problems; besides lp and the miniball problem, the class of LP-type
problems spans many more real-world optimization problems, some of
which we will encounter later on.

LP-type problems. Matoušek, Sharir & Welzl’s algorithm (combined
with some other algorithms as in Lemma 2.11) solves any LP-type prob-
lem provided two ‘subroutines’ are available. These need to be devised
and implemented for the specific problem and will be called at most

O(δn+ eO(
√

δ log δ)), (1.1)

times in expectation overall [39]. Here, n = |T | is the size of the ground
set and δ is the problem’s so-called combinatorial dimension, which is
defined to be the maximal cardinality of a solution of any subset of T ,
i.e., the maximal size of an inclusion-minimal subset U ⊆ T with value
equal to w(U). In the miniball problem from above, for instance, it can
be shown that the combinatorial dimension is at most d + 1, a fact we
have already witnessed in Fig. 1.1, where the desired sets {p1, p4, p5} and
{p1, p4} have size at most 3. Returning to the running time (1.1), we
can see that if the subroutines can be implemented in time polynomial
(or subexponential) in δ and n—as is the case for instance with lp—the
whole problem can be solved in subexponential time.3

3This assumes we take the real RAM model as our model of computation; see
Sec. 2.1 for more on this.
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p1

p2

p3

DT

D{p1,p2}

∅

{p1}

{p2}

{p3}

S

(i) (ii)

Figure 1.2. (i) The balls DU for U ⊆ T := {p1, p2, p3}. (ii) The unique
sink orientation induced by the pointset T .

However, this is not so easy for general LP-type problems. To un-
derstand the issue, we need to take a closer look at the above problem-
specific subroutines involved in the algorithm. Usually, the challenging
one is the basis computation, which essentially asks to solve a subin-
stance Tsmall of the problem of size |Tsmall| ≤ δ + 1. For some problems,
this turns out to be relatively easy: for instance, if all solutions have
size exactly δ, we can simply check all δ + 1 subsets of size δ, one after
another, to see which one solves the problem. In lp, for instance, such a
procedure works and we can solve the basis computation in O(δ) ‘trials.’
In contrast to this, the situation is more difficult in the miniball problem,
where the task in this step is to solve an instance consisting of at most
δ + 1 = d + 2 points. Here, not all solutions need to have cardinality δ
(recall the solution {p1, p4} of the right instance in Fig. 1.1), so (almost)
every single of the exponentially many subsets is a candidate for the so-
lution, and thus, the naive enumeration approach will take exponential
time in the worst case. So if not ‘all’ solutions have size δ—we say that
the problem violates basis regularity—it is not at all obvious whether a
subexponential algorithm exists for solving it.

Unique sink orientations. In some cases, the exponential worst-case
running time of the basis computation can be improved by embedding
the LP-type problem into the unique sink framework [85]. Let us again
look at the construction in the case of the miniball problem, where we
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assume for the sake of simplicity that the at most d+2 input points Tsmall

are affinely independent. (This can always be achieved by embedding
the points in Rd+1 and perturbing them afterwards.) In this case, there
exists for every subset U ⊆ Tsmall a unique smallest ball DU with the
points U on its boundary, see Fig. 1.2(i). Moreover, it is not difficult
to see that the miniball mb(Tsmall) coincides with one of the balls DU ,
U ⊆ Tsmall (Lemma 3.21 will settle this). But which one is it? That is,
which inclusion-minimal set U ⊆ T induces it?

Given a candidate subset U ⊆ Tsmall and a point p ∈ Tsmall \ U , we
can ask ourselves whether U or U ∪ {p} is a (locally) better candidate.
If DU does not contain p, the set U is not a candidate for a solution
because we seek for an enclosing ball (which DU is not). If conversely
DU already contains the point p, the set U induces a ball which encloses
U ∪ {p}; thus, U is in this case a better candidate than U ∪ {p} in the
sense that it already spans a ball enclosing U ∪ {p}. We conclude that
U ∪ {p} is preferable to U if and only if DU does not contain p.

In this fashion we can ask n := |Tsmall| questions for a given subset
U ⊆ Tsmall, one for each pair {U,U ⊕ {p}} with p ∈ Tsmall. Geomet-
rically, the situation matches a cube, with each vertex corresponding
to a candidate set U and each edge {U,U ⊕ {p}} representing a ques-
tion. By answering all questions, that is, by orienting all edges towards
the preferable endpoint of an edge, we obtain an edge-oriented cube C
that possesses a very useful property, the so-called unique sink prop-
erty [40, 85] (see again Lemma 3.21). Namely, every nonempty subcube
of the cube has in its induced orientation exactly one vertex with only
incoming edges. In particular, this means that the whole cube has a
global sink S ⊆ Tsmall, a set whose neighbors are all less preferable. It
turns out that this set S is the desired inclusion-minimal set spanning
mb(Tsmall) because all points not in S are contained in DS (from which
we see that DU encloses the pointset S), and a point p ∈ S cannot be
dropped because it would not be enclosed anymore. Fig. 1.2(ii) for in-
stance shows the unique sink orientation of the points in part (i) of the
figure. The sink is S = {p1, p2} which corresponds to the ball DS , and
indeed, this ball coincides with the miniball of {p1, p2, p3}.

This view of the miniball problem has a practical significance. It
allows us to employ one of the many algorithms designed for finding
the global sink in an unique sink orientation (USO), i.e., in an oriented
cube fulfilling the unique sink property. Such a USO-algorithm takes as
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input an orientation oracle for a USO φ, that is, a subroutine returning
the orientations w.r.t. φ of all edges incident to a given cube vertex, and
outputs the vertex of the cube that is the sink in φ. As the orientation of
a given edge (and hence the oracle itself) can be computed efficiently in
the above oriented cube for the miniball problem, we can employ the cur-
rently best USO-algorithm to solve the basis computation of the miniball
problem with O(1.44n) trials. This is an improvement of approximately
a square-root factor over the naive enumeration approach. Moreover,
the reduction to the USO problem allows for pivoting methods (like the
USO-algorithms random-facet [35] or Murty’s pivoting method [66]) to
be applied; for these we may not be able to give worst-case performance
guarantees, but they have the potential of being fast for almost every
input.

Abstract optimization problems. Closely related to LP-type problems
is Gärtner’s framework of abstract optimization problems. In fact, the
above bound (1.1) for LP-type problems uses Gärtner’s algorithm [32]
internally to solve small instances, and it turns out that the bound even
applies if the basis computation does not return the optimal solution of
the small problem but merely a better one (if there is a better one at all).
This means that any LP-type problem can be solved if a basis improve-
ment routine is available, which for a given small instance Tsmall (of size
at most δ + 1) and a candidate solution V ⊆ Tsmall either asserts that
w(V ) = w(Tsmall) or computes a better solution V ′ ⊆ Tsmall otherwise;
again, the number of basis improvement is bounded by (1.1). Of course,
devising a basis improvement for an arbitrary LP-type problem is diffi-
cult in general; for our running example, the miniball problem of points,
Gärtner showed how this can be achieved in polynomial time [32].

1.2 Contributions and outline of the thesis

In Chap. 2 we review the combinatorial methods we have encountered
in the above outline. In particular, we discuss Gärtner’s strong LP-type
problems [36] which provide a link between LP-type problems and unique
sink orientation. Also, we introduce the new class of weak LP-type prob-
lems which captures for instance the miniball problem (with points as
input) and polytope-distance problem without any general-position as-
sumptions (as are needed in strong LP-type formulations and reductions
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to USO). We show that if an additionally property, the so-called re-
ducibility, holds, a weak LP-type problem can be solved using Welzl’s
algorithm, which in this case produces a strong basis. In the miniball
problem, for instance, this implies that Welzl’s algorithm computes an
inclusion-minimal subset of the input points T whose miniball coincides
with mb(T ).

As a byproduct we observe in Chap. 2 that the total order un-
derlying the monotonicity and locality axioms of (original, weak, and
strong) LP-type problems can be relaxed to a total quasiorder, without
affecting existing algorithms (in particular, without worsening the upper
bound (1.1)). In case of miniball, for instance, this allows us to work
with balls instead of arguing with radii (as we did in the introduction).
As far as LP-type problems are concerned, this observation is probably
negligible. However, when we study weak and strong LP-type problems,
it becomes essential that we work with unique objects and not merely
with one of their parameters (refer to the example on page 45 for more
on this).

In Chap. 3 we develop properties of sebb, the problem of computing
the smallest enclosing ball of a set of balls. Restricted to points as input,
we provide a mathematical program to compute mb(U, V ), the smallest
ball enclosing U that goes through the points V and present a similar
program for the problem of computing the smallest ‘superorthogonal’
ball of a pointset.

Building on the basics, Chap. 4 presents a new combinatorial algo-
rithm for sebp, the miniball problem for points. In contrast to Welzl’s
algorithm from above, our method is very fast also in (moderately) high
dimensions (d ≤ 10,000, say), outperforming even dedicated interior-
point solvers. On the theoretical side, we adopt Bland’s rule [19] from
the simplex algorithm to prevent the algorithm from cycling.

Chapter 5 resumes problem sebb. It starts off by showing that the
problem distinguishes itself from sebp in that it is neither a reducible
nor a strong LP-type problem. In particular, Welzl’s algorithm does
not work for it. Using the geometric inversion transform and a suitable
general-position assumption, we can establish a strong LP-type problem
satisfying reducibility. It follows that Welzl’s algorithm does work if the
balls have affinely independent centers, and that such sebb instances
can be reduced to the problem of computing the sink in a unique sink
orientation. For the latter, it is essential that we overcome the possible
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nonexistence of the balls DU from Fig. 1.2 when U is not a pointset but
a set of balls (Fig. 3.4 illustrates the issue). We do this by generalizing
mb(U, V ) appropriately, and the resulting ‘generalized balls’ have the
nice property that they can be computed from the solutions of (at most
two) convex programs with linear constraints. In particular, this implies
that not only sebp can be tackled by solving a linearly constrained con-
vex program (which was already known [25, 38]) but also sebb, provided
an input ball internally tangent to mb(T ) is known (which can be guessed
if need be). We emphasize that the general position assumption for the
unique sink orientation can be handled efficiently in practice so that it
is not necessary to resort to general symbolic perturbation methods.

Chapter 6 addresses the question whether sebb, too, can be solved in
subexponential time (recall that Gärtner has shown this for sebp). We
generalize a method by Gärtner & Schönherr for solving convex quadratic
mathematical programs [72, 38], and use Gärtner’s algorithm for abstract
optimization problems to show that a wider class of convex programs can
be solved in subexponential time. What we require for this is a certain
computational primitive that needs to be devised for the mathematical
program at hand. In case of sebb and also for the problem of computing
the distance between two convex hulls of balls, the respective primitive
is easy to realize, entailing the existence of subexponential algorithms
for both problems. The resulting method solves problems that do not fit
into the convex linear programming framework presented by Amenta [2].

This thesis is accompanied by three software packages [28, 30, 27]
which have (or will) become part of the Computational Geometry Al-
gorithm Library Cgal,4 a C++ library developed in a joint project by
several universities in Europe and Israel. All these implementations fol-
low the generic programming paradigm and are carefully designed to be
at the same time efficient and easy to use. In case of the codes for
sebb and sebp, the implementations use dedicated techniques to ensure
robustness against degeneracies in almost all cases. Also, the code for
solving sebb can be driven with arbitrary precision arithmetic instead of
floating-point arithmetic, allowing for an exact solution to be computed.

4Visit http://www.cgal.org for further information.





Chapter 2

Combinatorial frameworks

In this chapter, we review the LP-type framework introduced by Matouš-
ek, Sharir & Welzl, including their MSW-algorithm for solving such prob-
lems and its forerunner algorithm by Welzl. We explain how Gärtner’s
algorithm for abstract optimization problems can be used to solve small
LP-type problems in subexponential time, and link a certain subclass of
LP-type problems, the so-called strong LP-type problems, to the unique
sink framework. Furthermore, we introduce the less restrictive weak
LP-type problems for which Welzl’s algorithm produces an appealing
solution. The problem sebp of finding the smallest enclosing ball of a
pointset and the polytope-distance problem, for instance, can be modeled
as weak LP-type problems without any general position assumptions.

Overall, this chapter settles the basic notions and gives the details
to the overview taken in the introduction. sebp will accompany us
throughout this exposition and will serve to illustrate the concepts. How-
ever, no properties of sebp are proven here; we will do this in later
chapters.

2.1 Complexity model

When we talk about the ‘running time’ of a certain algorithm, we mean
the number of steps it takes until it completes with a result. Clearly,
this measure of efficiency depends on what basic operations we allow to
be counted as a single ‘step,’ i.e., which model of complexity we adopt.

11
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Our model of computation is the real RAM model [68, p. 109] in
which every memory cell can store a real number (and not only one
value from a finite alphabet) and in which every basic arithmetic op-
eration (be it an addition, subtraction, multiplication, division, square
root, or comparison) counts as one ‘step,’ regardless of the ‘sizes’ of the
operands.1 (What is the size of a real number, anyway!) As an example,
finding the largest among n real numbers takes time O(n) in this model.
If an algorithm is polynomial (i.e., takes polynomial time in the Turing
machine model [80]) and runs (in the real RAM model) in polynomial
time in the number of input numbers only, we say that it is strongly
polynomial. Linear programming for instance, is a problem for which
polynomial algorithms are known [55, 52], but the question whether a
strongly polynomial algorithm exists is still open at present.

The reason why for the problems and algorithms in this thesis we pre-
fer the real RAM over the usually adopted Turing machine model [80]
are the following. First of all, for many of the problems we will en-
counter, algorithms with polynomial running time (i.e., that complete
in polynomial time in the Turing machine model) are already known,
and it is therefore an interesting question what their complexity is if we
express it in terms of the input parameters only—parameters like for in-
stance the number ‘n’ in the above problem of finding the largest among
n numbers—and not in the input size.

The second and more important reason is that our interest lies in the
combinatorics and structure of the problems, and for the resulting com-
binatorial algorithms, a running time statement for the real RAM model
seems more adequate. To make our point, let us look at the miniball
problem again, and suppose we solve an instance involving points whose
Euclidean coordinates are numbers in {0, . . . , 10}. If we scale the point-
set by a factor of thousand, say, the structure of the problem does not
change at all—referring to the introduction, the very same inclusion-
minimal subset of the input points spans the miniball—and we want the
algorithm and its running time to behave identically for both the un-
scaled and the scaled input. Such insensitivity to input representation
can be achieved in the real RAM model whereas the bit-complexity usu-
ally changes (due to the different input size). We will therefore express
the running times of the algorithms in this thesis in the real RAM model.

1The real RAM is usually equipped with a fairness assumption to disallow arith-
metic operations on numbers that are ‘much larger’ than the input numbers.
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Randomized algorithms. Some algorithms we will deal with are ran-
domized in nature, so let us clarify what we mean by this. For our
purposes, a randomized algorithm is an algorithm that uses random de-
cisions internally, i.e., that queries at certain times a source of random
numbers in order to decide which action to take next. We assume that
such a random number generator (in form of a routine that for given k
returns a natural number uniformly random in {0, . . . , k}) is available
and that a single access to it costs unit time. Moreover, all algorithms
we are going to see are Las Vegas algorithms without exception, that is,
they return the correct result in all cases, independent of the random-
ization. (This is in contrast to so-called Monte Carlo methods that use
randomization in such a way that their output is correct with a certain,
hopefully high probability p > 0.)

We will want to express the running time of an algorithm A with
respect to some parameter(s): in the above problem of determining the
largest among n numbers, for instance, it is natural to express the run-
ning time in terms of n; for the miniball problem, we might want to
parameterize by the number n of input objects and the dimension d
of the ambient space. That is, the (possibly infinite) set I of all in-
stances the algorithm A may run on is usually partitioned into classes,
I =

⋃

p∈P Ip, where P is the set of all possible parameters (for instance,
P = {(n, d) | n, d ∈ N, d ≥ 1} in the miniball problem). For a given
parameter value p ∈ P and an instance I ∈ Ip, we denote by tA(I) the
random variable for the running time of A on the instance I. Notice here
that the probability space on which the variable tA(I) is defined consists
of all possible sequences of outcomes of the random source the algorithm
A queries internally—the events of the probability space are not the in-
stances of the problem. The maximal expected running time (or expected
running time for short) of algorithm A on instances of parameter p ∈ P
is defined as

tA(p) := max
I∈Ip

E[tA(I)].

This worst-case analysis stands in contrast to an average-case statement
about the running time in which the instances in Ip are chosen according
to some predefined probability distribution and the algorithm achieves
a certain running time on average. In this latter case, there might be an
instance for which the algorithm (always) takes much longer than the
average running time. Average- and worst-case analyses are different,
useful concepts, but we will stick to worst-case analysis in the sequel.
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2.2 The LP-type framework

Let us start with the running example of this chapter, problem sebp

of computing the smallest enclosing ball: for a finite nonempty pointset
T ⊆ Rd, we define mb(U), the miniball of U , to be the smallest ball
that contains the balls U ⊆ T , and we write ‘sebp’ for the problem of
computing mb(T ) for a given input pointset T ⊆ Rd.

Later on, we will see that sebp is something like the ‘mother’ of all
LP-type problems because it exhibits most properties a ‘general’ LP-type
problem possesses. As almost all of them are geometrically appealing,
sebp will accompany us through the chapter, serving as an illustration
and motivation of the concepts. Most of the time, however, we will not
(yet!) be able to formally prove things about it—in fact, we have not even
bothered to give the precise definition of the problem at this stage but
hope that the introduction has given you the picture.2 We will provide
the precise definition and proofs in the following chapters for the more
general problem sebb of computing the miniball of a set of balls.

From the computational point of view, a first property of sebp that
stands out is that the knowledge of an inclusion-minimal set V ⊆ T with
mb(V ) = mb(T ) already allows us to ‘cheaply’ compute mb(T ): as we
are going to prove in Lemma 5.2 (and as has already been mentioned in
the introduction), the ball mb(V ) can in this case be computed from V in
time O(d3). A second simple observation we can make is the following:
if U ′ ⊆ U and the balls mb(U ′) and mb(U) have identical radii then
mb(U ′) = mb(U). This is an immediate consequence of the fact that the
miniball is unique (which we prove in Lemma 3.1 to come).

We take these two properties as the motivation for the definition of
a quasiorder problem.

Definition 2.1. A quasiorder problem is a tuple (T,≤,Ω, w) where T
is a finite set, ≤ is a total quasiorder on Ω, and w : 2T → Ω is such that

(i) w(U ′) ≤ w(U) and w(U ′) ≥ w(U) for U ′ ⊆ U ⊆ T implies
w(U ′) = w(U) (uniqueness), and

(ii) Ω contains a minimal and a maximal element under ≤.

The goal of the problem is to compute an inclusion-minimal set V ⊆ U
with w(V ) = w(U).

2It did not? Feel free to check out the details on page 49.
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Here, a quasiorder on some set Ω is a binary relation ≤⊆ Ω×Ω that
is reflexive and transitive; it is called total if x ≤ y or y ≤ x holds for
all x, y ∈ Ω. We write ‘x < y’ for the fact that x ≤ y and x 6= y. Notice
that x 6< y implies x ≥ y through totalness (where we take the freedom
to write ‘x ≥ y’ for ‘y ≤ x’).

Given a quasiorder problem (T,≤,Ω, w), we call the set T the prob-
lem’s ground set and its members are said to be constraints. Further-
more, we call w(U) for U ⊆ T the value of U . Also, if the set Ω and
the quasiorder ≤ are clear from the context, we denote the quasiorder
problem by (T,w) for convenience. Similarly, we write (T,≤, w) for
the quasiorder problem (T,≤, imw,w), provided that the quasiorder on
im(w) = {w(U) | U ⊆ T} is clear from the context.

Please notice that condition (ii) is merely a technical requirement:
we can always add two special symbols, ±⋊⋉, say, to the set Ω and define
−⋊⋉ ≤ x and x ≤ ⋊⋉ for all x ∈ Ω (the function w then never attains any
of these special values).

Clearly, problem sebp is a quasiorder problem: take Ωmb as the set of
all d-dimensional balls, including the empty ball ∅ of radius −∞ and the
infeasible ball ⋊⋉ (which we will use later) of radius ∞, and define mb(∅)
to be the empty ball. We order the elements of Ωmb by their radii, i.e.,
for B,B′ ∈ Ωmb we define B ≤ B′ if and only if the radius of B is at most
the radius of B′. Clearly, ≤ is a total quasiorder on Ωmb, and by adding
(as described above) another special symbol −⋊⋉ to it, we obtain a total
quasiorder with a maximal and a minimal element. It now easily follows
from the two properties discussed above that the tuple (T,≤,Ωmb,mb)
is a quasiorder problem. (Notice that the function mb : 2T → Ωmb never
attains value ±⋊⋉.)

The quasiorder ≤ on Ωmb shows a peculiarity that you at first might
not associate with the symbol ‘≤.’ Namely, B ≤ B′ and B ≥ B′ can
hold at the same time but still B 6= B′ (take any two different balls of
identical radius).

2.2.1 LP-type problems

An LP-type problem is a quasiorder problem that fulfills two additional
conditions (the conditions (i) and (ii) from the introduction).

Definition 2.2. A quasiorder problem (T,≤,Ω, w) is an LP type prob-
lem if for for all U ′ ⊆ U ⊆ T the following conditions hold, where ⋊⋉ ∈ Ω
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is the maximal and −⋊⋉ ∈ Ω the minimal element of ≤.

(i) w(U ′) ≤ w(U) (monotonicity), and

(ii) −⋊⋉ < w(U ′) < w(U) implies the existence of a constraint x ∈ U
with −⋊⋉ < w(U ′) < w(U ′ ∪ {x}) (locality).

A set U ⊆ T is called infeasible if w(U) = ⋊⋉, it is called unbounded if
w(U) = −⋊⋉ and bounded if w(U) > −⋊⋉.

Observe in statement (ii) of locality that x in fact lies in the set U\U ′;
if x ∈ U ′ then U ′ ∪ {x} = U ′ and hence w(U ′) = w(U ′ ∪ {x}). Also,
the converse of the implication (ii) is true, too, as w(U ′) < w(U ′ ∪ {x})
implies w(U) > w(U ′) via monotonicity and uniqueness (if w(U) =
w(U ′) then uniqueness and w(U ′) = w(U) ≥ w(U ′∪{x}) ≥ w(U ′) shows
w(U ′ ∪ {x}) = w(U ′), a contradiction). Moreover, the special element
−⋊⋉ from Ω relaxes the requirement that locality hold for all subsets of
the ground set: if U ′ is unbounded, locality need not hold for the pairs
(U ′, U), U ′ ⊆ U .

The above definition of an LP-type problem differs from the original
one given in [77] in one minor point: we do not require ≤ to be a total
order on Ω (i.e., we do not require ≤ to be antisymmetric), but demand
antisymmetry only if U ′ ⊆ U . We will see later (page 19/45) how this
slightly simplifies some LP-type formulations. Clearly, if ≤ is in fact a
total order, the uniqueness property is automatically satisfied, and we
are back at the original definition. Even in the general case, there is an
easy way to obtain a total order from the quasiorder ≤. The following
shows this, and we will make use of it later.

Lemma 2.3. Let ≤ be a total quasiorder on Ω.

(i) The relation ∼ defined for a, b ∈ Ω via a ∼ b iff a ≤ b and b ≤ a is
an equivalence relation over Ω.

(ii) The relation [a] ≤ [b] ⇔ a ≤ b on the equivalence classes [a], a ∈ Ω,
of ∼ is a total order.

Proof. (i) is obvious and for (ii), let a, a′ ∈ [a] and b, b′ ∈ [b]. Then we
have a ≤ a′ ≤ a and b ≤ b′ ≤ b, and thus

[a] ≤ [b] ⇔ a ≤ b⇔ a′ ≤ b′ ⇔ [a′] ≤ [b′],
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which shows that the relation defined in (ii) is well-defined. As it clearly
is reflexive, antisymmetric, transitive, and total, the claim follows.

The first defining property of an LP-type problem, monotonicity, says
that the function w increases if we add constraints to its argument. In
particular, we can see from it that the value of any subset of the ground
set T is at most w(T ).

Definition 2.4. Let (T,w) be an LP-type problem.

(i) A set V ⊆ T is called a basis if V is bounded and w(V ′) < w(V )
for all V ′ ⊂ V .

(ii) For U ⊆ T , a set V ⊆ U is called a basis of U iff V is a basis and
w(V ) = w(U). (Notice that a basis is a basis of itself.)

In other words, a basis is a bounded subset V of the ground set that
is inclusion-minimal with the property of achieving value w(T ). Given
this, we can rephrase the goal of an LP-type (T,w) as follows: find a
basis with value w(T ). Or even simpler: find a basis of T . (Notice that
such a basis exists if and only if w(T ) > −⋊⋉.)

Here is a different but equivalent formulation of locality; in the orig-
inal papers introducing LP-type problems [61, 60, 77] you will find this
one being employed.

Lemma 2.5. Locality holds iff for all x ∈ T and for all U ′ ⊆ U with

−⋊⋉ < w(U ′) = w(U),

the fact w(U ∪ {x}) > w(U) implies w(U ′ ∪ {x}) > w(U ′).

By monotonicity, the ‘implies’ in the statement is actually an ‘iff.’

Proof. We first show that our definition implies the condition given in
the lemma. If w(U ∪ {x}) > w(U) = w(U ′) > −⋊⋉ then locality yields
an element y ∈ (U ∪ {x}) \ U ′ with w(U ′ ∪ {y}) > w(U ′). Furthermore,
y cannot lie in U because for all z ∈ U we have

w(U) ≥ w(U ′ ∪ {z}) ≥ w(U ′) = w(U)

and hence w(U ′ ∪ {z}) = w(U ′) by uniqueness. So y = x follows.
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Figure 2.1. (i) An instance T of the linear programming problem (lp)
in the plane. (ii) An example with wlp({h1, h2, h3}) = ∞.

For the other direction assume that the alternative locality from the
lemma holds and that w(U) > w(U ′). Take any sequence

U ′ = U0 ⊂ U1 ⊂ U2 ⊂ . . . ⊂ Um = U,

where |Ui| = |Ui−1| + 1 for all i ∈ {1, . . . ,m}. Let k be the smallest
index such that w(U ′) = w(Uk) < w(Uk+1); such an index exists because
w(U ′) < w(U). Writing Uk+1 = Uk∪{x}, we get w(Uk∪{x}) > w(Uk) =
w(U ′) and thus w(U ′ ∪ {x}) > w(U ′) by alternative locality.

The need for −⋊⋉. For many LP-type problems (in particular for sebp

discussed below) locality holds without the precondition that the in-
volved subset U ′ be bounded. That is, there is no need to ‘break’ local-
ity for subsets U ′ of the groundset that are unbounded as is done in the
definition. Nonetheless, some problems can be formulated much more
naturally if we allow such ‘exceptions’ to locality. One example is linear
programming (lp), in which we ask for the lexicographically smallest3

point, denoted by wlp(T ), in the intersection
⋂

h∈T h of a set T of closed

halfspaces in Rd. Refer to Fig. 2.1(i) for an example in the plane.

Let us see why for lp locality does not hold for all pairs (U ′, U) if
the precondition ‘−⋊⋉ < w(U ′)’ is dropped in the definition of locality.
First of all, Fig. 2.1 shows that

⋂

h∈U h is lexicographically unbounded

3A point x ∈ R
d is lexicographically smaller than a point y ∈ R

d iff there exists
an index i ∈ {1, . . . , d} such that xj = yj for all j < i and xi < yi.
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for U = ∅ (or for |U | < d, more generally), and thus wlp(U) is not well-
defined. To remedy this, we define wlp : 2T → Rd ∪ {±⋊⋉} to assign to
a subset U ⊆ T the lexicographically smallest point if it exists, −⋊⋉ if
⋂

h∈U h is lexicographically unbounded, and ⋊⋉ in case the latter region
is empty (see Fig. 2.1(ii)). Given this, we can read

wlp(∅) = wlp({h1}) = −⋊⋉

off Fig. 2.1(i), and since wlp({h1} ∪ {h2}) > −⋊⋉ does not imply wlp(∅ ∪
{h2}) > −⋊⋉, locality does not always hold for pairs (U,U ′) that attain
value −⋊⋉. Refer to [61, 77] for more information on lp.

We turn again to sebp and see how it fits into the LP-type framework.
We have already seen that (T,≤,Ωmb,mb) is a quasiorder problem, and
so it remains to verify that monotonicity and locality hold. Monotonicity
is obvious because if the miniball of a set had a smaller radius than the
miniball of a subset, the former would be a smaller ball enclosing the
subset, contradiction. Similarly, mb(U ∪ {x}) > mb(U) implies that x 6∈
mb(U) (otherwise mb(U) would already be enclosing). So if in addition
mb(U) = mb(U ′) for U ′ ⊆ U then x is not contained in mb(U ′) either,
and it follows mb(U ′ ∪ {x}) > mb(U ′). Thus, locality holds, too, and
sebp in the form of (T,mb) is hence an LP-type problem. (Here, locality
as defined on p. 16 holds without the precondition ‘−∞ < mb(U ′);’ in
other words, we could add an artificial minimal element −⋊⋉ to Ωmb and
the resulting quasiorder problem would still be LP-type.)

We remark here that had we clung to total orders instead of quasior-
ders in the definition of LP-type problems, we would have had to intro-
duce a value function wsebp that maps a subset U ⊆ T to the radius of
mb(U) (see e.g. [61]). The result is the same, and by working with values
mb(U) we only gain the minor advantage that in all our (upcoming) for-
mulations of sebp as variants of LP-type problems, the value of a subset
is a ball (and not a number). (For the formulation of sebp as a strong
LP-type problem one has to work with balls instead of radii, see p. 45.)

2.2.2 Basis-regularity

In sebp, a basis U ⊆ T is an inclusion-minimal subset spanning the same
miniball as U . From geometry it seems clear (Lemma 3.6 to come) that
points that are properly contained in the miniball do not affect it and
can thus be removed. Hence, if V is a basis of U ⊇ V , all points in V
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p1

p2p3

p4

(i)

q1

q2
q3

q4

q5

(ii)

r1

r2

r3r4

(iii)

Figure 2.2. Three pointsets P,Q,R in the plane, together with their
miniballs, which are spanned by bases of different cardinalities. Thus,
sebp is not basis-regular.

must lie on the boundary of the ball mb(V ). Here are some examples of
bases: in Fig. 2.2, the sets

{p1, p4}, {q1, q4, q5}, {r1, r4}, {r1, r2, r3},

are some (but not all) bases; in fact, every single one of these bases is a
basis of the respective pointset P , Q, or R, respectively, and these are
all such bases. From this we see that not all bases need to have identical
cardinality in an LP-type problem, and that there may be several bases
that span a certain value, as is the case in Fig. 2.2(iii).

When we later encounter the MSW-algorithm for solving LP-type
problems, we will learn that its running time heavily depends on two
factors, namely on the maximal size of a basis, and on whether for a
maximal-size basis V , the number |V | equals the size of every basis of
V ∪ {x} or not. This motivates the following definitions.

Definition 2.6. Let (T,w) be an LP-type problem.

(i) The combinatorial dimension of (T,w), written as dim(T,w), is
the maximal cardinality of a basis.

(ii) (T,w) is basis-regular if for every basis V ⊆ T of size δ := dim(T,w)
and every x ∈ T , all bases of V ∪ {x} have size δ.

In particular, (T,w) is basis-regular if all bases have size δ = dim(T,w)
(which happens iff all sets smaller than δ are unbounded).
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As we have already hinted at, an LP-type problem (T,w) can be
solved ‘efficiently’ using the MSW-algorithm from the next section if its
combinatorial dimension is small; if it is large (e.g., δ = Ω(|T |)), we
might be unlucky, though. We note that basis-regularity can be enforced
using a trick by Gärtner, see [61, p. 511]. However, this does not imply
that basis-irregular problems can be solved as efficiently as basis-regular
ones. In fact, the enforcement usually shifts the difficulty to one of
the primitives which the MSW-algorithm invokes, and thus the so-called
‘basis computation’ becomes more involved.

We will see later that the combinatorial dimension of (T,mb) is at
most d+ 1. Looking at Fig. 2.2(i) again, we may observe that the basis
V := {p2, p3, p4} has d + 1 = 3 elements whereas the (only) basis of
V ∪{p1} has cardinality two. So our LP-type formulation of sebp is not
basis-regular. We note here that lp can be written as a basis-regular
LP-type problem.

Violation. For an LP-type problem (T,w) and U ⊆ T , we say that
x ∈ T violates U if w(U ∪ {x}) > w(U); in this case, x is also called a
violator of U . In the context of sebp, a point x ∈ T violates U ⊆ T if
and only if x is not contained in mb(U). Observe here that a violation
test (i.e., checking whether violation applies or not) is easy if U is a basis.
In this case, mb(U) can be computed in O(d3) (see comment on p. 14)
and the violation check boils down to a containment check between a
point and a ball.

2.2.3 The MSW-algorithm

The algorithm proposed by Matoušek, Sharir & Welzl [61, 60, 77] to
solve LP-type problems is shown in Fig. 2.3; we refer to it as the MSW-
algorithm for the sake of simplicity. Just like any method that solves
LP-type problems in general, it makes some assumptions on how the
concrete LP-type problem can be accessed. In this case, two ‘primitive
routines’ must be available that depend on the specific LP-type problem
(T,w) to be solved. They are the following.

• Violation test: Given a basis V ⊆ U ⊆ T and a constraint x ∈
U \ V , the primitive violates(x, V ) returns ‘yes’ if and only if x is
a violator of V , and ‘no’ otherwise.
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procedure msw(U, V )
{ Computes a basis of U }
{ Precondition: V ⊆ U is a basis }
begin

if U = V then

return V
else

choose x ∈ U \ V uniformly at random
W := msw(U \ {x}, V )
if violates(x,W ) then

return msw(U, basis(W,x))
else

return W
end msw

Figure 2.3. The MSW-algorithm for solving an LP-type problem (T,w).
The solution is obtained by msw(T, Vinit), where Vinit is some initial basis.

• Basis computation: Given a basis V ⊆ U ⊆ T and a violator
x ∈ U \ V , the primitive basis(V, x) returns a basis of V ∪ {x}.

As a side remark, we mention here that the correctness of algorithm msw
and its analysis do not rely on basis(V, x) returning a basis of V ∪ {x}:
it is sufficient for what follows that the result of such a call is a basis
V ′ ⊆ V ∪ {x} that improves over V in the sense that w(V ′) > w(V ).

Procedure msw(U, V ) computes a basis of U , given the set U ⊆ T
and an arbitrary basis V ⊆ U which we refer to as the call’s candidate
basis. In order to solve the LP-type problem (T,w), we call msw(T, Vinit)
where Vinit is some initial basis. (Observe that the existence of an initial
basis already implies that w(T ) ≥ w(Vinit) > −⋊⋉, so T is bounded.)

If U = V , the algorithm immediately returns V , as V is a basis of
V = U by precondition. Otherwise, a basis W of U \ {x} is computed
recursively after having chosen a random element x from U \ V ; the
set U \ {x} is bounded (because w(U \ {x}) ≥ w(V ) > −⋊⋉) and hence
a basis W of it exists. Now if x does not violate W then w(U) =
w(U \ {x}) by locality (Lemma 2.5), meaning that W is not only a basis
of U \ {x} but also of U . In this case the algorithm stops with W as
the result. If on the other hand x violates W , the algorithm invokes
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itself again to compute a basis of U , passing a basis of W ∪ {x} as the
subcall’s candidate basis. We see from this that the algorithm is correct.
Moreover, whenever the procedure msw is called to recurse, either the
cardinality of the first argument drops by one or the value w(V ) of the
second argument V strictly increases. This together with the fact that
the function w only attains finitely many values proves that the algorithm
eventually terminates.

The choice of the constraint x to drop is critical because if it turns
out ‘bad,’ we are forced to do additional work while for a ‘good’ choice
we can exit immediately. More precisely, the probability that the second
recursive subcall is taken equals the probability that x is contained in
every basis of U ; the latter however is obviously bounded by δ/|U |, where
δ is the problem’s combinatorial dimension. Using this, one can prove
the following bound on the running time of msw.

Lemma 2.7 (Sharir & Welzl). Algorithm msw solves any LP-type prob-
lem of size n and combinatorial dimension δ with a maximal expected
number of at most

2δ+2(|T | − δ)

basis computations and a maximal expected number of at most this many
violation tests, provided an initial basis Vinit is given.

The proof from [77, 61, 31, 39] of this is formulated for the case
when the quasiorder ≤ of the LP-type problem (T,≤,Ω, w) is an order.
However, it is easily verified that the proof also works when ≤ is a total
quasiorder. Moreover, it is clear from the algorithm that the number
of basis computation is dominated by the number of violation tests so
that it actually suffices to count the latter; one can also show that the
number of invoked basis computations is O(log(|T |)δ) [40].

In particular, the lemma shows that any LP-type problem of fixed,
finite combinatorial dimension can be solved with a linear number of
basis computations and violation tests.

Subexponential running time. Although the maximal expected number
of primitive calls in the above lemma is linear in n, the dependency
on the combinatorial dimension is exponential. Is this a weakness of
the analysis of msw, or is the exponential behavior inherent to the al-
gorithm? The answer is that basis-regular LP-type problems (like e.g.
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lp) are solved with subexponentially4 many basis computations and vi-
olation tests. To show this, one uses the fact that for such problems,
the recursion of algorithm msw(U, V ) ends as soon as the input set U
consists of only δ constraints (in which case U is a basis). The analysis
under this assumption yields a bound of

(n− δ) eO(
√

δ log n) (2.1)

on the maximal expected number of violations tests and basis computa-
tions, respectively. For the proof of this, we refer the reader to [31, 61].

It is at present time not clear whether there are (basis-irregular) LP-
type problems for which algorithm msw needs exponentially many prim-
itive calls (see also the subexponential lower bound [59] by Matoušek).
The only currently known method to obtain an algorithm that is subex-
ponential also for basis-irregular LP-type problems is the following vari-
ation of msw: in spirit of Gärtner’s trick to enforce basis-regularity (see
above), we mimic the algorithm’s behavior for basis-regular problems
and stop the recursion msw(U, V ) as soon as |U | ≤ δ (namely, at the
moment the recursion would stop for a basis regular problem); for the
remaining small instance, we employ some other algorithm. Thus, we
assume the availability of a solver for small problems, i.e., of a routine
small(U) that returns a basis of an instance U ⊆ T of (T,w) for |U | ≤ δ.5

The resulting algorithm msw-subexp is identical to algorithm msw from
Fig. 2.3, except that the statement ‘if U = V then return V ’ is replaced
by ‘if |U | ≤ δ then return small(U).’ You can verify its correctness along
the same lines as in case of the original algorithm msw.

Since msw-subexp stops recursing as soon as the problem size reaches
the combinatorial dimension, the analysis leading to (2.1) applies to it as
well, except that we now have a multiplicative overhead of tsmall(δ) + 1,
where tsmall(δ) denotes the maximum expected number of violation tests
carried out by small(U) over all instances U ⊆ T of size |U | ≤ δ. In this
way one obtains

Theorem 2.8 (Matoušek, Sharir & Welzl). Algorithm msw-subexp solves
any LP-type problem (T,w) of combinatorial dimension δ and size |T | =

4A function is said to be subexponential if its logarithm is sublinear.
5If one assumes that the primitive small(U) can solve small instances of size up to

2δ, a subexponential bound can be obtained, too, and the analysis [40] is much easier
than the one from [31, 61] which we mentioned earlier.
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n with at most

(n− δ) eO(
√

δ log n)(tsmall(δ) + 1)

primitive calls in expectation, provided an initial basis is available. For
a basis-regular problem, tsmall(δ) = 0.

Again, the theorem was proven for LP-type problems (T,≤,Ω, w)
where ≤ is a total order (and not a total quasiorder as in this thesis),
but it is easy to verify that the proof works with total quasiorders, too.

2.3 The AOP framework

In the last section we saw that any LP-type problem can be solved with a
subexponential number of primitive calls, provided there is an algorithm
small(U) that solves small instances with subexponentially many calls.
The only known algorithm that achieves the latter is Gärtner’s AOP-
algorithm [31, 32]. Surprisingly, this method uses less structure than
is available in LP-type problems. Because of this, the algorithm can
be formulated not only for LP-type problems but more generally, for
so-called abstract optimization problems, or AOP’s for short.

The problems in the AOP framework are optimization problems of
the following kind. There is a ground set H, some of whose subsets
are potential candidates for a solution of the problem. These subsets
are called abstract bases6 and the set of all abstract bases is denoted
by B ⊆ 2H . The abstract bases are ordered via some total quasiorder
�⊆ B × B, and the goal of the problem is to find the ‘best,’ i.e., the
�-largest abstract basis in the ground set. (To be precise, there might
be several �-largest abstract bases; we want to find one of them.)

An optimization problem of this sort is an AOP if a primitive is
available that produces for some given abstract basis F ∈ B and for
some superset G ⊇ F a better abstract basis in G, if possible. That is,
if we denote by

B(G) := {F ⊆ G | F ∈ B, ∀ F ′ ∈ B, F ′ ⊆ G : F � F ′}

the set of �-largest abstract bases in G, the primitive either reports that
F ∈ B(G), or it produces an abstract basis F ′ ⊆ G that is better than F :

6This is not to be confused with the notion of a ‘basis’ in the LP-type framework.
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Definition 2.9. Let H be a set, � a total quasiorder on 2H , and B ⊆ 2H .
A quadruple (H,B,�,Φ) is an abstract optimization problem iff

Φ : {(G,F ) | F ⊆ G ⊆ H, F ∈ B} → B

is an improving oracle, i.e., a function satisfying

Φ(G,F ) =

{

F, if F ∈ B(G),
F ′ ≻ F , F ′ ⊆ G, F ′ ∈ B, otherwise.

Notice that in the context of the previous section, the improving
oracle replaces locality.—The goal of an AOP (H,B,�, φ) is to find a
�-largest abstract basis (i.e., an element in B(H)) by only performing
queries to the oracle φ. In other words, we assume that the order �
is unknown and information about it can only be gathered by query-
ing the oracle. The question then is: how many times do we have to
access the oracle in order to find one of the abstract bases in B(H)?
Trivially, 2|H|−1 accesses suffice in the worst case, as one can see for in-
stance from the algorithm that iterates ‘F := Φ(H,F )’ until no progress
is achieved anymore. Gärtner’s randomized algorithm [31, 32] performs
much better:

Theorem 2.10 (Gärtner). Any AOP on a ground set H of n elements
can be solved with an expected number of exp(O(

√
n)) oracle calls.

We refer to [39] for an introduction to Gärtner’s algorithm and its
underlying ideas, and to [31, 32] for the proof of the above statement.
We again point out that Gärtner’s algorithm (in the formulation in his
thesis [31]) works with quasiorders although some papers only define
AOPs with total orders.

Reduction from LP-type problems. We now return to the question how
one can solve small instances of an LP-type problem with a subexpo-
nential number of violation tests and basis computations. For this, we
reduce the LP-type problem to an AOP and run Gärtner’s algorithm [39].

So let (T,w) be an LP-type problem of combinatorial dimension δ.
From it, we define the following AOP

P(T,w) := (T,B,�, φsmall),

with the parameters explained next: as the AOP’s ground set we take
the constraints T of the LP-type problem, and we define the AOP’s
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procedure Φsmall(G,F )
{ Computes a basis F ′ ⊆ G with w(F ′) > w(F ) }
{ or asserts that w(G) = w(F ). }
{ Precondition: F ⊆ G, F is a basis }
begin

forall x ∈ G \ F do

if violates(x, F ) then

return basis(F, x)
return F

end Φsmall

Figure 2.4. The improving oracle for the AOP that solves the LP-type
problem (T,w).

abstract bases to be the bases of (T,w). In this way, a solution of the
AOP is a basis of the original LP-type problem. Moreover, we order the
abstract bases according to their value: if F, F ′ ⊆ B, we set F � F ′ if
and only if w(F ) ≤ w(F ′). Through this, the solution of the AOP is a
�-largest LP-type basis and thus a basis of T . Finally, we realize the
AOP’s oracle φsmall(G,F ) as shown in Fig. 2.4. The correctness of the
routine follows trivially from locality.

Invoking Theorem 2.10, the problem (T,w) with n := |T | can be
solved using at most exp(O(

√
n))(δ + 1) primitive calls in expectation,

the additional factor δ + 1 stemming from the fact that Φsmall performs
at most δ violation tests and one basis computation. Since this bound is
exponential in n, we should not use this reduction for the initial (large)
LP-type problem. Instead, we run algorithm msw-subexp and invoke
Gärtner’s algorithm on P(U,w) whenever msw-subexp calls small(U).
Using this approach and two algorithms by Clarkson [20], one obtains
the currently best bounds for LP-type problems (please refer to [39] for
the details):

Lemma 2.11. Any LP-type problem (T,w) of combinatorial dimension
δ and size n = |T | can be solved with an expected number of at most

O(δn+ eO(
√

δ log δ))

violation tests and an expected number of at most eO(
√

δ log δ) basis com-
putations, provided some initial basis B ⊆ T is available.
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{1}

{1, 2}

{1, 3} =: J1

{1, 2, 3} =: J2

{1, 4}

{1, 2, 4}

{1, 3, 4} =: J3

{1, 2, 3, 4} =: J4

Figure 2.5. The cube C [A,B] spanned by A = {1, 2, 3, 4} and B = {1}.
The subgraph of C [A,B] induced by the vertices {J1, . . . , J4} is a face.

We note here that instead of basis computations (as we use them
for Φsmall) it might be more efficient in some cases to implement the
AOP’s oracle directly, using some sort of ‘basis improvement.’ The AOP
algorithm clearly continues to work if we do so, and also the MSW-
algorithm’s analysis remains valid as pointed out on page 22.

For the moment, this concludes our overview of LP-type problems.
We now turn to unique sink orientations and return to LP-type problems
when we discuss a link between the latter and so-called reducible strong
LP-type problems.

2.4 The USO framework

In this section we consider special optimization problems on cubes. For
this purpose, we regard cubes (as we know them from geometry) as
graphs whose vertices are sets. More precisely, we define for any two
sets A and B satisfying A ⊇ B,

[A,B] := {X | A ⊇ X ⊇ B},

and denote by C [A,B] the cube spanned by A ⊇ B, that is, the graph of
vertex set [A,B] and edge set

{{J, J ⊕ {x}} | J ∈ [A,B], x ∈ A \B}.

The dimension of a cube C [A,B] is the number |A \B|. An example of a
3-dimensional cube is shown in Fig. 2.5.
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(i) (ii) (iii)

Figure 2.6. Three orientations of a 3-dimensional cube: (i) is a unique
sink orientation (with a cycle), (ii) and (iii) are not.

Observe that the subgraphs of a cube C = C [A,B] induced by vertex
sets [F,G] ⊆ [A,B] are cubes again, and we call them the faces of C.
The set of faces of a cube C is denoted by F (C). For convenience, we
identify cubes and faces, i.e., both C [F,G] (a cube) and [F,G] (its vertex
set) will be called faces (and cubes) in the sequel. Faces of dimension zero
are called vertices, 1-dimensional faces are edges, and faces of dimension
dim(C) − 1 are called facets of C. Notice that C itself is a face of C.

By orienting the edges of C in an arbitrary way we obtain an oriented
cube. If a vertex J of an oriented cube C has no outgoing edges (i.e.,
there is no edge in the graph C that is oriented away from J), it is called
a sink.

Definition 2.12. A unique sink orientation (USO) is an orientation of
the edges of a cube such that every face of the cube has in its induced
subgraph a unique sink.

Figure 2.6 shows three orientations of a 3-dimensional cube C. The
first one is a USO as is easily checked by applying the definition. The
orientation (ii) is not a USO as it contains no sink in the highlighted face,
and neither is (iii) since it contains two sinks. As you can see from the
highlighted edges in Fig. 2.6(i), a unique sink orientation may contain
cycles, i.e., closed oriented paths.

Finding the sink. Unique sink orientations appear in many contexts.
Certain linear complementarity problems [82, 73], linear programs [73],
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certain strictly convex quadratic programs [73, 34], and (as we will see
in the next section) also certain LP-type problems ‘induce’ unique sink
orientations. In all these applications, the sink of the USO captures suffi-
cient information to reconstruct the original problem’s optimal solution.
That is, knowing the sink solves the problem. However, the orientation
is very expensive to compute (and also very large), so it is not explic-
itly available to us. What is desired is a way to ‘query’ a part of the
orientation (as few times as possible!) in such a way that eventually we
query the sink (and hence solve the original problem). This leads to the
following model for finding the sink in a unique sink orientation [85].

We assume that a unique sink orientation φ is given implicitly through
a vertex evaluation oracle, evaluate(J), which returns the orientations of
all edges incident to a vertex J of the orientation’s underlying cube. That
is, if C = C [A,B] is φ’s underlying cube and J ∈ [A,B] then evaluate(J)
returns a list of |A \B| = dim(C) pairs

(x, o) ∈ (A \B) × {in, out},

where x identifies the edge {J, J ⊕ {x}} and o denotes its orientation
relative to J . The goal of the problem is to query (i.e., evaluate) the
sink of φ with as few vertex evaluations as possible. (One could also
consider edge evaluations, but historically, vertex evaluation was first.)

An algorithm which solves this so-called USO problem is called a
USO-algorithm. Its running time is the maximal (expected) number of
vertex evaluations it needs to query the sink of any given USO. Currently,
the best known randomized algorithm [85] has the following performance.

Theorem 2.13 (Szabó & Welzl). The sink of any unique sink orienta-
tion on a d-dimensional cube can be evaluated with a maximal expected
number of O(1.44d) vertex evaluations.

2.5 Weak LP-type problems

We stay with problems defined on cubes and assume in contrast to the
previous section that every face of the cube has an associated value.
With a suitable monotonicity and locality of the value function, our goal
will be—similarly to the original LP-type framework—to find a subcube
of minimal dimension that spans the same value as the whole cube.
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procedure welzl(U, V )
{ Computes a strong basis of [U, V ] }
{ Precondition: V ⊆ U , w(U, V ) < ⋊⋉ }
begin

if U = V then

return V
else

choose x ∈ U \ V uniformly at random
I:= welzl(U \ {x}, V )
if infeasible(x, I) then

return welzl(U, V ∪ {x})
else

return I
end welzl

Figure 2.7. Welzl’s algorithm for solving a reducible primal weak prob-
lem (T,w). The solution is obtained by calling welzl(T, ∅).

This is the setting of weak and strong LP-type problems; the latter were
introduced by Gärtner [36] and the former are inspired by them.

In order to motivate the definition of weak LP-type problems we turn
to Welzl’s algorithm [86] which is listed in Fig. 2.7. Originally developed
by Welzl for solving the miniball problem for points, the algorithm can be
used to solve other problems as well: as we will learn later, the polytope
distance problem (Sec. 6.6.2), problem sebb (under some preconditions),
and moreover also lp can be tackled using it.

In the abstract setting, welzl is an algorithm that works on a cube
C = C [T,∅] whose faces have, as described above, associated values, i.e.,
there is a function w : F (C [T,∅]) → Ω, with Ω a quasiordered set, that
assigns to any face [A,B] ⊆ [T, ∅] = 2T a value w(A,B). (Recall that
F (C) is the set of the faces of the cube C.) If the function w fulfills
certain conditions, Welzl’s algorithm finds (as we will see) a subcube
of minimal dimensions that spans the same value as the whole cube.
More precisely, a call to welzl(U, V ) for [U, V ] ⊆ 2T then returns a vertex
(a zero-dimensional cube) I with w(I, I) = w(U, V ). The goal of this
section is to develop the conditions that need to hold for this. In doing
so, we will not focus on a minimal set of conditions; rather, we will
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impose requirements onto w that ensure that a call to welzl(U, V ) not
merely computes some vertex I ⊆ T with w(I, I) = w(U, V ) but one
that is a strong basis of [U, V ], meaning that it fulfills

w(U, V ) = w(I, I) = w(U, I) = w(I, V ).

In case of problem sebp, this shows a property of Welzl’s algorithm that
is not mentioned in the original paper [86], and which is automatically
fulfilled for every problem in the weak LP-type framework

In the sequel we first introduce weak LP-type problems, then mention
the concept of reducibility which ensures that every face [U, V ] indeed
contains a vertex I (i.e., a minimal-dimension subcube) with w(I, I) =
w(U, V ), and finally show that Welzl’s algorithm computes a strong basis
for reducible weak problems.

Weak LP-type problems. To get a feeling for LP-type problems we turn
to problem sebp once again and define mb(U, V ) for V ⊆ U ⊆ T as the
smallest ball that contains the points in U and goes through (at least)
the points in V . (We say that a ball B ⊂ Rd goes through a point p ∈ Rd

if p lies on the boundary of B.) Lemma 3.11(i) in the next chapter shows
that this ball is unique provided some ball though V containing U exists;
if it does not exist (which may happen), we set mb(U, V ) to the infeasible
ball ⋊⋉ ∈ Ωmb of radius ∞, see page 15. (More details on mb(U, V ) can
be found in Chap. 3.)

Consider now for a given input pointset T ⊂ Rd the cube C [T,∅]

where we assign to the face [U, V ] ⊆ 2T the ball mb(U, V ) as its value.
We can observe the following two simple properties of mb. First of all,
mb(U ′, V ′) ≤ mb(U, V ) for all U ′ ⊆ U and all V ′ ⊆ V , so monotonicity
holds. Second, mb(U, V ) = mb(U ′, V ′) =: D implies that the ball D
contains all points in U ∪ U ′ and that all points in V ∪ V ′ lie on the
ball’s boundary. We refer to this property as dual nondegeneracy (and
will explain the name in a minute). We take this as a motivation to
define primal weak LP-type problems and dual weak LP-type problems
as follows; for convenience, we drop the word ‘LP-type’ in these terms,
and moreover call a problem a weak (LP-type) problem if it is a primal
or dual weak problem.

Definition 2.14. Let T be a finite set, ≤ a total quasiorder on some set
Ω, and w : F (C [T,∅]) → Ω. The quadruple (T,≤,Ω, w) is a primal (dual)
weak problem if the following properties (i), (iii), and (iv) ((i), (ii),
and (v), respectively) hold for all [U ′, V ′], [U, V ] ⊆ 2T and all x ∈ U \V .
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(i) w(U ′, V ′) ≤ w(U, V ) for U ′ ⊆ U , V ′ ⊆ V (monotonicity), and for
U ′ ⊆ U , V ′ ⊆ V , w(U, V ) ≤ w(U ′, V ) implies w(U, V ) = w(U ′, V )
and w(U, V ) ≤ w(U, V ′) implies w(U, V ) = w(U, V ′) (uniqueness),

(ii) If w(U, V ) = w(U ′, V ′) ≤ ⋊⋉ holds then w(U∩U ′, V ∩V ′) = w(U, V )
(primal nondegeneracy),

(iii) If −⋊⋉ < w(U, V ) = w(U ′, V ′) holds then w(U ∪ U ′, V ∪ V ′) =
w(U, V ) (dual nondegeneracy),

(iv) If J is an inclusion-minimal strong basis of [U, V ∪ {x}] and ⋊⋉ >
w(U, V )>w(U\{x}, V ) then w(J, J)=w(J, V ) (primal optimality).

(v) If I is an inclusion-minimal strong basis of [U \ {x}, V ] and −⋊⋉ <
w(U, V )<w(U, V ∪ {x}) then w(U, I)=w(I, I) (dual optimality),

Here, ⋊⋉ ∈ Ω is the maximal and −⋊⋉ ∈ Ω the minimal element of ≤.

The goal of a primal (dual, respectively) weak problem is to find a
smallest-dimensional subcube of [T, ∅] with the property of spanning the
whole cube’s value w(T, ∅). With the following definition, the objective
is to find a weak basis of [T, ∅].

Definition 2.15. Given a weak LP-type problem (T,w) and [U, V ] ⊆ 2T ,
a face [U ′, V ′] ⊆ [U, V ] is called a weak basis of [U, V ] if

(i) −⋊⋉ < w(U ′, V ′) = w(U, V ), and

(ii) w(U ′′, V ′′) 6= w(U ′, V ′) for all [U ′′, V ′′] ⊂ [U ′, V ′].

A face [U, V ] is called a weak basis if it is a weak basis of itself.

Figure 2.8 shows an example of a weak LP-type problem on the
groundset {①,②}. As you can easily verify, the one-dimensional face
F = [{②}, ∅] is the only weak basis of F . In particular, there is no vertex
J ∈ F that spans the value w(F ). This shows that not every face of a
weak problem needs to have a strong basis.

Miniball again. We will show in the next chapter that (T,≤,mb) is a
primal weak problem (Lemma 3.21). What use we can make of this?
Since the points in a basis V ⊆ U all lie on the boundary of mb(V ) (see
page 20), we can observe that mb(V ) = mb(V, V ) holds for any basis V ,



34 Chapter 2. Combinatorial frameworks

① ②

1

1
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3

2

1

2

2

3
U vs. V ∅ {①} {②} {①,②}

∅ 1
{①} 1 1
{②} 2 3

{①,②} 2 2 3 3

Figure 2.8. The pair (T,w) with T = {①,②} and w as in the table is
a weak LP-type problem (in fact, it is strong, see Sec. 2.6). The face
F = [{②}, ∅] has no strong basis (its only weak basis is F itself).

in particular for a basis of the input pointset T . (This shows that in case
of sebp the weak bases of [T, ∅] have dimension zero.) From this point
of view, our goal is indeed to find a weak basis of the cube [T, ∅] because
any [J, J ] is automatically a weak basis.

This formulation of sebp as a weak LP-type problem reveals a pat-
tern that applies to all ‘practical’ weak LP-type formulations we have
seen so far. Namely, the constraints in the set T manifest themselves in
two variants: x ∈ T can be ‘weakly’ active in which case it is a mem-
ber of U but not of V , or it can be ‘strongly’ active in which case the
constraint is listed in V and U . (And of course, a constraint can be
inactive, in which case it is neither in V nor in U .) In the above for-
mulation of sebp, the weak version of a constraint x ∈ T requires x to
be contained in the miniball, while the strong version requires it to be
on the boundary. More generally, a weak constraint may correspond to
an inequality being satisfied while the corresponding strong constraint
is the very same inequality with ‘=’ in place of ‘≤’ (see for instance the
formulation of sebp based on quadratic programming [34]).

Interpretation. Let us try to get a feeling for the defining properties of
a weak LP-type problem. First of all, monotonicity does not have an
immediate interpretation in terms of cubes and subcubes: [U ′, V ′] is not
necessarily a face of [U, V ] if U ′ ⊆ U and V ′ ⊆ V as in the definition.

Primal nondegeneracy has an appealing interpretation: it guaran-
tees uniqueness of inclusion-minimal weak bases (and in this sense the
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p1

p2

p3

p4

mb(T, T )
mb(T, T \ {p2, p3})

Figure 2.9. (T,≤,mb) is a primal weak problem for any finite T ⊂ Rd,
however, the induced problems (U,≥, wU ), U ⊆ T , need not be LP-type.

problem is ‘nondegenerate’): we say that a weak basis [U, V ] is inclusion-
minimal if all weak bases [U ′, V ′] with U ′ ⊂ U and V ′ ⊂ V have a strictly
smaller value than w(U, V ). Now suppose [U ′, V ′], [U ′′, V ′′] ⊆ [U, V ] are
two different inclusion-minimal weak bases of [U, V ]; primal nondegen-
eracy implies that [U ′ ∩ U, V ′ ∩ V ] attains value w(U, V ) as well, con-
tradicting the inclusion-minimality of (at least one of) the weak bases
[U ′, V ′], [U ′′, V ′′]. Likewise, dual nondegeneracy implies uniqueness of
inclusion-maximal weak bases, where a weak basis [U, V ] is inclusion-
maximal if all weak bases [U ′, V ′] with U ′ ⊃ U and V ′ ⊃ V have a
strictly larger value than w(U, V ).

The significance of primal (dual, respectively) optimality will become
clear later when we proof the correctness of Welzl’s algorithm, to which
they are tailored (see Lemma 2.19). We already mention that these two
properties are ‘stronger’ than LP-type locality in the following sense. If
we define for any fixed V,U ⊆ T the two functions

wV (X) := w(V ∪X,V ), X ⊆ T \ V,
wU (X) := w(U,U \X), X ⊆ U,

we can look at the quasiorder problems (U \ V,≤, wV ) and (U,≥, wU ),
which we call the weak problem’s induced quasiorder problems (and
which will encounter again in Sec. 2.2.1). (We already know the prob-
lem (T, ∅,≤,mb∅), see page 19!) Now if we required monotonicity (as in
the definition of weak problems), primal or dual nondegeneracy, and in
addition that the above to quasiorder problems are LP-type (i.e., to ful-
fill locality) then the resulting structure need not fulfill primal and dual
optimality. An example is Fig. 2.8 again, where it is easily verified that
both quasiorder problems are LP-type, yet primal optimality is violated
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for [U, V ] = [{②}, ∅], J = {②}, and x = ②, and dual optimality, too
(take the same cube [U, V ] and x, and set I = ∅).

On the other hand, primal and dual optimality are not stronger than
LP-type locality in general, as problem sebp shows: (T,≤,Ωmb,mb) is
a primal weak LP-type problem (Lemma 3.21), and here, the induced
problems (U,≥, wU ), U ⊆ T , need not be LP-type. In Fig. 2.9, for
instance, the four points U = T give an induced problem where locality
is not fulfilled. If we drop only one point from the second argument of
mb(U,U) then the ball does not change, but dropping {p2, p4} does!—In
fact, it is precisely the feature of LP-type problems that they do not
require such locality. In contrast, the induced problems of the strong
LP-type problems we will encounter in the next section are always LP-
type, and therefore only instances of sebp in ‘general position’ can be
formulate as strong LP-type problems.

2.5.1 Reducibility

In the above formulation of sebp, all faces [U, ∅], U ⊆ T , have a weak
basis that is a vertex, i.e., zero-dimensional subcube. As a matter of
fact, every face (including infeasible faces, i.e., faces with value ⋊⋉) has a
vertex as a weak basis (Lemma 3.11 in the next chapter). This, however,
need not be the case in general (Fig. 2.8), but if it is, we speak of reducible
weak LP-type problems.

Definition 2.16. A function w : F (C [T,∅]) → Ω is called reducible if
for all [U, V ] ∈ 2T and every x ∈ U \ V we have

w(U, V ) ∈ {w(U \ {x}, V ), w(U, V ∪ {x})}.

A weak LP-type problem (T,w) is called reducible if w is reducible.

Reducibility has a nice interpretation in terms of cubes and subcubes.
The cube [U, V ] from the definition can be ‘divided’ along the ‘direction’
x ∈ U \ V , leaving us with the facet [U \ {x}, V ] (all whose vertices do
not contain x) and the facet [U, V ∪{x}] (whose vertices contain x). All
edges in the cube [U, V ] containing x are between these two subcubes (see
Fig. 2.10). Reducibility now says that the value of a subcube is attained
by at least one of its facets, regardless along which label you divide.

Reducibility implies that all weak bases in (T,w) are vertices. This
can very easily be seen using induction: given a face [X,Y ] of [U, V ] ⊆
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V

V ∪ {x}

U \ {x}
U

x

Figure 2.10. Reducibility in (T,w) means that the value of any subcube
[U, V ] of C [T,∅] is attained by one of the subcube’s facets, regardless of
the label x ∈ U \ V you choose in order to spilt the subcube into facets.

2T , apply reducibility |X \ Y | times to it. Each invocation reduces the
dimension dim([X,Y ]) = |X \ Y | of the current face by one (as we jump
from a face to one of its facets) while spanning the same value, so that
eventually we arrive at a vertex (i.e., X = Y ).

Welzl’s algorithm. We now turn to algorithm welzl from Fig. 2.7. Let us
first outline why it computes a weak basis; a detailed correctness proof
showing that it returns a strong basis is given below. In particular, this
will settle that strong bases exist.

In computing a weak basis J of [U, V ], we assume that J is a small
set. The chances are then high that a random x ∈ U \V is not contained
in J (more precisely, that x is not contained in all weak basis of [U, V ]).
Thus, we first drop x, recursively computing a weak basis I of the facet
[U \ {x}, V ]. Subsequently, we check whether x is infeasible for I, that
is, whether

w(I ∪ {x}, I) > w(I, I); (2.2)

this is the condition the routine infeasible(x, I) from Fig. 2.7 tests. If
(2.2) is not true, we use dual nondegeneracy (as shown in the proof
below) to deduce w(U, V ) = w(I, I), which proves I to be a weak basis
of [U, V ]. If on the other hand (2.2) holds, we cannot have w(U, V ) =
w(I, I) and we therefore apply reducibility to w(U, V ) > w(I, I) = w(U \
{x}, V ), yielding

w(U, V ) = w(U, V ∪ {x}).
Thus, all we have to do if (2.2) holds, is to recursively compute a weak
basis of w(U, V ∪{x}) by a call to welzl(U, V ∪{x}). It follows from these
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p1

p2

p3
p4

mb(J, J)

mb(J, ∅)

Figure 2.11. The set J = {p1, p2, p3} is a weak basis of (T,mb) for
T = J ∪ {p4}, but the points J do not span the miniball of T .

observations that algorithm welzl(U, V ) computes a weak basis of [U, V ];
termination of the algorithm is obvious as the dimension of the face
[U, V ] passed to the algorithm drops by one in every recursive subcall.

In case of sebp, the fact that Welzl’s algorithm produces a weak basis
means that welzl(T, ∅) might produce either of {p1, p2, p3}, {p1, p2, p4},
{p1, p3, p4}, or T for the four points T depicted in Fig. 2.11. However,
the first of these weak bases does (as a set of points) not span the
miniball mb(T ) (but the smaller ball drawn in solid instead). Clearly,
we would prefer {p1, p2, p3}, which fulfills the additional property of
being inclusion-minimal with w(J, J) = w(J, ∅) = w(T, J). And, yes,
algorithm welzl auto-magically computes a weak basis with this property!

Lemma 2.17. In a reducible primal weak problem (T,w), welzl(U, V )
finds an inclusion-minimal strong basis of any feasible face [U, V ] ⊆ 2T .

Proof. We prove the claim by induction on m := |U \ V |, which is the
dimension of the face [U, V ]. If U = V , the algorithm returns U = V ,
which is clearly an inclusion-minimal strong basis of [U, V ].

If m > 0, the algorithm calls itself on the facet [U \ {x}, V ] for some
x ∈ U\V . As this face has dimension smaller thanm and w(U\{x}, V ) ≤
w(U, V ) < ⋊⋉, the induction hypothesis applies and the subcall returns
an inclusion-minimal I ∈ [U \ {x}, V ] with

w(I, I) = w(U \ {x}, V ) = w(I, V ) = w(U \ {x}, I). (2.3)

Two cases may occur now, depending on whether the feasibility test
reports a violation or not. We claim that w(I ∪ {x}, I) = w(I, I) if and
only if w(U, V ) = w(U \ {x}, V ). To see the implication (⇒) of this, we
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use dual nondegeneracy, applied to the faces [I ∪ {x}, I] and [U \ {x}, I]
(which share the same value), yielding w(I, I) = w(U, I). Then, however,

w(U, I) ≥ w(U, V ) ≥ w(U \ {x}, V ) = w(I, I) = w(U, I),

which using uniqueness shows w(U, V ) = w(U \ {x}, V ). For the other
direction (⇐), we invoke dual nondegeneracy on the faces [U, V ] and [I, I]
whose values agree under w(U, V ) = w(U \{x}, V ). This gives w(U, I) =
w(I, I) from which w(I ∪ {x}, I) = w(I, I) follows via monotonicity and
uniqueness. We conclude that w(I ∪ {x}, I) = w(I, I) if and only if
w(U, V ) = w(U \ {x}, V ), and as a byproduct we obtain that the former
condition also implies w(I, I) = w(U, I) (see proof of (⇒) above).

Consider the case when the infeasibility test reports no violation.
Then w(U, V ) = w(U \ {x}, V ), which together with (2.3) and w(I, I) =
w(U, I) establishes

w(U, V ) = w(I, I) = w(I, V ) = w(U \ {x}, I) = w(U, I),

so I as a strong basis of [U, V ]. Inclusion-minimality of I is obvious.

If the feasibility test yields w(I ∪ {x}, I) > w(I, I), we must have
w(U, V ) > w(U \{x}, V ), so reducibility yields ⋊⋉ > w(U, V ) = w(U, V ∪
{x}). The algorithm now invokes itself on [U, V \{x}], and since this face
is feasible and has dimension smaller than m, the result is an inclusion-
minimal J ∈ [U, V ∪ {x}] with

w(U, V ∪ {x}) = w(J, J) = w(J, V ∪ {x}) = w(U, J).

This shows that J is a strong basis of [U, V ], provided we can demonstrate
w(J, J) = w(J, V ). The latter equality, however, follows from primal
optimality applied to J and w(U, V ) > w(U \ {x}, V ).

Finally, suppose there is a strong basis J ′ of [U, V ] with J ′ ⊂ J . As
J is by induction an inclusion-minimal strong basis of [U, V ∪ {x}], the
set J ′ cannot contain x; if it did we would have

w(U, V ∪ {x}) = w(U, V ) = w(J ′, J ′) = w(U, J ′) = w(J ′, V ),

and since w(J ′, V ) = w(U, V ∪ {x}) ≥ w(J ′, V ∪ {x}) ≥ w(J ′, V ), the
above equation proves J ′ to be a smaller strong basis of [U, V ∪ {x}],
contradiction. So x 6∈ J ′ and therefore

w(U, V ) > w(U \ {x}, V ) ≥ w(J ′, V ) = w(U, V )

which uniqueness exposes as a contradiction.
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procedure welzl-dual(U, V )
{ Computes a strong basis of [U, V ] }
{ Precondition: V ⊆ U , w(U, V ) }
begin

if U = V then

return V
else

choose x ∈ U \ V uniformly at random
J := welzl(U, V ∪ {x})
if loose(x, J) then

return welzl(U \ {x}, V )
else

return J
end welzl

Figure 2.12. Welzl’s dual algorithm for solving a reducible dual weak
problem (T,w). The solution is obtained by calling welzl(T, ∅).

In order to solve a reducible dual weak LP-type problem,, we can
employ a dual version of Welzl’s algorithm, see Fig. 2.12. It uses the
primitive loose(x, J) which for a given strong basis J and x 6∈ J returns
‘yes’ if and only if

w(J, J \ {x}) < w(J, J),

and ‘no’ otherwise. Given this, the above proof (if ‘dualized’ appropri-
ately) can be reused to show the following

Lemma 2.18. In a reducible dual weak problem (T,w), welzl-dual(U, V )
finds an inclusion-maximal strong basis of any bounded face [U, V ] ⊆ 2T .

We note that if it is known in advance that a strong basis of [T, ∅]
contains many elements then welzl-dual is preferable to algorithm welzl.
It is also possible to follow a mixed strategy that throws a coin and
depending on the result first visits the upper or lower facet, see for
instance algorithm ForceOrNot in [40]. (Algorithm welzl-dual does not
work in general for sebp since primal nondegeneracy need not hold:
in Fig. 2.9 we have mb(V, V ) = mb(V ′, V ′) for V = {p1, p2, p3} and
V ′ = {p2, p3, p4}, but mb(V ∩ V ′, V ∩ V ′) is a smaller ball.)
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U vs. V ∅ {①} {②} {①,②}

∅ 1
{①} 1 3
{②} 2 2

{①,②} 3 3 3 3

Figure 2.13. The pair (T,w) with T = {①,②} and w as in the table
fulfills all requirements of a reducible primal weak problem except primal
optimality. Welzl’s algorithm fails to produce a strong basis of [T, ∅].

Reducibility and optimality. As we know from the correctness proof of
algorithm welzl, primal optimality ensures that the second recursive call
(if taken at all) returns a weak basis that is strong. If we drop primal
optimality from the definition of a primal weak problem, it may indeed
happen that algorithm welzl fails in this respect; Fig. 2.13 attests this.

The configuration in the figure shows a set of values w for the faces
of the 2-cube C [T,∅], where T = {①,②}. It is a simple matter to check
that (T,w) satisfies all conditions of a primal weak problem except pri-
mal optimality, and that also reducibility applies. Nonetheless, Welzl’s
algorithm does not compute a strong basis of [T, ∅] as we can easily con-
vince ourselves. Assume that in the initial call welzl(T, ∅), the algorithm
decides to drop constraint ① and recursively computes w({②}, ∅), which
turns out to be smaller than w(T, ∅) according to the table. Therefore,
reducibility implies

w({①,②}, ∅) = w({①,②}, {①}),
and welzl computes a strong basis of [{①,②}, {①}], namely J = {①}
which satisfies w({①,②}, {①}) = w(J, J) = w({①}, {①}). Back in the
call welzl(T, ∅), the algorithm returns J as the solution of the whole
problem. However, we can read off the table in Fig. 2.13 that

w(T, ∅) = w(J, J) = 3 > 1 = w(J, J \ {①}) = w(J, ∅),
showing that J is not a strong basis of [T, ∅] (and that dual optimality
and hence the last part of the proof of Lemma 2.17 fails). Thus, welzl
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U vs. V ∅ {①} {②} {①,②}

∅ 1
{①} 1 1
{②} 1 1

{①,②} 2 2 2 2

Figure 2.14. The pair (T,w) with T = {①,②} and w as in the table is
a weak LP-type problem except that dual nondegeneracy does not hold.
Algorithm welzl(T, ∅) fails to compute a strong basis.

need not produce a strong basis if the problem does not exhibit dual
optimality (although it does produce a weak basis also in this case).

Given this example, we see that the primal algorithm ‘requires’ pri-
mal optimality in order to work. Recall however, that welzl does not at
all rely on primal nondegeneracy. But in fact, the required primal opti-
mality is, under reducibility, just a special case of primal nondegeneracy
(and similarly, dual optimality is a consequence of dual nondegeneracy
and reducibility).

Lemma 2.19. Under reducibility, primal (dual, respectively) nondegen-
eracy implies primal (dual, respectively) optimality.

Proof. We prove that reducibility and primal nondegeneracy imply pri-
mal optimality; the other case is proved similarly. If J ∈ [U, V ∪{x}] is a
strong basis of the face [U, V ∪{x}] for some x ∈ U \V , then in particular
w(U, V ∪ {x}) = w(J, J). If in addition w(U, V ) > w(U \ {x}, V ) holds,
reducibility yields w(U, V ) = w(J, J). By applying primal nondegener-
acy to these two faces we obtain w(J, J) = w(J, V ) as needed.

Considering this lemma, it seems natural to look at problems where
both variants of optimality hold. We will do this in the next section when
we study (reducible) strong LP-type problems.

Remarks. Are all requirements in the definition of a primal weak prob-
lem necessary in order for algorithm welzl to return an inclusion-minimal
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strong basis? Reducibility cannot be circumvented as strong bases need
not exist otherwise. Also, primal optimality cannot be dropped as the
example in Fig. 2.13 shows, and neither can dual nondegeneracy: the
instance in Fig. 2.14 is a weak problem except for dual nondegeneracy.
If the algorithm drops ① in the initial call welzl(T, ∅), it recursively finds
the strong basis I = ∅ of [{②}, ∅]. At this point the feasibility test reports
w(I ∪ {①}, I) = w(I, I), which from the point of view of the algorithm
is a ‘lie’ because w(T, ∅) > w(I, I). So the result of the whole run is I,
which is not even a weak basis of [T, ∅].

Thus, the requirements in the definition of a weak problem are in-
deed all needed. However, there might exist more appealing properties
under which welzl computes strong bases. We do not think that the
presented class of problems represents the ultimate answer to the ques-
tion ‘what (nice properties) does algorithm welzl need in order compute
strong bases?’

2.6 Strong LP-type problems

We finally turn to the already mentioned link between LP-type problems
and unique sink orientations. For this, we consider a special subclass of
weak LP-type problems, so-called strong (LP-type) problems which were
introduced by Gärtner [36].

Definition 2.20. A tuple (T,≤,Ω, w) is a strong problem if T is a
finite set, ≤ is a quasiorder on Ω, and w : F (C [T,∅]) → Ω satisfies the
following conditions for all [U ′, V ′], [U, V ] ⊆ 2H .

(i) w(U ′, V ′) ≤ w(U, V ) for all U ′ ⊆ U , V ′ ⊆ V (monotonicity),

(ii) If U ′ ⊆ U ⊆ T and V ⊆ T then w(U, V ) ≤ w(U ′, V ) implies
w(U, V ) = w(U ′, V ) (upper uniqueness).

(iii) If V ′ ⊆ V ⊆ T and U ⊆ T then w(U, V ) ≤ w(U, V ′) implies
w(U, V ) = w(U, V ′) (lower uniqueness).

(iv) w(U ′, V ′) = w(U, V ) iff w(U ′ ∩ U, V ′ ∩ V ) = w(U ′ ∪ U, V ′ ∪ V )
(strong locality).

The goal of a strong LP-type problem is to find a strong basis.



44 Chapter 2. Combinatorial frameworks
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V ′ = U ′

U

(i)

V ′ V

U ′
U

(ii)

Figure 2.15. The two interesting cases of strong locality among [U ′, V ′]
and [U, V ]: (i) one face is a subface of the other, (ii) the faces intersect.

Observe in the definition of strong locality that the direction (⇐)
already follows from monotonicity. For, by applying it four times we
obtain

w(U ′ ∩ U, V ′ ∩ V ) ≤ w(U ′, V ′), w(U, V ) ≤ w(U ′ ∪ U, V ′ ∪ V ),

and if the outer values agree, all of them must, which can be seen using
upper and lower uniqueness as follows: from

w(U ′ ∩ U, V ′ ∩ V ) ≤ w(U ′, V ′ ∩ V ) ≤ w(U ′ ∪ U, V ′ ∪ V ),

upper uniqueness, and the fact that the outer values are identical we
conclude that w(U ′, V ′ ∩ V ) equals w(U ′ ∩ U, V ′ ∩ V ). Given this, we
use lower uniqueness in

w(U ′, V ′ ∩ V ) ≤ w(U ′, V ′) ≤ w(U ′ ∪ U, V ′ ∪ V )

(where again the outer values agree) to obtain w(U ′, V ′) = w(U ′, V ′ ∩
V ) = w(U ′ ∩ U, V ′ ∩ V ). In a similar fashion, one can prove that the
remaining inequalities are indeed equalities.

We can observe that if U ′ ⊆ U and V ′ ⊆ V , strong locality does
not yield anything at all, and the same holds by symmetry if U ′ ⊇
U and V ′ ⊇ V . The interesting cases are when one among the two
faces is a subface of the other or when the two faces have nonempty
symmetric difference. A particular instance of the former case is shown
in Fig. 2.15(i). Here, the face [U ′, V ′] is a vertex J = U ′ = V ′ and [U, V ]
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p

B
B′

q

r

Figure 2.16. (T,w) with w(U, V ) := ρmb(U,V ) and T := {p, q, r} is not
a strong LP-type problem: we have ρmb({p,q},∅) = ρmb({q,r},∅), but this
does not imply ρmb({p,q,r},∅) = ρmb({q},∅).

is a cube containing it. If these two faces share the same value, strong
locality tells us that the outer values of

w(J, V ) ≤ w(J, J), w(U, V ) ≤ w(U, J)

coincide, and thus (as we have seen above in general) all four values are
equal. Thus, in the particular case that a cube spans the same value
as one of its vertices, all three cubes in the ‘chain’ [J, V ], [J, J ], [U, J ]
span this value. An example of the latter case is shown in Fig. 2.15(ii),
where the two-dimensional faces [U ′, V ′] and [U, V ] = [U, V ′] intersect in
a one-dimensional face F = [U ∩ U ′, V ]. According to strong locality, F
and the whole cube span the same value.

It is crucial here that we work with a quasiorder ≤ (and not with a
total order as in [36]): in case of sebp, for instance, the pair (T,w) with

w(U, V ) := ρmb(U,V ), V ⊆ U ⊆ T, (2.4)

is not a strong LP-type problem as the example in Fig. 2.16 shows. Here,
two faces [{p, q}, ∅] and [{q, r}, ∅] share the same value, but the under-
lying balls are different. If w(U, V ) is defined to be the ball mb(U, V ),
the points from the figure fulfill strong locality (we will prove this in
Lemma 3.21), with the definition from (2.4) however, they fail it. Ob-
serve that the groundset of this problem is not degenerate (e.g., affinely
dependent).

Lemma 2.21. A reducible strong problem is primal and dual weak.
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Notice that there are weak problems that are not strong (sebp, for
instance) and that there are strong problems that are neither reducible
nor weak (and example for the latter is the cube C [T,∅] for T = {①,②}
whose faces all have value 1 except w({②}, {②}) = 2, w({①,②}, {②}) =
3, and w({①,②}, {①,②}) = 4).

Proof. Weak monotonicity and strong monotonicity are identical. Also,
strong locality implies primal and dual nondegeneracy, which in turn
yield primal and dual optimality via reducibility (Lemma 2.19).

Induced quasiorder problems. We have seen on page 35 that every value
function w on the faces of a cube with satisfies monotonicity comes
with two induced quasiorder problems. If w is the value function of a
strong problem (T,w), these quasiorder problems are in fact LP-type
problems. For the problem (U \ V,≤, wV ), [U, V ] ⊆ 2T , this can be seen
as follows: monotonicity is inherited from strong monotonicity and if
wV (X) = wV (X ′) for X ′ ⊆ X ⊆ U \ V then wV (X ′ ∪ {x}) = wV (X ′)
implies, using strong locality, wV (X ∪ {x}) = wV (X ′) as needed. (The
proof for the other problems proceeds along the same lines.)

Link to USOs. Finally, here is the link between strong problems and
the unique sink orientations from Sec. 2.4.

Theorem 2.22 (Gärtner). Let (T,w) be reducible strong LP-type prob-
lem. For J ∈ 2T , x ∈ T \ J orient the edge {J, J ∪ {x}} of C [T,∅] via

J
φ→ J ∪ {x} ⇔ w(J, J) < w(J ∪ {x}, J).

Then φ is a unique sink orientation, and its global sink J is inclusion-
minimal with w(J, J) = w(T, ∅).

Proof. Consider a face [U, V ] of the cube C [T,∅]. Below we will show
the a vertex J ∈ [U, V ] is a sink in [U, V ] if and only if J is inclusion-
minimal with w(J, J) = w(U, V ). From this it follows that each face
[U, V ] has a sink; just take some inclusion-minimal basis. Also, there
cannot be more than one sink in [U, V ], for if w(J, J) = w(J ′, J ′) then
w(J, J) = w(J ∩ J ′, J ∩ J ′) by strong locality, which implies J = J ′ as
both were inclusion-minimal with this value.

The vertex J is a sink in [U, V ] if and only if all edges of φ are
incoming, which in turn is equivalent to
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(i) w(J, J) = w(J, J) = w(J ∪ {x}, J) for all x ∈ U \B, and

(ii) w(J \ {x}, J \ {x}) 6= w(J, J \ {x}) for all x ∈ J \ V .

Using reducibility, (ii) implies

(ii’) w(J, J \ {x}) = w(J, J) for all x ∈ J \ V ,

and it follows from strong locality of the functions wJ and wJ that (i)
and (ii’) are equivalent to

(a) w(J, J) = w(U, J),

(b) w(J, J) = w(J, V ).

Invoking strong locality of w, the latter two conditions are equivalent to
w(J, J) = w(U, V ). Also, [J\{x}, J\{x}] does not span the value w(J, J)
as we see from (ii) combined with (ii’). Thus, J is inclusion-minimal as
needed.

Conversely, if J is inclusion-minimal with w(J, J) = w(U, V ) then

w(J \ {x}, J \ {x}]) 6= w(J, J) (2.5)

for all x ∈ J \ V . From w(J, J) = w(U, V ) and monotonicity it follows
that (a) and (b) hold which, as we have shown, are equivalent to (i)
and (ii’). Now (ii’) implies (ii), for if (ii) held with equality, it and (ii’)
would contradict (2.5). Thus, (i) and (ii) hold showing that J is indeed
a sink in [U, V ].

In case of sebp, the orientation from the above theorem has the fol-
lowing interpretation (which we already encountered in the introduction,
see Fig. 1.2). Sitting at a vertex J ⊆ T , we orient the edge {J, J ∪ {x}}
towards the vertex J ∪ {x} if and only if the ball mb(J, J) does not
contain the point x (and thus [J, J ] cannot be a basis of T ).

We remark that the converse question, whether a given unique sink
orientation comes from a reducible strong LP-type problem, has been
addressed by Schurr [73].





Chapter 3

Properties of the smallest

enclosing ball

In this chapter we introduce the problem sebb of finding the smallest
enclosing ball—the miniball—of a set of balls. We prove some basic
properties of the miniball which will help us in the following chapters
when we consider the problem of actually computing it. In particular,
we show that sebb fits into the LP-type framework from the previous
chapter. Also, we briefly address a variant of sebb in which the goal is
to find the smallest ‘superorthogonal’ ball.

Throughout this chapter we will stick to balls with nonnegative ra-
dius. Later on, we will generalize the properties of sebb from this chapter
also to negative balls; please refer to Chap. 5 for more information.

3.1 The problem

A d-dimensional ball with center c ∈ Rd and nonnegative radius ρ ∈ R is
the point set B(c, ρ) =

{

x ∈ Rd | ‖x− c‖2 ≤ ρ2
}

, and we write cB and
ρB to denote the center and radius, respectively, of a given ball B. We
say that a ball is proper if its radius is nonzero.

Ball B′ = B(c′, ρ′) is contained in ball B = B(c, ρ) if and only if

‖c− c′‖ ≤ ρ− ρ′, (3.1)

49
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B1

B2

B3

B4

mb(U) B1

B2

B3

B4

mb(U)

Figure 3.1. Two examples in the plane R2 of the miniball mb(U) for a
set U = {B1, . . . , B4} of four balls.

with equality if and only if B′ is internally tangent to B.

We define the miniball mb(U) of a finite set U of balls in Rd to be
the unique ball of smallest radius which contains all balls in U (Fig. 3.1).
We also set mb(∅) = ∅ (note that mb(∅) is not a ball). The next lemma
shows that mb(U) is well-defined.

Lemma 3.1. For a finite nonempty set U of balls, there is a unique ball
of smallest radius that contains all balls of U .

For the proof of this, we make use of convex combinations of balls [6,
86, 21], a concept we will also need later on: a proper ball B = B(c, ρ)
can be written as the set of points x ∈ Rd satisfying fB(x) ≤ 1 for
fB(x) = ‖x − c‖2/ρ2. For any λ ∈ [0, 1], the convex combination Bλ of
two intersecting balls B,B′ is the set of points x fulfilling

fBλ
(x) = (1 − λ)fB(x) + λfB′(x) ≤ 1;

it has the following properties.

Lemma 3.2. Let B0, B1 ⊆ Rd be two different intersecting balls. Then
for any λ ∈ [0, 1] the convex combination Bλ of B0 and B1 satisfies:

(i) Bλ is a ball.

(ii) B0 ∩B1 ⊆ Bλ, and ∂B0 ∩ ∂B1 ⊆ ∂Bλ.

(iii) For λ ∈ (0, 1) the radius of Bλ is smaller than max{ρB0
, ρB1

}.

Here, ‘∂B’ denotes the boundary of a ball B. Please refer to Fig. 3.2
for an illustration of the lemma.
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B0

B1

Figure 3.2. Two convex combinations Bλ (dashed) of the balls B0 and
B1 (solid), for λ ∈ {1/3, 2/3}.

Proof. Consider the defining functions fB0
= ‖x − c0‖2/ρB0

and fB1
=

‖x− c1‖2/ρB1
of the balls B0 and B1. Expanding fBλ

≤ 1 we obtain

fBλ
= xTx

(1 − λ

ρB0

+
λ

ρB1

)

− 2xT
(1 − λ

ρB0

cB0
+

λ

ρB1

cB1

)

+ α ≤ 1,

for some α ∈ R. This we can write in the form ‖x− c‖2/γ ≤ 1 by setting

c =
(1 − λ

ρ0
cB0

+
λ

ρB1

cB1

)

/
(1 − λ

ρB0

+
λ

ρB1

)

. (3.2)

Since B0 ∩ B1 6= ∅, there exists at least one real point y for which both
fB0

(y) ≤ 1 and fB1
(y) ≤ 1 hold. It follows that

fBλ
(y) = (1 − λ) fB0

(y) + λfB1
(y) ≤ 1. (3.3)

So ‖x − c‖2/γ ≤ 1 has a real solution and we see from this that γ ≥ 0,
which in particular proves (i). Property (ii) is obvious from (3.3).

(iii) We distinguish two cases: if ∂B0∩∂B1 is empty, then B0∩B1 6= ∅
implies that one ball, B0, w.l.o.g., is contained in the interior of B1. So
fB0

(y) ≤ 1 implies fB1
(y) < 1 for all y ∈ Rd. It follows from this that

whenever fBλ
(y) ≤ 1 for y ∈ Rd and λ ∈ [0, 1] (which by (3.3) implies

fB0
(y) ≤ 1 or fB1

(y) ≤ 1) then also fB1
(y) ≤ 1, and moreover that

whenever fBλ
(y) = 1 for λ ∈ (0, 1) (which again implies fB0

(y) ≤ 1 or
fB1

(y) ≤ 1) then fB1
(y) < 1. So Bλ ⊂ B1 for all λ ∈ (0, 1); in particular,

the radius of Bλ must be smaller than ρB1
.

If the intersection of the boundaries is nonempty, we read off from
(3.2) that the center cBλ

of Bλ is a convex combination of the centers
cB0

and cB1
. That is, as λ varies from 0 to 1, the center cBλ

travels on
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a line from cB0
to cB1

. Notice now that the radius of Bλ is simply the
distance from cBλ

to a point p ∈ ∂B0 ∩ ∂B1, because by (ii) the point
p lies on the boundary of Bλ for any λ ∈ [0, 1]. The claim now follows
from the fact that the distance from p to a point cBλ

moving on a line
is a strictly convex function.

Proof of Lemma 3.1. A standard compactness argument shows that some
enclosing ball of smallest radius exists. If this radius is zero, the lemma
easily follows. Otherwise, we use Lemma 3.2: assuming there are two
distinct smallest enclosing balls, a proper convex combination of them
is still enclosing, but has smaller radius, a contradiction.

We denote by sebb the problem of computing the center and radius
of the ball mb(T ) for a given set T of balls. By sebp we denote the
more specific problem of computing mb(T ) when all balls in T are points
(radius zero).

3.2 Properties

Optimality criterion. The following optimality criterion generalizes a
statement for points due to Seidel [75]. Recall that a point q ∈ Rd lies
in the convex hull conv(P ) of a finite point set P ⊆ Rd if and only if
minp∈P (p− q)Tu ≤ 0 for all unit vectors u, equivalently, if and only if q
cannot be separated from conv(P ) by a hyperplane.

Lemma 3.3. Let V be a nonempty set of balls, all internally tangent to
some ball D. Then D = mb(V ) iff cD ∈ conv({cB | B ∈ V }).

Proof. For direction (⇐), assume D 6= mb(V ), i.e., there exists an en-
closing ball D′ with radius ρD′ < ρD. Write its center (which must be
different from cD by the internal tangency assumption) as cD′ = cD +λu
for some unit vector u and λ > 0. Then the distance from cD′ to the
farthest point in a ball B ∈ V is

δB = ‖cD′ − cB‖ + ρB

=
√

(cD + λu− cB)T (cD + λu− cB) + ρB

=
√

‖cD − cB‖2 + λ2uTu− 2λ (cB − cD)Tu+ ρB

=
√

(ρD − ρB)2 + λ2 − 2λ (cB − cD)Tu+ ρB , (3.4)
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because (3.1) holds with equality by our tangency assumption. Since D′

is enclosing, we must have

ρD′ ≥ max
B∈V

δB . (3.5)

Furthermore, the observation preceding the lemma yields the existence
of B′ ∈ V such that (cB′ − cD)Tu ≤ 0, for cD lies in the convex hull of
the centers of V . Consequently,

δB′ >
√

(ρD − ρB′)2 + ρB′ = ρD > ρD′

by equation (3.4), a contradiction to (3.5).

For direction (⇒), suppose that cD does not lie in the convex hull of
the centers of V . By the observation preceding the lemma, there exists
a vector u of unit length with (cB − cD)Tu > 0 for all B ∈ V . Consider
the point cD′ := cD + λu, for some strictly positive λ < 2minB∈V (cB −
cD)Tu. According to (3.4), δB < (ρD − ρB) + ρB = ρD for all B, and
consequently, the ball D′ with center cD′ and radius maxB δB < ρD is
enclosing, contradiction.

If we write the center of mb(V ) as a convex combination (such a
combination exists by the lemma), the involved coefficients fulfill the
following simple property.

Corollary 3.4. Let U be a finite set of balls and let D = mb(U) be a ball
of positive radius. If B′ ∈ U is a point (radius zero) internally tangent
to D and we write

cD =
∑

B∈U

λBcB ,
∑

B∈U

λB = 1 (3.6)

for nonnegative coefficients λB, B ∈ U , then λB′ ≤ 1/2.

Proof. Notice first that through the previous lemma, we can indeed write
the center cD of D in the form (3.6). Moreover, we may assume w.l.o.g.
that the center of B lies at the origin. Fix B′ ∈ U . From (3.6) we obtain
0 = ‖λB′cB′ +

∑

B 6=B′ λBcB‖ which using the triangle inequality yields

0 ≥ λB′‖cB′‖ − ‖
∑

B 6=B′

λBcB‖ ≥ λB′‖cB′‖ −
∑

B 6=B′

λB‖cB‖.
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Since ‖cB′‖ = ρD and ‖cB‖ ≤ ρD for all B 6= B′, it follows 0 ≥ ρD (λB′−
∑

B 6=B′ λB). Dividing by ρD > 0 and plugging in
∑

B 6=B′ λB = 1− λB′ ,
we obtain λB′ ≤ 1/2.

A statement for points going into a similar direction is the following
(which we will use in Chap. 4).

Lemma 3.5. Let D = B(c, ρ) be a ball of positive radius through some
finite pointset V ⊂ Rd. If

c =
∑

p∈V

λpp,
∑

p∈V

λp = 1,

for real coefficients λp then at least two coefficients λp are positive.

Proof. W.l.o.g. we may assume that the ball D is centered at the origin
and has unit radius, i.e., 0 = c =

∑

p∈V λpp and ‖p‖ = 1 for all p ∈ V .
Clearly, at least one of the coefficients λp, p ∈ V , must be positive. So
all we need to show is that some fixed q ∈ V cannot be the only point
with a positive coefficient.

If λq ≥ 0 and λp < 0 for all q 6= p ∈ V then taking the norm on both
sides of (1−∑

p6=q λp) q = −∑

p6=q λpp yields 1−∑

p6=q λp ≤ −∑

p6=q λp,
a contradiction.

Another property we will use for our algorithms in Sec. 5.1 is the fol-
lowing intuitive statement which has been proved by Welzl for points [86].

Lemma 3.6. If a ball B ∈ U is properly contained in the miniball mb(U)
(that is, not internally tangent to it) then

mb(U) = mb(U \ {B}),

equivalently, B ⊆ mb(U \ {B}).

Proof. Consider the convex combination Dλ of the balls D = mb(U) and
D′ = mb(U \ {B}); it continuously transforms D into D′ as λ ranges
from 0 to 1 and contains all balls in U \ {B}. Since B is not tangent
to mb(U), there is a λ′ > 0 such that Dλ′ still encloses all balls from
U . But if D and D′ do not coincide, Dλ′ has smaller radius than D, a
contradiction to the minimality of D = mb(U).
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B1 B3

B2

mb(U)

Figure 3.3. U = {B1, B2, B3} is a support set (but not a basis) of U ;
V = {B1, B3} is a basis.

Motivated by this observation, we call a set U ′ ⊆ U a support set of
U if all balls in U ′ are internally tangent to mb(U) and mb(U ′) = mb(U).
An inclusion-minimal support set of U is called basis of U (see Fig. 3.3),
and we call ball set V a basis if it is a basis of itself. (Notice that
this is in accordance with the definition of a ‘basis’ on page 17!) A
standard argument based on Helly’s Theorem reveals that the miniball
is determined by a support set of size at most d+ 1.

Lemma 3.7. Let U be a set of at least d + 1 balls in Rd. Then there
exists a subset U ′ ⊆ U of d+ 1 balls such that mb(U) = mb(U ′).

Proof. Let D = mb(U) and consider the set I =
⋂

B∈U B(cB , ρD − ρB).
Observe that B(cB , ρD − ρB) is the set of all centers which admit a
ball of radius ρD that encloses B. By the existence and uniqueness of
mb(U), I thus contains exactly one point, namely cD. It follows that
⋂

B∈U intB(cB , ρD − ρB) = ∅, where intB′ denotes the interior of ball
B′. Helly’s Theorem1 yields a set U ′ ⊆ U of d + 1 elements such that
⋂

B∈U ′ intB(cB, ρD − ρB) = ∅. Consequently, no ball of radius < ρD

encloses the balls U ′, and thus mb(U) and mb(U ′) have the same radius.
This however implies mb(U) = mb(U ′), since we would have found two
different miniballs of U ′ otherwise.

Lemma 3.8. The centers of a basis V of U are affinely independent.

Proof. The claim is obvious for V = ∅. Otherwise, by Lemma 3.3,
the center cD of the miniball D = mb(V ) = mb(U) can be written

1Helly’s Theorem [23] states that if C1, . . . , Cm ⊂ R
d are m ≥ d + 1 convex sets

such that any d + 1 of them have a common point then also
Tm

i=1
Ci is nonempty.
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B1

B2

B3

D ∈ mb(U, V ) ∋ D′

B2

B1

B3

B2

B1

B3

(a) (b) (c)

Figure 3.4. mb(U, V ) may contain several balls (a) or none (b): set
U = {B1, B2, B3}, V = {B2}. (c) shows another example where the set
mb(U,U) is empty; here, no ball is contained in another.

as cD =
∑

B∈V λBcB for some coefficients λB ≥ 0 summing up to
1. Observe that λB > 0, B ∈ V , by minimality of V . Suppose that
the centers {cB | B ∈ V } are affinely dependent, or, equivalently, that
there exist coefficients µB , not all zero, such that

∑

B∈V µBcB = 0 and
∑

µB = 0. Consequently,

cD =
∑

B∈V

(λB + αµB) cB for any α ∈ R. (3.7)

Change α continuously, starting from 0, until λB′+αµB′ = 0 for some B′.
At this moment all nonzero coefficients λ′B = λB +αµB of the combina-
tion (3.7) are strictly positive, sum up to 1, but λ′B′ = 0, a contradiction
to the minimality of V .

A generalization. We proceed with some basic properties of ‘mb(U, V )’
which is the following generalization of mb(U). For sets U ⊇ V of balls,
we denote by b(U, V ) the set of balls B that contain the balls U and to
which (at least) the balls in V are internally tangent (we set b(∅, ∅) =
{∅}). Based on this, we define mb(U, V ) to be the set of smallest balls in
b(U, V ); in case mb(U, V ) contains exactly one ball D, we abuse notation
and refer to D as mb(U, V ). Observe that mb(U) = mb(U, ∅) and hence
any algorithm for computing mb(U, V ) solves the SEBB problem. How-
ever, several intuitive properties of mb(U) do not carry over to mb(U, V ):
the set mb(U, V ) can be empty, or there can be several smallest balls
in b(U, V ), see Fig. 3.4. Furthermore, properly contained balls cannot
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B1

B3

B2
B

mb(U, V )
mb(U\{B}, V )

Figure 3.5. Ball B cannot be dropped although it is properly contained
in mb(U, V ): set U = {B,B1, B2, B3} and V = {B2}.

be dropped as in the case of mb(U) (Lemma 3.6): for a counterexample
refer to Fig. 3.5, where mb(U, V ) 6= mb(U\{B}, V ) for V = {B2} and
U = {B1, B2, B3, B}, although B is properly contained in mb(U, V ).

In the sequel we will also deal with

mbp(U) := mb(U ∪ {p}, {p}), (3.8)

where p ∈ Rd is some point and U as usual is a set of balls. (In writing
U ∪ {p} we abuse notation and identify the ball B(p, 0) with the point
p.) Again the set mbp(U) may be empty (place p in the interior of the
convex hull conv(U) := conv(

⋃

B∈U B)), but in the nonempty case it
contains a unique ball. This follows from

Lemma 3.9. Let U ⊇ V be two sets of balls, V being a set of points
(balls of radius zero). Then mb(U, V ) consists of at most one ball.

Proof. If D,D′ ∈ mb(U, V ), their convex combination Dλ contains U
and in addition has the points V on the boundary. Thus, Dλ ∈ b(U, V )
for any λ ∈ [0, 1]. If D and D′ were distinct, a proper convex combi-
nation would have smaller radius than D′ or D, a contradiction to the
minimality of D,D′.

Combining a compactness argument as in the proof of Lemma 3.1
with the reasoning from the previous lemma, we can also show the fol-
lowing.
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Lemma 3.10. Let U be a set of balls and p ∈ Rd such that no ball in U
contains p. Then mbp(U) = ∅ iff p ∈ conv(U) := conv(

⋃

B∈U B).

Without the assumption on U and p, it may happen that mbp(U) 6= ∅
although p ∈ conv(U) (take a single ball, U = {B}, and a point p on its
boundary).

In case both sets U ⊇ V in mb(U, V ) are actually pointsets, one can
prove some sort of ‘reducibility’ for the function mb (the proof is taken
from the paper [86] introducing Welzl’s algorithm).

Lemma 3.11 (Welzl). Let V ⊆ U ⊆ T ⊂ Rd with T finite.

(i) If there is a ball through V containing U then |mb(U, V )| = 1.

(ii) If D ∈ mb(U, V ) and x 6∈ D for x ∈ U \V then D ∈ mb(U, V ∪{x}).

Proof. (i) follows from a standard compactness argument and Lemma 3.9.
(ii) Suppose the ball D does not go through x. By (i), there exists
D′ ∈ mb(U \ {x}, V ), and by assumption D′ does not contain x. So
consider the convex combination Dλ of D and D′. For some λ∗ ∈ (0, 1)
the ball Dλ∗ has x on its boundary, goes through V , contains U , and
has a smaller radius than D, a contradiction.

Circumball. An important notion for our method in Chap. 4 is the
circumball cb(T ) of a nonempty affinely independent set T , which is the
unique sphere with center in the affine hull aff(T ) that goes through
the points in T . The following lemma shows that cb(T ) is indeed well-
defined.

Lemma 3.12. Given a nonempty affinely independent pointset T ⊂ Rd,
there exists exactly one ball through T whose center lies in aff(T ).

In the proof of this we use the simple fact that a matrix of the form
A = QTQ is regular provided the columns of Q are linearly indepen-
dent. (If Ax = 0 then 0 = xTQTQx = ‖Qx‖2, and hence Qx = 0, a
contradiction to the linear independence of the columns of Q.)

Proof. Denote by c the center and by ρ the radius of a ball through
T with center in aff(T ). As c ∈ aff(T ), we can write c in the form
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c =
∑

t∈T λtt for real coefficients λt, t ∈ T , summing up to 1. We need
to show that the system of equations

‖c− t‖2 = ρ2, t ∈ T, (3.9)
∑

t∈T λtt = c, (3.10)
∑

t∈T λt = 1, (3.11)

has exactly one solution (ρ, λ). To see this, we assume w.l.o.g., that one
of the points in T coincides with the origin, i.e., T = T ′ ∪ {0}; this can
always be achieved via a suitable translation.

By subtracting Eq. (3.9) for t = 0 from the remaining Eqs. (3.9), we
see that a solution to system (3.9)–(3.11) satisfies

t′T t′ − 2cT t′ = 0, t′ ∈ T ′, (3.12)
∑

t∈T λtt = c. (3.13)

By plugging the latter of these |T ′| + 1 equations into the former, we
obtain 1/2 t′T t′ = cT t′ =

∑

t∈T λtt
T t′ for all t′ ∈ T ′. In matrix notation,

this is equivalent to b = Aλ where b contains the entries 1/2 t′T t′, t′ ∈ T ′,
and At′t = tT t′. Affine independence of the points T together with 0 ∈ T
implies that the points in T are linearly independent. It follows from
this that the matrix A is regular, and consequently, there is precisely
one solution to Aλ = b. Hence also the system (3.12)–(3.13) has exactly
one solution, and by setting ρ := ‖c‖, any solution of the latter can be
turned in a solution of the original system (3.9)–(3.11).

Linked to this is the following observation (originating from the lec-
ture notes [37]) which allows us to drop affinely independent points from
the boundary. Observe in the statement that since the sets V and J
are pointsets (and not balls), the sets mb(J, J) and mb(V, V ) contain at
most one element each (Lemma 3.9).

Lemma 3.13. Let J ⊆ Rd be finite and V be an inclusion-maximal sub-
set of J that is affinely independent. If D ∈ mb(J, J) then D ∈ mb(V, V ).

Proof. Observe first that as mb(J, J) ⊆ mb(V, V ) by definition, the latter
set is nonempty. So consider D ∈ mb(J, J) and D′ ∈ mb(V, V ), and
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BsB(D)

D

Figure 3.6. The support point sD(B) of ball B (filled) w.r.t. a larger
ball D ∈ b(∅, {B}) (dashed) is the single point in the set ∂B ∩ ∂D.

suppose that q ∈ J \ V is not contained in ∂D′. Then

ρD = ‖p− cD‖ = pT p− 2cTDp+ cTDcD, p ∈ J, (3.14)

ρD′ = ‖p− cD′‖ = pT p− 2cTD′p+ cTD′cD′ , p ∈ V, (3.15)

ρD′ 6= δ := ‖q − cD′‖ = qT q − 2cTD′q + cTD′cD′ , (3.16)

Now V ′ := V ∪{q} is affinely dependent, so there exist real numbers λp,
p ∈ V ′, not all zero, such that

∑

p∈V ′

λpp = 0,
∑

p∈V ′

λp = 0. (3.17)

We must have λq 6= 0 (otherwise V would be affinely dependent), and
w.l.o.g. we can assume λq > 0 (scale the equations in (3.17) if necessary).
By multiplying (3.14) with λp and summing over all p ∈ V ′ we now ob-
tain 0 =

∑

p∈V ′ λpρD =
∑

p∈V ′ λp (pT p−2cTDp+cTDcD) =
∑

p∈V ′ λpp
T p.

On the other hand, (3.17) together with (3.15), (3.16), and λq > 0 gives

∑

p∈V ′

λpp
T p =

∑

p∈V ′

λp ‖p− cD′‖ = λqδ +
∑

p∈V

λqρD′ = λq(δ − ρD′),

which is nonzero, a contradiction. If follows mb(J, J) = mb(V, V ).

Support points. If a ball B is internally tangent to some ball D, we call
the points ∂B ∩ ∂D the support points of B w.r.t. D. Most of the time,
we will find ourselves in situations where the ball D is strictly larger
than B, see Fig. 3.6. In this case it is easy to verify that B has precisely
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one support point w.r.t. D, namely the point

sD(B) := cD +
ρD

ρD − ρB
(cB − cD). (3.18)

We define suppD(T ) to be the set of support points of the balls B ∈ T
w.r.t. some ball D ∈ b(T, T ). In case D is larger than every ball in T
we have suppD(T ) = {sD(B) | B ∈ T}.

It does not come as a surprise that the miniball D of a set of balls is
determined by the support points of the balls w.r.t. D.

Lemma 3.14. Let D be a ball enclosing a set U of balls and suppose
D 6∈ U . Then D = mb(U) if and only if D = mb(suppD(U)).

Proof. The assumption D 6∈ U guarantees that ρD is greater than the
radius of any ball B ∈ U . In particular, this implies that suppD(U) is a
finite set and hence mb(suppD(U)) is well-defined.

For the direction (⇒) we assume D = mb(U) and consider some basis
V ⊆ U of U . By Lemma 3.3, we can write cD as a convex combination
cD =

∑

B∈V λBcB for nonnegative real coefficients λB that add up to
one. Consequently, we have

0 =
∑

B∈V

λB
ρD − ρB

ρD

ρD

ρD − ρB
(cB − cD) =:

∑

B∈V

µBc
′
B , (3.19)

where c′B = ρD/(ρD − ρB)(cB − cD), B ∈ V . By Eq. (3.18), the points
S := {cD + c′B | B ∈ V } constitute a subset of the support points of D,
i.e., S ⊆ suppD(U), and we claim that D = mb(S). From this the claim
follows as D encloses the union of all balls U , in particular suppD(U).

Notice next that the number γ :=
∑

B∈V µB is strictly positive, for
γ = 1−∑

B∈V λBρB/ρD > 1−∑

B∈V λBρD/ρD = 0. Thus, adding the
term cDγ to both sides of (3.19) and solving for cD results in

cD =
∑

B∈V

µB

γ
(cD + c′B) =:

∑

B∈V

νB (cD + c′B),
∑

B∈V

νB = 1.

This together with νB ≥ 0, B ∈ V , proves cD to be a convex combination
of the points S. By invoking Lemma 3.3 again, applied to the points S
this time, we conclude that D = mb(S) as needed.

The direction (⇐) is easy: by assumption the ballD = mb(suppD(U))
is an enclosing ball. So if there existed a smaller enclosing ball D′ than
D, this ball must enclose the points suppD(U) ⊆ ⋃

B∈U B, which would
result in a contradiction to the minimality of D = mb(suppD(U)).
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3.3 Properties of mb(U, V )

In this section we develop optimality criteria for the ball mb(U, V ). In
particular, we will see that new effects pop up when we go from enclosed
points to enclosed balls.

The point case. In the rest of this section we assume that whenever
V ⊆ U are pointsets then mb(U, V ) is not a set of balls (recall the
definition) but the unique smallest ball in b(U, V ), provided it exists
(Lemma 3.9 shows the uniqueness). If no smallest ball exists, which by
Lemma 3.11(i) means that b(U, V ) = ∅, we set mb(U, V ) to the infeasible
ball (see page 15), and we say that the ’ball mb(U, V ) does not exist.’

We start with a mathematical program which will allow us to compute
the ball mb(U, V ); please see page viii for some notation in connection
with mathematical programs. So suppose we are given a finite pointset
U ⊂ Rd and some nonnegative real numbers ρB , B ∈ U . (For the
purpose of this section you can neglect the numbers ρB , i.e., assume
ρB = 0, B ∈ U ; we will need them later in Sec. 3.5 for a related geometric
problem.) Arrange the Euclidean points p ∈ U as columns to a (d×|U |)-
matrix C and consider the following convex mathematical program in
the variables xp, p ∈ U .

Q(U, V ) minimize xTCTCx+
∑

p∈U xp (ρ2
p − pT p)

subject to
∑

p∈U xp = 1,

xp ≥ 0, p ∈ U \ V.

Lemma 3.15. Let V ⊆ U be two finite pointsets in Rd, each point
coming with a positive real number ρp.

(i) If x̃ is an optimal solution to Q(U, V ) then its objective value is of
the form −ρ̃2 and there exist real number µp, p ∈ U , such that

‖c̃− p‖2 − ρ2
p + µp = ρ̃2, (3.20)

x̃pµp = 0, p ∈ U \ V, (3.21)

µp ≥ 0, p ∈ U \ V, (3.22)

µp = 0, p ∈ V, (3.23)

holds for c̃ = Cx̃. Moreover, there is no other solution (c̃′, ρ̃′) of
the system (3.20), (3.22)–(3.23) (in the variables c̃, ρ̃) with ρ̃′ ≤ ρ̃.
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(ii) If x̃ is feasible for Q(U, V ) and Eqs. (3.20)–(3.23) hold for some
real ρ̃ are real µp, p ∈ U , with c̃ = Cx̃ then x̃ is optimal to Q(U, V ).

(iii) If (3.20), (3.22)–(3.23) hold for some real ρ̃, some real vector c̃, and
for real values µp, p ∈ U , then Q(U, V ) has an optimal solution.

The proof is follows an argument by Gärtner [34] and the second part
is based on an idea by Seidel [75] (just like in the proof of Lemma 3.3).

Proof. As the objective function f of program Q(U, V ) is convex, we can
apply the Karush-Kuhn-Tucker Theorem for Convex Programming [5],
which we use in the variant stated in Theorem 5.16. According to this,
a feasible solution x̃ is optimal to Q(U, V ) if and only if there exist real
numbers µB , B ∈ U , and a real τ such that

2pTCx̃+ ρ2
p − pT p+ τ − µp = 0, p ∈ U, (3.24)

and µp ≥ 0, p ∈ U \V , hold with µp = 0, p ∈ V , and x̃pµp = 0, p ∈ U \V .

Set c̃ := Cx̃, multiply (3.24) by x̃p, and sum over all p ∈ U . Using
∑

p∈U x̃p = 1 and x̃pµp = 0, p ∈ U \ V , this yields

2c̃T c̃+
∑

p∈U

x̃p (ρ2
p − pT p) + τ = 0,

from which we see that f(x̃) = −c̃T c̃ − τ . Given this, we can negate
(3.24) and add c̃T c̃ on both sides in order to obtain

‖c̃− p‖2 − ρ2
p + µp = ρ̃2, p ∈ U, (3.25)

for ρ̃2 := −f(x̃). This shows the first part of claim (i).

To show the second part of (i), suppose there exists a different solu-
tion (c̃′, ρ̃′) with ρ̃′ ≤ ρ̃ that fulfills (3.20), (3.22), and (3.23). Write c̃′

in the unique form c̃′ = c̃+ λu, where u is a unit vector and λ ≥ 0. As
(c̃′, ρ̃′) does not coincide with (c̃, ρ̃), we must have λ > 0 or ρ̃′ < ρ̃.

Set F := {p ∈ U | x̃p > 0} (which by the equality constraint of
the program is a nonempty set) and recall from the above optimality
conditions x̃pµp = 0 and (3.25) that every point p ∈ F is fulfills ‖p−c̃‖2 =
ρ̃2 + ρ̃2

p. Consequently,

‖p− c̃′‖2 − ρ2
p = ‖p− c̃− λu‖2 − ρ2

p

= ‖p− c̃‖2 − ρ2
p + λ2uTu− 2λuT (p− c̃)

= ρ̃2 + λ2 − 2λuT (p− c̃).
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Thus, in order for (c̃′, ρ̃′) to fulfill the system (3.20), (3.22)–(3.23) with
some set of real coefficients µp, p ∈ U , in such a way that ρ̃′ < ρ̃ or λ > 0
holds, the number λ would have to be strictly positive and there would
have to be a constant γ > 0 such that

uT (p− c̃) = γ, i ∈ V, (3.26)

uT (p− c̃) ≥ γ, i ∈ F. (3.27)

Using x̃p ≥ 0, p ∈ U \ V , and
∑

p∈U x̃p = 1, we then get
∑

p∈U

x̃pu
T (p− c̃) ≥

∑

p∈V

x̃pγ +
∑

p∈U\V

x̃pγ = γ > 0.

On the other hand,
∑

p∈U x̃pu
T (p − c̃) = uT (

∑

p∈U x̃pp −
∑

p∈U x̃pc̃) =

uT (c̃− c̃) = 0, a contradiction. This settles (i).

(ii) If x̃ is feasible for Q(U, V ) with numbers µp, p ∈ U , and ρ̃ fulfilling
the conditions (3.20)–(3.23), we can subtract c̃T c̃ from both sides of
(3.20) and negate the result in order to arrive at (3.24) for τ := ρ̃2− c̃T c̃.
Applied to this, the Karush-Kuhn-Tucker optimality criterion proves x̃
to be an optimal solution to Q(U, V ).

(iii) We show that under the given assumptions, the program Q(U, V )
is bounded; convexity then implies that an optimal solution x̃ exists [5].
It suffices to show that

∑

p∈U xp (ρ2
p − pT p) is bounded from below. As

(3.20), (3.22), and (3.23) hold for real numbers µp, p ∈ U , and a real
vector c̃, we have ‖c̃−p‖2 ≤ ρ̃2+ρ2

p for all p ∈ U , with equality for p ∈ V .
It is easily verified that the objective function value f(x) does not change
for a feasible solution x if we replace ‘p’ by ‘p − c̃’, so we may assume
w.l.o.g. c̃ = 0. Then the above equations simplify to pT p ≤ ρ̃2 + ρ2

p,
p ∈ U , again with equality for p ∈ V . It follows for any feasible solution
x of Q(U, V ) that

∑

p∈U

xp (ρ2
p − pT p) =

∑

p∈V

xp (ρ2
p − pT p) +

∑

p∈U\V

xp (ρ2
p − pT p)

≥ −
∑

p∈U

xpρ̃
2 = −ρ̃2

So f(x) ≥ xTCTCx− ρ̃2 ≥ −ρ̃2 for all feasible solutions x.

In particular, the lemma shows that an optimal solution to Q(U, V )
‘encodes’ the ball mb(U, V ), and that if mb(U, V ) exists, Q(U, V ) has an
optimal solution:
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Corollary 3.16. Let V ⊆ U ⊂ Rd be two finite pointsets.

(i) If x̃ is an optimal solution to Q(U, V ) with objective value −ρ̃2

then B(Cx̃, ρ̃) = mb(U, V ).

(ii) If the ball mb(U, V ) exists then Q(U, V ) has an optimal solution
(which encodes mb(U, V ) by (i)).

Proof. (i) follows from Lemma 3.15(i) by setting ρp := 0, p ∈ U : the Eqs.
(3.20), (3.22), and (3.23) show that the ball D := B(c̃, ρ̃) encloses U and
goes through V , and by the second part of (i), there does not exist any
ball B(c̃′, ρ̃′) ∈ b(U, V ) with a smaller radius ρ̃′ < ρ̃, so D = mb(U, V ).

(ii) IfD = mb(U, V ), the Eqs. (3.20), (3.22)–(3.23) hold with ρ̃ := ρD,
c̃ := cD, ρp := 0, p ∈ U , and appropriate µp, p ∈ U . Lemma 3.15(iii)
then guarantees that Q(U, V ) has an optimal solution.

More generally, we can use program Q(U, V ) to derive optimality
conditions for a ball D ∈ b(U, V ) to coincide with the ball mb(U, V ).

Lemma 3.17. Let V ⊆ U be two pointsets in Rd and let D ∈ b(U, V ).
Then D = mb(U, V ) iff there exist real coefficients λp, p ∈ U , such that

cD =
∑

p∈U

λpp,
∑

p∈U

λp = 1 (3.28)

holds and for all p ∈ U\V either λp = 0, or λp > 0 and p is tangent to D.

In other words, the lemma’s condition on p ∈ U \ V—which we call
a complementarity condition—requires λp ≥ 0 and that λp cannot be
strictly positive when p is actually contained in the interior of D.

Proof. (⇐) If D ∈ b(U, V ) comes with coefficients λp, p ∈ U , that
satisfy (3.28) and the complementarity conditions in the lemma then the
Eqs. (3.20)–(3.23) hold with ρp := 0, p ∈ U , ρ̃ := ρD, x̃p := λp, c̃ =
Cx̃, and with appropriate numbers µp ≥ 0, p ∈ U . Applied to this,
Lemma 3.15(ii) shows that x̃ is an optimal solution to Q(U, V ). This in
turn implies via the above corollary that D = mb(U, V ).

(⇒) If D = mb(U, V ) then the above corollary shows that program
Q(U, V ) has an optimal solution, x̃, say, with D = B(Cx̃, ρ̃) where −ρ̃2

is the solution’s objective value. In particular, the center cD of D can
be written in the form (3.28), and (3.21) provides the complementarity
conditions.
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In particular, the lemma shows that the circumball D = cb(V ) of
an affinely independent pointset V coincides with mb(V, V ) (for we have
cD ∈ aff(V ), which provides the numbers λp required by the lemma).

The balls case. Let us go a step further and consider mb(U, V ) for sets
V ⊆ U of balls. What is then the counterpart to the above Lemma 3.17
for points? A first observation is that if we can write the center of
mb(U, V ) as both an affine combination of the centers of U and an affine
combination of the support points suppmb(U,V )(U) then the respective
coefficients are closely related.

Lemma 3.18. Let V be a set of balls in Rd, centers affinely independent,
that are internally tangent to some larger ball D = B(c, ρ), and denote
by sB, B ∈ V , the support point of B w.r.t. D. If

c =
∑

B∈V

µBsB with
∑

B∈V

µB = 1 (3.29)

then the center c = cD can be written in the form

c =
∑

B∈V

λBcB with
∑

B∈V

λB = 1, (3.30)

for unique real coefficients λB. If moreover the sB, B ∈ V , are affinely
independent then sgn(λB) = sgn(γ) sgn(µB) for all B ∈ V , where

γ := ρ
∑

B∈V

µB/(ρ− ρB) = 1 +
∑

B∈V

µBρB/(ρ− ρB).

Moreover, γδ = 1 for δ := 1 − ∑

B∈V λBρB/ρ.

Observe that if the centers of V are not affinely independent then
the center c of mb(V, V ) need not lie in the affine hull of the centers of
V (see Fig. 3.4(a) for example). Also, the last equality in the equation
defining γ follows from the identity x/(x− y) = 1 + y/(x− y).

Proof. Using (3.18), Eq. (3.29) yields

0 =
∑

B∈V

µB
ρ

ρ− ρB
(cB − c) =:

∑

B∈V

µ′
B (cB − c), (3.31)
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with the µ′
B summing up to γ. The number γ cannot be zero because

then 0 = γc =
∑

µ′
BcB with

∑

µ′
B = 0, which contradicts the affine in-

dependence of the centers cB. Dividing (3.31) by γ yields c =
∑

µ′
B/γ cB

and hence
µ′

B/γ =
µB

γ

ρ

ρ− ρB
= λB , B ∈ V, (3.32)

by uniqueness of the numbers λB . This shows the first part of the lemma.

Let us argue the other way around. By equation (3.30) we have

0 =
∑

B∈V

λB (cB − c) =
∑

B∈V

λ′B
ρ

ρ− ρB
(cB − c),

for coefficients λ′B := λB (ρ− ρB)/ρ summing up to 1−∑

λBρB/ρ = δ.
Adding δc to both sides yields

δc =
∑

B∈V

λ′B
ρ

ρ− ρB
(cB − c) + δc

=
∑

B∈V

λ′B

(

ρ

ρ− ρB
(cB − c) + c

)

=
∑

B∈V

λ′BsB (3.33)

By the affine independence of the sB , the number δ is nonzero. Dividing
by δ and comparing with the unique representation (3.29) we deduce
δµB = λ′B for all B ∈ V . And since there is at least one strictly positive
λB , B ∈ V , we get

δλB =
δµ′

B

γ
=

ρ

ρ− ρB

δµB

γ
=

ρ

ρ− ρB

λ′B
γ

=
ρ

ρ− ρB

ρ− ρB

ρ

λB

γ
.

From this, we derive γδλB = λB > 0 which in turn shows γδ = 1.

We point out that both cases, γ > 0 and γ < 0, may occur. When
the radii of the input balls are zero, the representations (3.30) and (3.29)
coincide and thus γ = 1. Figure 3.7 on the other hand shows a configu-
ration where the signs are swapped: the points c and cB1

lie on different
sides of the halfspace through cB2

and cB3
(which shows λB1

< 0) while
the points c and sB1

lie on the same side of the line through sB2
and sB3

(showing µB1
> 0); thus, sgn(λB) = − sgn(µB) for B = B1 and via a

similar geometrical argument, you can verify this also for B ∈ {B2, B3}.
We can state optimality conditions for mb(U, V ) in the ball case. For

this, we define tangD(T ) for a set T of balls to be the set of those balls
in T that are internally tangent to a given ball D.
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B1

B2 B3

c

Figure 3.7. A configuration where the signs of the coefficients λB and
µB from Lemma 3.18 are swapped.

Lemma 3.19. Let V ⊆ U be two sets of ball in Rd, let D ∈ b(U, V ), and
suppose suppD(U) and {cB | B ∈ tangD(U)} are affinely independent.

(i) If there exist real coefficients λB, B ∈ U , such that

cD =
∑

B∈U

λBcB ,
∑

B∈U

λB = 1 (3.34)

and for all B ∈ U \ V either λB = 0, or sgn(δ)λB > 0 and B is
tangent to D then D ∈ mb(U, V ). Here, δ = 1 − ∑

B∈U λBρB/ρD

is the (nonzero) number from the previous lemma.

(ii) Conversely, if D ∈ mb(U, V ) then there exist real λB, B ∈ U , that
fulfill the conditions in (i).

The condition on B ∈ U\V requires sgn(δ)λB ≥ 0 for every B ∈ U\V
and that λB cannot be nonzero when B is actually contained in the
interior of D.

Proof. Consider the following mathematical program in the d + 1 free
variables x ∈ Rd and ρ ∈ R.

Q(U, V ) minimize ρ
subject to ‖x− cB‖ − (ρ− ρB) ≤ 0, B ∈ U \ V,

‖x− cB‖ − (ρ− ρB) = 0, B ∈ V.

Clearly, an optimal solution (x̃, ρ̃) to Q(U, V ) (if such a solution ex-
ists) represents the center and radius of a ball in mb(U, V ). Denote
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by f(x, ρ) = ρ the program’s objective function and write gB(x, ρ) =
‖x−cB‖− (ρ−ρB) for B ∈ U . As f and all the gB are convex functions,
Q(U, V ) is a convex program, and we can therefore apply the Karush-
Kuhn-Tucker Theorem for Convex Programming, which we invoke in the
version of Theorem 4.3.8 and 5.3.1 from the book by Bazaraa, Sherali
& Shetty [5]. According to this, a feasible solution (x̃, ρ̃) is optimal to
Q(U, V ) if and only if there exist real numbers τB , B ∈ U , such that
∇f+

∑

B∈U τB∇gB = 0 holds at the point (x̃, ρ̃) and such that the latter
fulfills the conditions

τB ≥ 0, B ∈ U \ V, (3.35)

τB (‖x− cB‖ − (ρ− ρB)) = 0, B ∈ U \ V. (3.36)

However, the direction (⇒) of this statement only holds if a so-called con-
straint qualification applies. We choose the Linear Independence Con-
straint Qualification (also described in the above book) which requires
the following for the subset I ⊆ U of balls that are internally tangent to
D: the functions gB , B ∈ I, must be continuously differentiable at (x̃, ρ̃)
and their gradients ∇gB(x̃, ρ̃), B ∈ I, need to be linearly independent.
Using this, we can proof the lemma as follows.

Firstly, we can assume in both statements (i) and (ii) that the center
cD of the ball D does not coincide with the center of a ball in V : if it did,
tangency would imply that D actually coincides with one of the balls in
I, in which case (i) and (ii) are trivial. Therefore, the gradients

∇gB(x, ρ) =

( x−cB

‖x−cB‖
−1

)

, B ∈ I, (3.37)

are continuous at (x, ρ) = (cD, ρD).

Under the assumptions of (i), Eq. (3.34) implies

0 =
∑

B∈U

λB (cD − cB) =
∑

B∈U

‖cD − cB‖λB
cD − cB

‖cD − cB‖ , (3.38)

where the coefficients λ′B := ‖cD − cB‖λB , B ∈ U , have the same signs
as the original numbers λB . As they sum up to

α :=
∑

B∈U

λ′B =
∑

B∈U

(ρD − ρB)λB = ρD −
∑

B∈U

ρBλB = ρDδ
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and as ρD > 0, the number α is nonzero and has the same sign as δ.
Dividing (3.38) by δ we see that ∇f +

∑

B∈U τB∇gB = 0 holds at
the point (cD, ρD) for the coefficients τB := λ′B/α. Thus, the above
optimality conditions prove (cD, ρD) to be optimal to Q(U, V ), which
shows D ∈ mb(U, V ).

(ii) Suppose D ∈ mb(U, V ) and denote by I ⊆ U the balls that are in-
ternally tangent to D (equivalently, the constraints that are fulfilled with
equality). Clearly, suppD(U) = suppD(I). Now suppose that the vectors
∇gB(cD, ρD), B ∈ I, are linearly dependent. This implies

∑

B∈I τB = 0
and

0 =
∑

B∈I

τB
cD − cB
‖cD − cB‖

for real coefficients τB, B ∈ I. Using ‖cD − cB‖ = ρD − ρB , we get

0 =
∑

B∈I

τBρD
cD − cB
ρD − ρB

=
∑

B∈I

τB
(

cD +
ρD

ρD − ρB
(cD − cB)

)

.

Hence
∑

B∈I τBsD(B) = 0, meaning that the support points suppD(I)
are affinely dependent, a case we excluded. Consequently, the above
Karush-Kuhn-Tucker optimality conditions apply, yielding coefficients
τB , B ∈ U , that satisfy (3.35), (3.36),

0 =
∑

B∈U

τB
‖cD − cB‖ (cD − cB) (3.39)

and
∑

B∈U τB = 1. The coefficients τ ′B := τB/‖cD − cB‖ add up to a
nonzero number β, and we cannot have β = 0 because (3.39) would show
the cB to be affinely dependent. Dividing (3.39) by β, Eq. (3.34) holds
for coefficients λB := τ ′B/β, and since ρD > 0 in

βδρD = β (ρ−
∑

B∈U

λBρB) =
∑

B∈U

τ ′B (ρ− ρB) =
∑

B∈U

τB = 1,

the numbers β and δ have the same sign. Thus sgn(λB) = sgn(δ) sgn(τB),
and from this, the claim follows.

3.4 LP-type formulations

Miniball of points. It is well-known that sebp is LP-type of combina-
torial dimension at most d + 1 (and we prove this below for the more
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general problem sebb). Using the optimality criterion for mb(U, V ) de-
veloped in the previous section we can moreover formulate problem sebp

as a reducible weak LP-type problem (see Sec. 2.5). For this, recall from
Chap. 2 that Ωmb is the set of all d-dimensional balls, including the empty
ball ∅ of radius −∞ and the infeasible ball ⋊⋉ of radius ∞, and that ≤
is the quasiorder on Ωmb that orders the balls according to their radii.

Lemma 3.20. Let T ⊂ Rd be a finite pointset. Then (T,≤,Ωmb,mb) is
a reducible primal weak LP-type problem.

Proof. Monotonicity of mb is obvious, dual nondegeneracy follows from
the uniqueness of mb(U, V ) (Lemma 3.9), and Lemma 3.11 establishes
reducibility. It remains to show primal optimality.

So assume that J is an inclusion-minimal strong basis of [U, V ∪{x}]
for [U, V ] ⊆ 2T with w(U, V ) < ⋊⋉ and x ∈ U \V . Given that reducibility
holds, it suffices to show that

mb(U, V ∪ {x}) = mb(U, V ) > mb(U \ {x}, V ) (3.40)

implies mb(J, J) = mb(J, J \ {x}). Let the λp, p ∈ J , be a set of
coefficients as asserted by Lemma 3.17 for the ball D := mb(J, J) < ⋊⋉.
It suffices to show λx ≥ 0, which via the lemma showsD = mb(J, J\{x}).

We first show that λp > 0 for all p ∈ J \V ′, with V ′ = V ∪{x}. To see
this, we consider the coefficients λ′p, p ∈ J , obtained from Lemma 3.17
for the ball D′ := mb(J, V ∪ {x}); we have λ′p ≥ 0 for x ∈ J \ V ′. From
D = D′ (recall for this that J is a strong basis of [U, V ∪ {x}]) it follows
that cD = (1 − τ)cD′ + τcD for any real number τ , that is,

cD =
∑

p∈J

((1 − τ)λ′p + τλp)p =:
∑

p∈J

µ′
p(τ)p.

Set N := {p ∈ J \ V ′ | λp < 0} and suppose that this set is nonempty.
We increase τ from 0 and stop as soon as µ′

q(τ) = 0 for some q ∈ N ;
such a τ exists because λp ≤ 0 and λ′p ≥ 0 for all p ∈ N . At this
moment, all points p ∈ J \V ′ still have µ′

p(τ) ≥ 0, and cD =
∑

p∈J µ
′
p(τ)

holds with the coefficients µ′
p(τ) summing up to 1. Thus, Lemma 3.17

yields D = mb(J \ {q}, J \ {q}) and D = mb(J \ {q}, V ′). Moreover, as
mb(J \ {q}, J \ {q}) equals D = mb(U, V ′), we have D = mb(U, J \ {q})
by dual nondegeneracy, and therefore J \ {q} is a strong basis of [U, V ′],
a contradiction to the inclusion-minimality of J .
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Next, we consider the coefficients λ′′p , p ∈ U , that the Lemma 3.17
guarantees for D = mb(U, V ). These numbers satisfy λ′′p ≥ 0, for p ∈
U \ V , in particular λ′′x ≥ 0. We claim that also λx > 0, which one can
see as follows. We rewrite cD as

cD =
∑

p∈J

((1 − τ)λ′′p + τλp)p =:
∑

p∈J

µ′′
p(τ)p,

for which we introduce λp := 0, p ∈ U \J . With this, the equation holds
for any real τ . If λx ≤ 0 then there exists a value τ∗ ∈ (0, 1] such that
µ′′

x(τ∗) = 0. As λ′′p ≥ 0 and λp ≥ 0 for all p ∈ U \V ′, we have µ′′
p(τ∗) ≥ 0

for p ∈ U \V . Plugging this together with µ′′
x(τ∗) = 0 into Lemma 3.17,

we obtain D = mb(U \ {x}, V ), a contradiction to (3.40). Thus, λx ≥ 0,
which proves the claim.

In particular, this proves that the call welzl(T, ∅) to Welzl’s algorithm
returns a pointset V that satisfies (not only mb(T, ∅) = mb(V, V ) but
also) mb(V, V ) = mb(V, ∅), a fact that (nobody doubted but that) was
not settled so far.

Finally, we show that sebp over affinely independent pointsets in-
duces unique sink orientations, as was advertised in the introduction and
the preceding chapter. This is a consequence of the following lemma.

Lemma 3.21. Let T ⊂ Rd be an affinely independent pointset. Then
the tuple (T,≤,Ωmb,mb) is a reducible strong LP-type problem.

Proof. We first show that the balls mb(U, V ), V ⊆ U ⊆ T , exist (i.e.,
not equal to the infeasible ball): on the one hand, mb(F, F ) exists for
every F ⊆ T because affine independence and Lemma 3.12 ensure the
existence of a ball D ∈ b(F, F ) with center in aff(F ), and Lemma 3.17
proves D to coincide with mb(F, F ). On the other hand, reducibility of
mb (which was proved in Lemma 3.20) implies that every ball mb(U, V )
equals mb(F, F ) for some F ∈ [U, V ].

Given this, we can establish primal nondegeneracy, which together
with Lemma 3.20 proves that (T,mb) is a reducible strong problem. So
suppose mb(U ′, V ′) = mb(U, V ) =: D for sets V ′ ⊆ U ′ and V ⊆ U .
Clearly, D ∈ b(U ′ ∩ U, V ′ ∩ V ), and it remains to show that D is the
smallest ball in the latter set. Consider the coefficients λp, p ∈ U ,
that Lemma 3.17 produces for the ball mb(U, V ) and the coefficients λ′p,
p ∈ U ′, that it yields for mb(U ′, V ′). (Notice that these coefficients exists
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because the two balls are not the infeasible ball by the above discussion.)
These numbers satisfy λp ≥ 0, p ∈ U \ V , and λ′p ≥ 0, p ∈ U ′ \ V ′. As
mb(U, V ) and mb(U ′, V ′) have the same center cD, we have

cD =
∑

p∈U

λpp =
∑

p∈U ′

λ′pp. (3.41)

By setting λp := 0, p ∈ T \ U (and λ′p := 0, p ∈ T \ U ′), we can
extend the coefficients λp of U (and likewise the coefficients λ′p of U ′) to
coefficients on T , and this does not change (3.41). Affine independence
of the involved points then yields λp = λ′p, p ∈ U ′ ∪ U , in particular,
λp = λ′p = 0 for p ∈ U ′ ∪ U \ (U ′ ∩ U). It follows cD =

∑

p∈U ′∩U λpp
with λp ≥ 0 for all p ∈ U ′ ∩ U \ (V ′ ∩ V ), which in turn implies D =
mb(U ′ ∩ U, V ′ ∩ V ) via Lemma 3.17 again.

Miniball of balls. With the material we have developed so far, it is now
a simple matter to show that sebb is an LP-type problem.

Lemma 3.22. Let T be a finite set of balls in Rd. Then (T,≤,Ωmb,mb)
is an LP-type problem of combinatorial dimension at most d+ 1.

Proof. Monotonicity and locality are proved along the same lines as for
problem sebp in Chap. 2. Lemma 3.7 provides the bound on the prob-
lem’s combinatorial dimension.

As we will see in Chap. 5, the function mb(·, ·) is not reducible,2 so
Welzl’s algorithm welzl need not (and, as an example will show, does not)
solve sebb. However, if the centers of the balls are affinely independent,
the situation changes, and we will show in Theorem 5.21 that a variant of
sebb admits a formulation as a reducible strong (and hence also reducible
weak) problem.

3.5 Smallest superorthogonal ball

We conclude this chapter with an excursion on a variation of problem
sebb. Instead of searching for a ball enclosing a given ball set U , this
section’s focus lies on a ball that either covers the input ball B ∈ U or

2Actually, mb(U, V ) is a set; we mean here the function that assigns (U, V ) to some
ball in mb(U, V ). Even if this ball is unique, the latter function need not be reducible.
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B
B′

cB cB′

p
α

Figure 3.8. The angle ∠(B,B′) = π − ∠(cB , p, cB′) between two inter-
secting spheres B,B′; the spheres are superorthogonal if ∠(B,B′) ≥ π/2.

intersects it in such a way that the tangent planes at every boundary
intersection point span an outer angle of at least 90 degrees, see Fig. 3.8.

We begin by reviewing the notion of orthogonality [13] and ‘superor-
thogonality’ between balls and subsequently derive the aforementioned
geometric interpretation in terms of the dihedral angle. We will then
introduce the ball ‘mob(U),’ which is the smallest ball that is super-
orthogonal to all balls in the set U , and present a quadratic program
that computes it.

Let B ⊂ Rd be a ball and x ∈ Rd. We call the number pwB(x) =
‖cB − x‖2 − ρ2

B the power of x w.r.t. the ball B.

Definition 3.23. Two balls B,B′ ⊂ Rd are superorthogonal to each
other if pwB(cB′) ≤ ρ2

B′ (equivalently, pwB′(cB) ≤ ρ2
B). If equality

holds, the balls are said to be orthogonal.

We can rewrite pwB(cB′) ≤ ρ2
B′ as

0 ≤ 2cTBcB′ − (cTBcB + cTB′cB′ − ρ2
B − ρ2

B′). (3.42)

Superorthogonality and orthogonality have the following geometric in-
terpretation in terms of the angle between spheres which we define as fol-
lows. Given two balls B,B′ and an intersection point p ∈ ∂B ∩ ∂B′, we
define ∠(B,B′) := π − ∠(cB , p, cB′) where ∠(cB , p, cB′) is the angle be-
tween the line segments s := conv({cB , p}) and s′ := conv({p, cB′}), see
Fig. 3.8. By congruence of the triangles conv({cB , p, cB′}), p ∈ ∂B∩∂B′,
the angle ∠(B,B′) is independent of the choice of the point p ∈ ∂B∩∂B′.
In case any of the line segments s, s′ is a point (equivalently, one of the
balls B,B′ is a point), we define ∠(B,B′) := π/2. Also, if the balls’
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boundaries do not intersect and one ball is contained in the other we set
∠(B,B′) := ∞, and ∠(B,B′) := −∞ if the balls are completely disjoint.

Lemma 3.24. Let B,B′ ⊂ Rd be two balls. Then B and B′ are super-
orthogonal iff B and B′ intersect and ∠(B,B′) ≥ π/2.

Observe here that the intersection ∂B∩∂B′ might be empty, in which
case the lemma states that B and B′ are superorthogonal if and only if
one ball contains the other.

Proof. (⇒) The balls B and B′ intersect because

‖cB − cB′‖2 = pwB(cB′) + ρ2
B ≤ ρ2

B + ρ2
B′ ≤ ρ2

B + 2ρBρB′ + ρ2
B′ ,

and hence ‖cB − cB′‖ ≤ ρB + ρB′ .

In case the balls’ boundaries do not intersect and also in case one
of the balls is a point, ∠(B,B′) ≥ π/2 by definition; otherwise, fix any
p ∈ ∂B ∩ ∂B′ . We can w.l.o.g. assume that p = 0 (translate the balls
appropriately to achieve this) so that cB is a normal vector of the tangent
plane to ∂B in p, and similarly, cB′ is a normal of the tangent plane to
∂B′ in p, see Fig. 3.8. Their angle α fulfills

cosα =
cTBcB′

ρBρB′

≥ cTBcB + cTB′cB′ − ρ2
B − ρ2

B′

2ρBρB′

= 0,

where we used (3.42) to obtain the inequality. From our choice of normals
cB , cB′ it follows ∠(cB , p, cB′) ≤ π/2, as needed.

(⇐) If B,B′ intersect, we distinguish two cases. If one ball is con-
tained in the other, i.e., B ⊆ B′ w.l.o.g., then ‖cB −cB′‖ ≤ ρB′ −ρB and
by squaring this, it follows pwB(cB′) = ‖cB−cB′‖−ρ2

B ≤ ρ2
B′−2ρBρB′ ≤

ρ2
B′ , as needed. Otherwise the balls’ boundaries intersect and both balls

have a strictly positive radius. In this case, fix any p ∈ ∂B∩∂B′, and as-
sume w.l.o.g. that p coincides with origin. Then the angle β := ∠(B,B′)
satisfies cTBcB′/(ρBρB′) = cosβ ≥ 0, implying (3.42).

Let U be a finite set of balls in Rd. Some ball superorthogonal to all
balls in U exists: take any ball that encloses all balls U ; by the above
lemma it is superorthogonal to every B ∈ U . Using this, a simple com-
pactness argument establishes that a smallest ball superorthogonal to all
balls in U exists. In fact, the following lemma establishes as a side result
that there is only one such ball, and therefore we already now denote by
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B1

B2

B3

B4

B5

mob(U)

Figure 3.9. An example of mob(U) for a set of five balls in R2.

mob(U) the unique ball of smallest radius that is superorthogonal to all
balls in U , see Fig. 3.9.

Similar to the notions ‘b(U, V )’ and ‘mb(U, V ),’ we define ob(U, V )
to be the set of all balls which are orthogonal to the balls in V and
superorthogonal to the balls in U ; mob(U, V ) is then the smallest ball
in ob(U, V ) (again, the following lemma shows that there is only one
smallest ball) and we have mob(U, ∅) = mob(U) by definition.

Lemma 3.25. Let V ⊆ U be two finite sets of balls, let C be the matrix
whose columns are the centers of the balls U and set ρcB

:= ρB, B ∈ U .

(i) The set ob(U, V ) contains a unique smallest ball.

(ii) If x̃ is an optimal solution to Q(U, V ) with objective value −ρ̃2

then B(Cx̃, ρ̃) = mob(U, V ).

(iii) If the ball mob(U, V ) exists then Q(U, V ) has an optimal solution
(which encodes mob(U, V ) by (i)).

Proof. The proof of (ii) and (iii) is completely analogous to the proof of
Corollary 3.16(i)–(ii), which is based on Lemma 3.15. The uniqueness
of the smallest ball in ob(U, V ) follows from Lemma 3.15(i).

Using this and Lemma 3.15 we can also give optimality conditions
for a ball D ∈ ob(U, V ) to be the ball mob(U, V ).
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Lemma 3.26. Let V ⊆ U be two sets of ball in Rd and let D ∈ ob(U, V ).
Then D = mob(U, V ) iff there exist real numbers λB, B ∈ U , such that

cD =
∑

B∈U

λBcB ,
∑

B∈U

λB = 1, (3.43)

and for all B ∈ U \ V either λB = 0, or λB > 0 and B is tangent to D.

Here, the complementarity conditions on the balls B ∈ U \ V means
that for all B ∈ U \ V the number λB is nonzero and that it cannot
be strictly positive when the ball B is (only superorthogonal but) not
orthogonal to D.—Again, the proof is completely analogous to the proof
of Lemma 3.17.

We remark that along the lines of Lemmata 3.20 and 3.21 one can
show that problem mob is a reducible primal weak problem and, under
affine independence, even a reducible strong problem. We also mention
that the problem is related to power diagrams [13].





Chapter 4

Smallest enclosing balls of

points

In this chapter we present a simple combinatorial algorithm, a joint
work with Bernd Gärtner and Martin Kutz [29], for solving the miniball
problem in the special case when the input consists of points only. The
algorithm resembles the simplex method for linear programming (lp); it
comes with a Bland-type rule to avoid cycling in presence of degeneracies
and it typically requires very few iterations.

In contrast to Welzl’s algorithm whose applicability for sebp is lim-
ited in practice to dimensions d ≤ 30, the method from this chapter
behaves nicely in (mildly) high dimensions: a floating-point implemen-
tation solves instances in dimensions up to 10,000 within hours, and
with a suitable stopping-criterion (to compensate for rounding-errors),
all degeneracies we have tested so far are handled without problems.

4.1 Sketch of the algorithm

The idea behind the algorithm is simple: start with a balloon strictly
containing all the points and then deflate it until it cannot shrink any-
more without losing a point. (A variant of this idea was proposed by
Hopp & Reeve [46] in 1996, but only as a heuristic for d = 3 with-
out proof of correctness and termination.) In this section we sketch the

79
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main ingredients necessary for implementing this, postponing the details
to Sec. 4.2.

An important notion for our method is the circumball cb(T ) of a
nonempty affinely independent set T , which is the unique sphere with
center in the affine hull aff(T ) that goes through the points in T (see
Lemma 3.12). In the following we call the center of this ball the cir-
cumcenter of T , denoted by cc(T ). Moreover, a nonempty affinely in-
dependent subset T of the set S of given points will be called a support
set.1 Also, we introduce the notation B(c, T ) for a pointset T and a
point c ∈ Rd, by which we mean the ball B(c,maxp∈T ‖p− c‖), i.e., the
smallest ball with given center c that encloses the points T .

Our algorithm steps through a sequence of pairs (T, c), maintaining
the invariant that T is a support set and c is the center of a ball B
containing S and having T on its boundary. Lemma 3.3 tells us that we
have found the smallest enclosing ball when c = cc(T ) and c ∈ conv(T ).
Until this criterion is fulfilled, the algorithm performs an iteration (a
so-called pivot step) consisting of a walking phase which is preceded by
a dropping phase in case c ∈ aff(T ).

Dropping. If c ∈ aff(T ), the invariant and Lemma 3.12 guarantee that
c = cc(T ). Because c 6∈ conv(T ), there is at least one point s ∈ T whose
coefficient in the affine combination of T forming c is negative. We drop
such an s and enter the walking phase with the pair (T \ {s}, c), see left
of Fig. 4.1.

Walking. If c 6∈ aff(T ), we move our center on a straight line towards
cc(T ). Lemma 4.1 below establishes that the moving center is always
the center of a (progressively smaller) ball with T on its boundary. To
maintain the algorithm’s invariant, we must stop walking as soon as a
new point s′ ∈ S hits the boundary of the shrinking ball. In that case
we enter the next iteration with the pair (T ∪ {s′}, c′), where c′ is the
stopped center; see Fig. 4.1. If no point stops the walk, the center reaches
aff(T ) and we enter the next iteration with (T,cc(T )).

1We note that this definition of a ‘support set’ differs from the one given in Chap. 3
(which we do not use here).
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s1

s2

s

c

s1

s2
s′

c
c′

cc(T )

Figure 4.1. Dropping the point s from T = {s, s1, s2} (left) and walking
towards the center cc(T ) of the circumball of T = {s1, s2} until s′ stops
us (right).

4.2 The algorithm in detail

Let us start with some basic facts about the walking direction from
the current center c towards the circumcenter of the current boundary
points T .

Lemma 4.1. Let T be a nonempty affinely independent pointset on the
boundary of some ball B(c, ρ), i.e., T ⊆ ∂B(c, ρ) = ∂B(c, T ). Then

(i) the line segment [c,cc(T )] is orthogonal to aff(T ),

(ii) T ⊆ ∂B(c′, T ) for each c′ ∈ [c,cc(T )],

(iii) ρB(·,T )), i.e., the radius of B(·, T ), is a strictly monotone decreasing
function on [c,cc(T )], with minimum attained at cc(T ).

Note that part (i) of this lemma implies that the circumcenter of T
coincides with the orthogonal projection of c onto aff(T ), a fact that is
important for the actual implementation of the method.

When moving the center of our ball along [c,cc(T )], we have to check
for new points to hit the shrinking boundary. The subsequent lemma
tells us that all points ‘behind’ aff(T ) are uncritical in this respect, i.e.,
they cannot hit the boundary and thus cannot stop the movement of the
center. Hence, we may ignore these points during the walking phase. In
Fig. 4.1 (right), for instance, aff(T ) is the line though the points {s1, s2}
and the halfspace that is bounded by aff(T ) and does not contain c is the
regions of all points that lie ‘behind’ aff(T ): any point therein cannot
stop the movement of the center.
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Lemma 4.2. Let T and c as in Lemma 4.1 above and let q ∈ B(c, T )
lie behind aff(T ), precisely,

(q − c)T (cc(T ) − c) ≥ (cc(T ) − c)T (cc(T ) − c). (4.1)

Then q is contained in B(c′, T ) for any c′ ∈ [c,cc(T )].

Proof of Lemmata 4.1 and 4.2. Let w be the vector from c to the or-
thogonal projection of c onto aff(T ). By definition, w satisfies

wT (p− q) = 0, p, q ∈ aff(T ). (4.2)

Consider any point cµ = c + µw on the real ray L = {c + µw | µ ≥ 0}.
For any p ∈ T we have

‖cµ − p‖2 = ‖c− p‖2 + µ2wTw + 2µwT (c− p) (4.3)

= ‖c− p‖2 + µ2wTw + 2µwT (c− cc(T )), (4.4)

where the second equality follows from c − p = (c − cc(T )) − (p −
cc(T )), with the second vector being orthogonal to w by (4.2). As the
numbers ‖c − p‖2 are identical for all p ∈ T , the distance from cµ to p
is independent of the chosen point p ∈ T , and hence T ⊆ ∂B(cµ, T ). In
particular, the point c + w, i.e., the intersection of L with aff(T ), has
identical distance to the points in T and thus coincides with the unique
circumcenter cc(T ). We conclude w = cc(T )− c from which (i) and (ii)
follow.

To show (iii), we use w = cc(T )− c to write the squared radius (4.4)
of the ball B(cµ, T ) as

ρ2
B(cµ,T ) = ‖c− t0‖2 + µ (µ− 2)wTw. (4.5)

This is a strictly convex function in µ, with the minimum attained at
µ = 1. Therefore, the radius strictly decreases on the interval [c0, c1] =
[c,cc(T )], achieving its minimum at c1 = cc(T ).

In order to settle Lemma 4.2, we show that q is contained in B(cµ, T )
for all µ ≥ 0. Denoting by p any arbitrary element from T ,

‖cµ − q‖2 = ‖c− q‖2 + µ2wTw + 2µwT (c− q)

≤ ‖c− p‖2 + µ2wTw + 2µwT (c− q)

≤ ‖c− p‖2 + µ2wTw − 2µwTw = ρ2
B(cµ,T ),

where we have used q ∈ B(c, T ) for the first inequality, µ ≥ 0 and (4.1)
for the second one, and (4.5) for the final equality.
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procedure bubble(S)
{ Computes mb(S) }
{ Precondition: S 6= ∅ }
begin

c := any point of S
T := {p}, for a point p of S at maximal distance from c
while c 6∈ conv(T ) do

{ Invariant: B(c, T ) ⊇ S, ∂B(c, T ) ⊇ T , T aff. indep. }
if c ∈ aff(T ) then

drop a point q from T with λq < 0 in (4.6)
{ Here, c 6∈ aff(T ). }
among the points in S \ T that do not satisfy (4.1)

find one, p, say, that restricts movement of c
towards cc(T ) most, if one exists

move c as far as possible towards cc(T )
if walk has been stopped then

T := T ∪ {p}
return B(c, T )

end bubble

Figure 4.2. The algorithm to compute mb(S).

It remains to identify which point of the boundary set T should be
dropped in case that c ∈ aff(T ) but c 6∈ conv(T ). Here are the suitable
candidates.

Lemma 4.3. Let T and c be as in Lemma 4.1 above and assume that
c ∈ aff(T ). Let

c =
∑

p∈T

λpp,
∑

p∈T

λp = 1 (4.6)

be the affine representation of c with respect to T . If c 6∈ conv(T ) then
λq < 0 for at least one q ∈ T and any such q satisfies inequality (4.1)
with T replaced by the reduced set T \ {q} there.

Combining Lemmata 4.2 and 4.3, we see that if we drop a point with
negative coefficient in (4.6), this point will not stop us in the subsequent
walking step.
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s0
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s2
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s2
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s0
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s2 s3

(a) (b) (c)

Figure 4.3. A full run of the algorithm in 2D.

Proof. We set T ′ := T \ {p} and w = cc(T ′) − c. By Lemma 4.1(i) we
then have wT (p − q) = 0 for any two points p, q ∈ aff(T ′). Using this
and (4.6), we deduce

0 < wTw = wT (cc(T ′) − c)

=
∑

p∈T

λpw
T (cc(T ′) − p)

= λqw
T (cc(T ′) − q).

Consequently, λq < 0 implies wT cc(T ′) < wT q, from which we conclude
wT (q − c) > wT (cc(T ′) − c) = wTw as needed.

The algorithm in detail. Fig. 4.2 gives a formal description of our algo-
rithm. The correctness follows easily from the previous considerations
and we will address the issue of termination in a minute. Before doing so,
let us consider an example in the plane. Figure 4.3, (a)–(c), depicts all
three iterations of our algorithm on a four-point set. Each picture shows
the current ball B(c, T ) just before (dashed) and right after (filled) the
walking phase.

After the initialization c = s0, T = {s1}, we move towards the sin-
gleton T until s2 hits the boundary (step (a)). The subsequent motion
towards the circumcenter of two points is stopped by the point s3, yield-
ing a 3-element support (step (b)). Before the next walking we drop the
point s2 from T . The last movement (c) is eventually stopped by s0 and
then the center lies in the convex hull of T = {s0, s1, s3}.
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CC

cc(T )

t1 t2

t3

Figure 4.4. Two consecutive steps of the algorithm in 3D.

Observe that the 2-dimensional case obscures the fact that in higher
dimensions, the target cc(T ) of a walk need not lie in the convex hull
of the support set T . In Fig. 4.4, the current center c first moves to
cc(T ) 6∈ conv(T ), where T = {t1, t2, t3}. Then, t2 is dropped and the
walk continues towards aff(T \ {t2}).

Termination. It is not clear whether the algorithm as stated in Fig. 4.2
always terminates. Although the radius of the ball clearly decreases
whenever the center moves, it might happen that a stopper already lies
on the current ball and thus no real movement is possible. In principle,
this might happen repeatedly from some point on, i.e., we might run
in an infinite cycle, perpetually collecting and dropping points without
ever moving the center at all. However, for points in sufficiently general
position such infinite loops cannot occur.

Lemma 4.4. If for all affinely independent subsets T ⊆ S, no point of
S \ T lies on the circumball of T then algorithm bubble(S) terminates.

Proof. Right after a dropping phase, the dropped point cannot be rein-
serted (Lemmata 4.2 and 4.3) and by assumption no other point lies on
the current boundary. Thus, the sequence of radii measured right before
the dropping steps is strictly decreasing; and since at least one out of d
consecutive iterations demands a drop, it would have to take infinitely
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many values if the algorithm did not terminate. But this is impossi-
ble because before a drop, the center c coincides with the circumcenter
cc(T ) of one out of finitely many subsets T of S.

The degenerate case. In order to achieve termination for arbitrary in-
stances, we equip the procedure bubble(S) with the following simple rule,
resembling Bland’s pivoting rule for the simplex algorithm [19] (for sim-
plicity, we will actually call it Bland’s rule in the sequel):

Fix an arbitrary order on the set S. When dropping a point
with negative coefficient in (4.6), choose the one of smallest
rank in the order. Also, pick the smallest-rank point for in-
clusion in T when the algorithm is simultaneously stopped by
more than one point during the walking phase.

As it turns out, this rule prevents the algorithm from ‘cycling’, i.e., it
guarantees that the center of the current ball cannot stay at its position
for an infinite number of iterations.

Theorem 4.5. Using Bland’s rule, bubble(S) terminates.

Proof. Assume for a contradiction that the algorithm cycles, i.e., there
is a sequence of iterations where the first support set equals the last and
the center does not move. We assume w.l.o.g. that the center coincides
with the origin. Let C ⊆ S denote the set of all points that enter and
leave the support during the cycle and let among these be m the one of
maximal rank.

The key idea is to consider a slightly modified instance X of the
SEBP problem. Choose a support set D 6∋ m right after dropping m
and let X := D ∪ {−m}, mirroring the point m at 0. There is a unique
affine representation of the center 0 by the points in D ∪ {m}, where by
Bland’s rule, the coefficients of points in D are all nonnegative while m’s
is negative. This gives us a convex representation of 0 by the points in
X and we may write

0 = (
∑

p∈X

λpp)
T

cc(I) =
∑

p∈D

λpp
T

cc(I) − λ−mm
T

cc(I). (4.7)

We have introduced the scalar products because of their close rela-
tion to criterion (4.1) of the algorithm. We bound these by considering
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a support set I 6∋ m just before insertion of the point m. We have
mT cc(I) < cc(I)T cc(I) and by Bland’s rule and the maximality of
m, there cannot be any other points of C in front of aff(I); further, all
points of D that do not lie in C must, by definition, also lie in I. Hence,
we get pT cc(I) ≥ cc(I)T cc(I) for all p ∈ I. Plugging these inequalities
into (4.7) we obtain

0 >
(

∑

p∈D

λp − λ−m

)

cc(I)T
cc(I) = (1 − 2λ−m)cc(I)T

cc(I),

which implies λ−m > 1/2, a contradiction to Corollary 3.4.

Implementation and results. We have programmed algorithm bubble in
C++ using floating point arithmetic. In order to represent intermediate
solutions (i.e., the current support set with its circumcenter) we use a
QR-factorization technique, allowing fast and robust updates under in-
sertion and deletion of a single point into and from the current support
set. Instead of Bland’s rule (which is slow in practice and because of
rounding errors difficult to implement), we resort to a different heuris-
tic. The resulting code shows very stable behavior even with highly de-
generate input instances (points sampled from the surface of a sphere).
An a 480Mhz Sun Ultra 4 workstation, pointsets in dimensions up to
d = 2,000 can be handled efficiently; within hours, we were even able to
compute the miniball of pointsets of 10,000 points in dimensions up to
10,000. Please refer to [29] for more details on the implementation and
test results.

4.3 Remarks

To the best of our knowledge, algorithm bubble is the first combinatorial
algorithm (i.e., an exact method in the RAM model) that is efficient
in practice in (mildly) high dimensions. Although the quadratic pro-
gramming (QP) approach of Gärtner and Schönherr [38] is in practice
polynomial in d, it critically requires arbitrary-precision linear algebra
to avoid robustness issues, limiting the tractable dimensions to d ≤ 300,
see [38]. Also, codes based on Welzl’s algorithm from Chap. 2 cannot
reasonably handle pointsets beyond dimension d = 30 [33].

The resulting code is in most cases faster (sometimes significantly)
than recent dedicated methods that only deliver approximate results,
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and it beats off-the-shelf solutions, based e.g. on quadratic programming
solvers. For the details, please refer to [29].

The code can efficiently handle point sets in dimensions up to 2,000,
and it solves instances of dimension 10,000 within hours. In low dimen-
sions, the algorithm can keep up with the fastest computational geometry
codes that are available.



Chapter 5

Smallest enclosing balls of

balls

In this chapter we investigate the problem of computing the smallest
enclosing ball of a set of balls. We start off with an example showing
that Welzl’s algorithm sebb from Chap. 2 does not generalize from points
to balls. Given this, we turn to Matoušek, Sharir & Welzl’s algorithm
msw and describe how one can implement the primitives needed for this.
The resulting algorithm and heuristical variant of it which works well in
practice have been implemented in Cgal 3.0, the computational geom-
etry algorithms library [16].

As far as small dimensions (up to 10, say) are concerned, codes based
on algorithm msw are already the best we can offer from a practical point
of view. In higher dimensions however, these methods become inefficient,
and therefore we focus on this setting in the second part of this chapter.
As a first step, we generalize problem sebb to signed balls, allowing
negative radii. This will reveal the fact that the combinatorial structure
of an sebb instance only depends on the ball centers and the pairwise
differences in radii. An important consequence is that we may assume
one of the input balls to be a point—even that this point is the origin,
and that it lies on the boundary of the miniball, if the sebb instance
arises during the basis computation of algorithm msw.

Building on these insights, Sec. 5.4 linearizes the problem, using the
geometric inversion transform. Under inversion, balls through the origin

89
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map to halfspaces, so that we get the equivalent problem of finding a
halfspace that is optimal under suitable criteria. This halfspace turns
out to be the solution to an ‘almost linear’ mathematical program. As
a byproduct, the formulation provides us with a method for computing
the distance of a point to the convex hull of a union of balls.

Section 5.5 further investigates the mathematical programming ap-
proach in case the input ball centers are affinely independent. We es-
tablish a program that is well-behaved in the sense that it has a unique
solution, characterized by Karush-Kuhn-Tucker optimality conditions.
This also holds if some of the input balls are required to be tangent
to the miniball, entailing the possible nonexistence of a true miniball.
In the latter case, the solution to the program has an interpretation in
terms of a ‘generalized’ miniball.

This generalization lets us fit the problem into the framework of
reducible strong LP-type problems (as introduced in Chap. 2) once we
assume the centers of the input balls to be affinely independent (which
an embedding in sufficiently high-dimensional space and a subsequent
perturbation always achieves). As a concrete consequence of this, Welzl’s
algorithm does work, affine independence assumed. Also, we can use the
material from Chap. 2 to reduce sebb to the problem of finding the sink
in a unique sink orientation. With this, we can improve the trivial bound
of Ω(2d) on the (expected) combinatorial complexity of solving small
instances of the sebb problem; through the general LP-type techniques
(Lemma 2.11) from Chap. 2, this will also provide improved bounds
for large instances. On the practical side, the unique sink approach
allows for algorithms (like RandomEdge or Murty’s rule) that might not
be worst-case efficient but have the potential to perform very well in
practice.

5.1 Welzl’s algorithm

In Sec. 3.4 we have already seen that sebp can be formulated as a re-
ducible primal weak problem. Consequently, Welzl’s algorithm sebb from
Fig. 2.7 solves sebp and the question remains whether sebb, too, can
be solved with it.

The answer to this is ‘no.’ In general, Welzl’s algorithm (which
Fig. 5.1 shows again in its specialization to sebb) does not work anymore
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procedure sebb(U, V )
{ Intended to compute mb(U, V ) but does not work }
{ Precondition: U ⊇ V , |mb(U, V )| = 1 }
begin

if U = V then

return any ball from the set mb(V, V )
else

choose B ∈ U\V uniformly at random
D:= sebb(U \ {B}, V )
if B 6⊆ D then

return sebb(U, V ∪ {B})
else

return D
end sebb

Figure 5.1. Algorithm welzl from Fig. 2.7 specialized to problem sebb.

when balls are input. The reason for this is that problem sebb is not a
reducible problem. (If you have read Welzl’s original paper this means
that Welzl’s Lemma [86], underlying the algorithm’s correctness proof
in the point case, fails for balls.) Reducibility would read as follows in
the context of sebb.

Dilemma 5.1. Let U ⊇ V be sets of balls such that mb(U, V ) and
mb(U \ {B}, V ) contain unique balls each. If

B 6⊆ mb(U \ {B}, V )

for some B ∈ U \ V then B is tangent to mb(U, V ), so mb(U, V ) =
mb(U, V ∪ {B}).

A counterexample to this is depicted in Fig. 5.2: the point B5 is not
contained in the ball D = mb({B1, B3, B4}, {B1, B3, B4}), but B5 is not
tangent to

D′ = mb({B1, B3, B4, B5}, {B1, B3, B4}).

As a matter of fact, feeding the procedure sebb with the five balls from
Fig. 5.2 produces incorrect results from time to time, depending on the
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B1

B2

B3

B4

B5

D′

D

Figure 5.2. Five circles {B1, . . . , B5} for which procedure sebb may fail.

outcomes of the internal random choices in the algorithm.1 If in each
call, B is chosen to be the ball of lowest index in U \ V , the algorithm
eventually gets stuck when it tries to find the ball mb({B1, B3, B4, B5},
{B1, B3, B4, B5}), which does not exist.

This is detailed in Fig. 5.3 which depicts a possible sequence of
recursive calls (in order of their execution) to procedure sebb, trig-
gered by the ‘master’ call sebb({B1, . . . , B5}, ∅). Each of the six sub-
figures concentrates on the point in time where a recursive call of type
‘sebb(U \ {B}, V )’ has just delivered a ball D failing to contain the ball
B (upper line of subfigure caption), so that another recursive call to
sebb(U, V ∪ {B}) has to be launched (lower line of subfigure caption).
The latter call in turn triggers the first call of the next subfigure, af-
ter descending a suitable number of recursive levels. Observe that this
counterexample is free of degeneracies, and that no set mb(U, V ) contains
more than one ball.

We remark here that as we will see in Sec. 5.5, Welzl’s algorithm does
work if the centers of the input balls are affinely independent. (In this
case, the computation of the ball mb(V, V ) in the base case of procedure
sebb from Fig. 5.1 can be done using Lemma 5.2 from the next section.)

1The balls in Fig. 3.5 already constitute a counterexample to Dilemma 5.1 but
cannot be used to fool Welzl’s algorithm, as the complete enumeration of all possi-
ble runs (each being the result of different random choices ‘B ∈ U \ V ’ within the
algorithm) shows.
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B1
B3

B4

B5

D1

B2

(i) B1 6⊆ D1 = sebb({B2, . . . , B5}, ∅)
 sebb({B1, . . . , B5}, {B1})

B1

B2

B3

B4

B5

D2

(ii) B3 6⊆ D2 = sebb({B1, B4, B5}, {B1})
 sebb({B1, B3, B4, B5}, {B1, B3})

B1

B2

B3

B4

B5

D3

(iii) B5 6⊆ D3 = sebb({B1, B3}, {B1, B3})
 sebb({B1, B3, B5}, {B1, B3, B5})

B1

B2

B3

B4

B5

D4

(iv) B4 6⊆ D4 = sebb({B1, B3, B5}, {B1, B3})
 sebb(V ∪ {B5}, V ), for V = {B1, B3, B4}

B1

B2

B3

B4

B5

D5

(v) B5 6⊆ D5 = sebb(V, V )
 sebb(W, W ), for W = {B1, B3, B4, B5}

B1

B2

B3

B4

B5

D6

(vi) mb(W, W ) = ∅, as B1 is not tangent to
b({B3, B4, B5}, {B3, B4, B5}) = {D6}.

Figure 5.3. A failing run sebb(U, ∅) on the circles U from Fig. 5.2.
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5.2 Algorithm msw

Having seen that Welzl’s algorithm does not work for sebb, we turn to
algorithm msw from Chap. 2, which clearly solves the problem as it is
LP-type (Lemma 3.22). In order to realize the two primitives violates
and basis needed by procedure msw, we use the following lemma which
allows for the calculation of the ‘base case’ mb(V, V ).

Lemma 5.2. Let V be a basis of U . Then mb(V, V ) = mb(U), and this
ball can be computed in time O(d3).

Proof. For V = ∅, the claim is trivial, so assume V 6= ∅. As a basis of
U , V satisfies mb(V ) = mb(U). Since the balls in V must be tangent
to mb(U) (Lemma 3.6), we have mb(V ) ∈ mb(V, V ). But then any ball
in mb(V, V ) is a smallest enclosing ball of V , so Lemma 3.1 guarantees
that mb(V, V ) is a singleton.

Let V = {B1, . . . , Bm}, m ≤ d+1, and observe that B(c, ρ) ∈ b(V, V )
if and only if ρ ≥ ρBi

and ‖c − cBi
‖2 = (ρ − ρBi

)2 for all i. Defining
zBi

= cBi
− cB1

for 1 < i ≤ m and z = c − cB1
, these conditions are

equivalent to ρ ≥ maxi ρBi
and

zT z = (ρ− ρB1
)2, (5.1)

(zBi
− z)T (zBi

− z) = (ρ− ρBi
)2, 1 < i ≤ m.

Subtracting the latter from the former yields the m− 1 linear equations

2zT
Bi
z − zT

Bi
zBi

= 2ρ (ρBi
− ρB1

) + ρ2
B1

− ρ2
Bi
, 1 < i ≤ m.

If B(c, ρ) = mb(V, V ) then c ∈ conv({cB1
, . . . , cBm

}) by Lemma 3.3.
Thus we get c =

∑m
i=1 λicBi

with the λi summing up to 1. Then,
z =

∑m
i=2 λi(cBi

− cB1
) = Qλ, where Q = (zB2

, . . . , zBm
) and λ =

(λ2, . . . , λm)T . Substituting this into our linear equations results in

2zT
Bi
Qλ = zT

Bi
zBi

+ ρ2
B1

− ρ2
Bi

+ 2ρ (ρBi
− ρB1

), 1 < i ≤ m. (5.2)

This is a linear system of the form Aλ = e + fρ, with A = 2QTQ.
So B(c, ρ) = mb(V, V ) satisfies c − cB1

= z = Qλ with (λ, ρ) being a
solution of (5.1), (5.2) and ρ ≥ maxi ρBi

. Moreover, the columns of Q
are linearly independent as a consequence of Lemma 3.8, which implies
that A is in fact regular (see the discussion after Lemma 3.12).
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Hence we can in time O(d3) find the solution space of the linear
system (which is one-dimensional, parameterized by ρ) and substitute
this into the quadratic equation (5.1). From the possible solutions (λ, ρ)
we select one such that ρ ≥ maxi ρBi

, λ ≥ 0 and λ1 = 1 − ∑m
i=2 λi ≥ 0;

by mb(V ) = mb(V, V ) and Lemma 3.3 such a pair (λ, ρ) exists, and in
fact, there is only one such pair because the ball determined by any (λ, ρ)
with the above properties is tangent, enclosing and by Lemma 3.3 equal
to mb(V ).

We note that the existing, robust formulas for computing mb(V, V )
in the point case [33] can be generalized to balls (and are employed in
our code); please refer to the implementation documentation [28].

The primitives. The violation test violates(B, V ) needs to check whether
B 6⊆ mb(V ); as V is a basis, Lemma 5.2 can be used to compute
mb(V ) = mb(V, V ) and therefore the test is easy. In the basis compu-
tation we are given a basis V and a violating ball B (i.e., B 6⊆ mb(V )),
and we are to produce a basis of V ∪ {B}. By Lemma 3.6, the ball B
is internally tangent to mb(V ∪ {B}). A basis of V ∪ {B} can then be
computed in a brute-force manner2 by using Lemma 5.2 as follows.

We generate all subsets V ′, B ∈ V ′ ⊆ V ∪{B}, in increasing order of
size. For each V ′ we test whether it is a support set of V ∪ {B}. From
our enumeration order it follows that the first set V ′ which passes this
test constitutes a basis of V ∪ {B}.

We claim that V ′ is a support set of V ∪ {B} if and only if the
computations from Lemma 5.2 go through and produce a ball that in
addition encloses the balls in V ∪ {B}: if V ′ is a support set of V ∪
{B} then it is, by our enumeration order, a basis and hence the lemma
applies. Conversely, a successful computation yields a ball D ∈ b(V ′, V ′)
(enclosing V ∪{B}) whose center is a convex combination of the centers
of V ′; by Lemma 3.3, D = mb(V ′) = mb(V ∪ {B}).

Plugging these primitives into algorithm msw yields an expected
O(d322dn)-algorithm for computing the miniball mb(U) of any set of
n balls in d-space (Lemma 2.7). Moreover, it is possible to do all com-
putations in rational arithmetic (provided the input balls have rational
coordinates and radii): although the center and the radius of the miniball

2We will improve on this in Sec. 5.5. Also, Welzl’s algorithm could be used here,
by lifting and subsequently perturbing the centers, but this will not be better than
the brute-force approach, in the worst case.
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may have irrational coordinates, the proof of Lemma 5.2 show that they
actually are of the form αi + βi

√
γ, where αi, βi, γ ∈ Q and where γ ≥ 0

is the discriminant of the quadratic equation (5.1). Therefore, we can
represent the coordinates and the radius by pairs (αi, βi) ∈ Q2, together
with the number γ. Since the only required predicate is the containment
test, which boils down to determining the sign of an algebraic number
of degree 2, all computations can be done in Q.

We have implemented the algorithm in C++, and the resulting pack-
age has been released with Cgal 3.0. The code follows the generic pro-
gramming paradigm. In particular, it is parameterized with a type F
which specifies the number type to be used in the computation: choos-
ing F to be a type realizing rational numbers of arbitrary precision, no
roundoff errors occur and the computed ball is the exact smallest enclos-
ing ball of the input balls. Efficient implementations of such types are
available (see for instance the core [51], leda [64], and gnu mp [43] li-
braries); some of them even use filtering techniques which take advantage
of the floating-point hardware and resort to expensive multiple-precision
arithmetic only if needed in order to guarantee exact results.

Under a naive floating-point implementation, numerical problems
may arise when balls are ‘almost’ tangent to the current miniball. In
order to overcome these issues, we also provide a (deterministic) variant
of algorithm msw. In this heuristic—it comes without any theoretical
guarantee on the running time—we maintain a basis V (initially con-
sisting of a single input ball) and repeatedly add to it, by an invocation
of the basis computation, a ball farthest away from the basis, that is, a
ball B′ satisfying

‖c− cB′‖ + ρB′ = max
B∈U

(‖c− cB‖ + ρB) =: χV ,

with c being the center of mb(V ). The algorithm stops as soon as χV

is smaller or equal to the radius of mb(V ), i.e., when all balls are con-
tained in mb(V ). This method, together with a suitable adaptation [28]
of efficient and robust methods for the point case [33], handles degen-
eracies in a satisfactory manner: numerical problems tend to occur only
towards the very end of the computation, when the ball mb(V ) is already
near-optimal; a suitable numerical stopping criterion avoids cycling in
such situations and ensures that we actually output a correct basis in
almost all cases. An extensive testsuite containing various degenerate
configurations of balls is passed without problems.
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B
B′

B
B′ B

B′

(a) (b) (c)

Figure 5.4. B dominates B′ (a) if both balls are positive and B ⊇ B′,
(b) if B is positive and B′ negative and the two intersect, or (c) if both
are negative and B ⊆ B′. (Negative balls are drawn dotted.)

5.3 Signed balls and shrinking

In this section we show that under a suitable generalization of sebb,
one of the input balls can be assumed to be a point, and that sebb

can be reduced to the problem of finding the miniball with some point
fixed on the boundary. With this, we prepare the ground for the more
sophisticated material of Secs. 5.4 and 5.5.

Recall that a ballB = B(c, ρ) encloses a ballB′ = B(c′, ρ′) if and only
if relation (3.1) holds. Now we are going to use this relation for signed
balls. A signed ball is of the form B(c, ρ), where—unlike before—ρ can
be any real number, possibly negative. B(c, ρ) and B(c,−ρ) represent
the same ball {x ∈ Rd | ‖x−c‖2 ≤ ρ2}, meaning that a signed ball can be
interpreted as a regular ball with a sign attached to it; we simply encode
the sign into the radius. If ρ ≥ 0, we call the ball positive, otherwise
negative.

Definition 5.3. Let B = B(c, ρ) and B′ = B(c′, ρ′) be signed balls. B
dominates B′ if and only if

‖c− c′‖ ≤ ρ− ρ′. (5.3)

B marginally dominates B′ if and only if (5.3) holds with equality.

Figure 5.4 depicts three examples of the dominance relation. Further-
more, marginal dominance has the following geometric interpretation: if
both B,B′ are positive, B′ is internally tangent to B; if B is positive
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and B′ is negative then B and B′ are externally tangent to each other,
and finally, if both B,B′ are negative then B is internally tangent to B′.

We generalize sebb to the problem of finding the ball of smallest
signed radius that dominates a given set of signed balls. For two sets
U ⊇ V of signed balls, we denote by b(U, V ) the set of signed balls that
dominate the balls in U and that marginally dominate the balls in V .
We call a signed ball B smaller than another signed ball B′ if ρB < ρB′ .
Then, mb(U, V ) is the set of smallest signed balls in b(U, V ). Again,
we set b(∅, ∅) = {∅} and mb(∅, ∅) = {∅}, and abuse notation in writing
mb(U, V ) for the ball D in case mb(U, V ) is a singleton {D}.

Figure 5.5 depicts some examples of mb(U) := mb(U, ∅). In partic-
ular, Fig. 5.5(c) illustrates that this generalization of sebb covers the
problem of computing a ball of largest volume (equivalently, smallest
negative radius) contained in the intersection I =

⋂

B∈U B of a set U of
balls: for this, simply encode the members of U as negative balls.

At this stage, it is not yet clear that mb(U) is always nonempty
and contains a unique ball. With the following argument, we can easily
show this. Fix any ball O and define sO : B 7→ B(cB , ρB − ρO) to be
the map which ‘shrinks’ a ball’s radius by ρO while keeping its center
unchanged. (Actually, sO only depends on one real number, but in our
application this number will always be the radius of an input ball.) We
set sO(∅) := ∅ and extend sO to sets T of signed balls by means of
sO(T ) = {sO(B) | B ∈ T}. From Eq. (5.3) it follows that dominance
and marginal dominance are invariant under shrinking and we get the
following

Lemma 5.4. Let U ⊇ V be two sets of signed balls, O any signed ball.
Then B ∈ b(U, V ) iff sO(B) ∈ b(sO(U), sO(V )), for any ball B.

Obviously, the ‘smaller’ relation between signed balls is invariant
under shrinking, from which we obtain

Corollary 5.5. mb(sO(U), sO(V )) = sO(mb(U, V )) for any two sets
U ⊇ V of signed balls, O any signed ball.

This leads to the important consequence that an instance of sebb

defined by a set of signed balls U has the same combinatorial structure
as the instance defined by the balls sO(U): Most obviously, Corollary 5.5
shows that both instances have the same number of miniballs, the ones in
mb(sO(U)) being shrunken copies of the ones in mb(U). In fact, replacing
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B5
B1

B2

B3

B1
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B3

(a) (b) (c)

Figure 5.5. The ball mb(U) (dashed) for three sets U of signed balls:
(a) mb(U) is determined by three positive balls, (b) mb(U) is determined
by two negative balls, (c) the miniball of intersecting, negative balls is
the ball of largest volume contained in

⋂

B∈U B; its radius is negative.

the ‘positive’ concepts of containment and internal tangency with the
‘signed’ concepts of dominance and marginal dominance in Chap. 3, we
can define support sets and bases for sets of signed balls. It then holds
(Corollary 5.5) that U and sO(U) have the same support sets and bases,
i.e., the combinatorial structure only depends on parameters which are
invariant under shrinking: the ball centers and the differences in radii.

In particular, if the ball O in the corollary is a smallest ball in U
then sO(U) is a set of positive balls, and the material we have developed
for this special case in Chap. 3 carries over to the general case (most
prominently, this shows that mb(U) for signed balls U consists of a single
ball, and that sebb over signed balls is of LP-type and thus solvable
by algorithm msw). In this sense, any instance of sebb over signed
balls is combinatorially equivalent to an instance over positive balls, and
from now on, we refer to sebb as the problem of finding mb(U) for
signed balls U .

Reconsidering the situation, it becomes clear that this extension to
signed balls is not a real generalization; instead it shows that any instance
comes with a ‘slider’ to simultaneously change all radii.

One very useful slider placement is obtained by shrinking w.r.t. some
ball O ∈ U . In this case, we obtain a set sO(U) of balls where at least



100 Chapter 5. Smallest enclosing balls of balls

one ball is a point. Consequently, when we solve problem sebb using
algorithm msw of Fig. 2.3, we can also assume that the violating (which
now means non-dominated) ball B entering the basis computation is
actually a point. Moreover, using Lemma 3.6 with the obvious general-
ization to signed balls, we see that B is in fact marginally dominated by
the ball mb(W ∪ {D}). We can therefore focus on the problem sebbp

of finding the smallest ball that dominates a set U of signed balls, with
an additional point p marginally dominated. More precisely, for given
p ∈ Rd we define

bp(U, V ) := b(U ∪ {p}, V ∪ {p})
and denote the smallest balls in this set by mbp(U, V ). Then sebbp is
the problem of finding mbp(U) := mbp(U, ∅) for a given set U of signed
balls and a point p ∈ Rd. We note that all balls in bp(U, V ) are positive
(they dominate the positive ball {p}) and that we can always reduce
problem sebbp to sebb0 via a suitable translation.

In this way, we generalize the notion mbp(U) of Eq. (3.8) from only
positive balls to signed balls. In contrast to the case of positive balls
(Lemma 3.9), the set mbp(U) may contain more than one ball when U
is a set of signed balls (to see this, shrink Fig. 3.4 (left) w.r.t. B2).

Our main application of these findings is the solution of problem
sebb using algorithm msw from Chap. 2 (Lemma 2.11). As discussed
above, the basis computation in this case amounts to solving an instance
of sebb0 involving at most d+ 1 balls, from which we obtain

Theorem 5.6. Problem sebb over a set of n signed balls can be reduced
to problem sebb0 over a set of at most d + 1 signed balls: given an
algorithm for the latter problem of (expected) runtime f(d), we get an
algorithm with expected runtime

O(d2n) + eO(
√

d log d)f(d)

for the former problem.

We note that all the sets mbp(T ) occurring in this reduction contain
exactly one ball (and not more than one, as is possible in general) because
we always have mbp(T ) ∋ mb(T ∪ {p}), where the latter balls is unique.

In the sequel (Secs. 5.4 and 5.5), we concentrate on methods for
solving problem sebb0 with the goal of improving over the complete
enumeration approach which has f(d) = Ω(2d). From now on, all balls
are assumed to be a signed balls, unless stated otherwise.
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5.4 Inversion

In this section we present a ‘dual’ formulation of the sebb0 problem for
(signed) balls. We derive this by employing the inversion transform to
obtain a program that describes mb0(U, V ). This program is ‘almost’
linear (in contrast to the convex but far-from-linear programs obtained
by Megiddo [63] and Dyer [22]) and will serve as the basis of our approach
to small cases of problem sebb0 (Sec. 5.5).

As a by-product, this section links sebb0 to the problem of finding
the distance from a point to the convex hull of a union of balls.

5.4.1 A dual formulation for sebb0

We use the inversion transform x∗ := x/‖x‖2, x 6= 0, to map a ball
B ∈ b0(U, V ) to some linear object. To this end, we exploit the fact
that under inversion, balls through the origin map to halfspaces while
balls not containing the origin simply translate to balls again.

We start by briefly reviewing how balls and halfspaces transform
under inversion. For this, we extend the inversion map to nonempty
point sets via P ∗ := cl({p∗ | p ∈ P \ {0}}), where cl(Q) denotes the
closure of set Q, and to sets S of balls or halfspaces by means of S∗ :=
{P ∗ | P ∈ S}. (The use of the closure operator guarantees that if P is a
ball or halfspace containing the origin, its image P ∗ is well-defined and
has no ‘holes;’ we also set ∅∗ := {0} to have (P ∗)∗ = P .)

Consider a halfspace H ⊂ Rd; H can always be written in the form

H =
{

x | vTx+ α ≥ 0
}

, vT v = 1. (5.4)

In this case, the number |α| is the distance of the halfspace H to the
origin. If H does not contain the origin (i.e., α < 0) then H maps to the
positive ball

H∗ = B(−v/(2α),−1/(2α)). (5.5)

Since (P ∗)∗ = P , if P is a ball or halfspace, the converse holds, too: a
proper ball with the origin on its boundary transforms to a halfspace
not containing the origin. On the other hand, a ball B = B(c, ρ) not
containing the origin maps to a ball again, namely to B∗ = B(d, σ)
where

d =
c

cT c− ρ2
and σ =

ρ

cT c− ρ2
. (5.6)
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B∗ again does not contain the origin, and B∗ is positive if and only if B
is positive. All these facts are easily verified [8].

The following lemma shows how the dominance relation in the ‘pri-
mal’ domain translates under inversion. For this, we say that a halfspace
H of the form (5.4) dominates a ball B = B(d, σ) if and only if

vT d+ α ≥ σ, (5.7)

and we speak of marginal dominance in case of equality in (5.7).

As in the primal domain, the dominance relation has an interpreta-
tion in terms of containment and intersection: H dominates a positive
ball B if and only if H contains B—we also say in this case that B is
internally tangent to H—and H dominates a negative ball B if and only
if H intersects B. In both cases, marginal dominance corresponds to B
being tangent to the hyperplane underlying H, in addition.

Lemma 5.7. Let D be a positive ball through 0 and B a signed ball
not containing 0. Then D dominates B if and only if the halfspace D∗

dominates the ball B∗.

Proof. We first show that D dominates B if and only if

‖cD − cB‖2 ≤ (ρD − ρB)2. (5.8)

The direction (⇒) is clear from the definition of dominance, and so is
(⇐) under the assumption that ρD − ρB ≥ 0. So suppose (5.8) holds
with ρD − ρB < 0. Then 0 ≤ ‖cD − cB‖ ≤ ρB − ρD, from which we
conclude that B is positive and dominates D. Thus, 0 ∈ D ⊆ B, a
contradiction to B not containing the origin.

It remains to show that Eq. (5.8) holds if and only if the halfspace
D∗ dominates the ball B∗. As cTDcD = ρ2

D, the former inequality is
equivalent to

cTBcB − ρ2
B ≤ 2 (cTDcB − ρDρB), (5.9)

where the left hand side µ := cTBcB − ρ2
B is a strictly positive number,

by the assumption on B. Write the halfspace D∗ in the form (5.4) with
α < 0, and assume B∗ = B(d, σ). From (5.5) and (5.6) it follows that

cD = −v/(2α), ρD = −1/(2α), d = cB/µ, σ = ρB/µ.

Using this, we obtain the equivalence of Eqs. (5.7) and (5.9) by multi-
plying (5.9) with the number α/µ < 0.



5.4. Inversion 103

For U ⊇ V two sets of balls, we define h(U, V ) to be the set of
halfspaces not containing the origin that dominate the balls in U and
marginally dominate the balls in V . The following is an immediate
consequence of Lemma 5.7. Observe that any ball D satisfying D ∈
b0(U, V ) or D∗ ∈ h(U∗, V ∗) is positive by definition.

Lemma 5.8. Let U ⊇ V , U 6= ∅, be two sets of balls, no ball in U
containing the origin. Then D is a ball in b0(U, V ) if and only if D∗ is
a halfspace in h(U∗, V ∗).

We are interested in smallest balls in b0(U, V ). In order to obtain an
interpretation for these in the dual, we use the fact that under inversion,
the radius of a ball D ∈ b0(U, V ) is inversely proportional to the distance
of the halfspace D∗ to the origin, see (5.5). It follows that D is a smallest
ball in b0(U, V ), i.e., D ∈ mb0(U, V ), if and only if the halfspace D∗ has
largest distance to the origin among all halfspaces in h(U∗, V ∗). We call
such a halfspace D∗ a farthest halfspace in h(U∗, V ∗).

Corollary 5.9. Let U ⊇ V , U 6= ∅, be two sets of balls, no ball in
U containing the origin. Then D ∈ mb0(U, V ) if and only if D∗ is a
farthest halfspace in h(U∗, V ∗).

An example of four balls U = {B1, . . . , B4} is shown in Fig. 5.6(a),
together with the dashed ball D := mb0(U, {B2}). Part (b) of the figure
depicts the configuration after inversion w.r.t. the origin. The image
D∗ of D corresponds to the gray halfspace; it is the farthest among the
halfspaces which avoid the origin, contain B∗

4 , intersect B∗
1 and B∗

3 , and
to which B∗

2 is internally tangent.

The previous considerations imply that the following mathematical
program searches for the halfspace(s) mb0(U, V )∗ in the set h(U∗, V ∗).
(In this and the following mathematical programs we index the con-
straints by primal balls B ∈ U for convenience; the constraints them-
selves involve the parameters dB and σB of the inverted balls B∗.)

Corollary 5.10. Let U ⊇ V , U 6= ∅, be two sets of balls, no ball in U
containing the origin. Consider the program

P0(U, V ) minimize α
subject to vT dB + α ≥ σB, B ∈ U \ V,

vT dB + α = σB, B ∈ V,
vT v = 1,
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Figure 5.6. (a) Four circles U and D := mb0(U, {B2}) (dashed).
(b) The balls from (a) after inversion: dominance carries over in the
sense of Lemma 5.7, so D∗ must contain B∗

4 , intersect B∗
1 and B∗

3 , and
B∗

2 must be internally tangent to it. (In addition to these requirements,
D∗ marginally dominates B∗

1 in this example.)

where the dB and σB are the centers and radii of the inverted balls U∗,
see Eq. (5.6). Then D ∈ mb0(U, V ) if and only if

D∗ = {x ∈ Rd | ṽTx+ α̃ ≥ 0}

for an optimal solution (ṽ, α̃) to the above program satisfying α̃ < 0.

The assumption U 6= ∅ guarantees D 6= 0; if U is empty, program
P0(U, V ) consists of a quadratic constraint only and is thus unbounded.

5.4.2 The distance to the convex hull

With the material from the previous subsection at hand, we can eas-
ily relate problems sebb and sebb0 to the problem dhb of finding the
point q in the convex hull conv(U) = conv(

⋃

B∈U B) of a given set U

of positive balls that is nearest to some given point p ∈ Rd (Fig. 5.7).
W.l.o.g. we may assume p = 0 in the following, in which case the prob-
lem amounts to finding the minimum-norm point in conv(U). Recall
also from Lemma 3.9 that for a set U of positive balls, the set mb0(U)
consists of at most one ball.
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We claim that in the special case where all input balls are positive,
the problems sebb0 and dhb are equivalent in the sense that we can solve
one with an algorithm for the other. To prepare this, observe that the
respective problems are easy when the origin is contained in some input
ball (which we can check in linear time): in case of dhb, we can then
right away output ‘q = 0,’ and for sebb0 we can proceed as follows.
If the origin is properly contained in some B ∈ U then mb0(U) = ∅,
obviously. However, if B contains the origin on its boundary, the set
mb0(U) might be nonempty (see the discussion following Lemma 3.10).
In order to solve this case, we observe that any D ∈ mb0(U) must be
tangent to B in the origin, and so its center cD lies on the ray r through
cB , starting from 0. (We have cB 6= 0 because we could remove B = 0

from the set U otherwise.) Thus, in order to determine mb0(U), we
(conceptually) move a ‘center’ c on r in direction of cB , starting from 0,
and check how far we need to go until the ball Dc := B(c, ‖c‖) encloses
all balls in U . Notice here that once a ball B′ ∈ U is contained in Dc, it
will remain so when we continue moving c on r. Consequently, it suffices
to compute for all B′ ∈ U a candidate center (which need not exist for
B′ 6= B) and finally select the candidate center c′ that is farthest away
from the origin: then mb0(U) = {Dc′} if Dc′ encloses all balls in U , or
mb0(U) = ∅ otherwise.

After this preprocessing step we are (in both problems) left with a
set U of positive balls, none of which contains the origin. Our reduc-

q

p

B1

B2

B3

Figure 5.7. The dhb problem: find the point q in the convex hull
conv(U) (gray) of the positive balls U (solid) that lies closest to some
given point p ∈ Rd. In this example, U = {B1, B2, B3}.
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tions between sebb0 and dhb for such inputs are based on the following
observation (which is easily proved using the material from page 160 in
the book by Peressini, Sullivan & Uhl [67]).

Lemma 5.11. Let U 6= ∅ be a set of positive balls. Then a point q 6= 0

(which we can always uniquely write as q = −αv with vT v = 1 and
α < 0) is the minimum-norm point in conv(U) if and only if the halfspace
(5.4) is the farthest halfspace in h(U, ∅).

In order to determine mb0(U), we invoke an algorithm for problem
dhb on U∗. If it delivers q = 0, we know mb0(U) = ∅ by Lemma 3.10.
Otherwise, we write q as in the lemma with the result that the halfspace
H from (5.4) is the farthest halfspace in h(U, ∅), equivalently, that H∗ ∈
mb0(U) (Corollary 5.9). Conversely, in order to compute the minimum-
norm point in conv(U), we run an algorithm for sebb0 on U∗. If it
outputs mb0(U∗) = ∅, we have 0 ∈ conv(U∗) by Lemma 3.10, which
is equivalent to 0 ∈ conv(U). If on the other hand D ∈ mb0(U∗) then
D∗ is a farthest halfspace in h(U, ∅) (Corollary 5.9), which by the above
lemma means that we can read the minimum-norm point q ∈ conv(U)
off D∗.

We can also solve sebb for signed balls with an algorithm D for dhb.
For this, assume for the moment that we know the smallest (possibly
negative) ball O ∈ U that is marginally dominated by mb(U). To obtain
mb(U), we find the balls U ′ ⊆ U that shrink to positive balls under sO,
U ′ := {B ∈ U | sO(B) positive}. Since no ball in U \ U ′ contributes to
mb(U) (Lemma 3.6), we have mb(U) = mb(U ′), with sO(U ′) a set of
positive balls. It follows that

sO(mb(U)) = mb(sO(U ′)) = mbcO
(sO(U ′ \ {O})) =: DO,

and so it suffices to compute the latter ball using inversion (Corol-
lary 5.10) and algorithm D. From DO, mb(U) is easily reconstructed
via Corollary 5.5.

As we do not know O in advance, we ‘guess’ it. For each possible
guess O′ ∈ U the above procedure either results in a candidate ball DO′ ,
or D outputs that no such ball exists. Since mb(U) itself appears as a
candidate, it suffices to select the smallest candidate ball that encloses
the input balls U in order to find mb(U).

As long as U is a small set, the at most |U | guesses introduce a
negligible polynomial overhead. For large input sets however, a direct



5.4. Inversion 107

B1
B3

B2

c′

cq

D

Figure 5.8. The center c of the miniball of U = {B1, B2, B3} is not
the point q in conv({cB1

, cB2
, cB3

}) (gray) closest to the center c′ of the
circumball D of U ; the dotted line constitutes the centers of all balls to
which both B1 and B2 are internally tangent.

application of the reduction leads to an unnecessarily slow algorithm.
Thus, it pays off to run algorithm msw and use the reduction for the
small cases only (where |U | ≤ d+ 2).

Finally, we note that it is well-known [32, 70] that small instances of
the sebp problem can be reduced to the problem dhp of finding the dis-
tance from a given point to the convex hull of a pointset P , together with
the point in conv(P ) where this distance is attained. (Again, algorithm
msw can be used to handle large instances of dhp, once small cases can
be dealt with.) The reduction is based on the following fact [69], which
holds for points but is not true in general for balls (see Fig. 5.8).

Lemma 5.12. Let P ⊂ Rd be an affinely independent pointset with
circumcenter c′. The center of the ball mb(P ) is the point in conv(P )
with minimal distance to c′.

Proof. Let C be the (d× |P |)-matrix holding as columns the Euclidean
centers of P . By Corollary 3.16, the center c of mb(P ) fulfills c = Cx̃,
where x̃ is an optimal solution to the program Q(P, ∅) from p. 62.

Translate all points such that the origin of the coordinate system coin-
cides with c′. By definition of the circumcenter we then have

∑

p∈P p
T pxp =

ρ′2, where ρ′ is the radius of the circumball. Thus, the objective function
simplifies to xTCTCx− ρ′2, and from this the claim follows.
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The miniball of d + 2 points (recall that this is what we need for
algorithm msw) can thus be found by solving d + 2 instances of dhp,
one for every subset of d + 1 points.—We point out that this reduction
is entirely different from the reductions for the balls case.

5.5 Small cases

We have shown in Sec. 5.3 that problem sebb can be reduced to the
problem sebb0 of computing mb0(T ), for T some set of signed balls,
|T | ≤ d + 1. Using the fact that we now have the origin fixed on
the boundary we can improve over the previous complete enumeration
approach, by using inversion and the concept of unique sink orienta-
tions [85].

In the sequel, we assume that T is a set of signed balls with linearly
independent centers,3 no ball in T containing the origin. The latter
assumption is satisfied in our application, where mb0(T ) is needed only
during the basis computation of algorithm msw (Fig. 2.3). The linear
independence assumption is no loss of generality, because we can embed
the balls into Rd+1 and symbolically perturb them; in fact, this is easy
if T comes from the set V during the basis computation basis(V,B) of
the algorithm msw (see Sec. 5.5.2)

Our method for finding mb0(T ) computes as intermediate steps balls
of the form

mb0(U, V ) = mb(U ∪ {0}, V ∪ {0}),
for V ⊆ U ⊆ T . One obstacle we have to overcome for this is the
possible nonexistence of mb0(U, V ): take for instance a positive ball B
not containing the origin, place a positive ball B′ into conv(B∪{0}), and
set U = {B,B′} and V = {B′}. (Such a configuration may turn up in our
application.) Our solution employs the inversion transform: it defines
for all pairs (U, V ) a ‘generalized ball’ gmb0(U, V ) which coincides with
mb0(U, V ) if the latter exists.

Performing inversion as described in the previous section gives us
|T | ≤ d balls T ∗ with centers dB and radii σB , B ∈ T , as in (5.6). The
latter equation also shows that the dB are linearly independent. The
following lemma is then an easy consequence of previous considerations.

3For this, we interpret the centers as vectors, which is quite natural because of
the translation employed in the reduction from sebbp to sebb0.
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Lemma 5.13. For given V ⊆ U ⊆ T with U 6= ∅, consider the following
(nonconvex) optimization problem in the variables v ∈ Rd, α ∈ R.

P0(U, V ) lexmin (vT v, α),
subject to vT dB + α ≥ σB, B ∈ U \ V,

vT dB + α = σB, B ∈ V,
vT v ≥ 1.

Then the following two statements hold.

(i) P0(U, V ) has a unique optimal solution (ṽ, α̃).

(ii) Let H = {x ∈ Rd | ṽTx + α̃ ≥ 0} be the halfspace defined by
the optimal solution (ṽ, α̃). Then H∗ ∈ mb0(U, V ) if and only if
ṽT ṽ = 1 and α̃ < 0.

Proof. (i) If we can show that P0(U, V ) has a feasible solution then it
also has an optimal solution, again using a compactness argument (this
requires U 6= ∅). To construct a feasible solution, we first observe that
by linear independence of the dB , the system of equations

vT dB + α = σB , B ∈ U,

has a solution v for any given α; moreover, if we choose α large enough,
any corresponding v must satisfy vT v ≥ 1, in which case (v, α) is a
feasible solution.

To prove the uniqueness of the optimal solution, we again invoke
linear independence of the dB and derive the existence of a vector w
(which we call an unbounded direction) such that

wT dB = 1, B ∈ U. (5.10)

Now assume that P0(U, V ) has two distinct optimal solutions (ṽ1, α̃),
(ṽ2, α̃) with ṽT

1 ṽ1 = ṽT
2 ṽ2 = δ ≥ 1. Consider any proper convex com-

bination v of ṽ1 and ṽ2; v satisfies vT v < δ. Then there is a suitable
positive constant Θ such that (v + Θw)T (v + Θw) = δ, and hence the
pair (v + Θw, α̃− Θ) is a feasible solution for P0(U, V ), a contradiction
to lexicographic minimality of the initial solutions.

(ii) Under ṽT ṽ = 1, this is equivalent to the statement of Corol-
lary 5.10.
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B1 B2

gmb0(V, V )

B∗
1 B∗

2

fh(V, V )

Figure 5.9. Two balls V = {B1, B2} (left) and their images under
inversion (right). In this example, the value (ṽ, α̃) of (V, V ) has α̃ = 0,
in which case the ‘generalized ball’ gmb0(V, V ) is a halfspace.

In particular, part (i) of the lemma implies that the set mb0(U, V )
contains at most one ball in our scenario, i.e., whenever the balls in U do
not contain the origin and have linearly independent centers. Moreover,
even if mb0(U, V ) = ∅, program P0(U, V ) has a unique optimal solution,
and we call it the value of (U, V ).

Definition 5.14. For U ⊇ V with U 6= ∅, the value of (U, V ), denoted
by val(U, V ), is the unique optimal solution (ṽ, α̃) of program P0(U, V ),
and we define val(∅, ∅) := (0,−∞). Moreover, we call the halfspace

fh(U, V ) := {x ∈ Rd | ṽTx+ α̃ ≥ 0},

the farthest (dual) halfspace of (U, V ). In particular, fh(∅, ∅) = ∅.

The farthest halfspace of (U, V ) has a meaningful geometric inter-
pretation even if mb0(U, V ) = ∅. If the value (ṽ, α̃) of (U, V ) satisfies
ṽT ṽ = 1, we already know that fh(U, V ) dominates the balls in U∗ and
marginally dominates the balls in V ∗, see Eq. (5.7). If on the other hand
ṽT ṽ > 1, it is easy to see that the halfspace fh(U, V ) dominates the
scaled balls

B(dB , σB/
√
τ) with τ := ṽT ṽ, (5.11)

for B ∈ U , and marginally dominates the scaled versions of the balls
in V ∗ (divide the linear constraints of program P0(U, V ) by

√
τ to see

this). For an interpretation of fh(U, V ) in the primal, we associate to
the pair (U, V ) the ‘generalized ball’

gmb0(U, V ) := fh(U, V )∗,
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B1

B2

gmb0(V, V )

B∗
1

B∗
2

fh(V, V )

Figure 5.10. Two positive balls V = {B1, B2} (left) and their images
under inversion (right). The value (ṽ, α̃) of (V, V ) has ṽT ṽ > 1 and the
‘generalized ball’ gmb0(V, V ) is not tangent to the balls in V.

B1

B2

gmb0(V, V )

B∗
1

B∗
2

fh(V, V )

Figure 5.11. Two positive balls V = {B1, B2} (left) and their images
under inversion (right). In this case, the value (ṽ, α̃) has ṽT ṽ = 1 but
α̃ > 0, i.e., the balls do not admit a ball mb0(V, V ). Still, all balls V are
‘internally’ tangent to the ‘generalized ball’ gmb0(V, V ).

B′
1

B′
2

fh(V, V )

Figure 5.12. The scaled balls {B′
1, B

′
2}, obtained from the balls

V ∗ = {B∗
1 , B

∗
2} in Fig. 5.10 by scaling their radii with 1/

√
τ , τ = ṽT ṽ,

are marginally dominated by fh(V, V ).
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which in general need not be a ball, as we will see. However, in the
geometrically interesting case when the set mb0(U, V ) is nonempty, it
follows from Lemma 5.13(ii) that gmb0(U, V ) = mb0(U, V ). Recall that
this occurs precisely if the value (ṽ, α̃) of the pair (U, V ) fulfills ṽT ṽ = 1
and α̃ < 0.

In general, gmb0(U, V ) can be a ball, the complement of an open
ball, or a halfspace. In case α̃ > 0, the halfspace fh(U, V ) contains the
origin, and gmb0(U, V ) hence is the complement of an open ball through
the origin. If α̃ = 0 then fh(U, V ) goes through the origin, and inversion
does not provide us with a ball gmb0(U, V ) but with a halfspace instead
(Fig. 5.9). We remark that if ṽT ṽ > 1, gmb0(U, V ) will not even be
tangent to the proper balls in V (Fig. 5.10).

In Fig. 5.11, the inverted balls V ∗ do not admit a dominating half-
space that avoids the origin. Hence program P0(V, V ) has no solution,
implying mb0(V, V ) = ∅. In order to obtain gmb0(V, V ), we have to
solve program P0(V, V ). For this, we observe that the balls V ∗ admit
two tangent hyperplanes, i.e., there are two halfspaces, parameterized
by v and α, which satisfy the equality constraints of P0(V, V ) with
vT v = 1. Since the program in this case minimizes the distance to
the halfspace, fh(V, V ) is the enclosing halfspace corresponding to the
‘upper’ hyperplane in the figure (painted in gray). Since it contains the
origin, gmb0(V, V ) is the complement of a ball. Finally, Fig. 5.12 de-
picts the scaled versions (5.11) of the balls V ∗ from Fig. 5.10. Indeed,
fh(V, V ) marginally dominates these balls. (Since scaled balls do not
invert to scaled balls in general—the centers may move—the situation is
more complicated in the primal.)

We now investigate program P0(U, V ) further. Although it is not
a convex program, it turns out to be equivalent to one of two related
convex programs. Program C′

0
(U, V ) below finds the lowest point in a

cylinder, subject to linear (in)equality constraints. In case it is infeasible
(which will be the case if and only if mb0(U, V ) = ∅), the other program
C0(U, V ) applies in which case the cylinder is allowed to enlarge until
the feasible region becomes nonempty.

Lemma 5.15. Let (ṽ, α̃) be the optimal solution to P0(U, V ), for U 6= ∅,
and let γ be the minimum value of the convex quadratic program

C0(U, V ) minimize vT v
subject to vT dB + α ≥ σB , B ∈ U \ V,

vT dB + α = σB , B ∈ V.
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Then the following three statements hold.

(i) Program C0(U, V ) has a unique optimal solution, provided V 6= ∅.

(ii) If γ ≥ 1 then (ṽ, α̃) is the unique optimal solution to C0(U, V ).

(iii) If γ ≤ 1 then ṽT ṽ = 1 and (ṽ, α̃) is the unique optimal solution to
the convex program

C′
0
(U, V ) minimize α

subject to vT dB + α ≥ σB, B ∈ U \ V,
vT dB + α = σB, B ∈ V,
vT v ≤ 1.

Also, C0(U, V ) is strictly feasible (i.e., feasible values exist that satisfy
all inequality constraints with strict inequality). If γ < 1, C′

0
(U, V ) is

strictly feasible, too.

Proof. (i) A compactness argument shows that some optimal solution
exists. Moreover, C0(U, V ) has a unique optimal vector ṽ′ because any
proper convex combination of two different optimal vectors would still be
feasible with smaller objective function value. The optimal ṽ′ uniquely
determines α because C0(U, V ) has at least one equality constraint.
(ii) Under γ ≥ 1, (ṽ, α̃) is an optimal solution to C0(U, V ). By (i) it
is the unique one because γ ≥ 1 implies V 6= ∅. (iii) Under γ ≤ 1,
C′
0
(U, V ) is feasible and a compactness argument shows that an opti-

mal solution (ṽ′, α̃′) exists. Using the unbounded direction (5.10) again,
ṽ′T ṽ′ = 1 and the uniqueness of the optimal solution can be established.
Because (ṽ′, α̃′) is feasible for P0(U, V ), we have ṽT ṽ = 1, and from
lexicographic minimality of (ṽ, α̃), it follows that (ṽ, α̃) = (ṽ′, α̃′).

To see strict feasibility of C′
0
(U, V ), first note that γ < 1 implies the

existence of a feasible pair (v, α) for which vT v < 1. Linear independence
of the dB yields a vector w such that

wT dB =

{

1, B ∈ U \ V,
0, B ∈ V.

For sufficiently small Θ > 0, the pair (v + Θw,α) is strictly feasible for
C′
0
(U, V ). Strict feasibility of C0(U, V ) follows by an even simpler proof

along these lines.
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This shows that given the minimum value γ of C0(U, V ), the solution
of P0(U, V ) can be read off C0(U, V ) (in case γ ≥ 1) or C′

0
(U, V ) (in case

γ ≤ 1). To characterize the optimal solutions of the latter programs we
invoke the following version of the Karush-Kuhn-Tucker Theorem which
is a specialization of Theorems 5.3.1 and 4.3.8 (with Slater’s constraint
qualification) in Bazaraa, Sherali & Shetty’s book [5].

Theorem 5.16. Let f, g1, . . . , gm be differentiable convex functions, let
a1, . . . , aℓ ∈ Rn be linearly independent vectors, and let β1, . . . , βℓ be real
numbers. Consider the optimization problem

minimize f(x),
subject to gi(x) ≤ 0, i = 1, . . . ,m,

aT
i x = βi, i = 1, . . . , ℓ.

(5.12)

(i) If x̃ is an optimal solution to (5.12) and if there exists a vector ỹ
such that

gi(ỹ) < 0, i = 1, . . . ,m,
aT

i ỹ = βi, i = 1, . . . , ℓ,

then there are real numbers µ1, . . . , µm and λ1, . . . , λℓ such that

µi ≥ 0, i = 1, . . . ,m, (5.13)

µigi(x̃) = 0, i = 1, . . . ,m, (5.14)

∇f(x̃) +
m

∑

i=1

µi∇gi(x̃) +
ℓ

∑

i=1

λiai = 0. (5.15)

(ii) Conversely, if x̃ is a feasible solution to program (5.12) such that
numbers satisfying (5.13), (5.14) and (5.15) exist then x̃ is an
optimal solution to (5.12).

Applied to our two programs, we obtain the following optimality
conditions.

Lemma 5.17. Let V ⊆ U ⊆ T .

(i) A feasible solution (ṽ, α̃) for C0(U, V ) is optimal if and only if there
exist real numbers λB, B ∈ U , such that

λB ≥ 0, B ∈ U \ V
λB(ṽT dB + α̃− σB) = 0, B ∈ U \ V,

∑

B∈U λBdB = ṽ, (5.16)
∑

B∈U λB = 0. (5.17)
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(ii) A feasible solution (ṽ, α̃) to C′
0
(U, V ) satisfying ṽT ṽ = 1 is optimal

if there exist real numbers λB, B ∈ U , such that

λB ≥ 0, B ∈ U \ V (5.18)

λB(ṽT dB + α̃− σB) = 0, B ∈ U \ V, (5.19)
∑

B∈U λBdB = ṽ, (5.20)
∑

B∈U λB > 0. (5.21)

Conversely, if (ṽ, α̃) is an optimal solution to C′
0
(U, V ), and if

C′
0
(U, V ) is strictly feasible (which in particular is the case if the

minimum value γ of program C0(U, V ) fulfills γ < 1) then there
exist real numbers λB, B ∈ U , such that (5.18), (5.19), (5.20) and
(5.21) hold.

In both cases, the λB are uniquely determined by ṽ via linear indepen-
dence of the dB.

Unifying these characterizations, we obtain necessary and sufficient
optimality conditions for the nonconvex program P0(U, V ).

Theorem 5.18. A feasible solution (ṽ, α̃) for program P0(U, V ) is op-
timal if and only if there exist real numbers λB, B ∈ U , with µ :=
∑

B∈U λB such that

λB ≥ 0, B ∈ U \ V,
µ ≥ 0,

λB (ṽT dB + α̃− σB) = 0, B ∈ U \ V,
µ (ṽT ṽ − 1) = 0, (5.22)

∑

B∈U λBdB = ṽ.

Proof. The direction (⇒) follows through Lemmata 5.15 and 5.17, so it
remains to settle (⇐). For this, we distinguish two cases, depending on
the minimum value γ of program C0(U, V ).

Consider the case γ < 1 first. If
∑

B∈U λB = 0 then Lemma 5.17(i)
shows that (ṽ, α̃), which is clearly feasible for C0(U, V ), is optimal to
C0(U, V ); hence γ = ṽT ṽ ≥ 1, a contradiction. Thus

∑

B∈U λB > 0,
which by (5.22) implies ṽT ṽ = 1. So (ṽ, α̃) is feasible and optimal to
C′
0
(U, V ) (Lemma 5.17(ii)), which together with Lemma 5.15(iii) estab-

lishes the claim.
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In case γ ≥ 1 the argument is as follows. If
∑

B∈U λB = 0 holds,
the Lemmata 5.17(i) and 5.15(ii) certify that the solution (ṽ, α̃) is op-
timal to program P0(U, V ). If on the other hand

∑

B∈U λB > 0 then
ṽT ṽ = 1 by (5.22), and this shows γ = 1 because (ṽ, α̃) is feasible for pro-
gram C0(U, V ). Consequently, (ṽ, α̃) is feasible and optimal to C′

0
(U, V )

(through Lemma 5.17(ii)) and hence optimal to program P0(U, V ) by
Lemma 5.15(iii) and γ = 1.

As promised, we can state a version of Welzl’s Lemma [86]. We
prepare this by presenting the statement in the dual space, i.e., in terms
of values of pairs (U, V ) and associated halfspaces fh(U, V ).

Lemma 5.19. Let V ⊆ U ⊆ T and B ∈ U \ V . Denote by (ṽ, α̃) the
value of the pair (U \ {B}, V ). Then

val(U, V ) =

{

val(U \ {B}, V ), if ṽT dB + α̃ ≥ σB,
val(U, V ∪ {B}), otherwise.

As the value of a pair uniquely determines its associated farthest
halfspace, the lemma holds also for farthest halfspaces (i.e., if we replace
‘val’ by ‘fh’ in the lemma). In this case, we obtain the following geomet-
ric interpretation. The halfspace fh(U, V ) coincides with the halfspace
fh(U \ {B}, V ) if the latter dominates the scaled version (5.11) of ball
B∗, and equals the halfspace fh(U, V ∪ {B}) otherwise.

Proof. The case U = {B} is easily checked directly, so assume |U | > 1.
If ṽT dB + α̃ ≥ σB then (ṽ, α̃) is feasible and hence optimal to the more
restricted problem P0(U, V ), and val(U, V ) = val(U \ {B}, V ) follows.
Otherwise, the value (ṽ′, α̃′) of (U, V ) is different from (ṽ, α̃). Now con-
sider the coefficient λ′B resulting from the application of Theorem 5.18 to
(ṽ′, α̃′). We must have λ′B 6= 0, because Theorem 5.18 would otherwise
certify that (ṽ′, α̃′) = val(U \ {B}, V ). This, however, implies that

ṽ′T dB + α̃′ = σB,

from which we conclude val(U, V ) = val(U, V ∪ {B}).

Here is the fix for Dilemma 5.1 in the case when the input ball centers
are affinely independent.
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Lemma 5.20. Let V ⊆ U , where U is any set of signed balls with affinely
independent centers, and assume mb(U, V ) 6= ∅. Then the sets mb(U, V )
and mb(U \ {B}, V ) are singletons, for any B ∈ U \ V . Moreover, if no
ball in V is dominated by another ball in U , and if

B is not dominated by mb(U \ {B}, V ), (5.23)

for some B ∈ U \ V , then mb(U, V ) = mb(U, V ∪ {B}), and B is not
dominated by another ball in U , either.

It easily follows by induction that Welzl’s algorithm sebb (Fig. 5.1,
with the test ‘B 6⊆ D’ replaced by ‘B not dominated by D’) computes
mb(U) for a set of signed balls, provided the centers of the input balls are
affinely independent (a perturbed embedding into R|U |−1 always accom-
plishes this). No other preconditions are required; in particular, balls
can overlap in an arbitrary fashion.

Proof. For V = ∅, this is Lemma 3.6, with the obvious generalization
to signed balls (refer to the discussion after Corollary 5.5). For all V ,
transitivity of the dominance relation shows that if B is not dominated
by mb(U \ {B}, V ), it cannot be dominated by a ball in U \ {B}, either.

In case V 6= ∅, we fix any ball O ∈ V and may assume—after a
suitable translation and a shrinking step—that O = 0; Eq. (5.23) is not
affected by this. Moreover, we can assume that O does not dominate
any other (negative) ball in U \V : such a ball can be removed from con-
sideration (and added back later), without affecting the miniball (here,
we again use transitivity of dominance).

Then, no ball in U contains O = 0, and the centers of the balls

U ′ = U \ {O}

are linearly independent. Under (5.23), we have B ∈ U ′. Therefore, we
can apply our previous machinery. Setting

V ′ = V \ {O},

Lemma 5.13 yields that the two sets mb(U, V ) = mb0(U ′, V ′) and mb(U\
{B}, V ) = mb0(U ′ \ {B}, V ′) contain at most one ball each. Also, the
assumption mb(U, V ) 6= ∅ implies mb(U \ {B}, V ) 6= ∅ (this is easily
verified using the program in Lemma 5.13). Consequently, the ball sets
are singletons.
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Now let (ṽ, α̃) be the value of the pair (U ′ \ {B}, V ′). As mb0(U ′ \
{B}, V ′) 6= ∅, we have ṽT ṽ = 1 (Lemma 5.13). Then, Lemma 5.7 shows
that B is not dominated by the ball mb0(U ′ \ {B}, V ′) if and only if
ṽT dB + α̃ < σB holds, for dB , σB being center and radius of the inverted
ball B∗. Lemma 5.19 in turn implies

val(U ′, V ′) = val(U ′, V ′ ∪ {B}), (5.24)

and from this, fh(U ′, V ′) = fh(U ′, V ′∪{B}) along with gmb0(U ′, V ′) =
gmb0(U ′, V ′∪{B}) follows. By assumption, the former ‘generalized ball’
coincides with mb0(U ′, V ′), from which it follows that the value (ṽ′, α̃′)
of (U ′, V ′) fulfills ṽ′T ṽ′ = 1 and α̃′ < 0 (Lemma 5.13). By (5.24), this
shows that gmb0(U ′, V ′ ∪ {B}) = mb0(U ′, V ′ ∪ {B}), which establishes
the lemma.

5.5.1 The unique sink orientation

In this last part we want to use the results developed so far to reduce
the problem of finding mb0(T ) to the problem of finding the sink in a
unique sink orientation. To this end, we begin with a brief recapitulation
of unique sink orientations and proceed with the presentation of our
orientation.

As in the previous subsection, we consider a set T of m ≤ d balls such
that the centers of T are linearly independent and such that no ball in T
contains the origin. Consider the m-dimensional cube. Its vertices can
be identified with the subsets J ⊆ T ; faces of the cube then correspond
to intervals [V,U ] := {J | V ⊆ J ⊆ U}, where V ⊆ U ⊆ T . We consider
the cube graph

G = (2T , {{J, J ⊕ {B}} | J ∈ 2T , B ∈ T}),

where ⊕ denotes symmetric difference. An orientation O of the edges
of G is called a unique sink orientation (USO) if for any nonempty face
[V,U ], the subgraph of G induced by the vertices of [V,U ] has a unique
sink w.r.t. O [85].

As before, we write dB and σB for the center and radius of the in-
verted balls B∗ ∈ T ∗, see (5.6). The following is the main result of this
section.
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Theorem 5.21. Let f be the objective function of program P0(T, ∅).
Then the pair (T,≤lex,val) with the total order

val(U ′, V ′) ≤ val(U, V ) ⇔ f(val(U ′, V ′)) ≤lex f(val(U, V )),

is a reducible strong LP-type problem.

Observe that the image of the function f is R×R∪{∞}; the lexico-
graphical order ≤lex is a total order on this set.

Proof. Monotonicity of w is clearly satisfied because dropping a con-
straint cannot degrade the objective value. Upper and lower uniqueness
are implied by the fact that ≤lex is a total order on the image of w, and
reducibility follows from Lemma 5.19. Thus, it remains to prove that w
satisfies strong locality.

So suppose (ṽ, α̃) := val(U ′, V ′) = val(U, V ) for sets V ′ ⊆ U ′ and
V ⊆ U . The case α̃ = ∞ (which implies U ′ = V ′ = U = V = ∅) is easily
checked directly, so we can assume U ′ 6= ∅ and U 6= ∅, which allows us to
make use of Theorem 5.18. Observe first that (ṽ, α̃) is a feasible solution
to the programs P0(U ′ ∩ U, V ′ ∩ V ) and P0(U ′ ∪ U, V ′ ∪ V ). Given
this, we verify optimality by means of the unique Karush-Kuhn-Tucker
multipliers λB , B ∈ T , that come with (ṽ, α̃) (Theorem 5.18). As (ṽ, α̃)
optimally solves P0(U ′, V ′) and P0(U, V ), we must have

λB = 0, B 6∈ U ′ ∩ U,
λB ≥ 0, B ∈ (U ′ ∪ U) \ (V ′ ∩ V ),

λB (ṽT dB + α̃− σB) = 0, B ∈ (U ′ ∪ U) \ (V ′ ∩ V ),

from which its follows via Theorem 5.18 again that (ṽ, λ̃) optimally solves
P0(U ′∩U, V ′∩V ) and P0(U ′∪U, V ′∪V ). Hence, (ṽ, λ̃) equals val(U ′∩
U, V ′ ∩ V ) = val(U ′ ∪ U, V ′ ∪ V ).

As a strong LP-type problem, (T,≤lex,val) induces an orientation
on the cube C [T,∅] that satisfies the unique sink property. More precisely,
Theorem 2.22 from Chap. 2 yields

Corollary 5.22. Consider the orientation O of C [T,∅] defined by

J → J ∪ {B} :⇔ val(J, J) 6= val(J ∪ {B}, J). (5.25)

Then O is a USO, and the sink S of O is a strong basis of T , meaning
that S is inclusion-minimal with val(S, S) = val(T, ∅).



120 Chapter 5. Smallest enclosing balls of balls

B1

B2
B1

B2

∅

{B1}
{B2}

{B1, B2}

(a) (b) (c)

Figure 5.13. The USO (c) from Corollary 5.22 for a set T = {B1, B2}
of two circles (a). A vertex J ⊆ T of the cube corresponds to the solution
val(J, J) of program P0(J, J) and represents a halfspace fh(J, J) in the
dual (b) and the ball gmb0(J, J) (gray) in the primal (a).

Specialized to the case of points, this result is already known [40];
however, our proof removes the general position assumption.

In terms of halfspaces fh(U, V ), we can interpret this geometrically
as follows. The edge {J, J∪{B}} is directed towards the larger set if and
only if the halfspace fh(J, J) does not dominate the scaled version (5.11)
of ball B∗. Figure 5.13 illustrates the theorem for a set T of two circles.
A vertex J ⊆ T of the cube in part (c) of the figure corresponds to the so-
lution val(J, J) of program P0(J, J) and represents a halfspace fh(J, J)
in the dual (part (b) of the figure) and the ball gmb0(J, J) shown in
gray in the primal (part (a) of the figure). Every edge {J, J ∪ {B}} of
the cube is oriented towards J ∪{B} if and only if the halfspace fh(J, J)
does not dominate the scaled version of B∗ (which in this example is
B∗ itself). The global sink S in the resulting orientation corresponds
to the inclusion-minimal subset S with val(S, S) = val(T, ∅). For the
definition of the USO, the halfspace fh(T, T ) is irrelevant, and since
fh(∅, ∅) does not dominate any ball, all edges incident to ∅ are outgoing
(therefore, the figure does not show these halfspaces).

Solution via USO-framework. In order to apply USO-algorithms [85] to
find the sink of our orientation O, we have to evaluate the orientation
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of an edge {J, J ∪ {B}}, i.e., we must check

val(J, J) 6= val(J ∪ {B}, J). (5.26)

If J = ∅, this condition is always satisfied. Otherwise, we first solve
program C0(J, J), which is easy: by the Karush-Kuhn-Tucker conditions
from Lemma 5.17(i), it suffices to solve the linear system consisting of
the Eqs. (5.16), (5.17), and the feasibility constraints vT dB + α = σB,
B ∈ J . We know that this system is regular because the optimal solution
is unique and uniquely determines the Karush-Kuhn-Tucker multipliers.

If the solution (ṽ, α̃) satisfies ṽT ṽ ≥ 1, we have already found the
value (ṽ, α̃) of (J, J) (Lemma 5.15(i)), and we simply check whether

ṽT dB + α̃ < σB , (5.27)

a condition equivalent to (5.26). If ṽT ṽ < 1, we solve C′
0
(J, J), which we

can do by reusing the solution of C0(J, J) as the follow lemma, developed
by Geigenfeind [41] in a semester thesis, shows.

Lemma 5.23. Let (ṽ, α̃) with ṽT ṽ < 1 be the optimal solution to C0(J, J),
and let x be the (unique) solution to

DTDx = 1,

where the matrix D contains the points dB, B ∈ J , as its columns. Then
the point (ṽ′, α̃′) := (ṽ + Θw, α̃− Θ) with

w = Dx and Θ =

√

1 − ṽT ṽ

wTw
> 0

is the optimal solution to program C′
0
(J, J).

Proof. By Lemma 5.17(ii), it suffices to show that the point (ṽ′, α̃′) is
feasible (i.e., DT ṽ′ + α̃′1 = σ and ṽ′T ṽ′ = 1) and that there are real
numbers λ′ such that 1Tλ′ > 0 and ṽ′ = Dλ′.

Something we need for both these parts is the identity ṽTw = 0; so
let us settle this first. As the optimal solution to C0(J, J), the pair (ṽ, α̃)
satisfies Dλ = ṽ and 1Tλ = 0 for some real vector λ (Lemma 5.17(i)).
It follows that

ṽTw = λTDTDx = λT 1 = 0.
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With this at hand, the choice of Θ implies

ṽ′T ṽ′ = ṽT ṽ + Θ2wTw = ṽT ṽ +
1 − ṽT ṽ

wTw
wTw = 1

and using DTw = 1,

DT ṽ′ + α̃′1 = DT ṽ + α̃1 + ΘDTw − Θ1 = DT ṽ + α̃1 = s;

these two equations together show feasibility. As to optimality, we take
ṽ′ = ṽ + Θw = Dλ + ΘDx as a motivation for setting λ′ := λ + Θx.
Indeed, this implies

1Tλ′ = 1Tλ+ Θ1Tx = 0 + ΘxTDTDx = ΘwTw > 0,

as desired.

Equation (5.26) gives an easy way to evaluate the orientation of the
upward edge {J, J ∪ {B}}, given the value of (J, J). We note that the
orientation of the downward edge {J, J\{B}} can be read off the Karush-
Kuhn-Tucker multiplier λB associated with val(J, J): orient from J \
{B} towards J if and only if λB > 0.

Lemma 5.24. Let B ∈ J ⊆ T . The multiplier λB of val(J, J) is strictly
positive if and only if

val(J \ {B}, J \ {B}) 6= val(J, J \ {B}), (5.28)

i.e., we orient the edge from J \ {i} towards J if and only if λB > 0.

Proof. By Lemma 5.5, val(J, J) equals val(J, J \ {i}) if and only if
λi ≥ 0. With this at hand, we distinguish three cases. If λi < 0,
Lemma 5.19 guarantees that

val(J, J \ {i}) ∈ {val(J \ {i}, J \ {i}),val(J, J)}.

So if λi < 0, or, equivalently, val(J, J) 6= val(J, J \{i}), then Eq. (5.28)
must be false.

If λi = 0, we have val(J, J) = val(J, J \ {i}) and via λi = 0 and
Theorem 5.18, the latter clearly equals val(J \ {i}, J \ {i}).

Finally, also in case λi > 0 we have val(J, J) = val(J, J \ {i}), but
an invocation of Theorem 5.18 shows that val(J, J \ {i}) and val(J \
{i}, J \ {i}) cannot be equal.
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With the currently best known USO algorithm (Theorem 2.13) we
can find the sink of an m-dimensional USO with an expected number
of O(cm) vertex evaluations, where c ≈ 1.438. Since in our case a ver-
tex evaluation (determine the orientations of all edges incident to some
vertex) essentially requires to solve one system of linear equations, we
obtain an expected running time of O(d3cm) to solve problem sebb0 for
a set of m ≤ d signed balls (and by invoking Theorem 5.6, we can also
solve the general problem).

5.5.2 Symbolic perturbation

In this final section we show how the unique sink orientation from Corol-
lary 5.22 can be implemented efficiently in practice. Until now, the
theorem only applies under the assumption that the signed input balls
have linearly independent centers and no ball contains the origin. While
this can always be achieved in theory via an embedding into R|T | and a
subsequent symbolic perturbation à la [24], doing so in practice results
in an unnecessarily complicated and inefficient procedure.—As we will
argue, the unique sink orientation from Corollary 5.22 is in fact nicely
tailored to our main application, the solution of the basis computation
in algorithm msw.

Let us briefly recapitulate the situation here. Our goal is to imple-
ment the basis computation of algorithm msw for problem sebb. That
is, we need to compute a basis of Vin ∪ {D}, where Vin is a set of signed
balls in Rd forming a basis, and where D is a ball violating the basis
(i.e., not dominated by mb(Vin)). Through Lemma 3.6 we already know
that the ball D will be part of the new basis. Consequently, it suffices
to find an inclusion-minimal subset V ′ ⊆ Vin such that

mb(V ′ ∪ {D}, {D}) = mb(Vin ∪ {D}, {D}).

By Corollary 5.5, this is equivalent to mbcD
(sD(V ′)) = mbcD

(sD(Vin)).
Therefore, we translate all balls such that the center of D coincides
with the origin and shrink them by the radius of D. (Notice that at
this point the centers cB , B ∈ sD(Vin), are still affinely independent by
Lemma 3.8.) After inverting the shrunken balls V := sD(Vin), we end
up with at most d+ 1 balls of centers dB and radii σB , B ∈ V . (Notice
that the shrunken D is not ‘present’ anymore after inversion, i.e., it is
not among the balls V .)
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Lemma 5.25. Let V be a set of signed balls forming a basis, and denote
by dB the inverted center of ball B ∈ V , see Eq. (5.6). If no ball in V
contains the origin then the points

d′B := (dB , ǫ/γB), B ∈ V, (5.29)

where γB := c2B − ρ2
B, are linearly independent for all ǫ > 0.

Proof. Write V = {B1, . . . , Bn}. Since the centers of the balls in V are
affinely independent (Lemma 3.8), the matrix

[

c1 · · · cn
1 · · · 1

]

has full rank, i.e., its columns are linearly independent. This does not
change if we multiply some of the rows and columns of the matrix by
nonzero constants. Therefore, the matrix

[ cB1

c2

B1
−ρ2

B1

· · · cBn

c2

Bn
−ρ2

Bn
ǫ

c2

B1
−ρ2

B1

· · · ǫ
c2

Bn
−ρ2

Bn

]

has linearly independent columns, too. And as dBi
= cBi

/(c2Bi
− ρ2

Bi
)

for all i, these columns precisely coincide with the d′Bi
and the claim

follows.

The lemma suggest the following approach. Instead of directly taking
the balls V ∗ to establish a unique sink orientation—which we cannot
always do for possible lack of general position—we take the balls

T ∗
ǫ := {B(d′B , σB)) | B ∈ V };

the lemma shows that for any ǫ > 0 they fulfill the general position
assumption of Corollary 5.22,4 and thus the machinery from the previous
section applies. In particular, we obtain a unique sink orientation for
every ǫ > 0, and for every such ǫ, a USO-algorithm delivers a basis of
mb0((T ∗

ǫ )∗) = mb0(Tǫ) to us. The next lemma proves that this basis
does not change if we let (a small enough) ǫ go to zero. And as the
points T0 correspond to our initial pointset V (with the only difference
that the former points are embedded in Rd), a basis of Tǫ is also a basis
of V (and hence of Vin).

4Here, we use (again) the fact that a pointset P is linearly independent if and only
if P ∗ is linearly independent.
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Lemma 5.26. Let Sǫ ⊆ Tǫ be the sink of the USO (5.25) for the balls
Tǫ. Then there exists ǫ∗ > 0 such that Sǫ is constant on (0, ǫ∗).

Proof. In the discussion after Corollary 5.22 up to Lemma 5.23 we have
seen that in order to determine the orientation (5.25) of an edge (J, J ⊕
{B}), it suffices to solve a system of linear equations (into which the d′B ,
B ∈ J , go) and then evaluate the sign of two expressions (one expression
to test if C0(J, J) or C′

0
(J, J) applies and one for the actual test (5.27)).

By (5.29), these expressions are polynomials of bounded degree in ǫ, and
hence Cauchy’s Theorem implies that the signs of these expressions do
not change in a sufficiently small interval (0, ǫ∗).

In practice, it is not necessary to compute the number ǫ∗; the limits
of the involved expressions can easily be derived analytically.

We point out that this tailored symbolic perturbation results in
points dB whose coordinates are linear in ǫ (and we thus only need
degree-one polynomial arithmetic, essentially); a general perturbation
scheme would set d′B := (dB , ǫ

i), resulting in high-degree polynomials.

Also, we remark that in an implementation targeted at rational input,
it might be unfavorable to explicitly perform the inversion of the input
balls: the division in (5.6) forces us to deal with quotients (imposing
an additional restriction on the input (ring) number type) and might
introduce an inadvisable growth in the size of intermediate results. These
issues can be dealt with however, essentially by shifting the division from
the points cD to the coefficients λB of programs C0(J, J) and C′

0
(J, J),

that is, by working with the numbers τB := λB/(c
T
BcB − ρ2

B) instead of
the λB .





Chapter 6

More programs in

subexponential time

In this final part of the thesis, we improve the exponential worst-case
complexity O(d31.438d) obtained in the previous chapter for solving
small instances of sebb to a subexponential bound.

In order to achieve this, we first formulate sebb—actually, the vari-
ant sebb0 of it—as a convex mathematical program P, that is, as the
problem of minimizing a convex function over a convex feasibility do-
main. Next, we develop an abstract optimization problem (see Chap. 2)
with the property that any of its best bases yields an optimal solution
to P. Thus, in order to solve sebb we can run Gärtner’s randomized,
subexponential algorithm (Theorem 2.10) to solve the AOP and with it,
the program P.

Part of the AOP we devise is an improving oracle which Gärtner’s al-
gorithm repeatedly calls, its task being to deliver for a given AOP basis a
better one (in a certain subset of the groundset), if possible. Our method
for realizing this follows an improving path in the feasibility region of
program P. The way we construct this path is inspired by Gärtner &
Schönherr’s method [38, 72] for solving convex quadratic programs. (If
both program in Lemma 5.15 were quadratic, we would use Gärtner &
Schönherr’s method, together with the AOP algorithm, directly.)

Although the main result of this chapter is the subexponential bound
for sebb, we keep the presentation abstract enough so that it applies to

127
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some other convex mathematical programs as well.

6.1 A mathematical program for sebb0

In this section we show that given an instance T of problem sebb0 with
linearly independent ball centers, the desired ball mb0(T ) can be read off
the following mathematical program D(T, ∅) (whose precise definition is
given below).

D(U, V ) minimize 1
4µx

TQTQx+ µ− ∑

B∈T xBσB

subject to
∑

B∈T xB = 1,
xB ≥ 0, B ∈ U \ V,
xB = 0, B ∈ T \ V,
µ ≥ 0.

Using this result and an algorithm A to solve D(U, V ), problem sebb can
then be solved as follows. From Theorem 5.6 we know already that al-
gorithm msw reduces problem sebb over a set of n signed d-dimensional
balls to problem sebb0 over a set of at most d+1 signed balls in Rd (each
of the latter instances corresponds to the input of a basis computation
of msw). Moreover, the findings in Sec. 5.5.2 allow us to enforce linear
independence of the ball centers: the combined embedding and pertur-
bation of Lemma 5.25 produces from the given instance T of sebb0 in
Rd an instance T ′ of sebb0 in Rd+1 whose at most d balls have linearly
independent centers. Consequently, we are in a position to invoke algo-
rithm A on program D(T ′, ∅), and from its solution we derive mb0(T )
using Lemma 5.26.

We remark that Lemma 5.25 produces an instance whose radii and
center coordinates are polynomials from R[ǫ]. Therefore, algorithm A
must (and will) be able to cope with such input.

The program. The program D(U, V ) from above is defined for sets V ⊆
U ⊆ T of input balls, and its variables are the numbers xB ∈ R, B ∈ T ,
and µ ∈ R. The symbol ‘Q’ denotes the (d × |T |)-matrix holding the
scaled centers dB = cB/(c

T
BcB − ρ2

B) from (5.6) as its columns, and the
scalars σB = ρB/(c

T
BcB − ρ2

B) are the similarly scaled radii. For µ = 0
we define the value of objective function of D(U, V ) to be ∞; clearly, the
function is continuous in the interior of the feasibility domain.
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As the following lemma shows, program D(T, ∅) is a convex mathe-
matical program.

Lemma 6.1. The objective function f of program D(U, V ) is convex on
the domain F := {(x, µ) ∈ Rn+1 | µ > 0}. Moreover, f is strictly convex
on F provided the matrix Q has full rank.

Proof. We prove the claim for any f of the form f(x, µ) = xTQtQx/µ+
g(x, µ), where g is a linear function; as convexity is invariant under
scaling by a strictly positive constant, the claim then also holds for the
objective function of program D(U, V ).

To show convexity of f on F , we need to verify that

f((1 − α)s+ αs′) − ((1 − α)f(s) + αf(s′)) ≤ 0 (6.1)

holds for any α ∈ (0, 1) and any points s = (x, µ) and s′ = (x′, µ′) from
the domain F . Denote the left-hand side of (6.1), multiplied by the
number γ := (1 − α)µ + αµ′ > 0, by δ, and write E := QTQ. Using
linearity of g, we obtain

δ = ((1 − α)x+ αx′)TE((1 − α)x+ αx′) −
γ ((1 − α)/µxTEx+ α/µ′x′TEx′)

= (1 − α)2xTEx+ 2α (1 − α)xTEx′ + α2x′TEx′ −
γ ((1 − α)/µxTEx+ α/µ′x′TEx′)

= (1 − α)((1 − α) − γ/µ)xTEx+

2α (1 − α)xTEx′ + α(α− γ/µ′)x′TEx′

= α (α− 1) (µ′/µxTEx− 2xTEx′ + µ/µ′x′TEx′)

= α (α− 1) ‖
√

µ′/µQx−
√

µ/µ′Qx′‖2 ≤ 0. (6.2)

This shows that f is convex. To see that f is strictly convex on F
we verify that (6.2) is in fact fulfilled with strict inequality. Resorting
to the assumption that E is invertible (recall linear independence of
the columns of Q), equality in (6.2) yields

√

µ′/µx =
√

µ/µ′x′. By
multiplying this with 1T from the left, we finally arrive at

√

µ′/µ = 1T
√

µ′/µx = 1T
√

µ/µ′x′ =
√

µ/µ′.

We conclude that µ′ = µ and hence x′ = x.
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We first give KKT conditions for the program D(U, V ) and then show
that a minimizer to D(T, ∅) indeed provides us with mb0(T ).

Lemma 6.2. Let T be a set of balls, and let V ⊆ U ⊆ T with U
nonempty. Then a feasible point (x̃, µ̃) ≥ 0 is optimal to D(U, V ) iff
µ̃ > 0 and there exists a real α̃ such that for ṽ = QU x̃U/(2µ̃) we have

ṽT dB + α̃ ≥ σB , B ∈ U \ V,
ṽT dB + α̃ = σB , B ∈ V,

ṽT ṽ = 1,

x̃B (ṽT dB + α̃− σB) = 0, B ∈ U \ V. (6.3)

If these conditions are met, the objective value of (x̃, µ̃) equals −α̃.

We note that the pair (ṽ, α̃) from the lemma is unique. The vector ṽ is
uniquely defined through (x̃, µ̃), and since the feasible point (x̃, µ̃) fulfills
x̃D > 0 for at least one D ∈ U (recall the constraint

∑

B∈T x̃B = 1),
Eq. (6.3) implies ṽT dD + α̃−σD = 0, which uniquely determines α̃, too.

Proof. If µ̃ = 0 then (x̃, µ̃) cannot be optimal to D(U, V ) because any
solution with µ > 0 has an objective value less than ∞ and is thus better.
Hence, we can assume µ̃ > 0 for the rest of the proof.

As we have just seen, the objective function of program D(U, V ) is
convex over the domain F = {(x, µ) ∈ Rn+1

+ | µ > 0}, and thus we
can invoke the Karush-Kuhn-Tucker Theorem for convex programming
(Theorem 5.16). According to this, a feasible solution (x̃, µ̃) ∈ F is
optimal to D(U, V ) if and only if there exists a real number α̃ and real
numbers δ̃B ≥ 0, B ∈ U , such that x̃B δ̃B = 0 for all B ∈ U , δ̃B = 0 for
all B ∈ V , and

1

2µ̃
dT

BQU x̃U − σB + α̃− δ̃B = 0, B ∈ U, (6.4)

1

4µ̃2
x̃T

UQ
T
UQU x̃U = 1, (6.5)

which are precisely the conditions in the claim.

For the second claim of the lemma, we multiply (6.4) by x̃B and sum
over all B ∈ U . Using

∑

B∈U x̃B = 1, this gives

0 =
1

2µ̃
x̃T

UQ
T
UQU x̃U −

∑

B∈U

x̃BσB + α̃−
∑

B∈U

x̃B δ̃B ,
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where the last sum vanishes. Using µ̃ = x̃T
UQ

T
UQU x̃U/(4µ̃) (which follows

from (6.5)), we see that indeed the objective value of an optimal solution
equals −α̃.

A transformation is now all it needs to obtain the center and radius
of mb0(U, V ) from an optimal solution of D(U, V ).

Corollary 6.3. Let T be a set of balls, centers linearly independent,
and V ⊆ U ⊆ T with U nonempty. If (x̃, µ̃) is a minimizer to program
D(U, V ) with objective value −α̃ then the ball D = B(c, ρ) with

c = −QU x̃U/(4µ̃α̃), ρ = −1/(2α̃),

lies in the set mb0(U, V ).

Proof. The claim follows immediately from Theorem 5.18 by applying
the transformation xB := x̃B/(2µ̃), B ∈ U .

6.2 Overview of the method

The method we are going to use to solve program D(T, ∅) (and hence
the corresponding instance of sebb0) can be generalized to some extent
to other convex programs. We therefore formulate it for the general
mathematical program P(T, ∅) introduced below, and collect on the fly
the properties of P(T, ∅) we require to hold.

So the remainder of this chapter is organized as follows. We first
present the general setup of the method and state the abstract opti-
mization problem which we actually solve. The following section then
discusses how we realize the AOP’s improving oracle. Afterwards, we
will summarize the main result of this chapter (Theorem 6.16) and give
some more applications.

The general setup. The mathematical program P(T, ∅) is defined as
follows for an objective function of the form f : Rn+m → R ∪ {∞} and
functions gi from Rn+m to R, with n = |T | and m ≥ 0.

P(U, V ) minimize f(x, y)
subject to gi(x, y) = 0, i ∈ IE ,

gi(x, y) ≤ 0, i ∈ II ,
xB ≥ 0, B ∈ U \ V,
xB = 0, B ∈ T \ U.

(6.6)
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The variables of the program are the entries of the n-vector x and of the
m-vector y. The two sets V and U , which must satisfy V ⊆ U ⊆ T , select
which of the nonnegativity constraints xB ≥ 0, B ∈ T , are enabled and
which variables xB are set to zero. Each constraint gi ≦ 0 may either be
an equality (iff i ∈ IE) or an inequality (iff i ∈ II), and the sets IE , II
index these constraints.

Given a vector x ∈ Rn and a subset U of T , we use ‘xU ’ to denote
the vector of dimension |U | whose Bth entry, B ∈ T , is xB , B ∈ U . (In
particular, ‘xB ’ denotes the Bth entry of vector x.)

Outline. Our strategy for solving P(T, ∅) is to rephrase the problem as
an abstract optimization problem P (see Sec. 2.3), which we can then
feed to Gärtner’s algorithm from Theorem 2.10. Below, we will explain
the AOP P in detail except that we do not yet state how we realize the
AOP’s improving oracle (which is the trickier part of the method). The
latter will be the subject of Sec. 6.3.

The two main conditions we need to impose on program P(U, V ) in
order for our method to work are uniqueness of the optimal solution and
the existence of a violation test for P(U, ∅).

Condition C1. P(U, ∅) has a unique finite minimizer for all U ⊆ T .

(Refer to page viii for definitions and notation in connection with
mathematical programs.) As every global minimizer is a minimizer, the
minimizer guaranteed by (C1) is the program’s global minimizer.

To state the second condition we define wP(U, V ) to be the optimal
solution of P(U, V ); if the program is infeasible, we set wP(U, V ) := ⋊⋉,
if it is unbounded then wP(U, V ) := −⋊⋉. Also, we order the image of
the function wP by defining for [U ′, V ′], [U, V ] ⊆ 2T that

wP(U ′, V ′) � wP(U, V ) ⇔ f(wP(U ′, V ′)) ≤ f(wP(U, V )),

where we set f(⋊⋉) := ∞ and f(−⋊⋉) := −∞. Clearly, � is a quasiorder
on im(wP). We now impose the following kind of locality.

Condition C2. (T,�, wP(·, ∅)) is an LP-type problem, and there is a
routine violates(B, V, s̃) that for the solution s̃ to P(V, ∅) returns ‘yes’ iff

wP(V ∪ {B}, ∅) ≺ wP(V, ∅),

for B ∈ T ⊇ V . The routine is only called if s̃ minimizes P(V, V ).
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w(∅, ∅)

w({1, 2}, ∅)

x1

x2

Figure 6.1. The contour lines of a convex objective function f : R2 → R

for which program P(T, ∅) does not fulfill locality (C2).

Observe that monotonicity and uniqueness hold, so the first part of
the condition only asks for locality. That is, for all U ′ ⊆ U ⊆ T and B ∈
T with wP(U ′, ∅) = wP(U, ∅), the condition wP(U ∪ {B}, ∅) ≺ wP(U, ∅)
implies wP(U ′ ∪ {B}, ∅) ≺ wP(U ′, ∅). (If wP(U ′, ∅) � wP(U, ∅) holds
for U ′ ⊆ U then wP(U ′, ∅) is not only a solution of the less restricted
program P(U, ∅) but it attains also the latter’s optimal objective value, so
(C1) implies that both solutions coincide. This establishes uniqueness.)

For our main application, the solution of sebb0 via program D(U, V ),
uniqueness (C1) follows from strict convexity (Lemma 6.1) and the fact
that every optimal solution has a strictly positive value of µ. To ver-
ify (C2), we show that (T,≤, wD(·, V )) is an LP-type problem for any
fixed V ⊆ T ; the condition then follows by setting V = ∅. So suppose
wD(U ′, V ) = wD(U, V ) for U ′ ⊆ U and wD(U ∪ {B}, V ) ≺ wD(U, V ).
Lemma 6.2 implies

ṽT dB + α̃ < σB , (6.7)

where ṽ and α̃ are the unique numbers guaranteed by the lemma for the
optimal solution s̃ := wD(U, V ) of program D(U, V ). Now if wD(U ′ ∪
{B}, V ) = s̃ then these multipliers must by Lemma 6.2 prove that s̃ is
also optimal to D(U ′ ∪ {B}, V ), which (6.7) contradicts. Moreover, we
can easily implement the routine violates for D(U, V ): all we need to do
is compute ṽ and α̃ and check (6.7).

We remark that locality as demanded in (C2) need not hold in gen-
eral. The program P(T, ∅) with T = {1, 2} and IE = II = ∅ and the
function f from Fig. 6.1 as its objective fulfills wP({1, 2}, ∅) ≺ wP(∅, ∅).
Yet, wP({i}, ∅) does not differ from wP(∅, ∅) for both i ∈ {1, 2}.
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The AOP. We take T as the ground set of AOP P , and define a subset
F ⊆ T to be an AOP-basis of P if and only if it is a basis according to the
following definition. For this, we say that a feasible point s̃ = (x̃, ỹ) of
program P(U, V ) is proper if all variables that are not forced to zero are
strictly positive, i.e., if x̃B > 0 for all B ∈ U (equivalently, if x̃U > 0).
Similarly, we say that s̃ is nonnegative if all variables that are not forced
to zero are nonnegative, i.e., x̃U ≥ 0. Notice that the notion of being
proper (nonnegative, respectively) is with respect to some program; if
we subsequently talk about ‘the proper minimizer of P(U, V )’ (e.g., that
the program has ‘a proper minimizer’) then we mean a minimizer that
is proper w.r.t. P(U, V ).

Definition 6.4. A subset F ⊆ T is called a basis if P(F, F ) has a proper
minimizer. We denote by s̃F = (x̃F , ỹF ) the proper minimizer of a basis
F and call it the solution of F .

The most important property of a basis is that its (locally optimal)
solution globally minimizes program P(F, ∅) (for s̃F is feasible to the
more restricted problem P(F, ∅), which has only one minimizer). From
this, it follows via (C1) that there exists at most one proper minimizer
of program P(F, F ), and hence s̃F is well-defined.

In view of the LP-type problem (T,�, wP(·, ∅)) from (C2), the name
‘basis’ is justified because a basis F ⊆ T (in the sense of the above defi-
nition) is as a matter of fact also a basis in the LP-type sense: if there
existed a proper subset F ′ of F such that the solution of P(F ′, ∅) equals
s̃F then (x̃F )B = 0 for any B ∈ F \ F ′, a contradiction.—In case of
sebb0, this observation amounts to the fact that bases F ∈ T corre-
spond to miniballs mb0(F ). We now have to define the order among
these bases in such a way that the best bases correspond to mb0(T ).

The function F 7→ f(s̃F ) defines a quasiorder on the bases: for two
bases F ′, F ⊆ T we set F ′ � F if and only if f(s̃F ′

) ≥ f(s̃F ). Solving
AOP P then means, by definition of �, to find a basis F with minimal
objective value. That such a basis indeed provides us with the sought-for
solution of problem P(T, ∅) is now an easy matter.

Lemma 6.5. Let F ⊆ G ⊆ T with F a basis. Then F is a largest basis
in 2G, i.e., F ∈ B(G), iff the solution of F minimizes P(G, ∅).

By setting G = T in the lemma, we see that the solution s̃F of some
�-largest basis F ∈ B minimizes program P(T, ∅) and thus by (C1)
globally solves it.
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Proof. Clearly, every solution coming from a basis in 2G is feasible for
P(G, ∅) (in fact, even feasible for P(T, ∅)), with �-larger bases yielding
better objective values. Given this, all we have to do for direction (⇒)
is to show that one of the bases in 2G has a solution that is optimal to
P(G, ∅). Let s̃ = (x̃, ỹ) be feasible and optimal to the latter program;
by (C1) such a minimizer exists. Set F := {B ∈ G | x̃B > 0}. Since s̃ is
a proper minimizer of P(F, F ), the set F is a basis. Moreover, s̃F = s̃
achieves the same objective value as the solution s̃ of P(G, ∅), so s̃F

minimizes P(G, ∅).
For direction (⇐), assume that F ∈ B has a solution s̃F which op-

timally solves P(G, ∅). We know that any basis F ′ ⊆ G has a feasible
solution for P(G, ∅) and that �-larger bases yield better objective val-
ues. So if F were not a �-largest basis, a larger one, F ′ ≻ F , say, would
give a better solution s̃F ′

to P(G, ∅), contradiction.

6.3 The oracle

Gärtner’s algorithm requires a realization of the oracle Φ from the pre-
vious section in order to work. We are now going to show how this can
be done. As input we receive G ⊆ T and a basis F ∈ B, F ⊆ G. The
goal is to either assert that F ∈ B(G), or to compute a basis F ′ ⊆ G
with F ′ ≻ F otherwise. The algorithm we use for this task is sketched
in Fig. 6.2; it works on the program Pǫ

D(F ) introduced below and is sim-
ilar in spirit to Gärtner & Schönherr’s method [72] for solving convex
quadratic programs. We first present the idea behind the algorithm and
then proceed with the correctness proof.

The core of the oracle. As a first step, procedure update checks whether
F is a �-largest basis in G, which by Lemma 6.5 is equivalent to the
solution of F minimizing program P(G, ∅). Resorting to (C2), this in
turn holds if and only if all violation tests violates(B,F, s̃F ), B ∈ G \F ,
return ‘no.’ This being the case we have Φ(G,F ) = F and are done
(first if-clause in procedure update). Otherwise, we select any violator
D ∈ G\F (i.e., an element D for which the test returns ‘yes’); D remains
fixed for the rest of the oracle call.

We observe now from locality (C2) that the solution of F does not
minimize P(F ′, ∅), for F ′ := F ∪ {D}. Thus, F ′ contains as a subset
at least one basis which is �-better than F (this is Lemma 6.5 again).
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procedure update(G,F )
{ Implements the oracle Φ(G,F ) of AOP P }
begin

if violates(B,F, s̃F ) = no for all B ∈ G \ F then

return F
let D ∈ G \ F with violates(B,F, s̃F ) = yes
(ǫ̃,s̃,finished):= (0,s̃F ,false)
while not finished do

{ here, Invariant 6.6 holds }
(ǫ̃new, s̃):= prim(F ,D,ǫ̃,s̃)
{ write s̃ as s̃ = (x̃, ỹ) }
E:= {B ∈ F | x̃B = 0}
if E = ∅ then

F := F ∪ {D}
finished:= true

else

F := F \ {x̃B = 0 | B ∈ F}
ǫ̃:= ǫ̃new

return F
end update

Figure 6.2. The oracle Φ(G,F ) for the abstract optimization problem
P : given a basis F ⊆ G it returns F itself iff F is the �-largest basis in
G, whereas otherwise it computes a basis F∗ ⊆ G with F∗ ≻ F .

Our strategy is to find one of these improved bases. The key observation
for this to succeed is that the solution of any improved basis F∗ ⊆ F ′

has (xF∗)D > 0, while the current basis F has (xF )D = 0; thus, the
idea is to (conceptually) increase xD continuously from 0 on, which will
eventually lead us to a new basis.

To prove that every improved basis F∗ ⊆ F ′ has (xF∗)D > 0, it
suffices to show that D ∈ F∗: the basis F globally minimizes P(F, ∅)
and hence is a best basis in 2F by Lemma 6.5; so if we had F∗ ⊆ F then
F∗ cannot be a better basis than F , a contradiction.

Thus, we set the variable xD to ǫ and (conceptually) increase ǫ from
0 on. Since our goal is to eventually reach the solution of an improved
basis F∗ ⊆ F ′—which is a best solution of program P(F∗, F∗)—we will
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ǫ = 0 ǫ = ǫa ǫ = ǫb

(a)

(b)sǫ
sF

F

Figure 6.3. By continuously increasing ǫ, procedure update(G,F ) traces
the proper minimizer sǫ of program Pǫ

D(F ) until it either becomes non-
proper (event (a)) or reaches the minimum of P(F ∪ {D}, ∅).

maintain for any value of ǫ we encounter the best among the solutions
of program P(F ′, F ′) that satisfy xD = ǫ. That is, we keep track of the
minimizer of program

Pǫ
D(F ) minimize f(x, y)

subject to gi(x, y) = 0, i ∈ IE ,
gi(x, y) ≤ 0, i ∈ II ,
xB = 0, B ∈ T \ F ′,
xD = ǫ.

(6.8)

We consider Pǫ
D(F ) to be a program in the variables xF (and not in xF ′ ,

because xD = ǫ is fixed); any feasible point (x̃, ỹ) fulfills x̃D = ǫ and is
called proper if x̃F > 0. At the moment it is not clear that Pǫ

D(F ) indeed
has a minimizer for every ǫ we encounter. We will have to confirm this
later, see Lemma 6.12.

More precisely, procedure update maintains the following invariant
from the beginning of the while-loop on.

Invariant 6.6. In each iteration of the loop of procedure update, the
procedure’s variable s̃ = (x̃, ỹ) is a proper minimizer of P ǫ̃

D(F ).

Observe here that for ǫ̃ = 0, program P ǫ̃
D(F ) coincides with program

P(F, F ); so when update enters the while-loop for the first time, s̃ = s̃F

indeed minimizes program P0
D(F ). So initially, the invariant holds.

Let s̃′ = (x̃′, ỹ′) be the global minimizer of P(F ′, ∅), F ′ := F ∪ {D},
where F is the current iteration’s set ‘F ’ from the procedure. As we



138 Chapter 6. More programs in subexponential time

prove below (Lemma 6.12), only one of two kinds of events may take
place while we increase ǫ̃; this is illustrated in Fig. 6.3 where the filled
area represents the feasibility region of P(F ′, ∅).

(a) x̃B = 0 for some B ∈ F : In this case, s̃ must be a minimizer of
the more restricted program P ǫ̃

D(F ∗) for F ∗ := F \ {B | x̃B = 0}.
Thus, we can set F := F ∗, and the invariant is fulfilled again.

(b) x̃D = x̃′D: Here, we must have s̃ = s̃′ because on the one hand, s̃ is
feasible for P(F ′, ∅) and thus f(s̃) ≥ f(s̃′), while on the other hand
s̃′ is feasible to P ǫ̃

D(F ) by x̃D = x̃′D, implying f(s̃′) ≥ f(s̃); so s̃ =
s̃′ by uniqueness (C1) of the minimizer of P(F ′, ∅). Consequently,
F ′ = F ∪ {D} is a new basis.

In order to find out which case takes place, we require a subroutine,
prim, to be available that decides which event happens first and returns
its ‘time’ ǫ̃′.

Condition C3. There is an algorithm prim(F,D, ǫ̃, s̃ǫ̃) which for a given
proper minimizer s̃ǫ̃ to P ǫ̃

D(F ) returns the pair (ǫ̃′, s̃ǫ̃′), where ǫ̃′ ≥ ǫ̃ is
the time when the first of the following events (aB), B ∈ F , or (b) occurs
if ǫ continuously increases from ǫ̃ on.

(aB) (x̃ǫ)B = 0 for B ∈ F .

(b) s̃ǫ is optimal to P(F ′, ∅) for F ′ := F ∪ {D}.

Here, s̃ǫ = (x̃ǫ, ỹǫ) denotes the nonnegative minimizer of program Pǫ
D(F ).

Whenever procedure prim is called, it is guaranteed that s̃ǫ exists and is
finite on the interval [ǫ̃, ǫ̃′], and that ǫ̃′ <∞.

We emphasize that the procedure prim does not have to ‘ensure’ that
sǫ exists. The routine will only be called if sǫ exists and is finite on the
interval [ǫ̃, ǫ̃′] and ǫ̃′ <∞. Notice also that the caller of the routine can
detect which event took place; if the set E := {(x̃ǫ̃′)B = 0 | B ∈ F} is
empty then event (b) occurred, otherwise one or more of the events (aB)
stopped the motion.

From this condition it follows that the primitive prim decides which
case takes place, and thus the invariant is fulfilled again after handling
the respective case as described above. It remains to prove that (i) one
of the above events always occurs, (ii) that Pǫ

D(F ) has a minimizer for all
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values of ǫ we encounter, and (iii) that in case (b), F ′ is indeed a �-better
basis than the original basis F we started with. All these statements
will be shown in the next section (see Lemmata 6.12 and 6.11), and we
conclude from this that procedure update is correct. Termination follows
from the fact that in each iteration (except the last one) the cardinality
of F drops by one, yielding

Lemma 6.7. The oracle update(G,F ) of the abstract optimization prob-
lem P terminates after at most |F | iterations of its while-loop.

6.3.1 The primitive for sebb0

We close this section with the argument that shows how the primitive
routine from condition (C3) can be realized for program D(T, ∅) (again,
assuming that the centers of the input balls are linearly independent).

Lemma 6.8. Under linear independence, the primitive prim(F,D, ǫ̃, sǫ̃)
for program D(U, V ) can be realized in time O(d3).

To show this, we derive Karush-Kuhn-Tucker optimality conditions
for program Dǫ

D(F ), the counterpart to Pǫ
D(F ) for our program D(U, V ).

This program looks as follows, where F is some subset of the input balls
T , and where D 6∈ F is the iteration’s violator; for convenience, we set
F ′ := F ∪ {D} for the rest of this section.

Dǫ
D(F ) minimize 1

4µx
TQTQx+ µ− ∑

B∈T xBσB

subject to
∑

B∈T xB = 1,
xB = 0, B ∈ T \ F ′,
xD = ǫ,
µ ≥ 0.

As we will see, feasibility and optimality to Dǫ
D(F ) of a point s =

(x, µ) can be decided by plugging s into a linear system and one addi-
tional quadratic equation. The coefficient matrix of the linear system
will turn out to be the following matrix MF .

MF :=





−Id 0 QF

0T 0 1T

QT
F 1 0
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(Here, ‘QF ’ denotes the submatrix of Q consisting of the columns of Q
that correspond to the balls B ∈ F .) This matrix is quadratic, sym-
metric, and nonsingular by the linear independence of the columns of
QF :

Lemma 6.9. Let T be a set of balls with linearly independent centers.
Then MF is regular for all F ⊆ T .

Proof. Consider any vanishing linear combination, MF (u, ω, v) = 0, of
the columns of MF ; we show that (u, ω, v) equals zero. From the defini-
tion of MF we obtain

u = QF v, QT
Fu = −ω1, 1T v = 0. (6.9)

It follows thatQT
FQF v = −ω1. AsQF has linearly independent columns,

the matrix QT
FQF is positive definite, in particular regular, and hence

v = −(QT
FQF )−1ω1. Using the identity 1T v = 0 from (6.9) we can derive

0 = ω1T v = −ω1T (QT
FQF )−1ω1, and since the inverse of a positive

definite matrix is positive definite again, we must have ω1 = 0. It
follows ω = 0, and from QT

FQF v = −ω1 = 0 we obtain v = 0. Hence,
also u must be zero by (6.9).

Letting bF denote the vector containing the numbers σB , B ∈ F , we
get the following characterization of feasibility and optimality for Dǫ

D(F ).

Lemma 6.10. A pair (x̃, µ̃) is feasible and optimal to Dǫ
D(F ) iff µ̃ > 0

and there exists a real vector w and a real number β such that

MF





w
β
x̃F



 =





−ǫdD

1 − ǫ
2µ̃bF



 (6.10)

and wTw = 4µ̃2 hold.

The argument is almost identical to the one employed in the proof
of Lemma 6.2. We give the full proof for the sake of completeness.

Proof. Let f(x, µ) be the objective function of program Dǫ
D(F ), and

write g(x, µ) =
∑

B∈F xB − (1− ǫ) for the program’s first constraint and
h(x, µ) = −µ for the program’s second constraint. We have

f(x, µ) =
xT

FQ
T
F (QFxF + 2ǫdD) + ǫ2dT

DdD

4µ
+ µ−

∑

B∈F

xBσB − ǫσD,
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where the last summand is a constant (i.e., depending neither on xF nor
on µ). Consequently,

∇f =

( 1
2µQ

T
F (QFxF + ǫdD) − bF

− 1
4µ2x

T
F ′QT

F ′QF ′xF ′ + 1

)

,

∇g = (1, 0), and ∇h = (0,−1). The Karush-Kuhn-Tucker Theorem
for convex programming (Theorem 5.16) tells us that a feasible (x̃, µ̃)
is optimal if and only if there exist a real number α and a real positive
number γ such that µ̃γ = 0 and ∇f + α∇g + γ∇h = 0 holds for (x̃, µ̃)
plugged in. As µ̃ > 0, the latter criterion simplifies to the existence of a
real number α with ∇f +α∇g = 0. Setting w = QF ′ x̃F ′ , this condition
reads

1

2µ̃
dT

Bw − σB + α = 0, B ∈ F,

1

4µ̃2
wTw = 1.

Multiplying the former equation by 2µ̃ 6= 0 and setting β := 2µ̃α, the
upper and lower rows of equation (6.10) follow, and feasibility provides
the remaining middle row. Conversely, if the conditions of the lemma
hold then the point (x̃, µ̃) is feasible. Moreover, the above two equations
are fulfilled with α := β/(2µ̃), and the Karush-Kuhn-Tucker conditions
prove (x̃, µ̃) to be optimal to program Dǫ

D(F ).

Proof of Lemma 6.8. We can assume (see statement of (C3)) that there
exists a bounded interval I =: [ǫ̃, ǫ̃′] such that for every ǫ ∈ I program
Dǫ

D(F ) has exactly one minimizer. With the preceding lemma, this
means that for any such ǫ there exist two real numbers µ̃ǫ > 0 and
βǫ and a real vector uǫ such that (6.10) holds for these quantities, and
uT

ǫ uǫ = 4µ̃2
ǫ . By multiplying (6.10) from the left by M−1

F , we obtain the
triple (uǫ, βǫ, x̃ǫ), whose entries are linear polynomials from R[ǫ, µ̃ǫ]. We
can now solve uT

ǫ uǫ = 4µ̃2
ǫ for µ̃ǫ, yielding a polynomial from R[ǫ], and

plug this into the three polynomials uǫ, βǫ, x̃ǫ. This gives a formula for
the triple (uǫ, βǫ, x̃ǫ) that depends only on ǫ and has the property that
(x̃ǫ, µ̃ǫ) minimizes Dǫ

D(F ) provided ǫ ∈ I.

In order to check for event (b), we use Lemma 6.2. Assuming (x̃ǫ)F >
0 and µ̃ǫ > 0, this states that (x̃ǫ, µ̃ǫ) is optimal to program D(F ′, ∅)



142 Chapter 6. More programs in subexponential time

if and only if there exists a real number αǫ such that vT
ǫ vǫ = 1 and

vT
ǫ dB + αǫ = σB for all B ∈ F ∪ {D}, where

vǫ = (QF (x̃ǫ)F + ǫdD)/(2µ̃ǫ).

As u = QF (x̃ǫ)F + ǫdD (evaluate (6.10) to see this), vT
ǫ vǫ = 1 follows

already from uT
ǫ uǫ = 4µ̃2

ǫ . Likewise, (6.10) implies vT
ǫ dB + αǫ = σB ,

B ∈ F , if we set αǫ := βǫ/(2µ̃ǫ). Thus, it suffices to solve vT
ǫ dB+αǫ = σB

for ǫ, memorizing the smallest real value ǫ(b) for which it holds.

On the other hand, an event (aB), B ∈ F , takes place if and only if
(x̃ǫ)B = 0. Thus, we compute the smallest real solution of this equation
and denote it by ǫ(a)(B) for B ∈ F . (Observe that for both types
of events, the equations we need to solve involve algebraic numbers of
degree 2 at most and can thus be solved easily.)

Finally, we return the triple (E, ǫ∗, (x̃ǫ∗ , µǫ∗)), where

ǫ∗ := min{ǫ(b)} ∪ {ǫ(a)(B) | B ∈ F},
and where E = {B ∈ F | ǫ(a)(B) = ǫ∗}. We claim that this realizes
the primitive: if E 6= ∅, the above argument for ǫ(a)(B) shows that
one or more events of type (a) occur first. If E = ∅ then ǫ∗ = ǫ(b)

by construction, so all events of type (a) occur strictly after time ǫ∗.
This implies (x̃ǫ∗)F > 0 and µ̃ǫ∗ > 0, and as we have shown above,
ǫ(b) coincides under these conditions with the time when event (b) takes
place. Finally, the costs of an invocation of the primitive are dominated
by the computation of the inverse of the matrix MF . Since this can be
done in O(d3), the lemma follows.

We remark that we can take any singleton F∗ := {B} ⊆ T as an
initial basis. By the constraint

∑

xB = 1 of program D(F∗, F∗) we must
have xF∗

B > 0, implying that F∗ is indeed a basis.

6.4 The details

In this part we prove the leftovers from the previous section. To this
end, we need to introduce some more requirements on program P(U, V );
these are mostly technical and easily met for sebb0.

Condition C4. The objective function f is convex over the subset of
the feasibility region of P(T, ∅) where f is finite, and it is continuous
over the subset of the feasibility region of P(T, T ) where f is finite.
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It follows that for any U ⊆ T , the function f is convex over the subset
of the feasibility region of P(U, ∅) where f attains finite value.—In case
of sebb0, (C4), as well as the following condition, is satisfied because we
are dealing with a convex program.

Condition C5. The feasibility region of P(T, T ) is convex.

Then also the feasibility region of P(F, ∅) and P(F, F ) is convex for
all F ⊆ T .

Condition C6. For any F ⊂ T , D ∈ T \F , and any real ǫ ≥ 0, program
Pǫ

D(F ) has at most one minimizer that is both finite and nonnegative.

For sebb0, the condition follow from the strict convexity of program
D(T, ∅) (see Lemma 6.1, observing that any minimizer has µ > 0).

Condition C7. The intersection of any compact set with the feasibility
region of P(T, T ) is compact again.

Condition (C7) applies, for instance, to any program whose feasibility
region is closed, as is the case with program D(T, T ).

These are the assumptions we need for the method to work; using
them we can now prove the remaining statements that show its correct-
ness. We start by observing that a proper minimizer s̃ of Pǫ

D(F ) with
finite objective value is necessarily strict: if it were not, there existed for
any δ > 0 a feasible point s̃δ ∈ U̇δ(s̃) with f(s̃δ) = f(s̃); by choosing
δ small enough the point s̃δ is also proper, meaning that the optimal
solution is not unique, a contradiction to (C6).

Given this, we are ready to show that if we can increase the current
ǫ to some larger value, ǫ, say, such that Pǫ

D(F ) has again a finite proper
minimizer then this minimizer is better than the previous one.

Lemma 6.11. Let F ′ = F ∪ {D} ⊆ T , D 6∈ F , let s̃′ = (x̃′, ỹ′) be the
minimizer to P(F ′, ∅) and suppose s̃old = (x̃old, ỹold) is a finite minimizer
to Pǫ

D(F ) with
(x̃old)F ≥ 0. (6.11)

If 0 ≤ ǫ < ǫ ≤ x̃′D then a finite minimizer s̃new = (x̃new, ỹnew) of program
Pǫ

D(F ) with
(x̃new)F ≥ 0 (6.12)

has a better objective function value than s̃old.
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(As a side remark, this proof of lemma is the only place where con-
vexity of f is required; for all other statements, quasi-convexity suffices.)

Proof. By (6.11) and (6.12), all involved points, i.e., s̃′, s̃old, and s̃new,
are feasible to program P(F ′, ∅). As s̃′ is the best among the feasible
solutions of P(F ′, ∅), we clearly have

f(s̃′) ≤ f(s̃old). (6.13)

Moreover, since ǫ = (x̃old)D < (x̃new)D = ǫ ≤ x̃′D, there exists a convex
combination s̃ = (x̃, ỹ) of s̃old and s̃′ with x̃D = ǫ. By convexity (C5), s̃
is feasible to P(F ′, ∅), and by convexity (C4) and (6.13), f(s̃) ≤ f(s̃old).
Also, (C6) and convexity (C4) ensures that f(s̃new) ≤ f(s̃), and thus

f(s̃new) ≤ f(s̃) ≤ f(s̃old).

Now if f(s̃new) = f(s̃old) then in particular f(s̃old) = f(s̃), which via
convexity (C4) yields f(s̃′) = f(s̃old) with s̃′ 6= s̃old. This, however,
is impossible because P(F ′, ∅) has only a single optimal solution. We
conclude f(s̃new) < f(s̃old).

We now turn to proving that whenever the procedure prim from (C3)
is invoked, the respective program Pǫ

D(F ) has a nonnegative minimizer
up to the point when the first of the events (aB), B ∈ F , or (b) occurs.

Lemma 6.12. Let F ′ = F ∪ {D} ⊆ T , D 6∈ F , and s̃′ = (x̃′, ỹ′) be the
minimizer of P(F ′, ∅). Suppose Pǫ

D(F ) has a proper minimizer for some
0 ≤ ǫ ≤ x̃′D, and set

ǫ = sup{ǫ′ ∈ [ǫ, x̃′D] | Pǫ
D(F ) has a proper minimizer ∀ǫ ∈ [ǫ, ǫ′]}.

Then ǫ = x̃′D or Pǫ
D(F ) has a nonnegative, nonproper minimizer.

If Pǫ
D(F ) has a nonnegative minimizer that is not proper then one

or several of the events (aB), B ∈ F , occur. Otherwise the lemma
ensures ǫ = x̃′D in which case the minimizer of program Pǫ

D(F ) is proper
and event (b) takes place. In total, the lemma implies that algorithm
update(G,F ) from Fig. 6.2 is correct.

In order to prove the lemma, we proceed in three steps. In all of
them, we denote the proper minimizer of program Pǫ

D(F ) for ǫ ∈ [ǫ, ǫ)
(which exists by definition of ǫ) by s̃ǫ and write ‘Fǫ’ for the feasibility
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O

Sǫ ∩ F
s̃ǫ rk

C

Sǫ

qk

Sǫ′

Figure 6.4. The cylinder C from the proof of Lemma 6.13.

region of Pǫ
D(F ) and ‘F ’ for the feasibility region of program P(F ′, ∅).

Also, we introduce the set

Sǫ := {(x, y) ∈ Rn+m | xD = ǫ, x ≥ 0};

every feasible point (x, y) of program P(F ′, ∅) with xD = ǫ is contained
in Sǫ, and every nonnegative feasible point of Pǫ

D(F ) is a member of Sǫ.

Lemma 6.13. In the context of the previous lemma, with ǫ′ ∈ [ǫ, ǫ],
there cannot exist a sequence rk, k ∈ N, of points in F ∩Sǫ′ with

f(rk) ≤ φ := f(s̃ǫ)

and ‖rk‖ ≥ k.

Proof. Suppose for a contradiction that there is a sequence rk ∈ F ∩Sǫ′ ,
k ∈ N, as excluded by the lemma. Consider the boundary C of the
cylinder of radius β > 0 (to be defined later) and axis {s̃ǫ+γeD | γ ∈ R},
with eD denoting the Dth unit vector, see Fig. 6.4. The set

O := C ∩ Sǫ

is compact and thus O∩F is compact, too, by (C7). Below, we show that
(for every value of β > 0) there exists a point q∗ ∈ O∩F with f(q∗) ≤ φ.
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However, as s̃ǫ is in fact a strict minimizer (recall the discussion before
Lemma 6.11 for this), we can choose the number β > 0 such that f(t) > φ
for all t ∈ O ∩ F , a contradiction.

In order to construct the point q∗, we consider a sequence qk, k ∈ N,
of points in Rn+m that for large enough k lie in the compact set

X := C ∩
⋃

ǫ∈[ǫ,ǫ′]

Sǫ.

Namely, we take as qk the intersection point of the cylinder boundary
C with the line segment Lk between s̃ǫ and rk; from the unboundedness
of the sequence zk := ‖rk‖, k ∈ N, it easily follows that for any k larger
than some k∗ ∈ N, this intersection point exists (and thus qk, k > k∗, is
well-defined). From convexity (C5) and convexity (C4) we obtain qk ∈ F
and f(qk) ≤ φ. Moreover, using the unboundedness of the sequence zk

again, we can see that to any given δ′ > 0 there exists a k′ > k∗ such
that the points qk, k > k′, have distance at most δ′ to X ∩ Sǫ = O.

Now consider the limit point q∗ of some convergent subsequence of
the sequence qk; such a subsequence and limit point exist by compactness
of X ⊂ Rn+m. Since the points qk approach O arbitrarily close, we have
q∗ ∈ O. In fact, q∗ ∈ O ∩ F , which one can see as follows. By (C7) the
set O ∩F is compact, and so if q∗ 6∈ O ∩F , there exists a neighborhood
of q∗ that does not intersect O ∩ F ; this together with the fact that
the points qk ∈ F approach q∗ to any arbitrarily small distance yields a
contradiction to q∗ being the limit point of the subsequence of the qk.
Thus, the qk ∈ F converge to the point q∗ ∈ O ∩ F . Finally, f(qk) ≤ φ,
k > k∗, and continuity (C4) of f imply f(q∗) ≤ φ as needed.

Lemma 6.14. In the context of Lemma 6.12, the sequence tk := s̃ǫ−1/k,
with k > k∗ for some k∗, is bounded, i.e., contained in some ball in Rn+m.

Proof. Suppose the points tk, k > k∗, are not bounded. Fix any ǫ′ ∈
(ǫ, ǫ). Clearly, there exists an integer k′ > k∗ such that for all k > k′ the
Dth coordinate of tk lies in [ǫ′, ǫ]. Now define rk, k > k′ to be the convex
combination of s̃ǫ and tk whose Dth coordinate is ǫ′. Again, one can
easily see that also the rk, k > k′, are unbounded. Moreover, convexity
(C5) yields rk ∈ F ∩Sǫ′ , and as Lemma 6.11 guarantees f(s̃ǫ) ≤ φ for
φ := f(s̃ǫ) and ǫ ∈ [ǫ, ǫ), convexity implies f(rk) ≤ φ as well. Thus, we
have found a sequence rk that matches the specification of the previous
lemma and therefore cannot exist.
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B

B(ǫ)
Bk qk

cǫ+1/k

s̃ǫ

s̃′

Ck

Sǫ Sǫ+1/k Sx̃′

D

Figure 6.5. The points qk, k ∈ N, from the proof of Lemma 6.15.

Lemma 6.15. In the context of Lemma 6.12, ǫ < x̃′D implies that Pǫ
D(F )

does not have a proper minimizer.

Thus, the supremum ǫ in Lemma 6.12 cannot be a maximum.

Proof. Assume for a contradiction that Pǫ
D(F ) does have a proper min-

imizer, s̃ǫ, say, for ǫ < x̃′D. Using an argument along the lines of the
proof of Lemma 6.13 we can show that there exists then a proper interval
I∗ := (ǫ, ǫ∗) such that all s̃ǫ does not have a nonnegative minimizer for
any ǫ in this interval. Furthermore, as s̃ǫ is proper, there exists a closed
ball B ⊂ Rn+m of strictly positive radius centered at s̃ǫ that contains
only proper points. Denote by s̃′ = (x̃′, ỹ′) the minimizer of program
P(F ′, ∅) and let cǫ, ǫ ∈ I∗, be the convex combination of s̃ǫ and s̃′

whose Dth coordinate equals ǫ. From convexity (C5) and (C4) applied
to φ := f(s̃ǫ) ≥ f(s̃′) we obtain cǫ ∈ F and f(cǫ) ≤ φ for ǫ ∈ I∗.

Consider any radius ρ strictly smaller than the radius of B, and set
B(ǫ) := B(cǫ, ρ) ∩ Sǫ for ǫ ∈ I∗; B(ǫ) is the (lower-dimensional) ball
of center cǫ and radius ρ in the hyperplane Sǫ, see Fig. 6.5. From the
fact that ρ is strictly smaller than the radius of B, it easily follows that
B(ǫ+ δ) is contained in B for all numbers δ ≥ 0 that are smaller than
some fixed δ∗ > 0.

In a similar fashion as in the proof of Lemma 6.13, we construct below
(for any fixed radius ρ < ρB) a point q∗ ∈ ∂B(ǫ) ∩ Fǫ with f(q∗) ≤ φ.
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However, since s̃ǫ is in fact a strict minimizer, we can choose ρ > 0 such
that f(t) > φ for all t ∈ ∂B(ǫ) ∩ Fǫ, a contradiction to continuity of f .

In order to construct q∗, we consider the following sequence qk, k ∈ N,
of points. For given k, we define qk to be the minimizer of the set
Ck := Bk ∩ Fk, where

Bk := B(ǫ+ 1/k), Fk := Fǫ+1/k;

Ck is the intersection of the feasibility region of program Pǫk

D (F ) and
ball B(ǫk) for ǫk := ǫ + 1/k. From (C7) we see that Ck is compact,
and hence qk is well-defined. Also, the above discussion shows that the
sets Ck are for k larger than some k∗ all contained in the ball B, and
we can even choose k∗ such that ǫk ∈ I∗ for k > k∗. We claim now
that for all such k, qk actually lies on the boundary of B: if it did not,
a ball of sufficiently small radius centered at qk would witness qk to be
a minimizer of the feasibility region of Pǫk

D (F ), a contradiction to the
above observation that s̃ǫk

does not have a nonnegative minimizer. So
qk ∈ ∂Bk ∩ Fk, and f(qk) ≤ φ by the fact that qk minimizes f over Ck

and cǫ+1/k ∈ Ck with f(cǫ+1/k) ≤ φ.

Finally, consider the limit point q∗ of a convergent subsequence of the
xk. Continuity (C4) of the function f implies f(q∗) ≤ φ, and it is easily
verified that q∗ ∈ ∂B(ǫ). In fact, we also have q∗ ∈ Fǫ: if the compact
set F ′ :=

⋃

ǫ∈I Fǫ ∩∂B(ǫ) did not contain q∗, a neighborhood of q∗ does
not intersect the set, which contradicts the fact that the points qk, k ∈ N,
which all lie in F ′, approach q∗ to any arbitrarily small distance.

Proof of Lemma 6.12. We assume ǫ < x̃′D and show that Pǫ
D(F ) has a

nonnegative, nonproper minimizer. The previous lemma tells us that
program Pǫ

D(F ) does not have a proper minimizer, which in particular
shows that ǫ > ǫ. Thus, the interval I := [ǫ, ǫ) is nonempty, and we can
consider the points

tk := s̃ǫ−1/k, k ∈ N, k ≥ k∗,

where k∗ is such that ǫ − 1/k∗ > ǫ. By Lemma 6.14 the points tk,
k ≥ k∗, are all contained in a closed ball, B, say, and therefore there
exists a convergent subsequence of the tk. Denote by t∗ its limit point.
Since tk is proper and contained in the compact set F ∩B for all k ≥ k∗,
the point t∗ must be nonnegative and contained in F ∩B, hence in F .
If we can now show that t∗ is in addition a minimizer of Pǫ

D(F ) then it
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must be a nonnegative and nonproper minimizer (Lemma 6.15), which
will prove the claim.

We need another ingredient to show this. Denoting by s′ the mini-
mizer of P(F ′, ∅), we can see that g(ǫ) := f(s̃ǫ) is a monotonly decreasing
function on the interval I, bounded from below by f(s̃′). Given this, ba-
sic analysis [11, Lemma 4.3] shows that the limit limǫ↑ǫ f(s̃ǫ) exists and
fulfills

lim
ǫ↑ǫ

f(s̃ǫ) = inf{f(s̃ǫ) | ǫ ∈ I} =: φ.

And since s̃ǫ is the minimizer of Pǫ
D(F ), it follows that any point t ∈ Fǫ,

ǫ ∈ I, satisfies f(t) ≥ φ = f(t∗).
So suppose t∗ is not a minimizer of Pǫ

D(F ). Then there exists a point
t′ ∈ Fǫ with f(t′) < f(t∗). As both t′ and tk∗ are feasible for program
P(F ′, F ′), any convex combination of them is feasible to the program
as well, by convexity (C5). Moreover, all such convex combinations
except t′ itself have their Dth x-coordinate in the set I, and thus f at
such a point has value at least φ by the above observation. However,
f(t′) < f(t∗) = φ, a contradiction to the continuity of f .

6.5 The main result

We can summarize the findings of the preceding sections as follows.

Theorem 6.16. Given (C1)–(C7) and any basis (together with its solu-
tion) to start with, the mathematical program P(T, ∅) in the n variables
x and the m variables y can be solved in expected time

(tprim + tviol) · eO(
√

n),

where tprim is the (expected) running time of primitive prim from (C3)
and tviol is the (expected) running time of primitive violates from (C2).

Proof. Given an initial basis, we can run Gärtner’s algorithm. It calls
our AOP’s oracle at most exp(O(

√
n)) times. This together with the

fact that our oracle calls the primitives prim and violates each at most
|T | ≤ n times (Lemma 6.7), shows the claim.

We remark that for a convex program P(T, ∅) of the form (6.6), the
objective function f is always continuous in the interior of the function’s
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domain [5, Lemma 3.1.3]. If in addition f is continuous on the boundary
of its domain, (C4) and (C5) are thus automatically satisfied. Also, (C1)
and (C6) can usually be achieved via some sort of perturbation (allow-
ing lp to be modeled, for instance). Moreover, the Karush-Kuhn-Tucker
Theorem for Convex Programming with an appropriate constraint qual-
ification might be a good starting point for obtaining (C2), see for in-
stance [5]. We also mention that finding an initial basis is in general not
an easy task.

In case of sebb0, the material from the previous sections together
with the above Theorem yields

Corollary 6.17. Problem sebb over a set of n signed balls in Rd can
be solved in expected time

O(d2n) + eO(
√

d log d).

Proof. The primitive can be realized in O(d3) (Lemma 6.8), yielding an
expected d4 exp(O(

√
d)) algorithm for solving the mathematical program

D(T, ∅), where T is any subset of the input balls as it arises in the basis
computation of algorithm msw-subexp. The result then follows from
Theorem 5.6.

6.6 Further applications

6.6.1 Smallest enclosing ellipsoid

As our second application we consider the problem mel of finding the
smallest enclosing ellipsoid mel(U) of a n-element pointset U ⊂ Rd. We
show that the problem fits into our framework, but since we do not know
how to realize the primitive (C3) in subexponential time, the resulting
algorithm will have a running time that depends exponentially on the
dimension. This is not a new result but marks an improvement over
Amenta’s method which does not apply to mel.

Like sebb, problem mel falls into the class of LP-type problems
(see [61]), and one can therefore solve it in expected time

O(tsmall · (δn+ eO(
√

δ log δ))), (6.14)

where δ = d (d+3)/2 and where tsmall is the (expected) time required to
compute mel(T ) for sets T of at most δ+1 points in Rd (see Lemma 2.11).
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Instead of computing mel(T ) directly, we use the following trick by
Khachiyan and Todd [54]; by embedding our input points T into Rd+1, it
allows us to focus on (smallest enclosing) ellipsoids with the center fixed
at the origin. For this, we denote by cmel(P ) the smallest ellipsoid that
contains the points P ⊂ Rd and has its center at the origin.

Lemma 6.18 (Khachiyan & Todd). Let P ⊂ Rd be a finite pointset with
aff(P ) = Rd. Set

P ′ := {(s, 1) | s ∈ S} and Π = {(x, ψ) ∈ Rd+1 | ψ = 1},

and denote by π the projection π(x, y) = x from Rd+1 to Rd. Then
mel(P ) = π(cmel(P ′) ∩ Π).

(In fact, Khachiyan & Todd prove a stronger statement about (1+ǫ)-
approximations of mel(P ); the above is simply the case ǫ = 0.) In the
following we will assume that P affinely spans Rd, that is, aff(P ) = Rd;
if this is not the case, the smallest enclosing ellipsoid of P lives in a
proper affine subspace A ⊂ Rd and can be found by identifying A (using
linear algebra techniques) and doing the computation in there.

It is well-known [53, 26, 78, 79] that cmel(T ) can be read off the
global minimizer of the convex mathematical program E(T, ∅), which is
defined as follows.

E(U, V ) minimize − log det(
∑

p∈T xppp
T )

subject to
∑

p∈T xp = 1,

xp ≥ 0, p ∈ U \ V,
xp = 0, p ∈ T \ U.

(We take log(α) = −∞ for α ≤ 0) Namely, if x̃ optimally solves E(T, ∅),
the matrix M(x̃) :=

∑

p∈T x̃ppp
T defines the ellipsoid cmel(P ) via

cmel(P ) = {x ∈ Rd | xTM(x̃)−1x ≤ d}.

Here are the optimality conditions for program E(U, V ) that we will use.

Lemma 6.19. A finite feasible x̃ ≥ 0 minimizes program E(U, V ) iff

pTM(x̃)−1p ≤ d, p ∈ U \ V, (6.15)

pTM(x̃)−1p = d, p ∈ V, (6.16)

x̃B (pTM(x̃)−1p− d) = 0. p ∈ U \ V, (6.17)
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In [53] and other papers, the special case V = ∅ is proved. Our version
can be proved along the same lines as follows.—Note in the statement
that the regularity of the matrix M(x̃) follows from the finiteness of the
solution x̃.

Proof. It is well-known [47] that log det(X) is concave over the cone of
positive semidefinite matrices X; as M := M(x) is positive semidefinite,
the objective function of program E(U, V ) is thus convex over the positive
orthant.

We again use the Karush-Kuhn-Tucker Theorem for convex pro-
gramming (Theorem 5.16). A little calculation (using Jacobi’s formula
d
dα det(A) = Tr(Adj(A) d

dαA and the identity xTAx = Tr(AxxT ) for a
quadratic matrix A) shows that

∂f

∂xp
= −Tr(M−1ppT ) = −pTM−1p, p ∈ F. (6.18)

Using this, the theorem states that a feasible x̃ ≥ 0 is locally optimal
to E(U, V ) if and only if there exists a real τ and real numbers µp ≥ 0,
p ∈ U , such that pTM−1p+ µp = τ and x̃pµp = 0 for all p ∈ U .

Multiplying the latter equation by xp and summing over all p ∈ F ′

yields
∑

p∈U xpp
TM−1p = τ , where we have used x̃pµp = 0. On the

other hand, we have

∑

p∈U

xpp
TM−1p =

∑

p∈U

xp Tr(M−1ppT )

= Tr(M−1
∑

p∈U

xppp
T )

= Tr(M−1M) = d. (6.19)

Combining these two equations we obtain τ = d, and the claim follows.

The primitive. From the above lemma it is clear that program E(U, V )
satisfies condition (C2) from our framework; the resulting violation test
violates(q, V, x̃) computes M(x̃)−1 in time O(d3) and returns whether
qTM(x̃)−1q > d holds. Uniqueness (C1) follows from the fact that
cmel(T ) is unique, and (C4), (C5), and (C7) are trivially satisfied. It
remains to show that program Eǫ

q(F )—the counterpart to the abstract
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program Pǫ
D(F )—has at most one proper minimizer, and that the prim-

itive (C3) can be realized.

Program Eǫ
q(F ) is of the form

Eǫ
q(F ) minimize − log det(M(x))

subject to
∑

p∈F xp = 1 − ǫ,

xp = 0, p ∈ T \ F ′,

where xq := ǫ is a constant and F ′ := F ∪ {q} ⊆ T with q 6∈ F .

In order to establish (C6) we use the well-known fact [47, Th. 7.6.7]
that log det(X) is strictly convex over the set of positive definite matrices
X: consequently, if there were two proper minimizers of Eǫ

q(F ) with
equal, finite objective value, any proper convex combination of them
yields a better solution, contradiction.

Lemma 6.20. Let F ′ = F ∪ {q} ⊆ T , q 6∈ F , and ǫ ≥ 0. Then a finite
feasible x ≥ 0 is optimal to program Eǫ

q(F ) iff

pTM(x̃)−1p =
d− ǫqTM(x̃)−1q

1 − ǫ
, p ∈ F. (6.20)

Proof. Set M := M(x̃) and note from finiteness that M is regular. Using
(6.18) and the Karush-Kuhn-Tucker Theorem 5.16 we see that a feasible
x ≥ 0 is optimal to Eǫ

q(F ) if and only if there exists a real τ such that

pTM−1p = τ holds for all p ∈ F . Multiplying this by xp and summing
over all p ∈ F ′ yields

∑

p∈F ′ xpp
TM−1p = ǫqTM−1q + (1 − ǫ)τ. On the

other hand, we have
∑

p∈F ′ xpp
TM−1p = d, the proof of which is like in

(6.19). By combining these two equations and solving for τ , the claim
follows.

Using the equations (6.20) and decision algorithms for the existential
theory of the reals [10], procedure prim can be implemented in exponen-
tial time in the bit-complexity model.

6.6.2 Distance between convex hulls of balls

Let S be a finite set of closed balls in Rd. We define the convex hull (or
hull for short) of S to be the pointset conv(S) := conv(

⋃

B∈S B). (The
set conv(S) is also called a spherically extended polytope, or an s-tope in
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P1

P2

P3

Q1

Q2

HP

HQ

Figure 6.6. Problem pds for two sets P,Q of balls: the minimal dis-
tance is attained between p and q. (The meaning of the halfspaces HP

and HQ is described in Lemma 6.24.)

the literature, see [45, 44].) For two given ball sets P,Q in Rd, we denote
by

dist(P,Q) := min{‖p− q‖ | p ∈ conv(P ), q ∈ conv(Q)}.
the distance between P and Q. Observe that dist(P,Q) = 0 if and
only if conv(P ) and conv(Q) have nonempty intersection. We denote by
pds the problem of computing the distance dist(P,Q) (together with the
points p ∈ conv(P ) and q ∈ conv(Q) for which the distance is attained)
between two hulls of ball sets P and Q. Figure 6.6 shows an example
instance of pds.

We start with a simple observation (which is implicitly assumed but
not proven in [45, 44]). To state it, we define for a set S of balls sp(S)
to be the set of all balls B(c, ρ) whose center c can be written as c =
∑

B∈S xBcB for real, nonnegative coefficients xB , B ∈ S with sum 1
while at the same time the radius ρ fulfills ρ =

∑

B∈S xBρB . Figure 6.7
shows (some subsets of) the balls in sp(S) for some set S of three circles
in the plane.

Lemma 6.21. conv(S) =
⋃

B∈sp(S)B for any finite set S of balls in Rd.

We note that while all balls B ∈ sp(S) are contained in the pointset
conv(S), not every ball from conv(S) is necessarily contained in sp(S).
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(a) (b) (c)

Figure 6.7. The balls (filled) from the set sp(S) for three circles S
(solid): (a) shows a few of them, (b) some more, and (c) all of them.

Proof. We first show that every point p ∈ conv(S) is contained in some
ball, Bp, say, from the set sp(S). As p is a convex combination of the
points in S, Carathéodory’s Theorem [71, Corollary 17.1.1] allows us
to express p as the convex combination of at most d + 1 points, each
belonging to a different ball B ∈ S. That is, there exist nonnegative real
coefficients xB, B ∈ S, and points pB ∈ B, B ∈ S, such that

p =
∑

B∈S

xBpB,
∑

B∈S

xB = 1.

We claim that the ball Bp := B(c, ρ) with center c =
∑

B∈S xBcB and
radius ρ =

∑

B∈S xBρB contains the point p. This is easily verified as
‖c− p‖ equals

‖
∑

B∈S

xB (cB − pB)‖ ≤
∑

B∈S

xB‖cB − pB‖ ≤
∑

B∈S

xBρB = ρ.

For the converse inclusion ‘⊇’ we fix some ball D ∈ sp(S) and denote
by xB, B ∈ S, the corresponding coefficients (which sum up to 1 and
satisfy cD =

∑

B∈S xBcB and ρD =
∑

B∈S xBρB). We show that every
point p ∈ D is contained in conv(S). To see this, we write p as p =
cD + αρDu for some unit vector u and some positive real number α
(observe that α ≤ 1). Clearly, the point pB := cB + αρBu is contained
in ball B, and since these points fulfill

∑

B∈S

xBpB =
∑

B∈S

xBcB + α
∑

B∈S

xBρBu = cD + αρDu = p,

the claim follows.
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The above lemma allows us to derive a convex mathematical pro-
gramming formulation of problem pds. Let P ∪ Q =: T be two sets of
balls, and define C to be the matrix ((cB)B∈P , (−cB)B∈Q); C contains
the centers of the balls in Q as its columns in a first block, followed by a
second block with the negated centers of the balls from Q. To facilitate
notation, we denote by ‘CS ’, where S is some subset of T , the submatrix
of C that contains the columns with the (possibly negated) centers of
precisely the balls from S. Furthermore, we write r = (ρB)B∈P∪Q for
the vector containing the radii of the balls P ∪Q (in the same order as
the columns of C) and again use ‘rS ’ for the subvector containing the
radii of the balls S.

Consider now for V ⊆ U ⊆ T the following mathematical program.

S(U, V ) minimize
√
xTCTCx− rTx

subject to
∑

B∈P xB = 1,
∑

B∈Q xB = 1,

xB ≥ 0, B ∈ U \ V,
xB = 0, B ∈ T \ U.

The next lemma shows that a solution to S(T, ∅) provides us with two
balls that attain the same distance as P and Q.

Lemma 6.22. Let P ∪ Q be two sets of balls and x∗ a minimizer to
program S(T, ∅) with γ∗ its objective value. Then

dist(P,Q) = max{0, γ∗}.

More precisely, dist({BP }, {BQ}) = dist(P,Q), where

BP = B(CPx
∗
P , r

T
Px

∗
P ) ⊆ conv(P ),

BQ = B(CQx
∗
Q, r

T
Qx

∗
Q) ⊆ conv(Q).

Proof. From Lemma 6.21 it is straightforward that

dist(P,Q) = min{dist({B}, {B′}) | B ∈ sp(P ), B′ ∈ sp(Q)}. (6.21)

Moreover, the distance dist({B}, {B′}) between two balls is easily seen
to be max{0, ‖cB − cB′‖ − ρB − ρB′} for any two balls B,B′ ⊂ Rd.

By definition of sp(P ), the matrix C, and the vector r, a ball B(c, ρ)
lies in sp(P ) if and only if c = CPxP and ρ = rT

PxP for some nonnegative
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vector xP whose entries add up to 1. (And, of course, the very same
statement holds if you replace ‘P ’ by ‘Q.’) It follows that x ∈ R|T | is
feasible to program S(T ) if and only if the ball B(CPxP , r

T
PxP ) lies in

sp(P ) and the ball B(CQxQ, r
T
QxQ) lies in sp(Q). By the above formula,

the distance between these balls is

‖CPxP − CQxQ‖ − ρT
PxP − ρT

QxQ =
√
xTCTCx− rTx,

if this number is positive and zero otherwise. From (6.21) we conclude
that minimizing this number over all balls in sp(P ) and sp(Q) yields
dist(P,Q) (in case it is positive) or shows that conv(P ) and conv(Q)
intersect (in case it is nonpositive).

Denoting by f the objective function of program S(U, V ), the triangle
inequality yields

f((1 − α)x+ αx′) ≤ (1 − α)‖Cx‖ + α‖Cx′‖
= (1 − α)f(x) + αf(x′),

which shows that S(U, V ) is a convex program. We note that if the
input centers are assumed to be linearly independent (equivalently, C
has full rank), the program’s objective function is even strictly convex:
for arbitrary vectors a, b ∈ Rd we have ‖a+ b‖ = ‖a‖+ ‖b‖ if and only if
a = γb for some scalar γ ≥ 0. Using this, the above inequality is fulfilled
with equality if and only if Cx = Cx′, equivalently, if and only if x′ = γx
for some γ. Then, however, we must have γ = 1 because otherwise not
both points x and x′ = γx can be feasible (recall that their entries add
up to 1).

Lemma 6.23. A feasible solution x̃ ≥ 0 with x̃TCTCx̃ 6= 0 is optimal
to S(U, V ) iff there are real numbers τP , τQ such that

µB = 0, B ∈ V,

µB ≥ 0, B ∈ U \ V,
µBx̃B = 0, B ∈ U \ V

for µB := cTBCx̃/
√
x̃TCTCx̃− ρB + τ[B]. Here, τ[B] = τP if B ∈ P and

τ[B] = τQ else. In this case, the objective value of x̃ equals −(τP + τQ).

Notice here that the numbers τP , τQ are in fact unique: feasibility of
x̃ ensures x̃B > 0 for some B ∈ P and some B ∈ Q, and therefore µB = 0
for both these B, implying that τP and τQ are uniquely determined.
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Let us see what happens if the assumption x̃TCTCx̃ 6= 0 from the
lemma is not fulfilled. Then the points p̃ := CP x̃P and q̃ := −CQx̃Q have
Euclidean distance zero. And as p̃ lies in the convex hull of the centers
of the balls P , and likewise q̃ lies in the convex hull of the centers of Q,
we see that conv(P ) intersects conv(Q). Thus, if x̃TCTCx̃ = 0, we can
immediately output ‘dist(P,Q) = 0’ (and the points p̃ and q̃ serve as
witnesses for this).

Proof. Since S(U, V ) is convex, the Karush-Kuhn-Tucker Theorem (The-
orem 5.16) applies, yielding that a feasible x̃ is optimal if and only if there
exist two real numbers τP , τQ and real numbers µB, B ∈ T , such that

1√
x̃TCTCx̃

cTBCx̃− ρB + τ[B] − µB = 0, (6.22)

and x̃BµB = 0, B ∈ T , and such that µB ≥ 0 for all B ∈ U \ V and
µB = 0, B ∈ V . From this, the first part of the claim follows.

Multiplying (6.22) by xB and summing over all B ∈ T , we obtain

f(x̃) =
1√

x̃TCTCx̃
x̃CTCx̃− rT x̃ = −(τP + τQ),

where f denotes the program’s objective function and where we have
used x̃BµB = 0 and

∑

B∈R x̃B = 1, R ∈ {P,Q}.

From the proof we can also extract a geometric interpretation of
optimality. Let us focus for this on the case V = ∅. By multiplying (6.22)
by xB and summing over all B ∈ P (B ∈ Q, respectively), we get

p̃Tu− rT
P x̃P + τP = 0,

q̃Tu+ rT
Qx̃Q − τQ = 0,

where we introduced the unit vector u := Cx̃/
√
x̃CTCx̃ (and p̃ and q̃

are defined as after the lemma). That is, the positive ball B(p̃, rT
P x̃P )

is internally tangent1 to the halfspace HP := {x | uTx + τP ≥ 0}, and
likewise the positive ball B(q̃, rT

Qx̃Q) is internally tangent to the halfspace

HQ := {x | uTx− τQ ≤ 0}. In addition, the conditions µB ≥ 0, B ∈ U ,
from the lemma show that all balls B ∈ P (B ∈ Q, respectively) are
contained in the halfspace HP (HQ, respectively). By finally observing
that u is the vector Cx̃ = p̃− q̃ scaled to unit length, we arrive at

1Refer to page 102 for a precise definition of internal tangency.
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Lemma 6.24. Let p ∈ conv(P ) and q ∈ conv(Q) be two points attaining
minimal distance between the hulls of the ball sets P and Q. Then there
exists a pair of halfspaces HP and HQ at distance ‖p − q‖ such that
conv(P ) ⊂ HP and conv(Q) ⊂ HQ.

An example illustrating this is given in Fig. 6.6.

Lemma 6.25. pds can be formulated as a LP-type problem of combi-
natorial dimension at most d+ 2.

For the proof of this we will use the following fact. Given a linear
system Ax = b of k ≤ l equalities in x ∈ Rl, there exists a solution
x̃ that has at most k nonzero entries. (The rank of the matrix A is at
most k and therefore the kernel kern(A) of A has dimension at least l−k.
So if x̃ has more than k nonzero entries, there must exists an element
ỹ ∈ kern(A) such that both x̃ and ỹ have nonzero ith entry for some i.
Now x̃ + λỹ is a solution of the system Ax = b as well; in particular,
setting λ := −x̃i, we see that there exists a solution with one nonzero
entry less. Using induction, this shows the claim.)

Proof. Let T = P ∪Q be an instance of pds, where we assume that the
balls in P are different from the balls in Q—as a matter of fact, it suffices
for what follows that the balls are labeled differently. Given U ⊆ T , we
define w(T ) as follows. If U encodes a proper pds subinstance, i.e.,
if both P (U) := P ∩ U and Q(U) := Q ∩ U are nonempty sets, we
take the two halfspaces HP (U) and HQ(U) from the above lemma and
define w(U) := (HP (U),HQ(U)). In case one of the sets P (U), Q(U) is
empty, we set w(U) to the special symbol −⋊⋉. Furthermore, we define
w(U ′) � w(U) for U ′, U ∈ T if and only if w(U ′) = −⋊⋉ or the distance
between the halfspaces w(U) is smaller or equal to the distance between
the halfspaces w(U ′). In this way, we obtain a quasiorder whose minimal
element is −⋊⋉.

Monotonicity of (T,�, w) is easily verified. To prove locality, assume
−⋊⋉ < w(U ′) = w(U) for U ′ ⊆ U ⊆ T . If w(U ′ ∪ {B}) ≻ w(U ′) for
some B ∈ P—the case B ∈ Q is handled along the same lines—then the
previous lemma shows that B is not contained in the halfspace HP (U ′).
As the latter halfspace equals HP (U), we see that B is neither contained
in HP (U), which in turn implies w(U ∪ {B}) ≻ w(U) via the lemma.

To establish the bound on the combinatorial dimension, we show that
program S(T, ∅) has an optimal solution x̃∗ such that |Fx̃∗ | ≤ d + 2 for
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Fx := {B ∈ T | xB > 0}. Lemma 6.23 then shows that x̃∗ also solves
S(Fx̃∗ , ∅) optimally, so w(Fx̃∗) = w(T ), proving dim(T,w) = |Fx̃∗ | ≤ d+
2. So consider an optimal solution x̃ to S(T, ∅) and suppose |Fx̃| > d+2.
Clearly, x̃ is a solution to the system

Cx̃ = Cx,
∑

B∈P xB = 1,
∑

B∈Q xB = 1,

consisting of d+ 2 linear equations; in it, x is a |T |-vector with xB = 0,
B ∈ T \ F , i.e., the variables of the system are the xB, B ∈ F . The
remark preceding the lemma yields a solution x̃′ to the system with at
most d+2 nonzero entries; since x̃′B = 0 for B ∈ T \F , these entries are
among the variables xB, B ∈ F .

Now consider the convex combination ỹ(τ) := (1 − τ)x̃+ τ x̃′, which
fulfills the two linear constraints of S(T, ∅) for all real τ . Increase τ
continuously, starting from 0 on, and stop as soon as the first of the
entries ỹ(τ∗)B , B ∈ F , drops to zero. At this point we have ỹ(τ∗)B = 0,
B ∈ T \ F , and ỹ(τ∗)B ≥ 0, B ∈ F , so ỹ(τ∗) is feasible to S(T, ∅). We
claim that the objective function f(x) of S(T, ∅) fulfills

f(x̃∗) = f(ỹ(τ∗)).

As Cx̃ = Cỹ(τ∗), it suffices to show rT x̃ = rT ỹ(τ∗) in order to establish
this. But g(τ) := rT ỹ(τ) is a linear function in τ , so if g(τ) were not
constant, it would increase for τ > 0 and decrease for τ < 0 (or the
other way around), and we would thus obtain a solution ỹ(τ) with better
objective value, a contradiction to the optimality of x̃. Consequently,
ỹ(τ∗) is a feasible solution to S(T, ∅) with the same objective value as the
optimal solution x̃, but it has one less nonzero coefficient. By induction,
this shows that a solution x̃∗ with at most d+2 nonzero entries exists.

A subexponential algorithm. As we are going to show now, program
S(U, V ), V ⊆ U ⊆ T , falls into framework from Theorem 6.16. In this
case, Lemma 6.23, together with the fact that the numbers τP , τQ are
unique, proves (C2); the argument parallels the respective proof in case
of sebb0 and mel above. By embedding the input balls T into suffi-
ciently high-dimensional space and perturbing, we can always achieve
that the columns of the matrix C are linearly independent, in which
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case program S(U, V ) is strictly convex, as we have seen. Using strict-
ness it is also straightforward to verify that (C4)–(C7) apply, so that
it remains to develop the primitive (C3). (We remark that the precon-
dition ‘x̃TCTCx̃ 6= 0 from Lemma 6.23 does not cause any problems
because as soon as we—inside the primitive—detect a violation to it, we
can immediately exit and output that the distance is zero.)

We realize the primitive in a similar fashion as in case of program
D(U, V ) solving sebb0. Denoting by IF (P,Q) the (2×|F |)-matrix whose
first row is (1F ,0) and whose second row is (0F ,1), we introduce

MF :=





−Id 0 CF

0T 0 IF (P,Q)
CT

F IF (P,Q)T 0





Along the same lines as in the proof of Lemma 6.9, the matrix MF is
seen to be regular (this makes use of linear independence of C, which we
assume for the rest of this section). The counterpart to Lemma 6.10 for
Dǫ

D(F ) is then

Lemma 6.26. A real x is feasible and optimal to Sǫ
D(F ) iff there exists

a real vector u and two real numbers νP , νQ such that

MF









u
νP

νQ

x̃F









=









−ǫdD

1 − [D ∈ P ]ǫ
1 − [D ∈ Q]ǫ

0









. (6.23)

Here, ‘[x ∈ X]’ equals 1 iff x ∈ X and 0 otherwise.

Proof. An invocation of the Karush-Kuhn-Tucker Theorem similar to
the one in the proof of Lemma 6.10 shows that a feasible x is optimal to
Sǫ

D(F ) if and only if there exist two real numbers τF and τG such that

cTB
CF ′xF ′√
x̃TCT x̃

+ τ[B] = 0, B ∈ F.

Multiply this by ζ :=
√
x̃TCT x̃, and set νP := ζτP and νQ := ζτQ; with

this the system (6.23) encodes feasibility and optimality.

Given this, it is now an easy matter to realize the primitive for Sǫ
D(F ):

the regularity ofMF allows us to solve (6.23) for the tuple (u, νP , νQ, xF ),
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yielding expressions for these entries that are linear in the unknown ǫ.
Solving xB = 0, B ∈ F , for ǫ allows us to recover the times of the
events (aB), and using Lemma 6.23 we can also calculate the arrival
time of event (b). (Please refer to the proof of Lemma 6.8 for the almost
identical details.)

Corollary 6.27. Problem pds over a set of n positive balls T = P ∪Q
in Rd can be solved in expected time

O(d5n) + d4eO(
√

d log d).

Proof. As the problem is LP-type, we employ the algorithm behind
Lemma 2.11 to solve it and use the machinery we have just developed
only to realize the algorithm’s basis computation. With the combina-
torial dimension being bounded by d + 2, we thus obtain a maximal
expected running time of at most

tb · O(dn+ eO(
√

d log d)), (6.24)

where tb denotes the (expected) time to perform a basis computation.

In order to implement the basis computation basis(W,B) for a given
subset W ∪ {B} of the input balls with W a basis and B a violator,
we can assume W to be of size at most d + 1. (If W has already size
d+ 2, the distance between the input hulls is zero and we are finished.)
In order to apply Theorem 6.16, we perform a suitable embedding into
Rd+2 and a symbolic perturbation à la Lemma 5.25 that ensures linear
independence of the centers of W ∪ {B}. Then we select any two balls
F∗ := {B′, B′′} from W ∪ {B}, one from P and one from Q. By the
constraints

∑

B∈P xB = 1 and
∑

B∈Q xB = 1 of program S(F∗, F∗),
we see that xB′ > 0 and xB′′ > 0, which proves F∗ to be a basis.
Theorem 6.16 together with the observation that the primitive prim can
be realized in O(d3) now yields an expected d4 exp(O)(

√
d)) algorithm

for solving the mathematical program S(W ∪{B}, ∅). Plugging this into
(6.24) proves the claim.

We remark that the formulation of pds as the mathematical program
S(U, V ) falls into Amenta’s framework [2] (see the remarks at the end
of this chapter). Thus, the subexponential bound we obtain for it is
not a new result (although our method might be more suitable for an
implementation).
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6.7 Remarks

Based on Gärtner’s algorithm for AOPs, Amenta [2] devised an expected
subexponential-time algorithm for what she calls convex linear program-
ming, that is, for the minimization of a smooth, strictly convex function
over the intersection of a finite family of halfspaces: the goal is to solve
the mathematical program A(T, ∅) defined via

A(U, V ) minimize f(x)
subject to gB(x) ≤ 0, B ∈ U \ V,

gB(x) = 0, B ∈ V,

where f : Rd → R is strictly convex, and V ⊆ U ⊆ T are sets indexing
the given linear (in)equality constraints gB ≦ 0. In order for her algo-
rithm to work, the caller has to provide a polynomial-time subroutine
primA(F ) that solves program A(F, F ) for given F ⊆ T .

Amenta’s framework is slightly more limited than ours. On the one
hand, there are problems which almost fit into the above form ‘A(U, V ),’
yet not entirely. For instance, sebb0 (in the formulation we developed in
this chapter) involves a single additional nonlinear constraint only and
thus fails Amenta’s framework. On the other hand, there are problems
like mel, the problem of computing the smallest ellipsoid enclosing a d-
dimensional set of points, that admit a formulation in the form ‘A(T, ∅)’
above, but for which a realization of the subroutine primA(F ) seems
out of reach: mel’s mathematical programming formulation involves a
convex objective function, subject to one equality constraint, and one
nonnegativity constraint xp ≥ 0 per input point only. Yet, none of the
inequality constraints can be dropped—as is needed for the subroutine
primA(F )—because the objective function’s convexity is lost if we do so
(and with it, the KKT optimality conditions).

In contrast to Amenta’s solver, the main advantage of our method
is that we do not need to ‘artificially’ extend the program’s feasibility
domain for the realization of our computational primitive. (In Amenta’s
framework, the feasibility domain of program A(F, F ), which the sub-
routine needs to solve, is in general larger than the one of the original
program A(T, ∅).) Our algorithm always stays in the interior of the
program’s (original) feasibility domain, and thus we do not require the
objective function to be convex everywhere. (Besides this, we only need
(mere and not strict) convexity and can handle nonlinear convex con-
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straints.) In particular, we do not require ‘optimality conditions,’ i.e.,
a violation test, for solutions outside the (original) feasibility domain.
This is essential because only for the (originally) feasible points does the
Karush-Kuhn-Tucker Theorem imply necessary and sufficient conditions
(provided it applies at all). Our applications for sebb0 and mel heavily
rely on this feature.

To the best of our knowledge, our algorithm for sebb from Corol-
lary 6.17 is the first one to achieve a subexponential time complexity.
We have implemented a variant of the resulting algorithm for sebb as
a prototype in Maple [17]. Instead of running Gärtner’s subexponential
algorithm, we employ the deterministic procedure Aop-Det from [32],
which simply iterates the computational primitive until the optimal so-
lution has been found (requiring exponential time in the worst case).
With this, we can solve instances of up to 300 balls in R300 within two
hours (using exact arithmetic without filtering).—Of course, this does
not say anything about the running time of Gärtner’s subexponential
algorithm.



Bibliography

[1] P. K. Agarwal, S. Har-Peled, and K. R. Varadarajan. Geometric ap-
proximation via core sets. In J. E. Goodman, J. Pach, and E. Welzl,
editors, Combinatorial and computational geometry. Mathematical
Sciences Research Institute Publications, 2005 (to appear).

[2] N. Amenta. Helly theorems and Generalized Linear Programming.
PhD thesis, University of California, Berkley, 1993.
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