Diss. ETH No. 15897

Michael Hoffmann

On the Existence
of Paths and Cycles

2005

i1

DISS. ETH No. 15897, 2005

On the Existence
of Paths and Cycles

A dissertation submitted to the
Swiss Federal Institute of Technology Zurich
for the degree of Doctor of Technical Sciences

presented by

Michael Hoffmann

Dipl. Math., Freie Universitat Berlin, Germany
born May 6, 1970 in Berlin, Germany

citizen of Germany

accepted on the recommendation of
Prof. Emo Welzl, ETH Zurich, examiner
Prof. Erik Demaine, MIT, Cambridge, co-examiner

1v

Abstract

This thesis investigates questions related to the existence of certain
paths and cycles in graphs. Its major part is centered around the fol-
lowing question: Given a set of n line segments in the plane, can one
connect all segment endpoints by a closed path that does not cross itself
nor any of the segments? In other words, under which conditions can
one find a simple polygon P whose vertices are the segment endpoints
and such that P does not cross any segment? (The segments may appear
as edges of P.)

Such polygons are known as Hamazltonian polygons and the moti-
vation to study them is twofold:

e Traversals of line segments are a natural generalization of the
Euclidean Traveling Salesman Problem (ETsp) for points in the
plane.

e Statements about the existence of paths or cycles through line seg-
ments are structural results about the so-called visibility graph of
the segments. Visibility graphs are important geometric struc-
tures that appear frequently in applications, for example in ren-
dering and in the context of shortest path queries.

As a main result we show that a Hamiltonian polygon exists for every
finite set of disjoint line segments that are not all collinear.

The existence of a Hamiltonian polygon is interesting as a structural
result that can be used to analyze properties of other combinatorial
structures. For example, we can use it to obtain asymptotically tight
bounds on the size of so-called alternating paths: in every set of n
disjoint line segments there are () (log n) segments that can be connected
to form a simple path on their endpoints (the path passes through all
these segments from one endpoint to the other) which does not intersect
any of the remaining segments.

Furthermore, we consider a question that has arisen in the context
of service deployment in communication networks: finding chordless
paths in graphs. A chordless path is a path for which no two non-
consecutive vertices are connected by an edge in the graph. The problem
Cpr3v is to decide for three given vertices u,v,w of a graph whether
they can be connected by a chordless path from u via v to w that
consists of at most k vertices.

Vi

Here our result is negative: We show that Cp3v is W([1]-hard, that
is, it is unlikely that the problem can be solved in time polynomial in the
size of the input graph, even if an arbitrary, for example, exponential
dependence on k is permitted. The reduction extends to a number of
related problems for directed graphs. In particular, deciding on the
existence of a chordless (u, w)-path on at most k vertices in a directed
graph is W[1]-complete with respect to k.

vil

Zusammenfassung

Diese Arbeit beschaftigt sich mit der Existenz von bestimmten Pfaden
und Kreisen in Graphen. Ein Hauptaugenmerk liegt hierbei auf fol-
gendem geometrischen Problem: Betrachte n Liniensegmente in der
Ebene; kann man deren Endpunkte durch einen geschlossenen Poly-
gonzug verbinden, welcher weder sich selbst noch eines der Segmente
kreuzt? Anders ausgedruckt: Unter welchen Voraussetzungen gibt es
ein einfaches Polygon, dessen Eckpunkte genau die Endpunkte der Lin-
iensegmente sind, und dessen Kanten keines der Segmente kreuzen?
(Die Segmente diirfen aber als Kanten des Polygons auftreten.)

Derartige Polygone sind als Hamziltonsche Polygone bekannt, und
es gibt eine Reihe von Griinden, sich mit ihnen zu befassen:

e Polygonziige durch Liniensegmente sind eine natiirliche Verallge-
meinerung des Rundreise-Problems fiur Punkte in der Euklidis-
chen Ebene,

e und Aussagen uber die Existenz von Pfaden und Kreisen durch
Liniensegmente sind auch strukturelle Aussagen uber den soge-
nannten Sichtbarkeitsgraphen der Segmente. Sichbarkeitsgraphen
sind geometrische Strukturen von fundamentaler Bedeutung; sie
tauchen in vielen Bereichen auf, zum Beispiel in der Computer-
Graphik oder im Zusammenhang mit der Berechnung von kirze-
sten Wegen in einer Umgebung mit Hindernissen.

Ein Hauptergebnis dieser Arbeit ist, dass fur jede endliche Menge von
Liniensegmenten in der Ebene ein Hamiltonsches Polygon existiert,
sofern nicht alle Segmente auf einer gemeinsamen Geraden liegen.

Mit Hilfe dieses Theorems konnen wir auch asymptotisch scharfe
Schranken fur die Grosse sogenannter alternierender Pfade beweisen:
Fur jede Menge von n Liniensegmenten in der Ebene gibt es einen ein-
fachen Polygonzug, dessen Eckpunkte Endpunkte der Segmente sind,
der kein Segment kreuzt, und der durch Q(logn) Segmente geht (von
einem Endpunkt zum anderen). Dieses Resultat belegt, dass die Exis-
tenz Hamiltonscher Polygone in der Tat auch als strukturelles Ergebnis
interessant ist.

Schliesslich wird noch eine Fragestellung aus dem Bereich der Kom-
munikations-Netzwerke behandelt: die Existenz von sehnenfreien Pfa-
den in Graphen. Auf einem sehnenfreien Pfad gibt es keine Kante

viil

zwischen zwei Knoten, die nicht auch entlang des Pfades benachbart
sind. Man konnte ebensogut sagen: Der von den Knoten des Pfades
induzierte Teilgraph ist genau der Pfad selbst. Deshalb werden sehnen-
freie Pfade auch oft als induzierte Pfade bezeichnet. Das Problem Cpr3v
ist folgendes: Gegeben drei Knoten u, v und w eines Graphen G und
eine natirliche Zahl k; gibt es einen sehnenfreien Pfad von u iber v
nach w in G, der aus hochstens k Knoten besteht?

Hier ist unser Ergebnis negativ: Wir zeigen, dass Cp3v W/[1]-voll-
standig ist. Das heisst, es ist unwahrscheinlich, dass es einen Algo-
rithmus gibt, der es in Zeit polynomiell in der Grosse des Graphen
16st, selbst wenn man eine beliebige Abhéangigkeit (z.B. exponentiell)
der Laufzeit von k erlaubt. Die Beweisidee lasst sich auch auf eine
Reihe verwandter Probleme fur gerichtete Graphen ubertragen. Unter
anderem ist es ein W/[1]-vollstandiges Problem, fiir zwei Knoten s und
t eines gerichteten Graphen zu entscheiden, ob es einen sehnenfreien
gerichteten Pfad von s nach t gibt.

1X

Acknowledgments

I thank my advisor Emo Welzl for giving me the opportunity to work in
an excellent environment, for numerous insights, his constant support,
and the freedom to follow my various research interests.

I am grateful to Erik Demaine for accepting to co-referee this the-
sis, for helpful comments, inspiring talks, and many discussions about
movable blocks and other things.

Csaba Téth, Erik Demaine, Yoshio Okamoto, Bettina Speckmann,
Udo Adamy, Oswin Aichholzer, Giordana Beutler, Marty Demaine,
Robert Haas, Susan Hert, Markus Holzer, Lutz Kettner, Joseph O’Rour-
ke, Sylvain Pion, Michael Seel, Jézsef Solymosi, Milo§ Stojakovié¢, Emo
Welzl, and Gerhard Woginger shared their ideas, their knowledge, and
their experience with me. Without them my research would have been
much less productive and way less fun.

Bernd Gartner, Joachim Giesen, Bettina Speckmann, and Csaba
T6th helped me a lot to improve this manuscript by commenting on
preliminary versions.

I had a great time with the members of our research group over the
past years: Udo Adamy, Christoph Ambuhl, Artur Andrzejak, Alexan-
der Below, Robert Berke, Johannes Blomer, Péter Csorba, Kaspar Fis-
cher, Bernd Gartner, Joachim Giesen, Matthias John, Gyula Karolyi,
Lutz Kettner, Alexander May, Dieter Mitsche, Yoshio Okamoto, Samue-
le Pedroni, Leo Riist, Sven Schonherr, Eva Schuberth, Ingo Schurr,
Shakhar Smorodinsky, Jézsef Solymosi, Simon Spalinger, Bettina Speck-
mann, Bernhard von Stengel, Milo§ Stojakovi¢, Tibor Szabd, Csaba
T6th, Beat Trachsler, Falk T'schirschnitz, Uli Wagner, Emo Welzl, Frans
Wessendorp, and Martin Will.

Franziska Hefti, Tanja Krenn, and Floris T'schurr were a great help
in resolving all kinds of administrative issues.

Finally, and most importantly, I thank my family for their support
and love, far beyond what I can express within these lines.

Contents

Abstract v
Zusammenfassung vii
Acknowledgments ix
1 Introduction 1
1.1 Traversals of Line Segments in the Plane 1
1.2 The Parametric Complexity of Chordless Paths 12
1.3 Results and Outline 17
2 Basics and Notation 19
2.1 Graphs. 19
2.2 Directed Graphs 22
2.3 Geometry 22
24 Topology 25
2.5 Geometric Straight Line Graphs 26
2.6 Visibility Graphso oL 30
2.7 Polygons. 36
3 Hamiltonian Polygons 45
3.1 Algorithmic Overview 46

X1

x11

3.2 FramePolygons 48
3.3 Saturation Lo 52
3.4 Dissection oo 59
3.4.1 Canonical Dissections 60

3.4.2 Extension to Interior Segments 62

3.4.3 Preserving Common Edges 67

3.44 Thedirectionof 5 70

3.45 A First Dissection Algorithm 71

3.5 Simplificationo o o oL 75
3.5.1 Labeling Wedges 7

3.5.2 Anti-CapControl 79

3.6 Preparations for Bridging 89
3.6.1 Wedge Control 92

3.7 Algorithm Summary 98
3.8 Induction L. 110

3.9 Runtime Analysis 112
3.10 Remarkso oo 114

4 Alternating Paths 117
41 LowerBound 118
42 Upperbound 129

5 Chordless Paths 131
5.1 Membershipin W[1] 131
5.2 Hardmess for W[1] 134
5.3 Chordless Cycles 142
5.4 Directed Graphs 145
Bibliography 149

Curriculum Vitae 159

Chapter 1

Introduction

This thesis investigates questions related to the existence of certain
paths and cycles in graphs. It naturally divides into two parts.

The first part discusses traversals of line segments in the Euclidean
plane. The graphs considered in this context are geometric graphs. In
a geometric graph each vertex corresponds to a point and each edge
corresponds to a line segment in the plane.

The second part of this thesis is concerned with chordless paths and
cycles in abstract graphs. In contrast to the first part, these graphs are
defined only by their sets of vertices and edges and do not have any
specific associated embedding. Note that in a path or cycle all vertices
are required to be distinct.

In the following two sections we introduce the problems to be con-
sidered, provide some background information, and discuss a number
of related problems and results. Section 1.3 summarizes our results and
provides an outline of the remaining chapters.

1.1 Traversals of Line Segments in the Plane

The Euclidean Traveling Salesman Problem (ETsP) is one of the most
prominent optimization problems. The input consists of a set of n
points in the plane and the goal is to compute a tour that visits all
points and has minimum Euclidean length. It is well known that com-

1

2 Chapter 1. Introduction

puting such a minimum tour is a hard, that is, Np-hard problem [72],
while approximations of arbitrary fixed precision can be obtained in
polynomial time [7, 62, 76].

More important for our purposes is the simple observation that if
not all points are collinear then the solution to an ETsp instance is
always a simple polygon, that is, a shortest tour is piecewise linear and
does not have any self-intersection [37, 75]. In particular, for every set
of n points in the plane (that are not all collinear) there exists a simple
polygon through all the points, that is, a polygon whose vertices are
exactly the n given points.

We are interested in a generalization of the above statement to line
segments: Can a simple polygon traverse the segment endpoints without
crossing any segment? Consider the example shown in Figure 1 for
illustration.

o) o.
4 ~
¢ So
, ~
I' ~~~
O O O I, ¢"O p ~O
'4",' I, / :
o (o A s
O]
o ° 5 o/ 29 4
1 ¢ 1 4
1 4 1 4
1 4 4
o @] p OI Q\O'z
(a) (b)

Figure 1: A set of line segments and a simple traversal of the seg-
ment endpoints.

There is a rich literature about simple traversals of objects in the
plane. Some relevant results as well as several references to related
problems are discussed in the following paragraphs.

Constrained Shortest Paths. It is common practice to model planar ob-
jects as (collections of) line segments, for example, in the context of geo-
graphic information systems. In particular, these objects may represent
impenetrable obstacles, such as walls, rivers, mountains, or swamps.
Therefore, we consider line segments to be obstacles that a path or tour
must not cross. In general, the line segments may share endpoints or
even intersect arbitrarily.

1.1. Traversals of Line Segments in the Plane 3

A well-studied question in this context is how to compute a shortest
path between two given points in the presence of obstacles. In the
special case where the obstacle segments form the boundary of a simple
polygon (and their order along the polygon is given), one can find the
shortest path in linear time [57]. For general line segments/polygonal

domains Hershberger and Suri [47] gave an O(nlogn) time (and space)
algorithm.

Alternating Polygons. It is not completely clear what “traversing” or
“visiting” a set of line segments means. As a first observation note that
if visiting a segment is interpreted as passing through it from one end-
point to the other then there are simple examples for which the shortest
tour crosses itself. In fact, for the three segments shown in Figure 2(a)
there is no simple tour passing through all segments. Looking at Fig-
ure 2(a) one might think that disallowing chords (segments that are not
edges of the convex hull but for which both endpoints are on the convex

hull) may help. But as Figure 2(c) demonstrates, these are not the only
obstructions that prevent a simple tour.

O O. ~ -
o : T
1 1
t 2. : .
1S 1 1
A3 1
‘| A |' !
1 . 1 1
) ' ool .0
@] b -~ \\ 1 Phe -
~o .. N - -
o alkeg
(a) Three segments. (b) The shortest tour passing
through all segments.
®)
o o0 o ©
o) ®)
®)
@) ®)

(c) Five segments.

Figure 2: Sets which do not admit an alternating polygon.

4 Chapter 1. Introduction

Rappaport [77] showed that it is an Np-complete problem to decide
whether a given set of line segments can be completed to form the edges
of a simple polygon whose vertices are the segment endpoints. We call
such a polygon an alternating polygon because for disjoint segments
exactly every other edge along the boundary of such a polygon must be
one of the given segments.

Note that in Rappaport’s reduction line segments are allowed to
share endpoints, that is, he uses collections of polygonal paths; decid-
ing on the existence of an alternating polygon for a set of disjoint line
segments is not known to be Np-hard. In the special case where the
given segments are convexly independent (for every segment at least
one endpoint is on the convex hull boundary) an alternating polygon
(if it exists) can be computed in linear time if the order of the segments
along the convex hull is given [79]. Also the existence of a monotone
alternating polygon for a set of line segments can be decided in poly-
nomial time [8]. A simple polygon P is monotone if there is a line ¢
such that for any line £’ perpendicular to { the intersection £’ N P is
connected.

Hamiltonian Polygons. A natural relaxation of this apparently too strict
definition of traversal is to require the polygon to pass through the seg-
ment endpoints only. This leads to the notion of Hamiltonian polygons:
A Hamultonian polygon for a set of line segments is a simple polygon
whose vertices are the segment endpoints and for which no edge prop-
erly crosses any segment.

One main result of this thesis proves a conjecture of Mirzaian [61,
25]: A Hamiltonian polygon exists for every finite set of disjoint line
segments that are not all collinear. Previously, this conjecture was
known to hold for a few special classes of disjoint line segments only:
for convexly independent segments [61], when no segment intersects the
supporting line of any other segment [69], and for unit length segments
whose endpoints have integer coordinates [69].

Moreover, our proof provides an algorithm to construct a Hamilto-
nian polygon for n disjoint line segments in O(n?) time. Given a lower
bound of Q(nlogn) (see the paragraph on encompassing trees below),
a natural open problem remains to close this gap.

1.1. Traversals of Line Segments in the Plane 5

L. ,O\\ Os. .
4 ~ A 3
4 S ’ A LN
¢ RS ’ \ As RS
4 O ~ 4 O \ \ ~
X4
¢ o7 © ! 2 p P £ L » 0
c" ’ 1 ’ 71 i . 1
‘-, s 1 ¢ an I 4 el e
dg” ., ot ' Q.+ 4y 1, ' o, . !
¢ Q’ (@] ! N d ¢ O O ! NSRS of Q !
(0] ¢ 1 (@) N 1 \ (@) L} @) " @)
1 4 I 4 N Vi A V4 Y 1 ¢
R4 1 / . ! \ / \ Y 4
(‘)1 ¢ \O’ o ¢ ‘O .==0 1y
~ 2 s - =
© d of
(2) Hamiltonian. (b) Alternating. (c) Circumscribing.

Figure 3: D:ifferent classes of polygons traversing a set of line seg-
ments.

Circumscribing Polygons. Another plausible interpretation of traversal
asks for slightly more: a simple polygon whose vertices are the segment
endpoints and that contains all segments in its interior (as a closed
subset of R?). Such a polygon is known as a circumscribing polygon
for the segments. An example illustrating the differences between the
different types of traversal polygons is shown in Figure 3.

Mirzaian [61] proved that a circumscribing polygon exists for disjoint
line segments that are convexly independent. He conjectured that a cir-
cumscribing polygon exists for every finite set of disjoint line segments,
but this conjecture was quickly refuted by Urabe and Watanabe [86]:
they constructed a set of seventeen disjoint line segments which do
not admit a circumscribing polygon. The even smaller counterexample
shown in Figure 4 is due to Griinbaum [43].

@) @)

Figure 4: Siz segments which do not admait a circumscribing polygon.

On the other hand, Pach and Rivera-Campo [71] showed that for
every set of n disjoint line segments in general position (no three end-

6 Chapter 1. Introduction

points are collinear) there is a subset of size Q(n'/3) segments for which
a circumscribing polygon exists.

Segment Endpoint Visibility Graphs. All these polygons can also be inter-
preted as spanning subgraphs of the so-called segment endpoint visi-
bility graph. The vertices of this graph are the segment endpoints and
two of them are connected by an edge if and only if the corresponding
line segment is either one of the input segments or it does not cross any
input segment; Figure 5 shows an example.

The third conjecture of Mirzaian [61] is that for any finite set of
disjoint line segments in the plane — not all collinear — the endpoint
visibility graph is Hamiltonian. Clearly a circumscribing polygon is
also a Hamiltonian polygon, and a Hamiltonian polygon gives a Ha-
miltonian cycle in the visibility graph. Hence, our theorem regarding
the existence of Hamiltonian polygons for disjoint segments also set-
tles Mirzaian’s third conjecture. On the other hand, we show that the
disjointness condition cannot be dropped from the statement: If the
segments may share endpoints, their endpoint visibility graph is not
necessarily Hamiltonian.

@)}
(@) @) O
Q Q O
o o}
(@)
© @)

(a)
Figure b: A set of segments and their endpoint visibility graph.

Apart from their obvious applications in illumination, rendering,
and guarding, visibility graphs are also an important structure in many
motion planning problems (cf. [63]), as the visibility graph contains
all shortest paths between obstacle vertices. For polygonal obstacles
consisting of n line segments, the visibility graph can be computed in
worst case optimal quadratic time (and space) [90] or output-sensitive
in O(nlogn+k) time [42], even with O(n) (working) space [74], where

1.1. Traversals of Line Segments in the Plane 7

k is the number of edges in the visibility graph.

If the segments are on the boundary of a convex polygon then the vis-
ibility graph is a complete graph on 2n vertices, so k may be quadratic
in n. On the other hand, 5n — 4 is a tight lower bound on k that is
obtained if all segments are parallel and all endpoints are in convex po-
sition [82]. It is not known whether segment endpoint visibility graphs
can be recognized efficiently, except for the (small) subclass of planar
segment endpoint visibility graphs for which Everett et al. [33] gave a
linear time recognition algorithm.

If the segments form the boundary of a simple polygon, the visibility
graph can be computed in O(n + k) time [46]; in this case also a more
compact representation of size O(nlog3 n) may be obtained as a union
of cliques and bipartite cliques [1]. However, for n disjoint line segments
the smallest clique cover may be of size Q(n?/log”n) [1].

Alternating Paths. As discussed above, there are sets of disjoint line
segments that do not admit an alternating polygon. But maybe — as
for circumscribing polygons — one can always find a “large” subset of
segments for which an alternating polygon exists? It is not hard to see
that this may not be the case. Consider a set of parallel segments whose
endpoints form a convex polygon; no subset of more than two of these
segments admits an alternating polygon.

On the other hand, there is always an alternating Hamiltonian path
in the visibility graph of parallel line segments. (In an alternating path
every other edge is one of the given segments.) So maybe one can always
find an alternating path through “many” segments? Indeed, we show
that for any set of n disjoint line segments the visibility graph contains
an alternating path through roughly logn segments. This bound is
asymptotically tight: For any k € IN there exists an n > k and a set
of n disjoint line segments whose visibility graph does not contain an
alternating path through more than 4logn segments. To close the gap
between these bounds and, ideally, to determine the “right” constant
remains an open problem.

Encompassing Trees. An immediate consequence of the existence of a
Hamiltonian polygon is that for any set of n disjoint line segments there
is an encompassing tree. An encompassing tree is a planar embedding
of a tree in which all segments are edges; see the example shown in

8 Chapter 1. Introduction

Figure 6(a). Indeed, a Hamiltonian polygon together with all segment
edges forms a planar spanning subgraph of the visibility graph with
maximum vertex-degree three. For this graph one can easily compute
a spanning tree that contains all segments as edges and hence forms a
binary encompassing tree for the segments. (Take an arbitrary cycle in
the graph and remove a non-segment edge from it. As the segments are
disjoint, any cycle contains a non-segment edge.)

’ Y 4
Q / ! e
'd
X /4 Q O.-.
t? 1 ‘ =0
v A L} 4
1 4 A} ,'
|, O ¢
© d

(a) (b)

Figure 6: A (pointed) binary encompassing tree and a minimum
pseudotriangulation for a set of disjoint line segments.

The existence of an encompassing tree for disjoint line segments
has been established by Bose and Toussaint [16], with a degree bound
of seven. They also showed that this bound is tight in the case of
minimum weighted encompassing trees, where each edge is weighted
with the Euclidean distance of both endpoints. Later Bose, Houle,
and Toussaint [15] improved the general bound to three and gave an
algorithm to compute a binary encompassing tree for n segments in
O(nlogn) time. They also showed that the runtime is optimal in the
algebraic computation tree model. As a binary encompassing tree can
be obtained from a Hamiltonian polygon in linear time, this lower bound
carries over to the problem of constructing a Hamiltonian polygon for
a set of disjoint line segments.

Recently Hoffmann, Speckmann, and Téth [48] strengthened these
results by showing that any set of disjoint line segments admits a
pointed binary encompassing tree. A geometric graph is pointed if and
only if for every vertex all incident edges lie in a closed halfplane that
is bounded by a line through the vertex. Pointedness is an important
property of so-called minimum pseudotriangulations. A pseudotrian-

1.1. Traversals of Line Segments in the Plane 9

gle is a simple polygon with exactly three convex vertices; in particular,
any triangle is a pseudotriangle. A minimum pseudotriangulation is
a partition of some domain (for example, a polygon) into a minimum
number of pseudotriangles; see Figure 6(b) for an example.

The existence of a pointed binary encompassing tree implies that
there exists a constrained minimum pseudotriangulation for the seg-
ments (that is, a minimum pseudotriangulation in which all segments
appear as edges) whose maximum vertex degree is bounded by a con-
stant, independently of the number of segments [2]. Observe that the
analogous statement for triangulations is false: For some sets of seg-
ments (even points) every constrained triangulation has a vertex of lin-
ear degree. Also, there are triangulations that do not contain a pointed
spanning tree for their vertices as a subgraph [3].

The Number of Simple Polygonizations. Interestingly, it is not known
whether the number of simple polygons through a given point set (that
is, whose vertices are exactly the given points) can be computed in poly-
nomial time [64, 70]. Currently, the best known estimates for the max-
imum number of simple polygons through n points are a lower bound
of 4.642™ [40] and an upper bound of 199" (obtained by combining
an upper bound of 3.37" on the number of simple cycles in a planar
graph [5] with an upper bound of 59™ on the number of triangulations
for a set of n points [81]).

Extensions to Higher Dimension. The statement about the existence of
a simple polygon through a given set of points generalizes to three
dimensional space in the following way: For every finite set of points in
R> not all of which are coplanar there is a simple (sphere-like, that is,
genus zero) polyhedron whose vertices are exactly the given points [43,
53].

Csima and Ralston [24] showed that between any two points of a
finite point set P C R¢ there exists a simple Hamiltonian path (in the
complete geometric graph on P), unless the points are arranged in one
of six forbidden types of configurations. (In all of these exceptional
configurations many points are collinear.)

Simple Hamiltonian Cycles in Dense Geometric Graphs. The following prob-
lem is due to Perles [73]: How many edges can one remove from any

10 Chapter 1. Introduction

complete geometric graph on n points (in general position) such that
the resulting graph still always contains a simple Hamiltonian cycle?
Cerny et al. show that if o(y/n) edges are removed then the resulting
graph always contains a simple Hamiltonian cycle [18]. They also show
that if the set of removed edges corresponds to a perfect matching then
the resulting graph always contains a simple Hamiltonian cycle. If we
interpret this result in terms of disjoint line segments, removing the
edges of a perfect matching corresponds to disallowing the segments
as edges. But the resulting Hamiltonian cycle is not a Hamiltonian
polygon for the set of line segments as defined above; it is only a Ha-
miltonian cycle for the segment endpoints and its edges may cross the
line segments arbitrarily.

Long Hamiltonian Cycles. Similar to the ETsp where the objective is to
find a minimum tour, researchers considered the corresponding maxi-
mization problem MAX-ETsP of computing a tour of maximum length
through the given input points. Surprisingly, the complexity of Max-
ETsP in the plane is still open [63], while the problem is known to be
Np-hard starting from dimension three [9]. Another interesting fact is
that the problem can be solved in polynomial time for any fixed di-
mension if the Euclidean norm is replaced by the rectangular norm (or,
more generally, any norm defined by a finite polyhedron) [9]. This is in
strong contrast to the minimization problem which is Np-hard for any
L,-norm starting from dimension two [54].

Another difference between (MIN-)ETsp and Max-ETsP is that a
maximum tour usually contains self-crossings. Thus, requiring the tour
to be simple is indeed a restriction. While it seems that the problem of
computing a maximum simple tour should be at least as hard as Max-
ETsp, this problem is not known to be Np-hard, either. Alon et al.[4]
showed that for any finite set of points in the plane a non-crossing Ha-
miltonian path whose length is within a factor of 1/7m of the longest
(possibly self-crossing) Hamiltonian path can be computed in polyno-
mial time. They also gave a simple example — m points evenly dis-
tributed on the unit circle — demonstrating that one cannot hope for
a similar constant ratio in the case of Hamiltonian cycles: in this case
the length of the longest simple cycle is less than 27, but the length of
the longest self-crossing Hamiltonian cycle is linear.

1.1. Traversals of Line Segments in the Plane 11

Hamiltonian Triangulations. Another well-studied problem is the exis-
tence of Hamiltonian cycles in triangulations. It appeared in the con-
text of curve reconstruction where one has to construct a closed curve
through a given set of points. The first algorithms to attack this prob-
lem started by building a Delaunay triangulation of the input points
(which tends to include edges between points close to each other) and
then find a Hamiltonian cycle in the triangulation. Naturally, the ques-
tion was raised whether such a Hamiltonian cycle always exists. The
answer is negative [26]; in fact, it is an NP-complete problem to decide
whether a given Delaunay triangulation is Hamiltonian [28].

On the other hand, a sufficient condition for the existence of a Ha-
miltonian cycle in a triangulation is provided by a classical theorem
of Whitney [91]: for maximally planar graphs (all faces are triangles)
the absence of a separating triangle (a triangle that does not form the
boundary of a face) implies that the triangulation is Hamiltonian. Dil-
lencourt [27] discusses extensions of Whitney’s theorem to triangula-
tions where the outer face is not a triangle. He shows that a triangula-
tion is Hamiltonian if it does not have a separating triangle and if in the
subgraph induced by the vertices of the outer face (the so-called bound-
ary graph) no face is bounded by more than three chords (edges not
bounding the infinite face). Observe that properly placed line segments
may generate a linear number of chords in the boundary graph; hence,
Dillencourt’s Theorem does not (immediately) imply the existence of a
Hamiltonian polygon for disjoint line segments. But Dillencourt’s The-
orem can be used to show that the visibility graph of n congruent discs
in the plane is Hamiltonian [78|.

Unfortunately, the term Hamiltonian triangulation is also used to
denote a different property, the presence of a Hamiltonian path in the
dual of the triangulation. This question is motivated by an application
from computer graphics. When triangulation data is sent to a render-
ing engine, in order to minimize the amount of communication it is
desirable to order the triangles in such a way that any two consecutive
triangles share an edge. Then for each triangle only one new vertex
has to be transmitted. (To be precise, one more bit is needed to in-
dicate the direction in which to continue.) Clearly such an ordering
of the triangles corresponds to a Hamiltonian path in the dual graph
of the triangulation. For any set of n points [6] and any simple poly-
gon on n vertices [66] a Hamiltonian triangulation — if it exists —
can be constructed in O(nlogn) time. But deciding the existence of a

12 Chapter 1. Introduction

Hamiltonian triangulation for polygons with holes is NP-complete [6].

1.2 The Parametric Complexity of Chordless Paths

A chordless path in a graph G is a path for which no two vertices are
connected by an edge that is not in the path. Alternatively, one could
say that the subgraph induced by the vertex set of the path in G is the
path itself. Hence, chordless paths are also known as induced paths.

The problem Cpr3v (“Chordless Path through Three Vertices”) is to
decide for three given vertices u,v,w of a graph whether there exists
a chordless path from u via v to w. Figure 7 shows an example. This
problem was introduced by Robert Haas who encountered it in the
context of service deployment in communication networks [44].

Wo
O
@)
(@]
v
© O
O

LLO

(a) A chordless path. (b) No chordless path.

Figure 7: Vertices u,v,w for which a chordless path from u via v to
w ezists or does not ezxist.

The motivation is the following: For a given network (modeled as
a graph) one is given two vertices u and w and one has to find a path
between these vertices such that all vertices on the path satisfy certain
criteria (one may think of bandwidth or support for certain protocols
as an example). The list of criteria is typically long and the capabilities
of the vertices vary over time; that is, we do not know which vertices
of the graph satisfy those criteria for any particular request. Hence we
may also look at this problem as a search for a path in an unknown
induced subgraph of a given graph.

The computation consists of rounds in each of which a subset of
vertices is queried. At the end of each round we know which of the
queried vertices satisfy the given criteria. The goal is to minimize the

1.2. The Parametric Complexity of Chordless Paths 13

number of rounds and at the same time the number of vertices queried.
Clearly these two objectives are contradictory and we did not specify
how to balance them, that is, the overall objective is not well defined.

But the following simple observation allows to potentially discard a
number of vertices: As the (unknown) subgraph of admissible vertices
is an induced subgraph, we may restrict our search to chordless paths.
That is, a vertex that does not lie on any chordless path between u and
w does not need to be queried. For suppose that we found a path P
from u to w for which all vertices fulfill the given list of requirements.
If P has a chord then this chord may be used as a shortcut to produce a
shorter path from u to w for which all vertices satisfy the requirements
(because they were vertices of the original path P). Observe that simply
the fact that there exists a path that is shorter than P does not help,
as long as it is not clear that all vertices on this path satisfy the given
requirements.

Indeed, experiments have shown that this discard strategy is ef-
fective: For typical Internet router-level topologies, a large fraction of
vertices do not belong to chordless paths. Depending on the topology
analyzed, a conservative estimate of the average percentage of vertices
that are not on a chordless path for random pairs of source and desti-
nation vertices varies from 9% to 48% of the total number of vertices
in the topology [44].

Unfortunately, as far as an efficient implementation of the strategy
is concerned, our result is negative: It turns out that Cr3v is Np-
complete as a consequence of a theorem by Fellows [35]. However, from
an application point of view one might be willing to accept an algorithm
that is exponential in some parameter that is “typically” small; in this
case, the number of vertices on the path is a natural parameter. Hence,
let us add a positive integer k to the input of Cr3v and rephrase it to
ask for a chordless path from u via v to w of size at most k, where the
size of a path is defined as its number of vertices.

But once again it turned out that an efficient algorithm for the pa-
rameterized version is rather unlikely to exist: We prove the problem to
be W[1]-complete with respect to k. This also implies [10, 21] that there
is probably no PTAS to compute a (1 + ¢)-approximation for the short-
est chordless path from u via v to w in time bounded by an arbitrary
function in ¢ but polynomial in the size of the graph.

The reduction extends to a number of related problems about chord-

14 Chapter 1. Introduction

less paths and cycles. In particular, deciding on the existence of a single
directed chordless (u,w)-path in a digraph is also W/[1]-complete with
respect to the size of the path.

In the following paragraphs we summarize a number of related re-
sults and provide a brief introduction into parameterized complexity.

Chordless Paths and Cycles. The following problem is closely related to
Cpr3v.

Many Chordless Paths through Two Vertices (McpP2v): Given an undi-
rected graph G = (V,E), positive integers k and {, and two distinct
vertices s,t € V, 1s there a set U C V of at most k vertices such that
the subgraph induced by U in G 1s a disjoint union of { chordless
(s, t)-paths?

The unparameterized version of the above problem (no restriction
on the size of U) was shown to be Np-complete by Fellows [35], already
for { = 2 where it asks for a chordless cycle through s and t. We show
that this problem is equivalent to the unparameterized version of Cp3v
under polynomial time reductions, that is, the unparameterized version
of Cp3v is Npr-complete. Furthermore, these reductions can also be
considered parameterized reductions between Cr3v and Mcpr2v. In
particular, it is a W/[1]-complete problem to decide whether there exists
a chordless cycle of length k through two given vertices of a graph.

The hardness results for Cp3v and 2cp2v rely on graphs that con-
tain many vertex-disjoint (s, t)-paths. It is not difficult to see that in
planar graphs the existence of four vertex-disjoint (s, t)-paths basically
implies the existence of a chordless (s, Vv, t)-path. This argument imme-
diately gives an O(3%n°¢) time algorithm for Cp3v in planar graphs, for
some constant ¢ € IN: Branch on the at most three vertices of a min-
imum (s,t)-cut. But the more interesting question is whether Mcp2v
is polynomial for planar graphs. This was answered in the affirmative
for every fixed { by McDiarmid et al. [59, 60].

If in Mcp2v we ask for vertex-disjoint paths only instead of requiring
all paths to be jointly chordless, the problem is polynomial for general
graphs and every fixed {, even for arbitrary source-target pairs (si,ti),
1 <1< {[80]. But it remains Np-complete if { is considered part of the
input [56].

l1Except for some basic cases which can easily be solved separately.

1.2. The Parametric Complexity of Chordless Paths 15

Deciding whether a graph contains a chordless path of size at least
k is one of the classical Np-complete problems (GT23 in [41]). Bi-
enstock [13, 14] listed several other Np-complete problems related to
chordless paths:

e Does a graph contain a chordless path of odd (even) size between
two specified vertices?

e Does a graph contain a chordless cycle of odd (even) size (> 3)
through a specified vertex?

e Does a graph contain a chordless path of odd (even) size between
any two vertices?

Note that these results do not imply the hardness of deciding whether
there exists any chordless path/cycle of odd/even size (> 3) in a graph.
This question is still open; see the discussion below.

Perfect Graphs. Chordless cycles of size at least four are also called
holes. They are tightly connected to Berge’s strong perfect graph
conjecture [11], whose proof has recently been announced by Chud-
novsky et al. [23]. In a perfect graph, the maximum number of pairwise
adjacent vertices (cligue number) for each induced subgraph is equal
to the minimum number of colors needed to color the vertices in such
a way that any two adjacent vertices receive distinct colors (chromatic
number). According to the perfect graph conjecture, a graph is perfect
if and only if it is Berge, that is, it contains neither an odd hole nor the
complement of an odd hole.

Hence, a polynomial time algorithm to decide whether there exists
any odd hole in a given graph would immediately imply that perfect
graphs can be recognized in polynomial time. Interestingly, no such
algorithm to detect odd holes is known, although there is a polynomial
time algorithm to decide whether a graph is Berge [22], even indepen-
dent of the strong perfect graph conjecture. Also, if the restriction to an
odd number of vertices is omitted, the presence of holes can be detected
in polynomial time: for holes on at least four vertices this is the well-
studied recognition problem for chordal graphs [58, 85]. The problem
of detecting holes on at least five vertices has recently been addressed
by Nikolopoulos and Palios [68].

16 Chapter 1. Introduction

Parameterized Complexity. To cope with the apparent computational in-
tractability of Np-hard problems, attempts were made to analyze more
closely which parts or aspects of the input render a particular problem
hard. A prototypical example is Vertex Cover, which asks for a set C
of at most k vertices from a given graph G on n vertices such that for
each edge at least one endpoint is in C. The trivial observation that for
any edge at least one of the two incident vertices has to be in C, leads
to an O(2*n) time algorithm: Choose an arbitrary edge and branch on
the two possibilities, in both cases removing one vertex and all inci-
dent edges from the graph. Hence, the intractability of Vertex Cover is
connected to the number k of vertices in the cover rather than to the
size of the graph G. One says that Vertex Cover is fized-parameter-
tractable (FpT) with respect to the parameter k because there is an
algorithm that runs in f(k)p(n) time for an arbitrary (typically expo-
nential) function f and a polynomial p. Such an algorithm is said to be
an Fp (fixed-parameter) algorithm.

Naturally, there are also problems for which it is not known whether
their complexity can be attributed to one particular parameter in this
way. Moreover, similar to the classical complexity classes, there are
classes of parameterized problems that are hard in the sense that if
there is a fixed parameter algorithm for any of them, then all of them
are FpT. The most important such class is called W/[1], which can be
described in terms of the following “canonical” problem.

Weighted q-CnNF-Satisfiability: Given two positive integers q and k,
and a boolean formula F 1n conjunctive normal form such that each
clause contains at most q literals, 1s there a satisfying assignment
for F with at most k variables set to true?

A problem P parameterized by k is said to be m-reducible to a
problem P’ parameterized by k’ if there is a computable function h
that maps an instance (x, k) of P to an instance (x’,k’) of P’ such that

e (x,k) is a yes-instance of P if and only if (x’, k') is a yes-instance
of P/,

o k' =g(k),

e and x’ can be computed in time f(k)p(|x|),

where f and g are arbitrary functions and p is a polynomial. Then
WI1] is defined as the class of parameterized problems that can be m-

1.3. Results and Outline 17

reduced to Weighted g-CnNF-Satisfiability for some constant q. Finally,
a problem is W([1]-hard if every problem in W/[1] can be m-reduced to it.
A problem that is both W([1]-hard and in W/{1] is called W[1]-complete.

At this point, we refer the interested reader to the literature for more
in-depth information about parameterized complexity. The book of
Downey and Fellows [30] provides a thorough treatment of complexity-
theoretic aspects, whereas the survey of Niedermeier [67] focuses more
on algorithms.

1.3 Results and Outline

Chapter 2 introduces basic structures, concepts, and notation that are
used throughout this thesis.

In Chapter 3 we prove the existence of a Hamiltonian polygon for any
set of disjoint line segments in the plane in which not all segments are
collinear. The proof is algorithmic and yields an O(n?) time algorithm
to construct a Hamiltonian polygon for a set of n disjoint line segments.
This result was obtained in collaboration with Csaba David Téth; it
was presented at Ccca 2001 [49] and then invited to a special issue of
Computational Geometry: Theory and Applications [52]. We also
give an example that the above statement is not true in general if the
segments may share endpoints.

Chapter 4 uses the existence of a Hamiltonian polygon to resolve
another long-standing open problem [25, 87, 88] regarding alternating
paths: for every set of n disjoint line segments the endpoint visibility
graph contains an alternating path (a path that consists of segment
edges and non-segment edges in alternating order) that passes through
at least Q(logn) segments. This bound is asymptotically tight in the
sense that there are families of disjoint line segments which do not
admit an alternating path through more than O(logn) segments. This
result was presented at Ewca 2002 [50] as a joint work with Csaba
David Téth; the full paper appeared one year later in Information
Processing Letters [51].

Chapter 5 settles the parametric complexity of Cp3v and a few
related problems by proving them W/[1]-complete. Recall that Cpr3v is
to decide for three given vertices u, v, w of a graph whether there exists
a chordless path from u via v to w. Among the other problems are the

18 Chapter 1. Introduction

following.

e Is there a chordless cycle of size at most k through two given
vertices?

e Is there a directed chordless path of size at most k between two
given vertices of a directed graph?

e Is there a directed chordless cycle of size at most k through a
given vertex of a directed graph?

These results were presented at IwPEC 2004 [45] as a joint work with
Robert Haas.

Chapter 2

Basics and Notation

This chapter defines the objects of our interest and derives some of their
properties. It also lists some basic concepts and notation that will be
used throughout this work.

2.1 Graphs

An (undirected) graph G = (V,E) is defined on a set V of wvertices.
Unless explicitly stated otherwise, V is always finite. Vertices are as-
sociated to each other through edges which are collected in the set
E C (). The two vertices defining an edge are termed adjacent to
each other and incident to the edge.

For a vertex v € V, denote by Ng(v) the neighborhood of v in G,
that is, the set of vertices from G that are adjacent to v. Similarly, for
a set W C V of vertices define Ng(W) := (J,,c\y Ng(w). The degree
deg(v) of a vertex v € V is the size of its neighborhood, that is, the
number of edges from E incident to v. The subscript is often omitted
when it is clear to which graph it refers to.

Two graphs G = (V,E) and H = (U, W) are i<somorphic if and only if
there is a bijection ¢ : V — U such that {u,v} € E < {d(u),p(v)} €
W. Such a function ¢ is called an isomorphism between G and H.
The structure of isomorphic graphs is identical and often we do not
distinguish between them when looking at them as graphs.

19

20 Chapter 2. Basics and Notation

For a graph G denote by V(G) the set of vertices and by E(G) the
set of edges. A graph H = (U, F) is a subgraph of G if and only if U C V
and F C E. In case that U = V the graph H is a spanning subgraph of
G. For aset W C V of vertices denote by G[W] the induced subgraph of
W in G, that is, the graph (W,EN("))). For F C E let G\ F:= (V,E\F).
Similarly, for W C V let G\ W := G[V \ W]. In particular, for a vertex
or edge x € V U E we write G \ x for G \ {x}. The union of two graphs
G=(V,E) and H = (W, F) is the graph G U H:=(V U W,E U F).

Graph Traversals A walk in G is a sequence W = (vq, ..., v¢), k € N,
of vertices such that v; and vi,; are adjacent in G, for all 1 <1i < k.
The vertices v; and vy are referred to as the walk’s endpoints, the
other vertices are called interior. A walk with endpoints v; and vy
is sometimes referred to as a walk between v; and vi. For a walk W
denote by V(W) its set of vertices and by E(W) its set of edges (pairs
of vertices adjacent along W). We say that W wisits the vertices and
edges in V(W)UE(W). A walk for which both endpoints coincide, that
is, V1 = vy, 1s called closed. Otherwise the walk is open.

The size |W/| of a walk W = (v, ..., vy) is defined as its number of
vertices, counting multiplicities: for an open walk it is (W| = k; if W is
closed then v; and vy are counted as one appearance of the vertex, that
is, [W| =k —1. A walk of size one is said to be trivial. An odd walk is
a walk whose size is odd. Analogously, an even walk is a walk whose
size is even. For two walks U = (uq, ..., ux) and W = (vq, ..., vq),
for k,{ € IN, with ux = vy denote the concatenation of U with W by
U-W:=(ug, ..., ux,va,..., vq).

If a walk uses each edge of G at most once, it is a trail. A closed
walk that visits each edge and each vertex at least once is called a tour
of G. An Euler tour is both a trail and a tour of G, that is, it visits
each edge of G exactly once. A graph that contains an Euler tour is
termed Eulerian.

If all vertices v, ..., v of a closed walk W are distinct except for
vi = v then W is a cycle of size k — 1. If all vertices vq, ..., vx of a
walk W are distinct, W is a path of size k. A Hamailton cycle (path)
is a cycle (path) that visits every vertex of G. A graph that contains a
Hamilton cycle is termed Hamazltonian.

Two trails are edge-disjoint if and only if they do not share any
edges. Two paths are called wvertez-disjoint if and only if they do

2.1. Graphs 21

not share any vertices except for possibly common endpoints. For two
vertices s,t € V any path with endpoints s and t is called an (s, t)-path.
More generally, if vertices s, v, and t appear on path P in this order,
we call P an (s, v, t)-path.

A set I C V of vertices is an independent set in G, if E does not
contain edges between any two vertices of I. A path P in G is called
chordless if and only if V(P) is an independent set in G \ E(P). An
alternative equivalent definition would be to call a path P in G chordless
if and only if G[V(P)] = P. Hence such paths are also known as :nduced
paths.

A subwalk of a walk W = (vq, ..., Vi) is a contiguous subsequence
(vi,...,v;) of W, for T <1 < j < k. If Wis closed then also sub-
sequences of the type (vi,...,vk,v2,...,v5), for 2 < j < i < Kk, are

considered to be subwalks of W. A subwalk that is a trail or path is
also referred to as subtrail or subpath, respectively.

“_»
~

Define an equivalence relation on V by setting a ~ b if and only
if there is a path between a and b in G. The equivalence classes with
respect to “~” are called components of G and their number is denoted
by w(G). G is connected if w(G) =1 and disconnected, otherwise.

A vertex v € V of a connected graph G = (V,E) is a cut-vertex of
G if and only if G \ v is disconnected. A graph that does not contain
any cut-vertex is 2-connected. Similarly an edge e € E of a connected
graph G = (V,E) is a cut-edge of G if and only if G \ e is disconnected.
A graph that does not contain any cut-edge is 2-edge-connected.

Special Classes of Graphs A graph with a maximum number of edges,
that is, (V, (%)), is called a cliqgue. Up to isomorphism there is only
one clique on n vertices; it is referred to as the complete graph K.,
n € IN. A graph whose vertex set can be partitioned into at most two
independent sets is bipartite. An equivalent characterization states that
a graph is bipartite if and only if it does not contain any odd cycle.
The bipartite graphs with a maximum number of edges (unique up
to isomorphism) are the complete bipartite graphs Ky, n, for m,n €
IN. They consist of two disjoint independent sets of size m and n,
respectively, and all mn edges in between.

A forest is a graph that does not contain any cycle. A connected
forest is called tree and its leaves are the vertices with exactly one
neighbor. Every connected graph contains a spanning subgraph which

22 Chapter 2. Basics and Notation

is a tree, a so called spanning tree.

2.2 Directed Graphs

An directed graph or, for short, digraph D = (V,E) is defined on a set
V of vertices. Unless explicitly stated otherwise, V is always finite. The
set E consists of ordered pairs of vertices, that is, E C V2. The elements
of E are referred to as arcs. An arc (u,v) € E is said to be directed
from its source u to its target v. For (u,v) € E we also say “there is
an arc from u to v in D”. Usually, we consider loop-free graphs, that
is, arcs of the type (v,v), for some v € V, are not allowed.

The in-degree degp (v) := [{(u,Vv)|(u,v) € E}| of a vertex v € V is the
number of incoming arcs at v. Similarly, the out-degree degf, (v) :=
{(v,u)|(v,u) € E}| of a vertex v € V is the number of outgoing arcs at v.
Again the subscript is often omitted when the graph under consideration
is clear from the context.

From any undirected graph G one can obtain a digraph on the
same vertex set by specifying a direction for each edge of G. Each
of these 2/E(G)I different digraphs is called an orientation of G. Sim-
ilarly every digraph D = (V,E) has an underlying undirected graph
G=(V,{{u,v}|(u,v) € Eor (v,u) € E}). Hence most of the terminol-
ogy for undirected graphs carries over to digraphs.

A directed walk in a digraph D is a sequence W = (vq, ..., vi), for
some k € IN, of vertices such that there is an arc from v; to vi. 7 in D,
for all 1 < 1 < k. In the same way we define directed trails, directed
paths, directed cycles, and directed tours.

2.3 Geometry

Most of the following takes place in the Euclidean Plane R2. We are
particularly interested in the following types of subsets of R?.

An element of R? is referred to as a point.

A line { is a one-dimensional affine subspace of R?. It is uniquely
determined by two distinct points p and q as

L={p+Ag—p)| AER}.

2.3. Geometry 23

Removal of any single line { disconnects R? into two components. These
are the open halfplanes defined by {. Their respective closure or, equiv-
alently, union with { forms a closed halfplane.

A line { is disconnected into two components by removal of any
single point p € {. Their respective closure or, equivalently, union with
p forms a ray emanating from p along {. For any point q € £\ {p} we
also denote these rays by

pq = {p+A(d—p)| A€ Rand A >0} .

Any non-empty, compact and connected subset of a line is a line seg-
ment or segment, for short. For a segment s let V(s) denote the set
of its endpoints, that is, those points whose removal does not discon-
nect s. Note that this definition allows segments that consist of a single
point only; we call such segments degenerate.

For any ray and any non-degenerate segment there is a unique line
containing it. This line is referred to as the underlying line of the ray
or segment. We say that two sets A, B C R? are collinear if and only if
there exists a line that contains both. Any two distinct points p, q € R?
define a unique line segment

Pd:=PqdNagp = {p+Ag—p)|Ae0,1]}

with endpoints p and q. The midpoint of a segment pq, where p =
(P, Py) @nd q = (dx, dy), is the point (5(px + dx), 5 (Py + qy))-

Define a total order on the elements of R¢, d € IN, as follows. For two
elements p,q € R4, d > 2, with p = (p1,...,pq) and g = (q1,...,94)
define p < q if and only if either p; < ;7 or both p; = q; and
(p2,...,pa) < (q2,...,9a). For d = 1 we take the usual weak to-
tal order on R. This order is called the (weak) lezicographic order on
RY. The strict lexicographic order on R¢ is defined analogously.

Distances and Orientations For two points p = (px, py) and q = (dx, qy)
denote their (Euclidean) distance by

Ip = all:= 1/ (px — ax)? + (py — ay)2

Similarly, for a line segment s = pq define its length as ||s|| := |[p — q]|.
For a point p and a positive real number ¢ let

Be(p):=={q e R?| lg—pll <e)

24 Chapter 2. Basics and Notation

denote the (open) ball of radius ¢ around p. Similarly, denote by
S:(p) :=1{q € R?| |lg — pll = ¢} the circle of radius ¢ around p.
For three points p = (px,Py), 4 = (dx,dy), and 1 = (1, 1y) We say
that p is to the left of the ray qr if and only if

Px Py
det(p,q,r) = qx qy 1 >O .
Tx Ty |

Similarly, p is to the right of the ray qr if and only if det(p, q,7) < 0,
and p, q, and r are collinear if and only if det(p, q,r) =0.

Angles For three points p, q, and r with p A q #Arlet s; :=81(q)N ?1
for i € {p,r}. The measured angle £(p,q,r) from p to r around q is
defined as the length of the circular arc from s, to s, along S;(q) in
counterclockwise direction. For s, = s, or q € {p,r} set L(p,q,r):=0.
If L(p,q,r) < mwe call £L(p,q,r) strictly convez. If £L(p,q,r) > 7T We
say that £(p, q,r) is reflex. If £L(p, q,r) = 7 the angle £(p, q, 1) is flat.
An angle that is either strictly convex or flat is referred to as convez.
The open angular domain D4 (p, q,r) of p and r around q is the set
of all points s for which 0 < £(p,q,s) < £(p,q,r). Analogously, the
closed angular domain D, (p,q,r) of p and r around q is the set of
all points s for which £(p, q,s) < £(p, q,T1).

Obviously it is £(p,q,r) + £(7,q,p) = 27 if and only if p, q,r are
pairwise distinct. Sometimes we are just interested in the minimum of
these two angles. Let us define the angle formed by p and r around ¢
as

<+(p,q,7) :=min{£(p, q,7), £(r,q,p)} .

Clearly < (p, q,r) is always convex.

Convex Hull A set S C R? is convez if and only if for every two points
P, q € S the line segment pq is contained in S. The convez hull conv(P)
of a set P C R? is the smallest (with respect to set inclusion) convex
superset of P. Since the intersection of an arbitrary family of convex
sets is again convex, conv(P) is well defined and it is the same as the
intersection of all convex supersets of P. If P is finite then conv(P) is
an intersection of closed halfplanes that are defined by points from P.

2.4. Topology 25

2.4 Topology

A topological space is a pair (X, O) where X is a set and O C 2X a set
of subsets of X that are called the open sets such that

i) 0 and X are open,
ii) the union of an arbitrary family of open sets is open,

iii) and the intersection of a finite family of open sets is open.

A set B C Ois a basts of (X, O) if and only if every open set is a union of
elements from B. Here we are mostly concerned with R? and its metric
topology that is generated by the basis {B.(p)|p € R>and 0 < ¢ € R}.
Still, the term “point” is used within this section to refer to the elements
of X as an element of a topological space rather than as an element of
R?.

A set N C X is a netghborhood of x € X if and only if there is an
open set A such that x € A C N. In this case x is called an nterior
point of N. The set of interior points of N is denoted by N°. Similarly,
for an exterior point of N the complement X \ N is a neighborhood,
and the set of exterior points of N is denoted by ext(N). The points of
X that are neither interior nor exterior to N constitute the frontier (or
topological boundary) ON.

A set A C X is closed if and only if its complement X \ A is open.
For B C X the closure of B is denoted by B := B® U 0B. Clearly both
B and OB are closed. As @ and X are complementary and they are both
open, they are also both closed. The space X is said to be connected if
and only if @ and X are the only subsets of X that are both open and
closed. Otherwise X is disconnected.

A subset U of a topological space X is compact if and only if every
open cover of U contains a finite subcover. More precisely, for every
family (O;)ic1 of open subsets of X for which U C UiEI Oj, there exists
a finite subset] C I such that U C UiE] O;. A subset of R™ is compact
if and only if it is closed and bounded. Here bounded means that the
set is contained in a ball of radius k around p, for some p € R™ and
some k € R.

Each subset A C X together with Op = {BN A|B € O} again
forms a topological space. The set O is referred to as the subspace

26 Chapter 2. Basics and Notation

topology of A in (X,0). Note that the sets in O, in particular A,
need not be open in X. For two topological spaces (X, O) and (Y, B) the
product X x Y together with the so-called product topology again forms
a topological space. The product topology of (X,O) and (Y,B) is the
topology generated by the basis {o x b|o € O and b € B}.

A map f : X — Y between topological spaces (X,0O) and (Y,B) is
continuous if and only if f~'(b) € O for all b € B. A path between
a and b in X is a continuous map vy : [0,1] — X with y(0) = a and
v(1) = b. If a = b then vy is a closed path. The space X is called
path-connected if and only if for every two points a,b € X there is a
path between a and b. A path-connected space is always connected
but not every connected space is path-connected. But both notions are
equivalent for open subsets of R9. For X = R? we will often refer to a
path as a curve in order to clearly distinguish paths in the topological
sense from paths in the graph-theoretic sense.

T'wo continuous maps f, g : X — Y between topological spaces X and
Y are homotopic if and only if there is a continuous map h: X x [0, 1] —
Y such that h(x,0) = f(x) and h(x,1) = g(x), for all x € X. The
map h is referred to as a homotopy between f and g. A map that
is homotopic to a constant map is called nullhomotopic. A space is
simply connected if and only if it is path-connected and every closed
path in it is nullhomotopic.

2.5 Geometric Straight Line Graphs

In a geometric graph, the vertices are points, and edges are associated
to curves connecting their endpoints. We are particularly interested
in the case where all of these curves are line segments. But before
we can define this class of graphs precisely, we need a more elaborate
terminology to describe the interaction between two line segments or,
more generally, two subsets of the Euclidean plane.

As a first step, let us define a notion of interior points that is mean-
ingful for non-fulldimensional subsets of the plane, such as line seg-
ments.

Definition 2.1 For a set P C R? the relative interior P® is the set of all
points p € P such that

2.5. Geometric Straight Line Graphs 27

1) p is interior to P

1) or for every ¢ > 0 there exists b < ¢ such that Bs(p) \ P is not
simply connected.

In particular, for a non-degenerate line segment s it is s© = s\ V(s). If s
is degenerate, we have s = s = V(s) instead. The following definition
provides two refined notions for intersection.

Definition 2.2 Two sets P,Q C R? are said to overlap at every point
c e P°NQ°. The sets P and Q cross at a pointc € PN Q if and only
if for every ¢ > 0 there exist non-degenerate line segments s with
V(s) CPNB:(c) and t with V(t) C QN B:(c) such that s°NQ #0
and t° NP # 0.

According to this definition any two sets cross at every common interior
point but not necessarily at every point that is in the relative interior
of both. However, two non-degenerate line segments overlap at a point
c if and only if they cross at c.

Now we have all tools together to define the classes of geometric
graphs that we will be concerned with.

Definition 2.3 A graph G = (V,E) with V C R? is a geometric straight
line graph (GsLG) if and only if the segments S :={uwv |{u,v} € E} do
not contain any point from V other than their endpoints. In other
words, for every segment wv € S it 1s V N wv = {u,v}. If, moreover,
no two segments in S cross then G 1s called a planar straight line graph
(PsLc). A graph is planar if and only if it is isomorphic to a PsLa.?

Obviously, any subgraph of a GsLc (PsLc) is a GsLce (PsLa) as well.
Since in a GSLG both an edge and a line segment are uniquely defined
by two points, we often identify edges and line segments. In this way
any GsLe G = (V,E) induces a set 0G := UPEVUEp of points in the
plane. Removal of 0G divides the plane into a finite number of maximal
connected open subsets that are called the faces of G. The set of faces
of G is denoted by F (G). Euler’s formula states that

VI=[E[+[F(G)|—w(G) = 1.

1The usual definition for planarity allows to connect the embedded vertices by
arbitrary Jordan curves. But it is well known that every planar graph has an em-
bedding in which all edges are line segments [84, 34, 89, 83].

28 Chapter 2. Basics and Notation

As we consider finite PsLas only it is clear that exactly one of the faces
is unbounded. It is sometimes referred to as the infinite face of G. In
a connected graph every finite face F € F (G) is bounded by the edges
of a closed trail in G. Such a trail (which is the boundary of a face from
F (G)) is called a facial trail of G. The infinite face is bounded by the
edges of a closed walk in G which is a trail except for the cut-edges
which appear twice each. The edges bounding a face are also called
incident to the face.

A path P in a GsLe G is stmple if and only if (V(P),E(P)) is a
PsLg, that is, no two edges of P cross. Similarly we define simple
cycles. Obviously every path or cycle in a PsLG is simple.

We will now extend the notion of crossings from subsets of the plane
to walks in GsLGs.

A trail T = (p1,...,pn) in a GSLG induces a piecewise linear curve
vT from p; to p,, in the plane. While the edges of T do not cross
each other by definition, the curve vyt is not simple, that is, injective
in general as the same vertex may appear several times along T. But
here our interest is focused at crossings rather than at simplicity. For a
walk W in a GsLa let oW := 3(V(W), E(W)) C R2.

Definition 2.4 Two walks U and W in a GSLG cross at a point p €
ou N oW if and only if there exist subwalks U’ of U and W' of W
for which [U'|,|W’| < 3 and such that OU’ and oW’ cross at p.

We could require the subwalks in Definition 2.4 to be non-trivial because
for a trivial walk U’ the set 0U’ consists of a single point. As there no
way to build a non-degenerate line segment from a single point set there
is no way that any set in the plane can cross a single point.

In a PsLa two walks that do not share an edge can cross at vertices
only. Let us give an alternative characterization for such crossings:
we say that two walks U and W interleave at a vertex p of a GsLa
G = (V,E) if and only if U contains a subwalk (q,p,r) and W contains
a subwalk (s,p,t) such that p, q, r, s, and t are pairwise distinct and
£(q,p,r) is strictly in between «(q,p,s) and £(q,p,t). (A number
b € R is strictly in between two numbers a,c € R if and only if
a<b<corc<b<a.)

Proposition 2.5 Two walks in a PSLG cross if and only if they share
an edge or they interleave.

2.5. Geometric Straight Line Graphs 29

Proof. “=7": Consider two walks U and W in a PsL.c G = (V, E) that
cross at a point ¢ € oOU N OW. If ¢ € V then by definition of PsLG c
lies on a unique edge e € E. The only way c can be in oU N 0W is that
e appears on both U and W. Otherwise we may assume that U and W
cross at vertices only, in particular ¢ € V. Consider the ball Bs(c) with
radius 0 := % min,ea(G\c) llp — cll. Observe that the choice of 6 ensures
that VN Bs(c) ={c} and that all edges of G which intersect Bs(c) are
incident to c.

By definition there are subwalks U’ of U and W' of W with 2 <
u’|, W'l < 3 such that oU’ and oW’ cross at c. As U and W cross
at vertices only, U’ and W’ must both be of size three. Since U’ and
W' cross at c there is a non-degenerate segment s = v with V(s) C
oU’ N Bs(c) such that s N oW’ # 0. If there is an edge e € E such
that s® C e® then by definition of & the path U visits e. But on the
other hand we have e® N OW' # 0, contrary to our assumption that U
and W cross at vertices only. Hence, there is no edge of G containing
s. By the choice of 6 this implies that u, v, and c are pairwise distinct.
Furthermore there must be two distinct edges in U’ that are incident
to c, in other words, U’ = (p, c, q) and, analogously, W' = (x,c,y). If
¢, p and q are collinear then 0U’ C pq implies that x and y must lie on
different sides of the line through p and q. Otherwise we may assume
without loss of generality that q is to the left of cp, u € ¢p, and v € ¢q.

Then s© C D4 (p,c, q) implies that D (p,c,q) NOW’' N B;s(c) #
(. Hence by the choice of 5 there must be an edge f € E(W’) with
f® C Dy(p,c,q). Without loss of generality let f = cx. Consider
two cases: If y is left of cx (Figure 8(a)) then by the same argument
as above it is ¢q° C D(y)(x,c,y). Otherwise (Figure 8(b)), we have
cp° C D l(y,c,x). In either case U’ and W' and, thus, U and W
interleave at c.

(2) y is left of °x. (b) y is right of TX.

Figure 8: Crossing walks interleave. Edges of one walk are shown
by solid lines, edges of the other walk by dotted lines.

30 Chapter 2. Basics and Notation

“L": Consider two walks U and W in a Ps.a G = (V,E). Clearly,
if U and W share an edge e € E they cross each other at every point of
e®. Hence assume that U and W interleave, and let U’ := (q,p, r) be a
subwalk of U and W' := (s, p, t) be a subwalk of W such that p, q, 1, s,
and t are pairwise distinct and <(q, p,) is strictly in between £(q,p, s)
and £(q,p,t). Consider the ball B, (p) for some arbitrary ¢ > 0 and the
circle S5(p) C B.(p) where 6 := %min{e, min,cv |[p —cll}. Let f:=q'r’
and g := s’t’ where i’ ;== Ss(p) N ﬁ, for i € {q,r,s,t}. Clearly V(f) C
ou’ N B.(p) and V(g) C oW’ N B.(p). We show that f n oW’ #£ 0.
If p, q, and v are collinear then p € f¢ N OW'. If L(p, q,r) is strictly
convex then @ # f N ps C OW'. (Note that ps N Bs(p) C oW'.)

Finally, if £(p, q,7) is reflex then @ # f° N pt C dW'. Analogously one
can conclude that g© N oU’ # 0. Thus U’ and W’ and therefore U and
W cross. []

A walk W in a PsLG is self-crossing if and only if it contains two
crossing sub-walks, that is, W = (... ;pi,..-,Pjy-- -, Pry--» POy -+ +),
with 1 <1< j <k <{<mn, and the walks (pi,...,p;) and (px,...,Pe)
cross. Whenever we want to emphasize that a walk is not self-crossing
we express this by referring to it as non-crossing. Observe that a walk
that is not a trail is always self-crossing.

2.6 Visibility Graphs

For any two points p and g the shortest curve between p and q according
to the Euclidean metric is described by the line segment pq. But the
situation changes slightly if we introduce an obstacle region O C R?,
say, a line segment and ask for a shortest curve between p and q that
does not cross O. If such a curve exists, it is called a shortest geodesic
curve between p and q with respect to O. This term is used whenever
one is interested in shortest curves from a specific class of curves. The
curve is called “geodesic” according to a specific instance: points on
the surface of a three-dimensional sphere where distance is measured
along the surface. Hence, the geodesic stays on the surface, whereas the
shortest connection according to the Euclidean metric passes through
the interior of the sphere.

Again the term “cross” from above needs some further explanation.
It turns out that the notion of crossing we want to use for defining

2.6. Visibility Graphs 31

geodesics is different from the one that has been discussed in Section 2.5.
In order to avoid confusion of both concepts let us assign a completely
different name to this new concept: penetration. Intuitively we want
to allow geodesics to walk along 00 (which implies a crossing) but not
to pass through to “the other side”. From now on we will only consider
obstacle sets that consist of (compact regions that are bounded by)
a finite number of line segments. Let us refer to these sets as finite
linearly bounded obstacle sets.

Definition 2.6 Consider a (rectifiable) curve v : [0,1] — R? and a
finite linearly bounded obstacle set O C R?.

The set O is said to be locally to the right of v at x € (0,1) if and
only if for every ¢ > 0 there exists some & > 0 such that for all pairs
x,xT € (0,1) for whichx —d <x~ <x<x" <x+b it is

Do (y(x7),y(x),y(x")) N Be(y(x)) N O #0 .

Similarly the set O is locally to the left of v at x € (0,1) if and
only if for every ¢ > 0 there exists some & > 0 such that for all pairs
x,xT € (0,1) for whichx —d <x~ <x<x" <x+b it is

Doy (y(x"),y(x),y(x7)) N Be(y(x)) N O #0 .

We say that 'y penetrates O at an interval [x,y] C (0,1) (possibly
x =y) if and only if y([x,yl) N O° £ 0 or both y([x,y]) C 90 and O
18 locally on different sides of v at x and y.

Figure 9 shows a few examples illustrating Definition 2.6. In general
penetration cannot be observed locally. This is in contrast to the notions
of overlap and crossings defined in Section 2.5 that are both tied to
the neighborhood of a single point. Also note that penetrations are
independent of the direction of the curve. In other words, if v penetrates
a set O then also vy’ := (x — y(1 —x)), for x € [0, 1], penetrates O.
Hence we may define that a segment s penetrates a set O if and only if
the curve that traverses s uniformly penetrates O. Then two segments
penetrate if and only if they cross and are not collinear. In particular
no segment penetrates itself.

In the same way as for segments we define that a walk W in a
GsLG penetrates a set O if and only if the curve y\w that traverses W

32 Chapter 2. Basics and Notation

O v(0)
Y(y)
O
O
Y(x)
(a) v penetrates O because (b) vy does not penetrate O because
v([0,1]) N O° #0. v([x,yl) € d0.
v(0) v(0)
Y () Y ()
0 NS
YX
vix) v(1) v(1)
(c) vy does not penetrate O because (d) v penetrates O because
O is nowhere locally to the right v([x,yl) C 00 and v is locally
of . on different sides at x and at y.

Figure 9: Exzamples for (non-)penetration.

uniformly penetrates O. If v\ penetrates O at an interval [x,y] C (0, 1),
we say that W penetrates O at y([x,yl).

For a walk W in a GsLG the set OW is finite linearly bounded. Thus
we can define that for two walks U and W in a GsLc U penetrates W
if and only if U crosses 0W. Unless in the case of line segments this
penetration relation is in general not symmetric as the examples in
Figure 10 demonstrate, not even if U and W are edge-disjoint (Fig-
ure 10(b)). Consequently a walk W is called self-penetrating if and
only if W penetrates oW.

If we think of the obstacle as blocking sight then two points whose
connecting line segment crosses O cannot “see each other”. This inter-
pretation gives rise to the notion of visibility graphs.

Definition 2.7 Consider a set P of n points and a set O C R*>. The
visibility graph of P with respect to O s the GsLe G = (P,E) where E
consists of all edges {p,q} € (E) for which the segment s :=pq does
not penetrate O and s N P = 0.

Observe that a visibility graph is indeed a GsLG but in general not a

2.6. Visibility Graphs 33

g
o
b do ¢
u b
°d
ao/\/ y\
c a c
(o] O of
f h °
eo w g w
(a) U= (a,b,c,d) penetrates (b) U= (a,b,c) penetrates
W = (a,b,e,f,b,c, d, g,C) at R W= (d)b)e)f) g)bvh) at b.

Figure 10: Two walks U and W such that U penetrates OW but W
does not penetrate ol.

PsLc: For points in general position (no three collinear) and O = 0 the
visibility graph is isomorphic to K,, and hence non-planar for n > 4.

One particular visibility graph we will be concerned with in some
detail is the segment endpoint visibility graph Vis(S) that is defined
on a set S of n pairwise disjoint line segments, n € IN. It is the visibility
graph on the segment endpoints V(S) := [J .5 V(s) with respect to the
segments, that is, 0S := (J g s. If the segments in S are non-degenerate
the graph Vis(S) has 2n vertices and two types of edges: those which
correspond to segments from S (recall that a segment does not penetrate
itself) are called segment edges, the remaining edges are referred to as
visibility edges. See Figure 11 for an example.

Figure 11: A segment endpoint visibility graph. The segments of S
are shown by thick solid lines and the edges of Vis(S) by
dotted lines.

34 Chapter 2. Basics and Notation

An equivalent definition of Vis(S) would be to say that two points
P, q € V(S) are connected if and only if either pg € S or pq° N 9S = 0.
Also note that Vis(S) is different from the so-called segment visibility
graph (or full visibility graph), where vertices correspond to segments
and an edge connects two vertices if and only if some points of the two
segments are mutually “visible”.

Our goal in the following is to establish a connection between vis-
ibility graphs and geodesics. Indeed, the following proposition tells us
that the visibility graph contains all shortest paths.

Proposition 2.8 Consider a set P of points and a finite linearly boun-
ded obstacle set O such that PNO° = 0. Denote the set of segments
bounding O by E(O) and the corresponding set of segment endpoints
by V(O). Then for any pair p,q € P every shortest curve between
p and q that does not penetrate O 1s a simple path in the visibility
graph of PUV(O) with respect to O.

Proof. Clearly the visibility graph of P U V(O) with respect to O
contains the shortest curve between every pair of points for which the
shortest curve (that does not penetrate O) is actually a segment.

Now consider two points p, g € P for which pq penetrates O and let
v be a shortest curve from p to q that does not penetrate O. Consider
an x € [0, 1] for which y(x) ¢ V(O).

Either yv(x) is in the relative interior of a segment s € E(O): then there
is a neighborhood N of y(x) for which NN V(O) = 0. As vy is
continuous and does not penetrate O there exists a neighborhood
M of x such that y(M) C N and y(M) is contained in a closed
halfplane H through s. Consider any pair x ,x" € M with x~ <
x < xT. Observe that y([x,x"]) € HN N and that no curve in
H N N penetrates O. From the optimality of v we can conclude
that y([x~,x"]) is a line segment.

Or there is a neighborhood N of y(x) that is disjoint from O and we
can argue as above.

In summary we have shown that v is locally a segment almost every-
where, that is, except for at the points of V(O). Therefore y induces a
walk in the visibility graph of P U V(O) with respect to O. As no walk

2.6. Visibility Graphs 35

in the visibility graph penetrates O we conclude by the optimality of v
that this walk must be a simple path.]

Note that we did not even define the length of a curve in R2. All
we used in the proof of Proposition 2.8 is that in the standard setting
without any obstacles the shortest curve connecting two points is a line
segment. Curves that correspond to a path in a PsLG are also called
finite stmple polygonal curves. In order to formally define geodesics
we need the notion of homotopy for curves with respect to obstacles.
According to Proposition 2.8 we may restrict our attention to finite
simple polygonal curves.

Definition 2.9 T'wo curves x and 3 are homotopic with respect to a set
O of obstacles if and only if there exists a homotopy h : [0, 1]2 — R?
such that

1) h(x,0) = «(x) and h(x,1) = p(x), for all x € [0,1],

1) h(x,yo) s a finite stmple polygonal curve that does not pene-
trate O, for all yo € [0,1], and

1) h(0,y) = «(0) = B(0) and h(l,y) = «(1) = B(1), for ally €
[0, 1].

There is one more ingredient we need in order to finally provide the
definition for geodesics. Denote the length of a walk W = (vq,...,vk),
k € IN, in a GsLG by

k—1
length(W) = Z Vi —viall.
i=1

The length of a walk should not be confused with its size, that is, its
number of vertices.

Definition 2.10 Let G = (PUV(O),E(O)) be a visibility graph on a set
P of n points with respect to a finite linearly bounded obstacle set
O. Consider a walk W = (vq,...,vk) in G that does not penetrate
O. A geodesic geo(W) of W in G s a walk in G that has minimum

length among all walks in G that are homotopic to W with respect
to O.

36 Chapter 2. Basics and Notation

Even if W is a simple path the geodesic of W need not be simple
as the example in Figure 12 shows. But if W forms the boundary of a
convex polygon (polygons are defined and discussed in the next section),
in particular a triangle, then geo(W) is always simple.

d
Figure 12: The geodesic of the path P = (a,b, ¢, d) with respect to the
line segment ef is not simple: geo(P) = (a,e,f,a,d).

It is not hard to see that the geodesic is uniquely defined by the
walk: suppose for some walk there are two geodesics o and 3. As «
and 3 are homotopic with respect to O, the region between any two
successive common points of them is a simple polygon whose interior
is disjoint from O. But then « and 3 coincide because shortest paths
inside a simple polygon are unique.

2.7 Polygons

The goal of this section is to provide a rigorous definition for polygons.
One important property of polygons is that they have a well-defined
oriented boundary that corresponds to a cyclic ordering of its edges.
In the terminology of geometric graphs the latter corresponds to an
Euler tour. We show below that any non-crossing Euler tour provides
a consistent orientation for each face of the graph.

Proposition 2.11 Let T be a mon-crossing Euler tour of a PsLe G =
(V,E), and let C be any facial trail of G. Then T wisits the edges
of C in thewr order along C, that is, if each edge of C 1s oriented
in the direction it 1s traversed by T then the result is a directed
non-crossing trail.

2.7. Polygons 37

Proof. Denote H := G[V(C)] and let D be the orientation of H induced
by T as described above. Consider a vertex v of H and the cyclic order
of the vertices in Ng(v) around v. Let u and x be two vertices of H such
that u, v, and x are adjacent along C and hence in this order around v.
Suppose that both edges (u,v) and (x,v) in D are oriented towards v.
Let w € Ng(v) be the vertex visited by T directly after (u,v) and let
y € Ng(v) be the vertex visited by T directly after (x,v). Obviously u,
v, W, X, and y are pairwise distinct.

As T is non-crossing, by Proposition 2.5 u and w as well as x and y
are neighbors in the cyclic order around v. Thus the counterclockwise
order around v is without loss of generality u,w,y,x, as depicted in
Figure 13. Now recall that T = (..., u,v,w,...,x,v,y,...). In partic-

Figure 13: There can be no verter v with degp(v) = 2.

ular T contains a closed subtrail P from v via w to x and back to v.
Similarly T contains a closed subtrail Q from v via y to u and back
to v. Moreover P and Q form a partition of T, in particular they are
edge-disjoint. Also note that P and Q cross at v and that except for
(x,v,w) on P and (u,v,y) on Q all other size three subtrails of P and
Q also appear in T. Hence any crossing of P and Q other than at v
would also be a crossing of T, in contradiction to our assumption that
T is non-crossing. We will show such a crossing exists and thus there
can be no vertex v with degp (v) = 2.

First we may assume that degp(v) = 2: as T is non-crossing, there
is no subtrail of size three in P that interleaves with one of (x,v,y)
or (u,v,w). Moreover u, v, and x are adjacent along a facial cycle
and hence there is no edge incident to v in D(,)(x,v,u). Combining
these statements we conclude that no subtrail of P other than (x,v, w)
interleaves with (u,v,y). Consider the subtrail P; of P that ends at
the first visit of v by P within D, (y,v,u). Such a visit exists because
P={(..,x,v) and x € D, (y,v,u). Now let P, be the subtrail of

38 Chapter 2. Basics and Notation

P; that starts with the last visit of v by P within D()(u,v,y). Again
such a visit exists because Py = (v,w,...) and w € D()(u,v,y). Now
P, and Q are two closed edge-disjoint trails that cross at exactly one
vertex, namely v, and degp(v) = 2.

Next we show that it is impossible that two closed edge-disjoint
trails cross at exactly one vertex. Construct a cycle P’ from P by
traversing P and leaving each vertex according to its last occurrence
along P. Clearly P/ = (v,w,...,x,v). As P’ is a cycle in a PsLG the
curve yp: that traverses P’ uniformly is a closed Jordan curve. By the
Jordan-Curve Theorem yp: divides the plane into a bounded and an
unbounded component. As P’ crosses (u,v,y) exactly once, at v, so
does yp: and thus u and y are separated by yp:. In particular there
is a second crossing between yp: and Q apart from the crossing at v
which corresponds to a second crossing of P’/ and Q. As P/ and Q are
edge-disjoint, this crossing occurs at a vertex z # v.

Either this crossing of P/ and Q at z corresponds to a crossing of
P and Q and we are done. Otherwise it is P/ = (v,...,qa,z,b,...) and
P=(v,...,qa,z,¢c,...,d,z,b,...). In this case we have found a closed
subtrail P := (z,c,...,d, z) of P and thus of T such that P” and Q cross
at exactly one vertex: z. Clearly |P”| < |P| and we conclude by induction
on |P| that there exists a second crossing between P and Q which implies
a self-crossing of T. (Regarding the base case for the induction note that
a cycle cannot be crossed by an edge-disjoint closed trail in exactly one
vertex as a consequence of the Jordan-Curve Theorem.)]

Having established this nice property of non-crossing Euler tours, we
want to ensure that such a tour always exists, as long as the graph
under consideration is Eulerian at all.

Theorem 2.12 Let G = (V,E) be an Eulerian PsLc. Then there is an
Euler tour T in G such that T s non-crossing.

Proof. Let T = (p1,...,pn) be an arbitrary Euler tour of G. By
definition of Euler tour T cannot cross itself at points in the relative
interior of its edges. Assume T has a self-crossing at a vertex p; = pj,
that is,

T - (p1>'°'>pi>pi+1>'°'>pj—1>pi>pj+l ---)pn))

2.7. Polygons 39

for some 2 <1+ 1 < j < n. Construct another Euler tour T’ from T by
traversing the sub-path (pi;1,...,pj—1) in reversed order. That is,

T = (p1>°'°>pi>pj—1>°'°>pi+1>pi>pj+1>°'°>pn) .

Consider the sorted (increasingly) vector a(T) of angles formed by all
triples of points that are consecutive along T (including p»_1pnp1 and
PnP1P2). The tours T and T’ differ in exactly two angles:

o= I(pi—1,Pi,Pir1) and B := A(pj_1,Pi,Pj+1) in T versus
Y i= L(pi—1,Pi,Pj—1) and 8 := L (Pit1,Pi, Pj+1) in T'.

We claim that a(T’) < a(T) in the lexicographic ordering. Then,
whenever there is a self-crossing in T, we can use the above operation to
construct another Euler tour T’ of G whose vector of angles is strictly
smaller than the one of T. Since there are only finitely many distinct
Euler tours for G, there must be one that is non-crossing.

It remains to prove the claim, that is, min{y, 6} < min{x, 3}. As
T has a self-crossing at p; we may assume by Proposition 2.5 that
o' = A(pi—1,Pi,Pit1) is strictly in between v’ := L(pi—1,pi,Pj—1)
and £(pi—1,Pi,Pj+1). That is, the cyclic order of p;_1, pi+1, Pj—1, and
Pj+1 around p; is either pi—1,Pj—1,Pi+1,Pj+1 OL Pi—1,Pj+1,Pi+1,Pj-1-
Clearly, the minimum angle p formed by any two of these points around
pi is formed by two neighbors, that is, points that are consecutive in one
of these cyclic orders. (In fact, the neighbors are the same in both or-
ders.) As T is an Euler tour, the vertices pi_1, pj—1, Pi+1, and pj1 are
pairwise distinct. In particular, p;_7 and pi; as well as p;_7 and pj41
are not neighbors in the cyclic order around p;. Thus p < min{x, 3}.

If u € {y, 0} then the claim is immediate. Otherwise, assume without
loss of generality that p = % (pi_1,pi,pj+1). Clearly it is p < 7. We
distinguish two cases.

Case 1: n' := £L(pi—1,Pi,Pj+1) < m. Consider the location of pi q: If
o' < mthen & < « (Figure 14(a)). Else we have o’ > mand v < «
(Figure 14(b)). Similarly, if 3’ = £(pj_1,Pi,Pj+1) < 7 then
v < B (Figure 14(c)), and for B’ > mit is 6 < 3 (Figure 14(d)).

Case 2: p' := £(pi—1,Pi,Pj+1) > 7. Consider the location of piy1: If
' < 7t then v < . Else we have &’ > 7 and 6 < . Similarly, if
B’ < mthen 6 < B, and for B’ > it is vy < 3.

40 Chapter 2. Basics and Notation

This completes the proof of both the claim and the theorem.]

Pi-1 Pi = p)

e

@) 3 1
D1) Pi+

() o/ <71

Pj+1
Pit+1

(d) B’ >

Figure 14: Angles around a self-crossing of the tour in Case 1
(£(pi=1,pi,Pj+1) < 7). The angles of T are shown by
black arcs, the angles of T' by grey arcs.

Theorem 2.12 asserts the existence of a non-crossing Euler tour in every
Eulerian Psna. Of course, a specific PSLG might contain several such
tours. Are there graphs which have exactly one non-crossing Euler
tour? If a tour is considered as a sequence of vertices then the only
such graphs are those with only one vertex. This is because for every
Euler tour T of a graph G traversing the vertices in reverse order yields
another Euler tour T’ of G which is distinct from T if it consists of more
than one vertex. Other tours can be generated by shifting the sequence
of vertices cyclically.

Let us exclude these generally applicable options by declaring two
closed walks U = (ug,...,ux) and W = (wp, ..., wy), for some k € IN,
in a graph G equivalent if and only if there is some j with 0 < j < k
such that wi = uy (1), for all 0 < i < k, where either (i) = (i +j)
mod (k+1)or (i) =k —((1+j) mod (k+1)).

We will define polygons to be PsLGs that have a certain type of Euler
tour. But we want to allow polygons to degenerate into line segments
locally, that is, in the terminology of PsLas we want to allow cut-edges.
Clearly a graph that has a cut-edge is not Eulerian. Hence we allow

2.7. Polygons 41

the tour to traverse each cut-edge twice. Using the following simple
construction we can consider polygons to be Eulerian graphs for most
purposes although strictly speaking they are not neccesarily Eulerian.

Definition 2.13 For a Psrnc G = (V, E) its 2-edge-connected closure G5 =
(V/,E’) s defined as follows. Denote by C C E the set of cut-edges
of G.

The vertez set of G5 i1s V' :=V U {v. | c € C} where v s con-
structed such that its distance to the midpoint m. of c i1s 6 and v. 1s
to the right of Xy, where x is the lezicographically smaller endpoint
of c and § := %minpea(g\c) Ilp — mell.

The edge set of G5 s E' :=E U {{x,v.}|c € Cand x € V(c)}.

Observe that G5 is always a PsLG. An Euler tour in G5 induces a
tour of G where every subpath of the type (x,v.,y) for some cut-edge
c = xy of G is replaced by the path (x,y). By definition of G5 the
corresponding tour of G is a trail apart from the fact that cut-edges are
traversed twice.

Definition 2.14 A PsLc P = (V,E) s a polygon if and only if all cut-
edges of P are incident to its infinite face and P5 contains a unique
(up to equivalence) mon-crossing Euler tour. The corresponding
tour of P is denoted by P. The set OP C R? is called the boundary
of P.

The polygon P 1s simple 1f and only if P~ 15 a cycle. A simple
polygon on three wvertices is a triangle, a simple polygon on four
vertices 1s referred to as a quadrilateral.

Note that we allow degenerate polygons that consist of a single point
or line segment only. As the symbol indicates we always assume that
P visits the vertices of the infinite face of P in counterclockwise order.
For Py = (po,...,pk) wWith po = px and a vertex pi, for 0 < i <k,
denote by pig1 := P(i+1) mod k the successor of p; and by pig1 =
P(i+k—1) mod k the predecessor of p; in P. We say that p;, for 0 <
1<k, is a convez vertez in P if and only if £pp; := £L(pig1, Pi,Pie1)
is convex. Analogously define strictly convez, reflex, and flat vertices
of Py. Observe that being a (strictly) convex, reflex, or flat vertex is
not a property of the point p; alone which might appear several times
in Pr. Instead this property is tied to a specific occurrence of p; at
position 1 in P.

42 Chapter 2. Basics and Notation

(a) A polygon. (b) Not a polygon: a cut-edge is not
incident to the infinite face.

AV
/AN

(c) Not a polygon: two distinct non-crossing Euler tours.

Figure 15: Ezamples of (non)-polygons.

By Proposition 2.11 every face of P5 is bounded by a directed non-
crossing trail in the orientation of P induced by the Euler tour. If this
directed trail is oriented counterclockwise, we call the corresponding
face positively oriented. As each face of P directly corresponds to a
face of P3, we also get an orientation for the faces of P in this way. The
tour P of P traverses the boundary of each face consistently if we allow
cut-edges to be traversed once in both directions.

Denote the set of positively oriented finite faces of P by F* (P).
To every polygon P we associate the polygonal domain R (P) that is
defined as

R(P):=0PuU |[J F.
FEF+(P)

The interior of a polygon P is denoted by P° := R (P) \ OP. Similarly
the ezterior of P is defined as ext(P) := R? \ R (P). The following
proposition justifies the naming of these regions. Also observe the im-
plication that R (P) is compact.

Proposition 2.15 0P 1s the frontier (topological boundary) of R (P).

2.7. Polygons 43

Proof. Recall that the frontier of a set M C R? consists of all points
in R? that are neither interior to M nor to its complement R? \ M.
Denote the frontier of P by B(P). Clearly it is B(P) C 0P because all
faces are open and hence all their points are interior. On the other hand
consider a point p € dP.

If p lies in the relative interior of some edge e € E(P) then consider
the orientation of e induced by P. If e is a cut-edge of P then by
definition of polygon e is incident to the infinite face of P which is
exterior to P. Otherwise, by definition of R (P) the face to the left of e
belongs to P° while the face to the right of e belongs to ext(P). Thus
every neighborhood of p intersects both R (P) and ext(P).

If on the other hand v € V(P) then there is at least one edge of P
incident to v because P5 is Eulerian. In particular every open neigh-
borhood N of p contains a point g in the relative interior of some edge.
As N is also a neighborhood of q we can argue as above.]

Sometimes it is convenient to subdivide a large polygon into several
smaller polygons each of which is potentielly easier to handle than the
original large polygon. Ideally such a subdivision is not too redundant
in covering some parts of the polygon many times.

Definition 2.16 For a polygon P a dissection is a finite set {Py,...Py}
of polygons such that |J,;.;-,, R(Pi) = R(P) and R (Pi) does not

overlap R (P;), for every 1 <1i,j <m where i #j.

Apart from simple polygons there are a number of other important
classes of polygons. Within this work we will be concerned with simply
connected polygons most of the time.

Definition 2.17 A polygon P 1is simply connected if and only if R (P)
1s simply connected. A polygon P is convex if and only if R (P) 1s
convez.

The convex hull of a finite set whose points are not all collinear is a
convex polygon.

44

Chapter 2. Basics and Notation

Chapter 3

Hamiltonian Polygons

This chapter is devoted to the study of Hamiltonian polygons in segment
endpoint visibility graphs.

Definition 3.1 For a set S of pairwise disjoint line segments, a Ha-

miltonian polygon is a stmple polygon that is a spanning subgraph of
Vis(S).

Figure 16: A Hamailtonian polygon H for a set S of segments. The
segments from S are shown by thick solid gray lines, the
polygon H by thin solid black lines, and the edges of Vis(S)
by dotted lines.

The segments from S can be grouped into three different categories
according to their position relative to a Hamiltonian polygon H: some of

45

46 Chapter 3. Hamiltonian Polygons

them may appear as edges of H, others are diagonals, that is, segments
whose relative interior is contained in R (H), and the third kind is
called epigonals, that are segments whose relative interior is disjoint
from R (H).

Obviously the existence of a Hamiltonian polygon implies that the
corresponding visibility graph is Hamiltonian. Therefore the main theo-
rem of this chapter — stated below — implies that for (almost) any finite
set of pairwise disjoint line segments the endpoint visibility graph is
Hamiltonian.

Theorem 3.2 For any finite set of pairwise disjoint line segments,
not all collinear, there exists a Hamiltonian polygon.

The proof of Theorem 3.2 is algorithmic, that is, for the given set S of
segments we construct a Hamiltonian polygon. To simplify the discus-
sion let us assume that all line segments are non-degenerate, that is,
all segment endpoints are pairwise distinct. The extension to degener-
ate segments is straightforward and will be discussed at the end of this
chapter.

The next section provides an overview and describes the algorithm
and its different phases from a high level point of view.

3.1 Algorithmic Overview

The general idea behind our algorithm is to maintain a polygon within
the visibility graph that contains all segment endpoints (in its polygonal
domain, not necessarily as vertices) and whose vertices are (some of
the) segment endpoints. The convex hull conv(0S) serves as a starting
point: it is certainly a subgraph of Vis(S), it contains all segments, and
its vertices are segment endpoints. During the construction we aim at
increasing the number of segment endpoints that the current polygon
visits by modifying the polygon locally according to certain rules.

At the same time we maintain a dissection of the polygon that tries
to nicely group the segments that are still in the interior of the polygon.
Here “nicely” means that every segment that is in the interior of the
polygon is contained in exactly one polygon of the dissection. Our goal
is two-fold: on one hand to include more and more segment endpoints

3.1. Algorithmic Overview 47

as vertices into the polygon and on the other hand to simplify the
dissection such that eventually all polygons in the dissection are convex.

The nice property of convex dissection polygons is that they put us
into exactly the situation where we started: a convex set—initially the
convex hull, now the dissection polygon—that possibly contains some
segments from S in its interior. At this point we can apply induction
to solve the problem for each of the dissection polygons separately.
Some care has to be taken that these recursively obtained Hamiltonian
polygons for the subproblems can be connected to the “global” polygon
to finally form a Hamiltonian polygon for the whole set of segments.

Let us gradually add more detail to the description of the algorithm
until we finally get to a fully fledged list of invariants. The construction
proceeds in six phases that are illustrated in Figure 17.

Phase 1 Initialisation: Start with the polygon P < conv(0S) as shown in
Figure 17(a).

Phase 2 Saturation: For those segments for which only one endpoint ap-
pears as a vertex of P, include the other endpoint as well using
a local operation (Figure 17(b)). As a result of the local modi-
fications the polygon P may visit some segments that have been
interior to it originally. In the course of these modifications P will
in general become a non-simple polygon.

Phase 3 Dissection: The interior of the polygon P is dissected into convex
polygons by cutting it along rays starting from its reflex vertices.
Whenever such a ray hits a segment that lies in the interior of
P, this segment is integrated into P again by means of a local
modification. At the end of this phase all segments from S are
either edges of P, diagonals of P, epigonals of P, or they lie in the
interior of one of the dissection polygons (Figure 17(c)).

Phase 4 Simplification: Using once again local modifications the polygon
P is changed such that it becomes a simple polygon (Figure 17(d)).
For this to work we have to carefully control the type of “non-
simplicities” that arise in Phase 2 and 3.

Phase 5 Induction: For every convex polygon C in the dissection of our
polygon P compute inductively a Hamiltonian polygon that visits
the endpoints of all segments that lie in the interior of C (Fig-
ure 17(e)). It might happen that there is no segment or just one

48 Chapter 3. Hamiltonian Polygons

segment in the interior of such a polygon which just simplifies the
computation in this phase.

Phase 6 Bridging: The Hamiltonian polygons computed in Phase 5 for
the segments interior to the dissection polygons are combined with
the polygon P to form a Hamiltonian polygon for the whole set
S (Figure 17(f)). To ensure that this bridging is always possible
we make use of some freedom regarding the construction of P: we
can fix an arbitrary edge of the convex hull such that it is part of
the Hamiltonian polygon to be constructed. On the other hand
we have to make sure that each dissection polygon has a common
edge with P.

The rest of this chapter is organized as follows.

In Section 3.2 we list some properties of our working polygon P
mentioned above by introducing a class of polygons called frames. Sec-
tion 3.3, Section 3.4, and Section 3.5 describe the Saturation, Dissection,
and Simplification Phase, respectively. Section 3.6 revisits and refines
the Saturation algorithm according to the needs of the final Bridging
Step. Then Section 3.7 provides a summary of the discussion in the
four preceding sections and describes the final algorithm for Satura-
tion, Dissection, and Simplification. Finally, in Section 3.8 we apply
this algorithm to prove the existence of a Hamiltonian polygon induc-
tively. We conclude by providing a short runtime analysis in Section 3.9,
and give some final remarks regarding Hamiltonian polygons for other
types of input objects in Section 3.10.

3.2 Frame Polygons

The central object in the algorithm is a polygon which initially is just
the convex hull of the input segments but in the end becomes the Ha-
miltonian polygon that is the final goal of the whole construction. In
this section we formally define the properties of these polygons that we
call frames. We will make sure that the intermediate polygons belong
to this class throughout the algorithm.

Definition 3.3 A simply-connected polygon P = (V,E) is called frame
for a set S of disjoint line segments if and only if 1t has the following
properties.

3.2. Frame Polygons

49

(e) Induction. (f) Bridging.

Figure 17: Phases in the construction of a Hamiltonian polygon.

50 Chapter 3. Hamiltonian Polygons

(F1) V(S) C R (P);
(F2) P is a subgraph of Vis(S);
(F3) no vertex v € V appears more than twice in Ps;

(F4) if a vertez v € V appears twice in P~ then the angular
domain around v intersects P° in two strictly convex angles.
That 1s, for

Pos=(..,pi=Vv,...,p; =V,...)
both £(pje1,V,Pie1) and L(pig1,V,Pje1) are strictly convez,

(F5) if for someuw € SitisuecV andv &V (hencev € P° by
(F1) and (F2)) then u appears only once in P~ and Apu 1s
convez.

We call a vertez v € V that appears twice in P~ a double vertex
of P, while a vertex that appears only once in P 1s referred to as
a single vertex of P.

Figure 18 illustrates the different properties listed in Definition 3.3. In
the figures, double vertices are usually indicated by two slightly shifted
circles to increase their visibility; formally both occurrences of a double
vertex correspond to the same point in the plane.

Observe that conv(0S) is always a frame for S. Properties (F4) and
(F5) may look a bit strange at first sight, but they allow us to control
number and type of reflex vertices that appear in the frame. Intuitively
speaking, convex angles are desirable given that we are heading for a
convex dissection in the end.

As Property (F3) suggests, the tour P of a frame P may visit
segment endpoints twice. But in the end we are interested in a simple
polygon, that is, we have to make sure that for every double vertex one
of the occurrences in Py can be eliminated in Phase 4 of the algorithm.
Hence let us look at these vertices more closely.

Proposition 3.4 Consider a double vertex b of a frame P. Then either
b appears at least once as a reflex vertex in P~ or b appears twice
as a flat vertex in Pg.

3.2. Frame Polygons 51

Pit1

(a) A frame. (b) Not a frame: violates (F1) because
V(s) g R (P) for the segment s.

(c) Not a frame: violates (F2). (d) Not a frame: violates (F3) as vertex
v appears three times in Py.

(e) Not a frame: violates (F4) (f) Not a frame: violates (F'5) as vertex
because o > 7. u is reflex and v € P°.

Figure 18: Ezamples for (non-)frames.

52 Chapter 3. Hamiltonian Polygons

Proof. According to Property (F38) no vertex of P may appear more
than twice in Py. Consider a double vertex b and let

Ps=(...,a,b,c...,d,bye,...)

such that £(c, b, a) is not reflex.

If degp(b) = 2 then b is incident to two cut-edges of P, that is, c = d
and a = e. Clearly either £(c,b,a) or £(e,b,d) = £(a,b,c) is reflex
or both angles are flat.

If degp(b) = 3 then b is incident to exactly one cut-edge in P and
without loss of generality ¢ = d and a # e. If £L(c,b,e) > £(c,b,a)
then cb is a cut-edge of P that is not incident to the infinite face,
in contradiction to the fact that P is a polygon. Hence £(c,b,e) <
£(c,b,a) <mand £L(e,b,d) = £L(e, b, c) is reflex.

Otherwise we have degp(b) = 4 and by Proposition 2.5 it is either
d,e € 'D(L()(C,b, a)or d,e € D(A)(a,b,c).

Consider the case d,e € D(«(a, b, c). Then by Proposition 2.11 the
circular order of a,c, d, e around b is a, e, d, c as shown in Figure 19(a).
In particular, both D()(d,b,c) N B¢(b) C ext(P) and D, (a,b,e) N
B.(b) C ext(P), for sufficiently small ¢ > 0. Thus the curve that
traverses the closed non-crossing subtrail (b,c,..., d, b) of P~ uniformly
is not nullhomotopic, in contradiction to the fact that P as a frame is
simply-connected.

On the other hand, if d,e € D, (c,b, a) then by Proposition 2.11
the circular order of a,c,d,e around b is a,c,d,e as shown in Fig-
ure 19(b). In particular b appears as a reflex vertex within (d, b, e).

In summary we have shown that b appears at least once as a reflex
vertex in P, unless b is incident to two collinear cut-edges of P. L]

Note that a vertex may appear twice as a reflex vertex in a frame

as the example in Figure 18(a) shows. But Property (F4) puts certain
restrictions on the geometric situation around such a vertex.

3.3 Saturation

This section focuses on Phase 2 of the algorithm. The goal of this phase
is to modify the current frame P locally in order to include the other

3.3. Saturation 53

(a) d,e € D(4)(a,b,c). (b) d,e € D4 (c,b,a).

Figure 19: A double vertex appears once as a refiex vertex.

endpoint of those segments for which only one endpoint appears as a
vertex of P. The segments that lie completely in the interior of P are
not handled in the Saturation Phase, although some of them might be
“caught” by P accidentally. In general the frame will become a non-
simple polygon during this phase, that is, some double vertices may be
created.

Consider a segment p;q € S for which p; € V(P) and q € V(P). In
the following we call such a segment unsaturated by P. Analogously a
segment that is not unsaturated by P is referred to as saturated. Sim-
ilarly a vertex in V(P) is called (un-)saturated if its incident segment
from S is (un-)saturated by P. Due to Property (F5) we know that for
every unsaturated segment p;q € S its endpoint p; is a single vertex of
P such that £pp; is convex.

The plan is to integrate q as a vertex into P by using the edge piq
and from q going back to P via a geodesic. In fact, there are two possible
ways to continue from ¢: towards pig; or towards pigi. Therefore we
assign an orientation to each vertex in P.

Definition 3.5 For a frame polygon P, an orientation w(P) s a function
u: Py — {—1,+41}. For a vertex p; of Py denote by

) e— Pie1l » u(pl) = _]a
Vulpi) = { Pie1 , wipi) =+1.

the vertex towards which p is oriented.

The orientation of a vertex determines which incident edge of P is re-
placed when we saturate a possibly incident unsaturated segment using

54 Chapter 3. Hamiltonian Polygons

the following local operation. In the figures, the orientation of a vertex
will often be indicated by a small plus— or minus-symbol inside the disc
that represents the vertex.

Operation 1 (Build-Cap(P, u,p;i)) (Figure 20)

Input: a frame P, an orientation u(P), and an unsaturated segment
Piq € S for which p; € V(P).

Operation: Obtain P’ from P by replacing the edge (pi,) by the path

(pi, q) - geo(d,pi,7), where v := vy (pi). Set u(p) := u(pi) for all
interior vertices of geo(q, pi, r) including q.

Output: (P',u).

Figure 20: A frame P and the result of Build-Cap(P,u,pi) for the two
possible orientations of p;.

Later we will use the additional degree of freedom provided by the
orientation to make sure that a certain fixed edge of the initial convex

3.3. Saturation 55

hull frame will never be replaced in the course of our construction. As
explained in Section 3.1 this is important for the induction step. For
now we just work with a uniform orientation u = +1.

Note that P’ is not necessarily simple because some of the interior
vertices from geo(q, pi,) might already have been in V(P).

Proposition 3.6 The output P’ of Build-Cap is a frame.

Proof. Let us first convince ourselves that P’ is a polygon to start with.
By Property (F5) p; is a convex single vertex of P and thus both angles
£(q,pi,Pie1) and L (pig1,Pi, q) are strictly convex. Hence p; cannot
occur as a vertex of geo(q, pi, 1), in particular p; and q are single vertices
of P’ and {pi, q} is not a cut-edge of P’. As all edges inserted into P’
along geo(q, pi,) bound the infinite face, P’ is a polygon. Clearly P’
is simply-connected.

(F1) and (F2) follow directly from the definition of geodesics and
from the fact that the input polygon P is a frame. It remains to check
properties (F'3)—(F5).

Let geo(q,pi,v) = (9 = qo,...,qx = 1), for some k € IN. We will
argue separately for each of the vertices whose neighborhood changes
from P to P’.

pi: As argued above p; is a single vertex in P’. Thus (F3) and (F4)
hold. As the segment from S incident to p; is an edge of P/, Prop-
erty (F5) is fulfilled as well.

q: argue as for p;.

r: Clearly r appears as often in P’y as in Py and £p:T < £pr. This
implies (F3)—(F5).

q;, for 1T < j < k: Vertex ; is inserted as a convex vertex, that is,
£prqj is convex and its reflex domain D(,)(dje1, d;, djg1) is inte-
rior to P and exterior to P’ in some sufficiently small neighborhood
of q;. The “exterior to P/”-part readily implies (F4), while the
“interior to P”-part tells us together with Property (F4) of P that
if q; appears in P then it is a single reflex vertex. Properties (F'3)
and (F'5) follow immediately.

L]

56 Chapter 3. Hamiltonian Polygons

The Saturation Phase is summarized in the operation below. It consists
of iterated applications of Build-Cap to the current frame P until all
segments are saturated by P. At this point every segment from S either
has both endpoints in V(P) or it lies completely in P°.

Operation 2 (Saturate(P, 1))

Input: a frame P and an orientation w(P).

Operation: As long as there exists an unsaturated vertex p; € V(P),
let (P,u) < Build-Cap(P, u, pi).

Output: (P,u).
The following is an immediate consequence of Proposition 3.6.
Corollary 3.7 The output of Saturate 1s a frame. O]

The example depicted in Figure 21 shows that Saturate may create
double vertices as well as cut-edges in the frame. This is not a problem,
as these features will be dealt with in the Simplification Phase.

At this point we could end this section, as the description of the
algorithm for the Saturation Phase is complete. However, in anticipa-
tion of the coming phases let us analyze the number and type of reflex
vertices that Saturate may create. Reflex vertices are important as they
may be revisited by a geodesic resulting in a double vertex of the frame.
As we have to deal with double vertices during the Simplification Phase,
we need to have some control on them.

Definition 3.8 For a polygon P a subpath (pi,...,px) of Py is a reflex
twin if and only if pi and px are both refiex in P and p; 1s flat, for
all1<j < k.

Clearly the initial frame conv(0S) does not contain any reflex twin. (It
does not have any reflex vertices.) Build-Cap produces exactly one
new reflex vertex: at q. Observe that the vertices on geo(q, pi,r) are
oriented “away” from this new reflex vertex. Together with a suitable
orientation this avoids reflex twins. More precisely we can bound the
number of reflex twins in terms of the number of alternations in the
orientation.

3.3. Saturation 57

(a) Before Saturate. (b) Build-Cap(P, u, pi).
PO R N)
'
R -
1

(N fie=

\ \
\
\
\

Dt Pj
(c) Build-Cap(P,u,pj).

Figure 21: Saturate may create cut-edges in the frame.

58 Chapter 3. Hamiltonian Polygons

Definition 3.9 An alternation :n an orientation u of a frame P is a pair
of two consecutive vertices (pi,pigi1) tn Py such that u(pi) = +1,
u(pig1) = —1, and both p; and pig1 are unsaturated.

Proposition 3.10 Consider a frame P with an orientation u. If Sat-
urate 1s applied to (P,u) then in the resulting frame P’ there is at
most one new reflex twin for each verter v in P~ such that

1) v is unsaturated and oriented towards a reflex vertex v in P,
in this case v is part of the reflex twin (if it is created),

2) orv is part of an alternation in u and u(v) = +1.
(New twins in P’ are those which are not also present in P.)

Proof. Consider a single Build-Cap and denote the participating ver-
tices as above by pi, q, and r. Let Q denote the input frame and
let Q' denote the output frame of this particular Build-Cap operation.
Assume without loss of generality u(p;) = +1.

The operation creates exactly one new reflex vertex, namely at q.
Vertex q has two neighbors in Q' one of which is p;. By Property (F5)
pi is a convex vertex in Q. and because £p/p; < Lpp; it is strictly
convex in Q’+. If geo(q,pi,) € qF then there is an interior vertex of
the geodesic that is strictly convex in Q' . (It might be a double vertex,
but the particular occurrence along the geodesic is always convex.)

It remains to consider the case that geo(q, pi,r) C qr. Suppose that
1T is reflex in Qv, that is, p; is oriented towards a reflex vertex.

If r was already present in P then there must have been an unsat-
urated vertex oriented towards it: Consider the point where p; became
a neighbor of r. This might already be the case in Py. If not then p; is
visited by a geodesic in some Build-Cap operation applied to a vertex
pk- For p; to become a neighbor of r as a result of this operation, py
must be oriented towards r. Hence we may conclude inductively that
there is a vertex v in P that is oriented towards r and the potential
reflex twin (pi, 1) is covered by Condition 1.

Otherwise r has been created in this Saturate step by a previous
Build-Cap operation. At that point r was endpoint of an unsaturated
segment p;T for which p; was a vertex of the frame and u(p;) = —1.
Consider the other (# p;) neighbor py of r directly after this Build-Cap

3.4. Dissection 59

operation. If py is saturated at this point or if u(py) = —1 then the
edge Py T remains an edge of the frame throughout this Saturate step, in
contradiction to p; being an unsaturated neighbor of r at some point.
Therefore it is u(pyx) = +1 and we found an alternation in the frame.
As Build-Cap preserves orientations, this alternation must have been
present in Py already and it is destroyed at the point where 1 is visited
and hence saturated. Instead from this point on there is a vertex that
is oriented towards a reflex vertex in the frame which may lead to at
most one new reflex twin as explained above.]

In particular, Proposition 3.10 together with Corollary 3.7 implies that
the result of Saturate applied to the frame conv(0S) with a uniform
orientation u = +1 is a frame that does not contain any reflex twin.

3.4 Dissection

This section discusses how to dissect the frame P into convex polygons
that eventually can be processed inductively. The dissection of the
current frame P will be denoted by D. As for the polygon P there are
also several properties that we demand from D.

Definition 3.11 Consider a frame P for a set S of disjoint segments.
A dissection D of P is nice if and only if

(D1) every polygon D € D is either simple or a line segment;
(D2) every polygon D € D has a common edge with P,
(D3) in mo polygon D € D there is a reflex twin,

(D4) for every refiex vertex v of some D € D there is an incident
edge T7q that 1s common to both D and P and such that q 1s
a convez vertex of D,

(D5) for every s € S: If s C P° then there is a D € D such that
s C D°. Otherwise sND° =0, for all D € D.

Recall that we begin with a trivial dissection D of the initial frame
conv(0S), that is, D = {P}. Clearly this initial dissection fulfills (D1)-
(D4). Our goal is to achieve and maintain a nice dissection of P during

60 Chapter 3. Hamiltonian Polygons

the Dissection Phase. For this we may have to update D already dur-
ing the Saturation Phase. If edges of the frame P are modified that
are also edges of a dissection polygon D then we just apply the same
modifications to D as we do to P.

3.4.1 Canonical Dissections

As the frame might become non-simple during the Saturation Phase,
we have to do something in order to ensure (D1). Consider a double
vertex q of P. According to Property (F4) the angular domain around
q intersects P° in two strictly convex angles. As we are heading for a
convex dissection this seems a good point to split the dissection poly-
gon that contains q into two polygons at . Doing so for each double
vertex created obviously yields a dissection into simple polygons and
line segments, where the line segments correspond to cut-edges of P.
Clearly Property (D2) is satisfied as well while (D3) and (D4) are an
easy consequence of Proposition 3.10.

But in order to ensure (D5) we have to consider another type of
events that might occur during the Saturation Phase or even already
from the very beginning: the frame can have segments from S as diag-
onals. Let us refer to such segments as segment diagonals. Segment
diagonals may appear in the beginning as diagonals of the convex hull
(Figure 22(a)), and during Build-Cap if an endpoint of an unsaturated
segment is visited by a geodesic (Figure 22(b)) or a geodesic visits both
endpoints of a segment that was in the interior of the frame before
(Figure 22(c)).

(2) (b) (c)

Figure 22: A segment diagonal s and the resulting canonical dissec-
tions.

As a segment diagonal is not contained in the interior of the frame

3.4. Dissection 61

it should not intersect the interior of any dissection polygon according
to (D5). This can be achieved easily if we split the dissection poly-
gons along all segment diagonals. This additional separation makes
also sense if we keep in mind our final goal of convex dissection poly-
gons: By Property (F5) and the way geodesics are used in Build-Cap
the endpoints of a segment diagonal are convex vertices of both dissec-
tion polygons they appear in. Let us summarize these observations in
the following proposition.

Proposition 3.12 We can achieve a nice dissection of the frame at the
end of the Saturation Phase by splitting the dissection polygons at
all double vertices and along all segment diagonals.

Proof. Properties (D1)-(D4) are clear as discussed above. For (D5)
note that at the end of the Saturation Phase there is no unsaturated
segment. That is, each segment from S either is in the interior of the
frame P or both of its endpoints are in V(P). In the latter case the
segment is either an edge of P or a segment diagonal, and in both cases
it is disjoint from the interior of each dissection polygon. In the former
case, recall that the segments from S are disjoint. In particular, no
segment can contain a double vertex in its relative interior nor can it
cross a segment diagonal. This proves (D5). O

Definition 3.13 Consider a frame P and a dissection D of P. The
canonical dissection of D with respect to P 1s obtained from D as fol-
lows: Split the dissection polygons at all double vertices of P and
along all segment diagonals.

Note that the segment endpoints appear both as vertices of the frame P
and as vertices of the dissection polygons. Hence, when we talk about
a “convex vertex” we have to specify whether we refer to it as a convex
vertex of the frame or of one of the dissection polygons. The following
proposition characterizes the reflex vertices of the canonical dissection
polygons.

Proposition 3.14 Consider a frame P for S and a polygon D from a
dissection D of P that fulfills (D1) and (D4). Then every reflez
vertex of D 1s single in P.

62 Chapter 3. Hamiltonian Polygons

Proof. Consider a reflex vertex p; of some D € D. By Property (D4)
pi is also a vertex of Py. On the other hand, by Property (F4) and
(D1) no double vertex of P can be reflex in any D € D. O

3.4.2 Extension to Interior Segments

Clearly the polygons in the canonical dissection are not necessarily con-
vex. A first idea to obtain a dissection into convex polygons from D
is the following: choose a reflex vertex p; of some D € D and draw a
ray from p; that splits £ pp; into two strictly convex angles. Go along
the ray until it hits 0D or a previously drawn ray at some point x.
If the segment pix does not cross any segment from S then we refine
the dissection by splitting D along pix. Note that x is not necessarily
endpoint of a segment from S. The resulting dissection depends on the
order in which the rays are drawn, but any order would do at this point.

But if any of the segments pix crosses a segment s from S, splitting
D along pix would violate (D5). Hence we handle this case in a dif-
ferent way, by extending P to incorporate s. This leads to a new basic
operation, Extend-Reflex.

Operation 3 (Extend-Reflex(P,u, D, pi,r,5)) (Figure 23)

Input: a frame P, an orientation u(P), a dissection D of P, a reflex
vertex p; of some D € D, a convex vertex r of D, and a ray 5
emanating from p;.

Preconditions: pir is a common edge of D and P, 5 cuts £pp; into
two strictly convex angles, and 5 hits! the segment qt from S that
lies in D° at a point x € qt .

Operation: (Assume without loss of generality that r and t are on
the same side of the supporting line of 5'.) Obtain P’ from P by
replacing the edge p;r by the path geo(pi, x, q)-(q,t)-geo(t, x, pi,).
Dissect D canonically. Set u(:) := —1 for all interior vertices of
geo(pi, X, q) including ¢, and u(-) := +1 for all interior vertices of
geo(t, x, pi,) including t.

Output: (P',u,D).

I1More precisely, pix° N (0S U 9D) =0.

3.4. Dissection 63

P4 = - P4 = -
P Ot 7§ P YR
V4 _=-0 V4 # ¢ _-0

g),, % Cx‘s\ Q” ,/, ®~~~

A e ’ I ~~-O
1

/ gf I #5Cn \\ b ¢
, I , d Qv '
/ Pi \] y piO\\ 1
O~s Q\ II O-- \\ l'

== O~ <\ =0 yP--\}
So / \\OOT S o V/ \bOr

~4 d

Figure 23: Eztend-Reflex(P,u,D,p;i,T,S).

There are two variants of Extend-Reflex, depending on whether r
follows or precedes p; in P~. We have described only the first above
and refer to this variant in the following. The other variant is completely
symmetric. Looking at the preconditions of Extend-Reflex we have to
ensure that for each reflex vertex of a polygon D from D there is an
incident edge that is common to both D and P and whose other endpoint
is a convex vertex of D. This is exactly what Property (D4) demands.

Strictly speaking the geodesics above are not well defined because
the point x is not a vertex of Vis(S). But since {q,t} is an edge of
Vis(S) and the piecewise linear curves (pi,x, q) and (t,x,pi,r) do not
penetrate any segment from S the definition carries over.

As discussed in Section 2.6, the geodesic of a size four path is not
necessarily simple. Also in Extend-Reflex one endpoint of the segment
hit by the ray s can go up from degree zero to degree four in P (Fig-
ure 24). Nevertheless, we will show below that the resulting polygon
is always a frame. As Figure 23 demonstrates and as we have already
seen for Build-Cap, Extend-Reflex might create some new unsaturated
segments which prevent the dissection from being nice. This problem is
easily resolved by applying once again Saturate to the frame that results
from Extend-Reflex. The orientation along the geodesics is chosen in
such a way that no vertex of P’ that is incident to an unsaturated seg-
ment is oriented towards a reflex vertex. Recall that as a precondition
of Extend-Reflex r is a convex vertex of D. Hence by Proposition 3.10
there is at most one new reflex twin in all dissection polygons for the re-
sulting frame: (q,t). (Clearly both endpoints of the segment we extend

64 Chapter 3. Hamiltonian Polygons

Pi
Figure 24: Vertex t may have degree four after Eztend-Reflex.

to may be reflex in the result frame P’ of Extend-Reflex.)

Another implication is that if we use Extend-Reflex then we will
not be able to maintain a nice dissection of the frame throughout the
Dissection Phase. However, the reflex twin (q, t) is the only one present
in the whole frame. At this point we make use of the fact that we did
not specify so far from which reflex vertex we shoot the ray. If we just
choose one vertex of the reflex twin created by Extend-Reflex then this
twin will no longer correspond to two consecutive reflex vertices along a
polygon in D because the vertex from which the ray is shot will become
convex in the process of handling the ray. The resulting dissection will
not be nice in the strict sense, but it comes pretty close which gives rise
to the following definition.

Definition 3.15 Consider a frame P for a set S of disjoint segments.
A dissection D of P is almost nice if and only if it fulfills (D1), (D2),
(D4), and (D5) as well as the condition below.

(D3-) The number of reflex twins counted over all polygons from
D 1is at most one.

Note that there may be many reflex twins in Py, but for the moment we
are concerned with those only that are also consecutive vertices within
a dissection polygon. Let us discuss a few special situations that may
arise in Extend-Reflex. First of all, if p;T is a segment from S then it is
an epigonal in P’. Second, several situations may lead to the creation
of cut-edges within the frame.

Clearly a cut-edge may be created when vertices of a reflex twin ap-
pear consecutively along a geodesic. Actually, in the end we have to be

3.4. Dissection 65

very careful with such events because they are potentially troublesome
in the Simplification Step later, but for now this is not our concern.
However, there are also a few other ways to introduce cut-edges in the
frame which will be discussed below.

If p; has a neighbor w in D that is a reflex vertex of D then w
may appear as a second vertex on geo(pi, X, q). In this case p;w is a
cut-edge of P’/ and degp.(pi) = 1. Similarly, if r has a neighbor v in
D that is a reflex vertex of D then v might appear as a second vertex
on geo(r, pi, X, q) thereby reverting 7v to a cut-edge of P’. An example
illustrating both cases is shown in Figure 25.

O~ _ O~ _
,/’ T O ,/’ O
s Ot ,\O . ,;Ot ,\‘O
7 /,’ r'd ,/ /,’
4 x Oy 4 7 &
/ — / 7 \
/ 5 \\ / ,/, \
/ om=="p ~ T / ST b or
/ q w S / q,:;’ WS
1 O Q e Q
- §__3 e _-Db
| & é’,O’
©

Figure 25: Eztend-Reflex may create cut-edges at p; or .

There is another possibility to introduce a new cut-edge in P’: if t
appears twice as a vertex on geo(r, pi, x,t) and the segments from S in
the interior of the quadrilateral [J(r, pi, x, t) are collinear. In this case
all these segments as well as the visibility edges connecting them along
their underlying line are cut-edges in P’, as shown in Figure 26.

The discussion of these degenerate cases is just for illustration; from
an algorithmic point of view vertices incident to cut-edges are in no way
more problematic than any other double vertices. Now we are ready to
prove the promised invariant of Extend-Reflex.

Proposition 3.16 If the input dissection D 1s almost nice then the out-
put P’ of Extend-Reflez is a frame.

Proof. As for Build-Cap we will first argue that P’ is a polygon. First
note that the ray s is not collinear to qt as a precondition of Extend-

66 Chapter 3. Hamiltonian Polygons

O~§ O‘N
//, Qq / //, @q /
- / - ,\\ /
e,] d o\ <
| X \ | S0 \
| \ | \
—\ / \
A WASRITA WA
O=="pi ~ O =0 @\ O
N / ® \ /
S / @ /
Ot ,’ @t ,’
N 4 \N ¢
OT‘ OT‘

Figure 26: Eztend-Reflex may create many cut-edges along collinear
segments on geo(r,pi, X, t).

Reflex. Hence the two geodesics in Extend-Reflex do not share a vertex
and all edges of both geodesics as well as qt are incident to the infinite
face of P’. Thus P’ is indeed a polygon.

Clearly P’ is simply-connected and (F1) as well as (F2) follow di-
rectly from the definition of geodesics and from the fact that the input
polygon P is a frame. It remains to check properties (F3)-(F5).

For internal vertices of geo(pi, x, q) and geo(t, x, pi,) one can argue
as in Proposition 3.6. Hence, we have to consider the vertices pi, 1, q,
and t only.

pi: By Proposition 3.14 it is a single vertex of P and hence of P’. This
implies (F'3) as well as (F4). As p; is a reflex vertex in P its
incident segment from S is saturated in P by (F5) and hence (F5)
also holds in P'.

T: As a convex vertex of D it cannot appear as an interior vertex
on geo(t,x,pi,r) even if it is a reflex vertex of the quadrilateral
(t, x,pi,). Thus r appears as often in P’y as it did in P and
£pir < £pr which implies (F'3)—(F5).

q: The incident segment qt is an edge of P’ which implies (F5). As q
is a single vertex in P’, both (F3) and (F4) hold trivially.

t: The incident segment gt is an edge of P’ which implies (F5). If
t appears twice on geo(t,x,pi,r) it is a double vertex of P’ and
(F4) follows as in Proposition 3.6 because t appears as an internal

3.4. Dissection 67

vertex of a geodesic. Otherwise t is a single vertex of P’ and (F4)
is trivial. In both cases (F'3) is fulfilled.

L]

3.4.3 Preserving Common Edges

So far we have argued how to maintain a frame in case that one of the
rays shot from a reflex vertex of a dissection polygon hits a segment
that lies in its interior. Now it is time to address our second concern:
how to maintain an almost nice dissection.

Indeed this is not granted by now, even if none of the rays drawn hits
any interior segment: the dissection that results from repetitive splits
along rays need not fulfill Property (D2) as the example in Figure 27
shows. We have to take into account that, whenever a ray hits the
boundary of the current region and thus the region is split along this
ray, the edge hit might have been the last common edge of P and one
of the newly created regions.

JON
7/ N
s AN
, ‘ Q
// . \
\
7/
Cg = - _ ’ \:\\

S = - A S
- Y
~ A ,(\

o \
0. ¥ \
- .. - &
-, &,’,/ \
O_--'O ’, \
4 \
- e

Figure 27: The shaded dissection polygon violates (D2) as it does
not have any common edge with the surrounding frame.

In order to guarantee an almost nice dissection during the Dissec-
tion Phase we introduce another basic operation, Drag-Edge, that is
applied under certain circumstances when the ray hits a common edge
of the dissection polygon D and the frame P. The exact conditions
when this operation is applied will be discussed below and we will show
how to ensure a common edge between every D and P throughout the
Dissection Phase.

68 Chapter 3. Hamiltonian Polygons

Operation 4 (Drag-Edge(P,u, D, pi, S, prpe)) (Figure 28)

Input: a frame P with an orientation u(P), a dissection D of P, a reflex
vertex p; of some D € D, aray s emanating from p;, and an edge
Prpe of 0D hit by s at a point x € Prp¢©.

Preconditions: pyp¢ is a common edge of P and D, py is a convex
vertex of D, and 5 cuts the angle {pp; into two strictly convex
angles.

Operation: Obtain P’ from P by replacing the edge pirp¢ by the path
geo(px, X, pi) - geo(pi, x, p¢). Dissect D canonically. Set u(:) := —
for all interior vertices of geo(py, x, pi) and u(-) := +1 for all interior
vertices of geo(pi, X, pe).

Output: (P',u,D).

Oﬁ‘ D‘\
/, = - =z S~
oo _ Qg - -O o _ O -0
\\\\ \\ \\\\ X
x _g20Pt \\O x OP NS
- < / / /
Pk ,/’ / Pk @I /
-
q’ = gj O—___-&\\ | g
\ Pi / \\ Pi /
N\ /] N\ /
\\ \\\ / \\ \;‘\ !
\ P~ < \ Ny \ O~ WA
\ \\\ O N / -~ O
\O/ O \O i ®)

Figure 28: Drag-Edge(P,u,D,pi, S ,Pxpe)-

Observe that Drag-Edge creates an epigonal of the frame in case
that pxp¢ is a segment from S. Similar to Extend-Reflex there are a
few situations in which Drag-Edge creates cut-edges within the frame.

If p; has a neighbor w in D that is a reflex vertex of D then w might
appear as a second vertex on geo(pi, X, q). This is the exactly the same
situation as in Extend-Reflex, so we do not discuss it here again. In
the final algorithm we will even avoid such a situation because it causes
problems for the Simplification Phase later. But for the moment this is
not an issue.

3.4. Dissection 69

Apart from the usual possibility that a geodesic visits two vertices
that form a reflex twin, there is another situation in which Drag-Edge
creates a cut-edge in P’: if the other (# p¢) neighbor of py in the
dissection polygon D under consideration is a reflex vertex of D, it may
appear as a second vertex on geo(py,x,pi). One particular degenerate
instance of this situation occurs if py is adjacent to p; in D. In this case
the edge pipx which is already an edge of the frame may also appear
on geo(pi, X, Pk), as shown in Figure 29. Observe that this situation
cannot occur for py if it happens to be a reflex vertex of D.

D= -Q O - -
/ N 4 N
IQ\O \\ lO\d \\
Pe / \\O Pe ,I \\Q
R/ ’ Q ’
1\ 7 Noa /
| N ©) \ @)
| o) | &\ |
| |
: B S T~ O
-2 SOmm—Cy Qe
.7 Pbi _7 Pi
| P _
& -7
Px Opk

Figure 29: Drag-Edge may create cut-edges at py and/or p;.

As for the other basic operations we prove that Drag-Edge produces
a frame.

Proposition 3.17 If the input dissection D 1s almost nice then the out-
put P’ of Drag-Edge is a frame.

Proof. Let us first argue that P’ is a polygon. As the ray s hits prp¢ in
its relative interior, both are not collinear and the two geodesics share
exactly one vertex: p;. As pyxp¢ is an edge of P all edges along both
geodesics are incident to the infinite face of P/. Thus P’ is indeed a

polygon.

Clearly P’ is simply-connected. It remains to check properties (F'1)-
(F5). (F1) and (F2) follow directly from the definition of geodesics
and from the fact that the input polygon P is a frame.

For internal vertices of geo(py, X, pi) and geo(pi, X, p¢) one can argue
as in Proposition 3.6. Hence, we have to consider the vertices pi, px,

70 Chapter 3. Hamiltonian Polygons

and p, only.

pi: By Proposition 3.14 p; is a reflex single vertex in P. Therefore
its incident segment from S is saturated in P and hence in P’ by
(F5). As a single vertex of P vertex p; appears twice in P’ and
thus (F38) holds as well. (F4) follows from the fact that s cuts
the angle £pp; into two strictly convex angles.

px: Clearly py appears as often in P’y as it did in Py and £p:pyx <
£ ppx which implies (F3)—(F'5).

p¢: argue as for py.

3.4.4 The direction of 5

So far it may seem convenient to simply always apply Drag-Edge when
a ray hits a common edge of P and the dissection polygon D under
consideration. But as we will see in the discussion of the Simplification
Phase, we cannot always apply Drag-Edge if we want to construct a
simple polygon from the frame afterwards. The problematic part of
Drag-Edge is that it creates a second reflex occurrence of the vertex p;.

The reason to introduce Drag-Edge was to ensure Property (D2),
that is, a common edge of each dissection polygon with the surrounding
frame. In the light of this it is not really necessary to always apply
Drag-Edge: suppose that at some point we shoot a ray s from a reflex
vertex p; of some dissection polygon D and both edges incident to p; are
common edges of P and D. If we then simply dissect D along s, there
is certainly still a common edge in both resulting dissection polygons.

On the other hand, we may have to be careful in the next iteration:
Suppose that the ray s hits an edge incident to another reflex vertex
px of D. If Drag-Edge is not applied then the ray G shot from py in
the next iteration may hit back to s and thereby generate a dissection
polygon that has no common edge with the surrounding frame P. See
the example shown in Figure 30.

To prevent this situation, we make use of the fact that so far we did
not specify precisely in which direction the ray from a reflex vertex p;
is shot, as long as it cuts the reflex angle at p; into two strictly convex
angles. We will see that it is sufficient to shoot the ray in direction of

3.4. Dissection 71

P ///ka
Q O R =0
\ \ g I
\ \ /
p b /g
! 1 \
1 1 - _ \
& /P =% & /P =%
7 7
0] 0]

Figure 30: The shaded dissection polygon in (a) has no common edge
with the frame.

the edge that was hit in the previous iteration, if any; see Figure 30(b)
for an example.

3.4.5 A First Dissection Algorithm

Let us summarize the algorithm for the Dissection Phase as discussed
above. Note that this is just a preliminary description. Later the al-
gorithm will be adapted and refined to the needs of the Simplification
Phase that is the subject of the next section.

Algorithm 3.18 The following procedure maintains a frame P for S
along with an orientation u and an almost nice dissection D of P.

Start with P < conv(90S), u = 41, and D « {P} and repeat the
following steps until at some point all polygons in D are convex
after Step (a).

a) Apply Saturate(P,u) and dissect D canonically.

b) Choose (a preceding iteration might have made that choice al-
ready) a reflex vertex p; of some D € D and let pit be a
common edge of P and D such that {pr is convex. Cast a ray
s from p; that cuts £pp; into two strictly convex angles.

c) If s hits a segment qt € S with gt C D° then apply Extend-
Reflex(P,u, D, pi, 7, s) and choose g as a next reflex vertex to
shoot a ray from.

d) Else if 5 hits a common edge Pxp¢ of P and D then

72 Chapter 3. Hamiltonian Polygons

e If not both edges incident to p; are common edges of P and
D then apply Drag-Edge(P,u,D,pi, S, PrPe)-

o If p, is reflex in D (assume without loss of generality that
if py is reflex then also p, is reflex) then shoot the next
fray from p, in direction of Pypy.

e) Else split D along 5 and update D accordingly.

Although we have shown that each single operation preserves the frame
properties, there are a few missing links because some of the correspond-
ing propositions required the current dissection to be almost nice. For
Saturate Corollary 3.7 asserts that the output is a frame. The next
proposition states that Saturate also respects the current dissection D
in a certain sense.

Proposition 3.19 All edges constructed by Saturate in Step (a) of Al-
gorithm 3.18 stay within the dissection polygon D that was modified
in the preceding iteration. (For the first iteration let D := conv(0S).)

Proof. For the initial step where D = {conv(0S)} clearly all geodesics
stay within the only dissection polygon conv(0S). Consider a dissection
polygon D that was modified in the previous iteration of Algorithm 3.18
and the Saturate step at begin of the next iteration.

Clearly none of the geodesics crosses an edge of D that is also (part
of) an edge of the surrounding frame P. The only other option to leave D
is by crossing an edge e of D that corresponds to a ray @ that was shot
from some reflex vertex in a previous step. Consider the first Build-Cap
operation in the Saturate step where the constructed geodesic crosses
e, and let piq be the segment saturated by this operation where p; is
already a vertex of the frame at that point and let r = v, (py).

First note that the ray that generated e was not shot from p; because
by Property (F5) all reflex vertices of a frame are saturated. As the
interior of the polygon geo(q,pi,T) - (pi, q) is disjoint from 9S and all
interior vertices of geo(q,pi,r) are reflex in this polygon, the edge e
crossing geo(q, pi, r) must intersect either p;q or p;r. Clearly e does not
intersect piq: if a ray hits a segment in the interior of D then Extend-
Reflex is applied. By assumption the construction of geo(q,pi,r) was
the first time that a dissection edge was crossed by P; thus e does not
cross pir, either. Moreover, if e intersects p;r then the ray @ must
have hit p;r. But this is impossible since the edge is incident to an

3.4. Dissection 73

unsaturated segment and the ray shooting is applied only to frames in
which all segments are saturated. Thus, geo(q, pi,r) does not intersect
e and all geodesics constructed in this Saturate step stay within D. [J

It remains to analyze the properties of the dissection D in Algo-
rithm 3.18.

Proposition 3.20 P s always a frame and D s always an almost nice
dissection of P after Step (a) in Algorithm 3.18.

Proof. The statement is true for the first iteration of Algorithm 3.18
by Proposition 3.12 and Corollary 3.7. Consider an arbitrary iteration
of Algorithm 3.18 and suppose the statement holds after Step (a). Let
D denote the dissection polygon modified during this iteration.

If the frame is modified in this iteration then either Extend-Reflex
or Drag-Edge is applied. As the current dissection is almost nice, both
operations output a frame according to Proposition 3.16 and Proposi-
tion 3.17 which is preserved by the following Saturate Step by Corol-
lary 3.7. If the frame is not modified then there are no new unsaturated
segments and hence it is not modified in the following Saturate Step,
either. Thus P is still a frame after Step (a) of the following iteration.

It remains to show that D stays an almost nice dissection. We have
to check Properties (D1), (D2), (D3-), (D4), and (D5).

(D1) is an obvious consequence of the canonical dissection because
the frame is non-simple at degree four vertices and cut-edges only. An
edge generated by a ray properly cuts D into two simple polygons be-
cause the ray stops as soon as it hits 0D.

For (D3-) observe that a reflex vertex of some D € D is created
by either Build-Cap or Extend-Reflex: If a ray hits an edge the result-
ing vertex is strictly convex on both sides, and Drag-Edge decreases
the angles at both vertices of the edge that is hit by the ray. Both
Extend-reflex and Drag-Edge orient the vertices along their constructed
geodesics such that there is no alternation in the resulting orientation.
(Recall that only endpoints of unsaturated segments count as an alter-
nation.) Also, none of the vertices incident to an unsaturated segment
is oriented towards a reflex vertex of any dissection polygon. Hence by
Proposition 3.10 Saturate does not create any reflex twin in any dissec-
tion polygon. The only operation that may create such a reflex twin
is Extend-Reflex. But then starting from the next iteration of Algo-

74 Chapter 3. Hamiltonian Polygons

rithm 3.18, one of the vertices in the twin is not reflex in any dissection
polygon anymore because the next ray is shot from this vertex. This
proves (D3-).

Regarding (D4) note that all edges of dissection polygons are com-
mon with the frame before the first ray is shot. A reflex vertex a can
only loose an incident common edge of its dissection polygon D with
the frame if it is hit by a ray s shot from some other reflex vertex of
D. But then either Drag-Edge is applied which once again creates an
common edge of D and P incident to a or the next ray is shot from a
and a is not a reflex vertex of any dissection polygon anymore at the
end of the next iteration. In the meantime the other edge incident to a
(the one that was not hit by) is still a common edge of P and D. By
(D3-) not both vertices of the edge hit by s are reflex in D. Therefore
(D4) continues to hold.

(D2) is certainly true before the first ray is shot. Whenever an
operation (Extend-Reflex or Drag-Edge) is applied in an iteration, all
resulting dissection polygons have common edges with the frame along
the constructed geodesics. Hence suppose that no operation is applied
in an iteration and the dissection polygon D is just dissected along a
ray S shot from some reflex vertex p; of D. If both edges incident to
pi are common edges of P and D then clearly both resulting dissection
polygons have a common edge with the frame, namely incident to p;.

Otherwise an edge incident to p; must have been hit by a ray @
that was shot from another reflex vertex b in the immediately preceding
iteration. (Whenever an edge incident to a reflex vertex is hit, the next
ray is shot from that reflex vertex.) Observe that both edges incident
to b must be common edges of P and the corresponding dissection
polygons because otherwise Drag-Edge would have been applied to b.
Let bc denote the common edge of P and D. As the ray 5 is shot
in direction of the edge that was hit by @, s cannot hit back to @.
Moreover, 5 does not hit bc because then Drag-Edge would have been
applied to p;. Thus when D is dissected along s there are common
edges with P in both resulting dissection polygons: On one side bc, on
the other side the edge incident to p; that was not hit by @. This
proves (D2).

(D5) is again a consequence of the canonical dissection together
with the fact that Extend-Reflex is called whenever a ray crosses any
segment in the interior of the frame.]

3.5. Simplification 75

Observe that at the end of Algorithm 3.18 all dissection polygons
are convex and hence the dissection D is nice.

3.5 Simplification

In this section we discuss the simplification step in Phase 4. In order
to construct a simple polygon from a frame P, we have to remove one
occurrence of every double vertex from P. Our strategy is to eliminate
a reflex occurrence whose existence is guaranteed by Proposition 3.4.

Consider a reflex occurrence p; in P of a double vertex. The obvi-
ous way to reduce p; to a single vertex of P is to simply omit it, that
is, to replace (pig1,Pi, Pig1) by (Pie1,Pig1) in P. This can be done
if (pie1,Pi, Pig1) forms what we call a wedge that is defined below.

Definition 3.21 For k € IN consider a subpath U = (p,q1,...,qx,T)
of P~ where qi, 1 < 1 < k, are reflex or flat vertices such that

C:=(rdqx,...,q1,p,7) forms a convez polygon.
If R(C)\oU)N oS =0 then the sequence (q1,...,qx) 1s called a
cap in Py. Otherwise (q1,...,qx) s called an anti-cap in P .

For k = 1 we usually omit the parentheses and call the vertex
di1 a cap or anti-cap.

A subpath (p,q1,...,qx,T) of Py is called a wedge if and only if
qi 1S a double vertex of P, for all 1 < i<k, and (q1,...,qk) 25 a
cap.

Figure 31: The reflex occurrence of vertex q in P forms a cap and
(p,q,r) is a wedge. But r is an anti-cap because pq in-
tersects the triangle A(r,q,s).

Observe that for C to form a convex polygon in Definition 3.21 one of

76 Chapter 3. Hamiltonian Polygons

the vertices qi, 1 < i < k, must be reflex in P. Figure 31 shows an
example frame with both caps and anti-caps for illustration. If in a
figure we want to emphasize that a reflex vertex is an anti-cap then it is
shown by a square dot. If we can ensure that every double vertex of P
appears at least once in a wedge, it is easy to create a simple polygon
from a frame by means of the following operation.

Operation 5 (Chop-Wedges(P)) (Figure 32)
Input: a frame P.

Operation: As long as there is a wedge (p, q1,...,dxk,T), replace the
path (p,q1,...,qk,7) in P~ by the single edge (p,1).

Output: P.

Figure 32: Chopping the wedge (p,q,T1).

Observe that Chop-Wedges does not change V(P). In fact, we will
not chop off wedges as arbitrarily as the description above might sug-
gest. Instead for each double vertex we will label one occurrence as a
wedge, that is, as “to be removed” by Chop-Wedges. Obviously it has
to be ensured that this particular occurrence is indeed part of a wedge
in Po.

As for the other operations we like to prove that also the result of
Chop-Wedges applied to a frame yields again a frame. The following
proposition provides a first step in that direction.

Proposition 3.22 The output of Chop-Wedges 1s a simply-connected
polygon that satisfies (F1)—-(F3).

Proof. We have to show that chopping off a wedge U = (p, q1,...,qx,T)
from P does not invalidate any of the frame properties mentioned.
Denote the output polygon of Chop-Wedges by P’.

3.5. Simplification 7

(F1) holds because R (P’) D R (P). Clearly no vertex appears more
often in P’ as it appears in P. Therefore Property (F3) is satisfied
as well.

Let K:=R((p,q1,...,9k,7,p)) \ OU. By definition of wedge it is
K N 0S = 0, in particular pr° N 9S = @ which implies (F2).

We claim that no edge incident to one of q; in P, 1 < 1 < k, can
intersect K. By definition of wedge this is certainly true for segment
edges, but there could be a visibility edge of P incident to one of these
vertices. Suppose such an edge exists. If it is a cut-edge of P then
P~ must traverse this cut-edge after q; instead of proceeding along U.
Else there is an edge incident to g; and intersecting K that is not a
cut-edge of P. But then P is not simply-connected, in contradiction
to the assumption that P is a frame. Hence the claim holds and as a
consequence P’ is simply-connected.]

3.5.1 Labeling Wedges

As far as the inductive bridging step is concerned, the most important
property of the dissection is (D2) which ensures a common edge of each
dissection polygon D € D with the surrounding frame. Along the line
of Proposition 3.20 we roughly know how to maintain an almost nice
dissection during the Saturation and Dissection Phase. But now we also
have to take into account the Simplification Phase where some edges of
the frame dissappear as they are part of a wedge that is chopped off in
Chop-Wedges.

As already indicated when Chop-Wedges was introduced, we do not
chop off wedges arbitrarily, but instead we label one occurrence of each
double vertex in P as a wedge. A vertex can become a double vertex of
the frame in three different ways, and for each of these cases we describe
below which occurrence of the vertex is to be labeled as a wedge.

e Whenever a vertex is revisited on a geodesic, we label the original
occurrence of the vertex as (part of) a wedge.

e In the case where Extend-Reflex generates many cut-edges (Fig-
ure 26 on Page 66) we label the vertex occurrences that are closer
to t than to r as (part of) a wedge.

78 Chapter 3. Hamiltonian Polygons

e Whenever Drag-Edge is applied to a reflex vertex pi, we label the
original occurrence of p; as (part of) a wedge.

An edge in P is called a wedge-edge if and only if one of its endpoints
is labeled as a wedge.

Obviously it has to be ensured that the labeled occurrence of a vertex
indeed corresponds to a wedge as defined in Definition 3.21. This is our
goal in the following. That means we must never label an anti-cap as a
wedge or create an anti-cap at a vertex that is labeled as a wedge.

As a first step let us characterize certain classes of vertices that may
never become a wedge during Algorithm 3.18.

Definition 3.23 Consider a frame P with an almost nice dissection D
of P. A vertex v in Py 1s called safe if and only if

e v 15 strictly convex in Py,
e or v 1s endpoint of a segment diagonal,

e orv is a refiex single verter of P that s incident to a dissection
edge that 1s not an edge of P and that cuts £pv into two strictly
convez angles,

e orv 1s a double vertex of P that is not labeled as a wedge.

A reflex twin (a,...,b) in Py is safe if and only if at least one of a
or b is safe in P~. A vertex or refiex twin in P~ that is not safe is
referred to as unsafe.

As an example for the last type of safe vertices one may think of the
second occurrence of a vertex generated by Drag-Edge, where the orig-
inal occurrence was labeled as a wedge according to our labeling rules.
The following proposition legitimates why those vertices are called safe.

Proposition 3.24 A safe vertexr of a frame 1s strictly convex in all dis-
section polygons where it appears. A safe verter will never become
unsafe or be labeled as a wedge in the course of Algorithm 3.18.

Proof. During Algorithm 3.18 the frame P and its dissection D are
modified by the three basic operations Build-Cap, Extend-Reflex, and
Drag-Edge only, or one dissection polygon is simply split along a ray

3.5. Simplification 79

emanating from one of its reflex vertices. Consider a safe vertex p; in
Pe.

If p; 1s strictly convex in Py then no geodesic will revisit it. Also
neither Extend-Reflex nor Drag-Edge can be applied to p;. All basic
operations decrease the angles at both vertices of the edge they replace.
Hence p; remains strictly convex throughout.

If p; is an endpoint of a segment diagonal then it is a single vertex of
P that is strictly convex in both dissection polygons where it appears.
Therefore we can argue as for the strictly convex vertices above. Sim-
ilarly, if p; is a reflex single vertex of P that is incident to a dissection
edge that is not an edge of P and that cuts <pv into two strictly convex
angles.

It remains to consider the case that v is a double vertex of P that
is not labeled as a wedge. Then by our labeling scheme the other
occurrence of v in P is labeled as a wedge. According to (F4) v
appears as a strictly convex vertex in both dissection polygons and we
can once again argue as before.]

As a consequence of Proposition 3.24 we do not have to worry about
anti-caps created at safe vertices of the frame because they will never be
labeled as a wedge during the algorithm. Hence our interest is focused
at unsafe anti-caps in the following.

3.5.2 Anti-Cap Control

In this section we will analyze the basic operations and show that they
do not create too many unsafe anti-caps. We cannot avoid that some
unsafe anti-caps are created in the course of the algorithm, but we better
make sure that they do not become double vertices of the frame. As for
the dissections (nice versus almost nice) it turns out that we are fine if
there exists at most one unsafe anti-cap at a time. The reason is that
we can immediately deal with a single anti-cap by shooting the next
ray from there.

We say that an operation creates an anti-cap if and only if in the
output frame P’ there appears an anti-cap that was not already an
anti-cap in the input frame P. Observe that if an operation creates an
anti-cap then this anti-cap appears locally, at one of the vertices for
which an incident edge changes during the operation.

80 Chapter 3. Hamiltonian Polygons

Proposition 3.25 Consider a frame P with an orientation u that does
not contain any alternation. Moreover, suppose that there is no
unsaturated segment s € S whose endpoint in V(P) is oriented to-
wards an unsafe reflex verter in P~. If Saturate is applied to (P, u)
then 1t does not create any unsafe anti-cap and it does not generate
any unsafe reflex twin.

Proof. Consider a single operation Build-Cap and denote the vertices as
in Proposition 3.6 by pi, q, 1, and geo(q,pi,7) = (q =dqo,...,qx =7T),
for some k € IN. Denote the input frame of this Build-Cap by Q and the
output frame by Q’. Assume without loss of generality that u(p;) = +1.

Build-Cap produces exactly one new reflex vertex: q. Let C :=
(do,.--,qe), where { is chosen maximally such that { < k and gj is flat
in Q', for all 1 <j < {. Then C is a cap because the interior of the
triangle A(pi, qes1,q) and piq¢° are disjoint from 0S by the definition
of geodesic.

By (F5) p; is a convex single vertex of Q and hence a strictly convex
single vertex of Q’. Hence if p; is part ofacap (..., t,pi) in Q- (implies
that p; is flat in Q) then (...,t) is a cap in Q' that ends at t.

For the successor r of p; in Qy the situation is potentially different
because its predecessor changes from p; to qx_i1. Suppose that r is
(part of) a cap (r,v,...) in Q. (Otherwise there is nothing more to
show.)

If r is flat in Qs then r is strictly convex in Q' and (v, ...) remains
acapin Q.
Otherwise 7 is reflex in Q.

If r was already present in P then r is safe in P~: Suppose r is
unsafe in P. As p; is oriented towards an unsafe reflex vertex in Qs,
pi cannot have been present in P-. Hence p; was created in some
previous Build-Cap operation during Saturate. But then the vertex to
which Build-Cap was applied, must have been oriented towards r. It
follows inductively that there is a vertex in P that is oriented towards
T, iIn contradiction to the assumption that in Py no vertex is oriented
towards an unsafe reflex vertex. Hence if r was already present in P
then r is safe in P~ and any anti-cap or reflex twin created at r is safe
in Q' and hence by Proposition 3.24 in P’.

Otherwise the vertex r has been created in this Saturate step in a
preceding Build-Cap operation where a segment Ts from S has been

3.5. Simplification 81

saturated and u(s) = —1. But then s and its predecessor in the frame
at that point form an alternation. As Build-Cap preserves orientations,
that alternation must also exist in Py, in contradiction to our assump-
tion that u does not have any alternation in P~. Therefore r appears
already as a vertex in P+ and we can argue as above.]

Next, we would like to prove an analog to Proposition 3.25 for
Extend-Reflex. Unfortunately Extend-Reflex can create unsafe anti-
caps but — fortunately — at most one, as long as we can ensure that
the vertex r that appears among the parameters is convex or safe in P+.
(In the preconditions of Extend-Reflex r is required to be convex in the
dissection polygon D, but this does not necessarily imply that it is a
convex vertex in the frame.)

Proposition 3.26 If the vertexz r in Extend-Reflex is convez or safe in
P~ then Ezxtend-Reflex creates only one unsafe reflex twin, namely
(q,t), and at most one unsafe anti-cap, at one of q or t.

Proof. Consider an operation Extend-Reflex and denote the vertices as
in the description of Extend-Reflex by pi, 1, g, and t, and let x be the
point where the ray s hits qt. Recall that x € qt~ as a precondition
of Extend-Reflex, in particular s and gt are not collinear. As usual
denote the input frame of the operation by P and the output frame by
P’. Assume without loss of generality v = pig1. We have to verify that
caps in P remain caps in P’.

Clearly p; is a strictly convex single vertex in P’. Hence a possible
cap (...,Ppie1,Pi) in P remains a cap (...,pig1) in P'ss.

If r is convex in Py then it is strictly convex in P’y. Hence a possible
cap (T = pig@1,Pi@2,- . .) remains a cap (pig2,...) in P'~. If r is reflex
then it is safe in Py by assumption and hence due to Proposition 3.24
also safe in P/(~.

All interior vertices on the two geodesics are convex and “guarded”
in P/~ by the safe vertices p; or r. Compared to P there are two new
reflex vertices in P’y: q and t. Clearly they form an unsafe reflex twin.
We will show that at least one of them is a cap in P’.

Let qo be the first strictly convex vertex of geo(q, x, pi) (exists be-
cause p; is strictly convex in P’y), and let ty be the first strictly convex
vertex of geo(t, x, pi,) or r if no such vertex exists. Consider the rays

qqo and t—to\ as shown in Figure 33. If these rays do not intersect within

82 Chapter 3. Hamiltonian Polygons

the triangle A(py, x, q) then g is a cap because geo(q, x, pi) stays within

this triangle and geo(t, x, pi, r) stays to the left of ’Fo within the triangle
A(pb t) X) .

Hence suppose that the rays qqo and t—to\ intersect at a point y in
the interior of A(pi,x, q). Examine the segments qqo and tty: they
cannot intersect since one stays within the triangle A(py,x, q) and the
other stays within the quadrilateral [J(t,x,pi,) and the intersection
of both, the segment pix, does not intersect 0S in its relative interior.
Hence it may be one of y € Gqp or y € tty but not both. If y € qqo
then t is a cap (Figure 33(b)) else q is a cap (Figure 33(a)) in P/x. O

-0

tto

O
O, Pi

(a) £(x,t,r) is convex. (b) £L(x,t,7) is reflex.

Figure 33: One of the segment endpoints q or t is a cap in Eztend-
Reflezx.

If t appears twice on geo(t, x, pi,), we have to make sure that the
reflex occurrence of t is a cap of P’y that can be chopped off later.
In general t can be an anti-cap, but the following corollary of Proposi-
tion 3.26 suggests a way to ensure that t is always a cap in that case.

Corollary 3.27 If in Eaxtend-Refler geo(pi,x,q) C piq and t appears
twice on geo(t,x,pi,r) then the reflex occurrence of t in P'is is a
cap.

Proof. If t is a reflex vertex of the quadrilateral [(pi, 1, t,x) then
pi is a convex vertex of O(p;,r,t,x). Thus the ray qqo = qp; in
Proposition 3.26 cannot intersect tty in the interior of CO(pi, T, t,x) and
hence the reflex occurrence of t is a cap in P/(. []

If t appears twice on geo(t,x,pi,r) then the ray s can be slightly
rotated around p; towards g to form a ray Sy that still cuts £pp;

3.5. Simplification 83

into two strictly convex angles. More precisely, we rotate s around p;
towards q until it hits one of

q: (Figure 34(a)) then geo(pi,x,q) C Piq and t is a cap by Corol-
lary 3.27,;

t’: that is, the right endpoint of another segment q’t’ that lies in D°
(Figure 34(b)); then extend to the segment q’t’ instead; the quadri-
lateral in Extend-Reflex degenerates to the triangle A(pi, r,t’) and
t’ cannot appear twice on the corresponding geodesic;

Px: where py is another reflex vertex of D (Figure 34(c)); in this case
we do not apply Extend-Reflex.

Strictly speaking the above conditions are not well-defined since Extend-
Reflex forbids s to hit a segment endpoint. But obviously we may
suppose instead that the ray s hits a point on the segment that has a
sufficiently small but positive distance to the mentioned endpoint.

7~ 7 N [N

7 ~ 7 ~ 7 ~
S N L N et T R e

/ \ / N k /

Y [NNY / \ X / S BN !
. ' Lt o Px ©

! ot ! <ot ’/"-_\ot

/ I 10 S ! 7 1S !
, P~ 1 q P~ / P~
« S P T=or « S Pi T ~br /P T ~br
\ 7 \ 7

% % \%

(a) 5 hits q. (b) = hits q’t’ C D°. (c) 5 hits a reflex vertex

px of D.

Figure 34: The three possible results of the rotation of s around p;
towards q.

Proposition 3.28 After the rotation described above the ray s still
cuts £ppi nto two strictly convezr angles.

Proof. @ By Proposition 3.14 p; is a common reflex single vertex of
D and P. Let w and r denote the vertices of D adjacent to p; such
that without loss of generality £ (w,pi, 1) is strictly convex. Before the
rotation, 5 is to the left of Wp; and to the right of 7p;.

If t appears twice on geo(t,x,pi,r) in Extend-Reflex then t is a
reflex vertex of the quadrilateral [J(t, x,pi,r). This means that q is to

84 Chapter 3. Hamiltonian Polygons

the right of ™p;. As the rotation stops at g, the rotated ray still cuts
£ppi into two strictly convex angles.]

As Extend-Reflex possibly creates an unsafe anti-cap, we have to
make sure that this anti-cap does not appear on a geodesic in one of
the following steps. Partly this can be taken care of by shooting the
next ray from the anti-cap. But before the next ray is shot another
saturation step takes place.

Proposition 3.29 Consider the two endpoints q and t of the interior
segment in Ezxtend-Reflexz. Denote by P the input and by P’ the
output frame of Extend-Reflex. Let Q denote the output frame of
the following call to Saturate. Then Saturate does mot revisit q,
that is, q appears as often in Q5 as it appears in P’'.

Proof. All unsaturated segmentsin P’ are incident to either geo(pi, x, q)
or geo(r,pi,x,t). Consider only the segments incident to geo(pi,x, q)
for the moment. Saturating them might introduce new unsaturated seg-
ments along the geodesics constructed by Build-Cap. These are then
saturated as well and this process continues until none of the geodesics
catches a new segment. Let a be a vertex that is visited by Build-Cap
at some point during this procedure. Recall that Build-Cap retains the
orientation and propagates it all along the constructed geodesic. Hence
it is u(a) = —1.

Define a path p(a) from a to p; as follows: go from a along the
first geodesic that visited a in this Saturate step in direction of the
convex endpoint c¢ of the geodesic (that is, away from the endpoint
of the segment that has been saturated in this particular Build-Cap
operation). Then from c proceed along p(c). The base case for this
recursive definition is provided by the interior vertices of geo(q, x, pi)
from where we simply walk along geo(q, x, pi) to p;. Figure 35(d) shows
an example for a vertex a and its corresponding path p(a).

As argued above it is u(v) = —1 for all v € V(p(a)). This implies
that p(a) = (a = a1,...,a¢ = pi), £ € N, is a right-turn, that is,
A(axy1,ax,ax_1) is reflex or flat, for all 1 < k < {. Furthermore, p(a)
is non-crossing because every edge of a constructed geodesic becomes an
edge of the frame immediately that will not be crossed by any further
geodesic according to Proposition 3.6. Finally observe that d(p(a)) C
R(P’), o(p(a)) N Q° = 0, and at each interior vertex the incident

85

3.5. Simplification

(c) Saturating more segments.

(b) Saturating segments incident to

geo(pi y Xy q)

(d) Example path p(a).

Figure 35: Saturate does not revisit q.

86 Chapter 3. Hamiltonian Polygons

segment from S lies within the convex angle, that is, to the right of (or
on) p(a).

Suppose that q is visited by Saturate and let b be the endpoint of the
segment that is saturated in this operation such that b is not a vertex
of the frame at that point. (Recall that the segment incident to q, gt,
is already part of the frame before the call to Saturate.) Then the path
p(b) induces a non-crossing right-turn path R within R (P’) from q to
pi such that g is a reflex or flat vertex of the path R’ := geo(pi, x,q)-R
and gt is to the right of (or on) R’. But as the convex angle at q is
exterior to P’, the path R’ describes a closed curve within P’ which
is not null-homotopic, in contradiction to P’ as a frame being simply-
connected.

The argument for the vertices visited by a Build-Cap operation with
positive orientation, that is, initiated by some unsaturated segment
incident to geo(r, pi, x, t), is symmetric. For a vertex a visited by such
an operation we can define a path o(a) similar to p(a) that connects
a to r. The path o(a) is a left-turn path within R (P’) and at each
interior vertex the incident segment from S lies within the convex angle,
that is, to the left of (or on) o(a). In the same way as above we get a
contradiction to the fact that P’ is simply-connected if such a Build-Cap
operation revisits g.

In summary we conclude that Saturate does not revisit q. [

In contrast to q the the other segment endpoint t may be revisited
during the call to Saturate directly after the Extend-Reflex operation
as the example shown in Figure 36 demonstrates. But this can happen
only if t is a reflex vertex of the quadrilateral [I(t, x,p;,1). If tis a
convex vertex of [J(t,x,pi,), we can argue as in Proposition 3.29 to
get the following statement.

Corollary 3.30 Consider the two endpoints q and t of the interior
segment in Eztend-Reflex and suppose that t 1s a convex verter of
the quadrilateral (J(t,x,pi,v). Denote by P the input and by P’ the
output frame of Exztend-Reflex. Let QQ denote the output frame of
the following call to Saturate. Then Saturate does not reuvisit t,
that is, t appears as often in Q. as it appears in P'.]

The corollary below summarizes the discussion about unsafe anti-
caps potentially created by Extend-Reflex.

3.5. Simplification 87

_____ Q -==-=-=Q
. = \ . = \
4 q O 1 4 q)El 1
y 4 X y 4 1
s < 4 b ’ < /l 1 b
. N Os . Oy
o ¢ S a Y A8 5
\ 0 \ ‘@ 0
Pi ! Pi 7 7 /
. N ! ? _ o) W !
O, L O t ! O N \é t /
.
~ /J A3 /J
N 7 Y 7
S/ \O,
Or T
(a) Before Extend-Reflex. (b) Before Saturate.

Figure 36: Verter t may be revisited during Saturate.

Corollary 3.31 If Eztend-Reflex creates an unsafe anti-cap then this
anti-cap 1s not revisited during the following call to Saturate.

Proof. = As discussed in Proposition 3.26, Extend-Reflex can create
an unsafe anti-cap at one of q or t only. If it creates an anti-cap at
g then ¢ is not revisited in the following Saturate step according to
Proposition 3.29. If Extend-Reflex creates an anti-cap at t then either t
is a convex vertex of the quadrilateral [J(t, x, pi,) and the claim follows
by Corollary 3.30, or t is a reflex vertex of [(t, x,pi,r) and then due
to the rotation of 5 described in Proposition 3.28 t is a cap in the
resulting frame by Corollary 3.27. L]

Let us conclude the analysis of anti-cap creations by looking at the
last remaining operation: Drag-Edge.

Proposition 3.32 Consider an operation Drag-Edge and its parame-
ters P, px and p¢. If p¢ 18 not part of an unsafe reflex twin in P
and py 18 convez or safe in P then Drag-Edge does not create any
unsafe reflex twin and it creates at most one unsafe anti-cap: at

Pe-

Proof. Denote the vertex from which the ray s is shot by p;, as in the
description of Drag-Edge. Recall that s hits Pip¢° as a precondition of
Drag-Edge, in particular s and pxp¢ are not collinear. As usual denote
the output frame of Drag-Edge by P’. As a precondition of Drag-Edge

88 Chapter 3. Hamiltonian Polygons

the segment pyp¢ is an edge of P, assume without loss of generality
Pt = Prg1- We have to verify that caps in Py remain caps in P’.

The occurrence of p; in Py is not modified and thus remains a cap
in P’ if it was (part of) a cap in Py. Compared to P the vertex p;
appears a second time in P’y: as a common endpoint of both geodesics
constructed in Drag-Edge. By definition of geodesic this second occur-
rence is a cap. Moreover, according to our wedge labeling scheme the
original occurrence of p; is labeled as a wedge and hence the second
occurrence is safe in P/(.

If px is convex in P then it is strictly convex in P’. Hence a
possible cap (...,pPxe1,Px) remains a cap (...,pke1) in P'. Else px
is safe in Py by assumption and hence it is also safe in P’ according
to Proposition 3.24.

If p¢ is convex in Py then we argue as above for py. Else p, is reflex
in P and may become an unsafe anti-cap in P’. It is not part of an
unsafe reflex twin in P’+: on one side, all vertices along the constructed
geodesic are convex and the other endpoint of the geodesic, p;, is safe.
On the other side, the successor of p; did not change from P to P’.
As p, was not part of an unsafe reflex twin in P, it is thus neither part
of an unsafe reflex twin in P’.

All interior vertices on the two geodesics are convex and “guarded”
in P’ by the safe occurrence of p; and either the safe vertex py or the
unsafe vertex py. O

As discussed in Proposition 3.32 the second (new) reflex occurrence
of p; in P’, let us refer to it as p.., is a safe cap. The orientation
along the geodesics is chosen in such a way that there may be vertices
incident to unsaturated segments that are oriented towards p,,. As a
consequence p,, may become an anti-cap (as shown in Figure 37) or
even a convex vertex of P’ during the Saturate step following Drag-
Edge. Therefore it is rather important that p,, is indeed safe in P’.

As a consequence we must not apply Drag-Edge when p; is an anti-
cap in the frame. For the (possibly) unsafe anti-cap p; we can argue
as for Extend-Reflex in Proposition 3.29 that p, is not revisited during
the following call to Saturate.

Corollary 3.33 Consider the vertez p; in Drag-Edge. Denote by P the
input and by P’ the output frame of Drag-Edge. Let Q denote the

3.6. Preparations for Bridging 89

’,O ~~~~~ ’,O ~~~~~~
”¢ @) ’,’ @)
O'~~~ Oi--é O'~~~ O';--d)
Ss oPr N ~ Pt N
X ~ 9
@ Vg 4 Vs
=---=-5 S ==---- > |
MR Yo AN @___-% v
\ A\ I} \ » !
N N i N N A
\\ QN~ \\O \\ Q\\ \\O
\Ol \O' O

Figure 37: The Saturate step after Drag-Edge may create an anti-cap
at pi =Pm-

output frame of the following call to Saturate. Then Saturate does
not revisit pg, that 1s, p; appears as often in Q- as it appears in
P/s. O

3.6 Preparations for Bridging

Before we summarize the algorithm for the Saturation, Dissection, and
Simplification Phases and analyze the resulting dissections, we have to
add one final bit in anticipation of the inductive bridging step that fol-
lows. As often in inductive proofs we prove a slightly stronger statement
that enables us to put together the inductively computed solutions to
different sub-problems: We want to fix an arbitrary edge {y, z} of the
initial frame P = conv(0S) that must stay an edge of the frame all
through the algorithm, in particular, it is an edge of the Hamiltonian
polygon to be constructed.

Assume without loss of generality that z follows y in Pv. If {y,z}is a
visibility edge and the segment from S incident to y is unsaturated by P
then the edge {y, z} will be replaced by a geodesic during the Saturation
Phase already. Hence we have to slightly adapt the orientation of P by

setting
e —1 y V=1,
Uy (V)= { +1 | otherwise.

This small change compared to the uniform orientation is already suffi-

90 Chapter 3. Hamiltonian Polygons

cient to ensure that {y, z} remains an edge of the frame throughout the
algorithm.

Proposition 3.34 If the initial frame 1s oriented by u, and if Drag-
Edge 1s not applied when a ray hits the edge {y,z} then {y,z} is
an edge of the frame all through the Saturation, Dissection, and
Simplification Phases.

Proof. The frame is modified using the basic operations only. Hence
it is sufficient to prove that none of these operations replaces {y, z}. As
convex hull vertices both y and z are convex vertices in every frame
for S. We will argue that none of the basic operations creates a reflex
vertex at y or z.

Build-Cap creates a reflex vertex only at an endpoint q of an unsatu-
rated segment where q € P°. Extend-Reflex creates reflex vertices only
at endpoints of a segment s C P°. Drag-Edge does not create any new
reflex vertices but just a new occurrence of an existing reflex vertex. As
convex hull vertices both y and z cannot appear as interior vertex on
one of the geodesics, either. Thus both y and z remain convex single
vertices of the frame throughout the Saturation and Dissection Phases.

Observe that Extend-Reflex only replaces edges that are incident to
a reflex vertex. Drag-Edge does not replace yz by assumption. Chop-
Wedges only replaces edges incident to a double vertex of the frame.
Finally, Build-Cap only replaces edges for which one endpoint is ori-
ented towards the other. As the orientation of y and z has been chosen
such that both are oriented away from each other, Build-Cap does not
replace {y, z}, either, and the claim follows. H

Changing to a non-uniform orientation has consequences for some of
the claims that have been made in the preceding sections. In particular
we cannot use Proposition 3.25 to claim that the initial call to Saturate
does not create any unsafe anti-cap. Indeed, the simple example given
in Figure 38 shows that Saturate may create an unsafe anti-cap if the
orientation of the frame contains an alternation. But as the orientation
U, 1s almost uniform, the impact is not dramatic. We will discuss the
consequences in the next section.

3.6. Preparations for Bridging

91

(c)

(d)

Figure 38: Alternations in the orientation may lead to an unsafe
anti-cap (verter a in Figure 38(d)) in Saturate.

92 Chapter 3. Hamiltonian Polygons

3.6.1 Wedge Control

Recall that in order to maintain an (almost) nice dissection we need
to ensure a common edge of each dissection polygon D € D with the
surrounding frame. Compared to Algorithm 3.18 there are now two new
complications: first, the future disappearance of wedges should be taken
into account; and second, the special edge {y, z} should not be counted
as a common edge of the dissection polygon it bounds and the frame.
Thus, we raise the requirements for the dissection to be maintained
correspondingly.

Definition 3.35 Consider a frame P for a set S of disjoint segments
and a fized edge {y,z} of conv(0S). An almost nice dissection D of
P 1s called beautiful 1f and only if

(D2%*) every polygon D € D has a common edge with P that is
not a wedge-edge nor it is the special edge {y,z}; such an
edge 1s called a good edge for D in the following;

(D3%*) there is at most one unsafe reflez twin and at most one
unsafe anti-cap in Py, if both exist then the anti-cap s part
of the reflex twin,

(D4*) for every reflex vertex v of some D € D there is an inct-
dent edge 7q that is good for D and such that q 1s a convez
or safe vertex in P~; such an edge is called a perfect edge in
the following.

Notice that (D2*) implies (D2), (D3*) implies (D3-), and (D4*)
implies (D4).

Our goal is to maintain a beautiful dissection of the frame during
the algorithm. However, already when Saturate is applied to the frame
conv(9S) there might be many wedge-edges in the resulting frame. If
Saturate generates a reflex twin at the two alternation vertices and
one of the vertices of this reflex twin is revisited by a geodesic then
one edge incident to the second reflex vertex p; of the reflex twin is a
wedge-edge. Even if the very first ray is shot from p;i, it may create
a dissection polygon that has no good edge, as the example shown in
Figure 39 demonstrates.

Moreover, as we have seen in Figure 38, Saturate may create an
unsafe anti-cap and we have to ensure that this unsafe anti-cap is not

3.6. Preparations for Bridging 93

Figure 39: Saturating segments in arbitrary order may lead to a dis-
section polygon that has no good edge: all common edges
of the frame and the shaded region in Figure 39(f) are
wedge-edges.

94 Chapter 3. Hamiltonian Polygons

revisited by a geodesic. Observe that these problems can occur only
during the very first call to Saturate, as only at that point there is an
alternation in the frame orientation.

The solution is rather straightforward: so far we made no assump-
tion on the order in which unsaturated segments are saturated during
Saturate. This changes now: We demand that those unsaturated seg-
ments become saturated last whose vertices in the frame

e participate in an alternation of the orientation (and thus by Propo-
sition 3.10 potentially generate a reflex twin)

e or are oriented towards a reflex vertex of the frame.

Moreover, if one of the vertices that potentially becomes part of a reflex
twin is revisited, we change the orientation for the remaining unsatu-
rated vertices towards the convex re-occurrence of that vertex. In such
a way we can simply avoid creating a reflex twin in this case. If, on the
other hand, this vertex is not revisited until the very end then we do
not mind creating an anti-cap there; as a single vertex of the frame we
know how to deal with it.

The above discussion is summarized below in a refined variation
of Saturate that we call Careful-Saturate. Clearly all claims that
have been made about Saturate in the preceding sections also hold for
Careful-Saturate because it just changes the order in which Build-Cap
is applied to unsaturated vertices and the possible re-orientation does
not induce any alternation or orientations towards a reflex vertex.

Operation 6 (Careful-Saturate(P, 1))

Input: a frame P and an orientation u(P) =u,(P), for some y € V(P).

Operation:

As long as there is an unsaturated vertex in V(P) \ {y}, select p; as
the first unsaturated vertex that appears after (not including)
y in P and let (P,u) « Build-Cap(P, u, p;).

Let x denote the predecessor of y in P.
As long as there is an unsaturated vertex in V(P),

e select p; as the last unsaturated vertex that appears before
x in P~ and let (P,u) « Build-Cap(P,u,p;i).

3.6. Preparations for Bridging 95

e If the preceding Build-Cap operation revisited x then set
u(v) := +1, for all v that appear between the original and
the new occurrence of x in Ps.

Output: (P,u).

Figure 40 illustrates Careful-Saturate running on a small example.
We have to prove that Careful-Saturate indeed guarantees good edges
incident to all reflex vertices, that not too many anti-caps are created,
and that no anti-cap is a double vertex in the resulting frame.

Proposition 3.36 Consider the frame P = conv(0S) with an edge {y, z}
of Py and the orientation u,. Apply Careful-Saturate to P and
denote the resulting frame by P’. Then the following statements
hold.

e There is at most one reflex tuin in P’y and at most one anti-
cap.

e An anti-cap in P’ can appear only at a reflex vertex that is
part of a reflex twin. (More precisely, if a is an anti-cap in
P’ then there is a reflex twin (a,...,b).)

e For every reflex single vertex of P’ both incident edges are
good for the corresponding dissection polygon.

e If (a,...,b) forms a reflex twin in P’ then both a and b are
single vertices of P’'.

Proof. Let us first argue that both edges incident to a reflex single ver-
tex of P’ that is not part of a reflex twin are good for the corresponding
dissection polygon.

Consider a reflex single vertex v in P’ that is not part of a reflex
twin. As a single vertex it is not part of a wedge by definition. Since v
is not part of a reflex twin both neighbors are convex vertices in P’ y. As
no geodesic can revisit a flat vertex without also revisiting an adjacent
(directly or via other flat vertices) reflex vertex, the neighbors of v are
single vertices in P’y and hence not part of a wedge, either. Finally,
by Proposition 3.34 both y and z remain convex single vertices of the
frame throughout and thus yz is not incident to any reflex vertex during
Careful-Saturate, in particular not to v. Thus both edges incident to v
are good for the corresponding dissection polygon, as claimed.

96 Chapter 3. Hamiltonian Polygons

Figure 40: Careful-Saturate: the re-orientation avoids creating an
anti-cap at a wedge and guarantees good edges at refiex
vertices.

3.6. Preparations for Bridging 97

Certainly no vertex in P is oriented towards a reflex vertex in P
because there are no reflex vertices in conv(0S). Also, there is only
one alternation, namely at y. Thus, by Proposition 3.10 there is at
most one reflex twin in P’y. More precisely, as in Proposition 3.10 and
Proposition 3.25, no reflex twin and no anti-cap is created before Build-
Cap is applied to y in the second loop of Careful-Saturate. It might
be that the segment Yy, from S incident to y is already saturated at
that point. In this case there is nothing more to show. Therefore,
suppose that Build-Cap is applied to y at begin of the second loop in
Careful-Saturate.

If x is a convex vertex of the frame at the point where Build-Cap is
applied to y then x is a strictly convex vertex of the resulting frame.
Then no reflex twin will be created and we can once again argue as
before. Thus suppose that x is a reflex vertex of the frame before and
after Build-Cap is applied to y. By the order in which vertices were
saturated during the first loop in Careful-Saturate, x is the last reflex
vertex created in the first loop of Careful-Saturate; in particular, x is a
single vertex of the frame at that point.

If geo(yo,y,x) C yox and there are no unsaturated vertices along
geo(yo, Y, x) then yo and x may form a reflex twin in the resulting frame.
In this case both are single vertices of the frame and yo is a cap. As
there are no more unsaturated segments, Careful-Saturate terminates
immediately and there is nothing more to show.

Else if there is at least one strictly convex vertex but no unsaturated
vertices along geo(yo,y,x) then no reflex twin is created and there is
nothing more to show.

Otherwise there are some unsaturated vertices along geo(yo,y, x).
The second loop of Careful-Saturate is designed to saturate these ver-
tices in an order such that every time before Build-Cap is applied to a
vertex p;

e all unsaturated vertices are within the subwalk (x,...,pi) of Py

e and x is the only reflex vertex in the subwalk (x,...,p;i) of Ps.

Suppose that in some Build-Cap operation the geodesic revisits x
and the vertices between the original and the new occurrence of x in
P, let us call it x’, are re-oriented. As x is the only reflex vertex in
the subwalk (x,...,x’) of P, no vertex is oriented towards a reflex

98 Chapter 3. Hamiltonian Polygons

vertex in the frame after this re-orientation. Moreover, there is no
alternation in the orientation because both x and x’ are saturated, all
unsaturated vertices within (x,...,x’) are oriented uniformly +1, and
all unsaturated vertices within (x’,...,x) are oriented uniformly —1.
Therefore we may conclude that the remaining iterations do not create
any reflex twin or anti-cap in the same way as in Proposition 3.10 and

Proposition 3.25.

It remains to consider the case that no Build-Cap operation during
the second loop in Careful-Saturate revisits x. Then x is a single vertex
of P’. Only the very last Build-Cap operation in Careful-Saturate may
create a reflex twin, namely at x and the endpoint py of the segment
Pipo that is saturated in that last Build-Cap operation. Clearly py is
a single vertex of P’ that is a cap and as above all edges incident to po
or x are good for their common dissection polygon. L]

3.7 Algorithm Summary

This section describes the final algorithm for the Saturation, Dissection,
and Simplification Phases and proves that it maintains a frame P to-
gether with a beautiful dissection D of P. Essentially, it is a refinement
of Algorithm 3.18 adapted to the needs of the Simplification Phase.

Algorithm 3.37

Input: a set S of disjoint line segments and an edge {y, z} of conv(9S).

Inatialization:
P« conv(dS). (frame)
U . (orientation)
D « ({P}L (dissection)
D « 0. (dissection polygon)
pi « 0. (reflex vertex of D)
T o« 0. (neighbor of p; in D and P)
w o« 0. (the other (# v) neighbor of p; in D)

Algorithm:

Careful-Saturate(P, u) and dissect D canonically.

3.7. Algorithm Summary 99

If Careful-Saturate created a reflex twin (ay,...,ax), k € N, in Py then
let (pi,T,W) < (ap,b,a;), where b is the other (# a;) neighbor of
ap in Pg.

Repeat until every D € D is convex in Step a below.

a) If every D € D is convex then Chop-Wedges(P) and exit.

b) If p; = 0 then let (pi,r,w) « (b,a,c), where b is a reflex
vertex of some dissection polygon D from D, and a and c are
the neighbors of b in D.

c) Let 5 be the ray emanating from p; in direction of Wp; and
let D be the dissection polygon where p; is reflex.

d) If S hits a segment qt C D° at a point x € qt° and? t is
interior to the triangle A(pi, T, x) then rotate s towards g as
described in Proposition 3.28.

e) If 5 hits a segment qt C D° then

e (P,u,D) + Extend-Reflex(P,u,D,pi,T,S).

e If tis an anti-cap in Py then let (pi, r,w) « (t, a, q), where
a is the other (# q) neighbor of t in Ps.

e Else let (pi,r,w) « (q,q,t), where a is the other (# t)
neighbor of q in Ps.

f) Else s hits an edge pxp¢ of D.

o If pyp¢ is good for D, p; is a cap that is not part of an
unsafe reflex twin, and not both p;T and p;w are good for
D then (P’,u,D) « Drag-Edge(P,u,D,pi, S, Pxpe)-

Else dissect D along s and let P’ « P.

o If X{pp, is reflex3 then let (pi,T,W) « (p¢, a,c), where a

is the other (# px) neighbor of p, in Py and c is the other

(# a) neighbor of p, in the dissection polygon of p;,.
Else let p; « 0.

o Let P+ P’

g) Saturate(P,u) and dissect D canonically.

OQutput: (P, D).

2 Assume without loss of generality that t and r are on the same side of 5.
3 Assume without loss of generality that if £p py is reflex then also £p py is reflex.
(Actually, px is always convex in D.)

100 Chapter 3. Hamiltonian Polygons

An example illustrating the different steps of Algorithm 3.37 is pro-
vided in Figure 41 below.

As a first step towards proving the correctness of Algorithm 3.37 let
us argue that it is indeed an algorithm.

Proposition 3.38 Algorithm 3.37 terminates.

Proof. Observe first that no basic operation ever removes a vertex from
V(P). If P is changed during Saturate in Step g then |V(P)| increases by
at least one because one endpoint of an unsaturated segment is added
to V(P). (More new vertices could appear along the geodesics.) Hence
such changes can occur in a finite number of iterations only.

Otherwise, either Step e or Step f is executed in every iteration.
In Step e |V(P)| increases by at least two because the endpoints of a
segment that was in P° are included as vertices into P. In Step f at
least one reflex vertex of a region D from D is rendered convex and no
new reflex vertices of a region from D are created. Note that new reflex
vertices — in comparison to the previous iteration — may appear in
the following call to Saturate in Step g, but as discussed above this can
happen a finite number of times only. Hence, after a finite number of
iterations every D € D is convex and the algorithm terminates. L]

As a second step, we show that shooting the ray from a “problem-
atic” vertex makes this vertex safe. As we know from Proposition 3.24
that safe vertices remain safe, this means indeed that anti-caps and
unsafe reflex twins can be resolved one by one.

Proposition 3.39 Whenever a ray s shot from a reflex single vertex
pi of the frame in some iteration of Algorithm 3.37 such that p; 1is
an anti-cap or p;i 1S part of an unsafe reflex twin, the vertex p; 1s
safe at the end of that iteration.

Proof. Note that Drag-Edge is not applied to a vertex that is an anti-
cap or part of an unsafe reflex twin. Therefore either Extend-Reflex is
applied to p; and then p; is a strictly convex vertex of the resulting
frame and hence safe. Or we simply dissect along the ray shot from p;
and once again p; is a safe vertex of the resulting frame.]

As for the first dissection algorithm described in Section 3.4.5, we
show that the important properties of the polygon P and the dissection
D are invariants of Algorithm 3.37.

3.7. Algorithm Summary 101

Figure 41: Running Algorithm 3.37 on an ezample; wedges are
shaded dark, and the points from which a ray s shot are
marked: a circle denotes a cap, while a square stands for
an anti-cap.

102 Chapter 3. Hamiltonian Polygons

Figure 42: Running Algorithm 3.37 on an example (continued). In
the last step all wedges are chopped off and we obtain a
dissection of P into convezx polygons.

3.7. Algorithm Summary 103

Proposition 3.40 P s always a frame and D 1s always a beautiful dis-
section of P before Step a in Algorithm 3.37. Moreover, the follow-
ing variants hold any time after Step b in Algorithm 3.37.

(I1) If there exists an unsafe anti-cap in P then it is pi; if there
exists an unsafe reflex twin in P~ then p;i is part of it;

(I2) vertezx r is convex or safe in Py,

(I8) for all vertices in P that are reflex in some D € D, ex-
cept for p; and for the vertices of an unsafe refiex twin, both
incident edges are perfect,;

(14) if not both edges incident to p; in P are perfect then either
pi s part of an unsafe reflex twin in P or an edge incident to
pi was hit by the ray along which the dissection polygon was
split wn the previous iteration.

Proof. P is always a frame and (D) and (D5) hold for the same
reasons as in Proposition 3.20. It remains to show that (/1)—(I4) hold
any time after Step b and that (D2%*), (D3%*), and (D4*) hold any
time before Step a in Algorithm 3.37.

Let us argue that the statements hold for the first iteration of the
loop in Algorithm 3.37.

(D3%*) is a direct consequence of Proposition 3.36. By Proposi-
tion 3.14 no double vertex of the frame is reflex in any dissection poly-
gon. Thus every reflex vertex of any polygon D € D is a single vertex of
the frame and (D4 *) follows from Proposition 3.36. In fact, according
to Proposition 3.36 there is at most one edge incident to a single reflex
vertex of P that is not perfect: the edge between the two vertices that
form a reflex twin, if existent. This implies (I3).

(I1), (I2), and (I4) are a consequence of the vertex selection after
Careful-Saturate together with Proposition 3.36.

(D2*) clearly holds before the first ray is shot: Before the call to
Careful-Saturate every dissection polygon has at least three edges and
surely one of them is different from yz. If then a geodesic revisits a
vertex, all resulting dissection polygons have a common edge with P
along the geodesic and this edge is neither a wedge-edge (recall that if
vertices are revisited then their original occurrence is labeled a wedge)

104 Chapter 3. Hamiltonian Polygons

nor equal to yz because — as argued in Proposition 3.34 — y and z
remain convex single vertices of the frame throughout Algorithm 3.37.

Thus indeed all claimed invariants hold for the first iteration of
Algorithm 3.37. Next we will show that an arbitrary iteration maintains
all invariants, provided that they hold in the iteration before.

In every iteration of Algorithm 3.37, exactly one of the following
three events occurs: either Extend-Reflex is applied, or Drag-Edge is
applied, or a dissection polygon is split along a ray. We will analyze
these three cases separately and argue that the invariants are maintained
for each of them.

But first let us make a general remark regarding a potential unsafe
anti-cap or an unsafe reflex twin that exists in the frame at begin of the
iteration.

According to (D3*) there is at most one such configuration and
by (1) p; is (part of) it. As the ray s in this iteration is shot from
Pi, we conclude by Proposition 3.39 that any unsafe anti-cap or unsafe
reflex twin that existed at begin of the iteration is safe at the end of
the iteration.

Case 1: Suppose that Extend-Reflex is applied in an iteration of
Algorithm 3.37.

(D2%*) holds at the end of this iteration because all resulting dis-
section polygons have a good edge along the constructed geodesics (in
both Extend-Reflex and the following call to Saturate).

(D3*) holds directly after Extend-Reflex in Step e as a consequence
of (I2) and Proposition 3.26. Consider the following call to Saturate in
Step g: As the orientation of the frame does not contain any alternation
and the vertices along the geodesics are oriented towards the convex or
safe vertices p; and r, Saturate does not create any unsafe anti-cap or
any unsafe reflex twin by Proposition 3.25. Thus (D3*) holds at the
end of this iteration.

Moreover, Proposition 3.26 tells us that if Extend-Reflex created an
anti-cap then it is at one of g or t. The selection of p; in Step e ensures
that p; is set to this anti-cap, if it exists. As p; is set to either q or t,
it is part of the only unsafe reflex twin: (q,t). Therefore (/1) and (14)
hold as well.

Also observe that if p; is set to t in Step e then r is set to a vertex a
on geo(t,x, pi,r) that is convex or safe, even (or, rather, in particular)

3.7. Algorithm Summary 105

if it is the same r as in the previous iteration. Similarly, if p; is set to
q then r is set to a vertex a on geo(pi, x, q) that is convex, even if a is
the same as the vertex p; from the previous iteration. In both cases r
is convex or safe in P, that is, (/2) holds at the end of this iteration.

Regarding (D4*) and (I3) suppose that a perfect edge ac incident
to a reflex vertex a of some dissection polygon A € D is not perfect
anymore after Extend-Reflex. This can happen only if either a or c is
revisited by a geodesic. If a is revisited then it is not a reflex vertex
in any dissection polygon anymore by Proposition 3.14. On the other
hand, it is impossible to revisit ¢ and not also revisit a by a geodesic,
unless c is also reflex in D. But then a and c form a reflex twin.
We know from (D3*) and (/1) that one of a or c is the vertex p; to
which we apply Extend-Reflex and p; is a strictly convex single vertex
of the frame after Extend-Reflex. Therefore, all edges incident to reflex
vertices of D remain perfect, as long as the vertices remain reflex in D.

We may argue similarly for the following call to Saturate in Step g,
noting that at that point the only unsafe reflex twin in the frame is
(q,t). As they are covered by the exception in (I3), (/3) holds at the
end of the iteration.

In order to prove (D4*) we have to show that both q and t are
incident to a perfect edge in the frame at the end of the iteration.
Denote this frame by Q. Recall that by Proposition 3.29 ¢ is a single
reflex vertex of Q. Moreover, the other (# t) neighbor qo of q in Qs is
on the geodesic towards p; (possibly, qo = pi) and oriented away from
q (if unsaturated). Therefore q(is a convex vertex in Q. and as it is
“guarded” by the strictly convex vertex p;, the edge qoq is perfect. If t
is a double vertex of Q then it is not reflex in any dissection polygon by
Proposition 3.14 and hence there is nothing more to show. Otherwise,
t is a single vertex of Q and we can argue as above that the edge tty
is perfect, where ty is the other (# q) neighbor of t in Q. (This time
the vertices on the geodesic are oriented away from t and “guarded” by
the strictly convex or safe vertex r in Q.) Therefore, (D4*) holds at
the end of the iteration.

Case 2: Suppose that Drag-Edge is applied in an iteration of Algo-
rithm 3.37.

(D2%*) holds at the end of this iteration because the second reflex
occurrence of p; created in Drag-Edge is safe. Therefore all resulting
dissection polygons have a good edge along the constructed geodesics

106 Chapter 3. Hamiltonian Polygons

(in both Drag-Edge and the following call to Saturate).

Regarding (D3*) note that by (D2*) and (/1) the vertices px and
¢ in Step f do not form an unsafe reflex twin. Thus — without loss of
generality — p, is not part of an unsafe reflex twin and py is convex or
safe in Py. Then the conditions from Proposition 3.32 are fulfilled and
hence Drag-Edge does not create any unsafe reflex twin and at most one
anti-cap, namely at p,. As the vertices along the geodesics constructed
in Drag-Edge are oriented away from pyx and p, and the orientation
does not contain any alternation, we conclude by Proposition 3.25 that
the following call to Saturate in Step g does not create any unsafe reflex
twin nor any unsafe anti-cap. This proves (D3%*).

If pe is a reflex vertex of some dissection polygon D € D then py
was also reflex in the frame before Drag-Edge. As argued above, p, was
not part of an unsafe reflex twin before Drag-Edge. Therefore its other
(# px) neighbor a — that did not change in the course of Drag-Edge
— 1is either convex or safe before and after Drag-Edge. This already
proves (I2) in case that v is set during Step f.

Else p¢ is flat in D and hence it was reflex in D and by Proposi-
tion 3.14 also in P before Drag-Edge. As above, p, was not part of an
unsafe reflex twin before Drag-Edge. Assuming without loss of general-
ity that py = prg1 it follows that there is a subpath (pe,a =aq,...,am)
in P, for some m € IN, where q; is flat, for all 1 < i < m, and a,, is
safe. On the other side, p,; is “guarded” by the second and safe reflex
occurrence of p; that was created in Drag-Edge. Thus p, is not part of
any anti-cap if it is flat in D.

In summary we have shown that if Drag-Edge created an unsafe
anti-cap then p; is set to this anti-cap in Step f. This proves (I1).

On the other hand, if p, is not reflex in D after Drag-Edge then p;
is set in Step b at begin of the next iteration. As there is no unsafe
reflex twin in the frame, any neighbor of the chosen reflex vertex p; is
either convex or safe. This completes the proof for (12).

It remains to consider (I3), (I4), and (D4*). For the vertices that
are revisited by some geodesic we may argue as above in Case 1. The
argument is even slightly simpler because this time there is no unsafe
reflex twin in the frame at all. The original occurrence of p; is labeled
as a wedge, but it does not appear as a reflex vertex of any dissection
polygon anymore. If p; is still reflex in D then p; is set to p, in Step £
and both edges incident to p, are perfect: for py;a we have already

3.7. Algorithm Summary 107

argued above that it did not change during this iteration, and for the
other edge along the geodesic towards the safe occurrence of p; this
is ensured by orienting the neighbor of p, away from p,. Again this
neighbor of p is convex or safe (if it is p;) in the frame and “guarded”
by the safe occurrence of p;. This proves (I3), (I4), and (D4*).

Case 3: Suppose that a dissection polygon D € D is simply split
along a ray S shot from some reflex vertex p; of D in an iteration of
Algorithm 3.37.

Let us first consider (D2*).

If both edges incident to p; are good for D then clearly they are
good edges for both resulting dissection polygons.

On the other hand, by (D4*) at least one of the edges incident to
pi is good for D. Moreover, (I4) tells us that if not both edges incident
to p; are good for D then either one of the edges was hit by the ray in
the previous iteration or p; is part of an unsafe reflex twin in P 5.

Let us first consider the case of reflex twins. Recall that both vertices
of the reflex twin (potentially) created during the initial call to Careful-
Saturate are single vertices of the frame for which all incident edges
are good by Proposition 3.36. The only other operation that creates an
unsafe reflex twin in P is Extend-Reflex, namely at (q,t). We have
argued in Case 1 above that the other (# qt) edge qqo incident to g
is perfect. Similarly, we have shown that if t is a single vertex of P
then the other (# qt) edge tto incident to t is perfect. Clearly in this
case also gt is good. It remains to consider the case where t appeared
twice on the geodesic in Extend-Reflex or t is revisited by a geodesic
during the following call to Saturate. Although gt is a wedge-edge in
this case, there is good edge tt; for D incident to t along the geodesic
that revisited t. (Recall that the vertices of D along this geodesic are
oriented away from the reflex occurrence of t in Py and “guarded” by
the safe vertex r with possibly r = t;. Therefore t; is convex or safe
in the resulting frame.) As in this case the next ray s is shot from

d in direction ﬁ , this ray cannot hit tt;. (Not even after a potential
rotation of 5 in Step (d): after such a rotation either Extend-Reflex
is applied or an edge incident to a reflex vertex of D is hit; but both t
and t; are convex or safe.) Thus, there is a good edge on both sides of
5: on one side g, and on the other side tt;.

It remains to consider the case that an edge incident to p; was hit by
a ray € shot from some reflex vertex a in the immediately preceding

108

Chapter 3. Hamiltonian Polygons

iteration. This means that no operation was applied in the previous
iteration and hence p; is a cap that is not part of an unsafe reflex twin.

Also,

s did not hit a good edge because then Drag-Edge would have

been applied. On the other hand, by (I3) (for the previous iteration)
the edge incident to p; that was hit by € was certainly good (before it
was hit). There are two possible implications:

Either both edges incident to a are good: As the ray s from p; is shot

Or a

in direction of the edge that was hit by ¢, it cannot hit back to ¢,
not even after a possible rotation of 5 in Step (d). (Recall that
after such a rotation either Extend-Reflex is applied or an edge
incident to a reflex vertex of D is hit.) The good edge incident to
a and bounding D was not hit by s, either. (As argued above
that would have invoked Drag-Edge.) Hence, there is a good edge
on both sides of 5: on one side the edge incident to p; that was
not hit by ¢ and on the other side the good edge incident to a.

is an anti-cap or part of an unsafe reflex twin. If both edges
incident to a are good then we can argue as above. Else a was
generated by Extend-Reflex, that is, a is the segment endpoint ¢
of the segment gt to which we extended in the previous iteration
and t is a double vertex of the resulting frame. Let qo denote
the other (# t) neighbor of a = q and denote the two dissection
polygons that are generated by the split along & by D; and D,
where qo € V(D7) and t € V(D;). We have already argued above
that in this case qqo is good for D and there is always an edge
tt; incident to t that is good for D,. We have to show that after
one of the Dy or D; is split along s there is still a good edge in
both resulting dissection polygons.

Suppose that D is split, that is, p; € V(D). As above, s cannot
hit back to e and it does not hit qqp, either, because qqp is a
good edge and then Drag-Edge would have been applied. Hence,
there is a good edge on both sides of 5: on one side the edge
incident to p; that was not hit by & and on the other side the
good edge incident to q = a.

Otherwise, D is split and p; € V(D;). Again s does not hit ¢
nor tty, but we also have to show that s does not hit the wedge-

edge qt, either. As both g and t are strictly convex vertices of
D5, no rotation of s in Step (d) will make s hit qt. Moreover,

< is shot in direction of tq and & in direction of the edge hit

3.7. Algorithm Summary 109

by €. Hence, if € is not rotated in Step (d) then the claim is
obvious as well. It remains to consider a possible rotation of ¢.
Note that such a rotation rotates e towards t (and away from
do). As the rotation stops at pi, pi is a vertex of D;, contrary
to our assumption p; € V(D;). Therefore, 5 does not hit qt and
there are good edges on both sides of 5: on one side the edge
incident to p; that was not hit by & and on the other side the
good edge tt;.

Thus (D2%*) holds throughout Algorithm 3.37.

(D3%*) holds clearly because there is no unsafe reflex twin and no
unsafe anti-cap at the end of this iteration. Thus, also (/1) holds triv-
ially and similarly (I2) holds if p; and r are set in Step b.

Regarding (D4 *) and (I3) observe that p; is safe after this iteration
and whenever an edge incident to a reflex vertex of D is hit then p; is
set to this reflex vertex. By (D3*) and (/1) no ray can hit an edge
that is incident to an unsafe reflex twin. This proves (D4*), (I3), and
(I4). It also implies (I2) in case that p; and r are set in Step f.

This concludes the case analysis and proves that the claimed invari-
ants hold all through Algorithm 3.37. L]

It remains to analyze the behaviour of Chop-Wedges in the last step
of Algorithm 3.37. By our labeling scheme every double vertex of the
frame is labeled as a wedge exactly once. We have to show that these
vertices are really wedges as defined in Definition 3.21.

Corollary 3.41 During Algorithm 3.37 an anti-cap 1s never labeled as
a wedge.

Proof. @ An anti-cap created during the initial call to Saturate is a
single vertex of the resulting frame by Proposition 3.36 that is safe
after the first iteration as argued above in Proposition 3.40. According
to Proposition 3.24 safe vertices remain safe throughout Algorithm 3.37.
(We proved Proposition 3.24 for Algorithm 3.18. But it is easily seen
to hold for Algorithm 3.37 as well because the basic operations applied
in both algorithms are the same.)

An unsafe anti-cap created by Extend-Reflex is not revisited during
the following call to Saturate by Corollary 3.31. The vertices along
the geodesic in Extend-Reflex are oriented towards the strictly convex

110 Chapter 3. Hamiltonian Polygons

vertex p; (along geo(pi,x, q)) or towards the safe (due to (/2)) vertex
r. As the orientation of the frame does not contain any alternation at
that point, we may conclude by Proposition 3.25 that the following call
to Saturate does not create any unsafe anti-cap.

Finally, consider an unsafe anti-cap created by Drag-Edge. Accord-
ing to Proposition 3.32 it can appear at p; only. By Corollary 3.33 the
vertex p, is not revisited during the following call to Saturate. As the
next ray is shot from p, if p, is reflex in D, p; becomes safe in the next
iteration. We have argued in the proof of Proposition 3.40 that p, is
not part of any anti-cap if it is flat in D. Therefore, an unsafe anti-cap
created by Drag-Edge remains a single vertex of the frame throughout
Algorithm 3.37. [

3.8 Induction

This section completes the inductive proof of Theorem 3.2. The proof
is rather straightforward, as most work has already been done during
the development of Algorithm 3.37. Let us summarize the properties of
the frame P and the dissection D computed by Algorithm 3.37.

Corollary 3.42 For a set S of disjoint line segments, not all collinear,
and an edge {y, z} of conv(0S), there is a simple frame P for S and a
collection D of pairwise non-overlapping convez polygons such that
the following conditions are satisfied.

(C1) {y,z} is an edge of P;

(C2) for every s € S, either s C P° and there is a D € D such
that s C D°, or V(s) C V(P) and sND° =0, for all D € D;

(C3) Upep R (D) SR (P);

(C4) every polygon D € D has a common edge with P that is
different from {y, z}.

Proof. Denote by (P, D) the output of Algorithm 3.37 for input S and
{y, z}. By Proposition 3.40 P is a frame before Chop-Wedges is applied
in Step a and by Proposition 3.22 the result is a simply connected
polygon satisfying (F'1)—(F'3).

3.8. Induction 111

At the end of the preceding iteration of Algorithm 3.37 Saturate
has been called in Step g. (Similarly, before the first iteration Careful-
Saturate has been called at the very beginning.) As Chop-Wedges does
not change V(P), all segments from S are saturated in P and hence (F5)
is fulfilled.

According to our wedge labeling scheme every double vertex in P
is labeled exactly once as a wedge. By Corollary 3.41 all vertices labeled
as a wedge correspond to caps, that is, they are wedges as defined in
Definition 3.21. Therefore, all vertices labeled as a wedge are removed
in Chop-Wedges and P is a simple polygon. As there exists no double
vertex in P, (F4) is trivially fulfilled as well and thus P is indeed a
frame.

Observe that D is not necessarily a dissection of P because R (P)
increases if Chop-Wedges chops off any wedge. But clearly all polygons
in D are convex by the end condition of Algorithm 3.37 and they are
contained in R (P) because they formed a dissection of the frame before
Chop-Wedges was applied.

{y,z} is an edge of P due to Proposition 3.34. (C2) is an easy con-
sequence of (D5), (F1) and (F2). Finally, (C4) is implied by (D2*).
O

Using these properties we can prove Theorem 3.2 inductively as
follows.

Proof. [of Theorem 3.2] We prove by induction on |S| the following state-
ment. For a set S of disjoint line segments, not all collinear, and for
any fixed edge {y, z} of conv(0S), there is a Hamiltonian polygon H for
S such that {y, z} is an edge of H.

The statement holds for |S| = 2. Suppose it holds for all S’ with
1 <|S' < |S].

Consider the simple frame P and the dissection D described in Corol-
lary 3.42. If both endpoints of every segment are in V(P) then the
statement holds. If there is a segment s whose neither endpoint is in
V(P) then by Property (C2) s is in the interior of some D € D. By
property (C4) D has a common edge ab # yz with P. By (C2) and
because D is convex we have C(D) := conv(0S N D°) C D°. Moreover,
C(D) has an edge cd such that both ac and bd are non-crossing visibil-
ity edges. If c1dy,...,cimdm, for some m € N, are the segments in D°
and they are all collinear in this order, then replace the edge ab of P

112 Chapter 3. Hamiltonian Polygons

by the path (a,cq,ds,...,cm,dm,b). Otherwise, there is by induction
a Hamiltonian polygon H(D) for the segments from S which lie in D°
such that cd is an edge of H(D). Let H*(D) be the path from c to d
that traverses H(D) except for the edge cd. Replace the edge ab of P
by the path (a,c)-H*(D)-(d, b). Doing so for each D € D that contains
segments from S results in a Hamiltonian polygon for S.]

Up to now we have been working under the assumption that all
segments in S are non-degenerate. But the generalization to possibly
degenerate line segments is rather straightforward. We can prevent
any ray that is shot during Algorithm 3.37 from hitting a degenerate
segment by perturbing it infinitesimally. Then a degenerate segment is
either visited by a geodesic or it appears on some convex hull boundary.
In both cases the segment is immediately saturated; in particular, no
degenerate segment ever appears as a reflex vertex of the frame. This
proves that Theorem 3.2 holds as stated, for any set of disjoint line
segments that are not all collinear.

3.9 Runtime Analysis

In this section we show that Theorem 3.2 provides a polynomial time
algorithm to construct Hamiltonian polygons for disjoint line segments.

Theorem 3.43 For any set of n pairwise disjoint line segments, not
all collinear, a Hamiltonian polygon can be constructed in O(n?)
time and O(n) space.

Proof. Represent the frame and its dissection collectively in a doubly
connected edge list (DCEL) [65]. In this way an edge can be replaced
by a polygonal path in time proportional to the size of the path. As each
vertex of this planar subdivision is incident to at most four edges, we
can examine the neighborhood of vertices and edges in constant time.

Store for each input segment the incident vertices of the frame (if
any), and, vice versa, for each vertex of the frame store its (unique)
incident input segment. For each dissection polygon store the list of
input segments that are interior to the polygon.

During Algorithm 3.37 we maintain a list of those vertices that are
unsaturated, a list of those vertices that are reflex in some dissection

3.9. Runtime Analysis 113

polygon, and a list of wedge-edges. Clearly, the overall space needed by
these data structures is linear.

The convex hull computations can be done in O(n?) time altogether
using Jarvis’ Wrap [55]. (Any vertex can appear on at most one of
the convex hull boundaries.) The bridge edges used to connect the
inductively constructed partial solutions to the global frame can be
obtained brute-force in overall linear time.

The geodesics can be computed in a brute-force manner spending
linear time per vertex. As each vertex can appear on at most two
geodesics during Algorithm 3.37, the overall time needed is again O(n?).
Similarly, the ray shooting and a possible rotation of the ray are done
brute-force in linear time per ray and, hence, O(n?) time overall. (Rays
are shot from reflex vertices of dissection polygons only. After such a
ray has been processed the corresponding vertex is safe and does not
appear as a reflex vertex of a dissection polygon anymore.)

The vertices that appear along the constructed geodesics have to
be marked as (un—-)saturated and have to be inserted or removed from
the corresponding list. Similarly, vertices are marked if they are reflex
in some dissection polygon, and edges are marked as wedge-edges if
an incident vertex is labeled as a wedge. Finally, at the end of Algo-
rithm 3.37 all wedges are removed. As all these events can occur only
once per vertex or edge, they can be processed in overall linear time.

It remains to consider the time spent to maintain the lists of seg-
ments interior to the dissection polygons. Every time a dissection poly-
gon is split, we have to test for each of the interior segments in which of
the two resulting polygons it is contained. This decision can be made
in linear time by computing the next polygon edge below one of the
segment endpoints. As the number of splits is linear as well, the overall
time bound for these tests is O(n?). O

Several of the tasks discussed above can be implemented in sub-
quadratic time using more complicated data structures. The main bot-
tleneck seems to be the computation of geodesics. The construction of
many geodesics has been a recent focus of research [32, 12]. But in our
algorithm the geodesics to be constructed in an iteration often depend
on the result of the previous iteration. Therefore, it is not clear how to
obtain a sufficiently large set of geodesics for bulk-processing.

114 Chapter 3. Hamiltonian Polygons

3.10 Remarks

As mentioned in Chapter 1, it is well known that there are triangula-
tions that do not contain a Hamiltonian cycle [26]. As we may consider
the edges of a triangulation as a set of intersecting segments, this also
shows that one cannot simply drop the disjointness condition from The-
orem 3.2. In fact, Figure 43 shows a configuration of seven segments
for which not even the visibility graph is Hamiltonian: three segments
form a triangle that contains the fourth segment, and the remaining
three segments are placed along the convex hull such that no triangle
edge is an edge of the convex hull, but the vertices of the triangle remain
convex hull vertices.

P1
O
b2 P9
) Q
O
P3 O
Os P8
O
O
Pa o)

Figure 43: A set of segments for which the visibility graph is not
Hamultonian.

Theorem 3.44 There 1s a set S of seven pairwise non-overlapping line
segments in the plane for which Vis(S) is not Hamiltonian.

Proof. Denote the vertices along the convex hull by py,...,po, as
indicated in Figure 43. Removal of p; and p4 disconnects Vis(S) into
two components one of which is {p2, p3}. That is, any Hamiltonian cycle
in Vis(S) must visit p, and p3 in between p; and p4. Analogously, ps
and po must be visited in between p; and p;, and ps and pg must be
visited in between ps and p;. But then there is no way to visit the
vertices of the interior segment s. Therefore, there is no Hamiltonian
cycle in Vis(S). O

Another interesting problem is the generalization of Theorem 3.2
to polygons. If we consider line segments as (convex) polygons on two

3.10. Remarks 115

vertices, the next interesting class of polygons are triangles. Recall that
a Hamiltonian polygon for a set of triangles may not enter the interior of
any triangle. The question about the existence of Hamiltonian polygons
for disjoint triangles is still open.

Conjecture 3.45 For any finite set of pairwise disjoint triangles, not
all collinear, there exists a Hamaltonian polygon.

The statement is not true in general for quadrilaterals, as the ex-
ample in Figure 44 shows. The example consists of three large squares
S1, 3, and ss5, three medium squares s,, s4, and sg, and seven small
squares A, ..., G. In Figure 44, the small squares are drawn much larger
than they are ideally in order to increase their visibility. Observe that
for the large squares three vertices are on the convex hull, whereas for
the medium squares and for A, B, and C two vertices are on the convex
hull boundary. At the center, the three large squares are very close
together such that, for example, s¢ and F cannot see the center vertex
c1 of s1, and the center square G cannot see anything except for the
three center vertices cq, c3, and c5 of the large squares.

z

1 C
5 SGQ" 25
£

$1

X1 o o
C3
Ad_rD
S2
X3 °
Eo o Ys
53 &
B
Y3

Figure 44: A set of disjoint squares for which the visibility graph 1s
not Hamailtonian.

116 Chapter 3. Hamiltonian Polygons

Theorem 3.46 There 1s a set of thirteen pairwise disjoint squares in
the plane such that the visibility graph of their vertices with respect
to the squares 1s not Hamiltonian.

Proof. Let H be a Hamiltonian cycle in the visibility graph Vis(Q)
for the set Q of squares shown in Figure 44. Consider the three convex
hull vertices of the large square s;. One of these vertices has degree
two in Vis(Q) and, hence, it is appears in between the other two on
H. Analogously, the convex hull vertices of s3 and ss, respectively, are
visited directly after each other. Similarly, the vertices of the small
squares A, B, and C must be visited in between the two convex hull
vertices of s,, s4, and sg, respectively.

The vertices in X := V(A) U V(D) U V(s,) are connected to the
remaining vertices in three ways only: via the convex hull vertex x; of
s1, via the convex hull vertex x3 of s3, and via the center vertex c;.
Observe that it is impossible to visit all vertices of X on a path between
x1 and x3 without visiting c;. Thus, c; is connected to at least one
vertex of X in H. Furthermore, x; must be connected to either a vertex
from X or ¢; in H, and if x; is connected to a vertex from X in H then
x3 must be connected to one of c¢; or c3 in H. Altogether, in H there
are at least two edges between the three center vertices cq, c3, and cs
and the vertices from X U {x1,x3}.

A similar argument for the set Y := V(B)U V(s4) U V(E) shows that
in H there are at least two edges between the three center vertices c1,
c3, and cs5 and the vertices from Y U{y3,ys}. Analogously, there are at
least two edges between the three center vertices c1, c3, and c5 and the
vertices from V(C) U V(sg) U V(F) U{z1,z5}. But then there is no way
to include the vertices of the center square G into H, in contradiction
to H being a Hamiltonian cycle.

Therefore, there is no Hamiltonian cycle in Vis(Q). O

Chapter 4

Alternating Paths

This chapter is concerned with alternating paths through disjoint line
segments in the plane.

Definition 4.1 Consider a set S of n non-degenerate disjoint line seg-
ments in the plane. A simple path P = (v1,...,v), k € N, in Vis(S)
15 called an alternating path if and only if it consists of segment edges
and wisibility edges in alternating order, that s, Voi_1v2i € S, for
every 1 <1< |k/2|, orvyivaitq €S, for every 1 <i< |(k—1)/2].

Note that in particular any path of size at most two in Vis(S) is alter-
nating. Figure 45 shows an example for an alternating path through
some disjoint line segments.

©)
Figure 45: An alternating path through disjoint segments.

117

118 Chapter 4. Alternating Paths

In particular, we are interested in the following question: What is
the maximum number of vertices that can be visited by an alternating
path? The following theorem states that there is always an alternating
path of size logarithmic in the number of segments.

Theorem 4.2 For any set S of n disjoint line segments in the plane
there is an alternating path in Vis(S) that wisits 2 [log,(n+2)] — 3
vertices.

Apart from a constant factor, this is best possible:

Theorem 4.3 For any ng € IN, there exists an n > ny and a set S
of n disjoint line segments in the plane, such that Vis(S) does not
contain an alternating path visiting more than —2- log,n — 17 <

log, 3
7.57 log, n vertices.

The proof of Theorem 4.2 uses the existence of a Hamiltonian poly-
gon for S that was proven in Chapter 3. Moreover it is algorithmic
and can hence be used to construct an alternating path of size at least
2log,(n + 2) — 3. However, note that the constructed path is not nec-
essarily the largest alternating path for the given set of line segments.
The problem of computing the largest alternating path for a given set
of segments may be (much) more difficult.

The proof of Theorem 4.3 simply specifies a family of sets of disjoint
segments whose visibility graph does not contain an alternating path
on more than 7.57 log, n vertices.

4.1 Lower Bound

As already mentioned, the bound stated in Theorem 4.2 relies on the
fact that every segment endpoint visibility graph contains a Hamilto-
nian polygon, that is, Theorem 3.2. We consider a planar subgraph of
the segment endpoint visibility graph, which is a union of a Hamilto-
nian cycle and a complete matching (corresponding to the segments of
S) on the segment endpoints. As this graph is planar, all paths in it are
simple.

Recall that Theorem 3.2 states that Vis(S) contains a Hamiltonian
polygon H if not all segments in S are collinear. Clearly, if all seg-

4.1. Lower Bound 119

ments are collinear then there is an alternating path through all segment
endpoints. Otherwise, we can rely on the existence of a Hamiltonian
polygon H. Observe that H is not necessarily alternating because it
may contain several visibility edges in a row (see Figure 46(b) for an
example). H can possibly consist of visibility edges only.

0 =R
— =TSN
P /p Y & RN
PR AN
P arax v v . N\
e} o) //___—O~l:§:\ . 4 Co..::D
o e R e E C P |
[N\ , - \\\‘ /
e T s \ . .
N ? \ g0
s N |
' \ A 1 4 H
. AN 1 4
. \ N ,/’
N \\ i
o s N §
(a) Vis(S). (b) H

Figure 46: A segment endpoint visibility graph and one of its Hamal-
tonian polygons.

A segment s € S which is not in H is necessarily a diagonal or
epigonal of H. In Figure 46(b), for example, segment i is a segment
diagonal, while segment e is a segment epigonal of H. Denote by D
the Hamiltonian polygon H together with all its segment diagonals and
epigonals, and denote V := V(D) and E := E(D) in the following.

Proposition 4.4 Every vertex of D has degree two or three. If deg(v) =
2 for a vertex v, then no segment diagonal or epigonal is incident
to H at v, therefore v 1s incident to a visibility edge and a segment
edge. If deg(v) = 3 then v s incident to a segment diagonal or
epigonal and to two visibility edges along H. [

Observe that D is a PsLc. Hence any path in D is a simple path in
Vis(S).

We show in the next lemma, that one can build an alternating path
from any segment edge to any vertex in D.

Lemma 4.5 For every segment €pe; € S C E and every vertex f € V
the graph D = (V,E) contains an alternating path (eg,eq,...,ex = f),
for some k € IN.

120 Chapter 4. Alternating Paths

The remainder of this section is devoted to the proof of Lemma 4.5.
The proof of Theorem 4.2 then follows by elementary arguments.

Define a distance function d on the vertex set V as follows. For
any v € V, v # e, let d(v) be the size of the smallest (not necessarily
alternating) path connecting v and f along # that does not pass through
eo. (Such a path always exists, since H is a cycle.) If eq = f, let
d(ep) := 0, else d(ep) := co. Next, we orient all visibility edges in D
such that they are directed towards the vertex with smaller value d(-).
Two examples are depicted in Figure 47. Note that we do not consider
D as a directed graph, the orientation induced by d(-) is merely an aid
to construct paths.

€o (@'@ €1 @4@‘
A@.' :@‘ @\

Figure 47: Two examples with orientations and distances. In this
drawing, we emphasize the Hamiltonian structure of D,
there are no crossings in the original PsLG.

Proposition 4.6 With respect to the orientation according to d(-), ev-
ery verter of degree three in D 1s incident to at least one outgoing
and at most one incoming visibility edge, except for f which might
be incident to two incoming visibility edges. O

With help of this orientation, we can try to build an alternating
path P in D starting from (eo, e;) and directed towards f as follows.

Algorithm 4.7

Input: an edge (vo,v1) of D and a set X C V of vertices.

4.1. Lower Bound 121

Initialization: P «— (vo,Vv1).

Algorithm:
While P is a path and has not reached any vertex from X do

a) (u,v) « last edge of P.

b) If degp(v) = 2 then append the other (# u) neighbor of v in D
to P.

c) Elseif {u,v}is a visibility edge then append the unique segment
edge incident to v in D to P.

d) Else append a visibility edge outgoing (according to d(-)) from
v to P.

Output: P.

To check that Algorithm 4.7 is well defined, refer to Propositions 4.4
and 4.6. When called with (ep, e;) and {f}, the algorithm either termi-
nates by reaching f, or by the path P reaching a vertex for the second
time and thus becoming a walk. (The algorithm terminates, because
the number of edges in P strictly increases in every iteration.) If the
path does not reach f, we are left with a path connected to a cycle,
which looks like a balloon with a cord attached to it. Let us derive a
more formal — and slightly more general — description for this type of
configuration.

Definition 4.8 A subgraph G of Vis(S) s called walkable from a vertez
v € V(G) f and only if for every vertez u € V(G) \ {v}, there is an
alternating path within G from v to u whose edge incident to u 1s
a segment edge.

Note that, in particular, a graph consisting of a single vertex or two
vertices connected by a segment edge always form a walkable subgraph.

Definition 4.9 The union B = G U P of two subgraphs of Vis(S) with
V(G)NV(P) ={v} and E(G)NE(P) = 0 s called a balloon if and only if
G s walkable from v, and P = (v =vo,v1,...,vik, =u), K€ N, is an
alternating path in Vis(S) such that vy € S. We call stc(B) := u the
source, hrt(B) := v the heart, bdy(B) := G the body, and cor(B) := P
the cord of B.

Figure 48 shows an example of a balloon.

122 Chapter 4. Alternating Paths

Figure 48: A balloon B, the body (shaded) is walkable from v.

Proposition 4.10 Consider the path P computed by Algorithm 4.7 for
the input (vo,vi1) and X where f € X. Then either P reaches a vertez
from X, or P forms a cycle, or P forms a balloon.

Proof. If the algorithm does not reach any vertex from X, it terminates
with a walk

P:(VO,V],...,VS,VS+],...,Vk:VS),

for some 0 < s < k, such that (vg,...,vk_1) is a path. If s = 0, then
P forms a cycle. Otherwise, we claim that both v, ;v and vivg 1 are
visibility edges.

Indeed, a segment edge is included into the path directly after one
of its incident vertices has been reached. Hence Vv, _1Vvi cannot be a
segment edge, otherwise the algorithm would have selected v _; instead
of vi 1 as a successor of vs. If vsvs 17 € S then the preceding edge
Vs_1Vs is a visibility edge with d(vs) < d(vs_1) by construction. For
the same reason, the edge vi._1vx is directed towards vi = vs. Then
Proposition 4.6 tells us that v = f, and the algorithm would have
stopped there.

Proposition 4.4 implies that every second edge in P is a segment
edge; in particular, if VoV 1 is a visibility edge then vV, is a segment
edge. Thus, every vertex on the path (vs.1,...,vx_1) can be reached
from v on an alternating path that ends with a segment edge: either
via Vg1 or via vi_1 along P. Altogether, we have shown that the
constructed path P forms a balloon with source vy and heart v;.]

Proposition 4.11 For any vertex v in the body of a balloon B, there

4.1. Lower Bound 123

1s an alternating path in B from hrt(B) to v which starts with a
uistbility edge and ends with a segment edge.

Proof. Since the segment edges are pairwise disjoint, there can only be
one segment edge incident to any vertex. The segment edge incident
to hrt(B) is part of cor(B) by definition; hence, there are only visibility
edges incident to hrt(B) in bdy(B). The claim follows from the fact
that bdy(B) is walkable. O

Definition 4.12 A sequence B = (By, B, ..., By), £ € Ny, s called a
balloon-path in D if and only if it satisfies the following conditions.

1. For any i, 1 <i<{, By s a balloon in Vis(S).

2. Foranyi, 1 <i<{and anyj, i<j</{,

stc(Bj) € V(bdy(Bi)) , if j=1i+1
V(Bi) N V(B;) = (B;) (bdy(B1)) f j
0 , otherwise,

E(B;) N E(B;) = 0.

Denote |B| :={, V(B) := Uf:1 V(B;), src(B) :=src(B1), and bdy(B) :=
Uf:1 bdy(By).

We observe a few immediate consequences of this definition. Con-
sider a balloon-path B = (B¢, By, ..., By) in D.

Proposition 4.13 For any i, 2 < i < {, the edge incident to src(B;) in
Bi s a visibility edge.

Proof. Since src(Bi) € V(bdy(Bi_1)) by definition, there is an alter-
nating path from src(B;_1) to src(B;) in B;_; that ends with a segment
edge. There is exactly one segment edge incident to every vertex in
Vis(S), and E(B;_1) N E(B;) = 0. Thus, any edge incident to src(B;) in
B; must be a visibility edge. O]

Note that Proposition 4.13 implies that |V(cor(B;))| > 3 for any
2<i<i

124 Chapter 4. Alternating Paths

Proposition 4.14

(i) For every vertez uw € V(B), B contains an alternating path
from src(Bq) to u.

(1) For every vertez u € bdy(B), B contains an alternating path
from src(B1) to u that ends with a segment edge.

Proof. The statement is obvious for u € V(cor(B;)). Otherwise, there
is by definition an alternating path in B; from src(B;) to hrt(B;) that
ends with a segment edge. By Proposition 4.11, any vertex in bdy(B;)
can be reached from hrt(B;) within B; on an alternating path starting
with a visibility edge and ending with a segment edge. Since both
paths can be concatenated to a single alternating path, we are done
for the case that u € V(bdy(B;)). Otherwise, we can use the same
argument for src(B;), that lies in bdy(B;) by definition, to construct
an alternating path from u to src(B,) which ends with a segment edge.
Then (B, ..., By) forms again a balloon-path, which is strictly smaller
than B by Proposition 4.13. The claim follows by induction on |B|. [

Proposition 4.15 For any vertex v € V(B) \ {stc(B)} the segment edge
uv wncident to v 1s an edge of B.

Proof. If v € V(bdy(B)), the claim follows from Proposition 4.14 (ii).
So, let v € V(cor(B;)) for some 1 < 1 < {: if v = src(By) and 1 > 1,
we have v € V(bdy(Bi_1)); if v = hrt(B;), it is v € V(bdy(B;)). In the
remaining case, deg..,(p,)(v) = 2. Since cor(B;) is an alternating path,
one of the edges incident to v in cor(B;) must be a segment edge. [

We have now collected all tools to describe an algorithm to construct
a balloon-path from (ep,e;) headed towards f, that will provide the
proof of Lemma 4.5.

Algorithm 4.16
Input: an edge (ep,eq) of D and a vertex f € V.

Initialization:
B — () (balloon path)
(k,u) « (eo,e1). (start edge)

4.1. Lower Bound 125

Algorithm:
Repeat the following until f € V(B) in Step e below.
a) Let P := (vi = k,v2 = W, ..., vg) be the output of Algo-
rithm 4.7 applied to (k, u) and {f} U V(B).
b) (B], ceey Bg) — B.
c) If vi € V(B;), for some 1 <1i < {, then

L
B« By, ...,Bi,PU|JB;
j=1

d) Else B« (Bq, ..., B, P).
e) If f € V(B) then exit.
f) k « a vertex from bdy(Bz) that minimizes d(-).

g) u « a vertex with {k,u} € E(D) and d(u) < d(k). (cf. Propo-
sition 4.6)

Output: B.

Note that the choice of k in Step f is not necessarily unique because two
nodes might have the same d(-) value; in that case we can break the tie
arbitrarily.

Proposition 4.17 At the beginning of any iteration of the loop in Al-
gorithm 4.16, B forms a balloon-path with source e.

Proof. The statement is trivial for the first iteration, since at that point
B = (). In the second iteration, Algorithm 4.7 is called with parameters
(eo,e1) and {f}. According to Proposition 4.10, if the path P does not
reach f then it forms either a cycle or a balloon. The function d(-)
is defined such that no visibility edge is directed towards ey, unless
eo = f. The segment edge epe; incident to ey is already in P from
begin on; hence it is not possible to revisit ey along a segment edge,
either. Therefore, the path P returned by Algorithm 4.7 in the second
iteration cannot be a cycle: it must form a balloon.

Assume B = (B, ..., By) is a balloon-path at begin of some itera-
tion. Algorithm 4.7 returns a path P = (v =k, v2 =, ..., vi) which,

126 Chapter 4. Alternating Paths

according to Proposition 4.10, either reaches a vertex from {f} U V(B),
or forms a balloon. Notice that if P forms a cycle, it necessarily reaches
a vertex of V(B), since k = vy € V(bdy(B)).

Let us first consider the case that P reaches a vertex v € V(B).
We claim that vi vy is a visibility edge: If v # ep, recall that by
Proposition 4.15 the segment edge vw incident to v lies in B as well.
Thus, Algorithm 4.7 stops if P reaches w. Similarly, the segment edge
eoper incident to ey is part of B, and the algorithm stops if P reaches
e1. Now there are two subcases to consider.

(1) vk € V(bdy(Bi)) (Figure 49(a)), for some 1 < i < {. There is, by
definition, an alternating path from src(B;) to vi that ends with a

segment edge. Hence, any vertex v, ..., vx_1 can be reached from
src(B;) on an alternating path ending with a segment edge: either
via vy and P or via the balloon-path (B, ..., By) to x and then

P (see Proposition 4.14 (ii)). (Note that if P forms a cycle then
vk = K, and the argument still goes through. In fact, one could
show that P never reaches k again in the course of Algorithm 4.16.)
Furthermore, the same argument can be applied to the vertices
in Uf:iﬂ V(cor(Bj)). Thus, PU Uf:i B; is a balloon with source
src(B;) and heart hrt(B;).

(2) vk € V(cor(B;)) (Figure 49(b)), for some 1 <1i < {. Let
cor(Bi) = (u; =src(Byi), ..., Us = Vi, ..., Us),

for some 1 < s < r. Note that for s = 1 we have us = src(B;) €
V(bdy(Bi_1)) and can thus argue as in Case 1. (Recall that P
does not revisit ep.) Since all paths in B are constructed using
Algorithm 4.7, all visibility edges in the cords of the balloons in B
are oriented from the source to the heart of the balloon. Hence, we
can argue as in Proposition 4.10 that u;_jus; € S. By the same
reasoning as above, PU Uf _; Bj is a balloon with source src(B;) and
heart u; = vy.

It remains to consider the else-branch, that is, the case that the path
P that is constructed recursively by Algorithm 4.7 hits itself before
reaching any vertex from V/(B) (Figure 49(c)). Then by Proposition 4.10
P either reaches f or it forms a balloon with src(P) = k. If P reaches
f, the algorithm terminates; otherwise, (Bq, ..., B, P) forms again a
balloon-path because « € bdy(By). O

4.1. Lower Bound 127

(c) P hits itself.

Figure 49: Illustrations for Algorithm 4.16.

128 Chapter 4. Alternating Paths

Algorithm 4.16 immediately provides the proof for Lemma 4.5.

Proof. [of Lemma 4.5] We apply Algorithm 4.16 to (ep,e;) and f. If we
can show that the algorithm always terminates, the claim follows from
Propositions 4.17 and 4.14 (i). Strictly speaking, after termination B =
(Bq, ..., B¢) is not always a balloon-path anymore; but (Bq, ..., By_1)
is a balloon-path and B, is an alternating path whose one endpoint
lies in bdy(B;_1) and is incident to a visibility edge in B,. Hence, the
argument from Proposition 4.14 goes through.

To show termination, note first that no edge is ever discarded from B,
that is, |E(B)| increases monotonely over the execution of the algorithm.
Moreover, this increase is strict because in every iteration at least the
edge {k, u} is added to E(B). O

It might be worthwhile to note that we did not use anywhere the
fact that D is planar. The proof of Theorem 4.2 is completed by the
following elementary argument.

Proof. [of Theorem 4.2] Consider an arbitrary directed segment ege; € S.
For i € IN denote by V; the set of vertices in V that can be reached on
an alternating path on exactly i + 1 vertices, starting with (eg,e1).
For example, V; = {e;}. According to Proposition 4.4, we have |V;| <
2|Vi_1] for 1 even, and |V;| < |V;_1| for i odd. Setting n; := |V;| yields

thus
ne < 2 i2 , 1 even,
- 22 , 1.odd.

Hence, Y ,|Vi| < 2" —3for k odd, and Y & | [Vi| < 3-2% —3 for
k even.

By Lemma 4.5, there exists an {, 1 < { < n, such that V\ {ep} =
Uf:1 Vi. Combining this with the inequality from above yields n—1 =
VA {eo)l < X5 Vil <3-27 —3, that is, £ > 2log,(n + 2) — 2log, 3.
The claim follows, since the graph contains an alternating path on at
least { + 1 vertices.]

The above proof suggests a simple algorithm to construct a long
alternating path.

Corollary 4.18 For any set S of n disjoint line segments in the plane
and any Hamiltonian polygon H for S an alternating path in Vis(S)

4.2. Upper bound 129

that visits at least 2 [log,(n+ 2)] — 3 wertices can be computed in
O(n) tzme.

Proof. = Construct the graph D that consists of H together with all
segment diagonals and epigonals. Start an alternating breadth first
search from an arbitrary segment edge (eo,e1). (If the distance of the
current vertex in the bfs-tree to ej is odd, consider segment edges only,
otherwise consider visibility edges only.) As argued above, the last
vertex visited during this search is reached on an alternating path on
at least 2 [log, (n + 2)] — 3 vertices in the bfs-tree. As a planar graph D
contains a linear number of edges (in fact, there are at most 3n edges)
and thus the search can be done in linear time. [

4.2 Upper bound

Complementing the results from the previous section, we show here
an asymptotically matching upper bound, that is, we construct sets
Sk, k € N, of disjoint line segments that do not have large alternating
paths. We remark that an O(logn) bound was already known by a
construction due to Urrutia [87], but with a larger constant coefficient
than ours.

Proof. [of Theorem 4.3] We construct the sets of segments Sy, k € NN,
recursively as follows. All line segments are chords of a circle c. &
consists of three segments arranged in a triangular fashion, i.e., such
that Vis()S; = Kg. The endpoints of the chords partition c into arcs.
Sy is obtained from Sy ; by inserting a sequence of three segments (i.e.,
a copy of S7) on every arc of ¢ that is bounded by only one segment of
Sx_1. Figure 50 shows &7 and S,.

The two endpoints of any segment in this construction are adjacent
to the same set of segment endpoints in the visibility graph Vis(Sy).
Hence, we can interpret Vis(Sy) as complete ternary tree of depth k—1
where each vertex is formed by a clique of three segments (Figure 50(c)).
Let A be the size of a largest alternating path in Sy. Since the largest
simple path in a tree of depth k — 1 has size 2k — 1 and since visiting
a 3-clique of segments means visiting 6 vertices, we conclude that A\, =

130 Chapter 4. Alternating Paths

/j .

(b) Sz.

<« cliques

Figure 50: The construction of Sy.

12k — 6. Sy contains exactly ny := 3¥T! — 3 vertices. Hence,

3k
Ak = 12 (log3nk—1+log33k 1)—6
12 3k
= 1 —1 12 log; ——
og, 3 og, Nk — 18+ 12 log; 3T

and the claimed result follows because the last term is less than one for
k > 3.]

Note that the choice to construct Sy using groups of three segments
is not arbitrary: Suppose Sy is constructed using groups of x segments,
for some positive real number x. Then the calculation from above yields

x—1 xk
}\k = 4x].ng Nk +].ng 7 +].ng ﬁ —2x .

To minimize Ay for sufficiently large k, we have to minimize x/Inx. This
term is minimized for x = e & 2.718 and three is the closest integer.

Chapter 5

Chordless Paths

This chapter discusses the parametric complexity of finding chordless
paths in graphs. Recall the definition of the problem Cpr3v.

Problem 5.1 (Cr3v) Given an undirected graph G = (V,E), a positive
integer k, and three distinct vertices s,t,v € V, 1s there a chordless
(s,v,t)-path of size at most k in G?

First we show in Section 5.1 that Cr3v is a member of the com-
plexity class W[1] using a reduction to Short Nondeterministic Turing
Machine Computation. The complementing W[1]-hardness result, a
reduction from Independent Set, is then subject of Section 5.2. Com-
bining both reductions yields the main theorem of this chapter.

Theorem 5.2 Cpr3v s W[l]-complete with respect to k.

Section 5.3 and Section 5.4 discuss extensions of these results to several
related problems regarding the existence of chordless paths and cycles.

5.1 Membership in W[1]

In this section we analyze the parameterized complexity of Cr3v and
prove the problem to be in W[1] with respect to its natural parameter,
the path’s size. First note that a chordless (s,t)-path P is already

131

132 Chapter 5. Chordless Paths

determined by its set of vertices. For example, only one neighbor x of
s can be in V(P) because any appearance of another neighbor in V(P)
would introduce a chord. Similarly, exactly one neighbor of x (other
than s) can be in V(P). In this manner P can be uniquely reconstructed
from V(P).

Proposition 5.3 A subgraph P of G is a chordless (s,t)-path if and
only if P 1s connected, s and t have degree one in G[V(P)], and all
vertices other than s and t have degree two in G[V(P)]. O

We do not know how to directly reduce Cr3v to Weighted q-CNF-
Satisfiability. Instead, we reduce to a different problem called Short
Nondeterministic Turing Machine Computation or SNT'Mmc, for short,
that is defined below. SNT'Mc is known to be W[1]-complete [17, 31],
and reduction to SNT'MC and its relatives has proven to be a useful tool
to establish membership results within the W-hierarchy [19, 20].

Problem 5.4 (Short Nondeterministic Turing Machine Computation)

Gwen a single-tape (two-way infinite), single-head nondetermin-
istic Turing machine M, a word x on the alphabet of M, and a
positive integer k, is there a computation of M on input x that
reaches a final accepting state in at most k steps?

Theorem 5.5 Cr3v s in WI[1] with respect to k.

Proof. Consider an instance (G,s,v,t,k) of Cp3v, where G = (V,E)
is an undirected graph, s,v,t € V, and k is a positive integer. We will
construct an instance (M, k’) of SNTMcC such that there is a computa-
tion for M that reaches a final accepting state in at most k’ = k? + 4k
steps if and only if there exists a chordless (s, v, t)-path of size at most
k in G. (It is important that k' depends on k only and not on n.) A
schematic view of the construction is shown in Figure 51.

Let M = (X,Q, A, g1,{A}), where the alphabet X is defined as X :=
{00} U {ow | u € V}; the state set is

Q :={A,RjU{gi|1 <1< kjU{a,b,c,d, |, T}U{pyu|u € VIU{gu|u € V};

the transition relation A: Q x X x Q x X x {4+, —, 0} is defined below; the
initial state is g1; the final accepting state is A, and the final rejecting
state is R. When the Turing machine starts, all tape cells contain the

5.1. Membership in W[1] 133

blank symbol ([J). The computation consists of three phases: first, the
at most k vertices of a chordless (s,v,t)-path P in G are “guessed” by
writing the sequence of corresponding symbols o, u € V(P), onto the
tape. The next two phases are completely deterministic and check that

(ii) P visits s, v, and t in the order given, and

(iii) P is a chordless path in G.

In the following paragraphs we describe the three phases of the compu-
tation. For each step, we first give a verbal description and then define
the corresponding formal transition of the Turing machine subsequently.

First Phase. The Turing machine may write up to k arbitrary vertex
symbols onto the tape: (gi,J, gi+1,0u,+) € A, for all u € V and all
1 <i<k,and (gi,0,a,0,,0) € A, forallu e Vand all 1 < 1i < k.
(The transition specifies, in order, current state, symbol under the head,
new state after transition, symbol to write to the tape, and movement
of the head: + for right, — for left, and O for stay.) After the first phase,
the Turing machine is in state a and the sequence of between one and
k vertex symbols starts at the current tape cell, extending to the left.

Second Phase. Check whether the guessed sequence visits t, v, and s,
in order. The rightmost symbol should be o: (a,o¢,b,0¢,—) € A.
Then somewhere o,: (b,o0,,b,0,,—) € A, for all u € V \ {v}, and
(b, 0y,c,0,,—) € A. The leftmost symbol is o5: (¢, 0y, C,0u,—) € A,
for all u € V\ {s}, (c,0,d,05,—) € A, and (d,J,1,0,+) € A. For
all state/symbol combinations that are not explicitly mentioned (for
example, (b,[0) or (a,o0,)) there is a transition to the final rejecting
state R. After the second phase, the machine is in state | and the head
points towards the leftmost of the symbols that have been guessed in
Phase 1. The content of the tape remains unchanged during Phase 2.

Third Phase. Scan and remove the first vertex: (1, 0y,py,,+) € A,
for all u € V. If no more vertices are left at this point, we are done:
(pw,d,A,0,0) € A, for all u € V. Else the next vertex has to be ad-
jacent: (pw, 0w, du, 0w, +) € A, for all u,w € V for which {u,w} € E.
Whatever follows must not be adjacent: (qu,ow,qu, ow,+) € A, for
all u,w € V with u # w and {u,w} ¢ E. If all vertices have been

134 Chapter 5. Chordless Paths

checked, return to the leftmost: (q.,0,r,[d,—) € A, for all u € V, and
(r,0mw, T, 0w, —) € A, for all w € V. Finally, re-iterate: (r,[J,1,0J,+) €
A. Again, all state/symbol combinations that are not explicitly men-
tioned lead to the final rejecting state R. Note that after the third
phase, all tape cells contain the blank symbol again.

Correctness. Phase 3 ensures that all vertices guessed in Phase 1 are
distinct, as, otherwise the right scan in state q,, for some u € V, fails.
Moreover, because of the transition from p, to q., the vertices chosen
form a path P in G. The right scan in state q,, also ensures that no two of
the vertices are connected except along P. Finally, in Phase 2 we check
that the endpoints of P are s and t, and that P visits v. Altogether,
the machine reaches an accepting state if and only if it guesses the
vertices of a chordless (s,v,t)-path of size at most k in Phase 1. An
easy calculation reveals that if k symbols are written onto the tape in
Phase 1, the computation consists of exactly k?+4k transitions. Clearly,
M can be constructed in time polynomial (quadratic) in both n and k.
O]

5.2 Hardness for W[1]

In this section, we prove that Cp3v is WI[l]-hard using a reduction
from Independent Set, which is one of the “classical” W/[1]-hard prob-
lems [29].

Problem 5.6 (Independent Set) Given a positive integer k and an undi-
rected graph G = (V,E), is there an independent set of size at least
ki G?

Consider an instance of Independent Set, that is, a graph G = (V,E)
and an integer k, 1 < k < |V|, and let V ={vy, ..., vi,}. We construct
a graph G’ from G such that the answer to the Cp3v problem on G’
provides the solution to the independent-set problem on G.

The main ingredient for our construction is called verter choice
diamond. It consists of n vertices vi, ..., vy, plus two extra vertices s*
and t' connected to each of the n vertices v;, 1 < j < n, as shown in

Figure 52. Clearly, there are exactly n chordless (s',t')-paths in such

5.2. Hardness for W[1] 135

/0w /0

/_m«
\,/ h \x\x@ ot /ot /—

/o /+ /o /+ /0w /0

ou/0ou/— ou/ou/—

u#s u#Ev

orso/— C 2 ovsons-C 2
@™ © ™ @

a/a/+

0/d/—

oy /0y /+ %/%/+
g C‘ er
C@ oy /oy /+

oy /o0 AT C‘ Gy/Gy/+
y#£w {y, WIEE

O/4/—

ov/L/+

‘\

a/a/+

Figure 51: A schematic description of the Turing machine defined
in the proof of Theorem 5.5. The transition arrows are
labeled by, in order, symbol under head, symbol to write,
and head movement. To increase readability the final re-
jecting state and all transitions to it have been omatied.

136 Chapter 5. Chordless Paths

a diamond. As the naming of the vertices suggests, we associate each
of these paths with a vertex from G in a bijective manner: routing a
path through v}, for some 1 <j < n, is interpreted as selecting v; to be
part of the independent set I to be constructed. The construction uses
k such vertex choice diamonds, which are connected by identifying s*'
and t!, for all 1 < i < k. Let us call the graph described so far Gyc,
where VC stands for vertex choice.

Proposition 5.7 Any chordless (s',t%)-path of size { in Gyc corre-

sponds to a multiset of { —k — 1 vertices 1n G.]
vi Vi
% %
st tt st t
Vn Vn
(a) (b)
vi vi
% %
st tt st th
vy, vy,
(c) (d)

Figure 52: A wvertexr choice diamond and three of its n chordless
(st,t')-paths.

The next step is to ensure that the vertices chosen by traversing Gvc
on a chordless path correspond to an independent set in the original
graph G. To accomplish this, we construct G’ from two symmetric
copies of Gyc. Denote the vertices in the first copy C of Gy by st, v},

and t!, whereas the vertices in the second copy I' of Gyc are referred

5.2. Hardness for W[1] 137

to as o', ¢}, and ', for 1 < i< kand 1 <j < n. The graphs C and
I" are connected by identifying t* and T*. The construction of G’ is
completed by adding a number of edges that encode the adjacency of
G. An example is shown in Figure 53.

e There is an edge in G’ between v} and (p%, forall 1 <i< k and
all 1 <j,f <n with j # {. Such an edge is called a consistency
edge.

e For every edge {vp,Vvq]} in G, connect the vertex sets {v]ij, (p]ij} and
(v}, @)}, for all 1 < i,j < k with i # j, by a complete bipartite
subgraph in G’. These edges are called independence edges.

e Connect the vertex sets {vi, @i} and {v}, @)}, for all 1 < i,j < k
with i1 #j and all 1 < { < n, by a complete bipartite subgraph in
G’. These edges are called set edges.

Lemma 5.8 No chordless (s', o')-path via t* in G’ uses a consistency
edge or an independence edge or a set edge.

Proof. Let P be a chordless (s', o')-path via t* in G’. Consider the
initial part of P which traverses (part of) the first vertex choice diamond
of C. By construction of G’, exactly one of the vertices v}, 1<j<n
is on P. (All of these vertices are neighbors of s'.) Similarly, the final
part of P contains exactly one of the vertices (p}, 1< <n. Ifl#],
then the vertices v; and | are connected by a consistency edge in G'.
Hence, they together with s' and o' induce an (s', o')-path in G’ that
does not visit t*. Such a path cannot be extended to a chordless path
that visits t*. (In fact, a chordless (s,t)-path cannot be extended in
any way and at the same time remain a chordless (s,t)-path.) Thus,
we conclude that { =j.

Furthermore, v} and (p]-‘ have the same neighbors along both inde-
pendence and set edges by construction. Suppose that P continues from
v} via an independence (or set) edge to a vertex w. Clearly w # t¥
because t* is not incident to any independence or set edge. As w is
also a neighbor of ¢/, the vertices {s',v],w, ¢],¢'} C V(P) induce an
(s', o')-path which does not visit t*. Hence, P does not visit t*, either,
contrary to our assumption. Therefore, P cannot use any independence

or set edge incident to v} or ¢ .

138 Chapter 5. Chordless Paths

(b) G'.

Figure 53: An ezample illustrating the construction of G’ for k = 2.
Consistency edges are shown by solid lines, independence
edges by dashed lines, and set edges by dotted lines. The
vertez labels in G’ indicate the correspondence to the ver-
tices from G: for example, the vertices labeled “1” corre-
spond to vi. The vertex t* =t is shaded dark.

5.2. Hardness for W[1] 139

(b) G’ (without independence edges).

Figure 54: The exzample from Figure 53 grouped into different types
of edges.

140 Chapter 5. Chordless Paths

It remains to consider the consistency edges incident to v} and (p;.
Suppose P continues from v
for some 1 < { < n with { # j. (All neighbors of v]-‘ along consistency
edges are of this type.) Then the vertices {s',v], ¢;,0'} C V(P) induce
a chordless (s', o')-path that does not visit t*. Hence, P does not visit
t¥, either, contrary to our assumption. Therefore, P cannot use any
consistency edge incident to v or ¢,.

on a consistency edge towards a vertex (pg ,

1

In summary, the initial part of P goes from s' via v]], for some

1 <j<m,tot' =s? and the final part of P is completely symmetric:
from 7' via (p]-1 to o'. By induction on k, we can prove the following
statement: The initial part of P is an (s',t*)-path Q that visits all
st in increasing order, for 1 < i < n, without using any consistency,
independence, or set edge, and the final part of P is a (t*, o')-path that
is completely symmetric to Q.

The analysis from above provides the base case of the induction for
k = 1. At the same time, it also provides the induction step. As the
initial and final section of the path are determined, we can remove the
first vertex diamond and its symmetric copy from the graph and apply
the induction hypothesis to the remaining k — 1 diamonds.]

Theorem 5.9 Cpr3v is W([1]-hard with respect to k.

Proof. Given an instance (G, k) of Independent Set, we construct the
graph G’ as described above. The graph G’ contains 2k(n + 1) + 1
vertices. To compute the number of edges in G’ note that there are
4kn edges in the 2k vertex choice diamonds, plus kn(n—1) consistency
edges, 4mk(k — 1) independence edges, and 2nk(k — 1) set edges, where
n:=|V(G)| and m := |E(G)|. Hence, G’ can be constructed from G in
time and space polynomial in both n and k.

Let P be a chordless (s', o')-path via t* of size at most 4k + 1 in
G’. By Lemma 5.8, P has a very special form: in particular, its size
is exactly 4k + 1, and it visits exactly one vertex v}i from each of the
vertex choice diamonds with 1 < i < k. Let I := {v;, € V(G) |V} €
V(P) for 1 <1 < k}. Suppose that v;, =v;, for some 1 < i,{ < k with
1#£4{. As v}i and vfz are connected by a set edge in G’ that is not in P
by Lemma 5.8, this set edge forms a chord of P, in contradiction to our
assumption that P is chordless. Therefore, the vertices v}i visited by

5.2. Hardness for W[1] 141

P correspond to mutually distinct vertices in G, that is, together with
Proposition 5.7 it follows |I| =2k +1—k —1 =k.

Furthermore, we claim that I is an independent set in G. Suppose
that for two vertices v}i and vfe on P, 1<1i{<kand1i#{, the corre-
sponding vertices v;, and v;, are neighbors in G. Then by construction
vj, and v are connected by an independence edge in G’. This edge is
not in P by Lemma 5.8, that is, it forms a chord of P, in contradiction
to our assumption that P is chordless. Therefore, no two vertices in I
are adjacent in G.

Conversely, for any independent set I = {vy,v2,...,vy,...} of size at
least k in G there is a chordless (s', o')-path P via t* of size 4k + 1 in
G’: in the i-th vertex choice diamonds, P visits v} and ¢!, for 1 <1i < k.

Therefore, we have a parameterized reduction from an independent
set instance (G, k) to a Cp3v instance (G’,4k + 1), establishing WI[1]-
hardness of Cpr3v.]

In general, W[1]-hardness does not (at least, is not known to) imply
Npr-hardness of the corresponding unparameterized problem. But in
this particular case, the reduction can be extended easily.

Corollary 5.10 It i:s Np-complete to decide whether there exists any
chordless (s,v,t)-path for three given vertices s, v, and t of an
undirected graph.

Proof. The problem is clearly in Np. Regarding the hardness proof
observe that the reduction described in Theorem 5.9 constructs the
graph G’ in time and space polynomial in both n and k and k < n.
Moreover, the size of any chordless (s', o')-path via t* in G’ is exactly
4k 4+ 1. That is, in order to solve the independent set problem in G, it
is sufficient to decide on the existence of any chordless (s', o')-path via
tk in G, O

Analogously, the problem remains W/[1]-complete, if we impose ad-
ditional constraints on the chordless path under consideration, such as
an exact size or parity.

Corollary 5.11 It 1s W[1]-complete (w.r.t. k) to decide whether there
exists a chordless (s,v,t)-path of size exactly k for three given ver-

tices s, v, and t of an undirected graph and a positive integer k.
]

142 Chapter 5. Chordless Paths

5.3 Chordless Cycles

In this section we discuss the relationship between the problem Cpr3v
of deciding on the existence of a chordless path through three given
vertices and the problem McpP2v (“Many chordless paths through two
vertices”) of deciding on the existence of a disjoint union of £ chordless
(s, t)-paths, for some { € IN.

Problem 5.12 (Many Chordless (s, t)-Paths (Mcp2v))

Given an undirected graph G = (V,E), positive integers k and {,
and two distinct vertices s,t € V, 1s there a set U C V of at most
k wvertices such that the subgraph induced by U in G s a disjoint
union of { chordless (s,t)-paths?

A subgraph H of G is a disjoint union of chordless (s, t)-paths, if in
H\ {s, t} each component is

e either an isolated vertex adjacent to both s and t in G;
e or a path (pi,...,pr), v > 2, for which

— p1 is adjacent to s but not to t in G;
- P, 1s adjacent to t but not to s in G;

- every pi, 2 <1<, is adjacent to neither s nor t in G.

We show that Cr3v and McP2v are equivalent under both param-
eterized reductions and classical (Karp—)reductions. This implies that
both problems are complete for both W/[1] and Np.

Theorem 5.13 Many Chordless (s,t)-Paths 1s W([1]-hard with respect
to k, for any { > 2.

Proof. For { = 2 we face the problem 2cp2v: Is there a chordless cycle
of size at most k through s and t?

The proof is by reduction from Cp3v. Consider a Cpr3v-instance
(G,s,v,t, k). Construct a graph G’ from G by adding a new vertex c
that is adjacent to s and t only. Any chordless cycle of size at most
k + 1 through c and v in G’ corresponds to a chordless (s, v, t)-path of
size at most k in G and vice versa.

5.3. Chordless Cycles 143

For { > 2 we add { — 2 additional vertices to G’, each of them
adjacent to c and v only. Then any set of at most k + { — 1 vertices in
G’ that form a disjoint union of ¢ chordless (c,Vv)-paths corresponds to
a chordless (s, v, t)-path of size at most k in G and vice versa.]

The above reduction together with Corollary 5.10 is easily seen to
prove Np-completeness of Mcp2v. But this result is already known [35].
In fact, it provides an alternative way to prove Corollary 5.10, as out-
lined below.

Proof. (of Corollary 5.10 (alternative)) The problem is clearly in Np. The
hardness is proven by reduction from 2cp2v. Consider an instance
(G,s,t,k) of 2cP2v. Let Ng(s) = {x1,...,xq} with d = deg(s).

If t € Ng(s), then simply remove the edge {s,t}. A chordless (s,t)-
path in the resulting graph corresponds to a chordless cycle through s
and t in G and vice versa.

If t ¢ Ng(s), then construct a graph G’ from G by adding a new
vertex s’ and new vertices y2,...,yq and z3,...,z4. Remove all edges
incident to s and connect s to all of y,,...,yq instead. Connect y; to
xj, for all 2 < i< dand 1 <j < d with i # j. Finally, connect s’
to all of z,...,zq and connect z; to x;, forall 2 < i < j < d. An
example is depicted in Figure 55. Clearly, G’ can be constructed from
G in O(|V(G)|*) time.

X1

X4

(a) G. (b) G'.
Figure 55: An example illustrating the construction of G’'.

We claim that any chordless (s, t,s’)-path of size k + 3 in G’ corre-
sponds to a chordless cycle of size k through s and t in G and vice versa.

144 Chapter 5. Chordless Paths

Indeed, any chordless cycle C through s and t in G passes through
exactly two neighbors x; and x; of s, where 1T < 1 < j < d. Such
a cycle corresponds to a chordless path (s,yj, xi,...,t,...,%5,2,8')-
path in G’ where the dotted part is C \ s. Conversely, any (s,t,s’)-
path in G’ follows the pattern (s,y;,xi,...,t,...,%j,25,8), for 1 <
i1 < j < d, by construction of G’ and corresponds to a chordless cycle
(s,xi,...,t,...,%j,8) in G. This proves the claim and the theorem. [J

Note that the reduction described above is parametric. As a conse-
quence, 2cp2V is in W[1] and hence by Theorem 5.13 W/[1]-complete.
In order to extend this statement to the Many Chordless (s, t)-Paths
Problem, we can once again use a reduction to SNT'MC.

Theorem 5.14 Many Chordless (s, t)-Paths is W[1]-complete with re-
spect to k, for any { > 2.

Proof. The hardness part was shown in Theorem 5.13; it remains to
prove membership, which is done by reduction to SNT'MC.

Consider an instance (G,s,t,k,{) of Mcp2v, where G = (V,E) is
an undirected graph, s,t € V, and k and { are positive integers. For
the sake of brevity, we do not explicitly define a Turing machine as in
Theorem 5.5 here. Instead we only sketch how such a machine could
be constructed along the lines of Theorem 5.5 such that the number of
steps in its computation can be bounded in terms of k. In the following,
we identify the vertices of G with their corresponding symbols from the
alphabet of the Turing machine.

First Phase. As the solution set U C V(G) induces a disjoint union
of (s, t)-paths, we can enumerate the vertices of U as a single path from
s to either s or t (depending on whether { is even or odd, respectively),
where only s and t appear multiple times. The machine first “guesses”
the at most k vertices of U in this particular order, thereby writing at
most k + £ — 1 vertices onto the tape.

Second Phase. The machine checks in O(k) transitions whether the
sequence of vertices on the tape starts with s, ends with s or t (de-
pending on whether { is even or odd, respectively), and whether s and
t appear alternately in this sequence and both together { 4 1 times.

Third Phase. The machine checks in O(k) transitions whether every
vertex on the tape that is adjacent to s in G is also adjacent to s on
the tape. Similarly, it checks whether every vertex on the tape that is

5.4. Directed Graphs 145

adjacent to t in G is also adjacent to t on the tape.

Fourth Phase. The machine erases the vertices from the tape one
after the other. For each removed vertex v, the vertex v/ immediately
following it on the tape has to be adjacent tov. If v € {s, t}, then there is
nothing more to do. Otherwise, for every remaining vertex w ¢ {s, t,v'}
on the tape it has to be verified that w # v and that w is not adjacent
to v in G. This phase can be implemented using O(k?) transitions.

In summary, we have described a Turing machine that can be con-
structed for any specific instance (G, s, t,k,{) of Mcp2v in time poly-
nomial in all of |V(G)|, k, and { and whose computation reaches a final
accepting state in O(k?) transitions, if and only if (G, s, t,k, £) is solv-
able.]

5.4 Directed Graphs

The notion of chordless paths generalizes in a straightforward manner
to directed graphs. A path P in a directed graph G is chordless if P is
the directed subgraph induced by V(P) in G.

Problem 5.15 (Directed Chordless (s, t)-Path (DcP)) For a directed graph
G = (V,E), a positive integer k, and two distinct vertices s,t € V,
18 there a chordless directed (s,t)-path of size at most k in G?

Fellows et al. [36] showed that DcPp is NP-complete even if restricted
to planar digraphs. Our constructions described above can easily be
adapted to deal with the directed setting as well.

Theorem 5.16 Dcp is W([1]-complete with respect to k.

Proof. In the Turing machine of Theorem 5.5 replace all conditions that
require the existence of an edge by corresponding conditions requiring
the presence of a directed edge. Similarly, all conditions requiring the
absence of an edge are replaced by corresponding conditions disallowing
both directed edges.

The construction described in Theorem 5.9 is modiﬁed as follows.
In the vertex choice diamonds direct all edges from s* to vj and from

vi to t', forall 1 <i<kandall l<j<n. Inthesymmetric copy,

146 Chapter 5. Chordless Paths

direct all edges from T' to ¢} and from ¢} to o', for all 1 < i < k and

all 1 < j < n. These orientations induce a linear! order (s',...,t* =
™ ... 0") on V(G').

The remaining edges, that is, the consistency, independence, and
set edges all are oriented from the vertex that is greater with respect
to this linear order to the smaller vertex. It is easy to verify that no
chordless directed (s',o')-path can use a consistency, independence,
or set edge. In fact, the orientation is chosen such that any chordless
directed (s', o')-path in G’ passes through t* = t*, although this is
not required by definition, in contrast to Cpr3v.]

As a consequence, also the following problem is W/[1]-complete with
respect to k. (Just add a single directed edge (o', s') to the construction
described in Theorem 5.16.)

Problem 5.17 (Directed Chordless Cycle) For a directed graph G = (V,E),
a positive integer k, and a vertex s € V, 1s there a chordless directed
cycle of size at most k through s in G2

Note that both problems are polynomial if the path or cycle is not re-
quired to be chordless, as the maximum number k of vertex-disjoint
directed (s, t)-paths can be computed in O(k|E|) time using flow tech-
niques [38]. However, deciding whether there exist a directed (s1,t;)-
path and a directed (s>, t2)-path that are vertex-disjoint is Nr-complete,
even for t; = s, and t, = s [39].

Also, if the definition of chordless is relaxed to allow “back-cutting”
arcs within each path, Dcp restricted to planar graphs is polynomial,
even for an arbitrary but fixed number of chordless (s,t)-paths [60].
The existence of such arcs is the crucial difference between the directed
and the undirected problem: in an undirected (s, t)-path P every edge
joining two vertices that are non-adjacent along P can be used as a
shortcut. That is, the presence of any (s, t)-path implies the existence
of a chordless (s, t)-path. However, we will show below that admitting
back-cutting arcs does not change the parametric complexity of the
problem for general graphs.

1Strictly speaking, the orientations define a partial order. It can be extended to
a linear order by defining the order of the vertices \)]? (similarly cp]l) within the same
vertex choice diamond in an arbitrary manner.

5.4. Directed Graphs 147

Definition 5.18 An (s, t)-path P in a graph G = (V,E) s called weakly
chordless if and only if P is a shortest (s,t)-path in G[V(P)].

Observe that there is no difference between chordless and weakly chord-
less in undirected graphs. But, in contrast to Dcp, the presence of a di-
rected weakly chordless (s, t)-path (or chordless cycle through s) can be
decided in linear time by a breadth-first search. However, the obvious
generalization to several paths defined below is again W[1]-complete,
already for two paths.

Problem 5.19 (Many Weakly Chordless (s, t)-Paths) For a directed graph
G = (V,E), positive integers k and {, and two distinct vertices s, t €
V, 1s there a set U C V of at most k vertices such that G[U] is a
disjoint union of { weakly chordless (s,t)-paths?

Theorem 5.20 Many Weakly Chordless (s,t)-Paths is W([1]-complete
with respect to k, for any £ > 2.

Proof. It is clear how to adapt the Turing machine construction of
Theorem 5.5 to establish membership in WI{1].

For the hardness proof, consider the case { = 2. The construction
described in Theorem 5.9 is modified as follows. First, add a directed
edge from o' to s', and let s = t* = 7% and t = s'. In the vertex
choice diamonds direct all edges from t' to v} and from v} to s', for all
1 <i<kandall 1 <j<n. Likewise, in the symmetric copy direct
all edges from ' to ¢} and from ¢ to o', for all 1 < i < k and all
1 <j < n. Remove all independence and set edges within the same
diamond chain, such that all remaining independence or set edges are
between v} and ¢y, for some 1 < 1i,p < kand 1 <j,q < n. Direct

those edges from v} towards ¢f. See Figure 56 for an example.

Consider (t*,s')-paths P and Q in G’ such that G[V(P) U V(Q)]
is a disjoint union of weakly chordless (t*,s')-paths. The way the
edges are directed, one of the paths, say, P comes via the vertex choice
diamonds and visits the vertices t*,s* t*=! ...t! s!, in order. On
the other hand, Q traverses the symmetric copy and visits the vertices
™, o% %=1 ...1' o', in order, before finally reaching s' via the added
edge. Because there must not be any edge between P and Q, we can
argue as in Theorem 5.9 that the vertices v} and @Y visited by P and
Q, respectively, correspond to an independent set of size at most k in

G.

148 Chapter 5. Chordless Paths

For { > 2, we add { — 2 additional vertices to G’ each of which is

connected to s' (directed towards s') and t* (directed from t*) only.
[

(a) G.

(b) G'.

Figure 56: An example illustrating the construction of G’ for k = 2.
Consistency edges are shown by solid lines, independence
edges by dashed lines, and set edges by dotted lines. The
vertez labels in G’ indicate the correspondence to the ver-
tices from G: for example, the vertices labeled “1” corre-
spond to vi. The vertex t =s' is shaded dark.

Bibliography

1]

3]

4]

Pankaj K. Agarwal, Noga Alon, Boris Aronov, and Subhash Suri,
Can Visibility Graphs be Represented Compactly?, Discrete Com-
put. Geom. 12 (1994), 347-365.

Oswin Aichholzer, Michael Hoffmann, Bettina Speckmann,
and Csaba D. Téth, Degree Bounds for Constrained Pseudo-
Triangulations, in: Proc. 15th Canad. Conf. Comput. Geom.,
2003, 155-158.

Oswin Aichholzer, Clemens Huemer, and Hannes Krasser, Trian-
gulations Without Pointed Spanning Trees, in: Abstracts 20th
European Workshop Comput. Geom., 2004, 221-224.

Noga Alon, Sridhar Rajagopalan, and Subhash Suri, Long Non-
Crossing Configurations in the Plane, in: Proc. 9th Annu. ACM
Sympos. Comput. Geom., 1993, 257-263.

Helmut Alt, Ulrich Fuchs, and Klaus Kriegel, On the Number of
Simple Cycles in Planar Graphs, Combinatorics, Probability and
Computing 8, 5 (1999), 397-405.

Esther M. Arkin, Martin Held, Joseph S.B. Mitchell, and Steven S.
Skiena, Hamiltonian Triangulations for Fast Rendering, Visual
Comput. 12, 9 (1996), 429-444.

Sanjeev Arora, Polynomial Time Approximation Schemes for Eu-
clidean Traveling Salesman and other Geometric Problems, J.
ACM 45, 5 (1998), 753-782.

David Avis and David Rappaport, Computing Monotone Simple
Circuits in the Plane, in: Computational Morphology (God-

149

150

Bibliography

[10]

[11]

12]

[13]

[14]

[15]

[16]

[17]

18]

[19]

fried T. Toussaint, ed.), North-Holland, Amsterdam, Netherlands,
1988, 13-23.

Alexander Barvinok, Sdndor P. Fekete, David S. Johnson, Arie
Tamir, Gerhard J. Woeginger, and Russ Woodroofe, The Geomet-
ric Maximum Traveling Salesman Problem, J. ACM 50, 5 (2003),
641-664.

Cristina Bazgan, Schémas d’Approximation et Complexité Pa-
ramétrée, Rapport du stage (DEA), Université Paris Sud, 1995.

Claude Berge, Farbung von Graphen deren samtliche beziehungs-
weise deren ungerade Kreise starr sind (Zusammenfassung)., Wiss.
Z. Martin Luther Unw. Halle Wittenberg Math. Naturwsiss.
Reihe 114-115.

Sergei Bespamyatnikh, Computing Homotopic Shortest Paths in
the Plane, J. Algorithms 49, 2 (2003), 284-303.

Dan Bienstock, On the Complexity of Testing for Odd Holes and
Induces Odd Paths, Discrete Math. 90, 1 (1991), 85-92.

Dan Bienstock, Corrigendum to: On the Complexity of Testing for
Odd Holes and Induces Odd Paths, Discrete Math. 102, 1 (1992),
109.

Prosenjit Bose, Michael E. Houle, and Godfried T. Toussaint, Ev-
ery Set of Disjoint Line Segments Admits a Binary Tree, Discrete
Comput. Geom. 26 (2001), 387-410.

Prosenjit Bose and Godfried T. Toussaint, Growing a Tree from its
Branches, J. Algorithms 19, 1 (1995), 86-103.

Liming Cai, Jianer Chen, Rodney G. Downey, and Michael R. Fel-
lows, On the Parameterized Complexity of Short Computation and
Factorization, Arch. Math. Logic 36, 4-5 (1997), 321-337.

Jakub Cerny, Zden&k Dvoidk, Vit Jelinek, and Jan Kéra, Noncross-
ing Hamiltonian Paths in Geometric Graphs, in: Graph Drawing
(Giuseppe Liotta, ed.), volume 2912 of Lecture Notes Comput.
Sci., Springer-Verlag, 2004, 86-97.

Marco Cesati, Perfect Code is W[1]-complete, Inform. Process.
Lett. 81, 3 (2002), 163-168.

Bibliography 151

[20]

[21]

22]

[23]

[24]

[25]

[26]

[27]

28]

[29]

[30]

[31]

Marco Cesati, The Turing Way to Parameterized Complexity, J.
Comput. Syst. Sci. 67, 4 (2003), 654-685.

Marco Cesati and Luca Trevisan, On the Efficiency of Polyno-
mial Time Approximation Schemes, Inform. Process. Lett. 64,
4 (1997), 165-171.

Maria Chudnovsky, Gérard Cornuéjols, Xinming Liu, Paul D. Sey-
mour, and Kristina Vuskovi¢, Recognizing Berge Graphs, Comb:-
natorica 25, 2 (2005), 143-187.

Maria Chudnovsky, Neil Robertson, Paul D. Seymour, and Robin
Thomas, The Strong Perfect Graph Theorem, http://www.math.
gatech.edu/"thomas/spgc.ps.gz, 2003. Manuscript.

Joe Csima and Tom A. Ralston, Crossing-free Hamiltonian Paths
in Buclidean Spaces, Ars Combin. 18 (1984), 87-97.

Erik D. Demaine and Joseph O’Rourke, Open Problems from
CCCG’99, Technical Report 066, Dept. Comput. Sci., Smith Col-
lege, Northampton, MA, 2000.

Michael B. Dillencourt, A Non-Hamiltonian, Nondegenerate De-
launay Triangulation, Inform. Process. Lett. 25 (1987), 149-151.

Michael B. Dillencourt, Hamiltonian Cycles in Planar Triangula-
tions with no Separating Triangles, J. Graph Theory 14, 1 (1990),
31-49.

Michael B. Dillencourt, Finding Hamiltonian Cycles in Delaunay
Triangulations is NP-complete, Discrete Appl. Math. 64 (1996),
207-217.

Rodney G. Downey and Michael R. Fellows, Fixed-parameter
Tractability and Completeness II: On Completeness for W[1], The-
oret. Comput. Sci. 141 (1995), 109-131.

Rodney G. Downey and Michael R. Fellows, Parameterized Com-
plezity, Monographs in Computer Science, Springer-Verlag, 1999.

Rodney G. Downey, Michael R. Fellows, Bruce Kapron, Michael T'.
Hallett, and H. Todd Wareham, Parameterized Complexity and
Some Problems in Logic and Linguistics, in: Proc. 2nd Workshop
on Structural Complexity and Recursion-theoretic methods in

152

Bibliography

[32]

33]

[34]

35]

[36]

[37]

[38]

[39]

[40]

[41]

Logic-Programmang, volume 813 of Lecture Notes Comput. Sci.,
Springer-Verlag, 1994, 89-101.

Alon Efrat, Stephen G. Kobourov, and Anna Lubiw, Computing
Homotopic Shortest Paths Efficiently, in: Proc. Annu. European
Sympos. Algorithms, number 2461 in Lecture Notes Comput. Sci.,
Springer-Verlag, 2003, 411-423.

Hazel Everett, Chinh T. Hoang, Kyriakos Kilakos, and Marc Noy,
Planar Segment Visibility Graphs, Comput. Geom. Theory Appl.
16 (2000), 235—-243.

Istvan Fary, On Straight Line Representation of Planar Graphs,
Acta Sci. Math. Szeged 11 (1948), 229-233.

Michael R. Fellows, The Robertson-Seymour Theorems: A Sur-
vey of Applications, in: Proc. AMS-IMS-SIAM Joint Summer
Research Conf. (Bruce Richter, ed.), volume 89 of Contempo-
rary Mathematics, American Mathematical Society, Providence,
RI, 1989, 1-18.

Michael R. Fellows, Jan Kratochvil, Martin Middendorf, and Frank
Pfeiffer, The Complexity of Induced Minors and Related Problems,
Algorithmaca 13 (1995), 266-282.

Merrill M. Flood, The Traveling-Salesman Problem, Oper. Res. 4
(1956), 61-75.

Lester R. Ford and Delbert R. Fulkerson, Maximal Flow through
a Network, Canad. J. Math. 8 (1956), 399—404.

Steve Fortune, John E. Hopcroft, and James Wyllie, The Directed
Subgraph Homeomorphism Problem, Theoret. Comput. Sci. 10
(1980), 111-121.

Alfredo Garcia, Marc Noy, and Javier Tejel, Lower Bounds on the
Number of Crossing-Free Subgraphs of Ky, Comput. Geom. The-
ory Appl. 16 (2000), 211-221.

Michael R. Garey and David S. Johnson, Computers and In-
tractability: A Guide to the Theory of NP-Completeness, W.
H. Freeman, New York, NY, 1979.

Bibliography 153

[42]

[43]

[44]

[45]

[46]

[47]

48]

[49]

[50]

[51]

[52]

Subir K. Ghosh and David M. Mount, An Output-Sensitive Al-
gorithm for Computing Visibility Graphs, SIAM J. Comput. 20
(1991), 888-910.

Branko Grunbaum, Hamiltonian Polygons and Polyhedra, Geom-
binatorics 3, 3 (1994), 83-89.

Robert Haas, Service Deployment in Programmable Networks,
Ph.D. thesis, ETH Zurich, Switzerland, 2003.

Robert Haas and Michael Hoffmann, Chordless Paths Through
Three Vertices, in: Proc. Internat. Workshop on Parameterized

and Ezact Computation, volume 3162 of Lecture Notes Comput.
Sci., Springer-Verlag, 2004, 25-36.

John Hershberger, An Optimal Visibility Graph Algorithm for Tri-
angulated Simple Polygons, Algorithmica 4 (1989), 141-155.

John Hershberger and Subhash Suri, An Optimal Algorithm for
Buclidean Shortest Paths in the Plane, SIAM J. Comput. 28, 6
(1999), 2215-2256.

Michael Hoffmann, Bettina Speckmann, and Csaba D. To6th,
Pointed Binary Encompassing Trees, in: Proc. 9th Scand. Work-

shop Algorithm Theory, volume 3111 of Lecture Notes Comput.
Sci., Springer-Verlag, 2004, 442—-454.

Michael Hoffmann and Csaba D. T'éth, Segment Endpoint Visibil-
ity Graphs are Hamiltonian, in: Proc. 13th Canad. Conf. Com-
put. Geom., 2001, 109-112.

Michael Hoffmann and Csaba D. T'éth, Alternating Paths through
Disjoint Line Segments, in: Abstracts 18th European Workshop
Comput. Geom., 2002, 23-26.

Michael Hoffmann and Csaba D. T'6th, Alternating Paths through
Disjoint Line Segments, Inform. Process. Lett. 87, 6 (2003), 287-
294.

Michael Hoffmann and Csaba D. T'éth, Segment Endpoint Visibil-
ity Graphs are Hamiltonian, Comput. Geom. Theory Appl. 26, 1
(2003), 47-68.

154

Bibliography

(53]

[54]

[55]

[56]

[57]

(58]

[59]

(60]

[61]

62]

63]

Ferran Hurtado, Godfried T. Toussaint, and Joan Trias, On Poly-
hedra Induced by Point Sets in Space, in: Proc. 15th Canad.
Conf. Comput. Geom., 2003, 107-110.

Alon Itai, Christos H. Papadimitriou, and Jayme L. Szwarcfiter,
Hamilton Paths in Grid Graphs, SIAM J. Comput. 11 (1982),
676—686.

Ray A. Jarvis, On the Identification of the Convex Hull of a Finite
Set of Points in the Plane, Inform. Process. Lett. 2, 1 (1973),
18-21.

Richard M. Karp, On the Complexity of Combinatorial Problems,
Networks 5 (1975), 45-68.

Der-Tsai Lee and Franco P. Preparata, Euclidean Shortest Paths in
the Presence of Rectilinear Barriers, Networks 14 (1984), 393-410.

George S. Lueker, Donald J. Rose, and Robert E. Tarjan, Algorith-
mic Aspects of Vertex Elimination in Graphs, SIAM J. Comput.
5 (1976), 266—283.

Colin McDiarmid, Bruce Reed, Alexander Schrijver, and Bruce
Shepherd, Non-Interfering Network Flows, in: Proc. 8rd Scand.
Workshop Algorithm Theory, 1992, 245-257.

Colin McDiarmid, Bruce Reed, Alexander Schrijver, and Bruce
Shepherd, Induced Circuits in Planar Graphs, J. Combin. Theory
Ser. B 60 (1994), 169-176.

Andranik Mirzaian, Hamiltonian Triangulations and Circumscrib-
ing Polygons of Disjoint Line Segments, Comput. Geom. Theory
Appl. 2,1 (1992), 15-30.

Joseph S.B. Mitchell, Guillotine Subdivisions Approximate Polyg-
onal Subdivisions: A Simple Polynomial-Time Approximation
Scheme for Geometric TSP, k-MST, and Related Problems, STAM
J. Comput. 28 (1999), 1298-1309.

Joseph S.B. Mitchell, Shortest Paths and Networks, in: Handbook
of Discrete and Computational Geometry (Jacob E. Goodman
and Joseph O’Rourke, eds.), CRC Press LLC, Boca Raton, FL,
2004, 607-641.

Bibliography 155

[64] Joseph S.B. Mitchell and Joseph O’Rourke, Computational geom-
etry column 42, Internat. J. Comput. Geom. Appl. 11, 5 (2001),
573-582. Also in SIGACT News 32(3):63-72 (2001), Issue 120.

[65] David E. Muller and Franco P. Preparata, Finding the Intersection
of Two Convex Polyhedra, Theoret. Comput. Sci. 7 (1978), 217-
236.

[66] Giri Narasimhan, On Hamiltonian Triangulations in Simple Poly-
gons, Internat. J. Comput. Geom. Appl. 9, 3 (1999), 261-275.

[67] Rolf Niedermeier, Invitation to Fized-Parameter Algorithms,
Habilitation thesis, Wilhelm-Schickard Institut fur Informatik,
Universitat Tubingen, Germany, 2002.

[68] Stavros D. Nikolopoulos and Leonidas Palios, Hole and Antihole
Detection in Graphs, in: Proc. 15th ACM-SIAM Sympos. Dais-
crete Algorithms, 2004, 843—-852.

[69] Joseph O’Rourke and Jennifer Rippel, Two Segment Classes with
Hamiltonian Visibility Graphs, Comput. Geom. Theory Appl. 4
(1994), 209-218.

[70] Joseph O’Rourke and Subhash Suri, Polygons, in: Handbook of
Discrete and Computational Geometry (Jacob E. Goodman and
Joseph O’Rourke, eds.), CRC Press LLC, Boca Raton, FL, 2004,
583-606.

[71] Janos Pach and Eduardo Rivera-Campo, On Circumscribing Poly-
gons for Line Segments, Comput. Geom. Theory Appl. 10 (1998),
121-124.

[72] Christos H. Papadimitriou, The Euclidean Traveling Salesman
Problem is NP-complete, Theoret. Comput. Sci. 4 (1977), 237-
244,

[73] Micha Perles, DIMACS Workshop on Geometric Graph Theory,
2002.

[74] Michel Pocchiola and Gert Vegter, Topologically Sweeping Vis-
ibility Complexes via Pseudo-Triangulations, Discrete Comput.
Geom. 16 (1996), 419-453.

[75] Louis V. Quintas and Fred Supnick, On some Properties of Shortest
Hamiltonian Circuits, Amer. Math. Monthly 72 (1965), 977-980.

156

Bibliography

[76]

[77]

78]

[79]

[80]

81]

82]

83]

[84]

85]

86]

87]

Satish B. Rao and Warren D. Smith, Approximating geometrical
graphs via “spanners” and “banyans”, in: Proc. 30th Annu. ACM
Sympos. Theory Comput., 1998, 540-550.

David Rappaport, Computing Simple Circuits from a Set of Line
Segments is NP-complete, STAM J. Comput. 18, 6 (1989), 1128-
1139.

David Rappaport, The Visibility Graph of Congruent Discs is Ha-
miltonian, Comput. Geom. Theory Appl. 25, 3 (2003), 257—-265.

David Rappaport, Hiroshi Imai, and Godfried T. Toussaint, Com-
puting Simple Circuits from a Set of Line Segments, Discrete
Comput. Geom. 5, 3 (1990), 289-304.

Neil Robertson and Paul D. Seymour, Graph Minors XIII. The
Disjoint Paths Problem, J. Combin. Theory Ser. B 63 (1995),
65-110.

Francisco Santos and Raimund Seidel, A Better Upper Bound on
the Number of Triangulations of a Planar Point Set, J. Combin.
Theory Ser. A 102, 1 (2003), 186—193.

Xiaojun Shen and Herbert Edelsbrunner, A Tight Lower Bound
on the Size of Visibility Graphs, Inform. Process. Lett. 26 (1987),
61-64.

Sherman K. Stein, Convex Maps, Proc. Amer. Math. Soc. 2, 3
(1951), 464-466.

Ernst Steinitz and Hans Rademacher, Vorlesungen uber die The-
orie der Polyeder, Julius Springer, Berlin, Germany, 1934.

Robert E. Tarjan and Mihalis Yannakakis, Simple Linear-Time
Algorithms to Test Chordality of Graphs, Test Acyclicity of Hy-
pergraphs, and Selectively Reduce Acyclic Hypergraphs, STAM J.
Comput. 13 (1984), 566-579.

Masatsugu Urabe and Mamoru Watanabe, On a Counterexample
to a Conjecture of Mirzaian, Comput. Geom. Theory Appl. 2, 1
(1992), 51-53.

Jorge Urrutia, Algunos Problemas Abiertos (in Spanish), in: Actas
de los IX Encuentros de Geometria Computacional (Narcis Coll
and Joan Antoni Sellarés, eds.), 2001, 13-24.

Bibliography 157

[88] Jorge Urrutia, Open Problems in Computational Geometry, in:
Proc. Latin Amer. Sympos. Theoret. Informatics, volume 2286
of Lecture Notes Comput. Sci., Springer-Verlag, 2002, 4-11.

[89] Klaus Wagner, Bemerkungen zum Vierfarbenproblem (in Ger-
man), Jahresbericht der Deutschen Mathematiker- Vereinigung
46 (1936), 26-32.

[90] Emo Welzl, Constructing the Visibility Graph for n Line Segments
in O(n?) Time, Inform. Process. Lett. 20 (1985), 167-1T71.

[91] Hassler Whitney, A Theorem on Graphs, Annu. Math. 32 (1931),
378-390.

158 Bibliography

Curriculum Vitae

Michael Hoffmann
born on May 6, 1970 in Berlin, Germany

1980-1989 Highschool “Gymnasium Steglitz” in Berlin, Germany
1989-1996 Studies at Freie Universitat Berlin, Germany

Major: Mathematics

Minor: Computer Science
Since 1996 Assistant
Institute for Theoretical Computer Science, ETH Zirich

Since 2000 PhD student at ETH Zurich

159

