
DISS. ETH NO. 20668

EXACT ALGORITHMS FOR
CONSTRAINT SATISFACTION

PROBLEMS

A dissertation submitted to
ETH ZÜRICH

for the degree of
DOCTOR OF SCIENCES

presented by

ROBIN ALEXANDER MOSER
MSc ETH

born 14.08.1983
citizen of Inkwil (BE), Switzerland

accepted on the recommendation of
Prof. Dr. Emo Welzl, examiner

Prof. Dr. Uwe Schöning, co-examiner
Prof. Dr. Gábor Tardos, co-examiner

2012

Abstract

The Boolean satisfiability problem (SAT) and its generalization to vari-
ables of higher arities – constraint satisfaction problems (CSP) – can ar-
guably be called the most “natural” of all NP-complete problems. The
present work is concerned with their algorithmic treatment. It consists
of two parts.

The first part investigates CSPs for which satisfiability follows from
the famous Lovász Local Lemma. Since its discovery in 1975 by Paul
Erdős and László Lovász, it has been known that CSPs without dense
spots of interdependent constraints always admit a satisfying assign-
ment. However, an iterative procedure to discover such an assign-
ment was not available. We refine earlier attempts at making the Local
Lemma algorithmic and finally present a polynomial time algorithm
able to make almost all known applications constructive.

In the second part, we leave behind the class of polynomial time
tractable problems and instead investigate the randomized exponen-
tial time algorithm devised and analyzed by Uwe Schöning in 1999,
which solves arbitrary clause satisfaction problems. Besides some new
interesting perspectives on the algorithm, the main contribution of this
part consist of a refinement of earlier approaches at derandomizing
Schöning’s algorithm. We present a deterministic variant which loss-
lessly reaches the performances of the randomized original.

iii

Zusammenfassung

Die Erfüllbarkeitsprobleme SAT und CSP dürfen mit Fug als die “na-
türlichsten” aller NP-vollständigen Probleme bezeichnet werden. Die
vorliegende Arbeit befasst sich mit deren algorithmischen Behand-
lung. Sie besteht aus zwei Teilen.

Der erste Teil befasst sich mit Erfüllbarkeitsproblemen, deren Lös-
barkeit aus dem bekannten Lovász Local Lemma folgt. Während seit
dessen Entdeckung im Jahre 1975 durch Paul Erdős und László Lovász
feststeht, dass Erfüllbarkeitsprobleme mit einer nirgends zu dichten
Konzentration an Klauseln immer eine erfüllende Belegung zulassen,
war ein algorithmisches Verfahren zur tatsächlichen Bestimmung die-
ser Lösung lange nicht bekannt. Wir verfeinern frühere Ansätze, das
Local Lemma algorithmisch zu machen und präsentieren schliesslich
einen Polynomialzeitalgorithmus, der für beinahe alle bisher bekann-
ten Anwendungen des Local Lemma einen konstruktiven Beweis lie-
fert.

Im zweiten Teil verlassen wir die Klasse der in polynomieller Zeit
lösbaren Probleme und betrachten stattdessen den von Uwe Schöning
im Jahre 1999 vorgeschlagenen und analysierten randomisierten Ex-
ponentialzeitalgorithmus für allgemeine Klauselerfüllungsprobleme.
Als Hauptbeitrag nebst weiteren Aspekten verfeinern wir frühere An-
sätze, diesen Algorithmus zu derandomisieren und präsentieren so-
dann die erste deterministische Variante, welche gegenüber dem Zu-
fallsalgorithmus nicht an Effizienz einbüsst.

v

Acknowledgements

First and foremost, I thank my supervisor Emo Welzl for everything
he has done for me during the past years. I entered research in gen-
eral and the field of satisfiability in particular mainly because I was
impressed with his passionate and inspired way of teaching and his
deep insights. Emo was the one to directly introduce to me all the to-
pics considered in this work. Later, being his student – a ‘Gremo’ –
was an extraordinarily enriching experience. More than anyone else
I have met, he understands to encourage and motivate people, to in-
spire free and creative thinking, to establish a culture of trust and of
well-being, to always deal very promptly and professionally with any
upcoming problems and issues and to create a working environment
where people can thrive and which could not possibly be better in any
respect imaginable.

Besides Emo, many other people have contributed to this thesis:

I am grateful to Gábor Tardos for being an excellent co-author, col-
laborator, a great host and guide during my stay in Vancouver and
finally a co-referee of my thesis who has provided a large number of
valuable corrections and suggestions greatly improving the quality of
this work.

I thank Uwe Schöning for publishing his milestone paper [Sch99]
which inspired a large part of this thesis and kept me busy for many
years, for being a good host and showing me around the beautiful city
of Ulm and finally for co-refereeing and helping to improve my thesis.

vii

viii ACKNOWLEDGEMENTS

I am indebted to Dominik Scheder for being an insightful and mo-
tivated co-author, somebody to whose office I could always go if I had
math questions exceeding my abilities, a great speaker in lectures and
seminars (I still regret having missed your defense!), a fine fellow-
traveller to many places inside and outside of Switzerland and for
organising many legendary parties in his flat in Zurich.

My thanks go to Timon Hertli for being a co-author and collabora-
tor, for most valuable help with organising various lectures, inventing
exercises, advising students and doing corrections and for his extraor-
dinary brilliance which did not only advance the field of SAT but also
helped me with overcoming many a mathematical difficulty I would
have otherwise struggled with and for attending philosophy lectures
with me.

I am grateful to Yves Brise for his very valuable help with design-
ing the book cover for this thesis, for his support during the final
stages of publishing this work, for being a fine mate during our si-
multaneous quest for new jobs, for his and his family’s hospitality at
his place in Allschwil and for the awesome photographs he produces,
some of which now decorate our living room.

I thank Thomas Holenstein for advising me on several issues in
direct connection with this thesis and for always being available to
answer all kinds of math and cs questions.

I moreover thank all current and former Gremos who made my
years inside and outside of the CAB building a most enjoyable time.
Without your presence, working on this thesis would not have been
half the fun. In particular I thank

Robert Berke for being my teacher when I was a student of Emo’s
SAT class and for helping me with some of my very early work as a
PhD student;

Tobias Christ for many inspiring discussions about jobs and career,

ix

money, politics, philosophy and life and in advance for the guided
tour around Basel which he promised me;

Andrea Francke for being so much fun to share an office with, for
collaborations in teaching, for organising events at the opera and in
restaurants in Paris, for inviting me to her costume parties and for
attending mine;

Bernd Gärnter for teaching me about computational geometry and
for inspiring discussions at GWOPs and after-GWOPs;

Heidi Gebauer for fruitful collaborations on SAT publications and
GWOP projects, for organizing our teaching duties, for reading parts
of my thesis and for helping me with setting up my research plan;

Anna Gundert for proofreading parts of the thesis, being a very
fine officemate, for many an inspiring discussion whether or not re-
lated to mathematics, for GWOP collaborations, for taking Dutch clas-
ses with me, and for reminding me of my Foamino duties as well as of
my responsibilities to our precious environment;

Michael Hoffmann for proofreading, playing Robo-Rally and do-
zens of other exciting board games with us at which he always won,
for buying the Foamino, for running our servers and for solving all
the computer problems which are far beyond the average computer
science PhD;

Martin Jaggi for checking parts of the thesis, for being a great head
TA in APC, for his fun and relaxed attitude towards basically every
aspect of both work and life, for inviting me to awesome barbecue
parties in his place in Zurich and for joining us for luxury dining in
Paris;

Vincent Kusters for reading and checking parts of my thesis, for be-
ing a reliable member of the APC team, for being a fellow campaigner
for longer lunches and coffee breaks, and for the many hours we spent
together enjoying travel, food and drinks, squash and board games;

x ACKNOWLEDGEMENTS

Gabriel Nivasch for our collaborations on combinatorial problems
and for the fruitful discussions about satisfiability;

Andreas Razen for being an awesome MiSe organizer, a reliable
attendee of SAT seminars and student talks, the only certified top re-
viewer in the Gremo group, for many pleasant dinners and nights out
and for inspiring discussions on life and career planning;

Andrea Salow for being a great secretary making all our lives so
much easier, helping with copying hundreds of pages of student pa-
pers, for the delicious MiLuDi meals, the introduction of the fruit bowl
and for being forgiving when her office smelled of burnt milk because
of negligence on my part;

Eva Schuberth for leaving me some nice posters when cleaning up
her desk;

Sebastian Stich for proofreading parts of my thesis, test solving
student assignments, for advising me on optimization problems, for
maintaining our group webpage and helping with the setup of the au-
tomatic MiSe system;

Marek Sulovský for being a great MiSe organizer, for attending
probability classes with me, for introducing me to squash and to the
local wine fair, for organising exciting travels to Paris and Prague and
for advising me on my job search and career choices;

Tibor Szabó for being an awesome teacher in graph theory, thereby
contributing to my interest in theoretical cs, for inviting us to dinner
at his place in Bonstetten (even though he forced us to run for it be-
forehand), for his hospitality in Montreal and for many pleasant dis-
cussions at GWOPs and seminars;

Patrick Traxler for his hospitality during my stay in Vienna, GWOP
collaborations, for many interesting discussions about both research
and life and for organizing awesome Austrian comedy events;

xi

Hemant Tyagi for answering my machine learning questions, test
solving student problems, for interesting discussions over lunch, cof-
fee and dinner and for going out with me in Zurich;

Uli Wagner for organizing our reading seminars and introducing
me to many interesting topics I would otherwise not have come across
and for invitations to parties in his flat featuring delicious food and
legendary dancing performances;

and Philipp Zumstein for being a very pleasant office-mate, for
helping me during my very first days in the GREMO group, for proof-
reading some of my work and for invitations to his exciting parties.

Moreover, I wish to thank Eyal Lubetzky for being my mentor dur-
ing my stay at Microsoft Research in Redmond, and all the members
of the Theory Group I had the pleasure to meet, work and go out with
and I also thank Joel Spencer for being an enabler of my stay in Wash-
ington.

I thank the Master’s and Bachelor’s students whose theses I had
the honor to be an advisor for, Andrei Giurgiu, Stefan Schneider, May
Szedlák and Sebastian Millius, for their insightful and brilliant contri-
butions to the field of satisfiability, some of which have found a place
in this thesis too, as well as all other studens whom I had the plea-
sure to work with and whose ideas and challenging questions in class
contributed to my research.

I thank all the members of academic institutions around the world
who have organized the great theory conferences and workshops I
had the pleasure to attend.

Last but not least, there is no way I can sufficiently express my
gratitude to my parents, my family, my flatmates and all my friends
who have made me who I am and are making my daily life worthwile.
Thanks to all of you!

Preface

I suspect that PhD theses, and specifically those from the domain I
am concerned with, are among the least read books there are. I am
grateful to have a supervisor and co-referees who are reading mine
and checking its content, and I am equally indebted to all the nu-
merous friends and colleagues of mine upon whom I exercised a non-
negligible amount of pressure so that they would read it as well and
verify my arguments and calculations. And if on top of that, in the
future, once every one or two academic terms, there is here or there
around the globe some student preparing a thesis of his or her own or
a contribution to a seminar involving any of the topics I set out to dis-
cuss and he or she stumbles accross this write-up and can make any
use whatsoever of it, then it has undoubtedly fulfilled its purpose.

But I will be left not only with such hopes but also with an overly
large pile of hardcopies. And since, as I have understood, it is a centu-
ry-old tradition to distribute these amongst all of the author’s family
and friends, I will distribute them amongst my family and friends and
I am dearly looking forward to their puzzled faces and, depending on
how much they remember of what I told them the work I am doing
was about, any or all of the questions “What’s this about?” and “You do
not seriously expect me to read this?”. This preface is devoted particularly
to them and their justified questions.

Let me answer the latter one first. I definitely do not and you have
my explicit and irrevocable permission to hide this thing in the darkest
corner of your home before you even reach the first page labelled in
Arabic numerals. But before that, I ask you to do me the honor of

xiii

xiv PREFACE

reading the following short paragraphs in which I did my very best to
give a hint accessible to everyone at what kind of questions are being
studied in the remainder of this work.

For once, let us suppose that we are standing in front of a small
library featuring roughly four hundred books which I tidily shelved,
ordered according to their authors’ last names. And I ask you to find
me a novel of Dickens. This is an easy task. You check out where the
‘D’ starts, then you look for the ‘i’, you see the book, grab it and hand
it over to me. You are done in no time. As computer scientists, we
would say this is a task of logarithmic complexity – it basically means
that the task is so easy it will take you far less time than it took me to
put the books on the shelf, because although there are many books by
Jane Austen which I had to place there, you can skip them as you know
the one you are looking for does not start with an ‘A’.

Now suppose I ask you to find me a book of which the text starts
with the word ‘it’. And let us make the improbable assumption that
you are not sufficiently literate to know by heart that A Tale of Two
Cities does. Then your only choice will be to grab each and every of
the books, open it where the story starts and read the first word. If
you are unlucky – and according to Murphy’s law that is what you
will be – you will have to look at all the books until you find the single
one matching my request. This task is tedious, it is a nuisance, but it is
straightforward as well, because there will be no surprises: you know
exactly what you have to do to achieve what I am asking of you. The
computer scientist would say this is a task of linear complexity, which
means that it will take you roughly as long as it took me to put the
books on the shelf.

Finally, let us suppose that I ask you to make a selection of several
books in such a way that the total weight of the books you chose is
exactly 20 kilograms. Now we have a real problem on our hands. You
can start picking some of the novels at will and put them on your
scale. You see that you have 18 kilograms, so you add another thick

xv

one, then you have 20.5 kilograms, you remove a thin one and are left
with 19.8 kilograms. You would like to add one that weighs an exact
0.2 kilograms but you find no such book in the library. You keep trying
and at some point you give up. The thing is: if there are four hundred
books on this shelf, then the number of possible choices you could
make is far larger than the number of atoms there are in the known
universe. And if you wanted to try each one, you would be busy –
well, basically forever.

Luckily, nowadays we have computers which can do quite a lot of
work for us and they can do it really quick: a cheap modern machine
from the retail store can easily carry out one billion elementary opera-
tions per second. This is particularly helpful with the tedious tasks. In-
stead of opening every book in the library and checking its first word,
a computer on which the books are stored electronically can search for
the word ‘it’ at the beginning of all novels and output A Tale of Two
Cities in a fraction of a second. Even if there were not four hundred
books but all the twenty million which a respectable library like the
Library of Congress in Washington D.C. features, still it would be a mat-
ter of seconds to list all of which ‘it’ is the first word. The reason why
this is not a problem and why the simple solution will scale to libraries
of any size is because the problem has linear complexity.

But what about filling a box with 20 kilograms of books? We can
weigh each book separately and store its weight in the computer. But if
the computer is to check all ways how they may possibly be combined,
none of today’s most powerful computers, not even all of them jointly,
have the slightest hope of ever finishing the task. And arguably, if the
number of atoms in the known universe is smaller than the number of
possibilities we have to take into account, no computer mankind could
ever hope to build will. And even worse than that, if there were an
amazing machine which could examine all possibilities of selections
from 400 books in, say, a day, then that machine would be totally use-
less again for another library counting 420 books because with every

xvi PREFACE

single book we add, the number of possibilities to be checked doubles.

Although it may seem this is where computer science ends, in fact
this is where computer science starts. The question that we should
have asked was not whether we can build a bigger and faster com-
puter to solve the problem, but whether there is a more clever way of
solving it. Nobody told us that we had to try all the combinations of
books blindly and maybe there is a cunning and highly complex strat-
egy or calculation that will bring forward a solution more quickly. The
truth is, in this particular case and on the day I am writing this pref-
ace, nobody knows. This is both disappointing and thrilling at the
same time, as you can here and now start doing research. Develop a
strategy which is guaranteed to work for any collection of books and
which finds such a selection with reasonable effort. I promise that if
you find one, you will be famous, appear in the newspapers and be
hired by your favorite university at conditions you determine.

All problems I have mentioned so far have one important thing in
common. Once you have found a solution, it is most easy to verify that
this solution is right. You hand me the novel of Dickens, I read the
cover and am satisfied. You give me any novel starting with the word
‘it’, I open it on the first page, check and am satisfied. You give me
any choice of books that weigh an exact 20 kilograms, I put them on
my scale and am satisfied. Not all the problems have this property, but
there are infinitely many more riddles which do.

A standard example are the Sudoku problems you recently find in
many newspapers and magazines. Finding the solution of a Sudoku
may at times be extremely hard, but if I show you the solution of one,
you can most easily check that there are no misplaced numbers.

One of the great advances of theoretical computer science was
made by Cook and Levin [Coo71, Lev73] who discovered that all such
problems are basically the same, identical problem. It may sound hi-
larious to you but it is in fact true: if I am facing a library and I am
supposed to assemble a choice of books weighing an exact amount of

xvii

kilograms, I do not know of any way to solve this problem within my
lifetime. But I do know a way, although it is fairly complicated, of writ-
ing down the weights of all the books, then doing some calculations
and from those to produce a huge Sudoku problem. A Sudoku prob-
lem which I do not know how to solve, but if you are a genius and find
a solution to my Sudoku problem, then from this solution, from the
numbers you filled into your squares, I can do another calculation and
then come up with a selection of books having the prescribed weight.
Both the production of the Sudoku and the reconstruction of the so-
lution are lengthy, tedious processes. But they are straightfoward, I can
follow a determined recipe, much like with the search problem. If I
even have a computer at my disposition, I am done with this in no
time. The same is true for millions of comparable problems.

So if you find a viable way of solving large Sudoku problems, not
only did you solve Sudoku, you solved the book selection problem
as well and in fact you solved arguably all reasonable difficult prob-
lems there are. Since many intelligent people have tried, and tried
hard, most researchers have given up hope that there might be a sim-
ple answer to these questions and are in fact currently trying to do the
opposite: to find a proof for the fact that no good solution exists. An-
other thing we do is to identify characteristics which distinguish sim-
ple from hard problems. Take the bookshelf example: if every book
weighed exactly one kilogram, getting together any exact number of
kilograms would be easy because we could take any choice of n books
to get n kilograms. It’s a trivial example but it generalizes. You can
ask: what exactly is it that makes this situation so much different?

In this thesis there are three chapters. The first is an introduction
where the exact problem we discuss, the problem of constraint satisfac-
tion (CSP), is formally described. A CSP is a more general concept of
riddles very closely resemblant of the Sudoku problem. It is a com-
bination of variables, in the Sudoku case the squares where you can
vary the numbers you want to fill in, and constraints which are the

xviii PREFACE

rules of the game, like ‘no two identical numbers in a row’, and so
forth. Recall that since all the problems are essentially equivalent, it
does not overly matter which one we work on. CSPs are a natural
choice because very many problems can be translated to CSPs easily
and directly with much less effort than it takes to find the Sudoku cor-
responding to the bookshelf.

In the second chapter, we look at a type of CSPs which turn out
to be solvable easily using a simple strategy. If the constraints do not
contradict each other too heavily, then what you can do is use a dice
to fill in random numbers and then check whether there are violated
constraints and if there is one, you erase the numbers violating the
constraint and use your dice again to fill in new numbers. It is by
no means clear that this strategy will produce something in any given
amount of time, but we give a proof here that under certain favorable
conditions, it does.

The third chapter is devoted mainly to the very question of dices.
Do dices help with solving problems? This is another huge unsolved
question. Most researchers think they do not, in the sense that if there
is an efficient strategy to resolve a riddle and the strategy involves the
use of dices, then there should also be a comparably efficient strat-
egy which can do without. People are trying to find a proof for this
conjecture – and so far struggle. In the third chapter we look at one
instance of this question, an algorithm by Uwe Schöning for solving
certain types of CSPs which involves the use of dices. We demonstrate
that there is a simple alternative way of doing the same thing with
basically the same amount of effort and without a dice.

Both are tiny contributions which in the end may or may not turn
out to serve as little pieces of a giant puzzle. A puzzle which, if noth-
ing else, might help to make feel slightly more humbled a mankind
who has flown to the moon and is constructing nanoscopic robots
while at the same time unable to resolve a simple brainteaser.

Zurich, August 2012, Robin Moser

Contents

Abstract iii

Zusammenfassung v

Acknowledgements vii

Preface xiii

1 Introduction 1

1.1 Motivation . 2

1.2 Formal Problem Setting and Notation 3

1.3 Topics Discussed . 11

1.4 Topics Not Discussed . 13

2 The Lovász Local Lemma 17

2.1 Introduction . 18

2.2 Nonconstructive Proof 31

2.3 Algorithmization . 34

xix

xx CONTENTS

2.4 Journaling and Reconstruction 45

2.5 Incompressibility . 50

2.6 Witness Trees . 63

2.7 Slacked Hypotheses . 75

2.8 Parallelization . 79

2.9 Derandomization . 85

2.10 Beyond . 98

3 Schöning’s Algorithm 103

3.1 Introduction . 104

3.2 Algorithm and Analysis 108

3.3 The Local Solver Contrasted 119

3.4 Angels and Devils . 122

3.5 Typical Executions . 132

3.6 Covering Codes . 136

3.7 Deterministic Local Search 140

A Auxiliary Statements and Deferred Proofs 155

A.1 Estimates involving the exponential series 155

A.2 Cumulation of multiplicative slacks 159

A.3 Bounded away from one 159

A.4 Exponential Tail Estimate 162

A.5 Certain Homogeneous Markov Chains 163

A.6 Binomial Coefficients . 169

CONTENTS xxi

A.7 Proof of Theorem 2.3 (from Theorem 2.4) 170

A.8 Proof of Theorem 2.5 . 171

A.9 Proof of Lemma 2.36 . 172

A.10 Proof of Lemma 2.38 . 174

A.11 Proof of Lemma 2.39 . 175

A.12 Proof of Lemma 2.40 . 175

A.13 Proof of Lemma 2.41 . 176

A.14 Proof of Lemma 2.42 . 177

A.15 Proof of Lemma 2.43 . 178

A.16 Proof of Lemma 2.48 . 178

A.17 Proof of Lemma 2.56 . 179

A.18 Proof of Theorem 3.8 . 180

Bibliography 183

1
Introduction

In a constraint satisfaction problem (CSP), we are confronted with a se-
ries of choices and some constraints telling us which combinations of
choices are undesirable. The goal is to determine if all constraints can
be met.

As so many hard computational problems map to CSPs transpar-
ently, they arguably form the prototype of a hard combinatorial prob-
lem and any insights into their properties transfer seamlessly to a vast
variety of domains.

In this chapter, we set out to motivate our investigation of particu-
lar aspects of CSPs, fix a formal framework and mention some closely
related topics which are beyond the scope of this thesis.

1

2 Chapter 1. Introduction

1.1 Motivation

In the early seventies, Stephen Cook [Coo71] as well as Leonid Levin
[Lev73] independently discovered the concept of NP-complete prob-
lems. A computational problem is NP-complete if it has two character-
istic traits. For one, the problem must be in NP. Intuitively, NP is the
class of all problems a given solution to which is efficiently verifiable.
Secondly, it must be complete in the sense that all instances of problems
in NP can be efficiently translated to an instance of the complete prob-
lem. This means that NP-complete problems are – in a well-defined
sense – all equivalent. And – in a not so well-defined sense – they all
seem to be hard as they have so far resisted all attempts at efficient
resolution.

With the concept of NP-completeness, Cook and Levin delivered
a proof that the Boolean satisfiability problem falls into this class. In a
SAT problem, you are given a formula of propositional logic, that is a
formula built from Boolean variables taking the values ‘true’ or ‘false’
and the logical operations conjunction, disjunction and negation and
you are to determine whether there is an assignment of values to the
variables such that the whole formula evaluates to ‘true’. Constraint
satisfaction problems or CSPs are the immediate generalization of SAT
where the variables can take more than two values.

Proving SAT as the first ever problem to be NP-complete involved
an elaborate argument over all possible algorithms in the computa-
tional model of Turing machines. Once established for one problem, it
is being demonstrated for other problems via reductions. By today, a
sheer unlimited supply of computational problems has been proven
to be NP-complete via a reduction either directly or ultimately from
SAT.

The reason why SAT (or CSP) has such an outstanding role is far
more than historical. Pick any example of an NP-complete problem
and chances are that its reduction to SAT (or CSP) is far more imme-

1.2. Formal Problem Setting and Notation 3

diate than the converse. In GRAPH 3-COLORING, we are supposed
to color the vertices of a graph with three colors such that no two
adjacent vertices receive the same color. The reduction to a CSP is
straightforward: instantiate one variable per vertex and constraints
for the edges. The converse reduction involves sophisticated graph
gadgets representing variables and clauses. In BINARY SUBSET SUM,
we want to determine whether among a set of integers, there exists a
subset summing up to a prescribed number. The reduction to SAT is
tedious but straightforward: it is necessary to model the addition of
numbers by a standard adder circuit. The converse however, repre-
senting a SAT formula by means of numbers and integer addition, is
highly non-trivial. Despite being arbitrary examples, these are repre-
sentative of most NP-complete problems.

SAT, and more generally CSP, are hence arguably the most ‘natural’
NP-complete problems there are and any insight into them is highly
likely to translate to many other domains.

Before we outline which paths research has taken in the field of
CSPs, let us agree on a formal problem statement.

1.2 Formal Problem Setting and Notation

The specific problem that we will consider in this thesis is quickly de-
scribed. In its description we build closely upon the formal framework
which Welzl uses in [Wel12].

Clause Satisfaction Problems. Suppose that we are given a finite set

Vn := {x1, x2, . . . , xn}

of n variables and for each variable x ∈ Vn a finite alphabet Lx of values
the variable can take. An assignment is a total function

α : Vn → L :=

x∈V
Lx

4 Chapter 1. Introduction

that sends each variable x to a specific value α(x) ∈ Lx. The solution
space in this setting is the set

S := {α : Vn → L | α(x) ∈ Lx}

of all possible assignments, where we use the common notation {X →
Y} to denote the set of all functions from set X to set Y. This space has
the shape of a high-dimensional cube or grid and there is a natural
metric on it induced by the Hamming distance of two assignments α, β

defined as
dist(α, β) := |{x ∈ Vn | α(x) ̸= β(x)}|.

Now suppose that from the solution space we want to exclude cer-
tain assignments which exhibit undesired combinations of values. We
do this by prescribing a list F := {C1, C2, . . . , Cm} of m clauses, where
a clause is a finite set

Ci = {(xi1 ̸= v1), (xi2 ̸= v2), . . . , (xik ̸= vk)}

of variable-value pairs (xij ̸= vj) called literals, where vj ∈ Lxj for
1 ≤ j ≤ k and the variables are pairwise distinct, i.e. ij ̸= ij′ for
1 ≤ j < j′ ≤ k. k is said to be the size or the length of the clause and
we use the standard notation |Ci| for it. A clause containing only one
literal is called a unit clause, if there is no literal in it it is the empty
clause.

The semantics associated with a clause are that we do not want to
simultaneously assign xij the value vj for all j = 1 . . . k. An assignment
α ∈ S is said to violate clause Ci if ∀j : α(xij) = vj and to satisfy Ci, oth-
erwise. Note that the empty clause is always violated according to this
definition. We call a finite set F of clauses a clause satisfaction problem,
abbreviated ClSP, or, interchangeably, a formula or ClSP formula. α is
said to satisfy the ClSP F if it satisfies all clauses.

The question that we are interested in is always going to be: given
a formula F, is there an assignment α ∈ S satisfying F and if so, how

1.2. Formal Problem Setting and Notation 5

can we find one algorithmically. If there exists such an assignment, F is
said to be satisfiable and otherwise it is unsatisfiable.

Note that for an instance of this computational problem to be well-
defined, its description must be a triple ⟨V, {Lx}x∈V , F⟩ describing the
variables, the admissible values and the set of clauses. Throughout
this thesis, by a slight abuse of formal notation, we will simply write
“a ClSP F” to either mean just the set of clauses or the whole instance
description depending on the context. If F is the input to an algorithm,
it is understood that a complete instance description must be input.
On the other hand, we will write C ∈ F to mean a clause contained in
the formula. We also stress that we use the term “a ClSP” to refer to an
instance of the computational problem, not to a class or to a language.

The size of a ClSP, in writing size(F), is defined to be the number
of literal occurrences, i.e.

size(F) := ∑
C∈F
|C|.

In all reasonable cases, the binary representation of a formula is lin-
ear or quasilinear in its size. There may be degenerate cases where
this is not the case, for instance if the lists are enourmous in size or
if there is a disproportionally large set of variables which are unused.
However, it is obvious that such formulas can be simplified by trivial
operations (remove variables which do not occur, remove values from
lists if the values are not used in any literal over the corresponding
variable) until size and encoding length match in order of magnitude.
The size of a formula is relevant in cases where we are interested in
polynomial-time algorithms operating on it.

If all clauses in the given formula feature exactly the same number
k of literals and each variable can take the same number |Lx| = d of
values, then we call the formula a (d, k)-ClSP. Without loss of general-
ity, we may simply use Lx = [d] := {1..d} for all lists. In this case, the
solution space is Sn,d := {Vn → {1..d}}. We extend this nomenclature

6 Chapter 1. Introduction

naturally to (≤ d,≤ k)-ClSP, (≤ d, k)-ClSP, (d,≥ k)-ClSP and all fur-
ther combinations to mean formulas where all variables have lists of
size at most (or at least) d and/or all clauses have size at most (or at
least) k.

In the special case of d = 2, thus where every variable can take ex-
actly two values, one calls the problem a Boolean satisfiability Problem,
or SAT Problem for short and F is then called a formula in Conjunctive
Normal Form or CNF formula for short. A k-CNF is a (2, k)−CSP and
(≤ k)-CNF and (≥ k)-CNF are defined analogously. Since it is custom-
ary in the case of Boolean formulas to consider the underlying alpha-
bet to be {0, 1} (more closely resembling the logical meanings ’false’
and ’true’ and their encoding in binary), we will follow the convention
of using {0, 1} whenever we are speaking about CNF formulas exclu-
sively, and {1..d} whenever we are speaking about the more general
ClSP case.

The relevant literature is not consistent with respect to this nota-
tion and often, one can find the term “k-CNF” denoting either what
we here call a k-CNF or a (≤ k)-CNF or a (≥ k)-CNF. In this thesis,
a k-CNF has clauses of size exactly k exclusively. Note however that
in many cases, a result or argument generalizes trivially to include
larger or smaller clauses. Which of the two is the case depends on
the context. In Chapter 2, we examine families of formulas which are
always satisfiable by virtue of meeting certain combinatorial criteria.
Having a satisfiable formula at hand, making the clauses larger cannot
hurt as this renders the formula even more easily satisfiable. Neither
can it hurt the effectivity of any algorithm tailored for such a class
as we could simply truncate clauses before feeding the problem into
it. The same holds for enlarging variable’s domains. In this context,
therefore, statements, even if formulated for (d, k)-ClSP, usually triv-
ially extend to the (≥ d,≥ k)-ClSP case. In Chapter 3, we consider
exponential time algorithms for solving arbitrary (d, k)-ClSP. Such al-
gorithms, usually being improvements over exhaustive enumeration

1.2. Formal Problem Setting and Notation 7

of possibilities, profit from variables having smaller domains because
fewer assignments need to be enumerated and from smaller clauses
because fewer possibilities for satisfying a clause have to be branched
on. And in particular, if some algorithm relied on the homogeneity
of clause and alphabet sizes, we could simply enlarge alphabets and
pad clauses with auxiliary variables, adding some extra clauses so as
to preserve the set of satisfying assignments. In this context, therefore,
most results on (d, k)-ClSP trivially extend to the (≤ d,≤ k)-ClSP case.
Of course, these are only intuitive explanations, not proofs, so the is-
sue has to be borne in mind when going through the actual material.
At times, we will however deliberately leave this burden to the reader
as assuming the (d, k)-ClSP case incurs no loss of generality whilst in-
homogeneous clause and alphabet sizes make notation and arguments
unnecessarily clumsy.

A partial assignment as the natural relaxation of an assignment is a
partial function

α : Vn 9 L

such that α(x) ∈ Lx for all x ∈ Vn on which α is defined. Note that we
use the standard notation 9 to denote partial functions.

ClSP formulas can be manipulated by assigning values to vari-
ables. If F is a formula and x some variable, then assigning value
c ∈ Lx to variable x has the natural effect that all clauses containing
the literal x ̸= c′ for some c′ ̸= c are satisfied and disappear from the
formula. On the other hand, the literal x ̸= c cannot be satisfied any-
more and thus all clauses containing it are truncated to contain only
the remaining literals. We write F[x →→c] to denote the formula so de-
rived.

In general, for any partial assignment α, we write F[α] to denote
the formula arising from substituting all given values for the vari-
ables assigned in α. If u is a literal over a Boolean variable x, i.e.
Lx = {0, 1}, then writing F[u →→1] is customary to say that we assign

8 Chapter 1. Introduction

x →→ 0 if u = (x ̸= 1) or x →→ 1 in case u = (x ̸= 0), i.e. writing
u →→ 1 means to assign the unique value satisfying u to its underlying
variable. Writing u →→ 0 means to assign the underlying variable the
value which violates the literal. Note that u →→ 0 makes sense even if
u is a literal over a variable of an arity larger than two. On the other
hand, u →→ 1 is undefined in this case. We extend this notation to as-
signments as follows. If α is any (total or partial) assignment, then we
write α[x →→ c] to denote the assignment arising from (re-)assigning
variable x to value c. If u is a Boolean literal, α[u →→ 0] and α[u →→ 1]
are defined accordingly. More generally, if β is any (total or partial)
assignment, then α[β] denotes the assignment α with all assignments
in β added to it, overwriting existing ones.

Let us call a ClSP non-degenerate if it does not contain any empty
clauses, unit clauses, no variables with a singleton domain, no unused
variables and no unused values in any lists. Note again that all de-
generacies can be trivially removed from any ClSP: if an empty con-
straint is discovered, the ClSP is trivially unsatisfiable. The same is
true if some variable’s domain is empty. If a unit constraint is dis-
covered, we may remove the corresponding value from the variable’s
domain (resulting in the disappearance of the unit clause and possibly
other clauses containing the same literal). If a variable has a singleton
domain, we can substitute the corresponding value for the variable
(resulting in the truncation of some clauses). Unusued variables can be
trivially deleted. If any variable has an unused value in its domain, we
can substitute this value for the variable, satisfying all clauses where
the variable occurs. Once none of these rules apply anymore, the re-
sult of this polynomial time simplification process will either be a ClSP
which is non-degenerate or the discovery that the ClSP is unsatisfiable.
We stress that the empty formula is non-degenerate.

Constraint Satisfaction Problems. Constraint satisfaction problems,
abbreviated by CSP, are a generalization of clause satisfaction prob-

1.2. Formal Problem Setting and Notation 9

lems. In a CSP, clauses are replaced by constraints which can be ar-
bitrary predicates over the variables involved. That is formally, we
can define a constraint satisfaction problem as a triple ⟨V, {Lx}x∈V , F⟩,
where F is a set of constraints, each constraint being a pair ⟨U, P⟩where
U ⊆ V and P is a set

P ⊆ { β : U → L | ∀x ∈ U : β(x) ∈ Lx }

describing the combinations of values for the variables in U which
are admissible. Such a CSP is satisfied by an assignment α ∈ S if for
all constraints ⟨U, P⟩, the projection α|U is admitted by the constraint,
i.e. α|U ∈ P. Here, we use the common notation f |A to denote the
restriction of a function f to a subset A of its domain.

A clause satisfaction problem is the special case of a constraint sat-
isfaction problem where each constraint is a clause, that is each con-
straint ⟨U, P⟩ has a relation P containing all except exactly one combi-
nation of values. While every CSP can be converted into an equivalent
ClSP by constraint splitting, the crucial difference is a matter of descrip-
tion. To make a general CSP a well-defined computational problem,
we have to prescribe a way in which the constraints are being repre-
sented in an input encoding. One choice would be to represent the
predicates P in the constraints by listing all forbidden tuples. Then,
the CSP is a ClSP.

Another choice would be to list all allowed tuples, corresponding
to a formula in so-called Disjunctive Normal Form (DNF) in the Boolean
case. This is already a crucial difference. A ClSP containing large clau-
ses may explode exponentially in size when converting between the
two representations.

A more natural choice may be to give the constraints as circuits or
as efficient algorithms which, on input a combination of values for the
variables in U, determine whether the combination is admissible or
not. This allows for compact representations of a large variety of con-
straints but may shift some of the difficulty of solving the CSP towards

10 Chapter 1. Introduction

solving the constraints themselves. In general, the choice of represen-
tation may be crucial when determining the efficiency of an algorithm
as a function of the description size of the formula, at least in cases
where constraint grow with the problem size.

It may also be crucial in other contexts. In Chapter 2 of this the-
sis, we will look at a class of formulas which can be solved efficiently,
where the class is characterized by relations between metrics like the
number of constraints, the number of dependencies among constraints
and the number of value tuples a constraint forbids. While these met-
rics do not depend on the input encoding, they depend heavily on
whether constraints are clauses or more general predicates. In each
case, we will first concentrate on ClSPs and then discuss issues that
may come up with the generalization to CSPs and even more general
settings.

Let us stress that in this thesis, we will consider “a CSP” to be a
problem instance, the same way we did with ClSPs. The literature is
not consistent in this respect. Sometimes, the term is used to describe
the corresponding class of instances, oftentimes it is even used to de-
scribe a family of such classes, which turns into a computational prob-
lem only once a specific set of admissible constraints is prescribed. For
a prominent case, Feder and Vardi [FV98] use such terminology to for-
mulate their well-known Dichotomy Conjecture, stating that whenever
a finite set of admissible predicates is prescribed, then the correspond-
ing computational problem is always either polynomial-time solvable
or NP-hard.

In this thesis, we are however not concerned with predicate types
beyond the distinction between clauses and general efficiently com-
putable predicates. We usually formulate our investigations in terms
of ClSPs but where necessary comment on how to generalize concepts
to more general CSPs.

1.3. Topics Discussed 11

1.3 Topics Discussed

Being so fundamental, SAT and CSPs have become famous, widely
studied problems and research into them has branched into a vast
number of directions around computational and non-computational
aspects.

In this thesis, we focus on algorithmic issues. When investigating
into the algorithmic treatment of SAT and CSP – and with a less am-
bitious goal than demonstrating P=NP in mind – there are two main
perspectives one can take as we will do in this thesis.

Classifying instances. The first thing one can do is to identify sub-
classes of the full problem which admit efficient solutions so as to sep-
arate ‘easy’ from ‘hard’ instances with the aim of gaining more insight
into what makes a problem ‘easy’ or ‘hard’.

As one prominent example, 2-SAT, the Boolean problem where ev-
ery clause contains exactly (or at most) two literals, is well-known to
be solvable in time linear in the size of the formula [APT79].

Other examples include Horn-SAT or formulas of bounded deficiency
[DG84, Sze04].

In Chapter 2 of this thesis, we will study one particular other such
class: the family of CSP problems for which the famous Lovász Local
Lemma guarantees the existence of a satisfying assignment.

Unlike the aforementioned restrictions, this is a set of formulas for
which a simple combinatorial criterion ensures existence of a solution
and instead of considering the decision problem, the main issue will
lie in finding the actual assignment efficiently. While in the case of
most other polynomially tractable subclasses of SAT there is a simple
reduction from the search to the decision problem, this is not true for
Local Lemma instances.

12 Chapter 1. Introduction

We first review all combinatorial aspects of the Local Lemma which
we consider relevant to the topic as well as previous attempts at mak-
ing the lemma algorithmic. We then go on to exhibit an algorithmic
version which is able to capture the full power of the Lovász Local
Lemma and seems to translate easily even to problems beyond SAT
and ClSP.

Exponential Time Algorithms. The other perspective one can take
is that algorithms able to solve all instances of SAT and ClSP/CSP and
not just some of them are of great interest. And even if it is widely
believed not to be possible to find one which runs in polynomial time,
we can still try to determine how fast an algorithm is possible.

To our present knowledge, it is possible that no algorithm can solve
k-SAT in general in less than exponential time, i.e. a running time of
the form λn+o(n). The hunt is currently for the smallest possible base
λ.

To date, there are two algorithms which are considered ‘competi-
tive’ in the domain of exponential time algorithms for SAT and ClSP:
the one-pass satisfiability decoding algorithm named PPSZ after its in-
ventors Paturi, Pudlák, Saks and Zane [PPSZ05] and the random local
search algorithm by Uwe Schöning [Sch99]. With its most recent anal-
ysis due to Hertli [Her11], PPSZ holds the current record for k-SAT
among randomized algorithms and a generalization to the (d, k)-ClSP
case is being investigated [Sze11, Mil12].

On the other hand, Schöning’s algorithm in its derandomized ver-
sion is to date the fastest known deterministic k-SAT and (d, k)-ClSP
algorithm. This derandomization is the main contribution of Chap-
ter 3. Besides, we will discuss a series of further interesting aspects of
this simple algorithm and its elegant analysis.

1.4. Topics Not Discussed 13

1.4 Topics Not Discussed

A discussion of any aspects of SAT and CSP would be distinctly in-
complete without at least mentioning the following two important re-
search fields which take perspectives on the problem other than the
one we will take in the remainder of this work.

SAT Solving Software. Maybe the most popular of these branches
is concerned with the actual implementation of software able to take
an encoding of a SAT formula and to determine whether it admits a
satisfying assignment.

Such software is of utmost importance to certain scientific and in-
dustrial domains. In the design of digital circuits, to name just one
example, a model that is to serve as a blueprint for the production of
actual hardware needs to be checked for logical faults. The sheer size
and complexity of such designs make it necessary that the checking
take place in a streamlined, automated way.

Inherently being objects of binary logic, it is not hard to imagine
that the design of a circuit along with a specification of what would be
its correct, intended behavior can be converted into a (huge) formula
of propositional logic (a SAT formula). Most frequently, a formula
encodes the internals of the circuit along with the description of a pos-
sible faulty state and SAT solving software is then invoked to check
if there is a satisfying assignment to that formula, thus if there is any
configuration of the input gates that can lead the chip to exhibit that
particular unintended behavior.

Again not surprisingly, formulas that occur in such model check-
ing applications are composed of tens of thousands of variables and
hundreds of thousands of clauses. The current state of theory, with
the fastest known algorithm (for the simplest variant, i.e. 3-SAT) hav-
ing a running time of O(1.308n) where n is the number of variables,

14 Chapter 1. Introduction

would predict such formulas to be straight-out intractable. However,
modern SAT solvers are being applied and break such instances rou-
tinely on a daily basis.

This near paradoxical situation on one hand highlights how poorly
understood SAT is both theoretically and practically and on the other
hand how small a fraction of all possible constraint problems actually
occur in practice. Researchers concerned with practical SAT solving
software taylor their software to the instances they see, use their statis-
tical properties and gather together a vast body of heuristics to speed
up the search for satisfying assignments. Such heuristics usually do
not make their way into theoretical research, as experience demon-
strates that virtually every heuristic admits some cleverly crafted coun-
terexample defeating its purpose, even if that particular counterexam-
ple would never be seen in a practical application. In theory however,
we are interested in algorithms that perform well on all formulas or at
least all formulas of a well-defined class.

Another reason for this considerable gap between theory and prac-
tice lies in the level of sophistication of modern SAT solvers which
span thousands of lines of optimized code while in contrast, theoret-
ical research struggles to prove tight running time bounds on even
the simplest imaginable few-line algorithms. For complex strategies
involving all sorts of optimizations and heuristics, both proving theo-
retical running time bounds and crafting counterexamples to demon-
strate their limits at solving the general problem are so distinctly be-
yond the current state of research that the question of what really is the
fastest SAT solving strategy is most likely to remain unanswered for
decades to come.

In the present thesis, the issue of practical SAT solving will not
further be discussed as we restrict our interest to algorithms which
have provable bounds on their running times and which work on all
formulas of a mathematically well-definable type.

1.4. Topics Not Discussed 15

Random SAT. Another approach at the problem is to consider al-
gorithms that are efficient on almost all formulas where the notion of
almost all is being made precise by imposing some distribution on the
space of all formulas and then drawing one at random. The quest is
then for algorithms that decide satisfiability efficiently with high prob-
ability over the input distribution.

This approach could arguably be regarded as just another restric-
tion to some subclass of formulas which are computationally tractable.
But the particular way in which this subclass is defined does make it
special.

It is well-known that for any fixed d and k, if a (d, k)-ClSP over n
variables is generated at random by uniformly picking a subset of size
m of the roughly (nd)k possible clauses, then there is a constant cd,k
such that the resultant formula is satisfiable w.h.p. if m ≪ cd,kn and
unsatisfiable w.h.p. if m ≫ cd,kn. And there is another constant c′d,k <

cd,k such that for c′d,kn≪ m≪ cd,kn, while being w.h.p. satisfiable, the
satisfying assignments appear in tiny fragments scattered all around
the solution space. Below density c′d,kn, they tend to stick together in
a large clump [ACO08].

At the corresponding constraint densities where these very changes
occur, there are phase transitions which have been intensively studied
and which resemble the behavior of certain physical systems. The lat-
ter has attracted the attention of statistical physicists who have made
numerous contributions to the field over the past years.

Within the satisfiable regime, one is interested to have an algorithm
that takes a random formula as input and delivers a satisfying assign-
ment with high probability. To the author’s knowledge, the current
state of research is that algorithmic treatment is usally possible effi-
ciently up to the shattering transition at density c′d,k, one of the more
recent advances by Coja-Oghlan [CO10].

Although very fascinating, in this thesis, we do not concern our-

16 Chapter 1. Introduction

selves with questions of random satisfiability but only with algorithms
which have provable running time bounds in the worst case on all for-
mulas or all formulas from a specific combinatorially characterized
class.

2
The Lovász Local Lemma

As the problem of deciding whether a prescribed ClSP formula admits
a satisfying assignment is widely believed to be computationally very
hard in general, one branch of research concentrates on identifying
special classes of formulas for which the problem becomes tractable.

In this chapter, we study one large class of formulas for which this
is prominently the case, namely the class of formulas ‘without dense
spots’ to which the famous Lovász Local Lemma (LLL) is applicable. Its
statement is that if there are sufficiently few interdependencies be-
tween the clauses in a formula, then the formula is always satisfiable.
Deciding satisfiability of such inputs is trivial. Additionally searching
for a satisfying assignment is not and will be the main concern in this
chapter.

17

18 Chapter 2. The Lovász Local Lemma

2.1 Introduction1

Warmup. Before we go on to state the Local Lemma, as a warm-up,
let us look at simpler classes of formulas for which the same conclu-
sion holds. For instance, formulas with only very few clauses can be
seen to be satisfiable very easily.

Theorem 2.1. A (d, k)-ClSP formula F with |F| < dk clauses is satisfiable.

A proof for this theorem is a simplest showcase example for the
probabilistic method pioneered by Erdős which has since been used very
widely in many areas of combinatorics.

Proof of Theorem 2.1. Let α be an assignment chosen u.a.r. from {Vn →
{1..d}}. Each clause C ∈ F is violated with probability d−k. The ex-
pected number of violated clauses in F is therefore strictly smaller than
dkd−k = 1 and thus with non-zero probability, all clauses are satisfied.
This implies that there exists a satisfying assignment.

Of course, there is nothing in this proof inherently different from a
simple counting argument that juxtaposes the total number of assign-
ments in {Vn → {1..d}}with the number of assignments each separate
clause can forbid. But as arguments get more complicated, thinking in
terms of probabilities makes matters considerably more intuitive.

A somewhat more flexible version of this warm-up statement fol-
lows immediately from the same proof. Let F be a ClSP. For any C ∈ F,
define the weight of a clause C as the probability that an assignment se-
lected uniformly at random violates this clause, that is

w(C) := ∏
x∈vbl C

|Lx|−1.

1Parts of the write-up in this section have appeared in [MW11].

2.1. Introduction 19

Then, we obtain the following.

Theorem 2.2. A ClSP formula F for which

∑
C∈F

w(C) < 1

is satisfiable.

Theorems 2.1 and 2.2 can easily be seen to be tight. If we simply
stack dk clauses on top of each other, i.e. dk distinct clauses over the
same k variables, then those necessarily forbid all dk possible assign-
ments over these variables, rendering the formula unsatisfiable.

This example of tightness however leaves us with the feeling that
there might be more to say. After all, concentrating all the clauses of
a formula over the same few variables might not make for interesting
examples and we might conjecture that if the same number of clau-
ses were more loosely distributed, the resultant formula might again
admit satisfying assignments. The other end of the scale, at the least,
placing dk independent clauses over disjoint sets of variables, yields
a formula on kdk variables with many, namely (dk − 1)dk

, satisfying
assignments. But what is the threshold situation and what amount of
interleaving is necessary to build an unsatisfiable formula?

The Symmetric Local Lemma. In 1975, Erdős and Lovász [EL75]
gave an answer to this question. They argued2 that building an un-
satisfiable (d, k)-ClSP requires not only a total of at least dk clauses but
it requires roughly this number of clauses to be concentrated in one
place, much like in our simple example of tightness. More precisely, it
is necessary that there be a clause C ∈ F which overlaps with at least
dk/e other clauses.

2We are silently translating to ClSP language here; Erdős and Lovász were talking
about the colorability of hypergraphs, a less general but almost equivalent problem.

20 Chapter 2. The Lovász Local Lemma

For C ∈ F, let us define the (exclusive) neighborhood of C as

ΓF(C) := {D ∈ F |D ̸= C, vbl(C) ∩ vbl(D) ̸= ∅}

and the inclusive neighborhood as

Γ+
F (C) := ΓF(C) ∪ {C}.

Then Erdős and Lovász proved

Theorem 2.3 ([EL75] Symmetric Lovász Local Lemma for ClSPs). Let
F be a (d, k)-ClSP formula such that for all C ∈ F we have |ΓF(C)| ≤
dk/e− 1. Then F is satisfiable.

We will explain the original proof (of a stronger, generalized ver-
sion of this theorem) by Erdős and Lovász in Section 2.2. The question
whether this bound is tight or whether stronger statements of a simi-
lar type are possible is considerably more difficult than in the case of
Theorem 2.1. We will discuss this question briefly in Section 2.10 for
completeness, but it is not our main concern.

Much more prominently, we will consider the second question that
immediately arises with such an existential theorem: now that we
know, from just counting a simple metric in the formula, that there
exists a satisfying assignment, is it also possible to find one using an ef-
ficient algorithm? The answer to this question is the main contribution
in this chapter and will be our concern for the remainder of sections.

The neighborhood restriction can be thought of in terms of a graph
describing the interdependencies between the clauses in the formula.
For any ClSP F, we define the dependency graph GF of F to be the graph
GF = (F, E) in which the vertices are the clauses of F and any two
distinct vertices are connected by an edge if the corresponding clauses
share at least one variable. The notion of neighborhood of a clause
now coincides with its neighborhood in the dependency graph, that is
if the dependency graph has maximum degree at most dk/e− 1, then
the formula is satisfiable.

2.1. Introduction 21

Inhomogeneous Formulas. The statement of the Lovász Local Lem-
ma can be generalized so as to apply to clause satisfaction problems in
which the clauses and the domains of the variables vary in size. In this
case, we say that a ClSP F satisfies the local condition (or synonymously
the local hypothesis) if there exists a mapping µ : F → (0, 1) which
associates a number with each clause in the formula such that

∀C ∈ F : w(C) ≤ µ(C) ∏
D∈ΓF(C)

(1− µ(D)). (2.1)

To shorten notation, we define, for a given mapping µ, the right
hand side of the condition on a clause C to be the µ-weight of the clause,
in writing

wµ(C) := µ(C) ∏
D∈ΓF(C)

(1− µ(D)).

The local condition thus asks for a mapping µ such that each clause’s
weight is no larger than its µ-weight.

Theorem 2.4 ([Spe77] General Lovász Local Lemma for ClSPs). Any
ClSP satisfying the local hypothesis is satisfiable.

At first sight, the local hypothesis may appear very intransparent.
What does a formula having this property look like? Looking at the in-
equality more closely reveals that the condition is at least qualitatively
intuitive: the smaller the probability w(C) that a clause is violated, the
easier it is to satisfy it. The easier it is to satisfy C, the smaller we can
make µ(C) and/or the more other clauses we can allow to interfere
with it, that is we can allow more neighbors in ΓF(C) without making
the µ-weight too small. But not just the number of neighbors is im-
portant, but the impact of each neighbor can be of differing severity.
The more difficult it is to satisfy D ∈ ΓF(C), the larger we will have to
choose its µ-value (because of the condition we get instantiating (2.1)
for D) and the stronger will be the effect of multiplying by (1− µ(D))

in the condition for C.

22 Chapter 2. The Lovász Local Lemma

The simpler symmetric version of Theorem 2.3 follows from this
general version as a simple corollary. The details of this derivation
can be found in Appendix A.7.

Applying the generalized statement of Theorem 2.4 requires us to
establish the existence of an assignment of numbers to the clauses sat-
isfying a nontrivial hypothesis. Usually, assigning numbers in the or-
der of Θ(d−|C|) for each C ∈ F is a good idea. Doing this allows for
an intermediate formulation that is much easier to apply while still
allowing for inhomogeneous clause sizes.

Theorem 2.5. Let F be a non-degenerate ClSP. If for all clauses C ∈ F, we
have

∑
D∈ΓF(C)

w(D) ≤ 1
4

,

then F is satisfiable.

The derivation of this theorem from Theorem 2.4 can be found in
Appendix A.8. It is noteworthy how nicely this formulation compares
to the warm-up statement of Theorem 2.2. The constant 1/4 may be
improvable.

Constraint Satisfaction Problems. As we will see, none of the proofs
of the Local Lemma make inherent use of the fact that the constraints
in the problem are clauses. If a general CSP F is given and if we still
consider w(C) for every C ∈ F to be the probability that a uniformly
random assignment violates the constraint C, whatever shape it may
have, and if we then define satisfying the local condition the very same
way we did it for ClSPs, then one shows seamlessly the following.

Theorem 2.6 ([Spe77] General Lovász Local Lemma for CSPs). Any
CSP satisfying the local hypothesis is satisfiable.

However, each proof as we present it later must be redone with
the fact in mind that general CSPs are under consideration. Because,

2.1. Introduction 23

although every constraint satisfaction problem can be converted into
an equivalent clause satisfaction problem by clause splitting as men-
tioned in Section 1.2, this might not be a good idea in the present case.
It is namely possible for a CSP to satisfy the local condition prior to
splitting and to lose this property after the conversion.

For a trivial example, consider a CSP F over k Boolean variables,
consisting of one single constraint C which is satisfied if and only if
all variables take value one. The constraint C has a weight of w(C) =
1− 2−k. Assigning value µ(C) := w(C) establishes the local condition
for F and the – in the present case trivial – conclusion is that F be
satisfiable.

Now let us split this very hard constraint into the necessary 2k − 1
clauses to form a ClSP F′. Each clause D′ ∈ F′ has a weight of 2−k and
thus µ(D′) ≥ 2−k must hold in any choice of values trying to estab-
lish the local condition. Suppose there was an association of µ-values
which worked. Without loss of generality, all clauses D′ ∈ F′ must
receive the same value µD′ = γ(k) · 2−k as otherwise we may just reg-
ularize them using the value of that clause where the local condition is
tightest. However, the value γ(k) may depend on k of course. In this
case, the local condition at every clause now reads

2−k ≤ 2−k · γ(k) · (1− 2−k · γ(k))2k−2

from which (using Lemma A.1),

1 ≤ γ(k) · e−γ(k)+2−k+1γ(k) ≤ γ(k)e−0.9·γ(k)

follows for sufficiently large k. By differentiation, it can most easily
be checked that the right hand side never exceeds 1/2, establishing a
contradiction.

This is in addition to the fact that if k is large, the number of con-
straints produced from splitting may be enormous and make the prob-
lem intractable computationally.

24 Chapter 2. The Lovász Local Lemma

We conclude that generalized constraints have to be kept in mind
throughout the chapter and we will consider them where necessary.

Beyond Constraint Satisfaction and Dependency Digraphs. It is
possible to generalize the Local Lemma even further, completely leav-
ing the language of constraint satisfaction problems and formulating
the lemma in terms of probability theory. Let Ω be a probability space
and let furthermore A = {A1, A2, . . . , Am} be arbitrary events in this
space. We say that a graph G on the vertex set A is a dependency graph
for A if each event is mutually independent of all events to which it is
not adjacent, i.e.

∀A ∈ A : ∀S ⊆ A \ Γ+
G (A) : Pr

A

B∈S
B

= Pr [A] . (2.2)

The Local Lemma on general events can be stated as follows.

Theorem 2.7 ([Spe77] Lovász Local Lemma for General Events). Let
Ω be a probability space and A a finite set of events. Let G be a dependency
graph for A. If there exists a mapping µ : A → (0, 1) such that

∀A ∈ A : Pr [A] ≤ µ(A) ·∏
B∈ΓG(A)

(1− µ(B)), (2.3)

then Pr

A∈A A

> 0.

It is trivial to see that Theorem 2.4 follows from Theorem 2.7 by
considering the random experiment of drawing an assignment uni-
formly, with the events corresponding to violating the different clau-
ses. Clearly, the dependency graph of the formula is a dependency
graph for the probabilistic setting as any clause C being violated is
clearly independent of any set of events in which no variable of C
occurs. The more general version can however be applicable also in
situations where Ω does not have the variables-with-finite-domains

2.1. Introduction 25

product structure that would be required to model the task in hand as
a clause or even constraint satisfaction problem.

A way of yet strengthening this statement is to define directed de-
pendency graphs (as for instance done in [AS00]). If D is a digraph on
A, then it is called a dependency digraph if each event is mutually inde-
pendent of all events which are its non-outneighbors. Then we obtain

Theorem 2.8 ([AS00] Directed Lovász Local Lemma for Events). Let
Ω be a probability space and A a finite set of events. Let D be a dependency
digraph for A. If there exists a mapping µ : A → (0, 1) such that

∀A ∈ A : Pr [A] ≤ µ(A) ·∏
B∈ΓD(A)

(1− µ(B)), (2.4)

then Pr

A∈A A

> 0.

As is natural, ΓD(A) is in this case understood to be the set of out-
neighbors of vertex A in D.

Using directed graphs adds no value to the case of clause satisfac-
tion problems. If two clauses are dependent because their underlying
variable sets intersect, then this dependence is symmetric: if a depen-
dency digraph for a clause satisfaction problem contains a single di-
rected arc between two clauses, either that arc is superfluous because
the clauses are strictly disjoint, or the converse arc is also necessary
and thus it was not a proper dependency digraph in the first place.
We will therefore not study the case of digraphs intensively as it is not
applicable to our problem of interest.

Lopsidependency. Contrary to the case of digraphs, another streng-
thening of Theorem 2.7 is possible which does add value to the case of
clause satisfaction problems. This strenghtening arises from relaxing
the requirement for dependency graphs in such a way that we do not
require mutual independence of events from their non-neighbors, but

26 Chapter 2. The Lovász Local Lemma

only that the correlation goes the right direction. More specifically, a
graph G is called a lopsidependency graph for the set of events A if no
event is more likely in the conditional space defined by intersecting
the complement of any subset of its non-neighbors, i.e.

∀A ∈ A : ∀S ⊆ A \ Γ+
G (A) : Pr

A

B∈S
B

≤ Pr [A] . (2.5)

The Lopsided Local Lemma on general events then reads just as the
standard one but with the condition on G relaxed to be a lopsidepen-
dency graph only.

Theorem 2.9 ([ES91] Lopsided Version of Lovász Local Lemma). Let Ω
be a probability space andA a finite set of events. Let G be a lopsidependency
graph for A. If there exists a mapping µ : A → (0, 1) such that

∀A ∈ A : Pr [A] ≤ µ(A) ·∏
B∈ΓG(A)

(1− µ(B)), (2.6)

then Pr

A∈A A

> 0.

When applied to clause satisfaction problems, the relaxation to lop-
sidependency graphs corresponds to having to consider two clauses
to be neighbored not if they share a common variable, but only if they
conflict in at least one literal. Two clauses C, D are conflicting if there is
a variable x and two distinct values v1, v2 ∈ Lx such that (x ̸= v1) ∈ C
and (x ̸= v2) ∈ D.

Suppose now that F is a ClSP formula and consider the graph on
the clauses of F such that there is an edge between any two clauses C
and D iff they conflict in some literal. We call this graph the conflict
graph G∗F of F.

Then, in the random experiment where we draw assignments uni-
formly at random, G is clearly a lopsidependency graph: let C ∈ F
be any clause and D ⊆ F a set of clauses such that no clause in D

2.1. Introduction 27

conflicts with C. We are interested in the probability that C becomes
violated conditioning on all of D being satisfied. From the fact that
if an assignment α satisfies D and violates C, all assignments arising
from α by changing any values for vbl(C) still satisfy D, follows that
the probability that C is violated given thatD is satisfied is still at most
d−k. Therefore G∗F is a lopsidependency graph.

This yields the following strengthening of Theorem 2.4. For any
C ∈ F, we define the lopsineighborhood

Γ∗F(C) := {D ∈ F | ∃x ∈ V :

∃v1, v2 ∈ Lx : v1 ̸= v2, (x ̸= v1) ∈ D, (x ̸= v2) ∈ C}

to be the set of all neighbors of C in the conflict graph for F, i.e. all
clauses which have a conflict with C. Then we have obtained

Theorem 2.10 (Lopsided Lovász Local Lemma for ClSP). Let F be a
ClSP. If there exists a mapping µ : F → (0, 1) that associates a number with
each clause in the formula such that

∀C ∈ F : w(C) ≤ µ(C) ·∏
D∈Γ∗F(C)

(1− µ(D)), (2.7)

then F is satisfiable.

The lopsided variant extends seamlessly also to the setting of di-
rected graphs as discussed in the previous paragraph. For aforemen-
tioned reasons, we are not overly interested in this case and forgo stat-
ing this as yet another variant.

Variable Occurrences. The lopsided version of the LLL has been suc-
cessfully applied for example by Berman et al. [BKS03] in order to
prove better bounds on the number of occurrences per variable we
can allow in a k-SAT formula while still guaranteeing satisfiability.

Indeed, an immediate consequence of Theorem 1 is the following.

28 Chapter 2. The Lovász Local Lemma

Corollary 2.11 ([KST93]). Whenever in a (d, k)-ClSP formula F, every
variable occurs in at most dk/ek clauses, then F is satisfiable.

Berman et al. [BKS03] have refined this result for the Boolean case
d = 2, eventually leading to the following asymptotic result proved
by [GST11].

Theorem 2.12 ([GST11]). If in a k-SAT formula F, every variable occurs a
total of at most 2

e ·
2k

k − 1 times, then F is satisfiable.

Heidi Gebauer has demonstrated in her award paper [Geb09] that
asymptotically, this bound is tight. Her result was refined (with the
constant improved) in [GST11], yielding the following.

Theorem 2.13 ([GST11]). For every ϵ > 0 and k sufficiently large there
exists a k-SAT formula where every variable occurs at most

 2
e + ϵ

 2k

k times
and which is unsatisfiable.

Both theorems were formulated with the case of Boolean satisfi-
ability in mind, but a standard generalizing construction3 produces
unsatisfiable (d, k)-ClSP formulas where every variable occurs at most

2
e
+ ϵ

1
k

2 ·

d
2

k

times. For even d, this demonstrates tightness up to a constant fac-
tor independent of d and k. For odd d, there is an error due to parity
issues which can most probably be resolved with a more careful ap-
proach. We do not include any proofs here, as this topic is not our
main concern.

An interesting observation is that for very small values of d and k,
the Local Lemma does not yield interesting bounds. For example if

3Where you take an unsatisfiable k-SAT formula and replace each clause by ⌈d/2⌉k
clauses over d-ary variables.

2.1. Introduction 29

d = 2 and k = 3, i.e. the prominent case of 3-SAT, Corollary 2.11 and
Theorem 2.12 both yield trivially small bounds on the number of per-
missible occurrences. For such cases, better bounds can be obtained
without the Local Lemma.

Indeed, for any given ClSP F, consider the bipartite graph IF in
which one partite set is formed by the clauses of F, the other partite
set is formed by the variables of F and there is an edge between a
clause and a variable if this variable occurs in that clause. IF is called
the clause-variable incidence graph of F. This graph contains more detail
than the dependency graph GF. In fact, GF is obtained from IF by
taking the square of IF and then dropping the variable vertices as well
as all loops. We call a formula F matched if there exists a matching in
IF which exhausts the clause vertices.

Observation 2.14 ([Tov84],[KST93]). Matched ClSP formulas are satisfi-
able.

This follows trivially because if a clause-saturating matching is
given, each clause has a variable which can be declared solely re-
sponsible for satisfying this clause. Using the Marriage Theorem by
Philip Hall [Hal35], one can prove that if every variable has degree at
most k whilst every clause contains exactly k variables, then the clause-
variable incidence graph always admits a clause-saturating matching.

Corollary 2.15 ([Tov84],[KST93]). Every (d, k)-ClSP in which every vari-
able occurs at most k times is matched and hence satisfiable.

The investigation of the function f (k) defined as the largest inte-
ger s with the property that every Boolean k-SAT formula in which
every variable occurs at most s times is satisfiable dates back to work
by Tovey [Tov84] who demonstrated (using the Marriage Theorem as
outlined) that 3-SAT formulas with at most 3 occurrences per vari-
able are satisfiable whilst the problem of deciding satisfiability of 3-
SAT formulas with up to 4 occurrences per variable is NP-complete.

30 Chapter 2. The Lovász Local Lemma

Kratochvı́l, Savický and Tuza [KST93] further observed that for arbi-
trary k, allowing more than f (k) variables made the decision problem
NP-complete and they were the first to obtain an exponential bound
of type f (k) ≥ 2k/(ek) from the Local Lemma (cf. Corollary 2.11).
Further insights into this area have finally been provided by Dubois
[Dub90], by Hoory and Szeider [HS05, HS06] and finally by Gebauer,
Szabó and Tardos [GST11] as mentioned above.

Outline of the Chapter. So far, we have introduced various flavors
of the Lovász Local Lemma and we have illustrated how it may be ap-
plied to clause and constraint satisfaction problems in various ways.
The strongest LLL variant we have stated is the one in Theorem 2.9
and all other variants – with the sole exception of the digraph vari-
ant which we do not study further – follow from this strongest ver-
sion. Next, in Section 2.2, we will go on to show how Erdős, Lovász
(and Spencer) originally proved this theorem using the probabilistic
method. This proof will be most elegant and short, but it will not dis-
close any way in which satisfying assignments to problems for which
satisfying assignments can be thus guaranteed can be actually discov-
ered using an efficient algorithmic procedure. In Section 2.3, we will
start to concern ourselves with the problem of providing an algorith-
mic variant of the LLL. After analyzing the history of the problem we
will present a randomized iterative procedure extraordinarily suited
to the purpose. The subsequent sections are to discuss the analysis of
that algorithm. After discussing the basic idea in Secion 2.4, Section 2.5
will give a first simple bound on the running time of this algorithm
in simplified homogeneous scenarios comparable to the statements of
Theorem 2.3 and Theorem 2.5 using a nice and intuitive proof strategy
illustrating the philosophy behind all arguments presented thereafter.
From Section 2.6, we will study a more refined proof technique capa-
ble of making almost all known applications of the Local Lemma al-
gorithmic. In Sections 2.7, 2.8 and 2.9, we will finally look into parallel
and deterministic variants of our algorithm.

2.2. Nonconstructive Proof 31

2.2 Nonconstructive Proof4

We now explain the way Erdős, Lovász and Spencer originally proved
Theorem 2.9 using a probabilistic argument.

Let Ω be a probability space and A = {A1, A2, . . . , Am} be any set
of events. Let G be a lopsidependency graph for A and let an associ-
ation µ : A → (0, 1) be given such that the lopsided local condition
(that is Inequality (2.6)) is satisfied.

We prove that there is a positive probability p > 0 that none of
the events in A occur. Even though this probability may be extremely
small, any non-zero value readily certifies that there must exist some
point ω ∈ Ω avoiding all the events – which corresponds to a satisfy-
ing assignment in the ClSP or CSP case.

In order to show p > 0, we first prove the following auxiliary
claim.

Lemma 2.16 ([EL75]). Let A ∈ A be any fixed event and H ⊆ A any
subset. Then

Pr

A

D∈H
D

≤ µ(A).

Proof. The proof is by induction on the size |H| of the set of events we
condition on.

The base case for H = ∅ is easy. In this case we have

Pr

A

D∈H
D

= Pr [A] ≤ µ(A),

where the last inequality uses the local condition.

4The material in this section is from [EL75] and [Spe77] and appears in many stan-
dard textbooks. The write-up presented here has already appeared similarly in [MW11].

32 Chapter 2. The Lovász Local Lemma

Now suppose the claim is true for all sets H′ smaller than H, in
particular for all sets H′ ⊂ H.

Now we distinguish three cases. For the first one, suppose A ∈ H.
Then the statement is trivial because clearly, the probability of having
A while at the same time having A is clearly nonexistent, so

Pr

A

D∈H
D

= 0 < µ(A).

From now on we may assume A ̸∈ H.

For the second case, if in H, there is no event D ∈ H such that
D ∈ ΓG(A). In this case, the statement is again trivial and using the
induction hypothesis is not necessary, as the definition of the lopside-
pendency graph and the local hypothesis entail that

Pr

A

D∈H
D

≤ Pr [A] ≤ µ(A).

From now on we are allowed to assume that H ∩ ΓG(A) ̸= ∅.

Then split5 the set of events H into the two parts H = HA∪̇H0

where HA := H ∩ ΓG(A) are the events potentially interferring neg-
atively with A and the remainder H0 := H\HA are the ones that do
not. Now we use the definition of conditional probability to write

Pr

A

D∈H
D

=

Pr

A ∩D∈HA
D
 D∈H0

D

Pr

D∈HA
D

D∈H0
D
 (2.8)

and then bound the numerator and the denominator of this fraction as
follows.

5Note that the previous two cases could technically be subsumed into this last one,
but we consider the two preliminary cases to be an illustrative preparation for the gen-
eral case.

2.2. Nonconstructive Proof 33

For the numerator, note that the probability that A occurs and all
of HA do not is certainly smaller, in any conditional space, than just
the probability that A occurs, i.e.

Pr

 A ∩

D∈HA

D

D∈H0

D

 ≤ Pr

 A

D∈H0

D

 ≤ Pr [A] , (2.9)

where the last equality uses the lopsidependency graph hypothesis,
i.e. the fact that the events in H0 are at most negatively correlated
with A. For the denominator, we explicitly list

HA = {D1, D2, . . . , Dr}

and then use once more the definition of conditional probability, i.e.
for any events {Ei}i∈{1..r},

Pr

r

i=1

Ei

=

r

∏
i=1

Pr

 Ei

 i−1
j=1

Ej

 ,

to write

Pr

D∈HA

D

D∈H0

D

 =
r

∏
i=1

Pr

 Di

 r
j=i+1

Dj ∩

D∈H0

D

=:pi

.

Now we use the induction hypothesis for each

Hi := {Di+1, Di+2, . . . , Dr} ∪ H0

for 1 ≤ i ≤ r, each of which is a strict subset of H and thus pi ≥
1− µ(Di). This yields

Pr

D∈HA

D

D∈H0

D

 ≥ r

∏
i=1

(1− µ(Di)) ≥ ∏
D∈ΓG(A)

(1− µ(D)).

(2.10)

34 Chapter 2. The Lovász Local Lemma

Finally, we plug (2.9) and (2.10) into (2.8) and obtain that

Pr

A

D∈H
D

≤ Pr [A]

∏D∈ΓG(A)(1− µ(D))
≤ µ(A)

where the last inequality follows from Hypothesis (2.1). This finishes
the induction and proves the lemma.

Having the lemma at our disposal, the proof of the famous Lovász
Local Lemma now becomes simple.

Proof of Theorem 2.9. Explicitly list all events

A = {A1, A2, . . . , Am}.

Then use the definition of conditional probability to see that

p = Pr

m

i=1

Ai

=

m

∏
i=1

Pr

 Ai

 m
j=i+1

Ai

 ≥ m

∏
i=1

(1− µ(Ai)),

where the inequality is by Lemma 2.16. Since µ(A) < 1 for all A ∈ A,
the expression on the right is non-zero and thus p > 0.

Let us finally also note that Lemma 2.16 gives a nice intuitive inter-
pretation of the values µ(·). Roughly speaking, these should bound
the probability of the corresponding events in the conditional space
where all neighbors are being avoided.

2.3 Algorithmization

However elegant the proof of (Theorem 2.9 and thus of) Theorem 2.4
we have seen, it is deeply non-constructive and does not disclose any
way in which a satisfying assignment to a given ClSP satisfying the

2.3. Algorithmization 35

local condition could be discovered systematically. In the sequel, we
will demonstrate that an efficient randomized iterative procedure for
solving such formulas can be devised quite easily.

Nontriviality. To see that this is a nontrivial question, we dismiss
the simple attempt consisting of just sampling assignments uniformly
at random and hoping they satisfy the clause satisfaction problem as
follows.

Consider the (d, k)-ClSP over n variables which consists of n/k
independent subformulas, each of which consists of an arbitrary se-
lection of dk/e clausess over the same k variables. Since every con-
nected component of this formula is satisfied by a random assignment
with probability 1/e, the whole formula is satisfied with probability
exp(−n/k), an exponentially small probability.

If this example is considered too artificial, let {Fn}n∈N be any fam-
ily of (d, k)-ClSP formulas where for all n, Fn is over n variables and,
let us just say, kn clauses, and satisfies the local condition. Such a rich
class contains as many non-artificial examples as the Local Lemma
can be applied to. Now produce randomized copies {Hn}n∈N ob-
tained by randomly changing the value of each literal in the formula
independently and uniformly at random. Since the hypothesis of the
Local Lemma ignores the values of literals, all random formulas so
produced are satisfiable. However, the expected number of satisfying
assignments of Hn is very small: for a fixed α : Vn → {1..d}, the prob-
ability that α survives the randomization of all the literals is at most
(1 − d−k)kn which tends to zero exponentially quickly. At the same
time, this is the expected probability with which a uniformly random
assignment satisfies Hn (where the expectation is w.r.t. Hn and the
probability w.r.t. the random assignment).

Thus families of formulas which satisfy the hypothesis of the Local
Lemma where uniform sampling has an exponential expected running

36 Chapter 2. The Lovász Local Lemma

time are easily constructed and we find that we have to be more clever
to devise an algorithmic solution.

Method of Conditional Expectations. The same is not true for sim-
ple applications of the probabilistic method as for example (d, k)-ClSP
formulas F satisfying the precondition of Theorem 2.1. For such for-
mulas, random sampling is successful: having at most dk − 1 clau-
ses, each one forbidding a d−k-fraction of all assignments, a uniformly
random assignment satisfies the formula with probability at least d−k.
Now either the size of F is in the same range, let us say larger than
(dk)/2 making this approach polynomial in |F|, or if F has at most
(dk)/2 clauses, then the probability of hitting a satisfying assignment
grows beyond 1/2, making the approach polynomial as well.

There is a very well-known derandomization of this technique due
to Erdős and Selfridge [ES73] which is an integral component of the
probabilistic method and is known as the method of conditional expecta-
tions. To solve F deterministically rather than through random sam-
pling, an algorithm can explicitly calculate the expected number of
clauses violated by a (hypothetical) uniformly random assignment.
This number must be below one for the existential argument to apply.
Now, the algorithm can pick an arbitrary variable x and cycle through
all possible values Lx that can be assigned to it. For each value d ∈ Lx,
it considers the formula F[x →→d] arising from substitution of d for x in
F and calculates once more the expected number of violated clauses if
the remaining formula were to be subjected to random sampling. For
at least one of the possible values, this number must stay well-below
one since we know that the average was below one. Pick this value
and assign it to x permanently, then iterate. Since the expected num-
ber of violated clauses stays below one all the time while the set of
unassigned variables shrinks, at some point, the expected number of
violated clauses must drop to zero and the satisfying assigment has
been discovered.

2.3. Algorithmization 37

To the more intricate Local Lemma scenario, such simple approa-
ches do not apply, although the method of conditional expectations
will be a vital tool in the derandomization which we will investigate
much later in Section 2.9.

Problem History and the Beck-Alon Approach. The first successful
attempt at making the Local Lemma constructive was made by József
Beck in [Bec91] and subsequently simplified by Noga Alon in [Alo91].
The Beck-Alon approach can be summarized as follows. Consider the
Boolean case d = 2 and thus a k-SAT formula F.

We pick an initial assignment α0 uniformly at random. Next, we
apply a fixed freezing rule R which takes the current assignment α0

and F and determines a set of variables Vf := R(F, α0) which are to
be frozen, that is, assigned for good according to α0. F is then replaced
as

F′ := F
[α0|Vf

]

and F′, the remaining formula over variables vbl(F) \Vf , is then sub-
sequently solved by means of a brute-force algorithm which identifies
the connected components of F′ (i.e. of GF′) and enumerates exhaus-
tively all solutions to each component. The hope is that if the freezing
rule is suitable, then all connected components will, with high proba-
bility, be small enough for the procedure to have a polynomial running
time.

The freezing rule used in [Alo91] is as simple as lettingR(F, α0) be
all variables not occurring in any clause with fewer than k/8 literals
satisfied by α0. After freezing these variables, each clause C ∈ F can
be in one of three states: either C is safe because α0|Vf contains an as-
signment satisfying C so that C is no longer represented in F′. Then,
C can be bad which means that more than 7k/8 literals in C are vio-
lated by α0 and in this case, all variables in C are kept non-frozen by
the freezing rule so that C ∈ F′ gets another chance to become satis-

38 Chapter 2. The Lovász Local Lemma

fied. The remaining case occurs when C contains at least k/8 satisfied
literals, but all of those are over variables that are kept non-frozen by
the freezing rule. Such clauses are considered dangerous. It is easy to
see that all bad clauses contain k and all dangerous clauses contain at
least k/8 literals over non-frozen variables, so they get a chance to be
satisfied in the subsequent reassignment phase.

The freezing rule, in particular the fraction of k/8, is chosen in such
a way that one can prove two things: firstly that with high probability,
the dependency graph of F′ contains connected components no larger
than logarithmic in size exclusively, to which all possible assignments
can be enumerated in polynomial time. Secondly, for the procedure
to go through successfully, we need that a solution exists in each con-
nected component. Such a guarantee is what the Local Lemma can
provide via its non-constructive proof as outlined in Section 2.2, at
least as long as the hypothesis on the neighborhood sizes is strong
enough to also cope with clauses of size k/8. This is obviously the
case if we ask the neighborhoods to be as small as the 8th root of what
is required for the Local Lemma to work. Hence what Alon, following
up Beck, proved was that

Theorem 2.17 ([Alo91]). There exists a constant c such that there is a ran-
domized expected polynomial time algorithm, which on input F a k-SAT for-
mula for which we have |ΓF(C)| ≤ c2k/8 for all clauses C ∈ F, outputs a
satisfying assignment.

Without going into the technical details which we encourage the
reader to look up in [Alo91], we would like to sketch the main idea
of the proof, as we will use very similar ideas to prove our stronger
version later.

Central is the introduction of the concept of witness trees, which are
certificates for unlucky executions of the algorithm, in the following
sense. Imagine a witness tree of size s to be any subtree of the depen-
dency graph GF of F containing at least s vertices. What the hypothesis

2.3. Algorithmization 39

of the theorem entails is that each vertex in the dependency graph has
a degree no larger than c2k/8. This limits as well the number of dis-
tinct witness trees of size s there can be which is easily shown (see
[Knu73]) to be limited by (ec2k/8)s · |F|. Now suppose that all clauses
of a fixed witness tree are bad or dangerous after picking α0. Then
there exists a connected component in GF′ containing all clauses in the
witness tree, so the algorithm will have to enumerate solutions over
a set of variables of this magnitude. Conversely, whenever there is a
connected component in GF′ of a certain size s, this component has a
spanning tree and this spanning tree is a witness tree inside the depen-
dency graph of F of size s all of whose vertices are bad or dangerous.
One can now compute the probability that for a fixed witness tree, all
the vertices become bad or dangerous and one will find, in very rough
terms, that this probability is exponentially smaller than the inverse of
the number of possible witness trees, leading to the conclusion that for
sufficiently large s = O(log n), with high probability, no tree of size s
will at all exist all of whose vertices are bad or dangerous after the
preassignment phase and thus no component of this size will remain
in F′ to be treated for the reassignment phase.

The basic idea is thus to juxtapose the number of possible ways in
which something can go wrong in this algorithm (where a “way some-
thing can go wrong” is a large connected component left after the pre-
assignment and freezing stage, and each such way is represented by
a witness tree) with the probability that each single bad situation can
occur (i.e. the probability with which all of a witness tree’s vertices
turn bad and dangerous) when picking α0 at random. Then we find
that for well-chosen parameters, the total probability measure accu-
mulated by bad outcomes is small and conclude that thus most of the
time, the algorithm must succeed. This idea will stay the same in all
approaches we present hereafter.

One can also take an information-theoretic viewpoint on this situ-
ation: instead of talking about the “number of possible ways” some-

40 Chapter 2. The Lovász Local Lemma

thing can go wrong, we can as well talk about the algorithm producing
a certificate (in the present case a witness tree) so as to justify why it
had to surrender inconclusively and then juxtapose the number of bits
we need to encode a bad outcome (a witness tree) with the number of
random bits (in the choice of α0) that were contributing to (and thus
could have prevented if chosen differently) this bad outcome. Then we
find that for well-chosen parameters, the number of bits needed to en-
code a bad outcome is smaller than the number of random bits needed
to steer the algorithm into the corresponding undesirable state. We
conclude that most of the times the algorithm must succeed, as other-
wise we would have too good a chance to find a compact representa-
tion for the random input bits. Both of these views will be taken later
when analyzing an improved version of this constructive method.

The main issue with this approach is the derivation of a bound on
the probability with which all vertices of a witness tree can turn bad or
dangerous. Since these vertices are connected, there are dependencies
between the clauses involved. Beck and Alon circumvented this prob-
lem by considering subsets of the vertex set of such a tree, all of whose
members are at a certain distance from one another. All vertices can-
not turn bad unless at least those chosen vertices do and these events
then become independent by virtue of being at a sufficient distance in
the dependency graph. If a vertex set is given all of whose vertices are
bad, then this information allows to resconstruct partially the random
bits used at the corresponding clauses. This yields a viable bound on
the probabilities, but the introduction of distance produces a loss and
calls for the reduction of the neighborhood sizes we can allow.

To alleviate this loss, one has to find a way of representing, in an
information-theoretic sense, the “bad outcomes” more effectively and
to find witness trees from which more information about the prelim-
inary assignment can be reconstructed than just parts of the values
of random samples at vertices at a constant distance. In [Mos06], we
made a first such attempt, the idea of which was to decrease the dis-

2.3. Algorithmization 41

tance between the estimate-supporting vertices at places where this is
possible. This makes estimates more precise and allows us to adapt
the freezing-rule to freeze fewer variables. The yield was that a neigh-
borhood bound approximately 2k/6 would suffice for k-SAT. Later and
independently, Srinivasan investigated different strategies of a similar
spirit and could cope with neighborhood bounds proportional to 2k/4

[Sri08]. Srinivasan’s work also included other improvements making
the algorithmization more widely applicable. In a similar spirit, Mol-
loy and Reed [MR98] had previously provided a general framework as
to when a Beck-Alon type algorithm could be provided for an applica-
tion of the Local Lemma. For a next stage, we provided an improved
construction of denser witness trees catering for neighborhood sizes
of up to roughly 2k/2 [Mos08]. The idea was both to yet again make
the witness structures denser, and also to use the information encoded
in the edges of witness trees for reconstruction of more random bits,
rather than just the information contained in the collection of vertices
they contain. As many witness trees can be built over the same set
of vertices and the tree’s structure thus contains additional bits, this
again allows for a tighter freezing rule.

Still, there remained a gap for an inherent reason: all algorithms
considered dwelled on the principle of having a preassignment phase,
then freezing and truncation of clauses and a reassignment phase. As
long as we stick to this two-phased basic method, two things stand in
our way: for one, we need the Local Lemma to work even after trunca-
tion of the clauses, necessarily asking for smaller neighborhood sizes.
And secondly, as long as we use witnesses to certify bad outcomes
of one single preassignment only, there will always be dependencies
between different clauses turning bad or dangerous as these events
depend on the same random samples and so we will never be able to
use all information a witness can possibly encode for the reconstruc-
tion of what random choices lead to the occurrence of that witness. All
information must however be used if a tight result is to be achieved.

42 Chapter 2. The Lovász Local Lemma

But there is an easy way out: if instead of doing one preassignment
and one reassignment, we iteratively reassign values to currently vio-
lated clauses and then build a witness tree representing the succession
of reassignments that have taken place, then all random samples par-
taking in this succession of bad events as represented by the witness
trees are mutually independent: each time a sample becomes relevant
by making a clause violated, it is immediately replaced by a new, yet
unknown random sample. In a witness tree representing the sequence
of clauses violated and resampled, even if over dependent clauses,
each vertex allows for the reconstruction of all randomness previously
assigned to the clause it represents because this randomness has been
used once only and is replaced before the next vertex will be embed-
ded into the tree. This is the intuition behind the strategy we are going
to follow hereafter.

Iterative Corrections. Consider Algorithm 1, which in each itera-
tion, picks a violated clause and then replaces the assignments to the
variables in that clause with fresh random samples. Let us argue for
correctness and termination of this procedure first.

If the algorithm terminates, then by virtue of the termination crite-
rion of the loop, the output clearly constitutes a satisfying assignment.

To see that the algorithm always terminates, just fix an assignment
α∗ satisfying F and then note that at any point in time, there is a non-
zero probability that the algorithm only samples values according to
α∗ during the next step. Since in each step, at least one of the k values
in the C selected disagrees with α∗ (after all C is satisfied by α∗ but
violated by the current assignment), this results in at least one more
variable correctly set in each step and thus at any point in time, there
is a non-zero probability depending only on F that the algorithm ter-
minates within the next at most n iterations. If we iterate arbitrarily
often, this is bound to happen at some point and so the algorithm runs
indefinitely with probability zero. For the same reason, the expected
running time must also be finite, albeit for all we know right now, it

2.3. Algorithmization 43

could be exponential.

Algorithm 1 LocalSolver(F)
Require: A satisfiable ClSP formula F.
Ensure: Output is a satisfying assignment.

1: α← a uniformly random assignment from6 S
2: while ∃C ∈ F : α violates C do
3: C ← any clause violated by α

4: for x ∈ vbl(C) do
5: α(x)← new uniformly random value from Lx

6: end for
7: end while

Note that this argument works for all satisfiable formulas F. This
is the type of argument that Uwe Schöning [Sch99] has used for ana-
lyzing the (very similar) random walk algorithm that we will discuss
in the next chapter. There, in Section 3.2, we will use a more refined
variant to derive an exponential bound on the running time of Algo-
rithm 1 which holds for all formulas.

In the present chapter however, we are concerned with formulas
satisfying the local condition and as it will turn out, Algorithm 1 is
particularly well-suited to this type of formulas. More precisely, we
will prove the following.

Theorem 2.18. Let F be a ClSP formula satisfying the local condition with
mapping µ. Then Algorithm 1 on input F terminates after at most

O

∑
C∈F

µ(C)
1− µ(C)

correction steps on expectation.

6Recall that we use the notation S := {α : Vn → L | α(x) ∈ Lx} for convenience.

44 Chapter 2. The Lovász Local Lemma

Whether this is a good running time depends of course on the map-
ping µ. However, we can easily check that all reasonable formulas
satisfying the hypothesis admit an assignment µ such that the bound
becomes polynomial in the size of the formula.

Lemma 2.19. There exists a universal constant Λ ∈ (0, 1) with the follow-
ing property. If F is any non-degenerate ClSP formula satisfying the local
condition with some mapping µ, then there exists a mapping µ′ also satisfy-
ing the hypothesis such that ∀C ∈ F : µ′(C) ≤ Λ.

The proof is merely technical and is therefore being carried out in
the appendix7.

If we use the mapping µ′ guaranteed to exist for F by Lemma 2.19,
then none of the values µ′(C) for C ∈ F exceed the universal con-
stant Λ such that, by virtue of x/(1− x) being monotone in x, each
summand in the bound established by Theorem 2.18 is bounded by a
constant. Therefore, the algorithm’s expected running time (measured
in terms of the number of resamplings) is linear on all non-degenerate
formulas.

Corollary 2.20. If F is a non-degenerate ClSP satisfying the local condition,
then Algorithm 1 terminates after an expected O(|F|) correction steps.

In particular, of course, any formula satisfying the requirements of
the symmetric Theorem 2.3 or the simplified asymmetric Theorem 2.5
is solved after an expected linear number of iterations this way. We
also note that the corollary can easily be extended to degenerate cases
(if it is considered to be of interest). As we decribed in Section 1.2,
there are trivial manipulations which remove all degeneracies from a
ClSP. All such manipulations preserve the local condition. Empty do-
mains and constraints cannot occur because the formula is satisfiable.

7Lemma A.5 makes a more general statement and since in a non-degenerate ClSP,
all weights are at least 1/2, the claim follows.

2.4. Journaling and Reconstruction 45

Substituting values for variables with a singleton domain does not
influence any of the inequalities, substituting an unusued value and
thereby satisfying some clauses only relaxes them. The only somewhat
non-trivial case arises when we remove a unit clause, thereby shrink-
ing the contained variable’s domain. But, as can easily be checked,
this, too, preserves all conditions at the neighboring clauses because
the effect of removing the clause and the effect of shrinking the do-
main nicely cancel out.

Finally, we may ask the question whether the algorithm general-
izes to constraint satisfaction problems in which the constraints are
not clauses. There is nothing which prevents the algorithm from run-
ning on any such instance. As long as there is any efficient way of
finding a violated constraint, everything works out.

Theorem 2.21. Let any CSP F be given along with an algorithm A which
identifies, for any non-satisfying assignment, a constraint which is violated.
And suppose F satisfies the local condition. Then Algorithm 1 (where we now
allow a general CSP as input) on input F terminates after at most

O

∑
C∈F

µ(C)
1− µ(C)

resampling steps (and calls to A) on expectation.

At the end of Section 2.6, it will be discussed what is additionally
needed to prove this generalized version.

2.4 Journaling and Reconstruction

In the following, it will be our goal to prove Theorem 2.18 using a va-
riety of tools. In Section 2.5, we will prove a weaker variant of the the-
orem using simpler arguments that capture the key philosophy nicely.
In Section 2.6, we will then proceed to full generality. The main idea

46 Chapter 2. The Lovász Local Lemma

will be the same both times: to find a concise way of representing the
actions the algorithm has taken and then - in case of an unexpectedly
long running time - juxtaposing the amount of randomness that has
led to the large number of corrections, proving that long running times
are unlikely. It is the same philosophy on which already the Beck-Alon
approach bases.

In the present section we will study the key concept common to
all later proofs: the fact that it is sufficient to record the succession of
clauses being corrected by the algorithm, as this allows to reconstruct
all random values assigned to variables during the process.

Journaling. We introduce formal notation for what we are record-
ing. For a complete account of everything which happens during a run
of the algorithm, let X(0)

1 , X(0)
2 , . . . , X(0)

n denote the values of the vari-

ables in the beginning, that is X(0)
i is the assignment initially chosen

for variable xi ∈ V, for all 1 ≤ i ≤ n. Note that these are random vari-
ables, and according to how the algorithm works, X(0)

i is distributed
u.a.r. among all possible values in Lxi . Now suppose the assignment
does not satisfy F, then there will be a clause, call it C1, selected for
correction in the first step. Note that C1 is a random variable too, dis-
tributed somehow among all clauses in F. Next, the algorithm forgets
about the values of all variables in C1 and replaces them with new
random samples. Suppose vbl(C1) = {xi1 , xi2 , . . . , xik}. Then denote

by X(1)
i1

, X(1)
i2

, . . . , X(1)
ik

the new random values these variables receive
now. Note again that each of these is a random variable where Xij is
distributed u.a.r. among all possible values in Lxij

. In particular, these
new random values are completely independent of the values we used
before.

Let us continue in this way and in general write Ct to denote the
clause corrected in the tth step and X(j)

i to denote the random variable
that represents the value which the variable xi received when it was

2.4. Journaling and Reconstruction 47

deleted and resampled for the jth time in the process. Note that each
variable has its own counter, and those counters are not synchronous.
In total, not every variable is resampled for the same number of times.
Overall, we now have a finite or infinite8 sequence C := ⟨C1, C2, . . .⟩
of selected clauses which we call the journal of the algorithm. Addi-
tionally, for every variable xi ∈ V, we have a finite or infinite8 se-
quence Xi := ⟨X(0)

i , X(1)
i , . . .⟩ of values assigned to xi during the pro-

cess which we call the history of xi.

Writing down all the values of all the variables gives a complete
account of all actions the algorithm has taken in one particular run.

Reconstruction. We now make the observation that in order to be
able to follow the execution history of the algorithm, it is sufficient to
remember the journal C. The histories Xi of all the variables are then
not additionally needed because they are already determined (almost,
up to the very last assignments on termination) completely by C.

For the purpose of formalization, we represent the information that
some piece of information gives us about histories of variables by sets.
A reconstruction set is a set R ⊆ {1..n} ×N0 × L of triples such that
for any i ∈ {1..n}, j ∈ N0, there is at most one v ∈ L such that
(i, j, v) ∈ R. The semantics of this are that a triple (i, j, v) is supposed
to represent the information that X(j)

i = v. Therefore, we will say that

8Formally, we have to allow infinities here because there are of course easily con-
structible points in the probability space where the journal becomes infinite. Note that
we already know from the simple considerations in Section 2.3 that in the case of a sat-
isfiable formula, the running time is infinite with probability zero, so these points form
a nullset. And due to the non-constructive version of the Local Lemma, we know that
all our input formulas are satisfiable. However, we would here like to present an in-
dependent proof which does not make use of the non-constructive version of the Local
Lemma anymore, implying the existential statement via the algorithmic analysis. To
this end, we ignore our previous knowledge and for the time being simply allow for
infinite journals.

48 Chapter 2. The Lovász Local Lemma

a reconstruction set R is true for a given run of the algorithm if

∀(i, j, v) ∈ R : X(j)
i = v.

We follow this by a lemma telling us that any given prefix of the
algorithm’s execution journal allows for the reconstruction of a corre-
sponding portion of the variable histories. We use the common nota-
tion F∗ to denote the set of all finite strings over the alphabet F (with
the clauses as its characters), that is ordered lists of any finite length,
the entries of which are clauses from F.

Lemma 2.22. There exists a reconstruction map

R : F∗ → 2[n]×N0×L

such that for all fixed lists of clauses J ∈ F∗, the following holds. Let ri(J)

be the number of clauses in J that contain variable xi, for all 1 ≤ i ≤ n. For
every execution of the algorithm with journal C and histories {Xi}1≤i≤n, if
J is a prefix of the journal C, then

R(J) = { (i, j, X(j)
i) | 1 ≤ i ≤ n, 0 ≤ j < ri(J) }.

Note that this means that knowing any prefix J of the execution
journal, we can reconstruct the values of all samples of variable values
that were discarded (i.e. replaced with new samples) during the first
|J | correction steps. The only thing which we cannot reconstruct, is
the most recent value for each variable, that is, the value it holds after
the |J |th step. This information is not present in the journal.

Proof of Lemma 2.22. The proof is by induction on the length of J . If J
is empty, then J is always a prefix of the journal. But since ri(J) = 0
for all i in that case, we can defineR(J) = ∅ and satisfy the condition.
So much for the base case.

Now suppose the statement is true for all prefixes shorter than J
and conclude that it holds for J . Let C ∈ F be the last entry in J and

2.4. Journaling and Reconstruction 49

let J ′ be J with the last entry removed. By virtue of the induction
hypothesis, we can reconstruct

R(J ′) = { (i, j, X(j)
i) | 1 ≤ i ≤ n, 0 ≤ j < ri(J ′) },

meaning that we already know all samples that have been deleted and
replaced up to the correction step numbered |J ′|. The only ones we
miss in order to complete the induction are the triples (i, j, X(j)

i) for
j = ri(J ′) and all i such that xi ∈ vbl(C). But those are exactly the
values that were held by the variables in the clause C right before the
algorithm decided to fix C in the |J |th correction step. And we know
what those values are: if C = {(xi1 ̸= v1), . . . , (xik ̸= vk)}, then the
only reason why the algorithm decided to repair C in the |J |th step can
be because C was violated before that step, which uniquely determines
the values of all variables in C at that time. Formally, xiq must have
been assigned the value vq, for 1 ≤ q ≤ k, at that point in time. We
conclude that we can adjoin the triples

R(J) := R(J ′) ∪ {(iq, riq(J), vq) | 1 ≤ q ≤ k}

and finish the induction.

We summarize. In order to document the execution of the algo-
rithm, it is enough to write down the journal, that is the sequence of
clauses C1, C2, . . . which are selected for correction in each step. The
information contained in the first t entries of that list allows for the re-
construction of each variable’s history up to (but excluding) the very
most recent value of each variable (after the t-th correction step).

Now we will proceed to inspecting ways of how to record the jour-
nal and then juxtapose the amount of data this produces to the amount
of random data we can so reconstruct.

50 Chapter 2. The Lovász Local Lemma

2.5 Incompressibility9

In the present section, we want to warm up for the general proof
by proving a weaker version of Theorem 2.18. We are interested in
this weaker version because it admits a much more simple and con-
cise proof than the one providing full accuracy. The simpler proof
also nicely illustrates what is the main idea in the full proof of The-
orem 2.18, namely an information theoretic argument balancing the
number of random bits consumed by the algorithm with the number
of bits necessary to write down its execution protocol.

The way this simple proof works makes it necessary for us to pre-
scribe, in Algorithm 1, a rule according to which violated clauses are
being selected for resampling. Let an arbitrary but fixed lexicographical
ordering be imposed on the set of clauses. We modify the algorithm as
given in Algorithm 2.

First note that despite its more complicated structure, Algorithm 2
is just one incarnation of Algorithm 1. The latter allows for any way
of choosing a violated clause for resampling in each iteration, while
the former prescribes such a rule by means of the recursion used. In
particular, the simple argument we have sketched for why this algo-
rithm always terminates, carries over. We now prove the following
bound on the expected running time when calling Algorithm 2 on a
ClSP formula which is even somewhat sparser than the local condi-

9The material in this section is the result of a process of continuous simplification
of the proof presented in [Mos09], the refinement of which from [MT10] we will detail
in the Section 2.6. After publication, it became apparent that an argument of this type
had already been applied to a Lovász Local Lemma type problem in independent work
by Schweitzer [Sch09], who presents an almost identical proof, merely missing the re-
alization that this yields an efficient algorithm rather than just an alternative way of
reproving known consequences of the Lovász Local Lemma. The term ’incompressibil-
ity’ in this context is due to Schweitzer.

Significant parts of the present write-up have appeared as [MW12a].

2.5. Incompressibility 51

Algorithm 2 LocalSolverLexicographical(F)
Require: A satisfiable ClSP formula F.
Ensure: Output is a satisfying assignment.

1: α← a uniformly random assignment from S
2: while ∃C ∈ F : α violates F do
3: C ← the lexicographically first clause violated by α

4: α← LocallyCorrect(C, α)
5: end while

6: function LocallyCorrect(C, α) do
7: for x ∈ vbl(C) do
8: α(x)← new uniformly random value from Lx

9: end for
10: while ∃D ∈ Γ+

F (C) : α violates F do
11: D ← the lexicographically first α-violated clause in Γ+

F (C)
12: α← LocallyCorrect(D, α)
13: end while
14: end function

tion requires.

Theorem 2.23. If |ΓF(C)| ≤ dk−3− 1 for all clauses C in a (d, k)-ClSP for-
mula F, then Algorithm 2 terminates after at most O(|F| log |F|) correction
steps on expectation.

We now set out for a proof of this statement.

Genuine Improvements. The recursive procedure LocallyCorrect

as defined above tries to correct one violated clause C and then in-
vokes itself recursively in order to make sure that also the neighbor-
hood of C is satisfied. This facilitates the bookkeeping in the proof
because whenever the procedure returns, we are sure to have made

52 Chapter 2. The Lovász Local Lemma

genuine progress. We formalize this in the following way.

Lemma 2.24. Let α : Vn → {1..d} be any assignment and C ∈ F a clause
which is violated under α. Suppose we invoke LocallyCorrect(C, α). If
this procedure ever returns, then the assignment α′ it has constructed satisfies
all clauses containing a variable whose value changed, i.e.

∀D ∈ F : (∃x ∈ vbl(D) : α(x) ̸= α′(x)) → α′ satisfies D

and in particular, C is always among these clauses and thus satisfied.

Proof. The proof proceeds by reductio ad absurdum. Let

V′ := {x ∈ V | α(x) ̸= α′(x)}

and suppose that D ∈ F is any clause that contains at least one vari-
able from V′ and is left unsatisfied after the process ends. Consider
the variable x ∈ vbl(D) which is the last one to be resampled among
all variables occurring in D. This resampling happens inside some re-
cursive call of LocallyCorrect for some clause E ∈ F with x ∈ vbl(E).
When that recursive call returns, D, being a member of Γ+

F (E), must be
satisfied. And ever after, none of the variables occurring in D change
their value anymore which is a contradiction.

From the lemma, we can conclude that if a call to LocallyCorrect

ever returns, then the set of clauses violated under α′ is a strict sub-
set of the set of clauses violated under α, since the clause we initially
called the procedure for was violated and is now satisfied, and no new
violated clauses can appear. Therefore,

Corollary 2.25. The outer loop in LocalSolverLexicographical cannot
be repeated any more than |F| times.

The corollary can be strengthened insofar as the number of top-
level invocations cannot be larger than in fact n/k because once one

2.5. Incompressibility 53

such invocation returns, not only the clause it has been started for is
”fixed”, but all variables it contains are ”fixed” in the sense that no
clause containing any of these variables can ever after appear in a top-
level invocation anymore. But a linear bound suffices in general.

It now remains to prove that the total number of recursive calls to
LocallyCorrect cannot become too large. We do this by showing that
if it did become too large, then there would be a way of represent-
ing the journal which is more concise than it should be information-
theoretically possible.

A bit of information theory. The argument bases on one of the sim-
plest principles in information theory, namely that uniformly random
data is not effectively compressible. In order to formalize this intu-
ition, we have to say what it means to effectively compress.

Suppose we fix two integers t, t′ ∈ N such that t′ < t. Now we
consider a d-ary (t, t′)−compression function

C : [d]t → ([d]t
′ ∪ {’no’})

that takes as input a string of length t and outputs either a string of
shorter length t′ or the failure message ’no’ (read: “can’t compress
this”). Its counterpart is a d-ary (t′, t)-decompression function

D : [d]t
′ → [d]t

which takes a compressed bit string of length t′ and decodes the longer
string of length t. What we require for (C,D) to be a sound compres-
sion system is that whenever C(s) ̸= ’no’ for some s ∈ [d]t, then
D(C(s)) = s.

For practical cases of compression, we would of course not allow
the mapping to ’refuse’ compressing; instead we would allow for the
compressed images of some statistically unlikely data to be larger than
the data itself. And we would require many more things, e.g. that C

54 Chapter 2. The Lovász Local Lemma

and D be efficiently computable. Here, such practical aspects are irrel-
evant, we are only interested in the information theoretic principle.

The following lemma states the simple observation that there is no
perfect compression.

Lemma 2.26. Let t, t′ ∈ N with t′ < t and let C and D be d-ary (t, t′)-
compression and (t′, t)-decompression functions such that (C,D) is a sound
compression system. Now let S ∈ [d]t be distributed uniformly at random
among all d-ary strings of length t. Then

Pr(C(S) = ’no’) ≥ 1− dt′−t.

Proof. The proof is by simple counting. There cannot be any two dis-
tinct strings s, s′ ∈ [d]t for which C(s) = C(s′) ̸= ’no’ because that
would imply D(C(s)) = D(C(s′)) and thus D(C(s)) ̸= s or D(C(s′)) ̸=
s′. But since there are dt strings of length t and only dt′ strings of length
t′, at most dt′ of the input strings can be mapped to an output other
than ’no’. Therefore, if S is chosen u.a.r. from [d]t, the probability that
C(S) ̸= ’no’ is at most dt′−t, as claimed.

In what follows, we will apply this lemma to bound the expected
running time of our algorithm. The idea will be that we decorate the
algorithm with a few extra statements that encode the journal of the
algorithm in a compact fashion. We already know that from the jour-
nal, the random input bits can be largely reconstructed. Thus we prove
that either the algorithm solves our formula quickly, or else it effectively
compresses the random bits it has received. The latter can however not
happen too often, leaving us with the former we are actually heading
for.

Concisely Encoding the Journal. Suppose we want to record, as our
algorithm runs, a compact log of which clauses are being corrected
at what time. We could write down the index of each clause in the

2.5. Incompressibility 55

journal. However, doing this in a trivial way wastes a certain amount
of information: if there are m = |F| clauses in total, then we need
⌈logd(m)⌉ d-ary characters to represent a clause. But if a clause C is
corrected first and then recursively a clause D ∈ Γ+

F (C), then identify-
ing D should need substantially fewer characters since Γ+

F (C) contains
only a small number of clauses.

The extended version of the algorithm, Algorithm 3, makes use of
this fact to produce a log in the form of a d-ary string s ∈ [d]∗ docu-
menting its actions. As for notation, if F′ ⊆ F is a set of clauses and
C ∈ F′ some clause in that set, we denote by daryCode(C, F′) the d-
ary encoding of the index of C in F′, that is the number of clauses in
F′ that occur before C in the lexicographic ordering, padded with ’1’-
characters10 in such a way that the length of each code is ⌈logd(|F′|)⌉.
Moreover, we use the operator ◦ to denote the catenation of strings
and we assume that the function AppendToLog(..) is some arbitrary
means of output on a side-channel.

Whenever a recursive call is made for correction of a clause D ∈
Γ+

F (C) in the neighbourhood of a previously corrected clause C, we
write the index of D in Γ+

F (C) to the log. We prepend this index by
a single ’2’-character indicating that a deeper recursion level is being
created. Let us call this a message of type I. Whenever LocallyCorrect
finds that all clauses in the currently inspected neighbourhood are sat-
isfied and thus returns control to a higher recursion level, we append
a single ’1’-character to the log to represent this fact. We call this a
message of type II.

On a global scale, whenever the outermost loop starts a new recur-
sive correction process, we write the index of the clause C corrected on
the topmost recursion level to the log. As there is no previous infor-

10Note that we are using the characters ’1’ and ’2’ as special characters at certain
points and as normal digits in encodings of integers at others. Still, decoding is unam-
biguous.

56 Chapter 2. The Lovász Local Lemma

mation available as to which clause this could be, we have to use a full
encoding of C in F. We call this a message of type III. As the recursion
depth before the top-level call can be reconstructed by counting previ-
ous messages of types I and II, no extra character is needed to indicate
the type of message appended. Note that the top-level call, too, will
automatically output a ’1’-character in the end to indicate termination.

Algorithm 3 LocalSolverLexicographicalAnnotated(F)
Require: A satisfiable ClSP formula F.
Ensure: Output is a satisfying assignment and a log.

1: α← a uniformly random assignment from S
2: while ∃C ∈ F : α violates F do
3: C ← the lexicographically first clause violated by α

4: AppendToLog(daryCode(C,F));
5: α← LocallyCorrect(C, α)
6: end while

7: function LocallyCorrect(C, α) do
8: for x ∈ vbl(C) do
9: α(x)← new uniformly random value from Lx

10: end for
11: while ∃D ∈ Γ+

F (C) : α violates F do
12: D ← the lexicographically first clause in Γ+

F (C) violated by α

13: AppendToLog(’1’ ◦ daryCode(D, Γ+
F (C))

14: α← LocallyCorrect(D, α)
15: AppendToLog(’0’)
16: end while
17: end function

Let us precisely quantify the number of digits that are needed to
store the log being output. A message of type I needs ⌈logd(d

k−3)⌉ =
k− 3 characters for encoding the clause to be corrected next and one

2.5. Incompressibility 57

additional bit being prepended. A message of type II needs exactly
one bit. A message of type III needs ⌈logd m⌉ digits. In order to fa-
cilitate the calculation, let us note that messages of type II always oc-
cur paired up with messages of type I or III, which are uniquely as-
sociated with a specific invocation of the local correction procedure.
Therefore each top-level invocation incurs a total of ⌈logd m⌉+ 1 dig-
its of output, each recursive invocation then produces an additional
(k− 3) + 2 = k− 1 characters of output to the log.

Suppose the algorithm makes a total of t invocations of the correc-
tion procedure, including the top-level calls (of which a maximum of
m can be done according to Lemma 2.24). Then the size of the log we
produce is smaller than m(⌈logd m⌉+ 1) + (k− 1)t. Note that we are
very generous here and the top-level calls are being overcounted.

It is very easy to see that from the log output, it is possible to unam-
biguously reconstruct the entire history of clause corrections. In turn,
from this history, as we know from Lemma 2.22, it is possible to recon-
struct for each variable x ∈ V, all the values it has received during the
procedure, except for its final value as our reconstruction always lags
behind by one.

We now claim the following.

Lemma 2.27. For any t ∈ N, the probability that the algorithm does not ter-
minate before making t recursive invocations of the local correction procedure
is at most dm(⌈logd m⌉+1)−t.

Given this bound, then using Lemma A.6 with C := dm(⌈logd m⌉+1)

and ϵ := 1 − 1/d, we obtain that the average number of recursive
invocations cannot be any larger than

1
1− 1/d

· (ln d ·m(⌈logd m⌉+ 1) + 1) = O(m logd m),

concluding the proof of the theorem.

58 Chapter 2. The Lovász Local Lemma

Proof of Lemma 2.27. Fix some t ∈ N. We incorporate our algorithm
into a compression scheme consisting of functions

C : [d]n+tk → ([d]n+m(⌈logd m⌉+1)+t(k−1) ∪ {’no’})

and
D : [d]n+m(⌈logd m⌉+1)+t(k−1) → [d]n+tk.

The compression C of a string s ∈ [d]n+tk is defined as follows: run
Algorithm 3, using s to replace the randomness, i.e. the first n char-
acters of s are used as the initial assignment and the remaining digits
are used, in chunks of k each, for replacing values within the local
correction procedure. We let the algorithm go on for up to t calls to
LocallyCorrect(C). If it has not finished its job by then, we interrupt
it and make C output the log produced so far, which we know has size
at most m(⌈logd m⌉+ 1) + t(k− 1), followed by n digits representing
the current value of α when the algorithm was interrupted. If nec-
essary, we can pad the string with zeroes for it to have the required
length. If, however, the algorithm is successful in finding a satisfying
assignment before reaching t invocations of the correction procedure,
then we let C output ’no’. This way, either the solver is successful or the
compression is.

The decompression D does the reverse. As we have described
above, each of the t calls to LocallyCorrect(C) we have recorded in
our log allows for the reconstruction of k determined positions from
s. As further described, the only characters we have not reconstructed
this way are the final values of each variable in α. But since C(s) has
the n bits describing α appended to its end, we know these values too.
Finally, we have reconstructed all n + tk bits from s correctly and thus
whenever C(s) ̸= ’no’, we have D(C(s)) = s.

Since this is a compression scheme satisfying exactly the conditions
in Lemma 2.26, the probability that C(s) = ’no’ if s is chosen uniformly
at random has to be at least 1− dm(⌈logd m⌉+1)−t. But those are exactly

2.5. Incompressibility 59

the cases when a satisfying assignment is output, concluding the proof
of Lemma 2.27.

More Concise Logging. Theorem 2.23 can be strengthened in vari-
ous ways.

Firstly, note that we have used d-ary characters for representing
the log output and in particular we have used d-ary characters for the
recursion level opening and closing indicators. Those are in reality
binary bits, so we could prescribe that at the corresponding positions,
only a binary bit is placed and read. This allows for neighborhood
sizes of dk/8− 1 instead of dk−3 − 1.

Secondly, one can strengthen the proof so as to show that there is
only a linear number of recursive invocations on average. To see this,
one has to modify the way top-level invocations are being journaled.
Instead of posting a message of type III each time this happens, we
can withhold all these messages from the log and instead prepend to
the very beginning of the whole log a bitstring of length m in which
every bit corresponds to a clause, arranged in the lexicographic or-
dering. If the bit is set, this means that for the corresponding clause,
a top-level invocation is being made in this run of the algorithm. If
the bit is cleared, it means that there is no such invocation for this
clause. All information about the algorithm’s execution is still recon-
structible from this log because each time a top-level invocation com-
pletes, we can scan the prefix string until the next admissible clause
has a set bit, then we continue decoding the recursive main body of
the log. While this logging format has lost the beautiful chronologi-
cal one-pass layout, it is even more compact than the standard one:
only O(m) bits are needed for the top-level invocations and now the
information-theoretic balance starts being lopsided after only linearly
many recursive invocations.

We have proved the following stronger version.

60 Chapter 2. The Lovász Local Lemma

Theorem 2.28. If |ΓF(C)| ≤ dk/8− 1 for all clauses C in a (d, k)-ClSP
formula F, then Algorithm 2 terminates after at mostO(|F|) correction steps
on expectation.

Inhomogeneous Clause Sizes and Prefix-Free Addressing. Another
strengthening allows this proof to cater for formulas where clauses
have inhomogeneous sizes. What we then get is the following just
slightly weaker constructive counterpart of Theorem 2.5.

Theorem 2.29. If in a non-degenerate (≥ 2,≤ d)-ClSP F, for all clauses
C ∈ F we have

∑
D∈Γ+

F (C)

w(D) ≤ 1
d3 ,

then Algorithm 2 terminates on input F after at mostO(|F|) correction steps
on expectation.

One can strengthen the theorem even further to allow neighbor-
hood weights of 1/8 instead of 1/d3 removing the dependency on d.
This is using similar tricks as outlined in the symmetric case above.
One then obtains the following.

Theorem 2.30. If in a non-degenerate ClSP F, for all clauses C ∈ F we have

∑
D∈Γ+

F (C)

w(D) ≤ 1
8

,

then Algorithm 2 terminates on input F after at mostO(|F|) correction steps
on expectation.

We will however only detail a proof of Theorem 2.29. The stronger
version requires too many unaesthetic details to justify us going into
it here. Note that, of course, Theorem 2.30 follows from Theorem 2.5
via Corollary 2.20 anyways, so we will prove it along with the fully

2.5. Incompressibility 61

general version in the next section so soon as we leave string incom-
pressibility.

The generalization which leads to the proof of Theorem 2.29 is
fairly straightforward. In this version, we are dealing with a situa-
tion where “heavy” clauses with few literals which have a high likeli-
hood to be violated and therefore tend to appear in journals more of-
ten cannot be too numerous in any neighborhood, while “light” clau-
ses which are long and thence occur only rarely can appear in larger
numbers as the neighbors of a given clause. We need to find a way
of representing the clauses in such neighborhoods in such a way that
clauses occurring often have a short representation and those which
occur rarely a longer one.

This can be done by means of variable-length prefix-free codes.
The very well-known theorem of Leon G. Kraft provides necessary
and sufficient conditions for a prefix-free code of a certain shape to ex-
ist. Recall that a code Z ⊆ {1..d}∗ is called prefix-free if there are no
two distinct codewords z and z′ in Z such that z is a prefix of z′.

Theorem 2.31 ([Kra49]). Let d1, d2, . . . , dr ∈ N. A prefix-free code Z ⊆
[d]∗ with r codewords Z = {z1, z2, . . . , zr} such that |zi| = di for 1 ≤ i ≤ r
exists if and only if

r

∑
i=1

d−di ≤ 1.

Moreover, such a code can be generated efficiently (in time linear in its size).

The algorithm and proof are both very simple. One can partition
the numbers greedily into d parts in such a way that each part contains
at most 1/d-fraction of the weight. Build smaller codes for each part
recursively, then prefix the words in the ith category with character i,
for all 1 ≤ i ≤ d.

We can now use prefix-free codes for representing the clauses cho-
sen for correction in recursive invocations of our procedure. For every

62 Chapter 2. The Lovász Local Lemma

clause C ∈ F, fix an arbitrary prefix-free code ZC with the property
that if Γ+

F (C) = {D1, D2, . . . , Dr}, then the lengths of the words in ZC

are
di := |Di| − 3 for 1 ≤ i ≤ r.

We can easily check that such a code exists because the hypothesis
entails that

r

∑
i=1

d−di =
r

∑
i=1

d−|Di |+3 = d3 · ∑
D∈Γ+

F (C)

w(C) ≤ 1,

hence existence follows from Theorem 2.31.

We now imagine repeating the proof of Theorem 2.23, but in the
annotations, we replace daryCode(D, Γ+

F (C)) by some encoding, let
us call it prefixFreeCode(D, C), which outputs the codeword corre-
sponding to D within the precomputed prefix-free code ZC. This be-
ing the only change, the information theoretic balance works again as
expected: each time a message of type I/II indicating recursion from
C into D is posted to the log, this needs |D| − 3 characters for the code-
word from ZC, then a leading and a later trailing character to delimit
the recursion level. This incurs a total of |D| − 1 characters posted to
the log. But the knowledge that D had to be fixed allows for the re-
construction of |D| values from the variables histories, outweighing
the encoding by exactly one character. Since we save this one charac-
ter per every recursive invocation, the information-theoretic balance
goes lopsided after a linear number of invocations.

A slight technical problem will arise when fixing the number of in-
vocations done before we surrender and when trying to invoke our in-
formation theoretic Lemma 2.26. If the number of invocations is fixed,
the length of the log and the number of reconstructible characters are
both random variables because these depend on the length of the clau-
ses fixed in those invocations, a situation to which Lemma 2.26 is not
tailored. However, this problem is easy to solve. Instead of prescrib-
ing a fixed number of invocations before we give up, prescribe a fixed

2.6. Witness Trees 63

number of random characters to be used. Once this number is ex-
hausted, give up. If we do it this way, the number of reconstructible
characters is fixed (up to negligible divisibility issues). Also, the num-
ber of characters needed for the log can be bounded by a fixed number
using that every clause cannot be larger than n literals and thus, every
n characters at the latest, we information-theoretically save one char-
acter.

2.6 Witness Trees11

We now want to go on to prove Theorem 2.18 in full generality. To my
current knowledge, this cannot be done using the method outlined in
the previous section or a mild variant of it12 – although the philoso-
phy of the proof detailed hereafter is of course the same. The idea of
representing bad executions of the algorithm by a journal in the form
of a string of bits or other characters has its inherent limits. Instead,
we will now go on to express the journal - or rather parts of the journal
- by trees.

Note that now we are back to Algorithm 1 in its generic form. We
do not specify a rule as to which violated clause to select for correction
if there are multiple to choose from. Still, let us now fix an arbitrary
rule so that our random experiment is well-defined. And then let N
be the random variable denoting the number of steps Algorithm 1 car-

11All original material in this section is joint work with Gábor Tardos and appeared
in [MT10]. The write-up as presented here has appeared in significant parts in [MW11].

12There has been an attempt at making the incompressibility proof as strong as pos-
sible by Messner and Thierauf [MT11]. However, their proof strategy uses witness trees
as well, so we do not consider this a ‘pure’ encoding proof. We note that, of course, any
proof based on counting can be converted into a proof based on encoding because the
two concepts are combinatorically equivalent. If however a detour via witness trees is
necessary anyways, then the beautiful simplicity of what we sketched in the previous
section is to a large degree lost.

64 Chapter 2. The Lovász Local Lemma

ries out until a satisfying assignment is found. We know that N is fi-
nite with probability one. We now claim that E[N] satisfies the bound
claimed in Theorem 2.18.

Witness Tree Extraction. Indeed, the journal representation we pre-
viously chose allows for the reconstruction of all correction steps car-
ried out and from this, in turn, the reconstruction of the variable his-
tories. But in reality, even less information is sufficient to achieve this
goal, and in order to get an intuition for this fact let us look at some
information contained in C that is not necessary for our reconstruc-
tion of histories. Suppose there are two clauses A and B in F which
do not have any variables in common, i.e. {A, B} is a non-edge in
GF. Suppose further that our journal contains the consecutive entries
. . . A, B . . . somewhere. In the spirit of the proof of Lemma 2.22, both
entries allow for the reconstruction of some values in the histories of
the variables in vbl(A) and vbl(B). But the journal also contains the
information that A was corrected before B. This does not matter. So we
have to find objects that retain sequencing information for clauses that
depend on each other and discard it for those that do not.

To that end, let t ∈ N and consider the tth correction step of the
algorithm. Why was the clause Ct violated immediately before the
tth step? Well, each of the variables that occur in Ct received their
most recent values (which violate Ct) at some point in the procedure:
some of them may still have their initial values, others may have been
resampled a number of times. For each of the variables xi ∈ vbl(Ct),
we can point either to the initial assignment or to some time index
t′ < t such that the sample generated at random for xi at that time
step t′ evaluated exactly the way that makes Ct unhappy. Suppose
xi was resampled at time t′ for the last time. We can ask again: why
was it necessary to resample xi in the t′th step? Well, the reason was
because immediately before step t′, some other clause Ct′ was violated,
so we had to fix it, and xi occurs in Ct′ . Again we can ask: why was

2.6. Witness Trees 65

Ct′ violated back then? Where did the samples for variables in Ct′

originate from and in turn we can point either to the initial assignment
or to some even earlier time step t′′ < t′ when these samples were
drawn. If we iterate this process of repeatedly asking for justification,
we will generate a ‘tree of reasons’ which we will now formalize.

A witness tree T (for a fixed formula F) is a finite (!) rooted tree
together with a mapping [·] : V(T) → F that labels each node in T by
some clause of our ClSP, satisfying the following properties:

(i) if for u, v ∈ V(T), u is the parent node of v, then [u] and [v] share
at least one variable, i.e. whenever {u, v} is an edge in T, then
{[u], [v]} is an edge in GF, and

(ii) if u and u′ are both children of the same parent node v, then their
labels are distinct, [u] ̸= [u′].

We denote by T the set of all witness trees (for the fixed formula F)
which satisfy properties (i) and (ii). And by TA for A ∈ F, we denote
the set of all T ∈ T of which the root node is labelled by A.

We now define particular witness trees associated with an execu-
tion of our algorithm. We generate one witness tree per correction step
which the algorithm makes. That is, for any t ∈ N we define a witness
tree Tt based on the first t entries Ct = ⟨C1, C2, . . . , Ct⟩ of the journal.
Note that of course, since Ct is a random variable, Tt is a random vari-
able, too, which induces some probability distribution on the set T of
all possible witness trees. For t > N, Tt is undefined.

We build the witness tree Tt in the following backward inductive
fashion.

(1) let T(t)
t be a single root vertex labelled Ct

(2) for j = t− 1, t− 2, . . . , 1, repeat the following:

66 Chapter 2. The Lovász Local Lemma

(2.1) check if there is a node v ∈ V(T(j+1)
t) such that [v] has some

variables in common with Cj.

(2.2) if yes, choose among all such nodes a node v∗ of largest
depth (if there are multiple deepest ones, choose any one of
them). Then create a new node v′ as a child to v∗ and label it
[v′] := Cj. Let T(j)

t be the tree so obtained.

(2.2) if no, skip this step and let T(j)
t := T(j+1)

t

(3) let Tt := T(1)
t

From the definition, it is immediate that Tt is a witness tree. Ad-
ditionally, the witness trees T1, T2, . . . , TN created by the above rules
satisfy some extra properties that we want to investigate. For any Ti
and any node u ∈ V(Ti) let us say that u represents correction step j ≤ i
if u was added when scanning Cj and thus labelled [u] = Cj, that is

j is the largest number such that u ∈ V(T(j)
i). It has to be distinctly

understood that the information which correction step is represented
by a node is not part of the witness tree, it can only be obtained if Ct is
additionally known.

We henceforth call a witness tree T proper, if for any two nodes
u, v ∈ V(T) at the same depth, that is d(u) = d(v), [u] and [v] do not
share any variables, i.e. {[u], [v]} is a non-edge in GF.

Lemma 2.32. For any run of the algorithm, the following holds.

(i) For all 1 ≤ i ≤ N, Ti is a proper witness tree.

(ii) Let 1 ≤ i ≤ N and u ∈ V(Ti) be any node and j ≤ i the correction
step that u represents. Let x ∈ vbl([u]) be any variable resampled in
that step. Then the number of times x was resampled before step j, i.e.
the number of times x appears in the clauses C1, C2, . . . , Cj−1, is the
number of nodes v ∈ V(Ti) with d(v) > d(u) and x ∈ vbl([v]).

(iii) For any 1 ≤ i < j ≤ N, Ti ̸= Tj.

2.6. Witness Trees 67

Proof. For (i), suppose there were two nodes u and v at the same depth
that did share a variable. Without loss of generality, u was added be-
fore v during the backward scan of the journal. But then, by the rule
that every node is attached to the deepest node its label shares a vari-
able with, v would have been attached as a child to u or to an even
deeper node, which is a contradiction.

For (ii), since u represents correction step j, during the construction
of Ti, u is born in the step for T(j)

i . After that, the backward scan will
look at Cj−1, Cj−2, . . . , C1 and each time a clause Ck is encountered that
contains x, a node u′ labelled Ck will be added to the tree. As this node
will be attached to the deepest node of T(k+1)

i sharing any variables

with Ck and since the node u ∈ T(k+1)
i is sharing variables with Ck, the

new node will definitely have a larger depth than u, d(u′) > d(u). The
number of occurrences of x in the prefix of length j− 1 or the journal
is therefore at most as large as the number of nodes at depths larger
than u whose label contains x.

Conversely, if there were any additional node u′′ whose label con-
tained x and which occurred at depth larger than u in Ti, then that
node must represent a correction step k < j. For suppose it represented
a step k > j, then the node u′′ already existed in T(j+1)

i , and then the
addition of u would have happened either as a child to u′′ or as a child
to an even deeper node, contradicting the fact that d(u′′) > d(u). So,
such additional nodes cannot exist and therefore the number of occur-
rences of x in the prefix of length j − 1 of the journal is also at least
as large as the number of nodes at depths larger than u whose label
contains x.

For (iii), suppose that Ti = Tj for i < j, then their root is labelled
Ci = Cj, implying that Ti contains one node labelled Ci per occurrence
of Ci = Cj in Ci, while Tj contains one node labelled Cj per occur-
rence of Ci = Cj in Cj and since Cj has at least one more occurrence of
Cj, Tj must contain at least one more node labelled Cj than Ti has, a
contradiction. So Ti ̸= Tj for all 1 ≤ i < j ≤ N.

68 Chapter 2. The Lovász Local Lemma

Reconstruction from Trees. As indicated above, a witness tree gives
a justification for the fact that the last correction step (at the root of the
witness tree) had to be carried out. And it somehow comprises all the
information necessary to understand what sequence of events lead to
that last correction. It thereby only retains the amount of information
that is really necessary: if the labels [u] and [v] of two nodes are con-
nected by an edge in GF, i.e. if they have some variables in common,
then they are at different depths in the tree and we can tell which of
the steps associated with them was carried out before the other. If, on
the other hand, u and v are at the same depth in the tree, we cannot
tell which was added first, but neither do we need to know, as they
are independent from one another.

The following lemma formalizes this by saying that by just look-
ing at some witness tree Tt obtained in this way, we can reconstruct
large portions of the histories of all variables involved in the sequence
of corrections represented by Tt. It is an immediate analogue and in
certain ways a strengthening of Lemma 2.22.

Lemma 2.33. There is a reconstruction map

R′ : T → 2{1..n}×N0×L

such that for all fixed witness trees T ∈ T , the following holds. Let ri(T)
be the number of labels in T that contain variable xi, for all 1 ≤ i ≤ n. If
T = Tt for some t ∈ N, then

R′(T) = { (i, j, X(j)
i) | 1 ≤ i ≤ n, 0 ≤ j < ri(T) }.

Proof. We will reuse Lemma 2.22. Let J ∈ F∗ be the sequence of clau-
ses (the ‘artificial journal’) that we obtain if we enumerate the labels
of all vertices in T in a level-by-level fashion, starting at the deepest
nodes, e.g. like in a reverse BFS. Now we define R′(T) := R(J).
The claim is that now, if T = Tt for some t ∈ N, then R′(T) is a true
reconstruction set.

2.6. Witness Trees 69

In order to see this, fix t such that T = Tt. We go back to the proof
of Lemma 2.22 and recall how the reconstruction R works. It reads
the journal J entry by entry and for the ith entry

Ji = {(xi1 ̸= v1), (xi2 ̸= v2), . . . , (xik ̸= vk)},

it adds the triples
{(iq, riq , vq) | 1 ≤ q ≤ k}

to the reconstruction set, where riq here denotes the number of times
the variable xiq has appeared in J before Ji. The node ui from which
the entry Ji was produced during the reverse BFS represents some cor-
rection step Cj = Ji, during which all the variables xi1 , . . . , xik were
resampled, because they previously had the values v1, . . . , vk, which
violated Cj. And by virtue of Lemma 2.32, statement (ii), we know
that the number of times any xiq had been resampled before the jth

step equals the number of nodes u′ of depth larger than d(ui) such
that xiq ∈ [u′] and thus also the number riq of times xiq appears in a
clause listed in J before Ji. Therefore,

X
(riq)

iq = vq, 1 ≤ q ≤ k

and thus all the reconstructed triples are true.

We summarize. Looking at any proper witness tree Tt that is con-
structed from the first t entries in the execution journal Ct, we can re-
construct one value of an independent random sample for every oc-
currence of a literal in the labels of Tt.

A valid question which should arise at this point is whether with
the concept of witness trees we have now found a ’most concise’ rep-
resentation of the information we are seeking to encode. As it will turn
out, this level of conciseness is what is necessary in order to prove The-
orem 2.4 in full generality. However, the representation is obviously
not ultimatively concise. For example, in building a witness tree, we

70 Chapter 2. The Lovász Local Lemma

sometimes had a choice of where to attach a new child if there were
several nodes at the same depth sharing variables with the clause to
be attached. This type of choice makes for inefficiencies in the repre-
sentation and so one can ask what happens if they are being removed.
And indeed, removing such inefficiencies leads to even strongers ver-
sions of the Local Lemma as for example Kolipaka and Szegedy have
investigated [KS11]. We will very briefly look at such strengthenings
in Section 2.10, while we now go on heading for Theorem 2.4.

Bounding the Running Time. We will now bound the expected time
the algorithm takes, that is the number of correction steps done on av-
erage, using the witness trees we constructed before. We are interested
in the probability that a fixed witness tree occurs at some point in the
journal.

For notation, let us extend the notion of weight and µ-weight to wit-
ness trees. For any fixed tree T ∈ T , we define

w(T) := ∏
u∈V(T)

w([u])

and

wµ(T) := ∏
v∈V(T)

µ([v]) ∏
C∈ΓF([v])

(1− µ(C))

 .

We go on to derive that the probability of any fixed tree of occur-
ring in the journal is no larger than its weight.

Lemma 2.34. Let T ∈ T be any fixed witness tree. For the probability that
T occurs at some place in the algorithm’s journal, we have

Pr [∃t ∈ N : Tt = T] ≤ w(T).

Proof. As we have seen in Lemma 2.33, ∃t : Tt = T implies thatR′(T)
is a true reconstruction set. So

Pr [∃t ∈ N : Tt = T] ≤ Pr

∀(i, j, v) ∈ R′(T) : X(j)

i = v

.

2.6. Witness Trees 71

As we noted in the very beginning, X(j)
i ∈ Li is distributed uniformly,

so the probability that it has exactly the prescribed value v is 1/|Li|.
Moreover, all these samples are independent from one another (recall
that a reconstruction set has at most one triple featuring the same i and
j), thus

Pr [∃t ∈ N : Tt = T] ≤ ∏
(i,j,v)∈R′(T)

1
|Li|

.

Going back to the proof of Lemma 2.33, we see that R′(T) contains
exactly one triple (i, j, v) for every literal ’xi ̸= v’ occurring somewhere
at a node in T. This establishes the lemma.

Now, we can also compute the expected running time of our algo-
rithm. What we will find is that the following holds. Let TA be the set
of all witness trees whose root carries the label A.

Lemma 2.35. For the expected number of times A appears in a journal of the
algorithm, we have

E[|{t ∈ N : Ct = A}|] ≤ ∑
T∈TA

w(T) ≤ µ(A)

1− µ(A)
.

This lemma then readily implies the Theorem 2.18. The first in-
equality is simple: we observe that the sequence T1, T2, . . . , TN as con-
structed above features N witness trees which are pairwise distinct
according to Lemma 2.32, and each time Ct = A we also have Tt ∈ TA.
We now proceed to proving the second inequality of Lemma 2.35.

Growing a Witness at Random. Let TA be the set of all witness trees
for the formula F whose root is labelled with a fixed clause A ∈ F.
Our goal is to bound the sum of the weights of all trees in TA. We shall
derive this bound by considering a probability distribution on TA.

Consider the following process, let us call it P(A), that grows a ran-
dom witness tree T ∈ TA (or, potentially, an infinite tree) and therefore

72 Chapter 2. The Lovász Local Lemma

induces a probability distribution on TA (and the infinite trees, which,
however, we will not be interested in).

(1) start with a single root labelled A

(2) while there exists a leaf node v not marked ’done’ yet

(2.1) for each C ∈ Γ+
F ([v]) independently, do

(2.1.1) with probability µ(C), create a new child v′ of v and
label it [v′] := C, with probability 1− µ(C) do not do
anything

(2.2) mark vertex v as ’done’

(3) once all vertices are marked ’done’, output T

Such a process is known as a Galton-Watson branching process. Fran-
cis Galton and Henry William Watson were mathematicians in Victo-
rian Britain who analysed reproductive processes where one tracks
generations of a population. In our case, the generations are the levels
of the witness tree we are building and a snapshot of the population
consists of the multiset of clauses at the labels at a given depth. Each
clause then produces a series of offspring, its children in the tree, ac-
cording to certain probabilities. The characterising trait of the process
is that each clause of a given generation produces offspring indepen-
dently of the other members of the population at that time. There is
a vast body of literature on Galton-Watson processes, but for our pur-
pose an elementary investigation will suffice.

We now compute the probability distribution this process induces,
that is for every tree T ∈ TA, we determine the probability that P(A)

outputs T. We obtain the following bound.

Lemma 2.36. For any fixed A ∈ F and any fixed T ∈ TA, we have

Pr[P(A) outputs T] =
1− µ(A)

µ(A)
· wµ(T).

2.6. Witness Trees 73

The proof is just a matter of sufficiently many times rearranging
terms and can be found in Appendix A.9.

Since P(A) induces a probability distribution on TA (and certain
infinite trees we are not interested in), and these probabilities cannot
sum up to more than one, we obtain a bound on the sum of µ-weights
of all witness trees with label A at the root.

Corollary 2.37. We have

∑
T∈TA

wµ(T) ≤
µ(A)

1− µ(A)
.

We can therefore now finish the proof of Lemma 2.35 and thus of
Theorem 2.18: since the local hypothesis (and this is the only place
we use it) entails that each tree has a smaller weight than µ-weight,
Corollary 2.37 readily implies Lemma 2.35.

Beyond Clause Satisfaction. Our last task in this section is to gener-
alize the argument from ClSPs to arbitrary CSPs, i.e. to establish The-
orem 2.21. This is an easy thing however. Going through the proof,
we notice that there is only one single point where the argument does
not go through effortlessly, namely Lemma 2.33, where we demon-
strated that if a witness tree is given which occurs in the journal, then
by recovering an artificial partial journal, a certain number of random
samples can be reconstructed. We have used this to bound the proba-
bility with which a witness tree can occur in the journal.

Now that we are talking about CSPs, reconstructing an artificial
partial journal does not suffice in order to reconstruct variable histo-
ries. Depending on the type of a constraint C, there can many, not just
one, combinations of values of the variables vbl(C) which lead to C
being violated and thus to the possibility of picking C for resampling.
From the mere knowledge that C was resampled at some point we can
not yet infer all values of vbl(C) at that particular point in time.

74 Chapter 2. The Lovász Local Lemma

There is an easy fix though. Knowing that C had to be resampled
at some point does give us some information. We can now store all
additional information necessary for the value reconstruction inside
the witness tree. Indeed, let u : F → N be a map which counts the
number of value tuples which constraints in F forbid, that is for each
C ∈ F, u(C) is such that

w(C) = u(C) · ∏
x∈vbl(C)

|Lx|−1

holds. Knowing that C had to be resampled in the t-th step tells us
that at that time, the assignment to the variables in vbl(C) was one
out of those u(C) tuples. If we decorate witness trees with numbers
at the vertices telling us which of those tuples actually occurred, full
reconstruction is again possible.

To be formal, let a decorated witness tree be a witness tree T to-
gether with a mapping uT : V(T) → N such that for all v ∈ uT ,
uT(v) ∈ {1..u([v])} holds. Building a decorated witness tree Tt for
the t-th correction step works as usual, with additionally recording
for each constraint correction that is being attached as a new vertex v,
the tuple of values which the variables in [v] where holding before the
step we are representing by v. The tuple of values is stored as its index
according to some lexicographical ordering of all the r([v]) tuples that
can make Ct unhappy. It is obvious that for such a decorated tree, the
equivalent of Lemma 2.33 holds again.

The remainder of the argument works as we have done it for ClSPs.
When summing the weights of all witness tress in TA, we can imagine
that we are actually summing over all decorated trees instead: each
T ∈ TA represents all possible decorations of T. The number of deco-
rated trees an undecorated tree stands for is given by the product of all
the u([v]) for v ∈ V(T). On the other hand, the probability that a fixed
decorated tree occurs in the journal is the (usual) weight w(T), divided
by the product of all the u([v]) because if we condition on a constraint

2.7. Slacked Hypotheses 75

C being violated by uniform random samples, then the probability
that a specific violating tuple of values occurs is exactly 1/u([v]). As
these two effects cancel nicely, the rest of the calculation can stay as is,
establishing Theorem 2.21.

One can apply the algorithm to even more general settings by fur-
ther abstraction. Whenever it is possible to somehow store a current
evaluation of variables, to efficiently find a violated constraint and
finally to efficiently resample all values underlying a constraint, the
outlined technique is most likely to apply.

2.7 Slacked Hypotheses

Hereafter, we will be concerned with parallelizing and derandomiz-
ing Algorithm 1. It will be possible to do both almost perfectly, with
only mild additional assumptions. Those additional assumptions will
come in the form of slack which will be necessary in the local condi-
tion. So instead of asking the clauses or constraints in the problem to
meet the requirements of the local lemma just, we instead ask them to
meet the requirement generously, with a certain amount of leeway.

We will consider two forms of slacked local condition. One where
the slack is a multiplicative factor and one where it climbs into the
exponent.

In the present section, we will not only define the two types of
slack, but we are particularly interested in the question how strong the
additional assumptions are in the case of clause satisfaction problems
and in how far they change the symmetric and asymmetric simplified
criteria we might want to use. Furthermore, we establish that asking
for slack does not influence the possibility to bound µ-values from
above.

76 Chapter 2. The Lovász Local Lemma

Hypothesis with Multiplicative Slack. Let us say that a given ClSP
F meets the local hypothesis with multiplicative slack ϵ if there exists some
association µ : F → (0, 1) such that for all C ∈ F, we have

w(C) ≤ (1− ϵ) · µ(C) · ∏
D∈ΓF(C)

(1− µ(D)).

Under normal circumstances, this requirement is mild. Let us look
at simplified versions analogous to Theorem 2.3 and Theorem 2.5 to
see what it is that we need to require. It turns out that the symmetric
version is more intricate because we have aimed for the very best pos-
sible13 constant 1/e so that the calculation is already relatively tight.

Lemma 2.38. If F is a (d, k)-ClSP, d, k ≥ 2, and δ ∈ [0, 1] is such that for
all C ∈ F, we have

|ΓF(C)| ≤ (1− δ) ·

dk

e
− 1

,

then F satisfies the local hypothesis with multiplicative slack

ϵ =
1
2
·

2δ − 1 +
e

dk

.

For our asymmetric interpretation on the other hand, there is some
inherent slack which we can exploit. Recall that a star is a graph G in
which there exists a center vertex v to which all other vertices are con-
nected, while all vertices other than v form an independent set. Call
a ClSP F a star formula if its dependency graph is a star. Star formulas
which are non-degenerate are satisfiable since one can pick any vari-
able from the center clause and assign it in any way which satisfies
the center clause and then the remaining star falls apart into an in-
dependent set of non-empty clauses each of which can be separately
satisfied.

13See discussion of tightness in Section 2.10.

2.7. Slacked Hypotheses 77

Lemma 2.39. There exists a universal constant ϵ > 0 such that the follow-
ing holds. If F is a non-degenerate ClSP such that for all C ∈ F, we have

∑
D∈ΓF(C)

w(D) ≤ 1
4

,

then F can be split into parts F = F0 ∪̇ F1 such that F0 and F1 are inde-
pendent, F0 consists of independent star formulas, and F1 satisfies the local
hypothesis with multiplicative slack ϵ.

The proofs are to be found in Appendix A.10 and Appendix A.11.
For more general settings, let us also check whether multiplicative
slack jeopardizes keeping µ-values bounded away from one. Indeed,
if we can simply allow the multiplicative slack to drop by a little bit,
then bounding the µ-values away from one is no problem.

Lemma 2.40. There exists a universal constant Λ with the following prop-
erty. If F is a non-degenerate ClSP satisfying the local condition with slack
ϵ ∈ [0, 1] and mapping µ, then there is another mapping µ′ such that F
satisfies the local condition with µ′ and slack ϵ/2 and such that µ′(C) ≤ Λ
for all C ∈ F.

The proof is carried out in Appendix A.12. Note that the lemma
carries over to more general CSPs and other LLL settings; what we
have used is only the symmetry (i.e. undirectedness) of the depen-
dency graph and the fact that if a ClSP is non-degenerate, no constraint
has weight larger than 1/4. To any CSP satisfying these properties, the
lemma applies.

Hypothesis with Exponential Slack. We will say that for some num-
ber ϵ ≥ 0, a ClSP F satisfies the local hypothesis with exponential slack ϵ if
there is a mapping µ : F → (0, 1) such that for all C ∈ F, we have

w(C) ≤

µ(C) · ∏
D∈ΓF(C)

(1− µ(D))

1+ϵ

.

78 Chapter 2. The Lovász Local Lemma

This requirement is clearly stronger than the multiplicative one as the
weight can in a non-degenerate ClSP not get larger than 1/4 but can
conversely become smaller and smaller in which case the additional
ϵ-power on the right hand side tends to zero.

Similarly, we can once again investigate into simplified stronger
symmetric variant of the slacked hypothesis.

Lemma 2.41. If F is a (d, k)-ClSP such that for some δ ∈ [0, 1], for all
C ∈ F we have

|ΓF(C)| ≤

dk

e

1−δ

− 1,

then F meets the local hypothesis with exponential slack δ/2.

The proof is carried out in Appendix A.13. In the case of strong
exponential slack, the asymmetric version needs a stronger hypothesis
too.

Lemma 2.42. If F is a non-degenerate ClSP and δ ∈ [0, 1) a number such
that for all C ∈ F, we have

∑
D∈ΓF(C)

w1−δ(D) ≤ 1
6

,

then F satisfies the local hypothesis with exponential slack δ.

The lemma is being proved in Appendix A.14. In analogy to the
multiplicative case, the requirement for exponential slack has no effect
on the fact that the µ-values can be bounded away from one, as long
as the exponential slack is not enormous.

Lemma 2.43. There exists a universal constant Λ with the following prop-
erty. If F is a non-degenerate ClSP satisfying the local condition with expo-
nential slack ϵ ∈ [0, 1] with mapping µ, then there is another mapping µ′

such that F satisfies the local condition with µ′ and exponential slack ϵ as
well and such that µ′(C) ≤ Λ for all C ∈ F.

2.8. Parallelization 79

The proof is in Appendix A.15. Note that we have required the
slack to be ϵ ≤ 1 here. Exponential slack is also imaginable for larger
ϵ in which case this has to be checked with caution. The bound might
not be tight, in particular Lemma A.5 which is at the heart of this might
be improvable. Under normal circumstances however, ϵ should be
(very) close to zero.

Note again that the lemma carries over to more general CSPs and
other LLL settings; what we have used is only the symmetry (i.e. undi-
rectedness) of the dependency graph and the fact that if a ClSP is non-
degenerate, then no constraint has weight larger than 1/4. If some
CSP satisfies these properties, the lemma applies.

2.8 Parallelization14

Our next goal is to show that Algorithm 1 can be parallelized and can
be executed in polylogarithmic time on polynomially many proces-
sors.

Theorem 2.44. There exists a randomized parallel algorithm for a CREW-
PRAM, which, on input any ClSP F which satisfies the Local Lemma hy-
pothesis with multiplicative slack ϵ > 0, using a number of processors poly-
nomial in size(F), outputs a satisfying assignment in an expected time which
depends polylogarithmically on size(F) and linearly on ϵ−1.

For the definition of the model of computation constituted by the
Concurrent Read Exclusive Write - Parallel Random Access Machine, abbre-
viated CREW-PRAM and its basic capabilities, the reader is referred
to [KR90]. There, it is for example spelt out how basic arithmetic
and boolean operations over n bits (like an n-wise Boolean disjunc-

14The material in this Section is joint work with Gábor Tardos and has appeared in
[MT10].

80 Chapter 2. The Lovász Local Lemma

tion needed for checking whether a clause is currently violated) can
be executed in logarithmic time on such a machine.

Before we go on to prove the theorem by exhibiting and analyzing
an approriate algorithm, let us check what this means for the running
time of our standard applications.

In the symmetric case, where we have a (d, k)-ClSP with every
clause having no more than dk/e inclusive neighbors, we have seen
that the hypothesis is satisfied with a multiplicative slack that is pro-
portional to d−k. This means that the algorithm’s running time will be
proportional to dk. As long as dk is polylogarithmic in the size of the
formula, the running time will remain polylogarithmic in total. Note
that by virtue of Theorem 2.1, dk cannot grow enormously in any in-
teresting cases; it has to stay well-below size(F). However, there is
a range between polylogarithmic and linear where dk increases too
quickly and the running time increases quickly as well. In the latter
case, we need to require that the neighborhoods be at most (1− δ)dk/e
for some δ > 0 remaining bounded away from zero (or decreasing
very slowly). Then we have a sufficient slack according to Lemma 2.38
and the running time will be bounded accordingly. We get the follow-
ing corollary.

Corollary 2.45. There exists a randomized parallel algorithm for a CREW-
PRAM which on input any (d, k)-ClSP F where for all C ∈ F we have

|ΓF(C)| ≤ (1− δ) ·

dk

e
− 1

for some δ ≥ 0, using a number of processors polynomial in size(F), outputs
a satisfying assignment in expected time at most

1
2δ − 1 + d−k · polylog(size(F)).

In the case of the simplified asymmetric criterion which we con-
sidered in Lemma 2.39, ϵ is constant so for the slacked part F1 of the

2.8. Parallelization 81

formula, the running time is polylogarithmic.

Corollary 2.46. There exists a randomized parallel algorithm for a CREW-
PRAM which on input any non-degenerate ClSP F such that for all C ∈ F,
we have

∑
D∈ΓF(C)

w(D) ≤ 1
4

,

outputs a satisfying assignment in expected time polylogarithmic in size(F)
using a number of processors polynomial in size(F).

For a formal proof, we also need to establish what happens on the
star components. So we can do this only once we have described and
analyzed the algorithm.

Algorithm and Analysis. Not surprisingly, the basic idea of such a
parallel algorithm is that we proceed in phases and each phase per-
forms not one correction step but a bunch of correction steps at once.

In order for the parallel steps not to interfere with one another, we
require that they work on independent clauses. To make sure that
we can work on an independent set of violated clauses in any given
phase, we need to determine such a set first. In order for the number
of phases to be bounded appropriately, we need that set to be maxi-
mal. Luby has described an algorithm in [Lub86] with the following
properties. On input a graph G, it runs on a CREW-PRAM with poly-
nomially (in the number of vertices and edges) many processors, and
takes polylogarithmic time to negotiate, among all vertices, a maximal
independent set in G. Let LubyMaximalIndependentSet denote this
procedure. As we will run this algorithm on subgraphs G′F ⊆ GF, it
is important to note that Luby’s algorithm can easily cope with G′F be-
ing given as GF with some vertices and/or edges marked as ‘deleted’.
Indeed, this is part of the strategy the algorithm applies internally.

To start our parallel solver, we in parallel sample a random initial
assignment for each variable.

82 Chapter 2. The Lovász Local Lemma

Then, for i ≥ 1, the i-th phase starts by a negotiation of which in-
dependent set of currently violated clauses to resample. To this end,
we produce (in parallel or even implicitly) the subgraph G′F ⊆ GF in-
duced by the currently violated clauses and run Luby’s algorithm on
it. We end up with all clauses marked which belong to a maximal in-
dependent set Mi of violated clauses. All of this can be done in parallel
in polylogarithmic time.

In the second part of the phase, we determine which variables to
resample. This as well can be done in parallel in logarithmic time us-
ing polynomially many processors per variable. In the end, all vari-
ables to be resampled are. The procedure is summarized as Algo-
rithm 4.

Algorithm 4 LocalSolverParallel(F)
Require: A satisfiable ClSP formula F.
Ensure: Output is a satisfying assignment.

1: parallel foreach x ∈ vbl(F) do
2: α(x)← new uniformly random value from Lx

3: end parallel foreach
4: while F is not satisfied by α (parallel Boolean evaluation) do
5: parallel foreach v ∈ V(GF) do
6: mark v if it is violated by α (parallel Boolean evaluation)
7: end parallel foreach
8: M← LubyMaximalIndependentSet(marked part of GF)
9: parallel foreach x ∈ vbl(C) with C ∈ M do

10: α(x)← new uniformly random value from Lx

11: end parallel foreach
12: end while

The total running time of one phase is clearly polylogarithmic. We
now claim that the expected number of phases necessary is logarith-
mic on expectation. And thus the overall running time is polylogarith-

2.8. Parallelization 83

mic as claimed. The following lemma readily implies the theorem (via
Lemma 2.40).

Lemma 2.47. Suppose that F satisfies the local condition with mapping µ

and slack ϵ. Then, on expectation, no more than

O

1
ϵ
· log

∑

C∈F

µ(C)
1− µ(C)

phases are necessary until the algorithm terminates because all clauses are
satisfied.

Proof. Just as in the case of the sequential algorithm, we associate a
journal with an execution of Algorithm 4. Let the journal be the se-
quenceM = ⟨M1, M2, . . .⟩ of independent sets Mi ⊆ F of clauses re-
sampled in the i-th step. We can serialize it by ordering the constraints
within one phase according to the lexicographical ordering. Let C be
the sequential journal so obtained. With every clause correction ⟨Mi, C⟩
with C ∈ Mi, we can associate a witness tree Ti,C defined as the tree Tt

we obtain from our construction in the sequential case, where t is the
index where the correction of C within phase i occurs in the sequential
journal.

We note that Ti,C has at least i nodes, which can be seen by induc-
tion. For i = 1, all trees T1,C with C ∈ M1 have exactly one node.
Now suppose all trees Ti−1,· have at least i − 1 nodes. Now we con-
sider a tree Ti,C. At the beginning of the i-th phase, constraint C was
violated as only then C ∈ Mi is possible. Furthermore, there exists
some D ∈ Mi−1 sharing at least one variable with C, as otherwise the
variables of C would not have been touched in the (i − 1)-th phase,
implying that C was already violated at the beginning of that phase
and could have been added to Mi−1, contradicting the maximality of
Mi−1. By the way Ti,C is constructed, it must contain a node to rep-
resent each correction step that is represented in Ti−1,D and at least

84 Chapter 2. The Lovász Local Lemma

one more node as the root. Therefore Ti,C has more nodes than Ti−1,D
which has i− 1 nodes.

Furthermore, it is easy to check that the equivalent of Lemma 2.34
holds here. That is, just as in the sequential case, the probability that
a fixed witness tree T occurs in the journal, i.e. that there exists i and
C such that T = Ti,C is bounded by its weight w(T). This weight is al-
ways at most the µ-weight wµ(T), and now, since the local condition is
met even with slack ϵ, we have that in fact w(T) ≤ (1− ϵ)|V(T)|wµ(T).
Therefore, the probability that a fixed witness tree T occurs in the jour-
nal is bounded as

Pr [∃i, C : T = Ti,C] ≤ (1− ϵ)|V(T)| · wµ(T).

We now bound the probability that the algorithm conducts at least
i phases. If it does, then there exists C ∈ Mi and thus a tree Ti,C having
at least i nodes which occurs in the journal. So the probability that at
least i phases are conducted is bounded by the probability that any
witness tree having at least i nodes occurs in the journal. Let Ti be the
set of all witness trees having at least i nodes. Then we obtain

Pr [at least i phases] ≤ ∑
T∈Ti

(1− ϵ)i · wµ(T) ≤

≤ (1− ϵ)i ∑
T∈T

wµ(T) ≤ (1− ϵ)i · ∑
C∈F

µ(C)
1− µ(C)

,

where the last inequality is by Corollary 2.37. Given this bound, the
claim now follows from Lemma A.6.

There is the open task left of proving Corollary 2.46. For this we
can use the following lemma.

Lemma 2.48. If the input is a formula F is a union of disjoint stars, then
Algorithm 4 runs in expected time polylogarithmic in size(F).

2.9. Derandomization 85

The proof is done in Appendix A.16.

Corollary 2.46 now readily follows from Theorem 2.44, Lemma 2.48
and Lemma 2.42. Note that we use here that if a formula is input which
consists of several disconnected components, then Algorithm 4 runs
in an expected time which is at most the sum of the expected times of
all components (which is a very crude overestimate but sufficient for
our purposes here). So since both the star part (as a whole) and the
remainder can be solved in polylogarithmic time, both parts together
can, too.

2.9 Derandomization15

We have illustrated that philosophically, the power of Algorithm 1
stems from the fact that compared to their likelihood, there are only
very few choices of random bits that do not quickly lead to the al-
gorithm’s termination. In Section 2.5, this fact was phrased in terms
of comparing the information-theoretic effort of encoding such bad
executions and juxtaposing the number of random bits they allow to
reconstruct. In Section 2.6, we have redone the same thing summing
up the probabilities of all possible witnesses of bad executions.

When going for the derandomization of this approach, the for-
mer perspective appears to be less suitable than the latter one. If we
wanted to exploit the fact that most random strings are incompressible
and incompressible strings lead to quick termination of the algorithm,
what we would be looking for was a deterministically constructible
hitting set for the class of incompressible strings (strings with high

15The first part of the section is joint work with Gábor Tardos and has appeard in
[MT10]. In the second part, we survey the follow-up result by Chandrasekaran, Goyal
and Haeupler in [CGH09].

86 Chapter 2. The Lovász Local Lemma

so-called Kolmogorov complexity16). Such a hitting set cannot exist by
definition, as it would imply the compressibility of the string we are
looking for.

On the other hand we are more lucky with the witness tree view-
point. Since witness trees have a well-defined structure, there might
be a chance of deterministically generating sequences of bits replacing
the randomness in the algorithm in such a way that large witness trees
consistent with the sequence, which are bound to occur in long execu-
tions of the algorithm, do a priori not exist. This guarantees that the
algorithm terminates quickly when using such a sequence to supplant
randomness.

To get formal, suppose again our formula F is over variables V =

{x1, x2, . . . , xn}. Let a table T for F be a map T : [n] ×N0 → L such
that for all xi ∈ V and all j ∈ N, we have T(i, j) ∈ Lxi . A table can be

used to supplant the supply of random samples X(j)
i , that is for each

variable xi ∈ V, we use T(xi, 0) as its initial value and then the j-th
time a value for xi is being resampled we assign value T(i, j) to it. We
call this a run of Algorithm 1 using table T.

A usual randomized run of Algorithm 1 corresponds to a run us-
ing a table chosen uniformly at random, by which we in this context
mean choosing each of the infinitely many entries T(i, j) uniformly at
random and independently of all other entries. We recall our analysis
of such a run using witness trees as done in Section 2.6. Let us recall
in particular the proof of Lemma 2.33 where we have defined a recon-
struction map R′ to recover variable histories. Let us now say that a
given witness tree T ∈ T is consistent with a given table T, if R′(T) is
a true reconstruction set given that we use T for the variable histories,
or, phrased differently, if for all (i, j, v) ∈ R′(T) we have T(i, j) = v.

16See, for example, Gasarch and Haeupler [GH11] for a review of this topic in the
LLL setting.

2.9. Derandomization 87

The randomized analysis has demonstrated that if T is chosen uni-
formly at random, then the expected number of distinct witness trees
consistent with T can be bounded and this in turn yields a bound on
the expected running time. In order to derandomize Algorithm 1, we
will assume a slacked hypothesis and use it to prove a stronger bound,
namely that the number of large witnesses consistent with a random
table is smaller than one and hence with constant probability, no large
witness is consistent with such a table. As from this, the existence of
many tables T admitting no large consistent witnesses follows, we can
then use the standard method of conditional expectations due to Erdős
and Selfridge [ES73] in order to deterministically construct one. This
technique is not new in the context. It has already been applied by
Beck in [Bec91] for the very same purpose, although the notion of wit-
ness trees was considerably different in his approach (see Section 2.3).
Running Algorithm 1 using such a T is then deterministic.

Note that if there are no large consistent witnesses, then the run-
ning time has to be short: if any clause A ∈ F is resampled s times,
then there exists at least one consistent witness featuring at least s
clauses, namely Tt where t is the index of the last time A is being re-
sampled. So if there exists no witness having at least s vertices which
is consistent with T, then running the algorithm using T results in each
clause being resampled no more than s times.

The notion of what constitutes a ”large” witness will depend on
what kind of assumptions we make.

Constant Neighborhood Bounds. Our goal is first to prove the fol-
lowing simple statement.

Theorem 2.49. There exists a deterministic algorithm which on input some
ClSP formula F satisfying the local condition with multiplicative slack ϵ out-
puts a satisfying assignment to F in time at most

(O(|F|))
1
ϵ ·(1+ln ∆)·k · poly(size(F)),

88 Chapter 2. The Lovász Local Lemma

where
∆ := max

v∈V(GF)
degGF

(v) + 1

is the maximum neighborhood size and k is the size of the largest clause in F.

The algorithm is thus polynomial if there is a constant bound on
the neighborhood degree ∆ and the clause size and if ϵ is not too small.
For a simple corollary, we get the following.

Corollary 2.50. If d, k are constants, then there is a deterministic procedure
solving any (d, k)-ClSP F in which each clause shares variables with at most
dk/e− 1 other clauses in time polynomial in size(F).

Proof. Lemma 2.38 yields that if d and k are constant, then under this
neighborhood bound ϵ can also be chosen constant. The claim readily
follows.

The asymmetric version from Lemma 2.39 can of course also be
used but the dependence on ∆ will remain.

After proving the theorem, we will later in the section go on to ex-
plain how Chandrasekaran, Goyal and Haeupler [CGH09] managed
to relax these preconditions.

For the proof, we proceed as sketched and demonstrate that with
constant probability, no large witness tree is consistent with a uni-
formly random table T. The first step is to assume that µ(C) ≤ Λ for
all C ∈ F with the universal constant Λ which Lemma 2.40 promises
to exist. If this bound did not hold, then we would have to apply
Lemma 2.40 first to establish it. Note that in this case, ϵ will have to
decrease, but only by a constant.

For shortness of notation, define the parameter

s :=
1
ϵ

ln

2|F| · Λ
1−Λ

.

2.9. Derandomization 89

Lemma 2.51. If T is a table chosen uniformly at random, then the expected
number of witness trees which are consistent with T and have at least s ver-
tices is at most 1/2.

Proof. We start from Corollary 2.37 saying that for every A ∈ F,

∑
T∈TA

wµ(T) ≤
µ(A)

1− µ(A)
.

Let now T ′A ⊆ TA be the subset of those witness trees with the root
label A which have at least s vertices. Using the slacked hypothesis,
we obtain that

∑
T∈TA

w(T) ≤ (1− ϵ)s · µ(A)

1− µ(A)
.

Plugging in the value of s and using that ln(1 − ϵ) ≤ −ϵ (which is
Lemma A.1), we obtain

∑
T∈TA

w(T) ≤ 1
2|F| .

Since the left hand side equals the expected number of large trees con-
sistent with T, the claim follows by summing over all A ∈ F.

At least half the tables are hence such that no large tree is consistent
with them. We would like to construct such a table deterministically.
In order to apply the method of conditional expectations however, we
need to be able to compute the expected number of trees consistent
with a table of which some entries are fixed and others are kept ran-
dom. The problem with computing such expected numbers is that
T ′ := ∪A∈FT ′A contains infinitely many trees and thus we have to
sum infinitely many terms. For remedy, we will define a small list
F ⊆ T of forbidden witness trees with the property that if any T ∈ T ′A
is consistent with a table T, then there exists also a tree T̃ ∈ F which

90 Chapter 2. The Lovász Local Lemma

is also consistent with T. Lemma 2.51 implies that the expected num-
ber of trees from F which are consistent with T is smaller than 1/2.
Using the method of conditional expectations, we can fix values of T
one by one until the number of witness trees from F consistent with T

has dropped to zero. Then there is no witness from F that can appear
in the journal and by construction of F therefore also no witness from
T ′A.

We define F via the size of the witness trees. Let F ⊆ T ′ be the set
of all witness trees T of which the number of nodes lies in the range
[s, ks]. We claim that this definition serves the purpose.

Lemma 2.52. Let T be any table. If there is a tree T ∈ T ′ consistent with T,
then there is also a tree T̃ ∈ F also consistent with the table.

Proof. Let T ∈ T ′ be a witness tree consistent with the table which has
at least s nodes and is among all such trees a tree with the smallest
number of nodes. For the sake of contradiction, suppose T has more
than ks nodes.

Now consider the artificial journal CT (cf. Lemma 2.33) which is
recoverable by a bottom-up BFS of T and the entries in this journal
which are represented by the children of the root of T. Since the label
at the root has at most k literals, there are at most k such children. Let
i1, i2, . . . , it with t ≤ k be the indices of the corresponding entries in
the artificial journal CT . Now build witness trees Ti1 , Ti2 , . . . , Tik for
these entries on grounds of CT the same way we built witness trees
for the usual journal. All these trees are consistent with the table by
construction. And since all nodes in T except for the root must be
represented in at least one of them, without loss of generality. Ti1 , has
size at least |V(T)|/k. But if |V(T)| > ks, then |V(Ti1)| > s, which is a
contradiction as we assumed T to be the smallest such example.

Using the definition ofF , it is easy to bound its size. For any C ∈ F,
consider the infinite ordered rooted tree I of which the root is labelled

2.9. Derandomization 91

with C and for every node with label D ∈ F in the tree, its children
are labelled with Γ+

F (D) in lexicographic order. Every witness tree for
F is clearly a subtree of I, and according to a well-known bound (see,
e.g., [Knu73]), the number of rooted subtrees of size at most ks of an
infinite rooted tree where each node has at most ∆ children is at most

(e∆)ks = O(|F|)
1
ϵ ·k·(1+ln ∆).

Therefore there cannot be any more than this number of distinct wit-
ness trees in F .

To summarize, the determinstic strategy is now the following. We
enumerate explicitly all witness trees in F . Then we build a table T

with which no tree from F is consitent using the method of condi-
tional expectations: we calculate the expected number of trees from F
which are consistent if the table is chosen randomly. Then we fix T

entry by entry, each time choosing that value from the admissible do-
main which minimizes this expected number under the assumption
that the remaining entries remain uniformly at random. When filling
the table top down, at the latest after having fixed ks values in the his-
tory of each variable, this expected value must have dropped to zero.
Then we can run Algorithm 1 using the table T so constructed for the
randomness and we know that it terminates well-before ns correction
steps.

This concludes the proof of Theorem 2.49.

Derandomization under Exponential Slack. This approach was fur-
ther strengthened in follow-up work by Chandrasekaran, Goyal and
Haeupler in [CGH09] so as to remove certain weaknesses of Theo-
rem 2.49. Foremost, we want to be able to treat problems where the
clause weight decreases when the problem size increases.

On the cost side, we must transition from the multiplicative slack
we have used so far to the stronger exponential-type slack.

92 Chapter 2. The Lovász Local Lemma

Applied to our setting of ClSP problems, Chandrasekaran, Goyal
and Haeupler now prove the following. Note that we are stating a
largely simplified, convenient but weaker result here, for the full de-
tails the reader is referred to [CGH09].

Theorem 2.53 ([CGH09]). There exists a deterministic algorithm which,
given a non-degenerate ClSP F satisfying the local condition with exponen-
tial slack ϵ ∈ (0, 1], returns a satisfying assignment in a time which can
be bounded by a polynomial in size(F) and (minC∈F w(C))−1 of which the
degree is O(1 + 1/ϵ).

Although there remains the dependency on (minC∈F w(C))−1 and
thus applications with sporadic large clauses are still not tractable, this
version is considerably more flexible than our Theorem 2.49. As an ex-
ample, Corollary 2.50 on symmetric (d, k)-ClSPs can now be obtained
without assuming constant d and k if there is a slight slack in the hy-
pothesis.

Corollary 2.54. There is a deterministic procedure solving any (d, k)-ClSP
F such that there is δ ∈ (0, 1) such that each clause shares variables with at
most

dk/e
1−δ

− 1

other clauses, in a time which is bounded by a polynomial in size(F) and of
which the degree depends only on δ.

Proof. Lemma 2.41 yields the required magnitude of ϵ. For applying
the theorem, we only need to bound (minC∈F w(C))−1 = dk by a poly-
nomial. Obviously, this quantity depends exponentially on k. But ac-
cording to Theorem 2.1, we may assume that |F| > dk, as otherwise
we can solve the formula trivially using the method of conditional ex-
pectations. Hence dk is a quantity also polynomial in size(F) and we
are done.

2.9. Derandomization 93

We now go on to explain which are the modifications which were
used by Chandrasekaran, Goyal and Haeupler in order to obtain this
strengthening. The key is to make witness trees partial and weighted.

Before we start, assume that the µ(C) for C ∈ F are bounded by
the universal constant Λ as usual. If not, we can use Lemma 2.43 to
achieve this without changing the slack.

Over the fixed set V of variables in our clause satisfaction prob-
lem, let a splitting rule ϕ : 2V → 2V × 2V be a function such that for all
U, U0, U1 ⊆ V, if ϕ(U) = (U0, U1), then U = U0∪̇U1 and if |U| ≥ 2
then U0 ̸= ∅ and U1 ̸= ∅. Fix, globally and arbitrarily, a canonical split-
ting rule ϕ. That is just to say that whenever some set U ⊆ V of two
or more variables is given, then there is a prescribed way of partition-
ing those variables into two groups. How to do this is arbitrary but
globally fixed. We also extend ϕ to sets of literals in the natural way:
a set of literals is being split under ϕ exactly the way the underlying
variables would be split.

Let the splitting hull H(C) of a clause C (not necessarily from F)
be all clauses that can be produced by repeated applications of the
splitting rule, i.e. H(C) is the smallest set which contains C and is
closed under ϕ. Analogously, let

H(F) :=

C∈F
H(C)

be the smallest set containing all of F and closed under ϕ. For the size
of splitting hulls, we note that |H(C)| ≤ 3|C| − 1 which can easily be
seen by induction because |H(C)| ≤ |H(C1)|+ |H(C2)|+ 1 for ϕ(C) =
(C1, C2) and the induction base is trivial for unit clauses.

A partial witness tree is defined the same way as the witness tree we
have used in Section 2.6, with the exception that the root itself is not
anymore labelled by a clauses from the formula, but by a member of
its splitting hull, i.e. the labelling is now of the type [·] : V(T)→ H(F).

94 Chapter 2. The Lovász Local Lemma

The notions of being proper and of being consistent with a given ta-
ble remain the same. For the notions of weight and µ-weight, let them
be defined as for usual witness trees, with the exception that we disin-
clude the root node from the value, i.e. we define

w(T) := ∏
u∈V(T)\{root(T)}

w([u])

and

wµ(T) := ∏
v∈V(T)\{root(T)}

µ([v]) ∏
C∈ΓF([v])

(1− µ(C))

 .

In our weaker proof as discussed above, we have established the state-
ment of Lemma 2.52 to limit the number of witness trees we have to
take into account. We have classified witness trees by their size in
terms of the number of vertices. Chandrasekaran, Goyal and Haeu-
pler replace this by a similar statement using µ-weights as a notion of
size for partial witness trees.

For what follows, let M be the parameter

M := 6 · |F| · |V| ·max
C∈F

µ(C)

1− µ(C)
· 1

wµ(C)

and note that the order of magnitude is

M = Θ

min
C∈F

w(C)
−1

.

We note that M is larger than (minC∈F w(C))−1. Next we set the de-
pendent parameter

γ := M−1/ϵ

which is always smaller than 1/M, whence it follows that γ ≤ wµ(C)
for all C ∈ F.

2.9. Derandomization 95

Recall that in the classical analysis, we defined for any t ∈ N the
witness tree Tt of which the root is labelled Ct and the related events
are being attached during a backward scan of the log. For the present
refined analysis, let additionally A ∈ H(Ct) be any subclause from the
splitting hull of Ct. The tree Tt,A is build according to the same rules as
Tt with the only difference that now the root is labelled with A instead
of Ct. The backward scan through the journal works as usual such
that only constaints overlapping A can become children of the root.
The labels of all non-root vertices are full clauses from the formula as
usual. We say that some partial witness tree T occurs in the journal if
there exists t and A ∈ H(Ct) such that T = Tt,A.

We now prove the following analogon of Lemma 2.52.

Lemma 2.55 ([CGH09]). If a proper partial witness tree T of µ-weight at
most γ occurs in the journal, then there is also a partial witness tree of a
µ-weight in the range [γ2, γ] that occurs in the journal as well.

Proof. Let T be a witness tree, which

• occurs in the journal, i.e. there are t, A such that T = Tt,A,

• has µ-weight at most γ,

• among all trees satisfying (i) and (ii) has largest µ-weight,

• among all trees satisfying (i), (ii) and (iii) has a root label with
the smallest number of literals.

We claim that in this case, T has µ-weight at least γ2. For suppose the
contrary. Then we distinguish two cases. Either the root of T has a
single child. Then consider the subtree T′ rooted at this child. This
subtree occurs in the journal, has a µ-weight larger than that of T, but
also µ-weight at most wµ(T)/γ by definition of γ. But this contradicts
the choice of T which was selected to be a tree with largest µ-weight
with such properties.

96 Chapter 2. The Lovász Local Lemma

In the other case, the root of T has more than one child. In that
case, A must have more than one literal as otherwise it would not be
possible for the two children of the root to be disjoint and T is proper
by assumption. Then consider the subclauses (A0, A1) = ϕ(A) arising
from splitting A canonically. And consider T0 = Tt,A0 and T1 = Tt,A1 .
Since

wµ(T0) · wµ(T1) ≤ wµ(T) < γ2,

one of the trees T0 or T1 must have µ-weight at most γ. The µ-weight
has to be at least as large as the one of T though and the root label has
fewer literals than the one in T. This contradicts the choice of T.

Then, analogously to what we did in our weaker version, they go
on to prove that the number of such witnesses is limited so well as
their occurrence frequency in the journal. Central to these arguments
is the following estimate which is the analogon of Lemma 2.51.

Lemma 2.56 ([CGH09]). Let F be the set of all proper partial witnesses for
F with a µ-weight in the range [γ2, γ]. Then

(i) the sum of the weights of all of F is at most 1/2.

(ii) the sum of µ-weights of all of F is at most M.

The proof starts from the bound on the sum of weights of full wit-
nesses from Lemma 2.36 and then it merely needs to translate this
bound to partial witnesses. The definition of M is chosen such that
the bound becomes constant and smaller than one. For completeness,
we include the details in Appendix A.17. Using this bound, we can
use basically the same algorithm we used in our weaker variant, but
with the updated definition of F .

First we note that just like in the randomized case, a partial witness
can only occur in the journal if it is consistent with the random table
used. Therefore the probability that a fixed partial witness T ∈ F

2.9. Derandomization 97

occurs in the journal cannot be any larger than the weight of the tree.
Note that we are just ignoring the root node which makes the bound
only larger. Using the local hypothesis, the weight can a fortiori not
be larger than the µ-weight of the tree. The expected number of trees
from F occurring in the journal is therefore via Lemma 2.56 at most
one half and the method of conditional expectations will yield a table
with which none of these trees is consistent.

For this method to be efficient, the only thing left to check, just as
in the weak variant, is that F cannot become too large. As a conse-
quence of Lemma 2.56.(ii), we obtain that the µ-weights sum up to no
more than M and since each tree in F has a µ-weight of at least γ2 by
definition, this yields that there can be no more than

M
γ2 = M1+ 2

ϵ

trees in this set. This has the required order of magnitude.

The proof of the theorem is thus complete.

Chandrasekaran, Goyal and Haeupler prove considerably more
general statements and also combine the parallelization and deran-
domization to present an approach that can run on a deterministic
CREW-PRAM. We omit the details and refer the reader to [CGH09].

98 Chapter 2. The Lovász Local Lemma

2.10 Beyond

In this section, we survey – without proofs – a few results which are
important in the context and which extend what we have investigated
so far.

Shearer in [She85] has first investigated into questions concerning
the tightness of the various formulations of the Local Lemma.

Tightness questions are best formulated as follows. Let G be a sim-
ple graph with associated weights w : V(G) → [0, 1]. Let us say that
⟨G, w⟩ is a Local Lemma graph if it holds that for any probability space
Ω and any finite setA of events in that space, if there exists a bijection
ϕ : V(G)→ A such that ϕ(G) is a dependency graph forA and for ev-
ery v ∈ V(G) we have Pr [ϕ(v)] ≤ w(v), then the events do not cover
the probability space, i.e. Pr

A∈A A

> 0. Let us write L for the set

of all weighted graphs which are Local Lemma graphs.

For notation, let us say that a ClSP or CSP F has ⟨G, w⟩ as a depen-
dency graph if the vertices of G can be mapped one-to-one onto the
constraints of F in such a way that G is a dependency graph for F and
the constraint’s weights are no larger than the corresponding weights
w.

All standard formulations of the LLL can be nicely expressed in
this terminology. Theorem 2.7 reads that if there exists an association
µ : V(G)→ (0, 1) such that for all v ∈ V(G),

w(v) ≤ µ(v) · ∏
u∈ΓG(v)

(1− µ(u)),

then G ∈ L. A general-events version of Theorem 2.3 yields that if all
weights in G are equal to some value p and G has maximum degree
1/(ep)− 1, then G ∈ L, and so forth. However, each of these criteria
is only sufficient, not necessary.

Shearer has found an equivalent characterization. He associates

2.10. Beyond 99

with any weighted graph ⟨G, w⟩ the independent-set polynomials which
are defined for any S ⊆ V(G) as

pG(S) := (−1)|S| ∑
I∈T(G)

I⊇S

(−1)|I| ∏

A∈I
w(v)

,

where T(G) denotes the set of all independent sets of G and then
proved the following.

Theorem 2.57 ([She85]). G ∈ L if and only if ∀S ⊆ V(G) : pG(S) > 0.

And using this theorem, Shearer could demonstrate that the con-
stant of 1/e in the symmetric version of the Local Lemma is tight. Note
however that our incarnation of it, Theorem 2.3, is restricted to clause
satisfaction problems and the examples of tightness of Shearer use a
setup which is far from even being a constraint satisfaction problem.

The question whether the present form of Theorem 2.3 is also tight
has been answered by Gebauer, Szabó and Tardos [GST11] in the affir-
mative. They show that there exist unsatisfiable k-SAT formulas where
every clause has at most (1/e+ o(1)) · 2k many neighbors. Their result
seamlessly translates to (d, k)-ClSP where d is even and the odd case
should be possible to settle by adapting their proofs slighty.

Coversely, Kolipaka and Szegedy [KS11] provided a counterexam-
ple which demonstrates that Shearer’s condition is not tight for the
CSP case, i.e. there do exist weighted graphs ⟨G, w⟩ ̸∈ L which fail
Shearer’s criterion and still all CSPs having ⟨G, w⟩ as a dependency
graph are satisfiable.

Bissacot, Fernández, Procacci and Scoppola [BFPS11] have proved
a strengthened version of the Local Lemma which was very much in-
spired by Shearer’s independent set polynomial. They showed the
following.

Theorem 2.58 ([BFPS11]). Let ⟨G, w⟩ be a weighted graph. If there exists
an association ν : V(G)→ (0, ∞) of numbers with the vertices such that for

100 Chapter 2. The Lovász Local Lemma

all v ∈ V(G), we have

w(v) ≤ ν(A) ·

 ∑
I∈T(G)

I⊆ΓG(v)

∏
u∈I

ν(u)

−1

,

then ⟨G, w⟩ ∈ L.

By substituting

ν(A) :=
µ(A)

1− µ(A)
,

we easily find that this version of the local hypothesis is strictly more
powerful than the traditional one in Theorem 2.4. Pegden [Peg11] was
able to prove that also our algorithmic approach translates seemlessly
to this more general version.

Theorem 2.59 ([Peg11]). Suppose that F is a ClSP/CSP having ⟨G, w⟩ as
a dependency graph and that ⟨G, w⟩ satisfies the condition of Theorem 2.58
with mapping ν. Then Algorithm 1 on input F conducts ∑C∈F ν(C) correc-
tion steps in expectation and then returns a satisfying assignment.

The proof is strikingly simple and relies on the fact that for our
proof in Section 2.6, we summed over the set TA of witness trees hav-
ing a fixed clause A at the root label, where a witness tree was defined
with the property that any two sibling labels must be distinct. We
know however that those witness trees which can occur in the jour-
nal are what we called proper, which means they have the stronger
property that the sibling labels must even be disjoint (see Lemma 2.32).
One could thus sum only over the smaller set of proper witness trees
when estimating the running time of the algorithm. And the Galton-
Watson process we used for summing over TA can easily be adapted
to sum only over proper trees by simply repeating it until the result-
ing random tree is proper. Doing the straightforward calculations, the
theorem surfaces.

2.10. Beyond 101

Using an even stronger method, Kolipaka and Szegedy were able
to demonstrate in [KS11] that if a ClSP/CSP passes Shearer’s test, then
the expected number of rasamplings which Algorithm 1 conducts is

∑
C∈F

pGF (C)
pGF (∅)

.

If there is a certain slack of the sort that the violation probabilities of
constraints in the CSP are by factor 1+ ϵ lower than the probabilities in
the Local Lemma graph associated with the problem, then this number
drops well-below m/ϵ, and if furthermore (1 + δ)2 = 1 + ϵ, then the
parallel version terminates in time

1
δ

log(
m
δ
) · polylog(size(F)),

yielding more powerful versions in cases where the criteria are satis-
fied more narrowly.

Finally, let us note that the Local Lemma and Shearer’s indepen-
dent-set polynomial have caught the attention of statistical physicists
studying the so-called lattice gas, a particular model of particle inter-
actions [SS05, SS06, FP07, KS11]. Their work and ideas have inspired
several of the aforementionted improvements to the Local Lemma and
exhibit applications beyond combinatorics.

Also, quantum versions of the LLL and our algorithms have re-
cently been developped [AKS10, CS11, Yin11].

102 Chapter 2. The Lovász Local Lemma

3
Schöning’s Algorithm

In the previous chapter, we have considered an algorithm that effi-
ciently finds a satisfying assignment to ClSPs meeting the hypothesis
of the Lovász Local Lemma. For general formulas without such prop-
erties, already deciding whether they admit a satisfying assignment is
considered to be computationally hard.

We now want to investigate into an algorithm capable of solving all
formulas, albeit of course coming at the cost of an exponential running
time. Analyzed first by Uwe Schöning in [Sch99], it starts at a random
assignment and conducts a random local search in its proximity. It
bears a striking resemblance to the algorithm we have considered in
the previous chapter, though there is an intriguing difference as well.

103

104 Chapter 3. Schöning’s Algorithm

3.1 Introduction

Exponential time algorithms for solving SAT, ClSP or CSP have a long
history. A brute force approach to a general ClSP consists of enumer-
ating the entire solution space. Indeed, if there is no restriction on con-
straint or alphabet sizes, no algorithm known today does substantially
better than that. To make any real progress, we at least require some
bounds on the input. If F is a (d, k)-ClSP, the brute force approach
takes O(dn+o(n)) time.

Branching Algorithms. The first ones to improve on this trivial an-
satz were Monien and Speckenmeyer in 1985 [MS85]. In their study
of the k-SAT problem, they observed that a simple recursive algorithm
can do faster by picking a k-clause C ∈ F arbitrarily, then branching on
the 2k − 1 assignments to vbl(C) which are not forbidden by C. This
saves a fraction of one out of 2k assignments from being explored and
since this can be repeated on each recursive level, we get an exponen-
tial running time of O(cn+o(n)) for some c < 2. The same argument
carries over to any d > 2.

They went on to observe further potential for improvements, for
example that for C = {u1, u2, . . . , uk}, branching on the k partial as-
signments

βi = {u1 →→ 0, u2 →→ 0, . . . , ui−1 →→ 0, ui →→ 1}

for 1 ≤ i ≤ k is again exponentially more efficient than always as-
signing all variables from C. Adding additional tricks and improve-
ments, they achieved a running time ofO(Φn+o(n)) for 3-SAT and sim-
ilar nontrivial numbers for larger k, where Φ ≈ 1.618 is the golden ra-
tion conjugate, i.e. the larger of the two real solutions to the equation
Φ2 −Φ = 1.

Having caught the attention of the community, the simple idea by
Monien and Speckenmeyer was to become the starting point of a race

3.1. Introduction 105

for the best branching rules for k-SAT. To the author’s knowledge, the
culmination of this type of approach was reached with the 70+-page
paper of Kullmann [Kul99] and another surprisingly little-known pa-
per of Rodošek [Rod96], containing 3-SAT algorithms using branching
rules of an unprecendented level of sophistication. Rodošek achieved
a running time of O(1.476n).

Novel Randomized Approaches. As is often the case with this kind
of research field, chains of improvements of quickly growing complex-
ity are abruptly rendered obsolete by a novel simple and clean idea. In
the case of k-SAT, there were two such milestones arriving in parallel
at the end of the last century, inspired also by a new trend to apply
randomness in algorithms: the one-pass satisfiability decoding algo-
rithms named PPZ and PPSZ after its inventors Paturi, Pudlák, Saks
and Zane from [PPZ99, PPSZ05] and the random local search algo-
rithm by Uwe Schöning from [Sch99], which was a generalization of
the 2-SAT algorithm provided by Papadimitriou in [Pap91].

The rather involved analysis of the PPSZ variant given in [PPSZ05]
demonstrated that PPSZ was the fastest known (randomized) algo-
rithm for k-SAT when k ≥ 5, while Schöning’s algorithm with its
much simpler analysis seemed to best PPSZ for k = 3 and k = 4.
For 3-SAT, PPSZ was assumed to run in time O(1.364n) and Schöning

in time

4
3

n+o(n)
, or O(1.334n) for easy comparison. Improvements

to Schöning’s algorithm, one by Hofmeister, Schöning, Schuler and
Watanabe [HSSW02] to O(1.331n) and another by Rolf [Rol03] to
O(1.328n) followed.

Iwama and Tamaki [IT04] took a closer look and realized that in
the cases of k = 3 and k = 4, Schöning’s algorithm was only faster
if the search space was rather densely packed with solutions, while
in the case of few satisfying assignments, PPSZ had a higher success
probability. They combined the two algorithms to interpolate between

106 Chapter 3. Schöning’s Algorithm

the two cases, reaching an algorithm of running time O(1.324n). Rolf
improved this variant to O(1.323n). Iwama, Seto, Takai and Tamaki
advanced to O(1.322n). With Hertli and Scheder [HMS11], we added
a preprocessing step to achieve O(1.321n).

Only last year, Hertli [Her11] was able to demonstrate that the
analysis which Paturi, Pudlák, Saks and Zane presented in their orig-
inal work [PPSZ05] involved certain coarse estimates and that when
looked at the right way, the PPSZ algorithm had a running time of
O(1.308n) in the first place. For 4-SAT as well, Hertli established that
PPSZ alone was most efficient. On the date of this writeup, there-
fore, PPSZ is the most efficient algorithm known for k-SAT for arbi-
trary k ≥ 3. Moreover, a generalization to non-Boolean (d, k)-ClSP is
presently under investigation [Sze11, Mil12].

Deterministic Variants. So much for randomized algorithms. If one
insists on deterministic algorithms not using randomness, the situation
looks slightly different. While there is hope that with Hertli’s new and
simpler analysis, PPSZ will eventually turn out to be derandomizable
at little or no loss in efficiency as well, to date, it is not clear whether
this works.

The currently best deterministic approaches are derandomizations
of Schöning’s algorithm, the main reason probably being that its anal-
ysis is much simpler and more straightforward and lends itself to an
in-depth inspection more easily than the elaborate arguments which
are being employed in [PPSZ05] and [Her11]. The first deterministic
alternative of Schöning’s iterative procedure was given in [DGH+02]
which was not lossless and reached a running time of O(1.481n) in
the case of 3-SAT. This was followed up on by Brueggemann and Kern
[BK04], who improved the running time to O(1.473n). Later, Scheder
[Sch08] and then Kutzkov and Scheder [KS10] improved it further to
O(1.465n) and O(1.439n).

As the main contribution of the present chapter, we demonstrate in

3.1. Introduction 107

Section 3.7 that the local search approach can be derandomized with-
out any substantial loss in efficiency for all cases of (d, k)-ClSP with
d ≥ 2, k ≥ 3. In particular, for 3-SAT, we match the randomized run-

ning time of

4
3

n+o(n)
, orO(1.334n). This is joint work with Dominik

Scheder and has appeared in [MS11].

Following up on our work, Makino, Tamaki and Yamamoto in
[MTY11] have demonstrated that for the special case of 3-SAT, the im-
provement to Schöning’s algorithm devised by Hofmeister, Schöning,
Schuler and Watanabe [HSSW02] can be derandomized as well and
then combined with our deterministic version. The resulting com-
bined algorithm is the fastest currently known deterministic proce-
dure for solving 3-SAT, running in time O(1.331n).

Outline of the Chapter. In Section 3.2, we present Schöning’s ran-
domized ClSP algorithm and we detail the simple and elegant analy-
sis he provided in order to estimate its success probability or running
time. We then go on to put the algorithm under closer inspection.
Firstly, in Section 3.3, we notice its strong similarity with Algorithm 1
which we have used for formulas satisfying the local condition in the
previous chapter and we answer in the negative the question whether
the two algorithms are interchangeable. We as well ask questions of
tightness of the analysis presented by Schöning, in particular in Sec-
tion 3.4, we demonstrate that there exist formulas on which this anal-
ysis is always tight in a very strong sense. In Section 3.5 on typical
executions, we take a closer look at the algorithm’s analysis and find
that the vast majority of paths leading to a successful run have very
specific characteristic traits. The findings we make there will provide
us with a recipe as to how the algorithm is to be made deterministic.
A vital ingredient to this recipe are the so-called covering codes which
we will define and inspect in Section 3.6. Finally, in Section 3.7, we
will present the missing parts of a full and lossless derandomization
of the algorithm.

108 Chapter 3. Schöning’s Algorithm

3.2 Algorithm and Analysis

Here is how Uwe Schöning defined his local search algorithm.

Algorithm 5 Schöning(F)
Require: A satisfiable ClSP formula F.
Ensure: Output is a satisfying assignment.

1: α← a uniformly random assignment from1S
2: while ∃C ∈ F : α violates C do
3: C ← any clause violated by α

4: x ← a uniformly random variable from vbl(C)
5: α(x)← a uniformly random value from Lx \ {α(x)}
6: end while

You will immediately notice the strong similarities to Algorithm 1
from the chapter on the Lovász Local Lemma. Indeed, the only dif-
ference in this iterative procedure is that in every correction step, one
variable is picked uniformly at random and flipped to a uniformly dif-
ferent value instead of resampling all variables to new uniform values.

Correctness and termination of this algorithm both follow along
the same lines as the arguments in Section 2.3: if F is satisfiable, then
every correction step opens an opportunity for getting one step closer
to a fixed satisfying assignment and so termination occurs in finite
time with probability one. Moreover the loop stopping criterion en-
sures that the output is always a satisfying assignment.

In how far the two flavors of the same algorithm really differ is not
obvious. Unfortunately, it remains a nagging open question whether
the variant here terminates in polynomial time on formulas satisfy-
ing the local condition. The proof techniques we used in the previ-

1Recall that we use the notation S := {α : Vn → L | α(x) ∈ Lx} for convenience.

3.2. Algorithm and Analysis 109

ous chapter simply do not carry over well when applying this sub-
tle change. As deciding on a single variable from a clause for flip-
ping needs only log k bits, for an information theoretic argument to
go through one would have to restrict neighborhood sizes to some-
thing linear in k. Not only does such a small bound render the algo-
rithm useless because of competition by simple algorithmic versions
of Corollary 2.15, but even with the small bound it is not totally clear
how to carry out the proof and it would mean a considerable amount
of work. But I conjecture that a different suitable proof technique
would yield the desired result.

Conjecture 3.1. If a ClSP satisfies the local condition, then Algorithm 5
terminates in time polynomial in size(F).

On the other hand, analyzing the performance of Algorithm 1 on
general formulas not necessarily satisfying the hypotheses of the local
lemma can be done quite simply, adapting the proofs we are going to
explain in this chapter just slightly. We will do so in Section 3.3.

The two algorithms can most easily be brought under a common
parameterized umbrella. Let some number p ∈ (0, 1] govern the prob-
ability which each variable in the clause to be repaired is to be resam-
pled with.

Correctness and termination with probability one are proved the
usual way and are independent of the parameter p. It is trivial to
see that the algorithm on input p = 1 behaves exactly like the Local
Lemma Solver.

While there is no p such that the algorithm behaves exactly like
Schöning’s variant, we can easily see that for p → 0, the algorithm’s
behavior ‘converges’ to the one of Schöning’s in all essential respects.
Having p approach zero, only every (roughly) k/p-th correction step

2Recall that we use the notation S := {α : Vn → L | α(x) ∈ Lx} for convenience.

110 Chapter 3. Schöning’s Algorithm

Algorithm 6 GeneralizedRandomCorrect(F, p)
Require: A satisfiable ClSP formula F, a parameter p ∈ (0, 1]
Ensure: Output is a satisfying assignment.

1: α← a uniformly random assignment from2S
2: while ∃C ∈ F : α violates C do
3: C ← any constraint violated by α

4: for x ∈ vbl(C) do
5: v← a uniformly random value from Lx

6: with probability p do
7: α(x)← v
8: end with
9: end for

10: end while

does at all have an effect, which stretches execution time by a factor
of 1/p. Then if a correction step has an effect, there is a negligible
probability smaller than kp that anything else but a single flip occurs
in the step and as will become apparent shortly, Schöning’s analysis
is very robust with respect to such very rare effects and thus the algo-
rithm’s effectiveness is not affected3 if this happens. For p → 0, the
running time of the algorithm thus ‘converges’4 to the running time of
Schöning’s variant.

In between, we have a whole continuum of algorithms, but as
we demonstrate in Section 3.3, the worst case efficiency deteriorates

3At least the worst-case bounds we can prove are not being affected. This does,
naturally, not rule out the possibility that any subtle changes to the algorithm can have
a deterimental effect upon it for particular problem instances for which it normally runs
much faster than the worst-case analysis predicts.

4The term ‘converge’ should here be understood philosophically rather than math-
ematically; we spare ourselves the effort of making this claim precise as it is just here
for illustrative purposes.

3.2. Algorithm and Analysis 111

monotonically with increasing p. The above conjecture ‘generalizes’5

to the parameterized variant.

Conjecture 3.2. Algorithm 6 terminates in time polynomial in size(F) and
1/p if the formula satisfies the local hypothesis.

But it is only for p = 1 that we have a proof for this, and for smaller
values the only thing we know is that one can artificially lower neigh-
borhood bounds to accommodate the parameter, a thing which makes
little sense to do.

Schöning’s Analysis. We now explain Schöning’s original, very sim-
ple and elegant analysis for bounding the running time of Algorithm 5
when it is being run on a (d, k)-ClSP formula F. The claim is as follows.

Theorem 3.3 ([Sch99]). If F is a satisfiable (d, k)-ClSP formula F on n
variables, then the probability that Algorithm 5 on input F terminates well-
before carrying out C · n correction steps is at least

1
d
· k

k− 1

n+o(n)
,

where C = Cd,k is a constant depending only on d and k but not on n.

This easily turns into an algorithm of expected running time at
most

d · k− 1
k

n+o(n)

by restarting every Cd,k · n steps.

In fact, Schöning [Sch99] provided more accuracy by proving that
one can choose Cd,k = 3, thus getting rid of the dependency on d and k,

5The term ‘generalizes’ should again be understood philosophically rather than
mathematically; formally speaking, this is not strictly a generalization.

112 Chapter 3. Schöning’s Algorithm

and that moreover the o(n) error term in the exponent can be replaced
by a polynomial factor. A contribution by Welzl [Wel12]6 furthered
this yet another time so as to determine the actual polynomial which
sits in the probability. For the number of steps to be carried out before
restart, it will turn out in Section 3.5 that the constant can be bounded
further to show that the number of steps necessary actually decreases
with increasing values of d and k. For now, we do not insist on the
full accuracy as in the case of an exponential time algorithm, both a
sublinear term in the exponent and a constant in the number of steps
are arguably negligible and the proofs get considerably easier if one
accepts them.

For the proof, as we assume that F is satisfiable (note that the un-
satisfiable case leads to the algorithm running indefinitely), let us fix
a satisfying assignment α∗. We keep track of the progress the algo-
rithm is making by observing the distance dist(α, α∗) of α∗ from the
assignment α the algorithm is internally evolving.

Let us call the succession of assignments the algorithm is consider-
ing α0, α1, α2, . . ., i.e. α0 is the uniformly random assignment chosen in
the beginning and αi the assignment after i correction steps for all i. If
the algorithm terminates, let all further αi be the satisfying assignment
output so that we always define an infinite series. Note again that
very similar to the case of the analysis of the Local Solver, the points
in the probability space where the algorithm does not terminate form a
nullset due to the simple argument supporting termination with prob-
ability one, but formally we have to account for the possibility of an
infinite run.

Let furthermore

Di := dist(αi, α∗)

6We here refer to the most recent write-up of this contribution in a lecture notes
chapter. The result itself is older.

3.2. Algorithm and Analysis 113

for all i, let
N := min{ i ∈ N0 | αi satisfies F }

be the stopping time (where we consider the minimum to be infinite if
it does not exist) and call

C = ⟨C1, C2, C3, . . .⟩

the succession of clauses selected for correction in each step, with
some special symbol Ci = ◦ for i > N. This yields a journal of very
much the same type as in the analysis of the Local Solver.

Note that Di = 0 implies N ≤ i but N ≤ i does not imply Di = 0.
The reason is that we fixed some satisfying assignment α∗ of which the
formula might have multiple and we cannot prevent one of the others
from being found on the way while the Di are tracking the distance to
α∗ exclusively.

We now study the evolution of the random process {Di}i∈N0 by
what is well-known as a coupling argument. Couplings are used to reg-
ularize a random process such that it becomes easier to analyze in a
manner which allows for the conclusions of interest to be drawn.

In the present case, since our interest lies in bounding the stopping
time N, what we will do is define a regularized process {Ei ∈ Z}i∈N0

exhibiting a smoother behavior and satisfying the condition ∀i ≤ N :
Di ≤ Ei. We then bound the time NE it takes for the E-process to
hit zero for the first time. Since Ei = 0 together with N ≥ i implies
Di = 0 and thence N = i, this bound will also apply to N. The idea of
coupling is that both the D-process and the E-process are being steered
by the same supply of randomness and are thus ‘coupled’.

Let us define such a common source of randomness. Let V :=
⟨V1, V2, . . . , Vn⟩ be an n-tuple of independent uniform random vari-
ables taking values from the set {1..d} each. Moreover, let us de-
note by W = ⟨W1, W2, . . .⟩ an infinite supply of independent uni-
form random variables taking values from the set {1..d− 1} each and

114 Chapter 3. Schöning’s Algorithm

X = ⟨X1, X2, . . .⟩ an infinite supply of independent uniform random
variables taking values from {1..k} each.

We now define both the D- and the E-process as deterministic func-
tions of (V ,W ,X).

The D-process arises with the above definitions from running Al-
gorithm 5, where we now use (V ,W ,X) for the randomness in the
following way. Let some arbitrary but globally fixed ordering (hence-
forth called the lexicographic ordering) be imposed on both the vari-
ables V = {x1, x2, . . . , xn} as well as on the formula F.

Build the starting assignment α0 by assigning, for all 1 ≤ i ≤ n,
a value to xi determined as follows. If Vi = 1, assign xi the value
α∗(xi). Else, map each of the remaining d− 1 values possible for xi to
the remaining values possible for Vi lexicographically.

Next, for the iterative process, fix any arbitrary rule as to how Al-
gorithm 5 picks violated clauses for fixing, for instance have it pick
the lexicographically first violated clause to be Ci in the i-th iteration.
Now use X in order to decide which literal to flip in the following
way. Number the variables in vbl(Ci) in such a way that the lexico-
graphically first variable x ∈ vbl(Ci) for which α(x) ̸= α∗(x) disagree
receives number one. Then number the remaining variables lexico-
graphically. Now select the Xth

i variable according to this numbering
, let us call it x for now, for flipping.

Then, use W to decide what value to flip x to as follows. In case
αi−1(x) ̸= α∗(x), flip αi(x) := α∗(x) if Wi = 1 and map all of the
remaining d − 2 values of Wi to the remaining d − 2 values possible
for flipping in the lexicographic way. If αi(x) = α∗(x), flip to any of
the possible d− 1 other values according to Wi using the lexicographic
mapping.

A ‘good case’ is now in each iteration if Wi = 1 and Xi = 1, since
this will mean that we flip the first variable in Ci which currently has

3.2. Algorithm and Analysis 115

‘a wrong value’ to ‘the correct value’, at least with respect to α∗. The
renumbering however does not alter the behavior of the algorithm at
all. Since all random variables used were defined uniformly and in-
dependently and since all mappings are one-to-one onto, it requires
no further argument to see that Algorithm 5 run this way behaves
exactly the way it is normally supposed to behave when this compli-
cated route of preselecting all randomness is not taken. The random
variables Di and N are defined as above, depending on the outcome
of this run of Algorithm 5.

For comparison, we now define the regularized E-process as fol-
lows. Let E0 be the number of indices j ∈ {1..n} such that Vj ̸= 1.
Then for all i > 0, let

Ei =

Ei−1 − 1 if Wi = 1∧ Xi = 1

Ei−1 if Wi = 1∧ Xi ̸= 1

Ei−1 + 1 if Wi ̸= 1

.

We claim that with these definitions,

Di ≤ Ei for all i ≤ N. (3.1)

And this is not difficult to see. Note first that D0 = E0 because for
every variable xi ∈ V, αi(x) = α∗(x) if and only if Vi = 1 and E0 is
defined such that it counts the number of non-ones in V . And then in
every evolution step, if the E-process decreases in the i-th step, then
Wi = 1 and Xi = 1, implying that the aforementioned ‘good case’
occurs and thus the D-process decreases in this step as well. If the
E-process rests, then this happens because Wi = 1 and Xi ̸= 1 which
means that in the algorithm, a variable which previously disagreed
with α∗ is selected and flipped to a value which still disagrees with α∗

and thus the D-process rests as well. In all other cases, the E-process
increases. While the D-process might rest or even decrease in such
steps, our invariant is being preserved in all cases.

116 Chapter 3. Schöning’s Algorithm

In particular, Equation 3.1 implies that

NE := min{i ∈ N0 : Ei = 0} ≥ N

(where again we consider the minimum to be infinite if it does not
exist) and so for any constant c,

Pr [N ≤ cn] ≥ Pr [NE ≤ cn] .

So we can now analyze the probability that the simple regularized pro-
cess hits zero within cn steps and conclude that Algorithm 5 has at
least this probability of discovering a satisfying assignment within cn
iterations.

And for bounding Pr [NE ≤ cn], we can invoke Lemma A.7. The
Markov chain E is characterized by transition probabilities

τ(−1) =
1
k
· 1

d− 1

τ(0) =
1
k
· d− 2

d− 1

τ(1) =
k− 1

k

and therefore according to Lemma A.7, the probability of hitting zero
within Cn steps (where C is now the constant provided by the Lemma)
if starting from a fixed state j is λj+o(n) where λ is the unique root in
the range (0, 1) of the polynomial

p(x) =
1
k
· 1

d− 1
+

1
k
· d− 2

d− 1
− 1

· x +

k− 1
k
· x2,

which can easily be found to be

λ =
1

(d− 1)(k− 1)
.

3.2. Algorithm and Analysis 117

This is conditioned on E0 = j. To remove the conditional clause,
we use that

E0 ∼ Bin

n, 1− 1
d

and obtain that Pr [NE ≤ Cn] is bounded from below by

∑
0≤j≤n

n
j

1− 1

d

j 1
d

n−j 1
(d− 1)(k− 1)

j+o(n)
.

Using the binomial theorem,

Pr [NE ≤ Cn] ≥

d− 1
d
· 1
(k− 1)(d− 1)

+
1
d

n+o(n)
.

Or simplified,

Pr [NE ≤ Cn] ≥

1
d
· k

k− 1

n+o(n)
,

as claimed, concluding the proof of Theorem 3.3.

Restricting to Boolean Satisfiability. In the remainder of this chap-
ter, we will go on to investigate interesting aspects of Schöning’s it-
erative procedure and, most prominently, to provide a deterministic
variant. Before we set out to such investigations, we want to make
an observation which will greatly simplify arguments and calcula-
tions throughout the chapter. The observation is that considering the
Boolean case d = 2 can in the case of Schöning be done without loss of
generality.

The reason for this lies in the algorithm’s success probability. As
the success probability we were able to prove, and it will turn out
in Section 3.4 that this calculation was tight in the strongest possible
sense, is proportional to d−n, the method for reducing a (d, k)-ClSP
to a series of k-SAT problems known as random downsampling can be
applied losslessly in the present case.

118 Chapter 3. Schöning’s Algorithm

Random downsampling is the following simple idea. If we have
a k-SAT solver at our disposition and we would like to solve a (d, k)-
ClSP formula F, we can iterate through all variables x occurring in F
and for each variable uniformly at random select two out of the d pos-
sible values for x. We delete all other d− 2 values from Lx. The result
is a k-SAT formula F′ which we try to solve. If a satisfying assignment
is not forthcoming, we repeat.

It is very easy to see that the probability that one attempt at ran-
dom downsampling preserves a fixed satisfying assignment α∗ and
will thus be a success is exactly (2/d)n. Multiplying this with the
success probability for Schöning’s algorithm when plugging in d = 2
yields a total success probability of

2
d

n
·

1
2
· k

k− 1

n+o(n)
=

1
d
· k

k− 1

n+o(n)

and thus we can recover Theorem 3.3 losslessly without the need to
analyze Algorithm 5 for any case other than d = 2.

Furthermore, as we will learn in Section 3.6, there is also a near-
lossless derandomization of this technique, in the following sense.

Lemma 3.4. For each n, there exists a set

Γn ⊆

γ : [n]→

{1..d}

2

, |Γn| =

d
2

n+o(n)

such that for every assignment α ∈ S , there exists γ ∈ Γn with the property
that α is preserved when restricting Lxi to γ(i) for all xi ∈ V. Moreover,
this set is efficiently constructible in the sense that there exists a universal
algorithm which on input n and j will output the j-th element of Γn in time
polynomial in n.

We note that the lemma is trivial in case d is even: simply pair up
the elements of every variable’s alphabet in an aribtrary way and use
the cross product of all the sets of pairs as Γn. For odd d, the situation

3.3. The Local Solver Contrasted 119

is slightly more involved and the general proof will be delivered in
Section 3.6.

We conclude that both for the randomized and for the determin-
istic variant of Schöning’s algorithm, it is fully sufficient to study the
Boolean case. We will therefore assume d = 2 henceforward. Concern-
ing the notation of variable values in the following sections, please
recall that it is customary to consider the alphabet {0, 1} rather than
{1, 2} in the binary case.

3.3 The Local Solver Contrasted7

Similarities between Algorithm 5 and Algorithm 1 are striking and we
have already explained how the two algorithms can be regarded as
the same parameterized procedure. While we do not know to date
whether Algorithm 5 will perform as well as Algorithm 1 on formu-
las satisfying the condition of the Lovász Local Lemma (see Conjec-
tures 3.1 and 3.2), it is not hard to adapt the machinery from the pre-
vious section to draw a conclusion about the performance of Algo-
rithm 1 on general formulas not passing the LLL criteria. With the con-
siderations about random downsampling in mind, we simplify our in-
vestigation by restricting to the Boolean case. What we will find is the
following.

Theorem 3.5. When running Algorithm 1 on any satisfiable k-CNF formula
on n variables, then the probability that a satisfying assignment is output
within Θ(n) resampling steps is at least

1 + λk
2

n+o(n)
,

7This is joint work with Andrei Giurgiu. Parts of this material have been published
in his Master’s thesis [Giu09].

120 Chapter 3. Schöning’s Algorithm

where λk is the unique root in the range (0, 1) of the polynomial

pk(x) = −x +

x + 1

2

k
.

In the case of k = 3, the probability is φn+o(n), where φ ≈ 0.681 is the golden
ratio.

Proof. Analogous to the previous section, we define a common source
of randomness. Again, we use uniform random variables V1 through
Vn which take values from {0, 1} to determine the initial assignment,
where to every variable xi we assign α∗(xi) iff Vi = 1. In contrast to
the previous section, for the resampling steps we need random vari-
ables W j

i for 1 ≤ i ≤ k and j ∈ N, where W j
i takes a uniformly random

value from {0, 1} and is assigned to the i-th variable in the clause Cj
during the j-th resampling step. For determining which variable is
the i-th, we use the same rule we did in the case of Algorithm 5, i.e.
we take the lexicographically first variable where α and α∗ disagree to
be variable number one, and index the remaining k − 1 ones lexico-
graphically. And then we assign to each variable x the value α∗(x) if
the corresponding sample is one and 1− α∗(x) if the corresponding
sample is zero.

As usual, the D-process measures the distances of α from α∗ if Al-
gorithm 5 is executed using the prescribed randomness. We juxta-
posed a regularized E-process which now looks as follows.

We define E0 to be the number of indices j such that Vj ̸= 1. There-
fore E0 = D0. For the evolution steps i ≥ 1, let Ei be defined as

Ei = Ei+1 − 1 +
k

∑
j=0

Wi
j .

We claim that in this case, Di ≤ Ei for all i ≤ N as required. To see
this, note that in the clause Ci, there is at least one variable x where
αi(x) ̸= α∗(x) which we numbered ‘variable one’ before. The other

3.3. The Local Solver Contrasted 121

k− 1 variable can be agreeing or disagreeing. The D-process decreases
by the number of variables which previously disagreed and are resam-
pled to agree and increases by the number of variables which previ-
ously agreed and are now resampled to disagree. The E-processes
decreases by one if and only if the designated disagreeing variable is
flipped and increases by the total number of other variables resam-
pled to disagree. From this comparison, it is obvious that Di ≤ Ei is
preserved during such a step.

Now consider the distribution of the steps in the E-process. Since
the variables are flipped independently, the difference between con-
secutive steps is distributed binomially. More precisely, we find that
in the terminology of Lemma A.7, E is a Markov chain with transition
probabilities

τ(i) =

k
i + 1

·

1
2

k

for all i ∈ {−1, 0, . . . , k− 1}. The lemma now yields that the probabil-
ity that when starting from a fixed state j of reaching zero within Θ(n)
steps is determined by λ

j+o(n)
k , where λk is the unique root in (0, 1) of

the polynomial

pk(x) = −x +

1
2

k
·

k

∑
i=0

k
i

xi = −x +

1 + x

2

k
.

Since E0 is distributed binomially with parameters n and 1/2, we ob-
tain for the total success probability within cn steps

1
2

n n

∑
i=0

n
i

λ

i+o(n)
k =

λk + 1

2

n+o(n)
.

The number in 3-SAT follows by calculating the root.

These success probabilities can easily been checked to be exponen-
tially below the performance of Algorithm 5. And if it appears that
the estimates and the coupling used in this proof might simply be too

122 Chapter 3. Schöning’s Algorithm

lossy for the variant under consideration, the arguments from the fol-
lowing section demonstrate that Theorem 3.5 is actually tight, at least
if a worst-case choice rule (a ‘devil’, see next section) is scheduling
clauses for correction.

3.4 Angels and Devils8

Our next mission is to determine whether Schöning’s analysis of Algo-
rithm 5 is tight. If we scan Section 3.2 for inaccuracies, we find that the
only place we have been rather generous was the coupling argument:
firstly, we have considered only one single satisfying assignment α∗

and secondly, if the algorithm selected a clause where the current as-
signment and α∗ disagreed in more than one variable, we have de-
clared only one of these variables to offer a productive flip and treated
the other ones as if they already agreed. In contrast, the calculations
on the success probability in Lemma A.7 can easily be seen to be tight,
there are no estimates involved there.

It is easy to produce samples of k-SAT formulas where the first as-
sumption, the uniqueness of the satisfying assignment α∗, is tight. For
example, consider the maximal satisfiable formula F+

n on n variables
consisting of all clauses containing at least one positive literal. F+

n
has the unique satisfying assignment α∗ which sends every variable
to one. If this formula is input to Algorithm 5, the only way the algo-
rithm can terminate is when Di = 0. In this case Di = 0 and N ≤ i are
equivalent conditions.

The second assumption, that in the selected clause there is exactly
one variable where the current assignment disagrees with α∗ and thus
whose flipping will be advantageous, moves the focus to an aspect of

8Part of this section is joint work with Andrei Giurgiu and Stefan Schneider. Parts
of this material have been published in their Master’s theses [Giu09, Sch10].

3.4. Angels and Devils 123

the algorithm so far largely ignored: the choice rule.

The description of Algorithm 5 admits in each iteration ‘any’ way
of selecting a clause Ci among all currently violated clauses for fixing.
For the analysis of the success probability, we have fixed an arbitrary
rule for doing this selection so that our random variables would be
well-defined, but the analysis went through for any rule.

The choice rule can make a considerable difference. If F+
n is input

to the algorithm, then selecting an appropriate choice rule can make
the algorithm terminate in polynomial time: as long as the current as-
signment differs from the satisfying assignment in at least k variables
and by the maximality of F+

n , we can have it select a clause such that
all k variables in that clause differ. No matter what literal is chosen
for flipping, the distance to α∗ is bound to decrease by one with prob-
ability one. This can be done until α and α∗ differ by at most k − 1
variables and from that point onwards, the success probability is con-
stantly large according to the standard analysis. In case of failure of
such an attempt, a ‘good’ clause can be selected again and we get an-
other chance. The total number of iterations it takes on average is
linear in n.

On the other hand, another choice rule can select, as long as α∗

and α do not differ in more than n− k variables which is a rare event,
a clause in each iteration in which all but one variable already agree
with α∗ and there is just one the flipping of which would take us closer
to the solution. This situation is in one-to-one correspondence with the
definition of an evolution step of the regularized E-process, resulting
in Schöning’s analysis to be tight in this case.

Choice rules of the latter type is what we will call a devil because
they aim at hindering the algorithm at terminating successfully for
as long as it is in any way possible. Analogously, we call a choice
rule of the former type which can make the algorithm terminate in
polynomial time an angel.

124 Chapter 3. Schöning’s Algorithm

Types of Angels. An important thing to note is that in the examples
of angels and devils for F+

n which we have just presented, computa-
tional issues have not played any role. This is deliberate: choice rules
in the way we want to discuss them are unbounded in computational
resources (implying in particular that they know, e.g., a satisfying as-
signment). We are distinctly not talking about heuristics for choosing
clauses for fixing where the question of how efficient they are in mak-
ing their choice is central. Rather, as the main statement in this section,
we will later go on to demonstrate that there are formulas for which
the choice rule has no significant influence on the time it takes Algo-
rithm 5 to reach the satisfying assignment, not even if computationally
unbounded rules are considered.

Formally therefore, a choice rule is nothing but a mapping which se-
lects, depending on the current state of the algorithm, a clause to be
fixed. We can give choice rules various degrees of insight into an al-
gorithm’s run. The weakest version would tell the choice rule which
clauses are currently violated only. A slightly stronger one could give
the complete current assignment. Even stronger ones could take into
account other information about the algorithm’s execution, like how
many correction steps have been carried out so far. The strongest type
of rule will be the one we apply here: a rule which can take into ac-
count all information about the complete history of the algorithm’s
execution. As such, a choice rule is defined to be any mapping from
the input formula F and the algorithm’s execution journal composed
of ⟨α0, C1, α1, C2, . . . , αi⟩ to some clause Ci ∈ F violated by αi to be
selected in the subsequent correction step.

Let us define an angel for a family {Fn}n∈N of k-SAT formulas
where Fn is over n variables as a choice rule with the property that
the success probability of Algorithm 5 when using this choice rule and
running the algorithm for a number q(n) of steps where q is an appro-
priate polynomial, is lower bounded by the inverse of some polyno-
mial in n.

3.4. Angels and Devils 125

Conversely, a devil for a family {Fn}n∈N of k-SAT formulas where
Fn is over n variables is a choice rule such that for any polynomial q(n),
the probability which Algorithm 5 has to succeed, even if we allow it
to make q(n) correction steps before we abort, is upper bounded by

k
2(k− 1)

n+o(n)
.

The maximal satisfiable formulas F+
n we have discussed in the in-

troductory example admit both angels and devils as selection rules.
For some formulas, angels exist but finding them is highly non-trivial.
The Master’s thesis of Andrei Giurgiu [Giu09] features a collection of
such formulas and the corresponding angels.

Also, one can discuss the various possible definitions of angels and
compare their strength and universality properties. In [Giu09], many
different definitions are being compared and constrasted.

Perhaps the most interesting distinction is the one between angels
in probability and angels in expectation. Instead of letting Algorithm 5
run for q(n) many steps for some polynomial q and asking the success
probability within that time frame to be polynomial (which is what
we call an angel in probability), we could instead consider letting Al-
gorithm 5 run for an arbitrary number of steps and ask that the ex-
pected number of steps it takes to arrive at a satisfying assignment be
bounded by some polynomial q(n) (which we call an angel in expecta-
tion).

While it is clear by Markov’s inequality that an angel in expectation
is also an angel in probability for suitably chosen polynomials, the
converse is not true. Consider the family of formulas {F+

n }n≥k we
defined previously. Recall that for any assignment α with

k− 1 ≤ dist(α, α∗) ≤ n− k + 1

there always exists at least one violated clause where all variables dif-
fer between α and α∗ and one violated clause where only exactly one

126 Chapter 3. Schöning’s Algorithm

variable does. Let now R be a choice rule which, if α is the current
assignment, selects a clause of the former type whenever

k− 1 ≤ dist(α) ≤ n
2
−
√

n

and a clause of the latter type in all other cases. The probability that
the starting assignment will satisfy

dist(α0, α∗) <
n
2
−
√

n

is inversely polynomial since the distance is binomially distributed.
Given that this event occurs, since R will then select clauses where all
variables differ until we reach a state with

dist(α0, α∗) = k− 1,

the probability that we reach the satisfying assignment in n steps is
constant as in the introductory example. Therefore, R is an angel in
probability for {F+

n }n. On the other hand, the probability that the
starting assignment will satisfy

dist(α0) >
n
2
+
√

n

is also bounded from below by the inverse of a polynomial. But if
we start there, then the choice rule will select clauses with just one
productively flippable variable at least as long as we have not reached
a state with

dist(α, α∗) ≤ n/2−
√

n.

But the expected time it takes to overcome these 2
√

n states with cor-
rections steps successful only with probability 1/k is – as we know
from the analysis of Markov chains in Lemma A.7 – clearly exponen-
tial in

√
n and hence superpolynomial in n. Therefore, R is not an

angel in expectation for {F+
n }n.

Still, the choice rule R is a somewhat artificial rule constructed with
the goal in mind of exhibiting exactly this hybrid behavior. As we al-
ready know, the given family of formulas admits both a pure devil and

3.4. Angels and Devils 127

a pure angel. Unfortunately, we have so far not been able to establish
the following conjecture.

Conjecture 3.6. If a family {Fn}n∈N of formulas admits an angel in proba-
bility then it also admits an angel in expectation.

In this section, we are however not so much considered with dif-
ferent possible definitions of angels but rather with the tightness of
Schöning’s analysis. We will now establish that there exist formulas
which do not only not admit angels but rather which always take the
same expected effort, no matter what choice rule is being used.

Worst Case Formulas. For any k, we construct a family of k-SAT for-
mulas {F∼k

n }n∈N with the property that the choice rule cannot make
any substantial difference. We call these formulas chain formulas based
on their shape: each F∼k

n over the variables {x1, x2, . . . , xn} consists of
all the 2k − 1 clauses over {x1, x2, . . . , xk} which contain at least one
positive literal and then additionally for i ≥ k + 1 one more clause
{xi−k+1, . . . , xi−1, xi} each. The core of the first 2k − 1 clauses enforces
that the only satisfying assignment must set the first k variables to
one. The chain of remaining clauses attached to it then enforces that all
other variables be set to one as well. There is hence only one unique
satisfying assignment α∗. We now prove that the choice rule has little
influence on the success probability of Algorithm 5.

Theorem 3.7. Let q(n) be any polynomial. The probability with which Al-
gorithm 5, on input F∼k

n , outputs a satisfying assignment after at most q(n)
correction steps, equals

k

2(k− 1)

n+o(n)
.

Or stated differently, all choice rules are devils on the family {F∼k
n }n∈N.

128 Chapter 3. Schöning’s Algorithm

Proof. The idea is that we consider each variable xi for i > k as a sep-
arate random process with the goal of setting it to ‘true’. If xi is set
to ‘true’ in the initial assignment, this process is immediately termi-
nated. Otherwise, there is only one way of fixing the variable, namely
the selection of clause Di := {xi−k+1, . . . , xi−1, xi} by the choice rule.
Once this happens, there is a one in k chance that xi will be fixed and
the process terminates. In all other cases, another variable previously
set to the correct value ‘true’ will be reset to ‘false’. We consider this
newly appearing ‘mistake’ as being the ‘fault’ of xi. By virtue of the
shape of the formula, the newly created mistake will have to be fixed
well-before another attempt at flipping xi can be made, because Di is
satisfied as long as the other variable stays set to ‘false’. The analysis
then counts the number of ‘faults’ currently to be ‘blamed’ on xi and
analyses the evolution of this number as a separate random process.

Let us formalize. We define the blame assignments βi : V → V ∪ {◦}
for all 0 ≤ i ≤ N as follows. Initially, for all xj ∈ V

β0(xj) =

xj if α0(xj) = 0

◦ otherwise
.

In words, initially each variable set to zero is blamed for its own cur-
rently wrong value. And each variable set to one is free of blame.
In the subsequent evolution steps of the algorithm, we propagate the
blame of any variable set to zero to variables newly set to zero during
an attempt at fixing the variable. That is we set, for all i ≥ 1,

βi(xj) =

◦ if αi(xj) = 1

βi−1(xr) if αi(xj) = 0 and Ci = Dr and xj ∈ vbl(Dr)

βi−1(xj) otherwise

.

So in each step, if a variable is flipped from zero to one, the corre-
sponding variable gets mapped to ◦. If the choice rule selects a clause
from the chain and if a variable is flipped from one to zero, then this

3.4. Angels and Devils 129

variable inherits the blame value from the variable xr which supplies
the only positive literal in the clause Dr being selected. If a core clause
is selected for flipping, blame is not propagated.

Taking a closer look at the blame assignments, we see that in the
vectors ⟨βi(x1), βi(x2), . . . , βi(xn)⟩, non-◦-values occur sorted, i.e. no
variable xj can occur to the left of a variable xj′ with j′ < j. This is
because a new non-◦-value xj can in βi only appear in one particular
case, namely if Dr is selected for correction where xr is the leftmost
variable having βi−1(xr) = xj, and the k − 1 variable to the left of xr

must currently be assigned ◦ as otherwise Dr could not be selected.
For the same reason, between any two occurrences of the same vari-
able, there are at most k− 1 other positions which are all assigned the
value ◦. Conversely, a new ◦ can only appear when it replaces the
leftmost occurrence of some variable.

We will now consider for each xj with j > k a random process

{M(j)
i }i∈N0 which we define as

M(j)
i = |{x ∈ V | βi(x) = xj}|.

These processes are resting in most of the cases. As argued above,
the value M(j)

i can change only in two cases: either Dr is selected for
correction where xr is the leftmost variable blamed on xj. In this case,
with probability 1/k, the process decreases, with the remaining proba-
bility it increases by one. The other case occurs if the leftmost variable
blamed on xj is one of the variables x1 through xk. In this case the
process can only decrease.

The influences of the separate variables are now disentangled. For
the algorithm to arrive at the satisfying assignment, all processes must
decrease to zero. And the processes evolve independently of one an-
other: the only type of influence there is between two processes is that
if one process increases so much that the leftmost variable it includes
and the rightmost variable of the next non-zero process to its left occur

130 Chapter 3. Schöning’s Algorithm

together in one clause, then that process is blocked from further evolu-
tion until the process to its left decreases to zero and terminates. Only
then can the right process continue to evolve.

Consequently, the influence of the choice rule is reduced to a mini-
mum: it can only choose which of the parallel processes to evolve at
what time, subject to blocking constraints. Apart from that, the pro-
cesses run independently and their transition probabilities are prede-
termined and cannot be influenced by the rule.

Therefore, we can upper bound the success probability under any
arbitrary choice rule by bounding the probability that all the processes
hit zero when run in parallel for the given q(n) steps. For each pro-
cess, its probability of hitting zero gets only larger if we assume that
all q(n) steps evolve this process when in reality the choice rule may
pause it (may even have to pause it) during lots of these steps. Looked
at this way, each process corresponds to a Markov chain which in each
step decreases with probability 1/k and increases with the remaining
probability. Or, if the value of the process is so large that its leftmost
position occurs in the core clauses, then it always decreases with prob-
ability one.

In other words, for every variable xi for i > k, we have a Markov
chain with transition probabilities τ(−1) = 1/k and τ(1) = (k −
1)/k which has a reflection point at i/(k − 1), where we are gener-
ous because the reflection can as well occur only much later, depend-
ing on the number of ◦-positions between consecutive occurrences of
xi, which will influence matters only in favor of the proof goal. With
probability 1/2, this chain is activated with starting state one, which
is the initial number of blames on xi. With probability 1/2, it is not ac-
tivated at all. According to Lemma A.12 where such chains are being
considered, the probability that it hits zero when starting at state one
is at most

1
k− 1

+ q(n) ·

1
k− 1

 i
k−1

.

3.4. Angels and Devils 131

The algorithm is successful only if all the variables xi for i > k are
either one already in the beginning or are being fixed. Since we have
demonstrated that the fixing processes evolve independently, we ob-
tain that the total success probability cannot be any larger than

n

∏
i=k+1

1
2
+

1
2
·

1
k− 1

+ q(n) ·

1
k− 1

 i
k−1

.

This can be rewritten as

n

∏
i=k+1

k

2(k− 1)

k
2(k−1)

n+o(n)

·
n

∏
i=k+1

1 + q(n) · 2(k− 1)

k
·

1
k− 1

 i
k−1

:=ϕn

.

The left product yields the success probability we are aiming for. The
right product is the correction factor representing the additional suc-
cess probability caused by the possibility of reflections at the core clau-
ses. It remains to show that ϕn is subexponential in n.

To see this, let I(n) be the smallest integer i such that the bracketed
expression is below two. Note that since the second summand in the
bracket is exponential in i, I(n) is polylogarithmic in n. If we split the
product at i < I(n) versus i ≥ I(n), we obtain

ϕn ≤ (1 + 2q(n))I(n)−k ·
n

∏
i=I(n)

1 + q(n) · 2(k− 1)

k
·

1
k− 1

 i
k−1

,

where we have used that our factors are upper bounded by (1+ 2q(n))
even for small i. We note that the first part of this product is subex-
ponential because I(n) is polylogarithmic and all the factors there are
polynomial in n. For the second part of the product, we note that since
i ≥ I(n), the second summand of each factor is a constant below one
times something which decreases exponentially with i. We can thus
use the variable transformation i′ = i− I(n) and apply Lemma A.1 so

132 Chapter 3. Schöning’s Algorithm

as to obtain

ϕn ≤ 2o(n) · exp

 n

∑
i′=0

1

k− 1

 i′
k−1

 = 2o(n),

since the geometric series is clearly convergent.

This demonstrates that there exist formulas for which Schöning’s
original analysis is tight, no matter what rule is used for the schedul-
ing of violated clauses for correction.

3.5 Typical Executions9

As outlined, the main contribution of this chapter will be a deter-
ministic variant of Algorithm 5. There are many standard techniques
around for derandomizing algorithms but very few of them seem to be
applicable to the setting of exponential time search problems. At any
rate, the most basic advice to give to anybody trying to derandom-
ize an algorithm is to study the randomized variant more closely and
figure out whether there are obvious reasons why the number of ran-
dom samples used is superfluously abundant. This is what we will do
here and once we understand this question in the case of Schöning’s
algorithm, the derandomized variant will in fact be immediate.

In Schöning’s algorithm, random decisions are taken to generate
an initial assignment α0 to start from and then in every step to select
a variable x ∈ vbl(Ci) for flipping. The choice of initial assignment
thereby consumes n random bits once, the choice of x ∈ vbl(Ci) an-
other log k bits per iteration. We have already figured out that cn of

9This is preparatory work for the derandomization in Section 3.7 which is joint work
with Dominik Scheder and has appeared in [MS11]. A similar write-up has appeared in
[MW12b].

3.5. Typical Executions 133

these steps suffice to achieve an optimal success probability, where c
is the constant we proved to exist, and so if we interrupt the algorithm
after this number of steps, it has consumed a total of

q := n + log k · cn

random bits at most. Out of all the 2q many possible random bit-
strings, according to Theorem 3.3, at least a fraction of

1
2
· k

k− 1

n+o(n)

must lead to successful termination outputting a satisfying assign-
ment. However, without knowledge of the distribution of these ’good’
bitstrings within the set of possible bitstrings, a straightforward brute
force approach at derandomization must iterate through all of the lat-
ter, resulting in a running time very much worse than the randomized
one. The next step is therefore to identify traits of ’typical’ success-
ful executions of the algorithm such that if we look at all random bit-
strings of a certain shape, we are sure to hit one of the good ones.

To become formal, we recall the definition of the E-process from
Section 3.2 which we coupled to the much less controllable behavior
of the algorithm. Let us denote by

S := {NE ≤ cn}

the event that the process hits state zero before doing any more than
cn evolution steps. We have demonstrated that if S occurs, then Al-
gorithm 5 succeeds to output a satisfying assignment within the pre-
scribed number of steps as well via the coupling argument. We have
further demonstrated that

Pr [S] ≥

1
2
· k

k− 1

n+o(n)
,

from which, as we recall, Theorem 3.3 followed.

134 Chapter 3. Schöning’s Algorithm

Now let E be any arbitrary event determined by an evaluation of
the E-process. We call the event E typical for Schöning if it has a high
coincidence with successful executions, namely if

Pr [E ∩ S] ≥

1
2
· k

k− 1

n+o(n)
.

Note that for such an asymptotic statement to be well-formulated, E =

E(n) must in fact represent a whole sequence of events, one for every
number n as we also define one E-process for every n. In the sequel,
this is implicitly understood and we omit all indices for conciseness.

Intuitively, if in addition to success S we additionally ask E to oc-
cur, this lowers the probability only by a subexponential and in the
context therefore negligible amount. For our purposes, this will mean
that if we identify some E which is typical, it will be okay to analyze
the performance of the algorithm considering only S ∩ E to be ‘a suc-
cess’. As such a restriction does not impair the performance of the
algorithm, it is harmless to impose, and as on the other hand finding
a suitable E can narrow down the ampleness of possible paths lead-
ing to success to a more streamlined class, it may – and will – help
to identify an optimal or near-optimal hitting set for the purpose of
derandomization.

Observe that finding typical events is not difficult. Whenever we
consider all paths leading to success S, any partition of these into
subexponentially many classes contains at least one part which is typi-
cal. For instance, consider, for fixed 0 ≤ j ≤ n, the event {E0 = j} that
the starting state is at distance j from zero. Since the union of these
events over all j cover the whole probability space and since there are
only n many in total, one of them at least must intersect at least a 1/n-
fraction of the measure of S and thus be typical.

Theorem 3.8. Let f = o(n), f = ω(1) be some positive, slowly growing
integral function and define the parameters

z := ⌊n/ f (n)⌋,

3.5. Typical Executions 135

j :=

1
k
· f (n)

,

r :=

1
k(k− 2)

· f (n)

,

l := r + j ≈ k− 1
k(k− 2)

· f (n),

t := r + l ≈ 1
k− 2

· f (n).

The intersection of the following events is typical for Schöning.

(i) E0 = jz
(ii) for all integers 0 ≤ b ≤ z,

|{bt + 1 ≤ i ≤ (b + 1)t | Ei = Ei−1 − 1}| = l,

|{bt + 1 ≤ i ≤ (b + 1)t | Ei = Ei−1 + 1}| = r.

The proof is a technical calculation and is carried out in detail in
Appendix A.18.

What it tells us intuitively is that a large fraction of successful ex-
ecutions of the E-process, so large that we are okay with ignoring the
rest, starts exactly at state n/k, then progresses towards zero in phases
of t steps each in such a way that in each phase, there are l steps where
the E-process decreases and r steps where it increases, to finally be at
zero after exactly zt steps (not implying that it could not have reached
zero already slightly earlier).

This will provide us with an almost straightforward recipe for de-
randomizing Algorithm 5. The tent poles are: first find an assignment
α0 to start from which has distance at most n/k from α∗, then for a suit-
able, slowly growing function f (n), execute z phases of t flips, making
sure that in each phase we make at least l good flips and at most r bad
flips. This is exactly what we will do in Section 3.7. There will be some
special cases which we have to care about, and for actually finding α0

136 Chapter 3. Schöning’s Algorithm

and suitable flipping patterns, we need another key ingredient, the
covering codes.

3.6 Covering Codes10

In this section, we investigate different types of codes which we will
be using in our deterministic variant of Schöning’s algorithm.

Let Σ be a finite set which we call the alphabet. As usual, we use
the notation Σn to denote all strings of length n over Σ. A code over Σ
of length n is a set Cn ⊆ Σn. The size of a code Cn is |Cn|.

A code sequence is a sequence C = ⟨C1, C2, . . .⟩ of codes where Cn is
a code over Σ of length n. For a code sequence, we say that C has size
λ ∈ [0, 1] if Cn has size λn+o(n) for all n. A code sequence C is efficiently
constructible if there exists an algorithm which on input two integers n
and j, outputs the j-th codeword of Cn in time polynomial in n.

A code property P is a sequence P = ⟨P1,P2, . . .⟩, where for each n,
Pn is a set of codes over Σ of length n. A code C of length n is said to
satisfy property P if C ∈ Pn. We say that property P is multiplicative
if it is true that whenever C1 ∈ Pn, C2 ∈ Pm are two codes of length
n and m satisfying P , then their cartesian product C1 × C2 ∈ Pn+m is
satisfying P too. A code sequence C satisfies a code property P if Cn ∈
Pn holds for all n. We say that P is efficiently checkable if there exists
an algorithm to determine whether a code C given as input satisfies P
which runs in time polynomial in n · |C|.

With these notions in mind, we find a generic formulation for a
family of codes which are efficiently constructible.

10None of the results presented here are new. Some of the material appears in [MS77]
and it has been applied already in the first derandomization of Schöning due to Dantsin
et al. [DGH+02]. Much of it is sufficiently elementary to consider it folklore.

3.6. Covering Codes 137

Lemma 3.9. If P is a multiplicative and efficiently checkable property and
there exists a code sequence C of size λ satisfying P , then there also exists
a code sequence C′ of size λ satisfying P which is moreover efficiently con-
structible.

Proof. Since P is a multiplicative property, a block construction can
be used to produce a corresponding code. We provide an algorithm
which on input (n, j) outputs the j-th codeword of C ′n, the desired
code, in time polynomial in n.

Let t = ⌈log log log n⌉, r = ⌊n/t⌋ and r′ = n− rt < t.

We first produce codes C̃t and C̃r′ which both have property P and
size at most λt+o(t) and λr′+o(t) in time polynomial in n. This is possi-
ble because C is proof that there exist codes of these dimensions satis-
fying P and because r′ < t ≈ log log log n, we can try all 22t

possible
codes of length t until we find suitable ones in time polynomial in n.

Now we define C ′n :=

C̃t
r × C̃r′ as the cartesian product of r fac-

tors Ct and once Cr′ . This produces a code of exactly length n and of
size λrt+r′+ro(t) = λn+o(n) as desired and by P being multiplicative, C ′n
has property P .

Without explicitly building the code, we now can output the j-
th word by simply concatenating the corresponding words from the
smaller codes.

Hereafter, we consider two particular multiplicative code proper-
ties of which we will make use in our derandomization.

Covering Codes. Consider the alphabet Σ = {1..d}. Let, for any
arbitrary t ∈ [0, 1], K(t) denote the property of d-ary codes which
is satisfied for any code C ⊆ Σn for which any word w ∈ Σn has a

138 Chapter 3. Schöning’s Algorithm

codeword w′ ∈ C at distance at most tn, in signs

∀w ∈ Σn : ∃w′ ∈ C : dist(w, w′) ≤ tn.

Let us call a code satisfying this property is called a covering code of
covering radius t. The property is clearly multiplicative and so using
Lemma 3.9, once we know the required size for such a code, there is
also a constructive version of it. For the size, we establish the follow-
ing.

Lemma 3.10. For any t ∈ [0, 1/2) and any alphabet Σ of size d, there exists
a code sequence of size

λ := d · (1− t) ·

t
(d− 1)(1− t)

t

satisfying K(t).

Proof. We prove existence of Cn separately for every n. The existence of
the sequence then follows. Now for fixed n, we produce Cn by picking
s codewords uniformly at random with replacement. For every fixed
w ∈ Σn, the probability that there exists no w′ ∈ C having

dist(w, w′) ≤ tn

is at most
1− vold(n, tn)

dn

s
≤ exp

−s · vold(n, tn)

dn

,

where we have used Lemma A.1 and where we define

vold(n, r) := |{w′ ∈ Σn | dist(w, w′) ≤ r }|

which does not depend on w ∈ Σn. By a union bound, the probability
that there is any w ∈ Σn for which there exists no such w′ is at most

dn · exp

−s · vold(n, tn)

dn

.

3.6. Covering Codes 139

This probability drops below 1
2 if we set

s :=

2 · n · ln d · dn

vold(n, tn)

.

With the probability below 1
2 , there is a positive probability that all

words are appropriately covered and thus the required code exists.
Finally, we note that by Lemma A.13,

vold(n, ⌈tn⌉) =
⌈tn⌉

∑
i=0

n
i

(d− 1)i =

1

1− t

(d− 1)(1− t)

t

t
n+o(n)

.

We note that this code is optimal in the sense that for any smaller
value of λ, a code satisfying K(t) of size λ does not exist. This fol-
lows along the same lines as the lemma: each codeword has vold(n, r)
words at distance at most r and thus any code of a smaller size must
leave some words for which the closest codeword lies farther away.

For later use, let us denote by CoveringCode(d, t, n, j) an algorithm
which produces a d-ary covering code of length n satisfying K(t) by
outputting on demand the j-th codeword.

Next, we investigate code sequences which we need in order to
establish Lemma 3.4 of which we still owe the proof.

Box Coverings. Consider the alphabet

Σ =

{1..d}

2

.

Let L denote the property of codes over Σ which is satisfied for any
code C ⊆ Σn such that for every word w ∈ {1..d}n, there exists a
codeword w′ ∈ C which covers that word, i.e.

∀w ∈ {1..d}n : ∃w′ ∈ C : ∀i ∈ {1..n} : wi ∈ w′i .

140 Chapter 3. Schöning’s Algorithm

We call a code satisfying this property a box covering of the d-ary space.
The property is clearly multiplicative and so using Lemma 3.9, once
we know the required size for such a code, there is also a constructive
version of it. For the size, we establish the following.

Lemma 3.11. There exists a code sequence of size d/2 satisfying L.

Proof. For every n, we provide a randomized construction for the code
Cn. From this, existence of the sequence follows. To build Cn, we pick
s codewords over Σ uniformly at random with replacement. For any
fixed w ∈ {1..d}n, the probability that a random word of length n over
Σ covers w is (2/d)n. The probability that w remains uncovered after
picking s words is therefore

1−

2
d

ns

≤ exp

−s ·

2
d

n
and the expected total number of uncovered words is

dn · exp

−s ·

2
d

n
.

This drops below one half if we set

s :=

2 · n · ln d ·

d
2

n
,

so that a code of the claimed size exists.

Lemma 3.4 now follows as a simple corollary from Lemma 3.11
and Lemma 3.9.

3.7 Deterministic Local Search11

We now go on to prove the following.

11This is joint work with Dominik Scheder and has appeared in [MS11].

3.7. Deterministic Local Search 141

Theorem 3.12. There exists a deterministic algorithm which on input a sat-
isfiable k-CNF formula F, outputs a satisfying assignment in time

2 · k− 1
k

n+o(n)
.

This matches the performance of randomized Schöning from The-
orem 3.3. Recall that via Lemma 3.4, this running time translates to a
lossless derandomization for the (d, k)-ClSP case as well.

Corollary 3.13. There exists a deterministic algorithm which on input a
satisfiable (d, k)-ClSP formula F, outputs a satisfying assignment in time

d · k− 1
k

n+o(n)
.

Our derandomization builds closely on previous work. We will
now first explain the key idea of how Dantsin, Goerdt, Hirsch, Kan-
nan, Kleinberg, Papadimitriou, Raghavan, and Schöning [DGH+02]
provided the first deterministic variant of Algorithm 5.

The Approach by Dantsin et al. In Section 3.5, we have identified
‘typical behavior’ of the randomized variant when run on a k-CNF
formula. One of the discoveries we made was that there is a radius at
around n/k such that if we consider only those executions a ‘success’
which start at an initial assignment α0 at distance exactly n/k from
the fixed satisfying assignment α∗ and dismiss all others, the overall
success probability of the algorithm decreases only by a negligible,
subexponential factor. Hence it suffices to consider such executions.

The intuition that the same thing should be done in a deterministic
version led to the algorithm due to Dantsin et al. [DGH+02] (see Algo-
rithm 7). It builds a covering code of radius 1/k and tries using each of
its codewords as initial assignment. From Lemma 3.10 in conjunction

142 Chapter 3. Schöning’s Algorithm

Algorithm 7 SchoeningDeterministic(F)
Require: A satisfiable k-CNF formula F.
Ensure: Output is a satisfying assignment.

1: j← 1
2: while codeword α← CoveringCode

2, 1

k , n, j

exists do
3: β← SearchBall(F, α, n

k)
4: if β satisfies F then
5: return β

6: end if
7: j← j + 1
8: end while

with Lemma 3.9, we know that an efficiently constructible such code
having at most 2 ·

1− 1

k

·

1
k

(1− 1
k)

 1
k
n+o(n)

(3.2)

codewords exists. When starting a search from each of them, we are
sure that in one of the attempts, the satisfying assignment α∗ is at dis-
tance at most n/k from the α0 so chosen. This approach is optimal in
the sense that the number of steps (number of codewords) we need
matches the inverse of the probability which the randomized algo-
rithm has to fetch a starting assignment at distance n/k, up to negligi-
ble, subexponential factors (see discussion after Lemma 3.10.

What we now additionally need is a suitable deterministic proce-
dure SearchBall which can, starting from such an assignment, search
the ball of radius n/k around α0 for a satisfying assignment. Apart
from a brute force enumeration ignoring the formula F, the second
most simplistic way of doing this is summarized in Algorithm 8: un-
less the center of the ball we are searching is itself a satisfying assign-

3.7. Deterministic Local Search 143

ment, we search in the neighborhood, thereby ignoring places which
are clearly unsatisfying; in each step we pick a clause C ∈ F which is
currently violated so that we know that one of its k variables must re-
ceive a different value in α∗ and we try flipping each of them, one after
the other. In at least one of these attempts, we are sure to be one step
closer to α∗ and thus we recursively invoke the procedure to search
the ball with a decreased radius centered at the modified assignment.

One detail of SearchBall is interesting to note. For the recursive
invocation, not only does it change the value of the flipped literal ui
within assignment α′ to be used as the new center of the ball to search,
but also it assigns, permanently, the new value to ui by substitution
into the formula F, producing a simplified formula F′. With the simple
search strategy applied here, this is legitimate and could save some
time: once we decide that flipping the literal ui is the right choice,
then within this branch of the execution there is no reason for us to
ever flip it back. Removing the variable from the formula makes the
formula smaller and prevents us from selecting the same variable for
flipping on deeper recursion levels.

What is the running time of SearchBall? Clearly, if we call it for
a ball of radius r, then it invokes itself recursively for radius r − 1 at
most k times as the largest clauses in the formula contain no more than
k literals. On each recursive level, computations done are polynomial.
Therefore, the total running time amounts to kr+o(n). In contrast to
the choice of initial assignment, this is not optimal because, if we do
the calculation (see Section 3.5), then the ‘ball searching part’ of the
randomized algorithm has a success probability of (k − 1)−r−o(n). In
order to derandomize it losslessly, the deterministic procedure would
need to exhibit the same performance.

In total, there are as many top-level invocations for r = n/k as
there are words in our covering code used for the initial assignments
(see expression (3.2)). Multiplying this by the running time kr+o(n) per
invocation, we obtain the following.

144 Chapter 3. Schöning’s Algorithm

Theorem 3.14. Algorithm 7 finds a satisfying assignment to any satisfiable
k-CNF formula on n variables in deterministic time

2

k− 1
k

 k−1
k
n+o(n)

.

In comparison to the randomized version, there is a loss which
manifests as an additional exponent smaller than one in the factor rep-
resenting the algorithm’s advantage over a brute force approach. For
3-SAT, this means a running time of O(1.527n).

Dantsin et al. [DGH+02] have improved on this time by a variety
of means. First and foremost, a simple observation is that as long as we
stick to a ball searching subroutine which is slower than optimal, n/k
is not the right radius to choose for the covering code. The number n/k
was the result of the analysis of random executions and it is the point
where the success probability peaks given that the iterative local search
is optimal12. By optimizing the covering code radius, they decreased
the running time to O(1.5n).

As a next step, Dantsin et al. observed that there are improvements
possible over the procedure SearchBall. For a vague idea, recall the
more old-fashioned splitting and branching rule type of algorithms
at which we had a short look in Section 3.1. Some ideas of this sort
carry over to the splitting and branching done within the search ball
procedure. Following up Dantsin et al., the step-wise improvements
by Brueggemann and Kern [BK04], Scheder [Sch08] and then Kutzkov
and Scheder [KS10] all based on more and more sophisticated branch-
ing rules within the SearchBall routine.

However sophisticated these advancements, the principle of split-
ting and branching has its inherent limits. Arguably, the problem with

12’Optimal’ here always means ’matching the performance of the randomized vari-
ant’ as analysed during the discussion of typical executions.

3.7. Deterministic Local Search 145

it is the fact that on each flip, variables are assigned values for good
rather than in a way which can be reversed if necessary. And as we
have seen in our investigation of typical executions in Section 3.5, al-
lowing for wrong flips and (re-)correcting them later is exactly what
gives Schöning’s algorithm its full power.

We will now devise a ball searching strategy which resembles the
randomized variant much more closely and which we will prove to
run in optimal13 time (k − 1)r+o(n). Note that we will be done once
we manage to do this, because multiplying this running time by the
number of codewords used as initial assignments given in (3.2) then
readily yields the theorem.

Few Large Clauses. On the way there, the first observation is that in
some special cases, the simple procedure SearchBall already exhibits
this performance. Suppose for example that the (≤ k)-CNF formula F
handed over and the current assignment α are such that all clauses vio-
lated by α have k− 1 or less literals. As the procedure selects a smallest
violated clause and branches on each of its literals, this incurs at most
k− 1 recursive invocations. Furthermore, since, and here this becomes
vital, SearchBall does not only modify the current assignment α but
substitutes values for the variables permanently, the only newly vio-
lated clauses which can appear as a result of such a substitution will
again feature at most k− 1 literals. So if the formula has only violated
clauses with at most k − 1 literals, then this property will be forever
preserved along the recursive calls. We have thus demonstrated the
following.

Lemma 3.15. If F is an (≤ k)-CNF formula and α is an assignment such
that all clauses in F violated by α have at most k− 1 literals, then the proce-
dure SearchBall (F, α, r) runs in time (k− 1)r+o(n).

13Again, optimal means that it matches the performance of its randomized counter-
part. We do of course not claim there is no better procedure.

146 Chapter 3. Schöning’s Algorithm

If an (≤ k)-CNF formula F has some violated k-clauses but not too
‘many’ in a sense to be made more precise, then one can make sure that
they are being treated and made to disappear. To that end, the proce-
dure SearchBallOrLargeIS takes F, α and r like SearchBall, plus an
additional parameter t ∈ N. If the ball of radius r around α contains
a satisfying assignment, it outputs one of two things: either a satisfy-
ing assignment, or an independent set of at least t many k-clauses in F
which are all violated by α, so as to ‘justify’ why a standard ball search
will not be efficient on this input.

Let us determine the running time of this procedure.

Lemma 3.16. If SearchBallOrLargeIS outputs an independent set of at
least t clauses, it does so in polynomial time. If it outputs a satisfying assign-
ment or ‘no’, then this takes up to 2kt · (k− 1)r+o(n) time.

Proof. The first part is clear as a maximal independent set can be gen-
erated greedily and if one of the required size is found, then it is im-
mediately returned.

Only otherwise does the algorithm iterate over all assignments
over the variables occurring in the maximal independent set M ex-
haustively and call standard SearchBall each time. These invocations
are on pairs F and α such that each clause in F violated by α contains
at most k − 1 literals, as everything else would be a contradiction to
the maximality of M. Therefore, according to Lemma 3.15, each invo-
cation of the latter takes (k − 1)r+o(n) time at most. And the number
of times we try is exactly 2kt as we are iterating over all assignments
to the variables occurring in M of which there are kt many.

The algorithm SearchBallOrLargeIS conducts its actual search ex-
clusively in those cases where we know the running time will be op-
timal. Otherwise, we obtain a large independent set of currently vi-
olated k-clauses much like a ‘justification’ why a standard ball search

3.7. Deterministic Local Search 147

will not be efficient on this input. And in fact, if we see a large inde-
pendent set of currently violated k-clauses, then we can instead do
something smarter much more closely inspired by the randomized
model.

Reversible Flips. We flip back a few pages to have another look at
Theorem 3.8, which we wanted to use as a guide to derandomizing
Schöning. It tells us that typical executions leading to success start at
an initial assignment at distance n/k and then proceed very regularly
towards the target assignment, where ‘regularly’ means that for any
slowly growing function14 t(n), among every t(n) iterations, roughly
a 1/k-fraction results in ‘bad’ flips leading us away from α∗ while the
remaining flips are ‘good’ flips which compensate for the bad flips and
take us towards the solution.

We properly put the first half in place: the deterministic search for
a starting assignment at distance n/k is settled. It is now time to take
care of the other part. For some slowly growing function f (n), we
want to make ‘phases’ of f (n) flips each. And in each phase, we want
to be sure to be making at most 1/k mistakes. It seems we can no longer
allow values to be substituted for variables for good. Instead, we have
to proceed as the randomized variant, changing, possibly repeatedly,
assignments in α. But how to conduct the flips deterministically?

The first key idea is to use independent sets of clauses. If we want to
proceed in phases of f (n) flips each and we want to make these flips
all at once instead of one after the other, then we should select for the
purpose an independent set of f (n) clauses which are all currently vi-
olated. In such an independent set, we can decide on one of the literals
in each clause to be flipped independently of what we are doing in the

14Note that we use t = t(n) as in Theorem 3.8 for the number of evolution steps per
phase for consistency. As f (n) was allowed to be any slowly growing function for the
theorem, so is t(n).

148 Chapter 3. Schöning’s Algorithm

other clauses. This is not normally possible: if the clauses are selected
one after the other and arbitrarily, then the question which clause will
be fixed next may very well depend on which literal we flip in the pre-
vious one. We do not have to be concerned about finding a set of f (n)
clauses all of which are currently violated, as we already have the pro-
cedure SearchBallOrLargeIS which will either provide us with one
or conduct the search optimally.

Now suppose that we receive an independent set M ⊆ F of t clau-
ses of size k all of which are currently violated by α. Let us call them

M = {C1, C2, . . . , C f (n)}

and call the literals they contain

Ci = {ui1, ui2, . . . , uik},

for all i. We then select the first f (n) clauses, C1 through C f (n), for si-
multaneous fixing in this phase. Note that since α∗ satisfies all of these
clauses, it satisfies at least one of the literals in each clause. Denote by
ζi for all 1 ≤ i ≤ f (n) the index of the first literal in Ci satisfied by
α∗. Note that we have done the very same thing for the analysis of the
randomized version: if we now pick values X1, . . . , X f (n) ∈ {1 . . . k}
uniformly at random, we have a probability of 1/k in each clause of
flipping the designated ζi-th literal which will take us one step closer
to α∗. And as our analysis of typical executions has shown, success
probability peaks in cases where this happens in all but 1/k-fraction
of the clauses. To do the same thing deterministically, we should now
find values x1, . . . , x f (n) ∈ {1..k} such that for at most 1/k-fraction of
the indices i, xi ̸= ζi disagree. As we can see, this is nothing else but
yet again a covering code. This time not a code to cover the solution
space with assignments, but a code to cover the space of possible such
‘flipping patterns’. Using Lemma 3.10, there exists a code of k-ary
words and covering radius 1/k, i.e. with the property that for each
possible string ζ1ζ2 . . . ζ f (n) which we have to be prepared for, there

3.7. Deterministic Local Search 149

exists a word w1w2 . . . w f (n) such that all but a 1/k-fraction of the dig-
its agree with it and which has at mostk ·

1− 1

k

·

1
k

(k− 1)(1− 1
k)

 1
k
 f (n)+o(f (n))

=

=

(k− 1)

k−2
k

 f (n)+o(f (n))
.

codewords. For one of these codewords, we are sure that it has only
1/k-fraction of ‘mistakes’ and will therefore take us at least

k− 2
k
· f (n)

steps closer to α∗. Note that the performance is optimal: overcom-
ing any distance r takes an effort of (k− 1)r+o(n) branches we have to
explore. The procedure is summarized as SearchBallFast in Algo-
rithm 10.

Lemma 3.17. SearchBallFast runs in time (k− 1)r+o(n).

Proof. According to Lemma 3.16, either the invocation of our subpro-
cedure SearchBallOrLargeIS may take polynomial time and yield
an independent set of t clauses violated by α, or it may take 2kt(k −
1)r+o(n) time and return either a satisfying assignment or ‘no’. In the
latter case, the satisfying assignment or the failure are immediately re-
turned and thus the total running time is (k− 1)r+o(n) if we take into
account that for t = log log n, the factor 2kt can be subsumed within
the negligible error term.

In the former case, the procedure issues a number of recursive in-
vocations which equals the size of the k-ary flipping pattern covering
code which we know is at most

(k− 1)
k−2

k

t+o(t)

150 Chapter 3. Schöning’s Algorithm

each of which is left with searching a ball of radius

r− k− 2
k
· t.

We can assume that the smaller ball is being searched in time

(k− 1)r− k−2
k ·t+o(n)

as an induction hypothesis. Multiplying this time with the bound on
the number of invocations thus yields

(k− 1)
k−2

k

t+o(t)
(k− 1)r− k−2

k ·t+o(n) = (k− 1)r+o(n),

as claimed.

Plugging this faster variant into Algorithm 7 finally proves Theo-
rem 3.12.

It is noteworthy that our deterministic algorithm does not only
match the randomized original in terms of time-performance but also
in terms of space consumption: both versions use only polynomial
space. While trivial in the randomized case, in the deterministic case
this follows from the fact that our covering codes are efficiently con-
structible (see Section 3.6), i.e. that they can be enumerated without
being stored explicitly. The recursive local search itself clearly runs in
polynomial space, storing only one call stack at a time.

3.7. Deterministic Local Search 151

Algorithm 8 SearchBall(F, α, r)
Require: A satisfiable (≤ k)-CNF formula F, some assignment α and

a radius r ∈ {0..n}.
Ensure: If there exists a satisfying assignment α′ at distance

dist(α′, α) ≤ r, then the output is one such satisfying assignment;
otherwise the output is arbitrary.

1: if α satisfies F then
2: return α

3: else
4: if r = 0 then
5: return ‘no’
6: else
7: {u1, u2, . . . , uk′} = C ← a smallest clause in F violated by α

8: for i = 1, 2, . . . , k′ do
9: α′ ← α[ui →→ 1]

10: F′ ← F[ui →→ 1]

11: rv← SearchBall(F′, α′, r− 1)
12: if rv ̸= ‘no’ then
13: return rv
14: end if
15: end for
16: return ‘no’
17: end if
18: end if

152 Chapter 3. Schöning’s Algorithm

Algorithm 9 SearchBallOrLargeIS(F, α, r, t)
Require: A satisfiable (≤ k)-CNF formula F, some assignment α, a

radius r ∈ {0..n} and a number t ∈ N.
Ensure: If there exists a satisfying assignment α′ at distance

dist(α′, α) ≤ r, then output is either an independent set of clau-
ses violated by α of size at least t or some satisfying assignment;
otherwise output is arbitrary.

1: M← a maximal independent set of k-clauses violated by α

2: if |M| ≥ t then
3: return first t clauses of M
4: else
5: for all assignments β : ∪C∈Mvbl(C)→ {0, 1} do
6: α← SearchBall(F[β], r, α[β])

7: if α satisfies F then
8: return α

9: end if
10: end for
11: return ‘no’
12: end if

3.7. Deterministic Local Search 153

Algorithm 10 SearchBallFast(F, α, r)
Require: A satisfiable (≤ k)-CNF formula F, some assignment α and

a radius r ∈ {0..n}.
Ensure: If there exists a satisfying assignment α′ at distance

dist(α′, α) ≤ r, then the output is some satisfying assignment; oth-
erwise the output is arbitrary.

1: t← ⌈log log n⌉
2: (M, α)← SearchBallOrLargeIS (F, α, r, t)
3: if α satisfies F then
4: return α

5: else
6: if M is independent set of t violated clauses C1, C2, . . . , Ct then
7: j← 1
8: while codeword x ← CoveringCode(k, 1

k , t, j) do

9: β← α with the xth
i variable of Ci flipped for all 1 ≤ i ≤ t

10: γ← SearchBallFast

F, α, r− k−2
k · t

11: if γ satisfies F then
12: return γ

13: end if
14: j← j + 1
15: end while
16: end if
17: return ‘no’
18: end if

A
Auxiliary Statements and

Deferred Proofs

The present chapter contains auxiliary statements of a mostly analytic
nature and all proofs we have deferred from the main part because
they are merely technical rather than enlightening.

A.1 Estimates involving the exponential series

Lemma A.1. For all x ∈ R, 1 + x ≤ ex. Moreover, for x ≥ 0, we have
1 + x + 1

2 x2 ≤ ex.

155

156 Appendix A. Auxiliary Statements and Deferred Proofs

Proof. The weaker statement is very well-known and does not need a
proof. For the more precise statement in the case x ≥ 0, considering
the definition of the right hand side series,

ex =
∞

∑
i=0

xi

i!
,

the claim follows from the fact that all terms are positive.

Lemma A.2. Let β : (1, ∞)→ (0, 1) be defined as

β(α) := 1 +
1
α
·W(−α · e−α),

where W is the Lambert-W function (see, e.g., [CGH+96] for a discussion of
this function), i.e. W(z) is the unique solution t ∈ R to the equation z = tet.
Let α > 1. Then for all x ∈ [0, β(α)], 1− x ≥ e−αx.

Proof. e−αx is clearly a convex function, hence it can intersect the lin-
ear function 1− x at most twice. One intersection point is at x = 0
and there is one more intersection point at x = β(α), as we can easily
check by plugging in the definition of β and rearranging terms. The
inequality thus holds for all points between the two intersections.

Lemma A.3. For all x > 1, we have
1− 1

x

x−1
≥ 1/e.

Moreover, for sufficiently large x,
1− 1

x

x−1
≥ 1

e
+

1
2e
· 1

x
.

Proof. To prove the simpler first statement, we invoke Lemma A.1 to
obtain

1 +
1

x− 1

≤ e

1
x−1 .

A.1. Estimates involving the exponential series 157

Taking the (1 − x)-th power on both sides and simplifying the sum
yields the claim.

For the more difficult second claim, we introduce the variable sub-
stitution τ := 1/x and define the function f : [0, 1)→ R as

f (τ) :=

(1− τ)
1
τ−1 if τ > 0

1/e otherwise.

It suffices to prove that for τ → 0, we have

f (τ) =
1
e
+

1
2e
· τ +

7
24e
· τ2 +O(τ3), (A.1)

because this leads to the conclusion that for sufficiently small τ, the
cubic error term is dominated by the quadratic term whose coefficient
is positive. In order to obtain the Taylor series in (A.1), we require that

(i) f (τ) is continuous and three times continuously differentiable,

(ii) limτ→0 f (τ) = 1/e,

(iii) limτ→0 f ′(τ) = 1/(2e),

(iv) limτ→0 f ′′(τ) = 7/(12e) and

(v) limτ→0 f ′′′(τ) exists.

Once we have established these properties, (A.1) follows by develop-
ing the Taylor series (see, e.g., [For06], page 233).

Property (i) follows from the other properties and the definition of
f . Note that we are only interested in right-sided derivatives at τ = 0
and if the limits in (ii), (iii) and (iv) exist, continuous differentiabil-
ity cannot be jeopardized by the fact that we get rid of a removable
singularity. It remains to prove (ii) through (v).

For (ii), we note that

f (τ) = (1− τ)
1
τ · 1

1− τ
,

158 Appendix A. Auxiliary Statements and Deferred Proofs

where the first factor is well-known to converge to 1/e and the second
one converges to one.

To see (iii), we differentiate f to get, for all τ ∈ (0, 1),

f ′(τ) = f (τ) ·

−(1− τ) ln(1− τ)− τ + τ2

τ2 − τ3

=:ϕ(τ)

.

The limit of ϕ(τ) can be seen to be 1/2 by applying the rule of de
l’Hôpital twice (see, e.g., [For06], page 162). Since the limit of f (τ) is
1/e by (ii), the claim follows.

To see (iv), we differentiate again to get, for all τ ∈ (0, 1),

f ′′(τ) = f ′(τ)ϕ(τ) + f (τ)ϕ′(τ).

We already have the limits of f , f ′ and ϕ. What we are still missing is
ϕ′. We obtain that

ϕ′(τ) =
τ2 − 2τ + (2τ − 2) ln(1− τ)

τ4 − τ3 .

Again applying de l’Hôpital, we find that ϕ′(τ) converges to 1/3.
Plugging this in above, we find that f ′′ converges to 1/(4e) + 1/(3e),
as claimed.

It remains to do another step to get (v). We obtain that

f ′′′(τ) = f ′′(τ)ϕ(τ) + 2 f ′(τ)ϕ′(τ) + f (τ)ϕ′′(τ),

where we know all limits except for ϕ′′(τ). Differentiate

ϕ′′(τ) =
12τ ln(1− τ)− 6 ln(1− τ)τ2 + 9τ2 − 2τ3 − 6 ln(1− τ)− 6τ

τ4(τ − 1)2

De l’Hôpital yields that ϕ′′ converges to 1/2 which finally implies the
last claim.

A.2. Cumulation of multiplicative slacks 159

A.2 Cumulation of multiplicative slacks

Lemma A.4. Let ϵ0, ϵ1 ∈ [0, 1]. Then

1 + ϵ0 + ϵ1 ≤ (1 + ϵ0)(1 + ϵ1) ≤ 1 + 2ϵ0 + ϵ1.

Moreover, if ϵ0 ≤ ϵ1/2, then

(1− ϵ0)(1 + ϵ1) ≥ 1.

Proof. We have

(1 + ϵ0)(1 + ϵ1) = 1 + ϵ0 + ϵ1 + ϵ0ϵ1

and the first claim follows from ϵ1 ≤ 1. Moreover, we have

(1− ϵ0)(1 + ϵ1) ≥ (1− ϵ1

2
)(1 + ϵ1) = 1 +

ϵ1

2
· (1− ϵ1) ≥ 1,

as claimed.

A.3 Bounded away from one

Lemma A.5. There exists a universal constant Λ, e.g. Λ = 0.999 will do,
such that the following holds. Let G be any simple loopless graph on the
vertices {1..m}. Consider the mapping

Ξ : (0, 1)m → (0, 1)m : x →→

xj ∏
i∈ΓG(j)

(1− xi)

j∈{1..m}

where ΓG(j) are the neighbors of vertex j in G. For any vector x ∈ (0, 1)m,
there exists another vector x′ ∈ (0, 1)m, with the property that for each 1 ≤
i ≤ m, we have Ξ(x′)i ≥ min{ 1

2 , Ξ(x)i} and such that all components of x′

are at most Λ.

160 Appendix A. Auxiliary Statements and Deferred Proofs

Proof. We proceed by exhibiting a chain of vectors

x =: x(0), x(1), x(2), . . . , x(r) =: x′ ∈ (0, 1)m,

all satisfying the conclusion and such that the set of very large num-
bers, formally

Zi := {j ∈ {1..m} | x(i)j ≥ Λ},

shrinks by at least one element, where we let Λ := 0.999.

To get from x(i) to x(i+1), we select an entry zi ∈ Zi to work on.

Suppose zi is an isolated vertex in G, then set

x(i+1)
j =

x(i)j if j ̸= zi
1
2 if j = zi.

In this case it is easy to see that x(i+1) satisfies the hypothesis: com-
ponent number j does not influence any other value than the j-th, and
there we will have Ξ(x(i+1)) = x(i+1)

j = 1
2 , as required.

Suppose zi has a non-empty set ΓG(zi) of neighbors. Then let us
decrease the value for zi and for all its neighbors simultaneously and
assign

x(i+1)
j =

9

10 if j = zi
1

100 x(i)j if j ∈ ΓG(zi)

x(i)j otherwise.

Clearly, this yields at least Zi+1 ⊆ Zi \ {zi} such that we make the de-
sired progress. Now we must establish that x(i+1) still satisfies the in-
duction hypothesis. First note that the values which can have changed
are the ones at the components Ri := {zi}∪ ΓG(zi) and all input values
have only decreased in comparison to x(i). Therefore, the output val-
ues under Ξ at components outside of Ri have only increased which is
harmless. We only have to care about the components in Ri which are

A.3. Bounded away from one 161

influenced by both increasing and decreasing factors. We prove that
the induction hypothesis is still satisfied for any fixed j ∈ Ri.

Consider the case j ∈ ΓG(zi) first. In this case we have zi ∈ ΓG(j)
by symmetry such that

Ξ(x(i+1))j = x(i+1)
j · ∏

k∈ΓG(j)

1− x(i+1)

k

=

= x(i+1)
j ·

1− x(i+1)

zi

· ∏

k∈ΓG(j)\{zi}

1− x(i+1)

k

≥

≥
x(i)j

100
·

1− 9
10

=0.1≥100

1−x(i)zi

· ∏

k∈ΓG(j)\{zi}

1− x(i)j

≥ Ξ(x(i)j).

Now consider the case j = zi. By construction, we have

∀k ∈ ΓG(j) : x(i+1)
k <

1
100

.

Therefore we can apply Lemma A.2 with α = 2 to find that

ρ′ := ∏
k∈ΓG(zi)

(1− x(i+1)
k) ≥ exp

−2 ∑
k∈ΓG(zi)

x(i+1)
k

exp

− 2

100 ∑k∈ΓG(zi)
x(i)k

.

For comparison, we have, using Lemma A.1,

ρ := ∏
k∈ΓG(zi)

(1− x(i)k) ≤ exp

− ∑
k∈ΓG(zi)

x(i)k

 ,

and hence ρ′ ≥ ρ2/100. Now either ρ ≥ 5/9 in which case ρ′ > 5/9
and thus

Ξ(x(i+1))zi = x(i+1)
zi · ρ′ ≥ 9

10
· 5

9
=

1
2

,

162 Appendix A. Auxiliary Statements and Deferred Proofs

proving the claim. Or ρ < 5/9 in which case ρ2/100 ≥ 10
9 ρ and thus

Ξ(x(i+1))zi = x(i+1)
zi · ρ′ ≥ 9

10
· ρ2/100 ≥ 9

10
· 10

9
· ρ = ρ > Ξ(x(i))zi ,

establishing the claim.

A.4 Exponential Tail Estimate

Lemma A.6. Let ϵ ∈ (0, 1) and C ∈ R be constants and T an integral
non-negative random variable such that for all t ∈ N,

Pr [T ≥ t] ≤ C · (1− ϵ)t,

then
E[T] ≤ 1

ϵ
(ln C + 2).

Proof. Let t0 be the smallest positive integer such that

C · (1− ϵ)t0 < 1.

Using – from Lemma A.1 – that

C · (1− ϵ)t0 < Ce−ϵt0 ,

we have that
t0 ≤

1
ϵ

ln C + 1.

Together with the hypothesis, this entails

E[T] = ∑
t≥0

Pr [T ≥ t] ≤ ∑
0≤t<t0

Pr [T ≥ t] + ∑
t0≤t

C(1− ϵ)t

≤ t0 + C(1− ϵ)t0 ∑
0≤t

(1− ϵ)t < t0 +
1
ϵ
<

1
ϵ
(ln C + 2),

as claimed.

A.5. Certain Homogeneous Markov Chains 163

A.5 Certain Homogeneous Markov Chains1

A Markov Chain on the integers is a random process {Ei ∈ Z}i∈N0 with
the property (Markov property) that Ei+1 depends only on Ei and is
independent of the history of the process. In the sequel, we analyze
a very particular kind of such chain where Ei+1 − Ei is independent
of i and of Ei and is given as a fixed vector of transition probabilities.
This kind of chain is used in [Sch99] for the analysis of Schöning’s
algorithm. We generalize it somewhat here.

Lemma A.7. Let k ≥ 2 be some integer and

τ : {−1, 0, 1, 2, . . . , k− 1} → [0, 1]

be a (k + 1)-tuple of probabilities which sum up to one, where τ(−1) > 0
and which have the bias

bτ :=
τ(−1)

1− τ(0)
<

1
2

.

There exists a constant C depending only on τ such that the following holds.
Let {Ei ∈ Z}i∈N0 be a Markov Chain such that E0 = j and then

∀i ≥ 1 : ∀t ∈ {−1, 0, 1, 2, . . . , k− 1} : Pr [Ei = Ei−1 + t] = τ(t).

For such a chain,

Pr [∃i ≤ Cj : Ei = 0] = λj+o(j)

holds, where λ is the unique root in (0, 1) of the polynomial

p(x) := −x + [τ(−1) + τ(0)x + τ(1)x2 + . . . + τ(k− 1)xk].

1The calculation presented here is joint work with Andrei Giurgiu and has appeared
in his Master’s thesis [Giu09]. Most probably however, it is also common knowledge
among experts on Markov chains and random processes.

164 Appendix A. Auxiliary Statements and Deferred Proofs

Let, for all j ∈ N0,

pj := Pr [∃i ∈ N0 : Ei = 0]

denote the probability that when starting from state E0 = j, state zero
is reached in any finite number of steps. We first claim the following.

Lemma A.8. pj+1/pj is constant for all j.

Proof. This is a consequence of the homogeneous nature of the chain.
Note that any path, i.e. any fixed succession of increasing and decreas-
ing steps, has the same probability of being realized no matter which
starting state we select. Now note that p1 is the sum of the probabilities
of all paths which start at one and hit zero at the end for the first time.
It is the same set of paths which start at state j + 1 and hit state j at
the end for the first time. Therefore, the probability that when starting
from state j + 1 we ever hit state j is exactly p1 and thus the probabil-
ity that we ever hit zero when starting from state j + 1 is p1 · pj. The
ratio between any two consecutive pj and pj+1 is therefore constantly
p1.

Lemma A.9. 0 < p1 < 1.

Proof. The first inequality is easy as it suffices to exhibit any path with
positive probability leading to the zero state. Indeed, there is a proba-
bility of at least τ(−1) > 0 that we make one decreasing step and thus
arrive at zero.

To see the second inequality, we proceed by contradiction. Sup-
pose p1 = 1. By Lemma A.8, this would imply that pj = 1 for all
j. Starting from a state j and reaching zero within N non-resting (in-
creasing or decreasing) evolution steps requires that more than half of
these N steps are decreasing steps which have a probability of

τ(−1)
(1− τ(0))

<
1
2

A.5. Certain Homogeneous Markov Chains 165

by the biassing condition. Using Chernoff, the probability that this
happens is at most e−cN for a suitable constant c depending only on τ.
Now consider some sufficiently large j having

j >
1
c

1− ln(1− e−c)

.

Since reaching zero requires N > j, the probability that we can reach
zero within an arbitrary number of steps becomes

pj ≤
∞

∑
N=j

e−cN ≤ e−1+ln(1−e−c)
∞

∑
N=0

e−cN =

=
1
e
·

1− e−c · 1

1− e−c =
1
e

,

a contradiction.

We now know that pj = pj
1 for all j. It is left to determine p1.

Lemma A.10. p1 = λ, the unique root of p(x) in the range (0, 1).

Proof. Each pj must obviously satisfy the simple recurrence

pj = τ(−1)pj−1 + τ(0)pj + τ(1)pj+1 + . . . + τ(k− 1)pj+k−1.

Since we know the solution has the form pj = pj
1 we plug this in and

obtain
0 = p(p1).

Since there is exactly one negative coefficient, namely τ(0)− 1, accord-
ing to Descartes’ rule, p(x) has either two or no positive roots. Since
x = 1 is a trivial solution, the former must be the case and so there is
exactly one more positive root. Moreover at x = 1 the derivative of
the polynomial equals

−1 + τ(0) + 2τ(1) + 3τ(2) + . . . + kτ(k− 1) > 0,

166 Appendix A. Auxiliary Statements and Deferred Proofs

where the inequality follows by virtue of the biassing condition. Since
therefore values slightly to the left of x = 1 are negative while the
value at x = 0 is τ(−1) and thus positive again by the biassing condi-
tion, the only further positive root λ must be strictly in between and
by the previous lemma this must equal p1.

We are now interested in the expected time

ej := E[min{i ∈ N0 : Ei = 0} | ∃i ∈ N0 : Ei = 0}]

which it takes when starting from j to get to state zero under the condi-
tion that zero is reached in finite time. We claim that this is bounded
by a linear function in j.

Lemma A.11. There exists a constant C′ depending only on τ such that

ej ≤ C′ · j

for all j.

Proof. The proof uses similar arguments as the one of Lemma A.9. Let
qj,N denote the probability that when starting at state j and making N
non-resting (increasing or decreasing) steps we arrive at EN = 0. For
this probability, we obtain via Chernoff a bound of the form

qj,N ≤ e−cN , (A.2)

because the decreasing steps which have probability smaller than one
half among the non-resting steps must make for at least half of those
steps. Hereby, c is a constant depending only on τ.

Let Qj denote the number of non-resting steps it takes to reach zero
starting from state j, but define Qj to be zero whenever this number is
infinite. This relates to ej as

E[Qj] = ej · pj · (1− τ(0)).

A.5. Certain Homogeneous Markov Chains 167

Let r ∈ N. We write E[Qj] split into parts as

E[Qj] =
r

∑
N=1

N · Pr

Qj = N

+

∞

∑
N=r+1

N · Pr

Qj = N

.

Now we apply different bounds to the two parts. In the first sum we
use N ≤ r and the fact that the probabilities can not sum up to more
than pj being the probability that Qj takes any non-zero number. In
the second sum, we use (A.2). This yields

E[Qj] ≤ r · pj +
∞

∑
N=r+1

Ne−cN .

If we select r large enough that the second sum is smaller than pj, then
we obtain

E[Qj] ≤ (r + 1)pj

and thus

ej ≤
r + 1

1− τ(0)
.

Indeed, there is some constant R1 depending only on c and thus on τ

such that
∀N > R1 : Ne−cN < e−

c
2 ·N ,

and some constant R2 depending only on c and on λ and thus only on
τ such that

∀N > R2 : e−
c
2 ·N < λ · (1− e−

c
2),

whence it follows that if we select for example r := max{R1, R2} · j,
we obtain

∞

∑
N=r+1

Ne−cN <

λ(1− e−

c
2)
j
·

∞

∑
N=0

e−
c
2 N < λj = pj.

Since r depends linearly on j and the rest are constants depending only
on τ, the same holds for ej.

168 Appendix A. Auxiliary Statements and Deferred Proofs

The main lemma follows like this: using Markov’s inequality to
obtain another constant C from C′, we get a lower bound for the prob-
ability of hitting zero within the given number of steps which is a con-
stant away from pj. On the other hand, pj is the probability that we hit
zero within an arbitrary amount of steps, so we obtain equality.

In some of our applications, the chain in question has a reflection
point, which is a state beyond which the process cannot increase and
then reflects. We also obtain an estimate on this type of process.

Lemma A.12. Let k ≥ 2 be some integer and

τ : {−1, 0, 1, 2, . . . , k− 1} → [0, 1]

be a (k + 1)-tuple of probabilities which sum up to one, where τ(−1) > 0
and which have the bias

bτ :=
τ(−1)

1− τ(0)
<

1
2

.

Let furthermore s be a positive integer. Let {Ei ∈ Z}i∈N0 be a Markov Chain
such that E0 = j and which then evolves as follows:

∀i ≥ 1 : ∀t ∈ {−1, 0, 1, 2, . . . , k− 1} : Pr

E′i = Ei−1 + t

= τ(t)

and then Ei := min{E′i , s}. For such a reflected chain and any number of
steps N,

Pr [∃i ≤ N : Ei = 0] ≤ λj + N · λs.

holds, where λ is the unique root in (0, 1) of the polynomial

p(x) := −x + [τ(−1) + τ(0)x + τ(1)x2 + . . . + τ(k− 1)xk].

Proof. We use a coupling argument of the following type. Consider N
Markov chain processes

{M(t)
i ∈ Z}i∈N0 , 0 ≤ t ≤ N,

A.6. Binomial Coefficients 169

where M(0)
0 = j while M(k)

i = s for all i ≤ k. And then for all i > k, we
define

M(k)
i = M(k)

i−1 + Ti,

where Ti is distributed according to τ and where we use the same Ti
for all chains. To couple the process in the claim to these chains, we
use

E′i := Ei−1 + Ti

as well.

Each chain separately behaves exactly like the type of chain dis-
cussed in Lemma A.7, where chain M(0) starts at state j while chain
M(k) starts moving only at time i = k from starting state s. Using the
proof of Lemma A.7, for each chain separately, the probability that it
ever reaches zero in an arbitrary amount of steps is λj in the case of
M(0) and λs in the case of M(k) for k > 0. By a union bound, the
probability that any of the chains ever hits zero is at most λj + Nλs.

Now the claim follows from observing that clearly Ei ≥ mink M(k)
i

because each time a reflection occurs, we can continue tracing the cor-
responding of our N chains which starts moving at the reflection point
at that very moment.

A.6 Binomial Coefficients

The following estimate will come handy when working with binomial
coefficients. It is a well-known estimate found in many textbooks.

Lemma A.13. For any fixed constant 0 < ρ < 1 and integers n → ∞ we
have

n
ρn

=

1

1− ρ

1− ρ

ρ

ρn+o(n)

.

170 Appendix A. Auxiliary Statements and Deferred Proofs

Proof. The proof is straightforward since we are not interested in the
exact constants. We can first derive a much simplified version of Stir-
ling’s formula by noting that n

0
log(x)dx < log(n!) <

 n+1

1
log(x)dx

from which

n ln n− n < log(n!) < (n + 1) ln(n + 1)− n

and by exponentiation

nn · e−n < n! < (n + 1)n+1 · e−n = nn · e−n · (n + 1) ·

1 +
1
n

n
.

Since the last factor converges, we have

n! =
n

e

n+o(n)
.

We plug this equation into the definition of the binomial coefficient
and obtain

n
ρn

=

n!
(ρn)! · ((1− ρ)n)!

=

 n
e
n+o(n) ρn

e
ρn+o(n) ·

(1−ρ)n

e

(1−ρ)n+o(n)
,

from which the claim readily follows.

A.7 Proof of Theorem 2.3 (from Theorem 2.4)

Set µ(C) := e/dk for all C ∈ F. Then Theorem 2.4 guarantees satisfia-
bility as long as

1
dk = w(C) ≤ µC ∏

D∈ΓF(C)
(1− µD) =

e
dk

1− e

dk

|ΓF(C)|
.

A.8. Proof of Theorem 2.5 171

With the hypothesis |ΓF(C)| ≤ dk

e − 1 this is provided as long as

1
dk ≤

e
dk

1− e

dk

 dk
e −1

,

or, equivalently, (1 − 1/x)x−1 ≥ 1/e for x := dk/e > 1, which is
Lemma A.3.

A.8 Proof of Theorem 2.5

A star is a graph G in which there exists a center vertex v to which all
other vertices are connected, while all vertices other than v form an
independent set. Call a ClSP F a star formula if its dependency graph
is a star. Star formulas which are non-degenerate are satisfiable since
one can pick any variable from the center clause and assign it in any
way which satisfies the center clause and then the remaining star falls
apart into an independent set of non-empty clauses each of which can
be separately satisfied.

We claim that the following holds.

Lemma A.14. Let F be a non-degenerate ClSP. If for all clauses C ∈ F, we
have

∑
D∈ΓF(C)

w(D) ≤ 1
4

,

then F can be split as F = F0 ∪̇ F1 such that F0 and F1 are independent, F0

is an independent union of star formulas and F1 satisfies the local condition.

If so, then the theorem follows trivially as F0 is satisfiable because it
consists of star formulas while F1 is satisfiable due to the Local Lemma.

Proof of Lemma A.14. Since the ClSP is non-degenerate, we know that
we have w(C) ≤ 1

4 for all C ∈ F. Let F0 consist of all connected com-
ponents of F which contain a clause C0 reaching this value, i.e. that
w(C0) =

1
4 .

172 Appendix A. Auxiliary Statements and Deferred Proofs

Fix any C0 ∈ F0 with w(C0) =
1
4 . Then consider all clauses adjacent

to C0 in the dependency graph: each of these clauses can only have C0

in their neighborhoods since the weight of C0 already saturates the
bound in the hypothesis for each of these clauses. Therefore C0 and its
neighbors form a star independent of the remainder of the formula.

Let F1 = F \ F0 be the remainder. In F1, all clauses have weight at
most 1

6 . This is because this is the next possible value of the weight,
arising from a 2-constraint where one variable has a domain of size
two and the other one a domain of size three. Set µ(C) := ew(C) for
all C ∈ F1. Then Theorem 2.4 guarantees satisfiability as long as

w(C) ≤ ew(C) ∏
D∈ΓF(C)

(1− ew(D)).

Therefore, we have for all C ∈ F1, using Lemma A.2 with α := 1.34,
since then β(α) > 0.46 while ew(D) ≤ e

6 < 0.46,

ew(C) ∏
D∈ΓF(C)

(1− ew(D)) ≥ w(C) · e ∏
D∈ΓF(C)

e−1.34ew(D) ≥

= w(C) · e1−1.34e ∑D∈ΓF(C)
w(D) ≥ 1.09 · w(C),

where the last step uses the hypothesis. As this establishes what we
need for Theorem 2.4, the claim readily follows.

A.9 Proof of Lemma 2.36

This is not difficult to compute because all the branches of the tree de-
velop totally independently. For every vertex v ∈ V(T), the probabil-
ity that this vertex is created and labelled [v] at the (unique) moment
when there was a chance to do that is just µ([v]). On the other hand,
for any vertex v ∈ V(T) and any C ∈ Γ+

F ([v]) such that v does not
have a child labelled C, the probability that the process really does not
create that child at the (unique) moment when there was a chance to

A.9. Proof of Lemma 2.36 173

create it is 1− µ(C). So, to get the total probability of outputting ex-
actly the tree T and nothing larger or smaller, we have to multiply for
all nodes v ∈ V(T) the probability µ([v]) and for all children that could
have been created with a label C but have not the probability 1− µ(C).
Letting

W(v) := {C ∈ Γ+
F ([v]) | no child of v is labelled C}

for all v ∈ V(T), we get that the probability of obtaining exactly T
from the branching process equals

∏
v∈V(T)\{root}

µ([v])
probability that the

process does create all
nodes that are there in T

· ∏
v∈V(T)

∏
C∈W(v)

(1− µ(C)).
probability that the

process does not create any
node that is not there in T

In order to combine the two products, let us multiply by µA for the
root and divide by the same term in front of the whole expression, e.g.

1
µ(A) ∏

v∈V(T)

µ([v]) · ∏
C∈W(v)

(1− µ(C))

 .

Instead of multiplying over C ∈W(v) in the second inner product, we
can multiply over all C ∈ Γ+

F ([v]) and then divide again by 1− µ(C)
for all C ̸∈ W(v). Note that all cases with C ̸∈ W(v) are exactly the
labels that do appear somewhere in T, except for the root for which we
have divided once too much, which we compensate for by adding the
term 1− µA in front, so we get that the probability equals

1− µ(A)

µ(A) ∏
v∈V(T)

 µ([v])
1− µ([v]) ∏

C∈Γ+
F ([v])

(1− µ(C))

 .

Replacing Γ+
F by ΓF, we will lose one term 1− µ([v]) in the product,

which nicely cancels out with the denominator of the fraction, yielding

1− µ(A)

µ(A) ∏
v∈V(T)

µ([v]) ∏
C∈ΓF([v])

(1− µ(C))

 ,

174 Appendix A. Auxiliary Statements and Deferred Proofs

as claimed.

A.10 Proof of Lemma 2.38

To establish the statement, we have to be more precise with the esti-
mate used in the proof of Lemma 2.3 (see Appendix A.7). We again
set

µ(C) :=
e

dk

for all C ∈ F. Now the formula satisfies the local condition with slack
ϵ if

1
dk ≤ (1− ϵ) · µ(C) · ∏

D∈ΓF(C)
(1− µ(D)).

The right hand side equals

e
dk (1− ϵ)

1− e

dk

|ΓF(C)|
.

From the hypothesis |ΓF(C)| ≤ (1 − δ)

dk

e − 1

, thus it suffices to
prove

1
e
≤ (1− ϵ)

1− e

dk

(1−δ)

dk
e −1

.

Lemma A.3 yields that
1− e

dk

 dk
e −1

≥ 1

e
+

1
2e
· e

dk =
1
e

1 +

e
2dk

and therefore

(1− ϵ)

1− e
dk

(1−δ)

dk
e −1

≥ (1− ϵ)

1 +

e
2dk

1−δ
· 1

e1−δ
=

=
1
e
·

(1− ϵ)

1 +
e

2dk

 e
1 + e

8

δ

≥2δ

 ·

1 + e
8

1 + e
2dk

δ

≥1

.

A.11. Proof of Lemma 2.39 175

It is left to show that the term in square brackets is at least one. We
apply the simple first inequality of Lemma A.4 to see that this part is
at least

(1− ϵ)

1 +
e

dk + (2δ − 1)

and so, again according to Lemma A.4 (this time using the last in-
equality), if we set

ϵ :=
1
2
·

2δ − 1 +
e

dk

,

we obtain that the local condition is satisfied with slack ϵ.

A.11 Proof of Lemma 2.39

We first follow the proof of Theorem 2.5 in order to split F into a part
F0 consisting of a disjoint union of stars (which are matched) and an
independent part F1 having w(C) ≤ 1

6 for all C ∈ F1. We recall from
the proof of Theorem 2.5 that when assigning weights µ := ew(C), we
obtain wµ(C) ≥ 1.09 ·w(C) for all C ∈ F1. Therefore if we let ϵ < 0.08,
then we have (1− ϵ)wµ(C) ≥ w(C) as required.

A.12 Proof of Lemma 2.40

We use Lemma A.5 to produce µ′. Each µ-weight have either de-
creased or changed to 1

2 . The first case is trivial. In the second case, we
note that the right-hand side of the slacked hypothesis is (1− ϵ/2) · 1

2
and thus, since ϵ ≤ 1, well-above the largest possible weight in a non-
degenerate ClSP of 1

4 .

176 Appendix A. Auxiliary Statements and Deferred Proofs

A.13 Proof of Lemma 2.41

First we reshape the hypothesis somewhat. If ϵ ≤ δ/2, then

1− δ ≤ 1− 2ϵ ≤ 1− 2ϵ +
3ϵ2 + 2ϵ3

1 + 2ϵ + ϵ2 =

1

1 + ϵ

2
. (A.3)

Furthermore, note that for any y > 1, z ∈ (0, 1), we have yz − 1 ≤
(y − 1)z. Combining this with (A.3), we obtain from the hypothesis
that

|ΓF(C)| ≤
 e

dk

(1
1+ϵ)

2

− 1 ≤
 e

dk

 1
1+ϵ − 1

 1
1+ϵ

. (A.4)

In this form, the hypothesis is suited to the following calculation. We
now proceed analogously to the proof of Lemma 2.38, but this time we
set

µ(C) :=

e · d−k
 1

1+ϵ

for all C ∈ F. Now the formula satisfies the local condition with expo-
nential slack ϵ if

1
dk ≤

µ(C) ∏
D∈ΓF(C)

(1− µ(D))

1+ϵ

.

The right hand side is at least as large as

e
dk ·

1−

 e
dk

 1
1+ϵ

(1+ϵ)|ΓF(C)|

.

Plugging in (A.4), we are done if ϵ satisfies

1−
 e

dk

 1
1+ϵ

 e
dk

 1
1+ϵ −1

 1
1+ϵ

1+ϵ

≥ 1
e

.

After cancelling the exponents, this is Lemma A.3.

A.14. Proof of Lemma 2.42 177

A.14 Proof of Lemma 2.42

Basically, we follow the proof of Theorem 2.5, although the hypothesis
is now sufficiently strong such that no additional splitting is necessary.
Note that all C ∈ F with w(C) ≥ 1/6 must be isolated vertices as
otherwise the condition would be violated at all neighbors. By setting
µ(C) arbitrarily close to one for all such C, we can satisfy the slacked
condition easily. From now on, we can assume that we are working
on F′ ⊆ F with w(C) < 1/6 for all C ∈ F′ exclusively.

We let ϵ := δ. For C ∈ F′, we now set

µ(C) := [ew(C)]
1

1+ϵ .

Note that from w(C) < 1/6 and ϵ < 1 follows that

µ(C) < 0.68 < β(1.7), (A.5)

where β is defined as in Lemma A.2. The slacked hypothesis is satis-
fied if ∏

D∈ΓF(C)
(1− µ(C))

1+ϵ

≥ 1
e

and via Lemma A.2 and (A.5), it is sufficient to prove that

∑
D∈ΓF(C)

[w(C)]
1

1+ϵ ≤ 1

(1 + ϵ) · 1.7 · e
1

1+ϵ

.

Differentiating the right hand side, we find that for all ϵ ∈ [0, 1), it is
at least 1/6. Since

1− δ =
1

1 + ϵ
− ϵ2

1 + ϵ
<

1
1 + ϵ

,

the condition in the hypothesis is stronger than this.

178 Appendix A. Auxiliary Statements and Deferred Proofs

A.15 Proof of Lemma 2.43

We use Lemma A.5 to produce µ′. Each µ-weight has either decreased
or changed to 1

2 . The first case is trivial. In the second case, we note
that the right-hand side of the slacked hypothesis is 2−(1+ϵ) ≥ 1

4 and
thus, since ϵ ≤ 1 by hypothesis, well-above the largest possible weight
in a non-degenerate ClSP of 1

4 .

A.16 Proof of Lemma 2.48

We prove that Algorithm 4 needs an expected logarithmic number of
phases until F is satisfied and the claim then follows.

Let us focus on a single star component S first. Note that until S is
satisfied, every phase of the algorithm is either a satellite phase for S,
i.e. a phase where all violated satellite clauses are picked for resam-
pling, or a center phase where the center clause is selected (there are no
other options for maximal independent sets of violated clauses). Each
satellite clause has a variable which occurs nowhere else. Therefore,
each time a satellite clause is picked for resampling, there is a probabil-
ity of at least 1/2 that this variable changes its value whereupon the
clause will be satisifed and never turn violated again. Therefore the
probability that a fixed satellite clause partakes in more than t phases
is at most 2−t. By a union bound, the probability that any satellite
clause in S partakes in more than t phases (i.e. the probability that
there are more than t satellite phases for S) is thus at most |S| · 2−t.

Now use a union bound over the number s of stars in F to see
that the probability that there is any star in F for which more than t
satellite phases are being conducted is at most s · |F| · 2−t. Let Y be
the maximum number of satellite phases conducted over all stars in
the formula. We have established that Y ≥ t with probability at most

A.17. Proof of Lemma 2.56 179

|F|2 · 2−t. Via Lemma A.6, we obtain that Y has an expectation which
is logarithmic in |F|.

Between any two satellite phases, there is a constant expected num-
ber of center phases because each such phase satisfies the center clause
with constant probability. Thus the expected maximum number of to-
tal phases in any star is at most a constant multiple of Y which con-
cludes the proof.

A.17 Proof of Lemma 2.562

We start from Lemma 2.36. Recall that if TA is the set of all (regu-
lar, full, proper) witness trees of which the root is labelled by A, then
Lemma 2.36 yields that

∑
T∈TA

∏
v∈V(T)

wµ([v]) ≤
µ(A)

1− µ(A)
. (A.6)

So far, we have summed over all full witness trees. What we are re-
ally interested in is the set T ′A of all partial witness trees where the root
is labelled with some clause from the splitting hull of A and having a
µ-weight in the range [γ2, γ]. Consider any mapping ζ : T ′A → TA that
associates a full witness tree T ∈ TA with every partial witness tree
T ∈ T′A by relabelling the root by A. Note that every tree T ∈ TA has a
preimage under ζ of size at most 3|A| since this was the bound we de-
rived on the size of the splitting hull of A. Moreover, as the definition
of µ-weights of partial trees in contrast to that for full trees excludes
the root vertex, we get an additional wµ(A) correction factor and end
up with

∑
T∈T ′A

wµ(T) ≤ 3|A| · µ(A)

1− µ(A)
· 1

wµ(A)
.

2from [CGH09]

180 Appendix A. Auxiliary Statements and Deferred Proofs

Summing over all A ∈ F, this already yields the second claim.

For the first claim, we continue and note that by definition of T′A,
wµ(T) ≤ γ, therefore

∑
T∈T ′A

wµ(T)

1+ϵ ≤ 3|A| · µ(A)

1− µ(A)
· γϵ

wµ(A)
.

We apply the slacked hypothesis and the definition of γ and the fact
|A| ≤ |V| to obtain

∑
T∈T ′A

w(T) ≤ 3|V| · µ(A)

1− µ(A)
· 1

M · wµ(A)
.

Plugging in the definition of M, this yields

∑
T∈T ′A

w(T) ≤ 1
2 · |F| .

Summing over all A ∈ F yields the claim.

A.18 Proof of Theorem 3.83

Let us first mention the issue of rounding. In the theorem, there are
many rounding brackets. This is necessary if one wants the statement
to hold. After all, n might not be divisible by f (n) and f (n) might not
be divisible by k, and so forth. Moreover, for the event we define to
have any probability other than zero, we require that l + r = t exactly,
et cetera. While we did this with care in formulating the theorem, we
will forget about rounding in the proof we give here. This is not a
real issue. After all, our proof goal is that the defined event be typical

3Preparatory for [MS11] which is joint work with Dominik Scheder.

A.18. Proof of Theorem 3.8 181

which means that it needs to have probability
1
2
· k

k− 1

n+o(n)
,

which is the success probability we have established for Schöning’s
algorithm up to lower order terms in the exponent. When reading the
following proof, we keep the matter of rounding in mind and con-
vince ourselves that any effect it might have can easily be subsumed
in the lower order error term we allow. We read the argument as if all
quantities involved were simply integers.

For estimating the probability of the given intersection of events,
we estimate separate independent parts of which we can finally mul-
tiply the probabilities. First, we estimate the probability that initially
E0 = n/k. Next, we estimate the probability that in any given window
of t evolution steps, exactly r, i.e. a 1

k -fraction are increasing and the
remainder decreasing. By the nature of the E-process which selects
a starting state at random, then does evolution steps in which each
step is independent of the history, the final probability will arise from
multiplying all these estimates.

Let us calculate the probability that E0 = n/k. By the binomial
distribution of E0 and then by using Lemma A.13, we obtain

Pr

E0 =
n
k

=

1
2

n n
n/k

=

1
2
· 1

1− 1
k

1− 1

k
1
k

 1
k
n+o(n)

=

=

1
2
· k

k− 1
(k− 1)

1
k

n+o(n)
.

Next, we estimate the probability that within any given window of
f (n)/(k− 2) evolution steps, exactly 1/k-fraction are increasing. For
this probability we obtain using again Lemma A.13,

Pr
1 ≤ i ≤ f (n)

k− 2

 Ei = Ei−1 − 1
 = l

=

182 Appendix A. Auxiliary Statements and Deferred Proofs

=

 f (n)
k−2
f (n)

k(k−2)

 ·1
k

 k−1
k ·

f (n)
k−2
·

k− 1
k

 1
k ·

f (n)
k−2

=

=

k

k− 1
· (k− 1)

1
k ·

1
k

 k−1
k
·

k− 1
k

 1
k
 f (n)

k−2 +o(f (n))

=

=

(k− 1)

2−k
k

 f (n)
k−2 +o(f (n))

=

(k− 1)−

1
k

 f (n)+o(f (n))
.

To obtain the total probability, we multiply the first factor and
n/ f (n) of the second factors and obtain

1
2
· k

k− 1
(k− 1)

1
k

n+o(n)
·

(k− 1)−

1
k

 n
f (n) · f (n)+

n
f (n) ·o(f (n))

,

readily yielding the desired quantity.

Bibliography

[ACO08] Dimitris Achlioptas and Amin Coja-Oghlan, Algorithmic
Barriers from Phase Transitions, Proceedings of the 49th An-
nual IEEE Symposium on Foundations of Computer Sci-
ence (FOCS 2008), 2008, pp. 793–802.

[AKS10] Andris Ambainis, Julia Kempe, and Or Sattath, A Quan-
tum Lovász Local Lemma, Proceedings of the 42nd ACM
Symposium on Theory of Computing (STOC 2010), 2010,
pp. 151–160.

[Alo91] Noga Alon, A Parallel Algorithmic Version of the Local
Lemma, Random Structures and Algorithms 2 (1991), no. 4,
367–378.

[APT79] Bengt Aspvall, Michael F. Plass, and Robert Endre Tar-
jan, A Linear-Time Algorithm for Testing the Truth of Certain
Quantified Boolean Formulas, Information Processing Let-
ters 8 (1979), no. 3, 121–123.

[AS00] Noga Alon and Joel H. Spencer, The Probabilistic Method,
second ed., Wiley-Interscience Series in Discrete Mathe-
matics and Optimization, Wiley-Interscience [John Wiley
& Sons], New York, 2000, With an appendix on the life
and work of Paul Erdős.

183

184 Bibliography

[Bec91] József Beck, An Algorithmic Approach to the Lovász Local
Lemma. I, Random Structures and Algorithms 2 (1991),
no. 4, 343–365.

[BFPS11] Rodrigo Bissacot, Roberto Fernández, Aldo Procacci, and
Benedetto Scoppola, An Improvement of the Lovász Local
Lemma via Cluster Expansion, Combinatorics, Probability
and Computing 20 (2011), no. 5, 709–719.

[BK04] Tobias Brueggemann and Walter Kern, An Improved Deter-
ministic Local Search Algorithm for 3-SAT, Theoretical Com-
puter Science 329 (2004), no. 1-3, 303–313.

[BKS03] Piotr Berman, Marek Karpinski, and Alex D. Scott, Appro-
ximation Hardness and Satisfiability of Bounded Occurrence
Instances of SAT, Electronic Colloquium on Computational
Complexity (ECCC) 10 (2003), no. 022.

[CGH+96] Robert M. Corless, Gaston H. Gonnet, Dave E.G. Hare,
David J. Jeffrey, and Donald E. Knuth, On the Lam-
bertW Function, Advances in Computational Mathematics
5 (1996), 329–359.

[CGH09] Karthekeyan Chandrasekaran, Navin Goyal, and Bern-
hard Haeupler, Deterministic Algorithms for the Lovász Local
Lemma, CoRR abs/0908.0375 (2009).

[CO10] Amin Coja-Oghlan, A Better Algorithm for Random k-SAT,
SIAM Journal on Computing (SICOMP) 39 (2010), no. 7,
2823–2864.

[Coo71] Stephen A. Cook, The Complexity of Theorem-Proving Proce-
dures, Proceedings of the 3rd Annual ACM Symposium on
Theory of Computing (STOC 1971), 1971, pp. 151–158.

Bibliography 185

[CS11] Toby S. Cubitt and Martin Schwarz, A Constructive Com-
mutative Quantum Lovász Local Lemma and Beyond, CoRR
abs/1112.1413 (2011).

[DG84] William F. Dowling and Jean H. Gallier, Linear-Time Algo-
rithms for Testing the Satisfiability of Propositional Horn For-
mulae, Journal of Logic Programming 1 (1984), no. 3, 267–
284.

[DGH+02] Evgeny Dantsin, Andreas Goerdt, Ewald A. Hirsch, Ravi
Kannan, Jon M. Kleinberg, Christos H. Papadimitriou,
Prabhakar Raghavan, and Uwe Schöning, A Deterministic
(2− 2/(k + 1))n Algorithm for k-SAT Based on Local Search,
Theoretical Computer Science 289 (2002), no. 1, 69–83.

[Dub90] Olivier Dubois, On the r, s-SAT Satisfiability Problem and
a Conjecture of Tovey, Discrete Applied Mathematics 26
(1990), no. 1, 51–60.

[EL75] Paul Erdős and László Lovász, Problems and Results on 3-
Chromatic Hypergraphs and Some Related Questions, Infinite
and Finite Sets (to Paul Erdős on his 60th birthday), Vol. II
(A. Hajnal, R. Rado, and Vera T. Sós, eds.), North-Holland,
1975, pp. 609–627.

[ES73] Paul Erdös and J. L. Selfridge, On a Combinatorial Game,
Journal of Combinatorial Theory, Series A 14 (1973), no. 3,
298–301.

[ES91] Paul Erdős and Joel Spencer, Lopsided Lovász Local Lemma
and Latin Transversals, Discrete Applied Mathematics 30
(1991), no. 2-3, 151–154, ARIDAM III (New Brunswick, NJ,
1988).

[For06] Otto Forster, Analysis 1. Differential- und Integralrechnung
einer Veränderlichen (Grundkurs Mathematik), Vieweg, Jan-
uary 2006.

186 Bibliography

[FP07] Roberto Fernández and Aldo Procacci, Cluster Expan-
sion for Abstract Polymer Models. New Bounds from an old
Approach, Communications in Mathematical Physics 274
(2007), no. 1, 123–140.

[FV98] Tomás Feder and Moshe Y. Vardi, The Computational Struc-
ture of Monotone Monadic SNP and Constraint Satisfaction: A
Study through Datalog and Group Theory, SIAM Journal on
Computing 28 (1998), no. 1, 57–104.

[Geb09] Heidi Gebauer, Disproof of the Neighborhood Conjecture
with Implications to SAT, Proceedings of the 17th Annual
European Symposium on Algorithms (ESA 2009), 2009,
pp. 764–775.

[GH11] William I. Gasarch and Bernhard Haeupler, Lower
Bounds on van der Waerden Numbers: Randomized- and
Deterministic-Constructive, Electronic Journal of Combina-
torics 18 (2011), no. 1.

[Giu09] Andrei Giurgiu, Random Walk Algorithms for SAT, Master’s
thesis, ETH Zürich, 2009.

[GST11] Heidi Gebauer, Tibor Szabó, and Gábor Tardos, The Local
Lemma is Tight for SAT, Proceedings of the 22nd Annual
ACM-SIAM Symposium on Discrete Algorithms (SODA
2011), 2011, pp. 664–674.

[Hal35] Philip Hall, On Representatives of Subsets, Journal of the
London Mathematical Society s1-10 (1935), no. 1, 26–30.

[Her11] Timon Hertli, 3-SAT Faster and Simpler - Unique-SAT
Bounds for PPSZ Hold in General, Proceedings of the 52nd
Annual IEEE Symposium on Foundations of Computer
Science (FOCS 2011), 2011, pp. 277–284.

Bibliography 187

[HMS11] Timon Hertli, Robin A. Moser, and Dominik Scheder, Im-
proving PPSZ for 3-SAT using Critical Variables, Proceedings
of the 28th International Symposium on Theoretical As-
pects of Computer Science (STACS 2011), 2011, pp. 237–
248.

[HS05] Shlomo Hoory and Stefan Szeider, Computing Unsatisfiable
k-SAT Instances with Few Occurrences per Variable, Theoret-
ical Computer Science 337 (2005), no. 1-3, 347–359.

[HS06] Shlomo Hoory and Stefan Szeider, A Note on Unsatisfiable
k-CNF Formulas with Few Occurrences per Variable, SIAM
Journal on Discrete Mathematics 20 (2006), no. 2, 523–528.

[HSSW02] Thomas Hofmeister, Uwe Schöning, Rainer Schuler, and
Osamu Watanabe, A Probabilistic 3-SAT Algorithm Further
Improved, Proceedings of the 19th Annual Symposium on
Theoretical Aspects of Computer Science (STACS 2002),
2002, pp. 192–202.

[IT04] Kazuo Iwama and Suguru Tamaki, Improved Upper Bounds
for 3-SAT, Proceedings of the Fifteenth Annual ACM-
SIAM Symposium on Discrete Algorithms (SODA 2004),
2004, p. 328.

[Knu73] Donald E. Knuth, The Art of Computer Programming, Vol-
ume i: Fundamental Algorithms, 2nd Edition, p. 396 (Exercise
11), Addison-Wesley, 1973.

[KR90] Richard M. Karp and Vijaya Ramachandran, Parallel Algo-
rithms for Shared-Memory Machines, Handbook of Theoret-
ical Computer Science, Volume A: Algorithms and Com-
plexity (A), Elsevier and MIT Press, 1990, pp. 869–942.

[Kra49] Leon G. Kraft, A Device for Quantizing, Grouping, and
Coding Amplitude-Modulated Pulses, Master’s thesis, Mas-
sachusetts Institute of Technology, 1949.

188 Bibliography

[KS10] Konstantin Kutzkov and Dominik Scheder, Using CSP to
Improve Deterministic 3-SAT, CoRR abs/1007.1166 (2010).

[KS11] Kashyap Babu Rao Kolipaka and Mario Szegedy, Moser
and Tardos meet Lovász, Proceedings of the 43rd Annual
ACM Symposium on Theory of Computing (STOC 2011),
2011, pp. 235–244.

[KST93] Jan Kratochvı́l, Petr Savický, and Zsolt Tuza, One more Oc-
currence of Variables makes Satisfiability jump from Trivial to
NP-complete, SIAM Journal of Computing 22 (1993), no. 1,
203–210.

[Kul99] Oliver Kullmann, New Methods for 3-SAT Decision and
Worst-case Analysis, Theoretical Computer Science 223
(1999), no. 1-2, 1–72.

[Lev73] Leonid A. Levin, Universal Sequential Search Problems,
Problems of Information Transmission 9 (1973), no. 3.

[Lub86] Michael Luby, A Simple Parallel Algorithm for the Maxi-
mal Independent Set Problem, SIAM Journal on Computing
(SICOMP) 15 (1986), no. 4, 1036–1053.

[Mil12] Sebastian J. Millius, Towards a Generalization of the PPSZ Al-
gorithm for Large Domains and Multiple Solutions, Master’s
thesis, ETH Zürich, 2012.

[Mos06] Robin A. Moser, On the Search for Solutions to Bounded Oc-
currence Instances of SAT, Semester Thesis, ETH Zürich,
2006.

[Mos08] , Derandomizing the Lovász Local Lemma more Effec-
tively, CoRR abs/0807.2120 (2008).

[Mos09] , A Constructive Proof of the Lovász Local Lemma, Pro-
ceedings of the 41st Annual ACM Symposium on Theory
of Computing (STOC 2009), 2009, pp. 343–350.

Bibliography 189

[MR98] Michael Molloy and Bruce A. Reed, Further Algorithmic As-
pects of the Local Lemma, Proceedings of the 30th Annual
ACM Symposium on the Theory of Computing (STOC
1998), 1998, pp. 524–529.

[MS77] Florence J. MacWilliams and Neil J. A. Sloane, The Theory
of Error-Correcting Codes. II, North-Holland Publishing Co.,
Amsterdam, 1977, North-Holland Mathematical Library,
Vol. 16.

[MS85] Burkhard Monien and Ewald Speckenmeyer, Solving Satis-
fiability in less than 2n Steps, Discrete Applied Mathematics
10 (1985), 287–295.

[MS11] Robin A. Moser and Dominik Scheder, A Full Derandom-
ization of Schöning’s k-SAT Algorithm, Proceedings of the
43rd Annual ACM Symposium on Theory of Computing
(STOC 2011), 2011, pp. 245–252.

[MT10] Robin A. Moser and Gábor Tardos, A Constructive Proof
of the General Lovász Local Lemma, Journal of the ACM 57
(2010), no. 2.

[MT11] Jochen Messner and Thomas Thierauf, A Kolmogorov Com-
plexity Proof of the Lovász Local Lemma for Satisfiability,
Computing and Combinatorics (Bin Fu and Ding-Zhu
Du, eds.), Lecture Notes in Computer Science, vol. 6842,
Springer Berlin Heidelberg, 2011, pp. 168–179.

[MTY11] Kazuhisa Makino, Suguru Tamaki, and Masaki Ya-
mamoto, Derandomizing HSSW Algorithm for 3-SAT, CO-
COON, 2011, pp. 1–12.

[MW11] Robin A. Moser and Emo Welzl, Chapter 5: Lovász Local
Lemma, Algorithms, Probability and Computing, Lecture
Notes (Thomas Holenstein, Ueli Maurer, Angelika Steger,
Emo Welzl, and Peter Widmayer, eds.), ETH Zürich, 2011.

190 Bibliography

[MW12a] , Chapter 2*: The Algorithmic Lovász Local Lemma,
Boolean Satisfiability – Combinatorics and Algorithms,
Lecture Notes, Emo Welzl, 2012.

[MW12b] , Chapter 7*: Derandomizing Schöning’s Algorithm,
Boolean Satisfiability – Combinatorics and Algorithms,
Lecture Notes, Emo Welzl, 2012.

[Pap91] Christos H. Papadimitriou, On Selecting a Satisfying Truth
Assignment (Extended Abstract), Proceedings of the 32nd
Annual Symposium of Foundations of Computer Science
(FOCS 1991), 1991, pp. 163–169.

[Peg11] Wesley Pegden, An Improvement of the Moser-Tardos Algo-
rithmic Local Lemma, CoRR abs/1102.2853 (2011).

[PPSZ05] Ramamohan Paturi, Pavel Pudlák, Michael E. Saks, and
Francis Zane, An Improved Exponential-Time Algorithm for
k-SAT, Journal of the ACM 52 (2005), no. 3, 337–364.

[PPZ99] Ramamohan Paturi, Pavel Pudlák, and Francis Zane, Sat-
isfiability Coding Lemma, Chicago Journal of Theoretical
Computer Science (1999), Article 11, 19 pp. (electronic).

[Rod96] Robert Rodošek, A New Approach on Solving 3-Satisfiability,
AISMC, 1996, pp. 197–212.

[Rol03] Daniel Rolf, 3-SAT in RTIME(O(1.32793n)) - Improving
Randomized Local Search by Initializing Strings of 3-Clauses,
Electronic Colloquium on Computational Complexity
(ECCC) (2003), no. 054.

[Sch99] Uwe Schöning, A Probabilistic Algorithm for k-SAT and Con-
straint Satisfaction Problems, Proceedings of the 40th An-
nual Symposium on Foundations of Computer Science
(FOCS 1999), 1999, p. 410.

Bibliography 191

[Sch08] Dominik Scheder, Guided Search and a Faster Deterministic
Algorithm for 3-SAT, Proceedings of the 8th Latin American
Theoretical Informatics Symposium (LATIN 2008), 2008,
pp. 60–71.

[Sch09] Pascal Schweitzer, Using the Incompressibility Method to Ob-
tain Local Lemma Results for Ramsey-Type Problems, Infor-
mation Processing Letters 109 (2009), no. 4, 229–232.

[Sch10] Stefan Schneider, Random Walk Algorithms for SAT and Con-
straint Satisfaction Problems, Master’s thesis, ETH Zürich,
2010.

[She85] James B. Shearer, On a Problem of Spencer, Combinatorica 5
(1985), no. 3, 241–245.

[Spe77] Joel Spencer, Asymptotic Lower Bounds for Ramsey Func-
tions, Discrete Mathematics 20 (1977), no. 0, 69 – 76.

[Sri08] Aravind Srinivasan, Improved Algorithmic Versions of the
Lovász Local Lemma, Proceedings of the 19th Annual ACM-
SIAM Symposium on Discrete Algorithms (SODA 2008)
(Philadelphia, PA, USA), Society for Industrial and Ap-
plied Mathematics, 2008, pp. 611–620.

[SS05] Alexander Scott and Alan Sokal, The Repulsive Lattice Gas,
the Independent-Set Polynomial, and the Lovász Local Lemma,
Journal of Statistical Physics (2005).

[SS06] Alexander D. Scott and Alan D. Sokal, On Dependency
Graphs and the Lattice Gas, Combinatorics, Probability and
Computing 15 (2006), no. 1-2, 253–279.

[Sze04] Stefan Szeider, Minimal Unsatisfiable Formulas with Bounded
Clause-Variable Difference are Fixed-Parameter Tractable,
Journal of Computer and System Sciences 69 (2004), no. 4,
656–674.

192 Bibliography

[Sze11] May Szedlák, The PPSZ Algorithm for Large Domains, Bach-
elor’s thesis, ETH Zürich, 2011.

[Tov84] Craig A. Tovey, A Simplified NP-Complete Satisfiability Prob-
lem, Discrete Applied Mathematics 8 (1984), no. 1, 85–89.

[Wel12] Emo Welzl, Boolean Satisfiability – Combinatorics and Algo-
rithms, Lecture Notes, ETH Zürich, 2012.

[Yin11] Mingsheng Ying, Another Quantum Lovász Local Lemma,
CoRR abs/1010.5577v3 (2011).

	Abstract
	Zusammenfassung
	Acknowledgements
	Preface
	Introduction
	Motivation
	Formal Problem Setting and Notation
	Topics Discussed
	Topics Not Discussed

	The Lovász Local Lemma
	Introduction
	Nonconstructive Proof
	Algorithmization
	Journaling and Reconstruction
	Incompressibility
	Witness Trees
	Slacked Hypotheses
	Parallelization
	Derandomization
	Beyond

	Schöning's Algorithm
	Introduction
	Algorithm and Analysis
	The Local Solver Contrasted
	Angels and Devils
	Typical Executions
	Covering Codes
	Deterministic Local Search

	Auxiliary Statements and Deferred Proofs
	Estimates involving the exponential series
	Cumulation of multiplicative slacks
	Bounded away from one
	Exponential Tail Estimate
	Certain Homogeneous Markov Chains
	Binomial Coefficients
	Proof of Theorem 2.3 (from Theorem 2.4)
	Proof of Theorem 2.5
	Proof of Lemma 2.36
	Proof of Lemma 2.38
	Proof of Lemma 2.39
	Proof of Lemma 2.40
	Proof of Lemma 2.41
	Proof of Lemma 2.42
	Proof of Lemma 2.43
	Proof of Lemma 2.48
	Proof of Lemma 2.56
	Proof of Theorem 3.8

	Bibliography

