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Abstract

This thesis treats crossing-free geometric graphs, which are graphs defined
on a given finite set of points in the plane. Their edges are understood as
straight-line segments connecting corresponding endpoints without passing
through any other point. For a crossing-free graph no two edges are allowed
to intersect other than in a common endpoint. The following are the most
important kinds of crossing-free configurations that we will encounter in our
discussion: Triangulations, crossing-free partitions, spanning trees, perfect
matchings, and the set of all plane graphs.

First, we consider a class of plane graphs that emerge from crossing-free
partitions of the underlying point set. To be more precise, a partition of a
given set of points is crossing-free if the convex hulls of the individual parts
are mutually disjoint. Each partition naturally translates to a plane graph
whose vertices are the given points and whose edges are the boundaries of
the convex hulls of the partition classes. We ask whether convex position of
the underlying point set minimizes the number of crossing-free partitions
over all placements of equally many points. We answer a corresponding
question in the affirmative for the number of crossing-free partitions of n
points into a fixed number k of parts, where k ∈ {1, 2, 3, n−3, n−2, n−1, n}.
In addition, we show that on at least five points the number of crossing-
free partitions is not maximized in convex position. It is known that in
convex position the number of crossing-free partitions into k classes equals
the number of partitions into n − k + 1 parts. This does not hold in gen-
eral, and we mention a construction for point sets with significantly more
partitions into few classes than into many. Another problem we consider
on point sets in convex position is the decomposition of the complete graph
using geometric graphs corresponding to crossing-free partitions. We show
almost tight bounds for the number of elements in a smallest possible de-
composition.

Second, we treat transformation graphs of crossing-free configurations
on a set of points. These are abstract graphs whose vertices are the crossing-
free configurations of interest and whose edges are defined by a prescribed
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X Abstract

transformation rule. For instance, we call two configurations compatible
if the union of their edge sets is again crossing-free. In the correspond-
ing transformation graph every pair of compatible configurations is joined
by an edge. As the transformation rule encodes some notion of similar-
ity of the configurations, the diameter of the transformation graph is a
natural parameter to study. For two classes of transformation graphs –
compatible crossing-free spanning trees and compatible crossing-free per-
fect matchings – we provide constructions for placements of n points such
that the diameter is Ω(log n/ log log n). This nearly matches the known
upper bound of O(log n) in both cases. For the transformation graph of
compatible spanning trees our construction yields a tight result in terms of
the number k of convex layers of the given point set, i.e., the diameter is
Ω(log k) which is best-possible.

In the last part of this thesis we study algorithmic aspects of counting
the number of crossing-free geometric graphs on a given set of points. We
show that the total number of such crossing-free graphs can be computed
with exponential speed-up compared to enumerating them. It is worth em-
phasizing that no similar statements are known for other prominent graph
classes such as triangulations, spanning trees or perfect matchings. Another
result we obtain is a lower bound on the total number of plane graphs, in

the sense that there are at least
√

8
n−1

times more crossing-free graphs than
triangulations on any set of n points in general position. Upper bounds on
the number of plane graphs are usually derived in a straight-forward way by
providing estimates on the number of triangulations and then counting all
subsets of edges in each triangulation. While there exist degenerate point
sets for which the estimate obtained by counting subgraphs is best-possible,
we are able to improve over this trivial upper bound assuming general posi-
tion of the underlying point set. In particular, we obtain the currently best
upper bound of O(343.106n) on the total number of crossing-free graphs a
set of n points can have.



Zusammenfassung

Gegenstand der vorliegenden Dissertation sind kreuzungsfreie geometrische
Graphen. Geometrische Graphen sind Graphen, deren Knoten durch eine
endliche Menge von Punkten in der Ebene definiert sind. Ihre Kanten sind
durch Liniensegmente gegeben, welche entsprechende Endpunkte miteinan-
der verbinden, ohne durch einen weiteren Punkt zu verlaufen. In einem
kreuzungsfreien Graphen dürfen sich keine zwei Kanten schneiden ausser
in einem ihrer Endpunkte. Die wichtigsten kreuzungsfreien Konfiguratio-
nen, welche in dieser Arbeit behandelt werden, sind die folgenden: Trian-
gulierungen, kreuzungsfreie Partitionen, Spannbäume, perfekte Paarungen
und die Menge aller planarer Graphen.

Zunächst betrachten wir eine Klasse von planaren Graphen, die aus
kreuzungsfreien Partitionen der zugrundeliegenden Punktmenge hervorge-
hen. Eine Partition einer gegebenen Menge von Punkten heisst kreuzungs-
frei, falls die konvexen Hüllen der einzelnen Klassen paarweise disjunkt sind.
Solche Partitionen lassen sich auf natürliche Weise als planare Graphen
auf der Punktmenge interpretieren, deren Kanten aus den Rändern der
konvexen Hüllen der einzelnen Partitionsklassen bestehen. Wir unter-
suchen die Frage, ob die konvexe Lage unter allen Anordnungen gleich
vieler Punkte die Anzahl der kreuzungsfreien Partitionen minimiert. Für
die Zahl der kreuzungsfreien Partition von n Punkten in k Klassen, wobei
k ∈ {1, 2, 3, n−3, n−2, n−1, n}, können wir die entsprechende Frage positiv
beantworten. Sind mindestens fünf Punkte gegeben, zeigen wir ausserdem,
dass die konvexe Lage die Anzahl der kreuzungsfreien Partitionen nicht
maximiert. Es ist bekannt, dass in konvexer Lage die Zahl der kreuzungs-
freien Partitionen in k und in n− k+ 1 Klassen übereinstimmen. Dies gilt
im Allgemeinen nicht, und wir konstruieren Punktmengen, die für kleines
k signifikant mehr Partitionen in k als in n− k + 1 Klassen erlauben. Ein
weiteres Problem, welches wir auf Punktmengen in konvexer Lage betrach-
ten, ist das Zerlegen des vollständigen Graphen in planare Graphen, die
aus kreuzungsfreien Partitionen entstehen. Für die Anzahl der Elemente
einer kleinstmöglichen Zerlegung beweisen wir fast scharfe Schranken.
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XII Zusammenfassung

Ebenfalls behandeln wir Transformationsgraphen kreuzungsfreier Kon-
figurationen, die auf Punktmengen definiert sind. Transformationsgraphen
sind abstrakte Graphen, deren Knoten die kreuzungsfreien Konfigurationen
darstellen, und deren Kanten durch eine vorgegebene Transformationsregel
bestimmt sind. Eine solche Regel ist zum Beispiel durch Kompatibilität
gegeben, wobei zwei Konfigurationen kompatibel heissen, falls die Ver-
einigung ihrer Kantenmenge wiederum kreuzungsfrei ist. Im entsprechen-
den Transformationsgraphen wird jedes Paar von kompatiblen Konfigu-
rationen durch eine Kante verbunden. Da die Transformationsregel eine
gewisse Ähnlichkeit der Konfigurationen beschreibt, interessieren wir uns
für den Durchmesser des Transformationsgraphen. Wir konstruieren Men-
gen von n Punkten, sodass der Durchmesser der dazugehörigen Transforma-
tionsgraphen von kreuzungsfreien Spannbäumen und perfekten Paarungen
jeweils Ω(log n/ log log n) ist. Die bekannte obere Schranke ist in beiden
Fällen O(log n). Messen wir den Durchmesser des Transformationsgraphen
der kreuzungsfreien Spannbäume in Abhängigkeit von der Anzahl k kon-
vexer Schichten ist unser Ergebnis scharf, d.h. der Durchmesser ist Ω(log k),
was bestmöglich ist.

Abschliessend beschäftigen wir uns mit algorithmischen Aspekten, die
das Abzählen der kreuzungsfreien geometrischen Graphen betreffen. Wir
beweisen, dass die Berechnung der Anzahl solcher kreuzungsfreien Graphen
exponentiell schneller möglich ist als ihr Aufzählen benötigt. Dies ist ins-
besondere deswegen interessant, weil für andere prominente Graphklassen,
wie zum Beispiel Triangulierungen, Spannbäume oder perfekte Paarun-
gen, keine analogen Aussagen bekannt sind. Als weiteres Resultat er-
halten wir eine untere Schranke für die Anzahl der planaren Graphen in

Abhängigkeit von der Anzahl Triangulierungen: es gibt mindestens
√

8
n−1

mal mehr kreuzungsfreie Graphen als Triangulierungen auf jeder Menge von
n Punkten in allgemeiner Lage. Obere Schranken für die Anzahl planarer
Graphen werden meist wie folgt hergeleitet: man schätzt die Zahl der Tri-
angulierungen von oben ab und zählt in jeder Triangulierung sämtliche
Untergraphen. Für degenerierte Punktmengen kann diese Abschätzung
bestmöglich sein, allerdings verbessern wir die Schranke für Punktmen-
gen in allgemeiner Lage. Dadurch erhalten wir auch die zurzeit beste
obere Schranke O(343.106n) für die Anzahl kreuzungsfreier geometrischer
Graphen auf einer Menge von n Punkten.



Geometry

They say who play at blindman’s buff
And strive to fathom space
That a straight line drawn long enough
Regains its starting place
And that two lines laid parallel
Which neither stop nor swerve
At last will meet, for, strange to tell,
Space throws them both a curve.

Such guesswork lets my hopes abide,
For though today you spurn
My heart and cast me from your side
One day I shall return
And though at present we may go
Our lonely ways, a tether
Shall bind our paths till time be through
And we two come together.

X. J. Kennedy 0
Introduction

0.1 Motivation

Every so often scientists are granted to catch a brief glimpse at paragraphs
or, in case someone is very lucky, even at a page of The Book. According
to the famous Hungarian mathematician Paul Erdős, it contains the perfect
proofs for all mathematical statements, however, access to The Book is
very limited.

Particularly fascinating to the author of these lines are the beautiful
identities, and of course the elegant proofs thereof, that were found by
brilliant minds in certain chapters of The Book that are entitled combi-
natorics, graph theory and geometry (granted that there is a division into
chapters).

Besides the esthetically pleasing nature of many of these observations
and results, their corresponding proofs from The Book often bring about
new insights and may allow for methods to tackle and solve new families
of problems.

In our studies we came across some known results whose derivations
probably borrow from The Book; at least their statements led to such
belief. We will mention a few such examples in the course of our description
and hope that the esteemed reader will share our passion for their beauty.

1



2 Chapter 0. Introduction

0.2 The thesis in a nutshell

We consider graphs whose vertices are given by finite point sets in the plane
and whose edges connect corresponding endpoints without passing through
any other point. In particular we focus on geometric graphs whose edges
are drawn as straight-line segments. Such a geometric graph is crossing-free
if no pair of its edges shares any point other than a common endpoint. The
drawing in Figure 0.1(a) is a crossing-free geometric graph; The embedding
in (b) exhibits a point common to the interior of two edges and is thus not
crossing-free; Finally, the graph in (c) is not geometric.

(a) Crossing-free (b) Geometric (c) Graph embedded
geometric graph graph in the plane

Figure 0.1: Drawings of graphs in the plane

Throughout the thesis we treat crossing-free geometric graphs even if
not stated explicitly. Moreover, to avoid trivialities for the most part gen-
eral position of the underlying set of points is assumed. Unless stated
otherwise this means that no three points are collinear.

In order to avoid confusion when providing estimates for cardinalities
we briefly explain our use of the terms upper and lower bound in this
context. For instance let us consider counting the total number of crossing-
free geometric graphs that a fixed set of n points allows for.

On the one hand, by definition an upper bound for this quantity cannot
be exceeded by any particular choice of n points in the plane. As a measure
of quality for such an estimate, one usually exhibits a certain set of n points
and determines the number of graphs on this set. At the same time this
construction serves as a lower bound indicating by how much the upper
bound could be improved in case it is not tight.

On the other hand, similarly, a lower bound for the total number of
crossing-free geometric graphs is understood to imply that every set of n
points has at least that many graphs. We will provide a corresponding
upper bound by a concrete choice of a set of n points which constitutes the
space for improvements in case the lower bound is not tight.

In the following we outline our contribution and put the findings into
perspective by citing known results and referring to related work.
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0.2.1 Crossing-free partitions

In the first part of this thesis we are concerned with partitions of a given
finite set of points such that the convex hulls of the individual parts are
pairwise disjoint. Such an object is called crossing-free partition. We note
that a canonical interpretation as a plane graph is immediate: The set
of vertices is the underlying point set, and the edges are given by the
segments forming the boundaries of the convex hulls of the partition classes.
The illustrations in Figure 0.2 show geometric graphs corresponding to
partitions of the underlying point set. We note that in Figure 0.2(c) the
partition is crossing-free if the individual parts are of size 4, 2, 1, 1 and it
is not crossing-free if the parts have sizes 3, 2, 1, 1, 1.

(a) Crossing-free (b) Partition which (c) Crossing-free if and only
partition is not crossing-free if parts are of size 4, 2, 1, 1

Figure 0.2: Partitions of points and their interpretation as geometric graphs

Crossing-free partitions of vertex sets defined by convex polygons made
their first appearance in the guise of planar rhyme schemes in a note by
Becker [18] from the early 1950s. A rhyme scheme is a pattern of lines,
referred to by letters of the alphabet, that indicate which lines rhyme. A
planar rhyme scheme avoids the pattern abab for every subsequence consist-
ing of four lines. Implicitly assumed is a periodic repetition of the complete
rhyme scheme. For instance, according to this definition the poem from
the quote to this introduction on page 1 constitutes a non-planar scheme.

Becker observed that the number of n-line planar rhyme schemes is the
n-th Catalan number. Stanley [77] lists, in an addendum to [76], more
than 170 such combinatorial interpretations of the Catalan numbers. Let
Γn denote the vertex set of a convex polygon on n vertices, and cfp(Γn) the
number of crossing-free partitions of Γn. Then this interpretation precisely
means that

cfp(Γn) = Cn =
1

n+ 1

(
2n

n

)
= Θ

(
4n

n3/2

)
,

where Cn denotes the n-th Catalan number. Moreover, we write cfpk(Γn)
for the number of crossing-free partitions of Γn into k partition classes.



4 Chapter 0. Introduction

Their cardinality is known due to Kreweras [49] who, 20 years after Becker’s
work, was able to infer

cfpk(Γn) =
1

n

(
n

k

)(
n

k − 1

)
.

This is another notable integer sequence known as the Narayana num-
bers. Several derivations of these counting results have later been given
most of them combinatorial, see for instance Edelman [29], Prodinger [62]
or Liaw et al. [53]. Flajolet and Noy [31] obtain the identities invoking the
machinery of generating functions.

The study of crossing-free partitions has been fruitful to many disci-
plines in combinatorics with relations even as far as to molecular biology.
However, a comprehensive discussion exceeds the scope of this thesis. We
just mention a survey by Simion [73] covering many topics that illustrate
the broad variety of impact that crossing-free partitions had since their
original treatment by Becker and Kreweras.

Our motivation to investigate crossing-free partitions stems from numer-
ous observations that convex position of a point set minimizes the number
of certain crossing-free configurations. As example we briefly mention an
argument regarding Hamiltonian cycles. It is not hard to convince oneself
that Γn allows for one such cycle only, whereas the shortest Hamiltonian
cycle on any set of points is always crossing-free. Thus, among all sets of n
points in the plane, convex position minimizes the number of crossing-free
Hamiltonian cycles.

Garćıa et al. [33] proved a corresponding statement for perfect match-
ings and spanning trees, and recently Aichholzer et al. [8] extended these
results by showing that Γn also minimizes the number of crossing-free span-
ning paths, pseudo-triangulations, pointed pseudo-triangulations, forests,
connected graphs, and all plane graphs.

However, it is a well-known result due to Hurtado and Noy [39] that tri-
angulations are a prominent counterexample to this pattern. The authors
suggest a construction of a set of n points, in the literature referred to
as double-circle, which asymptotically allows for Θ∗(

√
12
n
) triangulations

(polynomial factors in n are neglected in the Θ∗ notation). This compares
to the number of triangulations on Γn which is given by the Catalan num-
bers, and thus of order Θ∗(4n). We recall that the asymptotic growth of
cfp(Γn) is determined by the Catalan numbers as well.

Despite the vastly treated notion of crossing-free partitions of Γn only
few results are known for arbitrary point sets in general position. Sharir
and Welzl [71] show an upper bound of O(12.24n) for the quantity under
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consideration, given any set of n points in the plane, and they analyze the
so-called double-chain, introduced in [33], to prove the existence of a point
set with Ω(5.23n) crossing-free partitions. It remains an open problem
whether Γn minimizes the total number of crossing-free partitions over all
point sets in general position but we conjecture an affirmative answer.

On the other end, in our initial result of Chapter 1 we establish that for
no n ≥ 5 does the set Γn maximize the number of crossing-free partitions.
We exhibit a concrete construction permitting strictly more partitions.

As a first step towards resolving the conjecture we will derive that
n points in convex position attain the minimum number of crossing-free
partitions into k classes, for certain values of k. In fact, we also con-
jecture this stronger statement to be true for all k, and give proofs for
k ∈ {1, 2, 3, n− 3, n− 2, n− 1, n}. Both claims have computationally been
verified for sets of at most nine points in general position with the help of the
order type database developed by Aichholzer et al. [4]. Alon and Onn [13]
showed that a set of n points allows for at most O(n6k−12) crossing-free
partitions into k classes, for k constant, and this bound is tight.

Note that the Narayana numbers representing cfpk(Γn) are symmetric
in the sense that cfpk(Γn) = cfpn−k+1(Γn), for all 1 ≤ k ≤ n. We will see
that such an identity does not necessarily hold for arbitrary sets. For fixed
k ≥ 3, we provide a construction for n points which has, by a factor of
order Ω(n2), more crossing-free partitions into k classes than into n−k+ 1
classes. Even for k = o(log n) a factor of Ω(n) for this ratio is achieved. As
the main tool in our proof we adapt the notion of halving edges proposed by
Lovász [55] and, in the more general setting of k-edges, by Erdős et al. [30]
in the early 1970s. We refer to Matoušek [56, Chapter 11] and the survey
of Wagner [81] for a detailed background on k-edges and their applications.

In Chapter 2 we study the question of how many crossing-free partitions
we need to decompose the complete graph Kn embedded on a set Γn in
convex position. Figure 0.3 shows such a minimum decomposition of K5.

Figure 0.3: Decomposition of K5 into three crossing-free partitions

Decompositions of graphs are a well-established concept in the area of
extremal graph theory. Research in this field was triggered by the Turán
problem [78] asking for the maximum number of edges in a graph which
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does not contain a copy of a given graph H as subgraph. For a deeper in-
troduction to the matter of extremal combinatorics we refer to Jukna [42].
However, we insist on mentioning a result and some open questions con-
cerned with the decomposition of graphs. We note that these problems are
stated for abstract graphs without the crossing-free or geometric framework
we usually assume in this thesis.

Lovász [54] showed that every graph on n vertices allows for a decom-
position into bn/2c paths and cycles. It is, however, not known whether for
a decomposition into paths alone at most dn/2e paths suffice. This is con-
jectured to be true by Gallai, and the analogue bound for a decomposition
into at most bn/2c cycles is conjectured by Hajós.

Ringel [67] proposed an innocent looking problem which also remains
unsolved to this day: For any fixed tree T on n vertices K2n−1 decomposes
into copies of T . Alspach [14] considers decompositions of Kn into cycles
of prescribed length. To be more precise, he conjectures that for n odd
and c1, . . . , ck natural numbers between 3 and n summing to

(
n
2

)
, there is

a decomposition of Kn into cycles of lengths c1, . . . , ck.

In our setting we attempt to decompose Kn embedded on a convex
polygon by means of crossing-free partitions. We show that for the complete
graph on Γn, and n sufficiently large, at least n− 4 crossing-free partitions
are necessary for that purpose. Conversely, a construction solely using
maximal crossing-free matchings on Γn results in a decomposition of Kn

with exactly n partitions providing an almost tight upper bound.

Our results presented in Chapter 1 are joint work with Emo Welzl [65],
and the results in Chapter 2 are obtained jointly with Sonja Čukić, Michael
Hoffmann, and Tibor Szabó [24].

0.2.2 Transformation graphs

In Part II we introduce the abstract framework of transformation graphs
which will accompany us throughout the remainder of the thesis. For a
finite set P of n points in the plane we consider a graph whose vertices
F = F(P ) are certain crossing-free configurations on P , and its edges con-
nect configurations that may be obtained one from the other by predefined
rules of transformation. This transformation graph is denoted TF (P ). The
transformation rules bring about a notion of similarity which motivates to
investigate the diameter of TF (P ).

For example, a well-studied object of this type is the graph Ttr(P ) de-
fined on the set of triangulations on P , where two of its elements are adja-
cent if one is obtained from the other by flipping an edge in the respective
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triangulation, see Figure 0.4. In his seminal works Lawson showed that, for
any set P of n points, Ttr(P ) is connected [50] and has diameter O(n2) [51].
Hurtado et al. [40] proved this upper bound to be asymptotically tight in
the worst case, but it remains an open problem to find matching constants
for the number of edge flips when transforming triangulations.

Figure 0.4: Two triangulations adjacent in Ttr(P )

Hanke et al. [34] showed that the distance of two triangulations in Ttr(P )
is at most the number of crossings between the edges of the two triangula-
tions. This also implies the quadratic upper bound on the diameter since
every triangulation has less than 3n edges and therefore the maximum
number of intersections is at most 9n2. In addition, the result favors the
intuition about short transformation sequences in case the triangulations
are very similar, i.e., there are only few intersections between the edge sets,
as opposed to flipping both triangulations to a third canonical one (for
instance to the Delaunay triangulation as in [51]).

Let us point out that such flips in triangulations play a fundamental role
for the enumeration of different configurations of crossing-free geometric
graphs, see for instance [15, 20]. For a general treatment covering flips in
geometric and abstract graphs we refer to the recent survey by Bose and
Hurtado [21].

We compare these results to the case of a point set Γn in convex position.
For n > 12, a tight linear upper bound of 2n − 10 for the diameter of
Ttr(Γn) is known due to Sleator et al. [74]. They related this diameter to
the minimum number of rotations needed to convert two binary trees on
n−2 nodes into one another. In fact, they hereby improved over a previous
result of Culik and Wood [25] who were the first to consider the number of
rotations for converting trees on n nodes. Moreover, Sleator et al. showed
their bound to be tight for an infinite set of values of n.

Now, we draw our attention to crossing-free spanning trees and perfect
matchings which we will treat in this thesis. Avis and Fukuda [15] define
the graph T 1

st(P ) on the crossing-free spanning trees of P where two trees
are adjacent if their symmetric difference is a path of length 2 starting
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at the leftmost point of P . They show that this transformation graph is
connected for any P and has diameter at most 2n− 4.

Hernando et al. [37] consider the transformation graph T 2
st(Γn) on points

in convex position where two trees are adjacent if their symmetric difference
is of size 2. They prove that T 2

st(Γn) is Hamiltonian and its connectivity is
equal to the minimum vertex degree. Moreover, the authors give a lower
bound of 3n/2− 5 on the diameter of T 2

st(Γn).
Another transformation graph of spanning trees on P , suggested by

Aichholzer et al. [3], results from the edge-slide operation on a tree. Two
trees T and T ′ are adjacent in T 3

st(P ) if there is an edge of T such that
keeping one of its endpoints fixed and sliding the other endpoint along a
respective adjacent edge yields T ′, see Figure 0.5. It is shown that T 3

st(P )
is connected, which has the important consequence that spanning trees
can be transformed into each other applying local, constant-size operations
only. A polynomial upper bound of O(n2) on the corresponding diameter
was recently given by Aichholzer and Reinhardt [11].

Figure 0.5: The edge slide transformation on spanning trees

Two crossing-free graphs on P are said to be compatible if the union
of their edge sets is again without crossing. We note that convex position
of the underlying point set Γn is of minor interest for the transformation
of compatible trees or matchings, as the diameter of the corresponding
transformation graph is 2 if n ≥ 4, and 1 otherwise. Indeed, in both cases
there is a universal crossing-free representative consisting of edges from the
boundary of the convex hull which is adjacent to any other configuration,
see Figure 0.6.

The authors of [3] also consider a directed transformation graph T 4
st(P )

on spanning trees: A tree connects via a directed edge to the compatible
tree of minimum Euclidean length. In this setting T 4

st(P ) is shown to be a
rooted tree, with the Euclidean minimum spanning tree of P as root, and
any tree has distance at most O(log n) from the root.

This bound was refined by Aichholzer et al. [2] for the undirected trans-
formation graph T 5

st(P ) of compatible spanning trees by proving an upper
bound of O(log k) for the diameter of T 5

st(P ), where k denotes the number
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Figure 0.6: Universal spanning tree and perfect matching on Γn

of convex layers of P . Their work was also motivated by showing that an
upper bound of d on the diameter of compatible spanning trees implies
an upper bound of O(nd) on the diameter of the flip graph of pseudo-
triangulations of P . The authors conjectured the diameter of T 5

st(P ) to
be sub-logarithmic and mentioned that no pair of spanning trees is known
whose distance is more than a constant.

We partially close this gap in Chapter 3 by suggesting a construction
for point sets P of cardinality n with k convex layers that allow for two
spanning trees whose distance in T 5

st(P ), in terms of the number of convex
layers, achieves a tight lower bound of Ω(log k) and an almost tight bound
of Ω(log n/ log log n), in terms of the order of P .

Houle et al. [38] considered the transformation of compatible perfect
matchings. They showed that for any set P of an even number n of points
the corresponding graph Tpm(P ) is connected and has diameter at most
n − 2. In a very recent work Aichholzer et al. [6] improved the bound to
O(log n). In Chapter 4 we complement this upper bound by a construction
yielding a sub-logarithmic lower bound of Ω(log n/ log log n).

Hernando et al. [36] analyze the transformation graph for perfect match-
ings on Γn where the adjacency relation is given by a symmetric difference
of exactly two edges. They show that the graph is bipartite, of diameter
n− 2, and Hamiltonian if n/2 is even, and does not contain a Hamiltonian
path for odd n/2.

The results on the transformation of spanning trees are joint work with
Kevin Buchin, Uli Wagner and Takeaki Uno [22].

0.2.3 Counting crossing-free geometric graphs

The final part of this thesis is devoted to counting the number of crossing-
free geometric graphs on a set of n points in the plane. Central to both
Chapters 5 and 6 is the fact that this quantity never exceeds a fixed ex-
ponential in n. Ajtai et al. [12] were the first in 1982 to establish this
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result with 1013 as base of the exponential. Hereby, they answered a ques-
tion raised by Newborn and Moser [61] asking for an upper bound on the
number of crossing-free spanning cycles in a set of n points. This original
problem led to the discovery of the celebrated Crossing Lemma by Ajtai
et al. [12], which asserts a strong lower bound for the number of crossings
in a geometric graph with many edges. Its first of numerous applications
later on was the exponential bound on the number of plane graphs.

On the other end, it is clear that any set of n distinct points allows
for exponentially many crossing-free graphs. Indeed, the shortest spanning
tree is always crossing-free and, hence, so are its 2n−1 subgraphs. We note
that this is even true for points not in general position. Likewise, it was
commonly believed that a point set in general position has exponentially
many triangulations, however, a rigorous argument settling this question
and a lower bound of 2.012n was only lately given by Aichholzer et al. [9]
in 2001. (The same authors also mention a previous result of Galtier et
al. [32], albeit published later than [9], which implies a bound of Ω(1.124n).)

The most recent results concerning lower bounds on the number of
triangulations in any set of n points are the general estimate Ω(2.338n),
due to Aichholzer et al. [10], and for the particular case of k points on the
boundary of the convex hull McCabe and Seidel [58] show a lower bound
of Ω

(
( 30

11 )k( 11
5 )(n−k)

)
. For k fixed, the latter bound yields Ω(2.2n) but can

be improved to Ω(2.63n).
By applying the reverse search technique of Avis and Fukuda [15] it is

possible to enumerate the set of triangulations on a set P of n points in
time at most a polynomial factor in n times the number of triangulations.
Our contribution in Chapter 5 is that we show how to count the number
of crossing-free geometric graphs on a given point set exponentially faster
than enumerating them. More precisely, given a set P of n points in general
position we may compute pg(P ), the number of crossing-free geometric

graphs on P , in time at most poly(n)√
8
n · pg(P ). It is worth mentioning that

no similar statements are known for other prominent graph classes like
triangulations, crossing-free spanning trees or perfect matchings.

To achieve the exponential speed-up we assign every triangulation, on

average, to at least
√

8
n−1

crossing-free geometric graphs. For point sets
with triangular convex hulls we are able to improve the base of the exponen-
tial from

√
8 ≈ 2.828 to 3.347. As main ingredient for the improvement we

show that there is a constant α > 0 such that a triangulation on P chosen
uniformly at random contains, in expectation, at least n/α non-flippable
edges. The latter result is of interest in its own right, and the best value
for α we obtain is 37/18.
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We mentioned the upper bound of 1013n by Ajtai et al. [12] on the
number of crossing-free graphs on a set of n points. Further stimulus in
this research area [75, 70, 26, 69] was mainly motivated by progressively
deriving better bounds, 173000n, 4854.52n, 276.76n, 59n for the number
tr(P ) of triangulations on n points, where the currently best known upper
bound stands at 43n due to Sharir and Welzl [72] from 2006.

Upper bounds on the number of crossing-free graphs are then usually
obtained by counting all subsets of edges in each triangulation. Let M
denote the number of edges in any triangulation, then this amounts to
multiplying the bound on the triangulations by 2M .

Lastly, in Chapter 6 we derive the first non-trivial upper bound of
the form 2γ·M · tr(P ), with γ < 1, for the number of crossing-free geo-
metric graphs on a set P in general position, and we deduce a bound of
O(343.106n) for pg(P ). The important point to note here is that general
position is crucial, as degeneracies may indeed cause a ratio of 2M for the
number of crossing-free graphs versus that of triangulations.

As main component in our derivation we show that there is a constant
β ≥ 1

144 > 0 such that, for any set of at least five points in general posi-
tion, a crossing-free geometric graph that is chosen uniformly at random
contains, in expectation, at least (1

2 + β)M edges.

The findings in Chapter 5 are joint work with Emo Welzl [66], and the
results of Chapter 6 are jointly with Jack Snoeyink and Emo Welzl [64].

0.3 Terminology and Notation

The reader who is experienced in the field of combinatorics will be familiar
with most of the notation employed in this thesis. Thence, she may safely
skip this section as we briefly review standard mathematical objects and
terminology, however, it might still serve as a reference. Specific notions
tailored to support the analyses of our results will be introduced gradually
and even repeated where deemed necessary.

The set of natural numbers not including zero is denoted by N, the set
of integers by Z, and the set of real numbers by R. Given a real number
x ∈ R we write bxc ∈ Z for the largest integer smaller than or equal to x,
and dxe ∈ Z for the smallest integer larger than or equal to x. Given a
set S we write |S| for its cardinality, and for k ∈ N we denote by

(
S
k

)
the

k-element subsets of S. A partition of a set S is a collection of non-empty
disjoint subsets, called partition classes, whose union equals S.

The real 2-dimensional space endowed with the standard inner product
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will typically be referred to as Euclidean plane or simply plane. It is denoted
by R2, but keep in mind that the object under consideration is a metric
space. With a point p = (x, y) ∈ R2 its Euclidean norm ‖p‖ =

√
x2 + y2

is associated. Given the topology induced by this norm, for a point set
P ⊆ R2 in the plane the symbol ∂P denotes its boundary, P ◦ the interior
and P the closure of P . The convex hull of P will be abbreviated by
conv(P ). Given a finite set P of points in general position and Q ⊆ P
a non-empty subset, by X(Q) := Q ∩ ∂conv(Q) we refer to the extreme
points of Q, and the points from P contained inside the convex hull of Q
are denoted by IP (Q) := P ∩ conv(Q)◦.

A finite point set is said to be in general position if no three of its points
are collinear. We always assume a given point set to be in general posi-
tion unless stated otherwise. If a particular context requires an even more
restricted assumption we will explicitly mention a corresponding definition.

Let A, B, and C be arbitrary non-empty sets. A function f : A → B
is said to be injective if there exists a function g : B → A satisfying
g(f(a)) = a, for all a ∈ A, and it is surjective if there is g : B → A such
that f(g(b)) = b, for all b ∈ B. If f is both injective and surjective we call
it bijective. Let f : A → B and g : B → C be functions then we write
g ◦ f : A→ C for the function defined by g ◦ f(a) := g(f(a)), for all a ∈ A.

A real-valued function f defined on some real interval A is called convex
if f
(
(1− t)x+ ty

)
≤ (1− t)f(x) + tf(y), for all t ∈ [0, 1] and x, y ∈ A.

We employ the common Landau notation to describe the limiting behav-
ior of a function as its argument tends to infinity. Let f, g : N→ R be two
functions taking non-negative values only, then we write f(n) = O(g(n)),
or simply f = O(g), and say f(n) is of order at most g(n) if

∃c > 0 ∃n0 ∈ N ∀n ≥ n0 : f(n) ≤ c · g(n).

With slight abuse of notation we also want to allow the use of expres-
sions like O(g) = O(h), if for all function satisfying f = O(g) also f = O(h)
holds. We observe here that the symbol “=” is not symmetrically used in
this context. Furthermore, we introduce the notion f = Ω(g) which is
equivalent to saying g = O(f), and f = Θ(g) means both f = O(g) and
f = Ω(g). We often encounter functions growing exponentially fast, in
which case we tend to use the notation Θ∗ instead of Θ which neglects
polynomial factors and just specifies the dominating exponential term. If
limn→∞

(
f(n)/g(n)

)
= 0 we write f = o(g).

Whenever a probability space is understood the probability of an event
A is denoted P[A], and the expected value, or expectation for short, of a
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random variable X is written as E[X]. Given a predicate A we write 11[A]

for the indicator function, i.e., 11[A] = 1 if A holds and 11[A] = 0 otherwise.

We conclude by introducing the graph theoretic terminology where we
mostly follow the notation suggested by West [82]. A graph G is an ordered
pair consisting of a finite vertex set V (G) and a finite edge set E(G), whose
elements are pairs of vertices. We refer to the vertices of such a pair as the
edge’s endpoints. The endpoints of an edge are also called neighbors and
said to be adjacent, while being incident to their connecting edge. If the
edges in E(G) are ordered pairs we call G a directed graph, otherwise G is
undirected. For an edge e in an undirected graph between vertices u and v
we write e = {u, v}, or e = uv for short.

For a graph G we write n(G) = |V (G)| for its order, and e(G) = |E(G)|
for its size. A loop is an edge whose endpoints are equal. Edges having the
same pair of endpoints are termed multiple edges. A graph without loops
and multiple edges is called simple. Unless stated otherwise, graphs are
considered simple and undirected throughout this thesis.

A subgraph H of G is a graph that satisfies both V (H) ⊆ V (G) and
E(H) ⊆ E(G), and we also say G contains H. Moreover, we call H a
spanning subgraph if V (H) = V (G). A decomposition of a graph is a set of
subgraphs such that each edge appears in exactly one subgraph of the set.

We allow some operations that may be performed on a graph G. Delet-
ing an edge e ∈ E(G) yields a new graph H with V (H) = V (G) and
E(H) = E(G) \ {e}. Adding an edge between two non-adjacent vertices of
G is defined accordingly. Deleting a vertex v in G means removing v from
V (G) and all edges incident to v in E(G). Finally, the contraction of an
edge e = {u, v} is defined as the replacement of u and v by a single vertex
whose incident edges are all edges, distinct from e, that were incident to u
or v. We note that we may hereby obtain multiple edges or even loops.

The number of edges incident to a vertex v ∈ V (G) is called its degree
and denotes deg(v). There is an intrinsic relationship between the degrees
of all vertices and the size of a graph, the so-called Handshaking Lemma,
which reads

∑
v∈V (G) deg(v) = 2e(G).

The complete graph on n vertices, denoted Kn, is a simple graph where
every pair of vertices is adjacent, hence e(Kn) =

(
n
2

)
. A set M ⊆ E(G)

of edges with no shared endpoints is called a matching. If every vertex is
incident to an edge in the matching M , then we call M a perfect matching.
With slight abuse of notation but to simplify terminology, we sometimes
let the term matching refer to a subgraph whose edge set is a matching.

A path is a simple graph whose vertices may be ordered such that two
vertices are adjacent if and only if they occur consecutively in the ordering.
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A cycle is a simple graph that is obtained from a path by adding an edge
joining the two vertices of degree 1. The length of a path, or a cycle
respectively, is the number of its edges. We say a graph G is connected if
for every pair of vertices u and v there is a subgraph of G which is a path
such that u and v are of degree 1. The length of the shortest such path is
the distance between u and v. The diameter of G is the maximum distance
over all pairs of vertices in V (G). It is infinite if G is not connected.

A simple graph is called forest if it does not contain a cycle, a connected
forest is a tree. We say G is Hamiltonian if there is a spanning cycle in G.

Given a finite set P of points in R2, a geometric graph is a simple graph
defined on the vertex set P whose edges are straight-line segments connect-
ing the corresponding endpoints. We call a geometric graph crossing-free
or plane if in the embedding on P no pair of its edges shares any point
except for, possibly, a common endpoint.

A face of a crossing-free graph G is a maximal region of R2 that does
not contain points used in the embedding. Let f(G) denote the number of
faces then Euler’s polyhedral formula states n(G)− e(G) + f(G) = 2.

Every finite plane graph has one unbounded face. A crossing-free geo-
metric graph which is maximal with respect to the number of edges, i.e.,
no edge can be added without incurring a crossing, is termed triangulation.
Except for the unbounded face, every face in a triangulation is a triangle.

An angle α such that 0 < α < π/2 is called convex, and we say α is
reflex if π/2 < α < π. Consider a plane embedding of a cycle such that at
exactly three vertices there is a convex angle with respect to the bounded
face. Then this bounded face is called pseudo-triangle.

Figure 0.7: Pseudo-triangulation and pointed pseudo-triangulation

A pseudo-triangulation is a plane graph where every bounded face is
a pseudo-triangle, see the left drawing in Figure 0.7. A pointed pseudo-
triangulation is a plane graph such that at every vertex there is a reflex
angle, and no edge can be added while preserving this property, as in the
right picture of Figure 0.7.
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It’s that convex position feeling!

The Advertising Slogan Generator

1
Counting Crossing-Free
Partitions

A partition of a point set in the plane is called crossing-free if the convex
hulls of the individual parts do not intersect. We prove that convex position
of a planar set of n points in general position minimizes the number of
crossing-free partitions into 1, 2, 3, and n − 3, n − 2, n − 1, n partition
classes. Moreover, we show that for no n ≥ 5 does convex position of
the underlying set of n points maximize the total number of crossing-free
partitions.

It is known that in convex position the number of crossing-free partitions
into k classes equals the number of partitions into n − k + 1 parts. This
does not hold in general, and we mention a construction for point sets with
significantly more partitions into few classes than into many.

This is joint work with Emo Welzl [65].
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1.1 Preliminaries

Let P be a set of n points in the plane. We assume that P is in gen-
eral position, i.e., no three points are collinear. A partition of P is called
crossing-free if the convex hulls of the individual parts do not intersect. We
observe that one may uniquely identify such a crossing-free partition with
a planar straight-line embedded graph on the vertex set P consisting of the
edges forming the boundaries of the convex hulls of the partition classes.

(a) Crossing-free (b) Not crossing-free

Figure 1.1: Partitions of eight points

We denote by cfp(P ) the number of crossing-free partitions of P , and
write cfpk(P ) for the number of crossing-free partitions of P into k classes,
where 1 ≤ k ≤ n. Moreover, Γn denotes a set of n points in convex position,
i.e., Γn is the vertex set of a convex n-gon.

The notion of crossing-free partitions of Γn dates back at least as far as
1952, when Becker [18] in his note on “Planar rhyme schemes” mentioned
yet another incarnation of the well-known Catalan numbers. Given our
notation his result may be stated in the following way. For any n points in
convex position

cfp(Γn) = Cn =
1

n+ 1

(
2n

n

)
= Θ

(
4n

n3/2

)
,

where Cn denotes the n-th Catalan number. The number of crossing-free
partitions into k classes of Γn is known due to Kreweras [49] who calculated

cfpk(Γn) =
1

n

(
n

k

)(
n

k − 1

)
=

(n− 1)! n!

(k − 1)! k! · (n− k)! (n− k + 1)!
. (1.1)

These numbers also constitute famous integer sequences known as the
Narayana numbers which count the number of trees on n+ 1 vertices with
exactly k leaves, a result due to Dershowitz and Zaks [27].

Kreweras’ original proof reduces to a formal identity shown in his earlier
work [48]. Edelman [29] proposed an idea using cyclic permutations and in-
serting parentheses around partition classes to give a strictly combinatorial
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derivation of (1.1). Lately, Liaw et al. [53] gave a direct, bijective counting
argument based on Kreweras’ idea. For an argument involving the con-
cept of Narayana numbers see Prodinger [62], and Klazar [47] with further
generalizations. A short derivation of both identities above employing the
framework of generating functions can be found in Flajolet and Noy [31].

We will show that Γn minimizes cfpk(P ) for certain values of k if P
is in general position, and in fact we conjecture this statement to be true
for all k. Note that the term for cfpk(Γn) is symmetric in the sense that
cfpk(Γn) = cfpn−k+1(Γn), for all 1 ≤ k ≤ n. We will see that this is not
necessarily the case if the points are not in convex position as, for constant
k ≥ 3, we mention a construction for sets Pk of n points such that

cfpk(Pk)

cfpn−k+1(Pk)
= Ω(n2).

In fact, by a result due to Alon and Onn [13] this gap can be made as
large as Θ(n4k−10), for partitioning a suitable set of n points in the plane
into constant k many classes.

Garćıa et al. [33] proved that Γn minimizes the number of crossing-
free perfect matchings and spanning trees among point sets in general
position. Note that Γn has Cn/2 many perfect matchings, a result by
Motzkin [60]. Aichholzer et al. [8] extended these results about Γn minimiz-
ing the number of certain configurations by showing that similar statements
also hold for several other graph classes like spanning paths, (pointed)
pseudo-triangulations, forests, connected graphs, or all plane graphs. How-
ever, it is well-known that triangulations are a prominent counterexample
to this pattern, see Hurtado and Noy [39]. It is open whether Γn minimizes
the total number of crossing-free partitions but we conjecture an affirma-
tive answer. Sharir and Welzl [71] show that cfp(P ) = O(12.24n), for any
set P of n points, and the so-called double-chain, introduced in [33], allows
for Ω(5.23n) crossing-free partitions.

Proposition 1.1. For every n ≥ 5, there is a set Sn of n points in general
position such that

cfp(Sn) > cfp(Γn) = Cn.

Proof. We define a point set which will prove helpful for several contexts
in this thesis. Let Sn denote the single-chain formed by n points according
to the following construction. For a given circle and a point x outside, let
y and z be the two points where the tangents through x touch the circle.
Then place n−3 points on the circle between y and z, such that the points
are contained in the triangle defined by x, y, and z.
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z

y

x
n− 3

Sn

Figure 1.2: Construction of the single-chain Sn

We exhaustively count the number of crossing-free partitions of the
hereby obtained point set Sn by separately considering the cases where x
belongs to partition classes of size k, for 1 ≤ k ≤ n. By construction, x
belongs to a class of size k ≥ 2 if and only if the other k − 1 points of this
class are consecutive points of the convex set Sn \ {x}. Hence, there are
n− (k−1) choices for such a partition class. Furthermore, observe that the
remaining n− k points are in convex position, and their individual convex
hulls do not intersect the hull of the class containing x. This implies that
every crossing-free partition of these n−k points is also crossing-free when
additionally considering the partition class containing x. Thus, we find

cfp(Sn) = Cn−1 +

n∑
k=2

(n− (k − 1))Cn−k =: sn.

Note that Cn+1 = 2 2n+1
n+2 · Cn < 4Cn holds for all n ∈ N. Thus, the

claim sn > Cn is easily established for every n > 13, as truncating the sum
after the first term yields

sn > Cn−1 + (n− 1)Cn−2 > Cn−1 + 12Cn−2 > Cn−1 + 3Cn−1 > Cn.

For the remaining values of 5 ≤ n ≤ 12 we simply calculate the exact
values of sn and Cn to find that

s5 = 43 > 42 = C5 s6 = 141 > 132 = C6

s7 = 483 > 429 = C7 s8 = 1704 > 1430 = C8

s9 = 6137 > 4862 = C9 s10 = 22439 > 16796 = C10

s11 = 82993 > 58786 = C11 s12 = 309739 > 208012 = C12,

which proves the statement.

1.2 Partitioning into many classes

As a warm-up observe that the number of crossing-free partitions of n
points into n and n − 1 classes does not depend on the order type of the
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points, as long as they are in general position. A partition into n−1 classes
corresponds to a plane graph with exactly one edge.

Proposition 1.2. For a set P of n points in the plane in general position
cfpn(P ) = 1 and cfpn−1(P ) =

(
n
2

)
.

We need a few more notations in order to deal with many partition
classes. Given a finite set P of points in general position and Q ⊆ P a non-
empty subset, by X(Q) := Q ∩ ∂conv(Q) we refer to the extreme points of
Q, and the points from P contained inside the convex hull of Q are denoted
by IP (Q) := P ∩ conv(Q)◦. For k ∈ N, we employ the common notion of(
P
k

)
for the k-element subsets of P . Given a predicate A we write 11[A] for

the indicator function, i.e., 11[A] = 1 if A holds and 11[A] = 0 otherwise.
Moreover, for k ∈ N, the number of classes we want to partition the

n points of P into, let ni ∈ N, for 1 ≤ i ≤ k, be such that
∑k
i=1 ni = n

and n1 ≥ n2 ≥ . . . ≥ nk ≥ 1. Given such a sequence an (n1, n2, . . . , nk)-
partition of P is a partition of P into k point sets of sizes n1, . . . , nk.
Accordingly, crossing-free (n1, n2, . . . , nk)-partitions of P are defined.

For instance, cfpn(P ) equals the number of crossing-free (1, . . . , 1)-
partitions of P , and the number of crossing-free (2, 1, . . . , 1)-partitions is
cfpn−1(P ). Crossing-free (2, 2, . . . , 2)-partitions, i.e., the number of perfect
matchings of P , are minimized in Γn due to [33].

We also note that the number of crossing-free (3, 1, . . . , 1)-partitions
equals the number of empty triangles in P . This quantity is uniquely max-
imized in convex position as otherwise, due to Carathéodory’s Theorem,
some point is contained in a triangle spanned by the remaining points.
Concerning lower bounds, Katchalski and Meir [44] showed that there al-
ways are at least

(
n−1

2

)
empty triangles on any set of n points in general

position. They also proved that there is a constant c > 0 such that there
exists a point set with at most cn2 empty triangles. The lower bound on
the number of empty triangles in any point set was further improved to
n2−O(n log n) by Bárány and Füredi [16] which still is the current state of
the art. Constructions of specific point sets with few empty triangles pro-
gressively achieved the bounds 2n2, for n a power of 2, due to Bárány and
Füredi [16], 1.791n2 given by Valtr [80], and 1.683n2 by Dumitrescu [28].
The currently best known bound of only 1.6196n2 empty triangles is due
to Bárány and Valtr [17]. It is open whether there are point sets of size n
with less than n2 empty triangles, for n sufficiently large.

Several other well-established notions also relate to such crossing-free
(n1, n2, . . . , nk)-partitions. For instance, we note that any choice of four
points in P allows for three perfect matchings on this subset. If the corre-
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sponding edges do not cross they account for a crossing-free (2, 2, 1, . . . , 1)-
partition of P . Otherwise they add to the number of crossings in the embed-
ding of the complete graph Kn on P . The latter quantity is known as the
rectilinear crossing number. As we just saw, the total number of crossing-
free (2, 2, 1, . . . , 1)-partitions of P and the rectilinear crossing number sum
to 3

(
n
4

)
. Much effort has been put into determining the point configurations

minimizing the rectilinear crossing number (thus, maximizing the number
of crossing-free (2, 2, 1, . . . , 1)-partitions of P ), and estimating its asymp-
totic behavior. It is known that the minimal rectilinear crossing number
is at least 0.37969

(
n
4

)
a result due to Aichholzer et al. [7], and at most

0.38056
(
n
4

)
as shown by Ábrego and Fernández-Merchant [1].

Concluding let us point out the connection to k-sets. For k ∈ N, a k-set
of P is a subsetQ of size k such that there is a line strictly separatingQ from
its complement. Hence, we find that the crossing-free (k, n− k)-partitions
exactly correspond to the k-sets of P . Note that these are crossing-free
partitions into two classes. We refer to the recent survey article of Wag-
ner [81] for more reading on k-sets and the rectilinear crossing number of
point sets.

Both Kreweras [49] and Liaw et al. [53] derived (1.1) by proving that
the number of crossing-free (n1, n2, . . . , nk)-partitions of Γn is

n(n− 1) · · · (n− k + 2)∏
i≥1 ai!

,

where ai := |{j |nj = i}| is the number of classes of size i, for 1 ≤ i ≤ k.

1.2.1 The case of n− 2 parts

Before stating our general result for cfpn−2(P ) we show that

cfpn−2(Γn) = 2

(
n

4

)
+

(
n

3

)
.

To see this, besides substituting in identity (1.1), we note that there
are only two ways for obtaining a partition of n points into n − 2 classes,
as shown in Figure 1.3 (we will usually refrain from drawing points that
belong to partition classes of size 1).

We have to count the number of pairs of crossing-free matching edges,
(2, 2, 1 . . . , 1)-partitions, and the (empty) triangles, (3, 1, . . . , 1)-partitions,
in Γn. Every choice of four points allows for two pairs of matching edges,
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Figure 1.3: Configurations for n− 2 partition classes

and every set of three points yields a triangle. Hence, the identity from
above follows.

In general, however, not every choice of three points in P can result in
an empty triangle as mentioned above. Somehow we have to account for
the lack of such partitions.

Theorem 1.3. Let P be a set of n points in the plane in general position.
Then

cfpn−2(P ) = 2

(
n

4

)
+

(
n

3

)
+

∑
Q∈(P3) : |IP (Q)|≥2

(
|IP (Q)| − 1

)
.

In particular we have cfpn−2(P ) ≥ cfpn−2(Γn).

Proof. We choose R ∈
(
P
4

)
and count the number of extreme points X(R).

Either |X(R)| = 4 and R has exactly two crossing-free perfect matchings,
or |X(R)| = 3 and R has three perfect matchings. Hence, the number of
pairs of crossing-free matching edges in P is

∑
R∈(P4)

2 · 11[|X(R)|=4] + 3 · 11[|X(R)|=3].

We doublecount the sets R ∈
(
P
4

)
with |X(R)| = 3 by iterating over the

three extreme points and summing up the number of interior points. Then
the term above simplifies to

2

(
n

4

)
+
∑
R∈(P4)

11[|X(R)|=3] = 2

(
n

4

)
+
∑
Q∈(P3)

|IP (Q)|,
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and adding the number of empty triangles in P yields that cfpn−2(P ) equals

2

(
n

4

)
+
∑
Q∈(P3)

|IP (Q)|+
∑
Q∈(P3)

11[IP (Q)=∅]

= 2

(
n

4

)
+
∑
Q∈(P3)

(
1 +

(
|IP (Q)| − 1

)
· 11[|IP (Q)|≥2]

)

= 2

(
n

4

)
+

(
n

3

)
+
∑
Q∈(P3)

(
|IP (Q)| − 1

)
· 11[|IP (Q)|≥2].

Clearly,
(
|IP (Q)| − 1

)
· 11[|IP (Q)|≥2|] ≥ 0, for all Q ∈

(
P
3

)
, proving that

Γn minimizes the number of crossing-free partitions into n− 2 classes.

1.2.2 The case of n− 3 parts

Similar to the case of partitioning P into n − 2 classes we start by an-
alyzing properties of Γn. Note that there are four possibilities to obtain
n−3 partitions classes, as shown in Figure 1.4. We have to count the num-
ber of empty convex quadrilaterals, the triangles containing exactly one
point, the empty triangles together with a disjoint edge, and finally the
number of triples of crossing-free matching edges. Note that these corre-
spond to (4, 1, . . . , 1), (3, 2, 1, . . . , 1) and (2, 2, 2, 1, . . . , 1)-partitions, where
a crossing-free (4, 1, . . . , 1)-partition can be achieved in two ways.

Figure 1.4: All possible configurations to obtain n− 3 partition classes

Obviously, only three of these configurations may occur if the underlying
point set is in convex position. The number of crossing-free (4, 1, . . . , 1)-
partitions is maximized for Γn, where the value

(
n
4

)
is attained. Clearly, in

general not every choice of four points leads to a crossing-free (4, 1, . . . , 1)-
partition.

A subset of five points from Γn gives rise to five distinct crossing-free
(3, 2)-partitions, as shown in Figure 1.5. Since the remaining n− 5 points
from Γn do not interfere with such a configuration, i.e., the triangle is
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always empty, the number of crossing-free (3, 2, 1, . . . , 1)-partitions of Γn
is 5
(
n
5

)
. We note that for an arbitrary point set P a crossing-free (3, 2)-

partition of a 5-element subset does not necessarily extend to a crossing-free
(3, 2, 1, . . . , 1)-partition of P .

Figure 1.5: Crossing-free (3, 2)-partitions in convex position

Finally, we count the number of crossing-free (2, 2, 2, 1, . . . , 1)-partitions
in the convex setup. Then any choice of six points will allow for exactly five
such configurations, see Figure 1.6. Clearly, they all extend to crossing-free
partitions of Γn.

Figure 1.6: Crossing-free (2, 2, 2)-partitions in convex position

Hence, in agreement with evaluating equation (1.1) setting k = n − 3,
we find

cfpn−3(Γn) =

(
n

4

)
+ 5

(
n

5

)
+ 5

(
n

6

)
.

Now, for an arbitrary set P of n points in general position we will
ultimately show cfpn−3(P ) ≥ cfpn−3(Γn). The proof idea is as follows: For
any choice of six points in P there are at least five (2, 2, 2)-partitions which
extend to crossing-free (2, 2, 2, 1, . . . , 1)-partitions of P . We account for
exactly five of them and leave the remaining such configurations for later
use. We then consider the crossing-free (3, 2, 1, . . . , 1)-partitions of P and
pair them with the previously disregarded (2, 2, 2, 1, . . . , 1)-partitions.

More specifically, we choose a subset Q ∈
(
P
5

)
of five points. Then

X(Q) consists of either five, four or three points, due to the general position
assumption. We investigate the (3, 2)-partitions of Q which do not extend
to crossing-free (3, 2, 1, . . . , 1)-partitions of P because of points in P \ Q
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creating a partition class of size at least 4. In order to compensate for such
destroyed configurations we count disregarded (2, 2, 2, 1, . . . , 1)-partitions
of P instead, where the partition classes of size 2 consist of the five points
in Q and a point of IP (Q) \ Q. Finally, we will add the crossing-free
(4, 1, . . . , 1)-partitions of P .

The following three lemmas prove that there are always enough crossing-
free (2, 2, 2, 1, . . . , 1)-partitions to cover for the (possible) lack of crossing-
free (4, 1, . . . , 1) and (3, 2, 1, . . . , 1)-partitions.

Lemma 1.4. Every subset Q ∈
(
P
5

)
in convex position, i.e., |X(Q)| = 5,

contributes at least 5 to cfpn−3(P ).

Proof. Since |X(Q)| = 5 there are exactly five ways to obtain a crossing-
free (3, 2)-partition of Q, as seen in Figure 1.5. If none of the triangles
contains a point from P \ Q the claim is true, since every such partition
extends to a crossing-free (3, 2, 1, . . . , 1)-partition of P . Otherwise, assume
that there is a point in P \Q destroying some triangle.

1

2

1
2

0

1

1

11

2

2

2

2

Figure 1.7: Regions for points of P \Q, and corresponding destroyed (3, 2)-
partitions

We associate with each point x ∈ conv(Q) its type, which is defined
to be the number of 4-element subsets of Q whose convex hulls do not
contain x. This results in a subdivision of conv(Q) into eleven regions
of three different types, as depicted in Figure 1.7. Note that a point x
of type i, with 0 ≤ i ≤ 2, destroys exactly i many (3, 2)-partitions of
Q. Hence, we may assume that there is a point x ∈ IP (Q) of type 1
or 2. We will show that Q ∪ {x} allows for enough crossing-free (2, 2, 2)-
partitions to compensate the (3, 2)-partitions destroyed by x. Observe that
any crossing-free (2, 2, 2)-partition of Q∪{x} always extends to a crossing-
free (2, 2, 2, 1, . . . , 1)-partition of P .

Consider a partition class of size 2 containing x and one of the points in
Q, say y. Then the remaining four points of Q\{y} are in convex position,
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hence allow for exactly two possible crossing-free (2, 2)-partitions. In the
corresponding matchings one of these partitions contains edges only from
the boundary of conv(Q), whereas the other one also contains an edge with
points from the interior of conv(Q).

In the former case, the partition of Q \ {y} extends to a crossing-free
(2, 2, 2)-partition of Q∪{x} for all five choices of y ∈ Q. We consider these
five partitions to be the ones we already accounted for in the crossing-free
(2, 2, 2, 1, . . . , 1)-partitions resulting from every choice of six points in P .

Extending the latter partition of Q\{y} to a (2, 2, 2)-partition by adding
the edge connection x and y may result in a crossing. However, by definition
it follows for all 0 ≤ i ≤ 2, that for x of type i there are exactly i points
y ∈ Q such that both (2, 2)-partitions of Q \ {y} extend to a crossing-free
(2, 2, 2)-partition of Q ∪ {x}, see Figure 1.8.

1

2

x x

yy

x x x x

y1 y1

y2 y2

Figure 1.8: Compensating destroyed (3, 2)-partitions by (2, 2, 2)-partitions

Hence, the number of perfect matchings of Q ∪ {x}, exceeding the five
we already accounted for, is exactly the number of (3, 2)-partitions of Q
destroyed by x. If there is more than one point in IP (Q) of type 1 or 2 then
there are even more crossing-free (2, 2, 2, 1, . . . , 1)-partitions of P , since for
each destroyed (3, 2)-partition of Q it is enough to consider one point inside
the triangle for compensation. This finishes the proof of the lemma.

We will prove similar results for subsets Q ∈
(
P
5

)
with |X(Q)| = 3, 4.

Observe that in these cases an issue arises which we did not encounter in the
previous proof. Namely, there may be distinct 5-element point sets leading
to the same set of six points used for compensating destroyed (3, 2, 1, . . . , 1)-
partitions when counting (2, 2, 2, 1, . . . , 1)-partitions instead. As an exam-
ple consider Figure 1.9, where the choices of Q are represented by filled
dots.

Lemma 1.5. Every subset Q ∈
(
P
5

)
with |X(Q)| = 4 contributes at least

5 + 1
|IP (Q)| to cfpn−3(P ).
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Figure 1.9: Distinct choices for Q yielding the same six-point configuration

Proof. First let us note that
∣∣IP (Q)

∣∣ 6= 0 by assumption, hence the term
for the contribution of Q is well-defined.

Now, we claim that Q allows for six crossing-free (3, 2)-partitions. In
order to see this consider the partition class of size 2. Either it corresponds
to an edge of the boundary of conv(Q), for which there are four possibilities,
or it connects the point inside the quadrilateral to one of two possible
extreme points of Q, see Figure 1.10. The point inside the quadrangle is
contained in two triangles with endpoints only in X(Q).

Figure 1.10: Six crossing-free (3, 2)-partitions of Q

In order to prove the lemma we show that at least five of these (3, 2)-
configurations of Q extend to crossing-free (3, 2, 1, . . . , 1)-partitions or may
be replaced by crossing-free (2, 2, 2, 1, . . . , 1)-partitions of P , and further-
more, every convex quadrangle in P containing at least one interior point
accounts for an additional crossing-free configuration.

Let y ∈ Q\X(Q) be the point of Q inside the quadrilateral. If no other
point from P \Q is inside the quadrangle the statement follows immediately.
Otherwise, we make a case analysis distinguishing the relative position of
a sixth point x ∈ IP (Q) \Q destroying (3, 2)-configurations of Q.

In the following figures the initial set Q of five points is represented by
filled dots, the point x by a circle and the destroyed triangles by dashed
line segments. The diagonals of the quadrangle define four regions where
the two interior points x and y may be located. The boundary edges and
the diagonals are represented by dotted line segments.
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1. Assume that x and y are located in the
same region, then only one of the six (3, 2)-
configurations of Q gets destroyed by x.
However, there is another choice of five points
Q′ := Q \ {y} ∪ {x} leading to the same six-
point configuration, where now y destroys ex-
actly one (3, 2)-configurations of Q′.

2. If x and y lie in neighboring regions, then x
destroys two (3, 2)-configurations of Q. By
symmetry, choosing Q′ := Q \ {y} ∪ {x}
again yields the same six-point configuration,
where y destroys two (3, 2)-configurations of
Q′. Hence, in total four such configurations
are destroyed.

3. If x and y are located in opposite regions,
then x destroys three (3, 2)-configurations of
Q, and Q′ := Q \ {y} ∪ {x} leads to the
same six-point configuration, where y de-
stroys three (3, 2)-configurations of Q′. In
total six configurations are destroyed.

We will now show that in each case the number of crossing-free (2, 2, 2)-
partitions of Q ∪ {x} is large enough to compensate the destroyed (3, 2)-
configurations of Q (and Q′). To this end, we analyze all possible order
types of six points with four extreme points.

1a 1b 1c 2a 2b 3

Figure 1.11: Relative positions of two points inside a quadrilateral

We need to consider the same three cases as discussed above with ad-
ditional subcases: Firstly, (1a, 1b and 1c in Figure 1.11) the two interior
points lie in the same region defined by the diagonals; in the second case (2a
and 2b) the two interior points are located in neighboring regions; in the
last case, there is only one order type for the two points to lie in opposite
regions.
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The following Figure 1.12 demonstrates that the number of crossing-free
(2, 2, 2)-partitions is eight for the configurations 1a, 1b and 1c.

1a

1b

1c

Figure 1.12: Crossing-free (2, 2, 2)-partitions for configurations 1a, 1b, 1c

There are nine crossing-free (2, 2, 2)-partitions for the configurations 2a
and 2b, as shown in Figure 1.13.

2a

2b

Figure 1.13: Crossing-free (2, 2, 2)-partitions for configurations 2a, 2b

Finally, we have ten crossing-free (2, 2, 2)-partitions at our disposal for
configuration 3, as seen in Figure 1.14.

3

Figure 1.14: Crossing-free (2, 2, 2)-partitions for configuration 3

Recall that we already accounted for five of these crossing-free (2, 2, 2)-
partitions of the six points, and thus the number of crossing-free (2, 2, 2)-
partitions that remain at our disposal is three, four and five, respectively.
By our previous observations we know that in the corresponding cases there
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are two, four, or six crossing (3, 2, 1)-partitions where we need to count
crossing-free (2, 2, 2)-partitions instead.

Hence, in Case 1 and Case 2 all six initial (3, 2)-partitions can be
extended to crossing-free (3, 2, 1, . . . , 1)-partitions or replaced by (2, 2, 2)-
partitions for both choices of 5-element subsets Q and Q′. Although in the
last case we are lacking one such (2, 2, 2)-partition to restore all six initial
(3, 2)-partitions, we may for each of Q and Q′ count five (3, 2)-partitions
together with compensating (2, 2, 2)-partitions of Q∪{x} = Q′∪{y}. More-
over, at least one such crossing-free partition remains for the non-empty
quadrilateral defined by X(Q) = X(Q′) and we get an additional contri-
bution of 1/2 for both Q and Q′.

If there is more than one point involved in destroying the triangle of a
(3, 2)-partition of Q, we may choose any of these points and make it re-
sponsible for compensating with crossing-free (2, 2, 2)-partitions. For each
additional point inside the triangle we get even more (2, 2, 2)-partitions.
This proves the claim of the lemma.

We observe that the statement of Lemma 1.5 is tight as seen for the set
of six points in Figure 1.14. There the contribution to cfpn−3(P ) of any
choice Q of five points is exactly 5 + 1

|IP (Q)| .

Lemma 1.6. Every subset Q ∈
(
P
5

)
such that |X(Q)| = 3 contributes at

least 7 to cfpn−3(P ).

Proof. First observe that the relative position of five points whose convex
hull has three extreme points is unique. Hence, we will in the following
assume that Q = {a, b, c, `, r} and its three extreme points are labeled a,
b, c and the interior points are ` and r such that the segments ar and b`
cross, see Figure 1.15.

c

a b

` r

Figure 1.15: Five points whose convex hull has three extreme points

Note that Q allows for seven crossing-free (3, 2)-partitions, as shown
in Figure 1.16. We argue that each of them either extends to a crossing-
free (3, 2, 1, . . . , 1)-partition of P , or may be replaced by a crossing-free
(2, 2, 2, 1, . . . , 1)-partition if points in P \Q destroy the empty triangle.
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c

a b
` r

Figure 1.16: Seven crossing-free (3, 2)-partitions of Q

If IP (Q) \ Q is empty we are done, thus let x ∈ IP (Q) \ Q be a point
inside the triangle abc. We note that only in the first three partitions of
Figure 1.16 the point c belongs to the class of size 3. Hence, if x lies in the
quadrilateral abr` there are two (3, 2)-partitions of Q where x destroys the
triangle, and otherwise only one (3, 2)-partition of Q gets destroyed by x.

Furthermore, when considering how many times the same six-point con-
figuration for counting crossing-free (2, 2, 2, 1, . . . , 1)-partition may occur
we find that, if x lies in the quadrangle abr`, there are at most six such
possibilities, and otherwise we have at most five cases. This is because
any choice of such an initial set Q′ has to consist of a, b, c and two of
the interior points. There are three possibilities to choose two points from
{`, r, x}, and in the worst case the third interior point destroys two of the
seven (3, 2)-partitions, as argued above.

Let us analyze the number of crossing-free (2, 2, 2)-partitions of Q∪{x}
depending on the position of x.

Suppose that x is not located in the quadri-
lateral abr`, then x lies in exactly one of tri-
angles a`c, `rc, or rbc. As it turns out we do
not have to further distinguish these cases. a b

r`

c

Assume that x belongs to the same partition class as c then the re-
maining four points are in convex position and allow for two crossing-free
(2, 2)-partitions, which will not cross the edge between x and c. If x is
in the same class as one of the other two points of the triangle, then all
three (2, 2)-partitions of the remaining four points extend to crossing-free
(2, 2, 2)-partitions of Q∪{x}. Finally, for each of the two remaining points
in Q that may lie in the same partition class as x there is at least one
crossing-free (2, 2, 2)-partitions of Q ∪ {x}. Thus, if x is not inside the
quadrangle abr`, we have at least 2 + 2 · 3 + 2 · 1 = 10 crossing-free (2, 2, 2)-
partitions in total.

Now suppose that x lies in the quadrilateral
abr`. Again, the following estimate is inde-
pendent of the exact position of x.

a b

r`

c

There are two possibilities for x to belong to a class of size 2 together
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with a point of the quadrilateral, such that this class and all three (2, 2)-
partitions of the remaining four points is still crossing-free. A partition
class containing x and one of the other two points of the quadrilateral can
be extended in two ways to crossing-free (2, 2, 2)-partitions of Q ∪ {x}.
Finally, if x belongs to the same class as c there is at least one crossing-free
extension to a (2, 2, 2)-partition. Hence, if x lies inside the quadrangle abr`
we have at least 2 · 3 + 2 · 2 + 1 = 11 crossing-free (2, 2, 2)-partitions of
Q ∪ {x}.

As we already accounted for five crossing-free (2, 2, 2)-partitions of the
six points, the number of crossing-free (2, 2, 2)-partitions that remain at our
disposal is at least five if x is not in the quadrangle abr`, and six otherwise.
Turning to our previous observations, we know that in the corresponding
cases there are five (six, respectively) six-point configurations where we
need to count crossing-free (2, 2, 2)-partitions instead of (3, 2, 1)-partitions.
Hence, all seven (3, 2)-partitions of Q contribute to cfpn−3(P ).

If there is more than one point responsible for destroying a (3, 2)-
partition ofQ, the contribution to cfpn−3(P ) is even larger than 7 due to the
additional (2, 2, 2)-partitions. This concludes the proof of the lemma.

Theorem 1.7. Let P be a set of n points in the plane, in general position.
Then

cfpn−3(P ) ≥ cfpn−3(Γn) = 5

(
n

6

)
+ 5

(
n

5

)
+

(
n

4

)
.

Proof. The choice of any 6-element subset from P allows for five crossing-
free (2, 2, 2, 1, . . . , 1)-partitions. Combining the results from the previous
Lemmas 1.4, 1.5, and 1.6 on the crossing-free (3, 2, 1, . . . , 1) and compen-
sating (2, 2, 2, 1, . . . , 1)-partitions of P we obtain the contribution from the
5-element subsets. Adding the number of the crossing-free (4, 1, . . . , 1)-
partitions of P , i.e., the number of empty quadrilaterals and the triangles
containing exactly one point, we find

cfpn−3(P ) ≥
∑
Q∈(P6)

5 +
∑

Q∈(P5) : |X(Q)|=5

5

+
∑

Q∈(P5) : |X(Q)|=4

(
5 + 1

|IP (Q)|
)

+
∑

Q∈(P5) : |X(Q)|=3

7

+
∑

Q∈(P4) : |X(Q)|=4 ∧ IP (Q)=∅

1 +
∑

Q∈(P3) : |IP (Q)|=1

1.
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Recall that, since P is in general position, the following holds

∑
Q∈(P5) : |X(Q)|=5

5 +
∑

Q∈(P5) : |X(Q)|=4

5 +
∑

Q∈(P5) : |X(Q)|=3

5 = 5

(
n

5

)
.

Furthermore, we have∑
Q∈(P5) : |X(Q)|=4

1
|IP (Q)| =

∑
Q∈(P4)

11[|X(Q)|=4 ∧ IP (Q)6=∅],

and adding the number of empty quadrangles in P we get∑
Q∈(P4)

11[|X(Q)|=4 ∧ IP (Q) 6=∅] +
∑
Q∈(P4)

11[|X(Q)|=4 ∧ IP (Q)=∅] =
∑
Q∈(P4)

11[|X(Q)|=4].

Doublecounting shows that

∑
Q∈(P5) : |X(Q)|=3

7 =
∑

Q∈(P5) : |X(Q)|=3

5 +
∑
Q∈(P3)

2

(∣∣IP (Q)
∣∣

2

)
· 11[|IP (Q)|≥2].

Observe that

∑
Q∈(P3)

2

(∣∣IP (Q)
∣∣

2

)
· 11[|IP (Q)| ≥ 2] =

=
∑
Q∈(P3)

∣∣IP (Q)
∣∣ · (

∣∣IP (Q)
∣∣− 1)︸ ︷︷ ︸

≥1, as |IP (Q)| ≥ 2

·11[|IP (Q)| ≥ 2]

≥
∑
Q∈(P3)

∣∣IP (Q)
∣∣ · 11[|IP (Q)| ≥ 2],

and hence, adding the number of triangles containing exactly one point,

∑
Q∈(P3)

2

(∣∣IP (Q)
∣∣

2

)
· 11[|IP (Q)| ≥ 2] +

∑
Q∈(P3)

11[|IP (Q)|=1] ≥
∑
Q∈(P3)

∣∣IP (Q)
∣∣.
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Combining these identities and estimates yields

cfpn−3(P ) ≥ 5

(
n

6

)
+ 5

(
n

5

)
+
∑
Q∈(P4)

11[|X(Q)|=4] +
∑
Q∈(P3)

∣∣IP (Q)
∣∣

= 5

(
n

6

)
+ 5

(
n

5

)
+

(
n

4

)
= cfpn−3(Γn),

since any choice of four points in P represents either a quadrilateral or a
triangle containing the fourth point.

1.3 Partitioning into few classes

We define a notion similar to halving edges in order to identify a crossing-
free partition with certain 2-element subsets of P . Halving edges were first
considered by Lovász [55] and have been studied extensively ever since.
The benefit compared to the consideration of the previous section is that
only a small number of such subsets is needed for describing crossing-free
partitions into few classes.

Let A and B be two disjoint convex polygons in the plane. Then there
is a line g separating the two sets, i.e., for all a ∈ A and b ∈ B the segment
with endpoints a and b intersects g. Now, rotate g counter-clockwise until
it becomes tangent to both polygons simultaneously, see Figure 1.17.

A B A B

a

b

g

Figure 1.17: Construction of a separating segment

Suppose that no three extreme points of the polygons are collinear then
we obtain a unique (extreme) point a ∈ A and a unique (extreme) point
b ∈ B. The segment given by these endpoints a and b is the separating
segment of the polygons A and B.

Proposition 1.8. For a set P of n points in the plane in general position
cfp1(P ) = 1 and cfp2(P ) =

(
n
2

)
.
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Proof. Obviously, cfp1(P ) = 1 holds. To partition P into two crossing-free
parts pick a segment defined by two points p, q ∈ P . Then slightly rotate
the line through pq clockwise around a point between p and q in order to
obtain a separation, as seen in Figure 1.18.

p

q

Figure 1.18: Crossing-free partition into 2 classes

Observe that the separating segment for two polygons is unique because
of the general position assumption. Thus, for any point set P we have
cfp2(P ) =

(
n
2

)
, regardless of the relative position of the points.

In fact, partitioning a set of points in the plane by a straight line into
two classes, or more generally a set in d-dimensional space by a hyperplane,
has been considered by Harding [35] who showed that for n points in gen-

eral position in Rd there are
∑d
i=1

(
n−1
i

)
crossing-free partitions into two

classes. In the 2-dimensional plane
(
n−1

1

)
+
(
n−1

2

)
=
(
n
2

)
in agreement with

Proposition 1.8.
When partitioning P into more parts it becomes quite handy to at-

tribute colors to the individual classes. Consider the set of surjective maps
χ : P → {1, . . . , k}. Two such k-colorings χ1, χ2 are equivalent if there is a
permutation π of the k colors such that χ1 = π ◦ χ2. There is a bijection
between the set of equivalence classes of these colorings and the partitions
of P into k parts.

If the partition induced by a coloring is crossing-free then for each pair
of distinct colors i and j there is a separating segment associated with
it. We will indicate the halfplane containing the points of color i (and j,
respectively) by drawing i (and j) next to the segment’s endpoint in the
corresponding halfplane. Moreover, we associate with a crossing-free parti-
tion its separation graph defined on P whose edges consist of the separating
segments of the partition. We observe that this graph need not be crossing-
free. A pair of distinct separating segments either does not cross at all, or
shares a common endpoint, or intersects in their respective relative interior.

Lemma 1.9. Given two disjoint separating segments sharing a common
color then the segments cannot cross and the coloring of the segments’ end-
points receiving the common color is uniquely determined.
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Proof. Without loss of generality let sij be the segment separating color
class i from j, and similarly let si` be the segment separating class i from `.
First, observe that sij and si` cannot intersect in an interior point. Indeed,
given the coloring of the endpoints of sij , see the left-most drawing of
Figure 1.19, any coloring of the other segment si` contradicts the definition
of separating segments.

i

j
`

i
i

j

i

j
i

`

Figure 1.19: Separating segments cannot cross

Since sij and si` do not intersect, at least one of the segments is
completely contained in a halfplane defined by the other segment, which
uniquely determines the segments’ endpoints of color i, as given in Fig-
ure 1.20.

i
i

i i

Figure 1.20: Disjoint segments with a common color

This concludes the proof of the lemma.

When partitioning into k = 3 parts any two separating segments share
a common color. With Lemma 1.9 we now have the necessary tool to
compute the number of crossing-free partitions of a point set into three
parts, and we start again by investigating convex position. Observe that
there are two ways to partition Γn into three classes. Either every class can
be separated from both other classes simultaneously by exactly one line, or
there is a class that needs two lines, see Figure 1.21.

This difference also arises in the configurations of the corresponding
separating segments, see Figure 1.22, where partition classes are drawn as
dotted line segments whereas the separating segments are solid.

The crucial observation here is that we only need to know the endpoints
of the separating segments and their color in order to reconstruct the un-
derlying partition. Clearly, every three points in Γn yield a crossing-free
partition into three classes where the corresponding separating segments
constitute an empty triangle. Furthermore, every choice of four points
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Figure 1.21: Two types of partitioning Γn into three parts

Figure 1.22: The separating segments of the partitions of Γn

in Γn allows for two different ways of generating a partition into three
crossing-free parts, see Figure 1.23. We just showed cfp3(Γn) = 2

(
n
4

)
+
(
n
3

)
.

Figure 1.23: Two ways to construct partitions into three classes

If the underlying point set P is not in convex position Carathéodory’s
Theorem strikes once again, and not every choice of three points leads to an
empty triangle. The final goal of our considerations is to establish an injec-
tive map from the set of certain separation graphs on P to the crossing-free
partitions into three classes. In fact, we will consider the separation graphs
arising from the crossing-free partitions of P into n − 2 parts, where we
already know that convex position minimizes their cardinality. Ultimately,
we make use of the symmetry cfpn−2(Γn) = cfp3(Γn).

We start by showing that every empty triangle accounts for a crossing-
free partition of P into three classes.

Lemma 1.10. There is an injective map from the set of empty triangles
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in P to the crossing-free partitions of P into three partition classes.

Proof. Let Q = {p1, p2, p3} ⊆
(
P
3

)
with IP (Q) = ∅ be an empty triangle

in P . Consider the separating segments induced by the edges p1p2, p1p3,
and p2p3. Clearly, there is only one way to assign three colors to the
three points, up to permutation. The intersection of the halfplanes defined
by p1p2 and p1p3 containing color 1 defines a convex region for the first
partition class. Similarly, we find regions where points from the second and
third class are located, as seen in Figure 1.24. The only region remaining
is the interior of conv(Q) which is empty by assumption.

3 3

∅
2

1 1
2

Figure 1.24: Construction from an empty triangle

Hence, we obtain a crossing-free partition of P into three classes. Since
the separating segments are unique, two different triangles lead to two
distinct partitions.

Before we turn to the case where a triangle may contain points in its
interior we consider the other construction we encountered in the convex
setting for three partition classes. To that end we choose four points from
P such that their convex hull is a quadrilateral. Note that there are two
ways to obtain a pair of disjoint segments from such points and we refer
to such a pair as parallel segments (even if the lines through the segments
intersect).

Lemma 1.11. There is an injective map from the pairs of parallel segments
to the crossing-free partitions of P into three partition classes, and the
convex hull of the edges in the separation graph of any such partition is a
rectangle.

Proof. We will construct a crossing-free partition into three classes such
that the given segments turn out to be separating segments of the partition.
Without loss of generality assume that s12 and s13 are these segments. By
Lemma 1.9 we already know the colors of the segments’ endpoints.

We first treat the case where the lines through s12 and s13 are indeed
parallel. The halfplanes defined by these lines divide the plane into three
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regions whose colorings are defined by the two segments. In this case s12

and s13 are separating segments of the partition, and we are done.

1

1

1

1
2

3

2

3

Figure 1.25: Construction from parallel lines

Otherwise assume that the lines through s12 and s13 intersect in some
point. Then the halfplanes defined by the segments divide the plane into
four regions one of which did not receive a unique color yet, see the gray
region in Figure 1.26. Assigning color 2 or 3 to this region does not violate
the coloring induced by the segments s12 and s13, however, we choose to
color the region with color 3.

1

1
3

2

1

1
3

2

1

1
3

2

Figure 1.26: Construction from parallel segments

Hence, we found a partition of the plane into three convex regions each
of which contains exactly the points of one crossing-free partition class of P ,
and the given segments s12 and s13 are separating segments of this partition.
Clearly, this partition differs from the ones obtained in Lemma 1.10.

The reason for assigning color 3 to the gray area is that we want the third
separating segment s23 to pass between the others s12 and s13, meaning that
each halfplane defined by s23 contains exactly one of the other segments.
In this way we can ensure that the convex hull of all three segments is a
quadrangle.

It remains to show that the map from the pairs of segments to the
partitions is injective. As the third segment s23 passes between the first
two it cannot be parallel to any of them. Now, assume that two pairs of
parallel segments map to the same crossing-free partition into three classes.
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Since the separating segments of this partition are uniquely defined and by
construction exactly two of them are parallel, the pairs have to be the same
and the map is injective.

Finally, we consider configurations that cannot appear in Γn which will
compensate for both, triangles with points in their interior as well as for
pairs of segments whose convex hulls is a triangle. The latter we call spear-
ing segments. There are three ways to obtain a pair of disjoint segments
from four points with triangular convex hull.

Lemma 1.12. There is an injective map from the pairs of spearing seg-
ments to the crossing-free partitions of P into three partition classes, and
the convex hull of the edges in the separation graph of any such partition
forms a triangle.

Proof. Similar to the proof of Lemma 1.11 we want the given segments,
without loss of generality s12 and s13, to be separating segments of the
partition. The colors of the segments’ endpoints are given by Lemma 1.9. It
remains to determine the partition of the plane which the segments induce.
We note that one region defined by the intersection of the corresponding
halfplanes does not yet receive a unique color, see Figure 1.27.

1
1

3

2

1
1

3

2

Figure 1.27: Construction from spearing segments

It turns out that in order to obtain an injective map we cannot color
the whole gray region with one single color. We need to introduce the third
separating segment s23 which will determine the mixed coloring of the gray
region. For this purpose let y be the endpoint of s12 with color 2 and z
be the endpoint of s13 with color 3. Define x to be the intersection of the
lines through the segments s12 and s13, and let ∆ be the convex hull of the
triangle given by x, y, and z, as seen in Figure 1.28.

Rotate the line through x and y counter-clockwise around y and let
p ∈ P ∩ (∆◦∪{z}) be the first point of P that gets hit during this rotation.
Note that p is well-defined because of general position. We assign color 3
to p and define the third separating segment s23 by its endpoints y and p.
This results in a partition of the plane into four convex regions where the
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1
1

3

2 y

z

x ∆

y
x p

z

3

2

1 3
1

Figure 1.28: Constructing the third separating segment

unbounded areas each contain exactly one partition class and the bounded
triangle is empty by construction.

Observe that this partition of the plane into convex regions implies that
indeed s12, s13, and s23 are the unique separating segments of the underly-
ing crossing-free partition into three classes. Hence, it is clear that the par-
titions constructed in this way differ from the ones obtained in Lemma 1.11,
for here the convex hull of the segments is a triangle. Moreover, they are
distinct from the partitions constructed in Lemma 1.10.

It remains to show that two different pairs of spearing segments induce
distinct crossing-free partitions. Assume otherwise and note that by con-
struction the convex hull of the two given spearing segments contains the
third one. Since the separating segments are unique there is only one choice
for two segments such that their convex hull contains the third. Hence, the
pairs have to be the same and the map is injective.

We recall that by considering the separation graphs of the partitions
constructed in Lemmas 1.10, 1.11, and 1.12 we find that also the combina-
tion of the maps from the three lemmas remains injective.

Theorem 1.13. Let P be a set of n points in the plane in general position.
Then cfp3(P ) ≥ cfp3(Γn).

Proof. An empty triangle contributes 1 to cfp3(P ), four points contribute
either two pairs of parallel or three pairs of spearing segments. Hence,

cfp3(P ) ≥
∑

Q∈(P3) : IP (Q)=∅

1 +
∑

Q∈(P4) : |X(Q)|=4

2 +
∑

Q∈(P4) : |X(Q)|=3

3

= 2

(
n

4

)
+

(
n

3

)
+
∑
Q∈(P3)

(
|IP (Q)| − 1

)
· 11[|IP (Q)|≥2].
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The identity follows as in the proof of Theorem 1.3. The last expression
is exactly cfpn−2(P ), therefore we get

cfp3(P ) ≥ cfpn−2(P ) ≥ cfpn−2(Γn) = cfp3(Γn).

Let us point out that so far we did not specify all possible configurations
of separating segments that may occur when partitioning a point set into
three crossing-free classes. It will be the result of the remaining part of this
chapter that we actually may have left out the largest portion.

1.4 Many partition classes versus few

We start by constructing a set of n points with Θ(n6) crossing-free parti-
tions into three classes. This is in contrast to the number of partitions into
n − 2 classes, which always is Θ(n4) regardless of the point configuration
as long as general position is enforced. Note that for our purpose it is nec-
essary to make use of all three corresponding separating segments of the
partition.

In the following we consider a point set that is also known for having
a super-linear number of halving edges, a construction and result due to
Erdős et al. [30]. For its recursive definition start with the set P (1) of six
points, given by a triangle with a smaller similar triangle inscribed and
slightly perturbed, see the left illustration in Figure 1.29.

1

1

2
3

3

2

P (1)

Figure 1.29: Three parallel separating segments

Note that P (1) has a triple of separating segments we did not account
for in Theorem 1.13. Here every pair of separating segments is parallel,
and by Lemma 1.9 there is only one consistent coloring. If a point set
P contains P (1), or an affine copy, as a subset then these three parallel
segments additionally contribute to cfp3(P ) if and only if the bounded
region that the lines define is empty. In this case we call the triple valid.
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Observe that two distinct valid triples of parallel segments induce distinct
crossing-free partitions.

Assuming a proper underlying coordinate system, we call a point set
ε-flattened copy of P if it is obtained by multiplying the y-coordinates of
all points in P by ε. Clearly, the slope of any line through two points
in an ε-flattened copy of P is ε times the corresponding slope in P . The
construction starts with P (1) and, for ` ≥ 1, recursively builds P (` + 1)
by arranging three copies of ε`-flattened point sets of P (`) (denoted P iε`(`),
for i = 1, 2, 3) in a tripod, as shown in Figure 1.30.

P (`) P (` + 1)

Pε`(`)

P 1
ε`
(`)

P 2
ε`
(`)

P 3
ε`
(`)

Figure 1.30: Recursive construction of P (`)

By choosing ε` > 0 small enough we can guarantee that for any choice
of six points, two from each P iε`(`) with i = 1, 2, 3, we obtain a valid triple
of parallel segments. Indeed, we can always avoid two points having the
same x-coordinate by applying a small perturbation, and then make the
slope of any line through two points arbitrarily small by flattening.

For providing a lower bound on cfp3(P (`)) we write |P (`)| = 2·3` = n(`)
and count the valid triples of parallel segments that can be obtained from
P (`). This results in

cfp3(P (`)) ≥
∑̀
i=1

3i−1 ·
(n(`)

3i

2

)3

=
∑̀
i=1

3i−1 ·
(

(n(`)
3i )2

2

)3

+O(n(`)5)

=
n(`)6

23 · 3 ·
∑̀
i=1

3−5i +O(n(`)5)

=
n(`)6

24 · 3 · 112
+O(n(`)5) =

n(`)6

5808
+O(n(`)5).

For an arbitrary set P of n points the separation graph contains ex-
actly three edges. Hence, there are at most O(n6) such graphs imply-
ing that cfp3(P ) = O(n6), and the construction above is asymptotically
tight. Conversely, with Theorem 1.13 we find cfp3(P ) = Ω(n4). Recall
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that cfpk(Γn) = cfpn−k+1(Γn) which together with Theorem 1.3 implies
that cfpn−2(P ) = Θ(n4) for any set P of n points, since |IP (Q)| ≤ n. This
shows that the symmetry which holds for Γn is completely lost for arbitrary
point sets.

We conclude by generalizing the previous example to crossing-free par-
titions into k classes, for k ≥ 3 constant. Since our primary concern here
is the asymptotic behavior of the number of crossing-free partitions the
following construction is not recursive.

Whereas previously three times n/3 points were arranged in a tripod,
we now define a set Pk of n points by placing k flattened copies of n/k
points in general position in a k-pod. Correspondingly, any choice of 2k
points, two from each copy, yields a valid k-tuple of parallel segments, and
hence contributes to cfpk(Pk). With k constant, we obtain the lower bound

cfpk(Pk) = Ω

((n
k

2

)k)
= Ω

(
n2k

2kk2k

)
= Ω

(
n2k
)
.

On the other hand, in order to bound the number of partitions into
n− k+ 1 classes, briefly reflect the derivation of Theorem 1.7. For any set
P of n points in general position it holds that cfpn−3(P ) = Θ(n6). Indeed,
from Figure 1.4 we find that cfpn−3(P ) is upper-bounded by

(
n
6

)
times the

maximum number of perfect matchings a set of six points allows for, which
is 12, plus terms of lower order O(n5).

By the same argument, and since k is a constant, there are asymptoti-
cally less partitions of Pk into k classes which do not constitute matchings.
Thus, cfpn−k+1(Pk) may be bounded from above by

(
n

2(k−1)

)
times the

maximum number of perfect matchings a subset of Pk of size 2(k − 1) can
have. This in turn is at most 10.052(k−1), as shown by Sharir and Welzl [71].
Then again, k is constant, so

cfpn−k+1(Pk) = O

((
n

2(k − 1)

))
= O

(
n2(k−1)

)
.

In fact, this is asymptotically tight since due to [33, 60] the number
of perfect matchings in a point set of size 2(k − 1) is at least Ck−1, but
a constant. Moreover, partitions into n − k + 1 classes other than perfect
matchings contribute O(n2k−1) to cfpn−k+1(Pk).

If k grows with n, where k = o(log n), the analog construction and
similar estimates show that

cfpk(Pk)

cfpn−k+1(Pk)
= Ω(n).
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Indeed, the lower bound of cfpk(Pk) = Ω
((n

k
2

)k)
follows in the same

way by counting the valid k-tuples of parallel segments, which in fact also
holds for all larger k.

In order to derive an upper bound we use another result of [71] which we
mentioned in the introduction stating that for set P of n points cfp(P ) ≤ cn,
for some constant c. Actually, a sufficient condition for our purpose is the
fact that the total number of crossing-free graphs on a point set of size n is
at most exponential in n, a result which will be discussed in further detail
in Chapter 6.

Recalling the notion of (n1, n2, . . . , nn−k+1)-partitions we may write
crossing-free partitions of Pk into n− k + 1 classes in one of the following
forms: (k, 1, . . . , 1), (k − 1, 2, 1 . . . , 1), . . ., (2, . . . , 2, 1 . . . , 1). Obviously,
only points belonging to partition classes of size 2 are incident to edges of
the crossing-free partition, and hence we can derive corresponding upper
bounds for their cardinality.

There are at most
(
n
k

)
ck partitions of type (k, 1, . . . , 1), correspondingly

at most
(
n
k+1

)
ck+1 of type (k− 1, 2, 1 . . . , 1) and (k− 2, 3, 1 . . . , 1), at most(

n
k+2

)
ck+2 of type (k − 2, 2, 2, 1 . . . , 1), and so on. We already saw that an

upper bound for the crossing-free (2, . . . , 2, 1 . . . , 1)-partitions is given by(
n

2(k−1)

)
c2(k−1). This yields

cfpn−k+1(Pk) = O

(
k−2∑
i=0

(
n

k + i

)
ck+i

)
= O

(
k ·
(

n

2(k − 1)

)
c2(k−1)

)
,

since k ≤ n
4 and the binomial coefficients are strictly increasing.

Using (n` )` ≤
(
n
`

)
≤ (ne` )` we find

cfpk(Pk) = Ω

(
n2k

4kk2k

)
cfpn−k+1(Pk) = O

(
k
( ne

2(k − 1)

)2(k−1)

c2(k−1)

)
= O

(
n2k−2

k2k
c′k
)
.

for some constant c′ ≥ c. With k = o(log n) the claim follows.
However, for faster growing k, or even linear in n, we can so far not

prove a corresponding behavior.



When you wish upon a falling star,
your dreams can come true.
Unless it’s really a meteorite hurtling
to the Earth which will destroy all life.
Then you’re pretty much hosed no mat-
ter what you wish for.
Unless it’s death by meteor.

Wishes
despair, Inc.

2
Decomposing Kn with
Crossing-Free Partitions

In this chapter we study how many crossing-free partitions are necessary to
decompose the complete graph Kn embedded on a set of n points. Given a
point set in general position in the plane a partition is called crossing-free
if the convex hulls of the individual partition classes are disjoint.

With every crossing-free partition we associate the following crossing-
free geometric graph: The vertices are the given points, and the edges are
the convex hull edges of the individual parts. We aim to decompose Kn

as an edge-disjoint union of graphs obtained from crossing-free partitions,
using the minimal number of such graphs. In particular, we consider an
embedding of Kn on Γn, a set of n points in convex position.

It is not too hard to see that a decomposition can always be achieved
using n crossing-free partitions, more precisely, using crossing-free match-
ings, i.e., partitions where each part has size 2. We also show that for n
sufficiently large, at least n − 4 crossing-free partitions are necessary for
decomposing Kn, providing an almost tight lower bound for the problem.

The main result of this joint work with Sonja Čukić, Michael Hoffmann,
and Tibor Szabó [24] was established during the 4th Gremo Workshop on
Open Problems (GWOP) held in Wislikofen, 2006.

47
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2.1 Introduction

In extremal combinatorics the notion of graph decompositions is well-
known. Originally, a question by Turán [78] initiated a a search for ex-
tremal values of graph parameters for certain classes of graphs. Turán
solved the following problem: What is the maximum number of edges in a
graph which does not contain a copy of the complete graph Kn as a sub-
graph? This may be generalized in several ways and we refer to Jukna [42]
for further reading on the topic.

Before we present our findings let us mention a related result and an
open problem regarding the decompositions of abstract graphs, i.e., omit-
ting our common assumption of a geometric embedding. Any graph on n
vertices has a decomposition into at most bn/2c paths and cycles due to
Lovász [54]. It is not known whether similar bounds hold when restricting
to paths or to cycles only. Alspach [14] proposes the following question:
For n odd and c1, . . . , ck natural numbers between 3 and n which sum to(
n
2

)
, does there exist a decomposition of Kn into cycles of length c1, . . . , ck?
Here, we consider the complete graph Kn embedded on Γn a set of n

points in convex position. Our goal is to partition E(Kn) into the smallest
possible number of subsets such that each of them induces a crossing-free
partition on Γn. We show that for n sufficiently large, at least n − 4
crossing-free partitions are necessary for that purpose. On the other hand,
with partitions that correspond to maximal crossing-free matchings on Γn
a decomposition of Kn using exactly n partitions is proposed.

This geometric setting allows the following illustration. Suppose n peo-
ple go to a pub, sit at a round table and order a beer each. Now, tradi-
tionally when toasting everyone’s glass has to touch every other’s exactly
once without any crossing occurring, i.e., no-one is allowed to reach under
someone else’s glass. Surely, we want to minimize the time necessary to
complete this procedure. Besides the classical one-on-one “Cheers!” we
allow for several people to touch their respective two neighbors’ glasses at
the same time but forbid any further connection within such a group. In-
terpreting beer glasses as vertices and the clinking of two of them as an
edge then at each round we are considering a crossing-free partition of Γn.

2.2 The upper bound

Let Γn denote a set of n points in convex position, i.e., the set of vertices of
a convex n-gon. Recall that a partition of Γn is said to be crossing-free if the
convex hulls of the individual parts do not intersect. We will again identify
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a given crossing-free partition with the straight-line embedded graph on Γn
containing the boundary edges of the convex hulls of the partition classes.
By definition this graph, clearly, is crossing-free.

Theorem 2.1. For n points in convex position there is a decomposition of
Kn into n crossing-free partitions.

Proof. Let {p1, p2, . . . , pn} be the points of Γn given in clockwise order as
they appear on the convex hull. The crossing-free partitions used in these
decompositions will be large matchings of the underlying point set. To be
more precise, in any partition there will be at most two isolated vertices
and the remaining vertices will be of degree 1.

Let us first consider the case where n is odd. Then we define an initial
matching M1 of the decomposition by connecting pi with pj if and only if
i+j = n+2; See the left drawing in Figure 2.1. Note that this is a matching
where only p1 is an isolated vertex. Moreover, it is a crossing-free partition:
Consider two distinct edges, pi1pj1 and pi2pj2 , with i1 + j1 = i2 + j2 and
i1 < i2. This implies j1 > j2, and since the vertices have clockwise order
the edges do not cross.

p1
p2

p3

pn

pn−1

pn−1
2

pn+1
2

p1
p2

p3

pn

pn−1

pn−1
2

pn+1
2

Figure 2.1: Crossing-free matchings M1 and M2 on Γn, for odd n

For the other crossing-free matchings from the decomposition let ` ∈ N,
1 ≤ ` ≤ n− 1, and define

M`+1 := {pi+`pj+` | pipj ∈M1},

where we consider indices modulo n: See the right picture in Figure 2.1
depicting the matching M2. Similar to the argument given above every
such matching is crossing-free. It remains to show that we indeed obtain
a decomposition of Kn. Note that all edges used in the construction are
distinct: Consider two edges, pi+`pj+` and pi′+kpj′+k, for some `, k, with
i+ j = n+2 = i′+ j′. If the edges are the same the sum of their endpoints’
indices agrees modulo n, i.e., i+j+2` ≡ i′+j′+2k modulo n. This implies
` = k since n is odd, but all edges in M`+1 are distinct.
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In every matching there is exactly one isolated vertex, hence we con-
structed n matchings each of size n−1

2 . Since all these edges are distinct
we covered all nn−1

2 =
(
n
2

)
edges of Kn in the decomposition.

Now, for n even we consider two kinds of matchings that we will again
rotate in order to cover all edges. LetM1

1 be the matching where we connect
vertices pi and pj if and only if i+ j = n+ 1, and M2

1 is the matching with
edges between pi and pj if i+ j = n+ 2, see Figure 2.2.

p1

p2

p3

pn
pn−1

pn
2

pn
2+1

p1

p2

p3

pn
pn−1

pn
2

pn
2+1

Figure 2.2: Crossing-free matchings M1
1 and M2

1 on Γn, for even n

By a similar argument as in the case above where n was odd, the two
matchings M1

1 and M2
1 are crossing-free. Furthermore, since here n + 1 is

odd the indices of an edge pipj in M1
1 have distinct parity, whereas for an

edge in M2
1 the indices have the same parity. Therefore, all edges of the

matchings

M1
`+1 := {pi+`pj+` | pipj ∈M1

1 }
M2
`+1 := {pi+`pj+` | pipj ∈M2

1 },

where ` ∈ N such that 1 ≤ ` ≤ n
2 − 1, are distinct. Since M1

1 has n
2 and

M2
1 has n−2

2 edges we covered

n

2
· n

2
+
n

2
· n− 2

2
=
n

2
· (n− 1) =

(
n

2

)
edges in the decomposition. These are all edges of Kn and we are done.

2.3 The lower bound

Let us point out that any crossing-free partition has at most n edges, hence
in order to cover all

(
n
2

)
edges of the complete graph Kn at least n−1

2 parti-
tions are needed. In the following we will show that the true answer about
the smallest decomposition of Kn into crossing-free partitions, however, is
roughly the upper bound from Theorem 2.1 in the previous section.
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Assume once again that the points {p1, p2, . . . , pn} of Γn are given in
clockwise order as they appear on the convex hull. Then an edge {pi, pj}
of Kn is called short if and only if |i− j| ≤ 3 modulo n, otherwise {pi, pj}
is a long edge. In other words, long edges are those for which there are at
least three points between pi and pj on both arcs of the convex hull of Γn.
Moreover, given a crossing-free partition Q we denote by es(Q) the number
of short edges in Q, and similarly we write el(Q) for the number of long
edges in Q. We identify a crossing-free partition of Γn with its canonically
induced plane graph.

Note that by definition for n ≤ 7 all edges of Kn are short, and any
crossing-free partition of Γ8 can have at most one long edge. The following
is the key lemma relating the number of long and short edges in a partition.

Lemma 2.2. Let Q be a crossing-free partition on Γn, where n ≥ 7. Then

el(Q) ≤ n+ es(Q)

2
− 3.

Proof. We give a proof by induction on n. As already mentioned, if n = 7
there are no long edges, and if n = 8 any crossing-free partition has at most
one long edge and the statement holds. For n = 9 observe that there are
at most two long edges, and if there are exactly two then the partition also
has at least one short edge. These three cases will serve as the base of our
inductive proof.

Therefore, in the following suppose n ≥ 10 and without loss of generality
we may further assume that Q has no connected component that consists
of short edges only. Indeed, the edges of such a component would just
increase the right side of the estimate, weakening the statement we want
to prove. Now, we can distinguish two cases. Either there is a vertex in Q
incident to a long and a short edge, or there are no short edges at all in Q.
Case 1: There are vertices p, q, and r such that pq is long and pr is short.

The line through pq subdivides Γn into two parts, and we refer to the
one containing r as the part below pq. It is crucial to observe that deleting
the two vertices p and q does not change the property of being long or short
for an edge above pq, since pq is long.

Let us first assume that q is also incident to a short edge and call its
adjacent vertex s. Now, delete p and q and their adjacent edges in Q and, if
possible, connect the vertices r and s by a new edge. Otherwise, if r = s or
the edge rs was already present in Q we do not change anything. This way
we obtain a new crossing-free partition Q′, with the following properties

n(Q′) = n(Q)− 2 es(Q
′) ≤ es(Q)− 1 el(Q

′) = el(Q)− 1.
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Therefore, by induction

el(Q) = el(Q
′) + 1

≤ n(Q′) + es(Q
′)

2
− 3 + 1

≤ n(Q)− 2 + es(Q)− 1

2
+ 1− 3

≤ n(Q) + es(Q)

2
− 3.

Conversely, we now assume that q is incident to another long edge
connecting q with s. As before, deleting p and connecting its neighbors q
and r does not change anything above pq, and the new edge qr is long since
qp and qs were long. We also note that qs remains a long edge in the new
partition Q′. Therefore,

n(Q′) = n(Q)− 1 es(Q
′) = es(Q)− 1 el(Q

′) ≥ el(Q)− 1,

where equality holds in the last estimate if and only if r = s. By induction

el(Q) ≤ el(Q
′) + 1

≤ n(Q′) + es(Q
′)

2
− 3 + 1

=
n(Q)− 1 + es(Q)− 1

2
+ 1− 3

=
n(Q) + es(Q)

2
− 3.

Case 2: There are no short edges in Q at all.
Consider a long edge pq with only isolated vertices on one side. Since Q

does not contain a short edge there are at least three such isolated vertices.
Now, we turn to the other side and let r and s be the points following p
in cyclic order, and similarly t and u the points following q. Observe that
since pr and qt are not present in Q, as they would constitute short edges,
neither pt nor qr are edges in Q. We distinguish two cases depending on
the existence of an edge between r and t.

First, assume that rt is not an edge in Q. Then deleting three isolated
vertices below pq can only make this edge pq a short edge if it does at
all, and the number of long edges decreases by at most 1. Indeed, note
that by assumption neither pu nor qs is an edge in Q. We obtain a new
crossing-free partition Q′ with

n(Q′) = n(Q)− 3 es(Q
′) ≤ es(Q) + 1 el(Q

′) ≥ el(Q)− 1.
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Then by induction

el(Q) ≤ el(Q
′) + 1

≤ n(Q′) + es(Q
′)

2
− 3 + 1

≤ n(Q)− 3 + es(Q) + 1

2
+ 1− 3

=
n(Q) + es(Q)

2
− 3.

Finally, suppose rt is an edge in Q. Then p and q are of degree 1 in Q
and their deletion yields a new partition Q′ with

n(Q′) = n(Q)− 2 es(Q
′) = es(Q) el(Q

′) = el(Q).

Inductively,

el(Q) = el(Q
′)

≤ n(Q′) + es(Q
′)

2
− 3

=
n(Q)− 2 + es(Q)

2
− 3

=
n(Q) + es(Q)

2
− 3,

which finishes the proof.

With the previous lemma we can now prove the main result of this
chapter. Fix a decomposition D of Kn into crossing-free partitions, and
denote by di := di(D) the number of partitions in D with i short edges.
The number of partitions in the decomposition D is

∑∞
i=0 di for which

we want to derive a lower bound. Since any such partition has at most n
(short) edges, we may truncate the sum in order to estimate |D| = ∑n

i=0 di.

Theorem 2.3. Let n ≥ 7, then for any decomposition D of Kn into
crossing-free partitions on Γn

|D| ≥ n− 4− 24

n− 6
.

Proof. Since we assume n > 6 the total number of short edges in Kn is 3n,
or equivalently,

n∑
i=0

i · di = 3n. (2.1)



54 Chapter 2. Decomposing Kn with Crossing-Free Partitions

There are
(
n
2

)
edges in Kn which need to be covered by some partition.

Observe that, for 0 ≤ i ≤ n, the number of edges covered by all partitions
with i short edges is at most di times the maximum number of edges in a
partition with i short edges. Therefore,(

n

2

)
≤

n∑
i=0

di · max
Q:es(Q)=i

{es(Q) + el(Q)}

≤
n∑
i=0

di ·
(
i+

n+ i

2
− 3

)

=
3

2

n∑
i=0

i · di +
(n

2
− 3
) n∑
i=0

di,

using Lemma 2.2. With the previous observation (2.1) we find

n∑
i=0

di ≥
2

n− 6
· n(n− 1)− 9n

2
=
n2 − 10n

n− 6
,

which proves the claim.

In particular for n > 30 we find that the number of crossing-free parti-
tions in a decomposition of Kn is at least n− 4.

On the other hand for small values of n we may compute the exact
size of the smallest decompositions by brute force. In the following table
we summarize the values we know for the smallest decomposition Dn of
Kn, where n ≤ 8. For K9 there is a decomposition into eight crossing-free
partitions, however, we do not know whether seven suffice.

n 1 2 3 4 5 6 7 8

|Dn| 1 1 1 3 3 5 6 7

It is trivial to see that the smallest decomposition for n ≤ 3 only needs
a single crossing-free partition to cover all edges of Kn. In the case of
n = 4 and n = 5 points the smallest decomposition of Kn consists of three
crossing-free partitions.

As shown in Figure 2.3 and Figure 2.4 three partitions suffice for such
decompositions. For proving the corresponding lower bounds suppose that
two partitions would be enough. Since K4 has six edges the partition classes
would either both contain three edges, or one partition had two the other
four edges. Both cases lead to immediate contradictions.
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Figure 2.3: Decomposition of K4 into three crossing-free partitions

Figure 2.4: Decomposition of K5 into three crossing-free partitions

Similarly for K5 containing ten edges the two partition classes both
need to have five edges. But there is only one crossing-free partition on Γ5

with five edges.

Figure 2.5: Decomposition of K6 into five crossing-free partitions

To prove the correct lower bound for a decomposition of K6 a more
detailed case analysis is needed. However, since the upcoming examples
would also require an even more elaborate proof we refrain from presenting
tedious case analyses and refer to the brute force computation of the lower
bounds for the smallest decompositions of K6, K7, and K8.

Lastly, for n = 9 we do not know the size of the smallest decomposi-
tion, however, we can improve over the result from Theorem 2.1 as seen in
Figure 2.8.

From the instances drawn above it is unfortunately not clear how to
generalize the constructions to yield decompositions of Kn into at most
n − 1 crossing-free partitions for every n. Already for n = 10 it remains
open whether nine crossing-free partitions suffice.
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Figure 2.6: Decomposition of K7 into six crossing-free partitions

Figure 2.7: Decomposition of K8 into seven crossing-free partitions

Figure 2.8: Decomposition of K9 into eight crossing-free partitions
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The truth always lies somewhere else.

Blackboard, Emo Welzl
upper right corner

3
Compatible Spanning Trees

For a planar point set we consider the graph whose vertices are the crossing-
free straight-line spanning trees of the given point set, and two such span-
ning trees are adjacent if their union is crossing-free. An upper bound on
the diameter of this graph implies an upper bound on the diameter of the
flip graph of pseudo-triangulations of the underlying point set [2].

We prove a lower bound of Ω(log n/ log log n) for the diameter of the
transformation graph of spanning trees on a set of n points in the plane.
This nearly matches the known upper bound of O(log n), see [3, 2]. If we
measure the diameter in terms of the number k of convex layers of the point
set, our lower bound construction is tight, i.e., the diameter is in Ω(log k)
which matches the known upper bound of O(log k). So far only constant
lower bounds were known.

The results presented in this chapter are joint work with Kevin Buchin,
Uli Wagner and Takeaki Uno [22].

59
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3.1 Preliminaries

Given a set P of n points in the plane let St(P ) denote the set of all
crossing-free straight-line spanning trees of P . A straight-line embedded
graph is crossing-free if no pair of its edges shares any point other than
common endpoints. We call two crossing-free spanning trees T1 and T2 of
P compatible if their union, i.e., the graph on P with edge set E(T1)∪E(T2),
is crossing-free.

A tree graph is a directed graph that has St(P ) as its vertex set and two
vertices (trees) T1, T2 are connected by an arc from T1 to T2 if the tree T2

may be obtained from T1 by some predefined transformation rule. Avis and
Fukuda [15] consider the tree graph where two trees are adjacent if their
symmetric difference is a path of length 2 which starts at the left-most point
of P . Let us note that in this setting the tree graph may be understood
as undirected graph. They show that the tree graph is connected and has
diameter at most 2n− 4.

As far as the order of St(P ) is concerned Garćıa et al. [33] prove that
the number of crossing-free spanning trees is minimized for a point set Γn
in convex position, that is when all points lie on the boundary of the convex
hull. We will discuss this particular result and related work in more detail
in Chapter 5. For the special case of Γn, Hernando et al. [37] consider the
tree graph where two trees on Γn are adjacent if the symmetric difference
of their edge sets is of size 2. It is shown that this tree graph is Hamiltonian
and has maximum connectivity, which means that its connectivity is equal
to the minimum vertex degree. They also give a lower bound of 3n/2 − 5
for its diameter.

Aichholzer et al. [3] consider the tree graph where the predefined rule
is defined by mapping a given tree T in St(P ) to the tree of minimum
Euclidean length which is compatible to T . They show that this tree graph
is a rooted tree with the Euclidean minimum spanning tree of P being
the root. Furthermore, any tree has distance at most O(log n) from the
root. Another transformation rule which they mention is an operation
called edge slide, where two trees T and T ′ are adjacent if there is an edge
of T such that keeping one of its endpoints fixed and sliding the other
endpoint along a respective adjacent edge yields T ′. They show that the
tree graph corresponding to this transformation is connected, implying that
any two crossing-free spanning trees can be transformed into each other by
means of local and constant-size changes only. Recently, Aichholzer and
Reinhardt [11] gave an upper bound of O(n2) for the edge slide distance
between any two crossing-free trees.
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In this chapter we are interested in the tree graph Tst(P ) with St(P )
as vertex set and edges between compatible spanning trees. Note that
by symmetry of the definition of compatible trees the tree graph can be
considered as undirected. Aichholzer et al. [2] refine the upper bound of
O(log n) on the diameter of Tst(P ), given in [3], to a bound of O(log k),
where k denotes the number of convex layers of P . The convex layers of
a point set P are defined inductively: The first convex layer U1 consists of
the extreme points of the convex hull of P , and for i > 1 the i-th convex
layer Ui is defined as the set of extreme points on the boundary of the
convex hull of P \⋃j<i Uj . The number k of convex layers is the minimum
i such that Ui+1 = ∅.

Consider a plane polygon with vertices in P of which exactly three are
convex, then the bounded face is called pseudo-triangle on P . A pseudo-
triangulation of a given point set P is a plane graph where every face is
a pseudo-triangle. The flip graph of pseudo-triangulations of P is defined
as the graph whose vertices are the pseudo-triangulations of P with edges
between pseudo-triangulations that differ in exactly one edge, either by
replacement or by removal. Aichholzer et al. [2] prove that an upper bound
of d on the diameter of Tst(P ) yields an upper bound of O(nd) on the
diameter of the flip graph of pseudo-triangulations of P .

Another related problem, transforming compatible perfect matchings,
was very recently treated by Aichholzer et al. [6]. The notion of compatible
perfect matchings is defined analogously to that of spanning trees. In their
work [6] it is shown that a sequence of length O(log n) suffices to transform
a given perfect matching into any other perfect matching on a fixed set
of n = 2m points. This improves the previously best known linear upper
bound of n − 2 by Houle et al. [38], who were the first to show that the
corresponding transformation graph is connected. In Chapter 4 we will
prove a corresponding lower bound of Ω(log n/ log log n).

The transformation graph for the special case of convex position, and
with two perfect matchings being adjacent if they differ in exactly two
edges, is known to be bipartite and of diameter n− 2, which is a result due
to Hernando et al. [36]. Moreover, they show that this transformation graph
is Hamiltonian if m is even, and the graph does not contain a Hamiltonian
path for odd m.

In [2] it is conjectured that the diameter of Tst(P ) is sub-logarithmic,
with then no example known where the diameter is not constant. We give
a sub-logarithmic but considerably tight lower bound by complementing
the O(log n) upper bound with a lower bound of Ω(log n/ log log n). This
is achieved constructively by providing point sets of increasing size, and on
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each point set we specify two spanning trees achieving this bound. We also
present an example for which the bound in the number of convex layers is
tight, i.e., the distance between the two trees is Ω(log k), where k is the
number of convex layers of the underlying point set.

3.2 The lower bound

In this section we construct point sets in the plane and consider pairs
of spanning trees which need a large number of transformation steps to
transform one tree into the other.

We will first develop a general scheme to construct such trees. Based
on this we present two recursive constructions using the scheme in different
ways. The first construction yields a lower bound of Ω(

√
log n) for the

number of transformations, where n is the size of the underlying point set.
However, in terms of the number k of convex layers the lower bound is
tight, i.e., the diameter is Ω(log k). The second construction gives a lower
bound of Ω(log n/ log log n). For the sake of simplicity of the description
we initially use point sets with more than two points on a line, i.e., the
points are not in general position. However, they can easily be changed to
do so by applying a small perturbation without losing any of the relevant
properties of the construction. We comment on these perturbations later
on.

The key idea of both constructions is to place the top-most vertex of the
point set very far away from the others. We will consider a first tree with
many nearly horizontal edges and a second tree with only nearly vertical
edges crossing many of the horizontal edges in the first tree. Furthermore,
there are dependencies between the horizontal edges. During the transfor-
mation a vertex incident to a horizontal edge may connect to the top-most
vertex by a vertical edge only if certain horizontal edges are no longer in
the current tree.

We illustrate this by the example in Figure 3.1 with P = {a, b, . . . , h}
being the underlying point set. The first tree T1 in Figure 3.1(a) consists of
mostly nearly horizontal edges, whereas the second tree T2 in Figure 3.1(b)
has only nearly vertical edges. The points b, c, d, e, and f define two vertical
strips containing all points of P . In each such strip there is a point at the
bottom (g and h, respectively) which needs to connect to the top-most point
a through the corresponding strip, see Figure 3.1(c). At the beginning of
any transformation the edges bc and ef block both strips completely, i.e.,
both the bottom-most points g and h cannot connect to a in any neighbor



3.2. The lower bound 63

a

b c

fe
g h

d

a

b c

fe
g h

d

a

b c

fe
g h

d

a

b c

fe
g h

d

(a) T1 (b) T2 (c) Two vertical strips (d) One vertical
defined by b, c, d, e, f strip is blocked

Figure 3.1: The trees T1 and T2 have distance 3 in Tst(P )

of T1 in Tst(P ). Whatever the first transformation is, thereafter the point
d will be adjacent to at least one of b, c, e, or f ; For instance, we obtain
the tree in Figure 3.1(d). Thus, after one transformation the edge ag or
ah still crosses an edge of the current tree and cannot be present after the
next transformation. Hence, three transformations are necessary, and also
suffice, to transform T1 to T2, and the diameter of Tst(P ) is at least 3.

Blocking vertical strips

Before turning to the general constructions of the point sets, we further
develop the concept of blocking vertical strips. A vertical strip R is a
subset of R2 such that there exist α, β ∈ R, α ≤ β, with

R =
{

(x, y) ∈ R2
∣∣α ≤ x ≤ β} = [α, β]× R;

The width of the vertical strip R is β−α. An edge blocks a vertical strip if
the endpoints of the edge lie on different sides or possibly on the boundary
of the strip. For the continuation of our example from Figure 3.1(a) we
assume in the following a coordinate system with the point b at coordinates
(0, 3), c at (1, 3), d at (1/2, 2), e at (0, 1), and f at (1, 1). Then the edges
bc and ef of the tree T1 both block the vertical strip [0, 1]×R and the edge
dc blocks the vertical strip [1/2, 1]× R.

A point set S together with a set E of straight-line edges on S blocks a
vertical strip of width w > 0 after k steps, if for any point set P containing
S but no further point inside the convex hull of S the following holds: If a
spanning tree T ∈ St(P ) contains the edges E then in any spanning tree
from the k-neighborhood of T in Tst(P ) some vertical strip of width at
least w is blocked, not necessarily by an edge in E. A corresponding point
set P is said to have the blocking property. For instance, in the tree T1

in Figure 3.1(a) the points b, c, d, e, and f together with the edges bc and
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ef block a vertical strip of width 1/2 after one step, since either the strip
[0, 1/2]×R is blocked by bd or ed, or the strip [1/2, 1]×R is blocked by dc
or df .

Note that this concept now implies the following. Assume that we have
a point set P with the top-most point p0 ∈ P placed very far away from
the rest, and a subset S ⊂ P with edges E on S blocks some vertical strip
R after k steps. Let T1 ∈ St(P ) be a tree containing the edges E and let
T2 ∈ St(P ) be the tree where p0 connects to every other point in P by a
nearly vertical edge. If there is a point in P ∩R lying strictly below the edge
blocking R after k steps then T2 cannot be in the (k+ 1)–neighborhood of
T1 in Tst(P ). Thus, the diameter of Tst(P ) is at least k + 2.

The point sets we are about to construct all reside in the strip [0, 1]×R,
and therein we consider specific vertical strips that might be blocked. We
call a point set S together with a set E of edges an `-of-m-blocker after
k steps if S blocks at least ` of the m vertical strips [(i − 1)/m, i/m] × R
after k steps, for 1 ≤ i ≤ m. We point out that for distinct trees containing
E we do not require the same strips to be blocked in their respective k–
neighborhood. We call `/m the density of the blocker.

In the example of T1 in Figure 3.1(a) the points b, c, d, e, f together
with the edges bc and ef are a 1-of-2-blocker after one step. We will in the
following refer to the point set of this particular blocker as A. By stacking
enough copies of a given blocker and spreading further points in-between
we can construct new blockers with an increased number of steps.

We will present two ways of using this principle. First we build blockers
of small density at most 1/2, i.e., for d ≥ 1 we obtain a 1-of-2d-blocker after
d steps. In the second construction we build blockers keeping the density
as large as possible.

The advantage of the first construction is that the blocker only requires
an exponential number of vertical strips, and we obtain a tight bound of
Ω(log k) for the diameter of Tst(P ), where k is the number of convex layers
of P . However, the number of previously constructed blockers needed in the
recursive construction will also grow exponentially. This yields a blocker
after d steps with O

(
2d

2)
rows, and for the corresponding point set P

containing this blocker we have d = Ω(
√

log n), where n = |P |.
In the second construction we will only use a number linear in d of

previously constructed blockers. For this construction to work, we spread
in more points horizontally in each step. This will result in the number
of rows being of order O(dd), and we arrive at the same super-exponential
bound for the number of vertical strips. The construction gives a point set
P such that the diameter of Tst(P ) is Ω(log n/ log log n).
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3.2.1 Construction 1

We begin by extending the previous example of the 1-of-2-blocker after one
transformation step.

A

A

A

L

L

(a) Stacking three 1-of-2-blockers, (b) Pair of edges
with additional points (solid lines) blocking the
between the blockers same strip after one step

Figure 3.2: Construction of a 3-of-8-blocker after two steps

Consider the construction given in Figure 3.2(a). It contains three
copies of the 1-of-2-blocker after one step, i.e., the point set A together with
the corresponding horizontal edges, and between two subsequent blockers
there is a copy of an additional point set L. Note that L subdivides each
of the two strips of width 1/2 into four smaller strips resulting in a total
of eight vertical strips. Each copy of A blocks one vertical strip of width
1/2 after one step. Since there are three copies of A by the pigeon-hole
principle one strip is blocked twice. In the example of Figure 3.2(b) this
is the right vertical strip. No matter how the points of L between these
blocking edges are connected to the rest of the tree at least three of the
four corresponding vertical strips of width 1/8 are blocked. This can only
change after the edges blocking the strip of width 1/2 are removed. For
that to happen at least one more step is required, thus the construction is
a 3-of-8-blocker after two steps. As described before, choosing a point set
P and a tree on P containing the blocker from Figure 3.2(a) results in the
diameter of Tst(P ) being at least 4.

Lemma 3.1. Let S be an `-of-m-blocker after k transformations with den-
sity `/m > 1/u, for some u ∈ N. By stacking u copies of S on top of each
other and placing additional points between each pair of subsequent copies
that equidistantly subdivide each of the m vertical strips into m′ smaller
strips we obtain an (m′ − 1)-of-(m ·m′)-blocker after k + 1 steps.
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Proof. After k steps the u copies of S block within the m vertical strips
`·u > m times, thus at least one of the m strips is blocked twice. The points
in this vertical strip blocked from above and below subdivide this strip into
m′ smaller strips, hence in order to connect these points to the rest at least
m′ − 1 of the small strips are blocked. This changes at the earliest after
k + 1 steps, thus the construction is an (m′ − 1)-of-(m ·m′)-blocker after
k + 1 steps.

As a first implication, Lemma 3.1 readily shows that the diameter of
Tst(P ) cannot be bounded by a constant for arbitrary point sets P in the
plane. To be more specific, given d ∈ N, we will in the following construct
a point set P together with two trees T1, T2 ∈ St(P ) such that at least d
steps are necessary to transform one of the trees into the other, and the
size of P is in O

(
2d

2)
, i.e., d = Ω(

√
log n), where n = |P |.

All points of P lie in the infinite strip [0, 1]×R. A special point p0 ∈ P
has a larger y-coordinate than all other points, and will be chosen such that
the slope of any line through p0 and an other point in P is larger than the
slopes of all non-vertical lines through two points from P \ {p0}.

Let us define point sets L0 := {(0, 0), (1, 0)} and Lk, for k ∈ N, as

Lk :=

{(2i− 1

2k
, 0
)∣∣∣∣1 ≤ i ≤ 2k−1

}
.

Thus,
⋃

0≤`≤k L` contains 2k+1 points and subdivides the line segment

from (0, 0) to (1, 0) into 2k equal parts. The set Lk+1 places one point in
the center of each of these parts.

We also define point sets Ak, k ∈ N, inductively. Let

A1 := L0 ∪ L1 ⊕y 1 ∪ L0 ⊕y 2,

where S ⊕y i := {(x, y + i)|(x, y) ∈ S} is a vertical shift of the point
set S ⊆ R2 by i ∈ N. Note that A1, see the left drawing in Figure 3.3,
corresponds to the point set A which we already encountered in previous
examples.

For k ≥ 1, let Ak+1 be defined by stacking 2k + 1 copies of Ak with a
copy of Lk+1 between each pair of subsequent copies of Ak. Formally,

Ak+1 :=

2k⋃
i=0

Ak ⊕y (i · hk) ∪
2k⋃
i=1

Lk+1 ⊕y (i · hk − 1),

where hk := 4
∏k−1
i=1 (2i + 1).
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A1

0 1

1

1/2 0 1

A2

1

Figure 3.3: Point sets A1 and A2 used in the recursive construction

It follows directly from Lemma 3.1 that the point set Ak together with
edges between every pair of points with coordinates (0, y) and (1, y), for
some y ∈ N, is a 1-of-2k-blocker after k steps.

Given d ∈ N, define P := Ld+1 ∪ Ad ⊕y 1 ∪ {p0} with p0 chosen as
described above. Let T1 be a tree on P that contains all (exactly) horizontal
edges blocking the complete vertical strip [0, 1] × R and arbitrarily add
further edges such that T1 becomes a crossing-free straight-line spanning
tree. Define T2 to be the star connecting p0 to every other point by an edge.
We already know that Ad together with the corresponding horizontal edges
is a 1-of-2d-blocker after d steps. Thus, when transforming T1 into T2

there will be one of the points in Ld+1 blocked away from p0 after d steps.
Therefore, at least d+ 2 transformations are needed.

The cardinality sd of the point set Ad is given recursively by s1 = 5 and
the identity

sk+1 = (2k + 1)sk + 2k · 2k.

Generously estimating we get sk+1 ≤ 22ksk + 22ksk = 22k+1sk and by

induction sd ≤ 5 · 2d2 follows. The size of P is n = 2d + sd + 1 = O
(
2d

2)
,

hence d = Ω(
√

log n).

To conclude we want to express the diameter of Tst(P ) in terms of the
number of convex layers. The first layer of P consists of the top-most point
p0, the points of the bottom row, the points in the left-most and the right-
most column of the construction. With each additional convex layer two
more rows and two further columns are considered until only one row or
one column is left. If m1 is the number of different x-coordinates and m2

the number of distinct y-coordinates used in the construction then we can
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bound the number of convex layers from above by

1 +
1

2
min (m1,m2).

The number of distinct x-coordinates in P is 2d+1 + 2 and thus d is
logarithmic in the number of convex layers. This bound is tight as shown
by the result of Aichholzer et al. [2] which we provide in Section 3.3. Note

that the number of distinct y-coordinates is hd+1 which is of order O
(
2d

2)
.

At this point we want to mention that perturbing P slightly does not
destroy the blocking property. In order to see this we observe that the
shortest blocking edge after d steps still has length at least 2−d. It is this
nearly horizontal edge that prevents some point in Ld+1 from connecting
to p0 in the next transformation step. Now, choose 0 < ε � 2−(d+1) and
slightly perturb every point in P by at most ε such that the resulting point
set is in general position. The width of any strip we encounter during a
transformation decreases by at most 2ε which is negligible compared to its
original size. Hence, also the perturbed point set has a blocking edge after
d transformation steps. In order for the derived lower bound to hold as well
in terms of the number of convex layers we need that points on a convex
layer remain there even after the perturbation.

Theorem 3.2. For any sufficiently large integer k there is a set P of points
in general position in the plane which consists of k convex layers such that
the diameter of Tst(P ) is Ω(log k). This diameter is also Ω(

√
log n), where

n is the number of points in P .

3.2.2 Construction 2

The number of distinct x-coordinates of points in Ak from Construction 1
was growing exponentially with d. On the one hand, this implied that the
diameter of the corresponding transformation graph is at least logarithmic
in the number of convex layers. On the other hand, Ak suffered from an
exponential growth in the number of copies of previously constructed sets
Ak−1, resulting in a doubly-exponential growth in the number of points.
The recursive construction we present in the following will only require a
linear number of copies of previously considered point sets.

To this end we construct a point set P := Pd ⊂ [0, 1]×R depending on
an integer variable d > 1, and specify two trees T1, T2 ∈ St(P ) such that
d = Ω(log n/ log log n), where n is the size of P , and the distance of the
trees in Tst(P ) is at least d.
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Again, we will define point sets Lk = Lk(d) that equidistantly subdivide
vertical strips and recursively construct blockers Ak = Ak(d) with similar
meaning as in Construction 1. Finally, we also include a special point p0

in P with a far larger y-coordinate than any other point in P .

However, contrary to the first construction where the density of the
blockers dropped by a factor of 1/2 in every step, the density will now
only decrease linearly, hence the dependencies of Lk and Ak on d. This
is achieved by much denser sets Lk such that in each step the number of
vertical strips will grow by a factor of d, instead of doubling.

The key to make this approach work is the following observation. Let
L0 := {(0, 0), (1, 0)} and define

A := L0 ∪
{(

i

d
, 1

)
| 1 ≤ i ≤ d− 1

}
∪ L0 ⊕y 2.

The set A together with the horizontal edges connecting the points in
L0 and L0 ⊕y 2 constitutes a (d − 1)-of-d-blocker after one step. In other
words, there is only one single strip of width 1/d which is not blocked after
the first step. Stacking, for instance, three copies of A on top of each other
implies that after the first step there cannot be more than one vertical strip
of width 1/d which is not blocked at least twice. Assume we equidistantly
subdivide each of the d strips in A further into d smaller strips by adding
additional points, and let us call the resulting point set B. Figure 3.4(a)
shows the corresponding construction for d = 4 together with the horizontal
edges needed for the blocking property.

A

A

A

(a) The blocker B, for d = 4, (b) Edges blocking the same
consisting of three 3-of-4-blockers strips (drawn as solid lines)
A and additional points in-between after one step

Figure 3.4: Construction of a 9-of-16-blocker after two steps
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Then each of the d − 1 vertical strips of width 1/d which is blocked
twice after the first transformation, together with the additional points in-
between, behaves like a (horizontally) scaled and slightly perturbed blocker
A for the following transformation step, see Figure 3.4(b). Thus, B together
with the corresponding horizontal edges is a (d−1)2-of-d2-blocker after two
steps.

For an even more general setup, let a1 ∈ N be the number of the initial
subdivisions of the vertical strip [0, 1]× R and accordingly define

L1 :=

{(
i

a1
, 0

)
| 1 ≤ i ≤ a1 − 1

}
A1 := L0 ∪ L1 ⊕y 1 ∪ L0 ⊕y 2.

Let b1 ∈ N be the minimum number of vertical strips blocked in A1

after one step, thus b1 = a1 − 1 since A1 is an (a1 − 1)-of-a1 blocker after
one step. We use A1 as the base gadget in the upcoming construction.

For k ≥ 1, we construct Ak+1 recursively by vertically stacking ck+1 ∈ N
many copies of Ak, and in-between two such consecutive copies we equidis-
tantly subdivide each previous vertical strip into ak+1 ∈ N smaller strips.

Formally, let π` =
∏`
i=1 ai denote the number of strips in A`, where ` ∈ N,

then we define

Lk+1 :=

{(
i

πk
+

j

πk+1
, 0

) ∣∣∣∣ 1 ≤ i ≤ πk − 1

1 ≤ j ≤ ak+1 − 1

}
,

i.e., Lk+1 contains πk(ak+1 − 1) points which subdivide each vertical strip
given by

⋃
0≤`≤k L` into ak+1 equidistant parts along the line segment from

(0, 0) to (1, 0). Moreover, for k ≥ 1, we set

Ak+1 :=

ck+1−1⋃
i=0

Ak ⊕y (i · hk) ∪
ck+1−1⋃
i=1

Lk+1 ⊕y (i · hk − 1),

where hk := 4
∏k−1
i=2 ci.

We will denote by bk ∈ N the minimum number of strips of width π−1
k

that are blocked in Ak after any k steps of transformation. Notice that ak,
bk, and ck might depend on d, and for certain choices of the sequences ak
and ck the corresponding sets Ak need not be blockers. In order for the
construction to work during at least d steps, i.e., so we obtain a set Ad in
which there is at least one strip blocked after any d transformations, it is
necessary and sufficient to require bk > 0, for all 1 ≤ k ≤ d.
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There are sequences meeting this criterion as seen by Construction 1.
For the purpose of computing the density of the blockers let us now assume
that we are given two such sequences ak ≥ 2 and ck ≥ 2 yielding sets Ak
which together with the corresponding horizontal edges are blockers after
k steps.

Lemma 3.3. The lower bound b` on the number of strips of width π−1
` that

are blocked in A` after ` transformation steps is given by the recursion

b1 = a1 − 1

bk+1 =

⌈
bkck+1 − πk
ck+1 − 1

⌉
· (ak+1 − 1), k ≥ 1.

Proof. We prove this statement by induction on the number k of transfor-
mation steps. We already discussed the case of our base gadget A1 where
after the first transformation at most one vertical strip of width 1/a1 is not
blocked, hence b1 = a1 − 1.

For the inductive step assume that in Ak at least bk strips of width π−1
k

are blocked after k steps and, correspondingly, at most πk − bk strips are
not blocked. When vertically stacking ck+1 many copies of Ak in order to
obtain Ak+1 every copy yields at most πk − bk strips which lack a blocking
edge after k steps, hence, in total at most (πk − bk) · ck+1 blocking edges
are missing. Now, imagine an adversary distributes these missing blocking
edges to the strips of width π−1

k so that there are as many strips as possible
which are blocked at most once. Clearly, then for each such strip at least
ck+1 − 1 of the missing blocking edges have to be used. Therefore, after k

transformation steps at most
⌊
(πk − bk) · ck+1

ck+1−1

⌋
strips of width π−1

k are

blocked at most once. The remaining strips, of which there are at least

πk −
⌊

(πk − bk) · ck+1

ck+1 − 1

⌋
=

⌈
bkck+1 − πk
ck+1 − 1

⌉
,

are blocked twice and thus behave like a horizontally scaled base gadget for
the next transformation. Therefore, Ak+1 is a bk+1-of-πk+1 blocker after
k + 1 steps, with bk+1 as claimed in the recursion.

Since ak, ck ≥ 2, for all k, the condition bd > 0 for the target blocker Ad
is equivalent to bd−1cd − πd−1 > 0, which in particular implies bd−1 > 0.
Recursively bk > 0 follows, for the remaining 1 ≤ k ≤ d − 2, and hence
bd > 0 is a necessary and sufficient condition for the construction to yield
a blocker after d steps.



72 Chapter 3. Compatible Spanning Trees

For computational purposes we drop the requirement on the bk being
natural numbers and use the following slightly weaker recursion than in the
statement of Lemma 3.3

b̃1 := a1 − 1

b̃k+1 := (b̃kck+1 − πk) · ak+1 − 1

ck+1 − 1
. (3.1)

For this new sequence b̃k ≤ bk follows readily by induction, and in particular
b̃d > 0 is sufficient for the construction to work.

Now, b̃d > 0 together with the definition (3.1) of the sequence b̃k is
equivalent to b̃d−1 · cd > πd−1, and hence to

πd−1

cd
< b̃d−1 = (b̃d−2cd−1 − πd−2) · ad−1 − 1

cd−1 − 1
,

b̃d−2 >
πd−1

cd
· cd−1 − 1

cd−1(ad−1 − 1)
+
πd−2

cd−1
.

Recursively plugging in (3.1) for b̃k we find

b̃1 >

d−2∑
i=0

πd−1−i
cd−i

·
d−1−i∏
j=2

cj − 1

cj(aj − 1)
=

d∑
i=2

πi−1

ci
·
i−1∏
j=2

cj − 1

cj(aj − 1)
.

Since b̃1 = a1 − 1 and with the definition of π` we obtain

1− 1

a1
>

d∑
i=2

1

ci
·
i−1∏
j=2

(cj − 1)aj
cj(aj − 1)

, (3.2)

as a sufficient condition for the sequences ak and ck to yield a well-defined
construction of a blocker Ad after d transformation steps.

Let us now calculate the size of the point sets Ak, and for this purpose
denote nk := |Ak|, for k ≥ 1, and recall n1 = a1 + 3.

Lemma 3.4. For k ≥ 2, the number of points in Ak is

nk = n1

k∏
i=2

ci +

k∑
i=2

πi−1(ai − 1)(ci − 1)

k∏
j=i+1

cj .

Proof. The induction base holds since n2 = n1c2 + (c2 − 1)a1(a2 − 1). For
the inductive step recall that Ak+1 is constructed by stacking ck+1 copies
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of Ak and subdividing the strips by spreading points in-between the copies.
Thus,

nk+1 = ck+1nk + (ck+1 − 1)πk(ak+1 − 1),

and substituting the inductive hypothesis for nk proves the statement.

The values a1 = d+ 1 and ak = ck = d, for all 2 ≤ k ≤ d, satisfy (3.2)

1− 1

d+ 1
>
d− 1

d
= 1− 1

d
,

hence we obtain a blocking set Ad after d transformation steps. With
P := Ld+1 ∪Ad⊕y 1∪{p0}, for ad+1 = 2, and T1, T2 defined as in the first
construction, the distance of the two trees in Tst(P ) is at least d+ 2.

By Lemma 3.4 the cardinality n of the point set P is

n = 2dd +
(
(d+ 4)dd−1 + dd−1(d− 1)3

)
+ 1 = O

(
dd+2

)
,

and hence d = Ω(log n/ log log n).

Similarly to Construction 1 we may perturb the points by a small ε,
with 0 < 2ε � π−1

d , such that P is in general position and neither the
blocking property is destroyed nor the convex layers of P are changed. The
width of the smallest blocked strip of the perturbed Ãd will be at least
π−1
d − 2ε� 0, hence, after d transformations there still is a blocking edge

implying that the distance of the corresponding trees in Tst(P ) is d+ 2.

Theorem 3.5. For any sufficiently large integer n there exists a set P of
n points in general position in the plane for which the diameter of Tst(P )
is Ω(log n/ log log n).

There are hk−1 = 4
∏k−1
i=2 ci−1 ≤ nk distinct y-coordinates in Ak, and

also the number πk + 1 of x-coordinates is at most nk. In particular our
choice for ak and ck implies that the number of convex layers in P is also
O(dd), hence, this construction is not tight in terms of the convex layers.

We have the feeling that the 1/ log log n factor in the lower bound of
Theorem 3.5 is more likely to be an artifact of our construction than the
truth about the diameter of Tst(P ) which we think should be Θ(log n) for
a suitable point set P . To construct such a set in the spirit of our approach
it would be sufficient to provide sequences ak, ck satisfying (3.2) where
neither linearly many ak nor ck are of linear order in d. The reason why
we present a more general framework where we allow for ak and ck to take
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different values is that otherwise (3.2) and the geometric-harmonic means
inequality immediately yields

d
√
nd ≥ d

√√√√ d∏
i=2

ci ≥
d∑d

i=2 c
−1
i

> d,

and in turn nd = Ω(dd), and we obtain the same bound as in Theorem 3.5.
On the other hand, despite considerable effort we could not prove that

the general approach will fail to provide a better estimate. Similarly to
definition (3.1) one may infer an upper bound on the sequence bk as given
by the following recursion

b′1 := a1 − 1

b′k+1 :=
(

(b′k + 1)ck+1 − πk
)
· ak+1 − 1

ck+1 − 1
.

It is easily checked that indeed bk ≤ b′k holds, for all k, and hence the
necessary condition bd > 0 implies b′d > 0. From this in turn follows

1− 1

a1
>

d∑
i=2

(
1

ci
− 1

πi−1

)
·
i−1∏
j=2

(cj − 1)aj
cj(aj − 1)

,

as a necessary condition for the construction to work. It remains open
whether this already implies an asymptotic behavior of order Ω(dd) for nd.

3.3 The upper bound

Concluding this chapter we will prove the upper bound of O(log k) on the
diameter of the transformation graph of compatible spanning trees on a
given point set with k convex layers. The original proof of this statement
presented in [2] lacks a small argument which we shall provide in the course
of the description, but otherwise our demonstration closely follows the orig-
inal lines.

Recall the recursive definition of the convex layers for a point set P :
The first layer U1 consists of the extreme points of the convex hull of P
and, for i > 1, the i-th layer Ui is the set of extreme points of the convex
hull of P \⋃j<i Uj . The number k of convex layers of P is the minimum i
such that Ui+1 = ∅.

Trivially, a set P of n points has at most n convex layers, hence the
upper bound O(log n) for the diameter of Tst(P ) follows once we proved
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the bound in terms of the number of convex layers. First, we make the
following useful observation.

Lemma 3.6 (Aichholzer et al. [2]). Consider a triangulation on P , and let
p ∈ P be on some layer Ui, for i ≥ 2. Then the triangulation contains an
edge pq that does not cross Ui such that q lies on a layer Uj, with j < i.

Proof. If such an edge does not exist then all edges incident to p lie within
an angle of π. However, the only points in a triangulation with a reflex
angle are the ones on the first layer U1.

We need some more definitions for the proof of the final result. Consider
the edges representing the boundary of the convex hull of a layer Ui which
we refer to as layer edges. Then a layer tree of P is a crossing-free spanning
tree on P that, for i ≥ 1, contains all but one layer edges from each convex
layer Ui of P and which connects consecutive layers by single edges that
do not cross any layer edge whether in the tree or not, see Figure 3.5 for
an example. The last property of layer trees will turn out to be necessary
in the proof of the main theorem.

U1U2

U3

Figure 3.5: A layer tree for a point set with k = 3 layers

For any point set P such layer trees exist as a consequence of Lemma 3.6.
Indeed, consider a triangulation containing all layer edges of P , then for
i ≥ 2 we can choose an edge connecting Ui and Ui−1 without crossing Ui.
Together with the layer edges chosen as described above the resulting graph
is crossing-free and connected, in particular a layer tree of P .

We claim that two layer trees of P have distance at most 2 in Tst(P ).
Two such trees clearly do not intersect in their layer edges, hence, if they
are not compatible then some edges connecting two consecutive layers Ui
and Ui+1 cross, where 1 ≤ i ≤ k − 1. Since these conflicting edges by
definition cannot cross any layer one may construct a layer tree which
simultaneously is compatible to both original trees as follows: Consider the
first layer tree and for an edge from Ui to Ui+1 which causes a crossing
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keep the endpoint on Ui but connect it to the endpoint of the crossing edge
on Ui+1. By construction there is at most one crossing between every two
consecutive layers, thus we can simultaneously remove every crossing in a
single transformation step, and the resulting tree again is a layer tree.

Theorem 3.7 (Aichholzer et al. [2]). Given a planar point set P with k
convex layers. Then the diameter of Tst(P ) is O(log k).

Proof. It suffices to show that any crossing-free spanning tree T of P may
be transformed into a layer tree by means of at most O(log k) compatible
spanning trees. We will prove this statement constructively.

Consider some triangulation containing T . Then, by Lemma 3.6, for
i ≥ 2 and any point p ∈ Ui there is an edge pq of the triangulation to a
point q on a layer Uj , with j < i, such that pq does not cross Ui. Construct
a new crossing-free spanning tree T ′ by choosing these edges for all points
in P \ U1, and in addition we take all but one edges of U1. Indeed, T ′ is
connected and does not contain a cycle, and since T ′ is a subgraph of the
triangulation it is also crossing-free. In particular, this also implies that T
and T ′ are compatible.

Note that by construction of T ′, for any point p ∈ P there is a path
g1(p) in T ′ connecting p to U1 such that only points on layers with strictly
decreasing index are visited. Obviously, the union of all these paths is
crossing-free. We want to define a similar notion for paths connecting
points to the last layer Uk by visiting points only on layers with strictly
increasing index such that the union of all paths is crossing-free. Here we
have to be a little more careful as we do not have an analog statement of
Lemma 3.6 at hand.

For a point p ∈ P \ U1 we define a path gk(p) from p to the layer Uk
which we obtain by the following procedure: If p is not a leaf of the tree T ′

we follow its edges in an arbitrary manner, however, visiting only points
with increasing layer index. Ultimately, we either reach Uk in which case
we found the path gk(p) or we end up in a leaf v of T ′. In the latter case
consider the shortest segment sv in R2 from v to a point on Uk, ties are
broken arbitrarily. If the segment does not cross an edge of T ′ we add
this edge to the connection from p to v and define the resulting path to be
gk(p). Otherwise we consider the first edge of T ′ that is crossed by sv when
walking from v to Uk. This first edge cannot be a layer edge. We slightly
rotate sv around v in direction towards the endpoint of the crossed edge
which lies on the layer of larger index until we encounter another point in P .
This is similar to the construction shown in Figure 1.28 for the crossing-free
partitioning into three classes. Finally, the resulting edge incident to v does
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not cross T ′ by construction, and we add it to the previously constructed
path and continue recursively.

By the definition of T ′ any path gk(p) visits points only on layers of
strictly increasing index. Given the construction above it is immediate
that gk(p) neither crosses an edge of T ′ nor a layer edge of Uk. We claim
and require that these paths are also pairwise crossing-free. In order to see
this, assume there is p and q such that gk(p) properly intersects some edge
of gk(q). None of the two edges involved in such a crossing belong to T ′,
hence they both were obtained from rotating the shortest segment from
some leaves vp and vq of T ′ to respective points wp and wq on Uk. We note
that this implies ‖wp − vp‖ ≤ ‖wq − vp‖ and ‖wq − vq‖ ≤ ‖wp − vq‖. By
construction these shortest segments also need to intersect, and we obtain
a quadrilateral vp, vq, wp, wq for which

‖wp − vp‖+ ‖wq − vq‖ ≤ ‖wq − vp‖+ ‖wp − vq‖,

i.e., the sum of the diagonals’ lengths is at most the sum of lengths of two
opposites sides. This, however, contradicts the triangle inequality.

Now, we construct a new graph G on P where, for all points p on
layers U1, U2, . . . , Udk/2e we take the path g1(p), for the points p on layers
Udk/2e, . . . , Uk we take the paths gk(p), and finally, we add all layer edges
of U1 and Uk. By the previous arguments G is a crossing-free graph on P ,
and it is easily seen to be connected. Furthermore, no edge in G crosses T ′

nor a layer edge of Udk/2e.
From G we select a spanning tree T ′′ which contains all but one layer

edges of U1. Then T ′ and T ′′ are compatible, and in one more transforma-
tion step we may obtain another spanning tree from T ′′ which contains, in
addition, all but one layer edges of both Udk/2e and Uk. In particular, for
small k when dk/2e = 2, or dk/2e = k − 1, and the corresponding layers
are consecutive, we indeed find a layer tree with only one edge connecting
U1 and U2.

Therefore, after three transformation steps we arrive at two independent
subproblems each of size at most dk/2e + 1. Therefore, at most O(log k)
steps are necessary to transform T into a layer tree.

We would like to point out that in the original proof [2] the definition
of gk(p) is slightly different and in fact the corresponding paths are not the
same as ours. We favored our description since we used the concepts of
rotating segments earlier in the discussion of crossing-free partitions, and
also since the condition of a path not crossing T ′ would have to be made
more precise. There are cases where the shortest path from a point p to Uk
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Uk

Uk−1

Uk−2

T ′ p

Uk

Uk−1

Figure 3.6: Problematic cases for the original proof of Theorem 3.7

which does not cross an edge of T ′ may actually visit points on layers of
smaller index, as shown in the left illustration of Figure 3.6. Here, dotted
lines represent layer edges, solid lines indicate edges of T ′ and dashed edges
show paths from p to Uk.

Moreover, it is important to add the layer edges of Uk in the construction
above because otherwise G may be disconnected, as can be seen from the
right drawing in Figure 3.6. Here, isolated vertices are drawn as circles,
layer edges as dotted and paths gk as solid lines. In order for adding these
layer edges to be possible one has to make sure that no edge of T ′ crosses
those layer edges which is achieved by defining T ′ according to the full
power of Lemma 3.6.



Think of me as Yoda.
Only instead of being little and green
I wear suits and I’m awesome.
I’m your bro – I’m Broda!

Barney Stinson,
on “How I met your Mother”

4
Compatible Perfect Matchings

For a planar set of n points in general position we consider the transfor-
mation graph whose vertices are the crossing-free perfect matchings of the
given point set, and two such perfect matchings are adjacent if their union
is also crossing-free.

It was shown by Houle et al. [38] that for any set of points this trans-
formation graph is connected and hence the task of computing its diameter
is well-defined. The same authors were able to provide an upper bound
of n− 2 for the diameter, which recently, due to Aichholzer et al. [6], was
improved to O(log n) constituting the current state of the art.

We propose a construction for a set of n points in general position in the
plane whose corresponding transformation graph of perfect matchings has
diameter Ω(log n/ log log n), nearly providing a tight result on the asymp-
totic behavior of the upper bound.

Previously to our contribution in [63] only constant lower bounds were
known.
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4.1 Introduction

Given a set P of n, evenly many, points in the plane let Pm(P ) denote the
set of all crossing-free straight-line perfect matchings of P . A straight-line
embedded graph is called crossing-free if every pair of its edges does not
share any point other than common endpoints. Two crossing-free perfect
matchings M1 and M2 of P are compatible if their union, i.e., the graph on
P with edge set M1 ∪M2, is crossing-free.

We are interested in the transformation graph Tpm(P ) defined on the
vertex set Pm(P ) and with edges between compatible perfect matchings.
Houle et al. [38] showed that for any set of n points this graph is connected
and has diameter at most n−2. Recently, Aichholzer et al. [6] improved this
upper bound to O(log n), with at that time no example known for which
the diameter is not constant. We give a sub-logarithmic but rather tight
lower bound of Ω(log n/ log log n). We do this constructively by providing
point sets of increasing size, and on each point set we specify two perfect
matchings achieving the bound.

Although our lower bound construction for the transformation of per-
fect matchings uses similar ideas as the construction for spanning trees pre-
sented in the previous chapter note the problems’ immanent difference of
connectivity: Spanning trees are connected graphs whereas perfect match-
ings consist of n/2 components. It is this property which makes the con-
struction presented here more challenging.

4.2 The lower bound

In this section we construct planar point sets on which we specify pairs of
perfect matchings which need a large number of steps to transform into
each other via compatible perfect matchings, i.e., their distance in the
transformation graph is large.

We start by introducing the concept of a prisoner which is a point serv-
ing as a witness that two perfect matchings have at least some fixed distance
in Tpm(P ). Based on this we present a recursive construction in order to
obtain point sets of increasing size for which the diameter of Tpm(P ) grows
as well. This diameter is lower bounded by Ω(log n/ log log n), where n is
the size of the underlying point set. For the sake of a simple description we
define point sets with more than two points on a line, i.e., the point sets
are not in general position. However, they can easily be changed to do so
by applying a small perturbation without losing any of the construction’s
relevant properties. This is achieved similarly as for the spanning trees.
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The key idea is to consider two perfect matchings with a large number
of crossings, in particular we will use a first matching with nearly horizon-
tal edges and a second matching with nearly vertical edges. As intuitive
as this approach may seem, having many crossings is not enough as can
easily be seen by considering at least eight points equidistantly distributed
on a circle. Then the following two perfect matchings, one consisting of
horizontal edges only and the other one of vertical edges only, have a large
number of crossings. However, the diameter of any such transformation
graph is 2, since a perfect matching containing only edges on the boundary
of the convex hull is adjacent to every other matching.

In order to deal with this issue we will impose dependencies onto the
(nearly) horizontal edges such that whatever transformation is made certain
(nearly) horizontal edges remain in the matching obtained thereafter.

Before making this statement precise we introduce two further notions.
The granularity of a point set P is the smallest positive difference of x-
coordinates among any two points in P . Recall that a vertical strip R is a
point set R = [α, β] × R, for some α ≤ β, its width is β − α, and an edge
blocks R if its endpoints lie on different sides or on the boundary of R.

Given two crossing-free perfect matchings M1 and M2 on a point set P ,
let p ∈ P and consider the arrangement given by the set of edges in M1∪M2

which are not incident to p. Then p is called prisoner with respect to M1

and M2 if there is a cell C of this arrangement such that C ∩ P = {p},
where C denotes the closure of the set C.

p

(a) M1 and M2 (b) Prisoner p

Figure 4.1: M1 and M2 have distance 3 in Tpm(P )

A prisoner guarantees a certain distance of the corresponding perfect
matchings M1 and M2 in the transformation graph. Furthermore, as we
will see later, given a fixed d ∈ N we can construct point sets such that the
current matching and the target matching define at least one prisoner after
any d transformations.
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Lemma 4.1. Let p be a prisoner with respect to M1 and M2. Then at least
three steps are necessary to transform M1 into M2 by compatible matchings.

Proof. Observe that the existence of a cell C in the arrangement with
C ∩ P = {p} implies both M1 6= M2, and M1 and M2 are not compatible.
Hence, their distance in Tpm(P ) is at least 2. Assume it is 2 then there
is a perfect matching M compatible to both M1 and M2. However, this
contradicts C ∩ P = {p} since M matches p to some point outside C.

4.2.1 A recursive construction

In the following we describe a way to construct point sets and two per-
fect matchings whose distance in the transformation graph can be made
arbitrarily large. For this purpose consider the point set shown in Fig-
ure 4.2(a) given by three copies of a so-called base gadget together with
a perfect matching consisting of horizontal edges only. The point set has
granularity 1/2 assuming a proper coordinate system such that the vertical
strip indicated by dashed lines is [0, 1]× R.

x

y

z

x

y

z

(a) Three copies of (b) After the first
the base gadget transformation

Figure 4.2: Creating a prisoner

After one transformation step to a new compatible perfect matching,
the edges incident to the points x, y, and z block vertical strips of width at
least 1/2, see Figure 4.2(b). Hence, by the pigeon-hole principle one of the
vertical strips [0, 1/2]×R or [1/2, 1]×R is blocked twice. Now, placing an
additional point in-between the two blocking edges creates a candidate for
a prisoner. We only need the vertical edges of a second matching indicated
by dotted lines for inducing a corresponding cell. We define this second
matching at the end of the discussion.
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Since there are many ways to transform the initial perfect matching,
we have to make sure that for every possible pair of edges that block the
same strip there is a candidate prisoner in-between. It is crucial that these
new points all have distinct x-coordinates since otherwise we might not
obtain prisoners by adding the vertical edges of the second matching. In
the example of Figure 4.2(b) this would be the case if the edges incident to
x and z after one transformation both block the same strip but the edge
incident to y blocks the other. To avoid this we place points in-between
the base gadgets so that they equidistantly subdivide each of the vertical
strips of width 1/2 into three smaller strips, see Figure 4.3(a).

(a) Adding all (b) The horizontal
candidate prisoners matching

Figure 4.3: Point set containing all prisoners

In order to define the second perfect matching of vertical edges we
introduce a matching partner for every candidate prisoner with the same
respective x-coordinate and place it below the so far constructed point
set. We call the hereby obtained set A which will be used in the recursive
construction.

Moreover, every candidate prisoner still lacks the two already mentioned
vertical edges we need for a prisoner’s cell. The points for these edges are
placed at the very top and the very bottom of A. Figure 4.3(b) shows the
point set A together with the top- and bottom-most points and also the first
horizontal matching. Figure 4.4(a) shows the second vertical matching.

Observe that in any matching M which is compatible to the horizontal
matching, there is a prisoner with respect to M and the vertical matching,
see for instance Figure 4.4(b). Hence, by Lemma 4.1 the diameter of the
corresponding transformation graph is at least 4.
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(a) The vertical (b) A prisoner after
matching 1 transformation

Figure 4.4: Point set achieving diameter 4

In order to recursively continue with this idea we need to construct
a point set with a prisoner after two transformation steps. For the sake
of a comprehensible presentation and since we also perturb the points in
the end to guarantee general position we refrain from specifying concrete
coordinates for the constructed point sets and rather focus on explaining
the construction more carefully.

Recall that we placed the candidate prisoners in such a way that only
their matching partners have the same x-coordinate. Hence, a prisoner
after one transformation cannot connect to its partner in the next step.
By construction the point set A has granularity 1/6. Therefore, after two
transformation steps there is a vertical strip of width at least 1/6 which is
blocked. This is because we placed the candidate prisoners equidistantly
in-between the base gadgets.

Now, we vertically stack seven copies of A. By the pigeon-hole principle
we know that at least one strip [(i − 1)/6, i/6] × R is blocked twice after
two transformations, for some 1 ≤ i ≤ 6. Hence, we are left with defining
the new candidate prisoners and their corresponding matching partners.
We have to ensure that for every possible pair of blocking edges after two
transformation steps there is a single candidate prisoner in-between the
blocking edges. This is achieved in the following way. For 1 ≤ i ≤ 6, we
separately consider the strip [(i−1)/6, i/6]×R in which we place six points,
one in-between consecutive copies of A, and equidistantly distributed inside
[(i− 1)/6, i/6].

Hence, in total we add 36 candidate prisoners and equally many match-
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ing partners. Note that this new point set, call it B, has granularity
1/(6 · 7) = 1/42. Similarly to Figure 4.4(a), we add top- and bottom-
most points for each candidate prisoner which we need for defining the
prisoner’s cell. Recall once again that these points, however, are not part
of the recursive construction as they do not belong to B.

Starting with the horizontal matching, after any two compatible trans-
formation steps we obtain a new perfect matching which together with
the vertical perfect matching induces a prisoner. Hence, the corresponding
transformation graph has diameter at least 5.

By the same argument, stacking 43 copies of B and spreading in all
candidate prisoners we obtain a new point set C which in turn, by adding
top- and bottom-most points as before, yields a transformation graph with
diameter at least 6. We observe that the granularity of C has already
decreased to 1/(42 · 43) = 1/1806.

We omit the exact calculation of the diameter’s asymptotic behavior
in terms of the number of points used in this construction because we
will drastically improve on it in the following section. However, note the
doubly exponential decrease of the granularity and accordingly the doubly
exponential growth of the number of previously constructed point sets used
in the recursion. Without proof we mention that the construction leads
to point sets of size n with perfect matchings M1 and M2 such that if

d steps are needed to transform M1 into M2 then n = O
(
22d
)
, that is

d = Ω(log log n).

4.2.2 Many prisoners help

In the following we will further develop the concept for constructing point
sets whose transformation graphs have large diameter. Recall that the
sufficient condition for applying the pigeon-hole principle in the recursion
is that the number of copies of previously constructed point sets is strictly
larger than the inverse of the granularity.

We will now subdivide the vertical strips by even more candidate pris-
oners, still equidistantly, in order to reduce the number of copies we need
such that the diameter of the transformation graph increases by 1. This
is motivated by the following observation when stacking many copies. We
did not yet take into account that (a lot) more than just one strip may be
blocked (a lot) more often than just twice. Still every candidate prisoner
in-between two blocking edges cannot connect to its partner after the next
transformation step and hence will be incident to an edge blocking a strip
whose width is at least the granularity of the point set.
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In order to make this statement precise we consider a single strip that is
blocked at least twice and analyze what happens after the next transforma-
tion. For every pair of consecutive blocking edges we appoint the candidate
prisoner in-between with the largest y-coordinate to be responsible for the
small vertical strip to its left.

We show in the following that there is an injective map from the set
of responsible candidate prisoners to the set of edges blocking the smaller
strips after the next transformation step.

(a) Responsible points (b) Many blocked strips

Figure 4.5: What happens in one large strip

In the example depicted in Figure 4.5(a) we see the magnification of
a single strip indicated by dashed vertical lines to the left and right end.
The six copies of the previous recursive construction step are shown as
rectangles. They are drawn empty if there is no edge blocking the strip,
and solid if the strip is blocked. The five prisoners between the copies
subdivide the strip into six smaller strips indicated by vertical dotted lines.
The arrows indicate the prisoners responsible for their corresponding strip
to the left.

After the next transformation step none of the responsible prisoners
connects to its matching partner. Thus, considering the granularity of the
point set, their incident edges either block the smaller strip to their left or
to their right, see Figure 4.5(b). Note that the candidates are responsible
for their left smaller strip. If they connect to the right then their left
strip remains available unless a candidate with larger y-coordinate already
claimed it. By construction, once a responsible prisoner connects to the
left its incident edge has to block all smaller strips until the very left end,
and at least one of these small strips was not yet accounted for.
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In particular this implies that every edge which blocks the initial strip,
except for the top-most, guarantees a blocked strip of width equal to the
granularity after the next transformation.

We are now ready to explain the more advanced recursive construction
using this observation. Denote the base gadget from the previous subsection
by A0 and, for k ≥ 1, let ak ∈ N be the number of copies of Ak−1 we use

to construct Ak. Denote πk =
∏k
i=1 ai, for k ≥ 1, and notice that the

number of strips in Ak is 2πk because each strip of Ak−1 is subdivided into
ak smaller strips, and A0 has two strips. As before, from Ak one can easily
construct a point set and define the corresponding horizontal and vertical
matchings such that there exists a prisoner after k transformations.

Let bk ∈ N denote the minimum number of strips of width (2πk)−1 that
are blocked in Ak after any k transformation steps. For the construction to
work we need to be able to apply the pigeon-hole principle in each recursion
step. A necessary and sufficient condition for a point set to yield a blocker
containing Ad after d transformations is bk > 0, for all 1 ≤ k ≤ d.

Lemma 4.2. For k ≥ 1, the integer sequence bk satisfies

bk = πk

(
1− 2

k∑
i=1

a−1
i

)
.

Proof. We shall give a proof by induction on k. To this end recall that in
A0 there are two strips, one of which is blocked after the first step. Using
the observation about responsible prisoners, in A1 there are 2a1 = 2π1

strips, of which at least a1 − 2 = π1(1− 2/a1) are blocked after two steps.

For the inductive step assume that at least bk strips of width (2πk)−1

are blocked in Ak after k steps, and bk > 0. Then stacking ak+1 copies of
Ak yields after the next transformation at least

bk+1 = ak+1bk − 2πk (4.1)

= πk+1

(
1− 2

k∑
i=1

a−1
i

)
− 2πk = πk+1

(
1− 2

k+1∑
i=1

a−1
i

)

blocked strips of width (2πk+1)−1.

Since ak > 0, for all k, the condition bd > 0 for our target blocker is
equivalent to bd−1ad > 2πd−1 by identity (4.1) which immediately implies
bd−1 > 0. Recursively, bk > 0 follows for all remaining k. Thus, bd > 0
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and, therefore, by Lemma 4.2

2

d∑
i=1

a−1
i < 1, (4.2)

is a necessary and sufficient condition for the blocking property of Ad.
Now, we turn to the number of points used in the construction. In

addition to the copies of previously constructed point sets we also spread
candidate prisoners in-between. Let nk := |Ak|, for k ≥ 0, where n0 = 8.

Lemma 4.3. For k ≥ 1, the number of points in Ak is

nk = πk

(
n0 + 4k − 4

k∑
i=1

a−1
i

)
.

Proof. By construction we have n1 = a1 ·n0 +2(a1−1) = π1(n0 +2−2/a1)
as induction base. Moreover, for constructing Ak+1 we stack ak+1 copies
of Ak and add the candidate prisoners and their matching partners, thus

nk+1 = ak+1nk + 2 · 2πk(ak+1 − 1),

which implies the statement of the lemma after substituting the inductive
hypothesis for nk.

With ak = 2d+ 1, for all 1 ≤ k ≤ d, condition (4.2) is fulfilled since

2

d∑
i=1

a−1
i =

2d

2d+ 1
< 1.

By Lemma 4.3 this choice yields a set Ad of size

nd = (2d+ 1)d
(
n0 + 4d− 4d

2d+ 1

)
= O

(
cddd

)
,

for some constant c > 0. Adding top- and bottom-most points needed for
the vertical edges of the prisoners’ cells we obtain a point set with at most
2nd points for which the diameter of the transformation graph is d+ 3.

Theorem 4.4. For arbitrarily large n there is a set P of n points in the
plane for which the diameter of Tpm(P ) is Ω(log n/ log log n).

The choice of the ak is asymptotically optimal in our construction here,
as (4.2) and Lemma 4.3 imply nd > πd, and the geometric-harmonic means
inequality yields

d
√
πd ≥

d∑d
i=1 a

−1
i

> 2d.



Part III

Counting Crossing-Free
Geometric Graphs
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Chuck Norris counted to infinity.
Twice!

Chuck Norris Facts

5
Counting Crossing-Free Graphs
with Exponential Speed-Up

We show that one may count the number of crossing-free geometric graphs
on a given planar point set exponentially faster than enumerating them.
More precisely, given a set P of n points in general position in the plane
we can compute pg(P ), the number of plane graphs on P , in time at most
poly(n)√

8
n · pg(P ). There are no similar statements known for other graph

classes like triangulations, spanning trees or perfect matchings.

The exponential speed-up is obtained by enumerating the set of trian-
gulations on P and then, without repetition, for each triangulation count
all its subgraphs. For a set P of n points with triangular convex hull we
further improve the base of the exponential from

√
8 ≈ 2.828 to 3.347.

As a main ingredient for this refinement we show that there is a constant
α > 0 such that a triangulation on P chosen uniformly at random contains,
in expectation, at least n/α non-flippable edges. The best value for α we
obtain is 37/18.

This is joint work with Emo Welzl [66].
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5.1 Preliminaries

Let P be a finite set of points in the plane. We assume that P is in general
position, i.e., no three points are collinear and no four points cocircular. A
geometric graph on P is a simple graph defined on the vertex set P whose
edges are straight segments connecting the corresponding endpoints. Such
a straight-line embedded graph is crossing-free if no pair of its edges shares
any point except for, possibly, a common endpoint.

A crossing-free graph which is maximal with respect to the number
of edges is called triangulation. By definition a graph consisting of only
one vertex without any edge, or two vertices joined by a single edge also
constitute triangulations. However, for the sake of keeping the intuition
about triangular faces and a closed presentation of the results we only
consider sets consisting of at least three points.

In the following we assume that the underlying point set P is fixed and
write n := n(P ) = |P | for its cardinality. Furthermore, let k := k(P )
denote the number of points on the boundary of the convex hull of P , thus
by assumption n ≥ k ≥ 3. Recall Euler’s polyhedral formula for any plane
graph G on P which states that

n+ f − e = 2,

where f denotes the number of faces and e the number of edges in G. In
a triangulation every bounded face is a triangle and the unbounded face
is of length k, hence we find that 3(f − 1) + k = 2e because every edge
belongs to exactly two faces. Substituting f − 1 = e − n + 1 from Euler’s
formula yields e = 3n− k− 3, and in turn for the number of bounded faces
we obtain f − 1 = 2n− k − 2. Hence, any triangulation consists of exactly

M := M(P ) = 3n− k − 3 (5.1)

edges, which we will further discriminate as follows. An edge in a tri-
angulation T is called flippable if it is contained in the boundary of two
triangles of T whose union is a convex quadrilateral, see Figures 5.1(a) and
(b); Otherwise the edge is called non-flippable, see Figure 5.1(c). We write
fl(T ) for the number of flippable edges in T , and similarly nfl(T ) for the
number of non-flippable edges. Note that for any triangulation T , clearly,
fl(T ) + nfl(T ) = M , and nfl(T ) ≥ k holds since k ≥ 3 and the edges on the
boundary of the convex hull of P are always non-flippable by definition.

We are interested in the number of plane graphs that can be defined on
P which we denote by pg(P ). The currently best upper bound [64] for this
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(a) (b) (c)

Figure 5.1: Flippable edges in (a) and (b); Non-flippable edge in (c)

quantity stands at 343.106n, where n is the number of points in P . This
bound is a result jointly with Jack Snoeyink and Emo Welzl which we shall
prove in Chapter 6.

The set of all triangulations on P is denoted by Tr(P ), and we will
write tr(P ) := |Tr(P )| for its cardinality. The best known upper bound for
tr(P ) is 43n due to Sharir and Welzl [72].

Considering lower bounds it was common belief that a point set in gen-
eral position always allows for exponentially many triangulations, however,
surprisingly a rigorous treatment of this question just received attention
quite recently. Note that general position is crucial here as we will also see
in the next chapter. A first proof may be attributed to Galtier et al. [32]
who showed that any triangulation on n points contains at least n−4

6 edges
that can be flipped simultaneously, although it was Aichholzer et al. [9]
who first mentioned its implication towards providing a lower bound of
2(n−4)/6 ≈ 1.124n triangulations on n points. In the same paper [9] this re-
sult was further improved to 2.012n, the first bound of the form Ω

(
(2+β)n

)
with β > 0 constant. The current record of Ω(2.338n) triangulations any
set of n points in general position has is due to Aichholzer et al. [10]. For
point sets with k vertices on the boundary of the convex hull McCabe [57]
and McCabe and Seidel [58] gave even better bounds, the currently best
are Ω

(
( 30

11 )k( 11
5 )(n−k)

)
and, for any k fixed, Ω(2.63n).

In this chapter we will show that there is an absolute constant c > 1
such that pg(P ) ≥ cn · tr(P ) for any planar set P of n ≥ 3 points in gen-
eral position, while we are still able to compute pg(P ) in time necessary to
enumerate Tr(P ) times a small polynomial factor in n. The best value for
the constant c we obtain is

√
8. Such an enumeration for the set of trian-

gulations is achieved by applying the reverse search technique devised by
Avis and Fukuda [15]. The fastest algorithm for this enumeration is due to
Bespamyatnikh [20] and needs time O(log log n) per output triangulation.
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Recently, and independently of our work, Katoh and Tanigawa [45]
suggested an idea for enumerating crossing-free geometric graph classes
relatively similar to our approach by introducing a lexicographic order on
the set of triangulations.

To proceed with the presentation, a flippable edge in T is called Lawson
edge if the circumcircle of each boundary triangle also contains the respec-
tive other boundary triangle in its interior. See for instance the dashed
line segment from Figure 5.1(b) in contrast to Figure 5.1(a). Observe that
this notion is well-defined since we assume general position. We denote by
L(T ) the set of Lawson edges in T , and by `(T ) its cardinality. A trian-
gulation T for which L(T ) = ∅ is called Delaunay triangulation of P and
it is well-known that such a triangulation exists on any point set P and it
is unique if P is in general position. Lawson [51] showed that, when start-
ing with any triangulation on n points, the process of repeatedly flipping
a Lawson edge in the current triangulation terminates with the Delaunay
triangulation after O(n2) flips.

We require a more general setting, for this purpose we recall a few def-
initions and facts about the constrained Delaunay triangulation which was
introduced by Lee and Lin [52]. Given a crossing-free geometric graph G
on P , then two points p, q ∈ P are visible from each other if the line seg-
ment pq does not intersect the interior of any edge in G. The constrained
Delaunay triangulation T ∗(G) of G is a triangulation containing the edges
of G which has the additional property that the circumcircle of each tri-
angle in T ∗(G) does not contain any other point which is visible from all
three vertices of the triangle. Lee and Lin showed that for any graph G
the constrained Delaunay triangulation T ∗(G) exists and is unique if P is
in general position. Moreover, they proved that T ∗(G) is obtained from
any triangulation containing E(G) by repeatedly flipping a Lawson edge
distinct from E(G) as long as applicable. We shall give a proof of these
facts for the sake of being self-contained.

Theorem 5.1. For any crossing-free graph G on a point set P in general
position the constrained Delaunay triangulation T ∗ = T ∗(G) of G exists
and is unique. Moreover, it is characterized by L(T ∗) ⊆ E(G) ⊆ E(T ∗).

Proof. For a triangulation T containing the edges of G we consider the
vector χ(T ) ∈ R2n−k−2 that stores the smallest angle of each bounded
triangle of T in non-decreasing order. We note that in this lexicographic
order flipping a Lawson edge strictly increases the vector χ.

Indeed, let cd in T be a Lawson edge and ab the flipped edge in T ′,
see Figure 5.2. Consider the entries of the vectors χ(T ) and χ(T ′) which
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Figure 5.2: The angles before and after flipping a Lawson edge

change during the flip, that is where the entries

min{α, γ1, δ1},min{β, δ2, γ2} become min{δ, α1, β1},min{γ, β2, α2}.

All angles are strictly positive because of general position, hence with
cd being a Lawson edge it follows from the Inscribed Angle Theorem that

δ > δ1, δ2 α1 > γ2 α2 > δ2
γ > γ1, γ2 β1 > γ1 β2 > δ1,

and in particular

min{δ, α1, β1, γ, β2, α2} > min{α, γ1, δ1, β, δ2, γ2}.

Therefore, χ(T ′) > χ(T ) and repeatedly flipping Lawson edges not
belonging to E(G) must terminate eventually since there is only a finite
number of triangulations on P . Let T ∗ be the resulting triangulation of
this process. Clearly, L(T ∗) ⊆ E(G) ⊆ E(T ∗) by construction. It remains
to show that T ∗ is a constrained Delaunay triangulation, i.e., satisfies the
visibility criterion, and it is the unique triangulation with that property.

Suppose for contradiction that T ∗ is not a constrained Delaunay trian-
gulation, then there is a witness triangle in T ∗ whose circumcircle contains
a point which is visible from all three vertices of the triangle. Let p be this
point and abc the witness triangle such that the line through bc separates
a and p. Note that because of the visibility constraint no edge crossing the
segment ap can be an edge of G.

Now, consider the set ∆ of all triangles in T ∗ intersecting the segment
ap, see the left image of Figure 5.3. Assume this finite set to be ordered
according to the intersection with ap, the first triangle being ∆1 = abc and
the last one ∆j containing p, i.e., ∆ = (∆1,∆2, . . . ,∆j). We take a closer
look at the second triangle ∆2 = cbd of this ordered set. If the point d
happens to lie inside the circumcircle of abc then by definition the edge bc
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Figure 5.3: Witness triangle for the constrained Delaunay triangulation

is a Lawson edge of T ∗. However, since bc crosses ap it cannot be an edge
of G by the visibility constraint, which contradicts the fact that no edge T ∗

can be flipped. So we may assume that d lies outside the circumcircle of
abc. In this case, however, the circumcircle of the second triangle cbd still
contains p. In order to see this recall that the line through bc divides the
circumcircle of abc into two parts one of which contains p. This part clearly
is contained inside a circle that goes through the points c, b and another
point outside, see the right illustration of Figure 5.3.

Hence, we may now continue with the argument along the triangles
∆3, . . . ,∆j . For 3 ≤ i ≤ j, either ∆i is contained in the circumcircle of
∆i−1, in which case we found a Lawson edge, or the circumcircle of ∆i still
contains p and we continue with ∆i+1. At some point, which happens the
latest when considering the last triangle ∆j containing p, we find an edge
which does not belong to E(G) but is a Lawson edge for T ∗. This gives
the desired contradiction.

In order to show that T ∗ is unique, and in particular does not depend
on the triangulation with which we start the flipping process, we show that
T ∗ is the largest triangulation with respect to the lexicographic order of
χ. For this purpose assume for contradiction that T ′ 6= T ∗ is the largest
triangulation containing E(G) and χ(T ′) ≥ χ(T ∗). By assumption no edge
may be flipped in T ′ which yields L(T ′) ⊆ E(G) ⊆ E(T ′), and by the
previous argument T ′ has to satisfy the visibility condition and hence is an
other constrained Delaunay triangulation.

Since T ′ 6= T ∗ there are edges e ∈ E(T ∗) and f ∈ E(T ′) that cross.
In particular we may choose e = bc and f = ad such that abc forms a
triangle in T ∗, and there is no further intersection of an edge in T ′ with
e which is closer to b, see Figure 5.4. We observe that the last property
guarantees that abd is a triangle in T ′. Neither e nor f belongs to E(G),
thus d is visible from a and c is visible from b. Due to general position one
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Figure 5.4: Choosing crossing edges e and f in T ∗ and T ′, respectively

of the circumcircles of abc or abd contains the respective fourth point, and
since T ′ and T ∗ are both constrained Delaunay triangulations the points
c and d cannot be visible from each other. Hence, there exists another
point of P inside the triangle given by the intersection of e with f and
the vertices d and c. The closest such point to e is visible from a, b, c,
and correspondingly the closest point to f is visible from a, b, d. At least
one of them is contained inside the respective circumcircle of abc or abd,
implying that T ′ or T ∗ does not satisfy the visibility constraints. This is a
contradiction.

5.2 Extraction from triangulations

The following theorem is the key to counting and estimating the number of
crossing-free geometric graphs in terms of the number of triangulations on
a point set P . The basic ingredient is to partition the set of all crossing-free
graphs by associating each graph with its constrained Delaunay triangula-
tion. Then the theorem suggests an algorithm for computing pg(P ) in time
O
(
poly(n) · tr(P )

)
by enumerating Tr(P ) according to the reverse search

method due to Avis and Fukuda [15] and counting all subgraphs associated
with the same triangulation. We will also show that there is a constant
c > 1 such that pg(P ) ≥ cn · tr(P ), implying that one may count pg(P )
exponentially faster than enumerating all graphs.

Theorem 5.2. Given a set P of n ≥ 3 points in general position in the
plane let M denote the number of edges in any triangulation on P , and for
a fixed triangulation T we write `(T ) for the number of its Lawson edges.
Then

pg(P ) =
∑

T∈Tr(P )

2M−`(T ). (5.2)
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Proof. Consider the following partition of the set of crossing-free geometric
graphs on P . For every triangulation T on P there is a partition class
consisting of all crossing-free subgraphs G of T that contain the set of
Lawson edges of T , i.e., for which

L(T ) ⊆ E(G) ⊆ E(T ). (5.3)

Indeed, this defines a partition due to the existence and uniqueness of
the constrained Delaunay triangulation from Theorem 5.1. The partition
class associated with a triangulation T contains exactly 2M−`(T ) crossing-
free graphs. Summing over all triangulations yields the statement.

We consider the set P6, depicted in Figure 5.5, consisting of six points
in general position. It can easily be checked that there are exactly six
triangulations on P6, the corresponding Lawson edges are drawn as dashed
line segments. Indeed, notice that any triangulation of P6 has to contain
the four boundary edges as well as two edges connecting each of the interior
points with two vertices on the boundary. No edge may cross any of these
eight edges. Now, either the interior vertices are adjacent in which case
there are four triangulations since there are two possibilities to triangulate
each of the convex quadrangles, or a pair of opposite boundary vertices
is adjacent in which case the triangulations are unique. With four points
on the convex hull every triangulation contains M = 11 edges, hence by
Theorem 5.2 we immediately obtain

pg(P6) = 211 + 210 + 210 + 210 + 29 + 210 = 6656.

211

210

210

29

210

210

Figure 5.5: Counting crossing-free graphs on a set of six points
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Actually, from the proof of Theorem 5.2 one may obtain counting algo-
rithms for any class of crossing-free graphs. We simply iterate over the set
of all triangulations on P , and for a triangulation T we count the members
G of the desired graph class that fulfill the edge containment property (5.3).
Observe that computing L(T ), and hence also `(T ), can be done in linear
time. In addition to counting all crossing-free geometric graphs on P we
shortly discuss two further prominent examples, counting perfect matchings
and counting spanning trees. For certain graph classes there are efficient
algorithms to count the number of perfect matchings and spanning trees
that are contained as subgraphs. We refer to [41, Chapter 1] for a more
detailed description and proofs of the following results.

Perfect matchings. Kasteleyn [43] described the class of Pfaffian ori-
entable graphs, for which he found an elegant and very efficient way to
count the number of perfect matchings. An orientation of an undirected
graph G is called Pfaffian if for any two perfect matchings M1 and M2

in G the following holds: When walking along the edges of any cycle in
M1 ∪M2 we encounter an odd number of edges with the same orientation
as is imposed on G. Note that all cycles in M1 ∪M2 are even, hence the
direction for the traversal of the cycles does not matter. Given a directed
graph ~G its adjacency matrix A(~G) is defined by

aij =

 +1 (i, j) ∈ E(~G),

−1 (j, i) ∈ E(~G),
0 otherwise.

Theorem 5.3 (Kasteleyn). For any Pfaffian orientation ~G of G the num-

ber of perfect matchings in G is

√
detA(~G).

This notion turns out useful as all planar graphs allow for Pfaffian
orientations. Coming back to our counting algorithm, given a triangulation
T we want to compute the number of perfect matchings in T containing
L(T ). Obviously, L(T ) has to be a matching otherwise we may safely
continue with the next triangulation. If L(T ) is a matching we remove all
vertices which are incident to an edge of L(T ) and consider the subgraph
of T spanned by the remaining vertices. Since this graph is planar as well
we can compute its number of perfect matchings by Theorem 5.3.

One may observe that for a fixed T the calculation above can be done
in time polynomial in the number of vertices. Therefore, we obtain an
algorithm for counting the total number of perfect matchings on a given set
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P of n points in time poly(n)·tr(P ). However, the number of triangulations
can be exponentially larger than the number of perfect matchings. For
instance we already noted in Chapter 1 that a set Γn in convex position,
with n even, has Cn−2 = Θ∗(4n) triangulations but only Cn/2 = Θ∗(2n)

perfect matchings, where Cn = 1
n+1

(
2n
n

)
denotes the n-th Catalan number.

Spanning trees. Regarding the computation of the number of spanning
trees in a given planar graph, i.e., a graph which allows for a plane embed-
ding, already Kirchhoff [46] knew about a beautiful identity, often referred
to as “Matrix Tree Theorem”. Given a graph G let A = A(G) denote its
adjacency matrix and D = D(G) the diagonal matrix with the vertices’ de-
grees on its main diagonal. Moreover, we write (D−A)ii for the submatrix
of D −A obtained by deleting its i-th row and i-th column.

Theorem 5.4 (Kirchhoff). Let G be a loop-free graph on n vertices. Then
the number of spanning trees in G is det(D −A)ii, for any 1 ≤ i ≤ n.

A slightly more general extension which we need is due to Tutte [79]
who proved that the statement of Theorem 5.4 also holds if D and A are
defined for multigraphs, i.e., the ij-th entry of the adjacency matrix A
is the number of edges between vertices i and j, and the degrees are the
entries on the main diagonal of D. We also mention a work by Moon [59]
for a description of several related results and identities for counting trees.

Given a triangulation T our algorithm should compute the number of
spanning trees in T containing L(T ). Clearly, necessary for their exis-
tence is that L(T ) induces a forest on P . In order to guarantee that every
spanning tree contains L(T ) we contract the corresponding edges in the
triangulation and thus obtain a multigraph. Any loops that occur during
this procedure may be deleted. Indeed, if we would consider such a loop
to be part of a spanning tree it would complete a cycle after undoing the
contraction of L(T ). Moreover, observe that at any time during the con-
traction if there are multiple edges between two vertices at most one of
them corresponds to an edge in L(T ), as otherwise initially L(T ) was not
cycle-free.

After contracting all edges, and removing possible loops, we obtain a
multigraph for which we may compute the number of its spanning trees in
polynomial time. This value is exactly the number of spanning trees in T
containing all its Lawson edges. Therefore, we have a counting procedure
that on input P , a set of n points, outputs the number of crossing-free
spanning trees on P in time poly(n) · tr(P ).
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We conjecture that every point set allows for more spanning trees than
triangulations, and perhaps even exponentially more in which case the
algorithm above yields an exponential speed-up. However, this question
is open to the best of our knowledge. We mention some related results
showing that a straight-forward proof idea, of estimating the number of
spanning trees in a triangulation and comparing it to the number of trian-
gulations a fixed spanning tree can be extended to, fails. The first result
by Rote et al. [68] states that any plane graph on n vertices has at most
O
(
(16/3)n

)
= O(5.334n) spanning trees, which was recently improved to

O(5.286n) by Buchin and Schulz [23]. On the other hand, consider the
double zig-zag chain introduced by Aichholzer et al. [8] which allows for

spanning trees that are contained in every of its Θ∗(
√

72
n
) triangulations,

where
√

72 ≈ 8.485. Indeed, the set of edges appearing in every triangula-
tion forms a connected graph.

All plane graphs. In the remainder of this section we will show that
counting all crossing-free geometric graphs by enumerating all triangula-
tions T ∈ Tr(P ) and summing up 2M−`(T ) yields an exponential speed-up
compared to the enumeration of all graphs. Dividing both sides of iden-
tity (5.2) by the total number of triangulations on P we obtain

pg(P )

tr(P )
=

∑
T∈Tr(P )

2M−`(T ) · 1
tr(P ) = E

[
2M−`(T )

]
, (5.4)

where the expectation of the random variable 2M−`(T ) is understood with
respect to the uniform distribution over all triangulations on P . In order
to estimate the expected value we employ a standard tool from probability
theory. Although its statement is true in a much more general setting we
restrict ourselves to presenting a version sufficiently strong for our purpose.

Lemma 5.5 (Jensen’s Inequality). Let ϕ : R → R be a convex function

and ti ∈ [0, 1], for 1 ≤ i ≤ N , such that
∑N
i=1 ti = 1. Then, for any xi ∈ R,

N∑
i=1

ϕ(xi)ti ≥ ϕ
(

N∑
i=1

xiti

)
.

Proof. We give a proof by induction on N . If N = 1 the statement is
trivial since t1 = 1, and for N = 2 where t1 + t2 = 1, the inequality
ϕ(x1)t1 + ϕ(x2)(1 − t1) ≥ ϕ(x1t1 + x2(1 − t1)) is exactly the definition of
ϕ being convex, thus correct.
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For the induction step from N − 1 to N , assume that tN < 1 otherwise
we are done immediately. Therefore,

N∑
i=1

ϕ(xi)ti =

(
N−1∑
i=1

ϕ(xi)
ti

1− tN

)
· (1− tN ) + ϕ(xN )tN .

Since
∑N−1
i=1

ti
1−tN = 1 we may apply the induction hypothesis to find

that the right-hand side in the equation above is at least

ϕ

(
N−1∑
i=1

xi
ti

1− tN

)
· (1− tN ) + ϕ(xN )tN ≥ ϕ

(
N∑
i=1

xiti

)
,

where the last inequality holds due to the convexity of ϕ.

Now, we translate Jensen’s Inequality to our setting of a random vari-
able X taking values in some finite set S ⊆ R and ϕ : R → R being a
convex function. Then, writing px := P[X = x], for x ∈ S, and noting that∑
x∈S px = 1, we conclude

E[ϕ(X)] =
∑
x∈S

ϕ(x)px ≥ ϕ
(∑
x∈S

xpx

)
= ϕ(E[X]).

Since the exponential function x 7→ 2x is convex and 2M−`(T ) only takes
values in the finite set {1, 2, 4, . . . , 2M} we may apply Jensen’s inequality
to derive the following lower bound for the expectation in (5.4)

E
[
2M−`(T )

]
≥ 2E[M−`(T )] = 2M−E[`(T )],

where we also use linearity of expectation. Hence, by providing an upper
bound on E[`(T )], i.e., the expected number of Lawson edges in a uniformly
at random chosen triangulation on P , we obtain a lower bound for the
number of plane graphs on P in terms of the number of triangulations

pg(P ) ≥ 2M−E[`(T )] · tr(P ). (5.5)

We recall that fl(T ) denotes the number of flippable edges in a triangu-
lation T , and nfl(T ) stands for the number of non-flippable edges in T .

Lemma 5.6. For any set P of points in general position it holds that

2 · E[`(T )] = E[fl(T )] .
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Proof. Let S be the set of pairs (e, T ) with T a triangulation on P and e
a flippable edge in T . Consider an element (e, T ) of this set and let e′ be
the other diagonal of the convex quadrilateral consisting of the boundary
triangles of e in T . When flipping e in T , i.e., replacing e by e′, we obtain
a new triangulation T ′. Clearly, (e′, T ′) ∈ S and flipping e′ in T ′ yields T
again. Hence, there is a (canonical) perfect matching between the elements
of S. Note that by definition either e or e′ is a Lawson edge of its respective
triangulation. Therefore,

|S| =
∑

T∈Tr(P )

fl(T ) = E[fl(T )] · tr(P )

|S|
2

=
∑

T∈Tr(P )

`(T ) = E[`(T )] · tr(P ),

which proves the statement since tr(P ) 6= 0.

Recall that fl(T ) + nfl(T ) = M , which together with Lemma 5.6 gives

E[`(T )] =
1

2
· (M − E[nfl(T )]),

using linearity of expectation. Plugging this into inequality (5.5) we obtain
the following estimate.

Theorem 5.7. For any set P of n ≥ 3 points in general position in the
plane the following holds

pg(P ) ≥ 2(M+E[nfl(T )])/2 · tr(P ). (5.6)

Recall that for any triangulation T on P we have nfl(T ) ≥ k, the number
of boundary edges of the convex hull, implying that M+E[nfl(T )] ≥ 3n−3.
We arrived at the main result of this section.

Corollary 5.8. For any set P of n ≥ 3 points in general position in the
plane it holds that

pg(P ) ≥
√

8
n−1 · tr(P ). (5.7)

Moreover, one may count pg(P ) in time at most poly(n)√
8
n · pg(P ).

We observe that the bound is tight for n = 3. Let us treat the special
case of a point set Γn in convex position, i.e., when k = n. Any triangu-
lation of such a point set has exactly n non-flippable edges, the edges on
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the boundary of the convex hull of Γn, and the remaining n− 3 edges, the
diagonals of the convex n-gon, are flippable. Hence, E[nfl(T )] = n = k
and we cannot improve over the statement of Corollary 5.8 using Theo-
rem 5.7. However, note that

√
8 ≈ 2.828, and for Γn it is known that

pg(Γn)
tr(Γn) = Θ∗

(
( 3

2 +
√

2)n
)
, where 3

2 +
√

2 ≈ 2.914, see Flajolet and Noy [31].

We conjecture that the convex n-gon actually minimizes the fraction pg(P )
tr(P )

over all sets P of n points in general position.
In the next section we propose a framework for deriving stronger lower

bounds on E[nfl(T )], given that the underlying point set is not in convex
position but, conversely, has a triangular convex hull.

5.3 Non-flippable edges in a random graph

In the following assume that P has a triangular convex hull. Actually, the
same arguments also work for point sets with at most six points on the con-
vex hull. The basic idea for proving a lower bound on the expected number
of non-flippable edges is similar to the method by Sharir and Welzl [72]
for estimating the number of degree-3 vertices in a random triangulation.
There, every vertex receives an initial charge which it then discharges to
vertices of degree 3. Here, however, we want to have each vertex in any
triangulation ultimately charge non-flippable edges. If every vertex dis-
charges at least 1 on average and each non-flippable edge receives a charge
of at most c, then E[nfl(T )] is at least the c-th fraction of the total number
of vertices.

To make this statement more precise recall that IP (P ) is the set of
points in P except for the three extreme points of its convex hull. Then
the ground set for our considerations is IP (P )×Tr(P ) whose elements are
called vints (vertex-in-triangulation). The degree of a vint (p, T ) is the
degree of the vertex p in the triangulation T . For i ∈ N, a vint of degree i
is called i-vint, and given a fixed triangulation T we denote by vi = vi(T )
the number of i-vints in IP (P ) × {T}. Observe that in any triangulation
v1 = v2 = 0 and

∑
i≥3 vi =

∣∣IP (P )
∣∣ = n − 3. Proofs of the following

statement can be found in [69, 72].

Lemma 5.9. Let T be a fixed triangulation and place a charge of 7 − i
at every i-vint, for i ≥ 3. Then the weighted sum of charges over all
corresponding vints in IP (P )× {T} is at least

∣∣IP (P )
∣∣.

Proof. Let d1, d2, d3 ∈ N denote the degrees of the three extreme vertices
in P \ IP (P ) of the triangulation T . Then by the Handshaking Lemma,
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when summing up all degrees in the triangulation T , we get

d1 + d2 + d3 +
∑
i≥3

i · vi = 2(3n− 6) = 6n− 12.

We notice that in a triangulation each vertex has degree at least 2,
hence d1 + d2 + d3 ≥ 6 and, therefore,

∑
i≥3 i · vi ≤ 6n− 18 = 6 ·

∣∣IP (P )
∣∣.

Thus, the sum of all the vints’ charges in the triangulation T is∑
i≥3

(7− i) · vi = 7 ·
∑
i≥3

vi −
∑
i≥3

i · vi ≥ 7 ·
∣∣IP (P )

∣∣− 6 ·
∣∣IP (P )

∣∣ =
∣∣IP (P )

∣∣,
i.e., every vint charges at least 1 on average, as desired.

Note that i-vints with i ≥ 7 do not receive a positive charge. Hence, it
suffices to focus on distributing the charges of 3-, 4-, 5-, and 6-vints. For
this we define a relation on the set of vints as in [72]. Let u = (pu, Tu)
and v = (pv, Tv) be vints then we write u > v if pu = pv and there is a
flippable edge incident to pu in Tu such that flipping this edge results in the
triangulation Tv. Clearly, in this case u is an (i + 1)-vint and v an i-vint,
for some i ≥ 3. We denote by → the transitive, reflexive closure of >. If
u→ v we say that u may be flipped down to v.

When discharging we allow every vint to distribute its charge both to
lower-degree vints it can be flipped down to and to non-flippable edges.
Hereby, a vint (p, T ) may only discharge to a non-flippable edge in E(T )
that is incident to p or to an edge qr ∈ E(T ) where pqr is a triangle in T .
We call such an edge qr a non-flippable boundary edge of p. With slight
abuse of notation we will also refer to these notions as the (non-flippable)
incident and boundary edges of the vint (p, T ).

The discharging will be done in such a way that finally there is no
positive charge left on any vint. Thus, the sum of charges over all vints in
IP (P )× Tr(P ) which has been distributed among the non-flippable edges
is at least

∣∣IP (P )
∣∣ · tr(P ) by Lemma 5.9. If we can show that during this

process a non-flippable edge receives a charge of at most c, then the total
number of non-flippable edges in all triangulations of Tr(P ) is at least
1
c

∣∣IP (P )
∣∣ · tr(P ). Hence,

E[nfl(T )] ≥
∣∣IP (P )

∣∣
c

. (5.8)

We note that for an edge the property of being non-flippable is by
definition equivalent to being incident to a vertex at a, after deleting the
edge, reflex angle. In the following we assume the non-flippable edges of the
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triangulations to be directed towards their endpoint with the reflex angle.
Observe that by doing so every non-flippable edge gets directed in a unique
way, except for the edges on the boundary of the convex hull.

5.3.1 A simple charging scheme

As an instructive example we will now discuss a simple charging scheme
by explicitly stating the distribution of the charges from i-vints to non-
flippable edges and other vints. This will result in a first non-trivial lower
bound for E[nfl(T )].

Consider a 3-vint with an initial charge of 4. Since we assumed general
position all three incident edges are non-flippable and directed towards
the 3-vint, see Figure 5.6(a). Hence, this vint may discharge by equally
distributing one third of its charge to the incident non-flippable edges.
Note, however, that the 3-vint might still receive charge from higher-degree
vints, hence at this point we cannot yet explicitly determine its maximum
possible charge to the incoming edges.

(a) 3-vint (b) 4-vint

Figure 5.6: Discharging 3-vints and 4-vints

Observe that a 4-vint always is incident to exactly two non-flippable
incoming edges since one of the angles between two non-neighboring edges is
always reflex, see Figure 5.6(b). To each of these edges we equally distribute
half of the 4-vint’s initial charge of 3. In this simple scheme no other vint
will discharge to a 4-vint.

When devising the charging scheme for higher-degree vints we further
discriminate them according to the number of non-flippable incoming edges.
A 5-vint with an initial charge of 2 may occur with two, one or no non-
flippable incoming edges, see Figure 5.7. If the 5-vint is incident to at least
one non-flippable edge we equally distribute the charge to all such edges.

Note that otherwise none of the five incident edges is directed towards
the 5-vint. However, some could still be non-flippable and we cannot di-
rectly discharge as we did in the cases before. However, we obtain a 3-vint if
we can flip two edges which are not neighbors when considering the edges
in clockwise order around the vint. It is always possible to choose two
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such flippable edges since the boundary edges of the vint define a 5-gon
which has at least three convex angles, hence the corresponding edges are
flippable. We pass the whole charge of the 5-vint to the resulting 3-vint.

Figure 5.7: Discharging 5-vints

It is crucial to observe that a 3-vint may receive such a charge from
at most one 5-vint without non-flippable incoming edges. In order to see
this recall that we flipped two non-neighboring edges incident to the 5-vint
resulting in two of the three boundary edges of the 3-vint. Assume that two
5-vints flip down to the same 3-vint then one boundary edge is obtained in
both flips. Reversing the flip of the common boundary edge results in a 4-
vint with two non-flippable incoming edges. If this vint is obtained from a
5-vint without non-flippable edges it is necessary (but not sufficient) to flip
the edge of the triangle containing both non-flippable edges of the 4-vint.
Hence, there was at most one such 5-vint.

In this scheme a 3-vint will not be charged by any other higher-degree
vint, therefore it may end up with a total charge of at most 4 + 2 = 6. It
then discharges uniformly to its three non-flippable incoming edges.

Figure 5.8: Discharging 6-vints with at least one non-flippable edge

Finally, we have to consider the 6-vints with an initial charge of 1. In
case such a vint has at least one non-flippable incoming edge we handle
it like we did a 5-vint and equally distribute its charge to all those edges.
Otherwise we consider the non-flippable boundary edges of the 6-vint, if
present, and equally distribute the charge to them, see the right illustration
in Figure 5.8.

If, however, a 6-vint neither has non-flippable incoming edges nor non-
flippable boundary edges we let it charge to a higher-degree vint for an
exception. We flip all boundary edges to obtain a 12-vint of initial charge
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Figure 5.9: Discharging 6-vints without any non-flippable edge

−5 to which we pass the whole charge of the 6-vint, see Figure 5.9. Notice
that after all 6-vints have discharged any 12-vint still has a negative charge
since it may only be charged by at most two 6-vints. To see this we observe
that in order to flip a 12-vint down to such a 6-vint no two neighboring
incident edges may be flipped.

Since i-vints with i ≥ 7 do not have positive charge the average initial
charge of 1 by Lemma 5.9 has now been discharged onto the non-flippable
edges in the triangulations.

Let us estimate the maximum charge to such a non-flippable edge.
For this purpose recall that every non-flippable edge was directed towards
a unique vint from which it may be charged, and 6-vints with all inci-
dent edges being undirected were the only vints that possibly charge non-
flippable boundary edges. Hence, an edge might only receive charge from
the one endpoint it is directed to and from at most two 6-vints for which
the edge is a non-flippable boundary edge.

In the following we summarize the cases discussed above and list the
corresponding maximum charges to an edge depending on the i-vint it is
directed towards:

• 3-vint: charge ≤ 1/3 · 6 + 2 = 4

• 4-vint: charge ≤ 1/2 · 3 + 2 = 3.5

• 5-vint with two non-flippable edges: charge ≤ 1/2 · 2 + 2 = 3

• 5-vint with one non-flippable edge: charge ≤ 2 + 2 = 4

• 6-vint with two non-flippable edges: charge ≤ 1/2 · 1 + 2 = 2.5

• 6-vint with one non-flippable edge: charge ≤ 1 + 2 = 3

• i-vint with i ≥ 7: charge ≤ 2 = 2.

Therefore, during the discharging of the vints any non-flippable edge
receives a charge of at most 4 implying that E[nfl(T )] ≥ n−3

4 because of
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(5.8). By Theorem 5.7 we have

pg(P ) ≥ 2
3n−6+(n−3)/4

2 · tr(P ) = Ω(213n/8) · tr(P ) = Ω(3.084n) · tr(P ),

for any set P of n points in general position with triangular convex hull.

5.3.2 A more elaborate charging scheme

In the following we will improve on the results of the previous subsection.
To that end we point out that so far we only allowed 5-vints without non-
flippable incoming edges to discharge to a lower-degree 3-vint, but we did
not yet take into account that we also could have split a 5-vint’s charge
among 4-vints it can be flipped down to. Also 6-vints may be flipped down
to lower-degree vints and charge them.

Furthermore, recall that a 6-vint with no non-flippable incoming edge
may crucially charge its non-flippable boundary edges. In the worst case
an edge might receive an additional charge of 2 from such 6-vints. How-
ever, for instance no such edge can be directed towards a 3-vint, hence we
overestimated the corresponding maximum charge. This shows that there
is some potential to improve on the bounds from the discussion above.

In order to generalize the approach for obtaining lower bounds on
E[nfl(T )] note that we actually solved a linear program for determining
the way and the amount a vint discharges to non-flippable edges and to
other vints, and hence also for the value of the maximum charge.

Indeed, we want to find the smallest value α that is larger than every
possible charge to a non-flippable edge, such that there is an initial charge
of 7−i at every i-vint and after the discharging there is no vint with positive
charge left. The corresponding linear program is given below.

minimize α
s.t. α ≥ {c3, c4, c52

, c51
, c62

, c61
}+ 2 · b60

out3 ≤ 3 · c3 in3 ≥ c50→3 out3 ≥ 4 + in3
out4 ≤ 2 · c4 in12 ≥ 2 · c60→12 out4 ≥ 3 + in4

out52 ≤ 2 · c52 out52 ≥ 2 + in52

out51 ≤ c51
out51 ≥ 2 + in51

out50 ≤ c50→3 out50 ≥ 2 + in50

out62 ≤ 2 · c62
out62 ≥ 1 + in62

out61 ≤ c61
out61 ≥ 1 + in61

out60 ≤ {b60 , c60→12} out60 ≥ 1 + in60

out12 ≤ 0 out12 ≥ −5 + in12

all variables ≥ 0
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In the following we explain the meaning of variables and constraints.
Sets indicated by curly brackets {. . . , . . .} in the list of constraints are
understood as several inequalities of the same form each time replacing one
element from the set.

The objective of the linear program is to compute the smallest value
for α which is at least the maximum possible charge a non-flippable edge
might receive during the discharging of the vints.

The variables ci (cij , resp.) represent the charges to an incoming edge
of an i-vint (which has j non-flippable incoming edges), b60

represents the
charge of a 6-vint to a non-flippable boundary edge, and c50→3 (c60→12,
resp.) the charge of a 5-vint (6-vint, resp.) with no non-flippable incoming
edge to a 3-vint (12-vint, resp.).

We distinguish three types of constraints. First, in the left-most column
of constraints for every i-vint (with j non-flippable incoming edges) there
is a variable outi (outij) that represents the amount of charge that leaves
such a vint during the discharging. This amount is upper-bounded by the
minimum over all the vint’s possibilities to discharge.

Then, in the middle column of constraints there is a variable ini (inij)
for every i-vint (with j non-flippable incoming edges) that represents the
charge received from higher- or lower-degree vints. This additional charge
to an i-vint is lower-bounded by the maximum over all possible charges from
other vints. Recall that in the charging scheme from the previous subsection
there are only charges to 3- and 12-vints, therefore the inequalities for 4-,
5-, and 6-vints are not stated explicitly as all variables are non-negative
anyway.

Finally, the right-most column of constraints incorporates the initial
charge of 7 − i at an i-vint and ensures that after discharging there is no
positive charge left.

Let us now in a more detailed analysis describe how the vints may
distribute their charge in order to obtain a better bound on the maximum
charge to an edge. For this purpose first observe that a simple polygon
has at least three inner angles which are not reflex. Indeed, since the sum
of all angles in an i-gon equals (i − 2)π there can be at most i − 3 reflex
angles. In particular, an i-vint with j non-flippable incident edges has at
least 3− j flippable edges. We will use this fact several times.

As it turns out the possibility for a 6-vint to charge a boundary edge
does not help for minimizing the charge to non-flippable edges, and thus
we also do not need the option to charge a 12-vint. Hence, in the following
presentation of the linear program charges will only occur to lower-degree
vints or to non-flippable incoming edges.
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The linear program we want to solve is of the form

minimize α
s.t. α ≥ {c3, c4, c52

, c51
, c62

, c61
}

C1 C2 C3
all variables ≥ 0,

where the sets C1, C2, and C3 consist of the three types of constraints we
already encountered in the representation of the simple charging scheme as
a linear program, and which we now further investigate. For this we will
need to introduce some new variables whose relevance will be explained as
they appear.

Constraints for discharging vints: C1
The amount of charge leaving a vint during discharging is captured by the
inequalities of C1. The corresponding constraints for all except the 6-vints
without non-flippable incoming edges are given below

out3 ≤ 3 · c3
out4 ≤ 2 · c4 + c4→3

out52 ≤ 2 · c52 + c52→4

out51 ≤ c51
+ 2 · c51→4

out50 ≤ 3 · c50→4 + c50→3

out62 ≤ 2 · c62
+ c62→52

out61 ≤ c61 + 2 · c61→51

out61 ≤ c61 + c61→51 + c61→52

out61 ≤ c61
+ 2 · c61→52

.

Let us explain the meaning of these inequalities. Analogously to the
simple charging scheme from the previous subsection a 3-vint will equally
distribute its charge to its three non-flippable incoming edges.

A 4-vint always has two non-flippable incoming edges and we know that
one of the other two edges has to be flippable by the observation we made
above. Thus, a 4-vint equally charges its non-flippable incident edges with
c4 and may also charge a lower-degree 3-vint with c4→3.

By the same reasoning a 5-vint with two non-flippable incoming edges
is incident to at least one flippable edge, and hence it is allowed to charge
its two non-flippable edges equally with c52

, and additionally the 4-vint
it may be flipped down to with c52→4. A 5-vint with one non-flippable
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incident edge charges this very edge with c51
, and by the observation above

it may also charge two lower-degree 4-vints with c51→4 each. A 5-vint
with no non-flippable incident edge may charge three lower-degree 4-vints
equally with c50→4, and since at least two of its flippable incident edges are
non-neighboring the vint may also pass c50→3 of its charge to a 3-vint.

When discussing charges from 6-vints to lower-degree vints observe
that, clearly, any non-flippable edge incident to the 6-vint will also be
non-flippable after flipping down to a lower-degree vint.

Therefore, a 6-vint with two non-flippable incoming edges equally gives
charge c62 to these edges, and by the previous observation it may pass
c62→52 of its charge to a 5-vint which also has two non-flippable edges. On
the other hand it is of course possible that flipping down to a lower-degree
vint increases the number of non-flippable edges incident to the new vint.
Therefore, a 6-vint with one non-flippable incident edge charges this edge
with c61

, and it may also charge two 5-vints with at least one non-flippable
incident edge. The corresponding three inequalities with charges c61→51

and c61→52 are shown above.
The remaining constraints of C1 for a 6-vint without non-flippable in-

coming edges are given by

out60 ≤ 2 · c60→4 + 3 · c60→50

out60 ≤ 2 · c60→4 + 2 · c60→50
+ c60→51

out60 ≤ 2 · c60→4 + 2 · c60→50
+ c60→52

out60 ≤ 2 · c60→4 + c60→50 + 2 · c60→51

out60 ≤ 2 · c60→4 + c60→50 + c60→51 + c60→52

out60 ≤ 2 · c60→4 + c60→50
+ 2 · c60→52

out60 ≤ 2 · c60→4 + 3 · c60→51

out60 ≤ 2 · c60→4 + 2 · c60→51
+ c60→52

out60 ≤ 2 · c60→4 + c60→51
+ 2 · c60→52

out60 ≤ 2 · c60→4 + 3 · c60→52 .

By the previous observation such a 6-vint is incident to at least three
flippable edges, two of which are non-neighboring. In fact, there are two
pairs of such non-neighboring edges. In order to see this suppose for contra-
diction that there are exactly three flippable edges which appear in clock-
wise order around the 6-vint, call it v for now. Moreover, let v1, v2, and
v3 be the vertices adjacent to v which are incident to flippable edges, and
v4, v5, and v6 the vertices incident to non-flippable edges. Since the latter
edges are non-flippable the interior angles at v4, v5, and v6 of the hexagon
v1, . . . , v6 are reflex. In turn the sum of the interior angles at v1, v2, v3 is
at most π. However, in this case the sum of interior angles at the same
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vertices but in the quadrilateral v1, . . . , v3, v is also at most π, and hence
the angle between v1v and v3v is reflex. Thus, the edge in-between v2v is
non-flippable which is a contradiction.

Simultaneously flipping two non-neighboring edges yields a 4-vint which
we charge with c60→4, and by the argument above there are at least two
such choices. Flipping only one edge of the 6-vint results in a 5-vint with
some number of non-flippable incident edges, for which there are at least
three possibilities. All such combinations are incorporated in C1 as shown
above.

Charges from higher-degree vints: C2
For listing the constraints in C2 which represent the charge received from
higher-degree vints we distinguish 3- and 4-vints from the different types
of 5-vints in the following. We claim that the former are given by

in3 ≥ c50→3 + 3 · c4→3

in4 ≥ 4 · c60→4 + c50→4 + 2 · c51→4 + c52→4

in4 ≥ 3 · c60→4 + c50→4 + c51→4 + 2 · c52→4

in4 ≥ 3 · c60→4 + c50→4 + 3 · c52→4

in4 ≥ 2 · c60→4 + 3 · c51→4 + c52→4

in4 ≥ c60→4 + 2 · c51→4 + 2 · c52→4

in4 ≥ c51→4 + 3 · c52→4.

Similarly to the simple charging scheme a 3-vint may only be charged
by at most one 5-vint without non-flippable incoming edges. In addition,
as seen in the constraint set C1, it is also possible to receive charge from
at most three 4-vints which are obtained by flipping one of the boundary
edges.

v

v1

v2
v3

v4

Figure 5.10: A 4-vint v receiving charges from higher-degree vints

As far as the charge to 4-vints is concerned recall that besides 5-vints
there is also the possibility for 6-vints without non-flippable edges to charge
a lower-degree 4-vint. Note that at most four 5-vints can flip down to a
specific 4-vint, and we will distinguish their charges depending on how
many 6-vints charge this vint.
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Let v be the 4-vint and v1, v2, v3, and v4 its neighbors such that v1v and
v2v are the non-flippable incoming edges of v, see Figure 5.10. Observe that
the triangulation of a 6-vint which flips down to v cannot simultaneously
contain the edges v2v3 and v3v4, nor the pair v3v4 and v4v1, since the 6-vint
does not have a non-flippable edge. In particular at most four 6-vints may
charge v with c60→4.

Notice that if there are exactly four such charges then the different
types of 5-vints from which v might also receive charges are determined as
follows. If flipping the edge v1v2 is possible then v can only become a 5-vint
without non-flippable incident edges, flipping v2v3 or v1v4 may only yield
a 5-vint with one non-flippable edge, and finally if v3v4 may be flipped a
5-vint with two non-flippable edges is obtained. Therefore, the additional
charge to v can be as large as c50→4 + 2 · c51→4 + c52→4.

There are two configurations such that v might be charged by exactly
three 6-vints, which also determine the types of the involved 5-vints. For
this to happen it is necessary that flipping v1v2 yields a 5-vint without
non-flippable edges, and flipping v2v3 or v1v4 at least once results in a 5-
vint with two non-flippable edges. Then the additional charge to v from all
5-vints is at most c50→4 + c51→4 + 2 · c52→4 in the first, or c50→4 + 3 · c52→4

in the second case.

If v receives charges from at most two 6-vints then flipping v1v2, if
possible, has to yield a 5-vint with one non-flippable incident edge. In
particular then the number of these 6-vints charging v is exactly the number
of edges in {v2v3, v1v4} that yield a 5-vint with one non-flippable edge after
flipping. Since flipping v3v4 always results in a 5-vint with two non-flippable
edges, the additional charge to v can be as large as 3·c51→4+c52→4 if two 6-
vints charge v, or 2·c51→4+2·c52→4 in case of one 6-vint, or c51→4+3·c52→4

if no 6-vint charges v.

The remaining constraints of C2 for the additional charges to 5-vints are

in52 ≥ c60→52
+ 4 · c62→52

in52 ≥ c60→52 + 3 · c62→52 + c61→52

in52 ≥ c60→52 + 2 · c62→52 + 2 · c61→52

in52 ≥ 4 · c62→52
+ c61→52

in52 ≥ 3 · c62→52
+ 2 · c61→52

in52 ≥ 2 · c62→52
+ 3 · c61→52

in51 ≥ 5 · c61→51

in51 ≥ 4 · c61→51 + c60→51

in51 ≥ 3 · c61→51 + 2 · c60→51

in50 ≥ 5 · c60→50
.
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Clearly, a particular 5-vint may receive additional charge from at most
five distinct 6-vints. Also recall that any non-flippable incident edge to a 6-
vint will remain non-flippable when charging a lower-degree vint. However,
not all combinations of such charges may actually occur.

Consider a 5-vint with two non-flippable edges that receives charge from
6-vints. By similar arguments as for the charges to 4-vints above it may be
observed that at most one of these 6-vints has no non-flippable incoming
edge, and not all five but at least two of the 6-vints are incident to two
non-flippable edges. All six corresponding inequalities are contained in the
constraint set C2.

As already mentioned a 5-vint with one non-flippable incident edge
cannot receive charge from a 6-vint with two incident non-flippable edges.
Out of the five 6-vints charging such a vint at most two have no non-
flippable incident edge. This allows for three possibilities to receive charge
from the higher-degree vints.

Finally, the last inequality shows that a 5-vint without non-flippable
incident edges may only receive charges from corresponding 6-vints.

Initial charges and consumption: C3
The constraints of C3 introduce the initial charges and make sure that after
discharging there is no positive charge left on any vint

out3 ≥ 4 + in3
out4 ≥ 3 + in4

out52 ≥ 2 + in52

out51 ≥ 2 + in51

out50 ≥ 2 + in50

out62 ≥ 1 + in62

out61 ≥ 1 + in61

out60 ≥ 1 + in60.

Now, we are ready to compute the optimum of the linear program we
derived. Recall that we want to find the minimum α which is at least
as big as max{c3, c4, c52

, c51
, c62

, c61
} subject to the constraint sets C1, C2,

and C3, and all variables are non-negative. Solving this linear program
yields α = 37

18 as an optimal value for the maximum possible charge to a
non-flippable edge. Together with (5.8) and Theorem 5.7 we obtain the
following result.
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Theorem 5.10. For any set P of n ≥ 3 points in the plane in general

position with triangular convex hull, E[nfl(T )] ≥ 18(n−3)
37 , and hence

pg(P ) ≥ Ω(2129n/74) · tr(P ) = Ω(3.347n) · tr(P ).

The lower bound Ω(3.347n) on the fraction pg(P )
tr(P ) from Theorem 5.10

holds for every point set P in general position. This compares to a value
of O(4.855n) which is obtained by a particular point set, the previously
mentioned double zig-zag chainDn due to Aichholzer et al. [8] who calculate
pg(Dn) = Θ∗(41.189n) and tr(Dn) = Θ∗(8.485n). With (5.6) this point set
also implies the bound E[nfl(T )] ≤ 1.559n.

Actually, the convex hull of Dn is a quadrangle but the point set may
be slightly modified in order to have triangular convex hull while keeping
the asymptotic behavior of the number of crossing-free graphs and trian-
gulations.

To see this assume very flat zig-zag chains and rotate the upper chain
clockwise and the lower chain counter-clockwise without changing the point
configuration. Then place an additional point very far to the right extend-
ing both chains in a convex way, i.e., points on the convex hull of a single
chain remain on the hull when adding the special point.

We conclude by mentioning that in the corresponding Figure 5.11 for
the sake of a reasonable drawing this additional point is in fact too close
to the construction.

D18

Figure 5.11: The double zig-zag chain D18 and its slightly modified version



I don’t see enough DoTs - more DoTs now!
Throw more DoTs, more DoTs, more DoTs!
Come on more DoTs!!

Dives, from Wipe Club

6
Slight Perturbation causes
Exponential Change

We show that there is a constant β ≥ 1
144 > 0 such that, for any set P

of n ≥ 5 points in general position in the plane, a crossing-free geometric
graph on P that is chosen uniformly at random contains, in expectation,
at least ( 1

2 + β)M edges, where M denotes the number of edges in any
triangulation of P .

From this we derive the first non-trivial upper bound on the number
of crossing-free geometric graphs on P of the form cn · tr(P ); That is, at
most a fixed exponential in n times the number of triangulations of P . The
trivial upper bound of 2M · tr(P ), or c = 2M/n, follows by taking all subsets
of edges of each triangulation. If the convex hull of P is triangular, then
M = 3n− 6, and we obtain c < 7.980.

Upper bounds for the number of crossing-free geometric graphs on pla-
nar point sets have so far applied the trivial 8n factor to the bound for
triangulations; We slightly decrease the resulting bound to O(343.106n).

This is joint work with Jack Snoeyink and Emo Welzl [64].

117



118 Chapter 6. Slight Perturbation causes Exponential Change

6.1 Introduction

Let P be a finite set of points in the plane. We define crossing-free geometric
graphs and triangulations on P as in the previous chapter, and write n for
the number of points in P and k for the number of points on the boundary
of its convex hull. For the sake of a clean presentation of the results we
will again assume that n ≥ k ≥ 3. Recall from identity (5.1) that any
triangulation of P contains exactly M := 3n− k − 3 edges. In contrast to
the previous chapter we say that P is in general position if no three points
in P are collinear.

At the end of our discussion we will provide an upper bound for pg(P )
the total number of plane graphs on P . This quantity never exceeds a fixed
exponential in n which is a result first established in 1982 by Ajtai et al. [12]
with 1013 as base of the exponential. Further progress [75, 70, 26, 69] in
this area of research was mainly motivated by deriving better bounds for
tr(P ), the number of triangulations on P , where the currently best known
upper bound for tr(P ) stands at 43n due to Sharir and Welzl [72]. We will
arrive at an upper bound of 343.106n for pg(P ).

While, clearly, upper bounds on the total number of crossing-free geo-
metric graphs on a point set P also apply to specific classes of plane graphs
(e.g. spanning connected graphs, polygonizations, perfect matchings, and
spanning trees, to name just a few), better bounds for these classes are
known. For a recent and detailed list of such results we refer to [8, 71].

We will estimate pg(P ) in terms of tr(P ). Since every crossing-free
geometric graph is contained in some triangulation, and every triangulation
has 2M subgraphs, we readily have

pg(P ) ≤ 2M · tr(P ) ≤ 8n · tr(P ). (6.1)

The upper bound is tight in the following example: Consider a point set
with triangular convex hull such that all interior points lie on a common line
containing one of the three extreme points, see Figure 6.1. Then there is a
unique triangulation with exactly 23n−6 = Θ(8n) crossing-free subgraphs;
These subgraphs constitute the set of all plane graphs on the point set.

Figure 6.1: Points not in general position with a unique triangulation
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It is therefore surprising that a small perturbation of the points to
general position causes the ratio between the number of crossing-free graphs
and that of triangulations to drop exponentially. We show that for any set
P of at least five points in general position pg(P ) ≤ 2γ·M · tr(P ) holds, with
γ < 1.

In order to derive this bound we argue in Section 6.2 that the expected
number of edges in a crossing-free geometric graph on P chosen uniformly
at random can be significantly bounded away from M

2 . In Section 6.3 we
prove via a mean vs. median argument that crossing-free geometric graphs
with many edges account for a large fraction of all crossing-free graphs.
This way, for points in general position we are able to improve on the
pessimistic 2M factor from estimate (6.1) by a factor exponential in n.

6.2 Edges in a random crossing-free graph

The goal of this section is to estimate the expected number of edges in a
crossing-free geometric graph drawn uniformly at random from the set of
all crossing-free graphs on a given point set P . We will refer by e(G) to
the number of edges in a fixed graph G as well as to the random variable
when choosing a crossing-free graph G uniformly at random.

We define a directed graph D = D(P ) on the set of all crossing-free
geometric graphs on P and for two nodes G,H ∈ V (D) introduce a directed
arc from G to H if and only if E(G) ⊆ E(H) and e(G) = e(H) − 1. For
instance, the empty graph has

(
n
2

)
outgoing but zero incoming arcs, while

any triangulation of P has no outgoing but M incoming arcs. Expectations
of random variables are in the following understood with respect to the
uniform distribution over the set of all crossing-free geometric graphs.

Proposition 6.1. For any point set in general position in the plane

M

2
≤ E[e(G)] ≤M.

Proof. Clearly, e(G) ≤M holds for any graph G which immediately implies
the upper bound. For proving the lower bound denote by deg−(G) and
deg+(G) the in- and out-degree of G in the directed graph D. Notice that

E[e(G)] = E
[
deg−(G)

]
= E

[
deg+(G)

]
,

where the first identity holds since e(G) = deg−(G) for any graph G,
and the second equality is true since by definition both sides represent



120 Chapter 6. Slight Perturbation causes Exponential Change

the number of arcs divided by the number of vertices of D. Then using
deg(G) := deg−(G) + deg+(G) and by linearity of expectation we obtain

2 · E[e(G)] = E
[
deg−(G)

]
+ E

[
deg+(G)

]
= E[deg(G)] . (6.2)

Consider some triangulation T with M edges that contains G as a sub-
graph. Then any edge e ∈ E(T ) either corresponds to an incoming arc of
G if e ∈ E(G), or to an outgoing arc of G if e 6∈ E(G). Thus, deg(G) ≥M ,
which completes the proof of the first inequality.

Note that the lower bound is tight only for n = 3 points, or n = 4 points
with a triangular convex hull. In all other cases the underlying point set
allows for more than one triangulation. Hence

(
n
2

)
, the degree of the empty

graph in D, is strictly larger than M which implies E[deg(G)] > M and in
turn E[e(G)] > M

2 .
Consider a set of points with n = k = 4; Figure 6.2 shows the vertices

of the corresponding directed graph D and the edges incident to one graph
consisting of a single diagonal. As is easily verified, for a crossing-free graph
G chosen uniformly at random E[e(G)] = 8

3 >
5
2 .

Figure 6.2: The directed graph D on four points

From now on we focus on point sets containing at least five points and
show that there is a constant β > 0 such that E[e(G)] ≥ ( 1

2 + β)M .
Let G be a crossing-free geometric graph on P and let e 6∈ E(G) be

an edge corresponding to an outgoing arc of G in D, hence adding e to G
again yields a crossing-free graph. If every triangulation containing G also
contains e, then we call e forced for G. Otherwise, we call edge e optional
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for G. Edges from the convex hull missing in G are always forced for G.
For instance, if n = 4 and k = 3 then every edge not in E(G) is forced.

Arcs in D are labeled forced or optional to match their corresponding
edge. In the previous example of Figure 6.2, the drawn incoming arc is
optional whereas the four outgoing arcs are forced. For a graph G we
may define its forced degree, fdeg(G), and its optional degree, odeg(G). We
write fdeg+(G) and odeg+(G) for the corresponding forced and optional
out-degree, respectively.

Lemma 6.2. Given a crossing-free geometric graph G, adding the set of all
its forced edges results in a crossing-free geometric graph G without forced
edges.

Proof. Let Ef (G) be the set of forced edges for G. Then G is crossing-free
since E(G) = E(G) ∪ Ef (G) is the set of edges which are present in all
triangulations containing G. In other words, G is the largest graph that
is a common subgraph of all triangulations that contain G. Now assume
that there is a forced edge e for G. Since e was not forced for G (otherwise
e ∈ Ef (G) ⊆ E(G)), there is a triangulation containing G but not e. This
is a contradiction since G is a subgraph of this triangulation and e must be
an edge of every triangulation containing G.

For G as obtained in Lemma 6.2 let u(G) := M − e(G) be the number
of edges we need to add to G in order to obtain a triangulation. Then by
definition

M − u(G) = e(G) = e(G) + fdeg+(G) = deg−(G) + fdeg+(G).

Having equation (6.2) in mind we are interested in the expected value
of deg(G)−M =: excess(G) which, given the identity above, we can rewrite
as

excess(G) = deg+(G) + deg−(G)−M = odeg+(G)− u(G), (6.3)

using deg+(G) = fdeg+(G) + odeg+(G). We want to show that odeg+(G)
is large compared to u(G) = u(G). Assume u(G) > 0 and let e be an
edge corresponding to an outgoing arc of G in D then any triangulation
containing G but not e must necessarily contain an edge f that crosses e,
otherwise we could add e to the triangulation, contradicting its maximality.
Thus, also f corresponds to an outgoing arc of G in D and clearly both
arcs, e and f , are optional for G. This suggests that one can find at least
2u(G) optional outgoing arcs of G.
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However, establishing this takes some care since two edges e1 and e2,
corresponding to outgoing arcs of G, could be crossed by the same edge f in
a triangulation containing G. This would require us to find a compensating
fourth optional outgoing arc of G. We repeatedly apply the following result
by Aichholzer et al. [5] to overcome this issue.

Lemma 6.3 (Aichholzer et al. [5]). Let P be a finite set of points in the
plane and consider two triangulations T and T ′ of P . There exists a perfect
matching between the edges of T and T ′, with the property that matched
edges either cross or are identical.

Lemma 6.4. For any crossing-free graph G we have odeg+(G) ≥ 2u(G).

Proof. In order to prove this claim it suffices to construct a matching C on
the set of optional outgoing arcs of G in D such that |C| = u(G). Let G be
the graph obtained from G as in Lemma 6.2, T1 a triangulation containing
G and define E1 := E(T1) \ E(G). We now match edges in E1, a set of
u(G) optional edges, with other edges optional for G.

Initially C = ∅. For i ≥ 1, assume that Ei := E(T1)∩ . . .∩E(Ti)\E(G)
is not empty, where Tj , for 1 ≤ j ≤ i, are triangulations constructed so
far. Let e ∈ Ei. Since e is not forced for G there is an edge f crossing e
which is also not forced for G. Let Ti+1 be a triangulation containing G
and f . Lemma 6.3 gives a perfect matching between E(T1) and E(Ti+1).
Consider the matching partners of Ei \ E(Ti+1) ⊂ E(T1). These are edges

of E(Ti+1) \ ⋃ij=1E(Tj), since they cross edges of Ei ⊂
⋂i
j=1E(Tj). We

observe that the matched crossing pairs correspond to optional outgoing
arcs of G. By construction these pairs are disjoint from all pairs in C, hence
we may safely add them to C. In particular, all edges in Ei that cross f
will be added to C in some matching pair. Now, we continue with Ei+1

unless it is empty.
Note that by construction e ∈ Ei \E(Ti+1) which implies |Ei+1| < |Ei|.

Furthermore, |Ei| − |Ei+1| is exactly the number by which |C| increases in
the i-th round. Thus, the process terminates eventually with a matching
of size |E1| = u(G).

Substitute this estimate u(G) ≤ 1
2 · odeg+(G) into identity (6.3) to

obtain excess(G) ≥ odeg+(G)
2 . Similarly to the proof of Proposition 6.1 we

find 2 · E
[
odeg+(G)

]
= E[odeg(G)] which yields

E[excess(G)] ≥ 1

4
· E[odeg(G)] .
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If G happens to be a triangulation then by definition the optional edges
for G are exactly the flippable edges in G.

Theorem 6.5 (Hurtado et al. [40]). Any triangulation of a collection of
n points on the plane contains at least n−4

2 flippable edges. The bound is
tight.

This is the kind of result we are heading for, however, we need a cor-
responding statement for every graph on the underlying point set not for
triangulations only.

Lemma 6.6. For any crossing-free graph G it holds that

odeg(G) ≥ n− 4

2
+ u(G).

Proof. Extend the graph G to obtain a triangulation T with E(G) ⊆ E(T )
and let e ∈ E(T ) be a flippable edge, i.e., e corresponds to an optional
incoming arc of T in D. By Theorem 6.5 there are at least n−4

2 such edges.
If e ∈ E(G) then e adds to odeg(G) as (optional) incoming arc of G in D.
If e 6∈ E(G) then e adds to odeg(G) as (optional) outgoing arc of G.

Moreover, we know by Lemma 6.4 that G has at least 2u(G) optional
outgoing edges. Since at most u(G) of them are contained in T the remain-
ing edges clearly add to odeg(G).

We found that

E[excess(G)] ≥ n− 4

8
+

E[u(G)]

4
,

unfortunately in general we were not able to give a lower bound for E[u(G)]
other than the trivial one, E[u(G)] ≥ 0. Since deg(G) = M + excess(G) we
have E[e(G)] = 1

2 · (M + E[excess(G)]) due to equation (6.2).

Theorem 6.7. Let P be a set of n ≥ 4 points in general position in the
plane with k points on the boundary of the convex hull and M = 3n− k− 3
edges in a triangulation. Then

E[e(G)] ≥ M

2
+
n− 4

16
=

25n− 8k − 28

16
. (6.4)

While the statement of the theorem is also true for n = 3 it is only of
moderate interest because of Proposition 6.1. For n ≥ 5, however, choosing
β = 1

144 the bound from the theorem above shows that E[e(G)] ≥ ( 1
2 +β)M

for a crossing-free geometric graph drawn uniformly at random.
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6.3 The number of plane graphs

In this section we provide an argument showing how the lower bound from
(6.4) yields an upper bound on the total number of crossing-free geometric
graphs a set of n points can have. For this purpose we will need two classic
estimates that frequently appear in combinatorics. We also make use of
the binary entropy function

H(t) := −t log2 t− (1− t) log2(1− t), t ∈ ]0, 1[,

with continuous extension H(0) = H(1) = 0. The function is symmetric
around 1

2 where it attains its maximum H( 1
2 ) = 1, and it strictly increases

on the interval ]0, 1
2 ], and thus strictly decreases on [ 1

2 , 1[.
The following estimate for sums of binomial coefficients is standard, we

include a proof for the sake of the thesis being self-contained.

Lemma 6.8. For any ` ∈ N and t ∈ [0, 1
2 ]

bt·`c∑
i=0

(
`

i

)
≤ 2−H(t)·`.

Proof. Since t ∈ [0, 1
2 ] it follows that t

1−t ≤ 1 and hence

bt·`c∑
i=0

(
`

i

)
· 2−H(t)·` =

bt·`c∑
i=0

(
`

i

)
· tt`(1− t)(1−t)`

=

bt·`c∑
i=0

(
`

i

)
· (1− t)`

(
t

1− t

)t`

≤
bt·`c∑
i=0

(
`

i

)
· (1− t)`

(
t

1− t

)i
.

Now, this last term is surely upper-bounded by

∑̀
i=0

(
`

i

)
· ti · (1− t)`−i = (t+ (1− t))` = 1,

using the Binomial theorem, which concludes the proof of the lemma.

Another tool we will employ in the upcoming derivation of our main
result is the following inequality.
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Lemma 6.9 (Markov’s Inequality). Let X be a non-negative random vari-
able of expected value E[X] then for any real λ > 0

P[X ≥ λ] ≤ E[X]

λ
.

Proof. By definition of the indicator function, X ≥ λ · 11[X≥λ], and since
the expected value is monotone we obtain

E[X] ≥ E
[
λ · 11[X≥λ]

]
= λ · P[X ≥ λ] .

We are now able to conclude with the upper bound for the total number
pg(P ) of crossing-free geometric graphs.

Theorem 6.10. Let P be a set of n ≥ 4 points in general position in the
plane with k points on the boundary of the convex hull. Moreover, define
M = 3n− k − 3 and µ = E[e(G)]. Then

pg(P ) ≤M · 2H( bµcM )M · tr(P ).

Proof. We will first show that the crossing-free geometric graphs with at
least bµc edges, which we denote by pg≥bµc(P ), form a large fraction of all
crossing-free graphs. In order to achieve this we provide a lower bound for

pg≥bµc(P )

pg(P )
= P[e(G) ≥ bµc] .

For this purpose we note that the random variable e(G) only takes
integer values, hence

P[e(G) ≥ bµc] = P[e(G) > µ− 1]

= 1− P[e(G) ≤ µ− 1]

= 1− P[M − e(G) ≥M − (µ− 1)] .

Clearly, the random variable M − e(G) is non-negative. Therefore, we
may estimate the last probability with Markov’s inequality from Lemma 6.9
to obtain

P[e(G) ≥ bµc] ≥ 1− E[M − e(G)]

M − (µ− 1)

= 1− M − µ
M − (µ− 1)

=
1

M − (µ− 1)
≥ 1

M
,
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since µ ≥ 1. Thus, we have pg≥bµc(P ) ≥ pg(P )
M .

On the other hand, let us for the moment fix a triangulation and count
the number of its crossing-free subgraphs with at least bµc edges

M∑
m=bµc

(
M

m

)
=

M−bµc∑
m′=0

(
M

m′

)
=

M(1− bµcM )∑
m′=0

(
M

m′

)
.

In order to employ Lemma 6.8 for estimating this sum we would need

that 1 − bµcM is in [0, 1
2 ]. Recall Proposition 6.1 stating that M

2 ≤ µ ≤ M .

Clearly, for even M also M
2 ≤ bµc ≤ M holds, and thus 0 ≤ 1 − bµcM ≤ 1

2 .
If M is odd and n ≥ 12 then by Theorem 6.7 we have

µ ≥ M

2
+
n− 4

16
≥ M + 1

2
∈ N,

implying bµc ≥ M+1
2 which also satisfies the condition. For the remaining

values of M and n, that is when 4 ≤ n ≤ 11 and thus 5 ≤ M ≤ 27 and
M odd, the factor might be larger than 1

2 . Despite this fact one verifies
by numerical calculation that the estimate from Lemma 6.8 still holds.
Therefore, we conclude

M(1− bµcM )∑
m′=0

(
M

m′

)
≤ 2H(1− bµcM )M = 2H( bµcM )M .

Since every crossing-free graph is contained in some triangulation, we
may estimate the total number of crossing-free graphs with at least bµc
edges by summing over all triangulations and obtain

pg≥bµc(P ) ≤ 2H( bµcM )M · tr(P ).

Lastly, lower and upper bound on pg≥bµc(P ) imply the statement of
the theorem.

In fact the estimate of Theorem 6.10 also holds for n = 3 which may be
easily verified. However, the proof above does not go through in this case
since the bound from Lemma 6.8 cannot be applied when n = k = M = 3.

Recall that the binary entropy function is strictly decreasing on the
interval [1

2 , 1], thus the lower bound µ ≥ M
2 + n−4

16 from equation (6.4)
comes in quite handy. A numerical analysis shows that for n ≥ 3596 the
bound from Theorem 6.10 beats the trivial estimate (6.1).
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It is not hard to see that a triangular convex hull of the point set

P minimizes the lower bound on bµc
M in (6.4) and therefore maximizes

H
(
bµc
M

)
, for n sufficiently large. Thus, we find that for any set P

pg(P ) = O
(
n 2H( 25

48 )3n
)
· tr(P ) = O(7.9792n) · tr(P ).

We mentioned that there are at most 43n triangulations on a set of n
points [72]. Hence, n points in the plane allow for at most O(343.106n)
crossing-free geometric graphs.

Corollary 6.11. For a set P of n points in general position in the plane,

pg(P ) = O(7.980n) · tr(P ) and pg(P ) = O(343.106n).

Recall from Chapter 1 the definition of the single chain Sn with tri-
angular convex hull, and notice that every edge incident to the tip vertex
must be present in any triangulation of Sn. The remaining n−1 points are
in convex position which enables us to exactly compute tr(Sn) = tr(Γn−1)
and pg(Sn) = 2n−1pg(Γn−1). The corresponding asymptotics for Γn are

known due to [31] and we find pg(Sn)
tr(Sn) = Θ∗

(
(3 + 2

√
2)n
)

= Θ∗(5.828n) as

lower bound on the fraction pg(P )
tr(P ) any set on n points can achieve.

For the other extreme case of Γn, a set of n points in convex position,
we have k = n and M = 2n− 3, thus Theorem 6.10 gives

pg(Γn)

tr(Γn)
= O

(
n 2H( 17

32 )2n
)

= O(3.985n).

This bound can slightly be improved to O
(
n 2H( 9

16 )2n
)

= O(3.938n)
using our previously developed machinery. We simply notice that any tri-
angulation of the convex n-gon has exactly n − 3 diagonals, i.e., flippable
edges. The corresponding estimate in Lemma 6.6 becomes odeg(G) ≥ n−3
and in turn the following statements yield µ ≥ M

2 + n−3
8 .

Actually, for points in convex position the expected number of edges
µ = E[e(G)] is known to be

E[e(G)] =
1 +
√

2

2
n ·
(
1 + o(1)

)
,

due to Flajolet and Noy [31] and Bernasconi et al. [19] who also provide
tight estimates for the tail probabilities. Theorem 6.10 immediately yields

pg(Γn)

tr(Γn)
= O

(
n 2
H
(

1+
√

2
4 (1+o(1))

)
2n
)

= O(3.831n).
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These bounds on the fraction pg(Γn)
tr(Γn) compare to the exact asymptotic

behavior Θ∗
(
( 3

2 +
√

2)n
)
, where 3

2 +
√

2 ≈ 2.914.
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[1] Bernardo Manuel Ábrego and Silvia Fernández-Merchant. Geomet-
ric drawings of Kn with few crossings. J. Combin. Theory Ser. A,
114(2):373–379, 2007.

[2] Oswin Aichholzer, Franz Aurenhammer, Clemens Huemer, and Han-
nes Krasser. Transforming spanning trees and pseudo-triangulations.
Inform. Process. Lett., 97(1):19–22, 2006.

[3] Oswin Aichholzer, Franz Aurenhammer, and Ferran Hurtado. Se-
quences of spanning trees and a fixed tree theorem. Comput. Geom.
Theory Appl., 21(1):3–20, 2002.

[4] Oswin Aichholzer, Franz Aurenhammer, and Hannes Krasser. Enu-
merating order types for small point sets with applications. In
SCG ’01: Proceedings of the Seventeenth Annual Symposium on Com-
putational Geometry, pages 11–18, New York, NY, USA, 2001. ACM.

[5] Oswin Aichholzer, Franz Aurenhammer, Günter Rote, and Michael
Taschwer. Triangulations intersect nicely. In SCG ’95: Proceedings of
the Eleventh Annual Symposium on Computational Geometry, pages
220–229, New York, NY, USA, 1995. ACM.

[6] Oswin Aichholzer, Sergey Bereg, Adrian Dumitrescu, Alfredo Garćıa,
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Notes, 2006. 4th Gremo Workshop on Open Problems, Wislikofen.

[25] Karel Culik II and Derick Wood. A note on some tree similarity mea-
sures. Inform. Process. Lett., 15(1):39–42, 1982.

[26] Markus Oswald Denny and Christian A. Sohler. Encoding a triangu-
lation as a permutation of its point set. In CCCG ’97: Proceedings
of the 9th Canadian Conference on Computational Geometry, pages
39–43, 1997.

[27] Nachum Dershowitz and Shmuel Zaks. Enumerations of ordered trees.
Discrete Math., 31(1):9–28, 1980.

[28] Adrian Dumitrescu. Planar sets with few empty convex polygons.
Studia Sci. Math. Hungar., 36(1-2):93–109, 2000.

[29] Paul Henry Edelman. Chain enumeration and non-crossing partitions.
Discrete Math., 31(2):171–180, 1980.
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Glossary

11[A] indicator function with predicate A. 21
[α, β]× R closed vertical strip in R2 between x-

coordinates α and β. 63
cfp(P ) number of crossing-free partitions of a

point set P . 18
cfpk(P ) number of crossing-free partitions of a

point set P into k classes. 18
el(Q) number of long edges in a crossing-free

partition Q. 51
es(Q) number of short edges in a crossing-free

partition Q. 51
E[X] expectation of a random variable X. 13
fl(T ) number of flippable edges in a triangula-

tion T . 92
Γn set of n points in convex position. 18
IP (Q) subset of points in P that are contained

inside the convex hull of Q. 21
`(T ) number of Lawson edges in a triangulation

T . 94
L(T ) set of Lawson edges in a triangulation T .

94
M = M(P ) number of edges in any triangulation on

P . 92, 118
(n1, n2, . . . , nk)-partition partition of a set into k classes of size n1,

n2,. . .,nk. 21
nfl(T ) number of non-flippable edges in a trian-

gulation T . 92
O(f(n)), Ω(f(n)), Θ(f(n)) Landau notation. 12
∂P boundary of a point set P . 12
P closure of a point set P . 12
P ◦ interior of a point set P . 12
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138 Glossary

P[A] probability of an event A. 12(
P
k

)
set of k-element subsets of P . 21

pg(P ) number of crossing-free geometric graphs
on P . 92, 118

Pm(P ) set of crossing-free perfect matchings of P .
80

Sn single-chain on n points. 19
St(P ) set of crossing-free spanning trees of P . 60
T ∗(G) constrained Delaunay triangulation of a

crossing-free geometric graph G. 94
Tpm(P ) transformation graph of compatible per-

fect matchings of P . 80
tr(P ) number of triangulations on P . 93, 118
Tr(P ) set of triangulations on P . 93
Tst(P ) transformation graph of compatible span-

ning trees of P . 61
u→ v vint u may be flipped down to vint v. 105
vint vertex-in-triangulation. 104
X(P ) set of extreme points of P . 21
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