
Diss. ETH No. 17387

The P-Matrix Linear
Complementarity Problem

—
Generalizations and

Specializations

A dissertation submitted to the
SWISS FEDERAL INSTITUTE OF TECHNOLOGY

ZURICH

for the degree of
Doctor of Sciences

presented by
LEONARD YVES RÜST

M.Sc. ETH in Computer Science
born March 23, 1980

citizen of Thal (SG), Switzerland

accepted on the recommendation of
Prof. Dr. Emo Welzl, ETH Zurich, examiner
Dr. Bernd Gärtner, ETH Zurich, co-examiner

Prof. Dr. Hans-Jakob Lüthi, ETH Zurich, co-examiner
Prof. Dr. Walter D. Morris, Jr., George Mason University,

Fairfax, co-examiner

2007

II

Abstract

The goal of this thesis is to give a better understanding of the linear
complementarity problem with a P-matrix (PLCP). Finding a polyno-
mial time algorithm for the PLCP is a longstanding open problem. Such
an algorithm would settle the complexity status of many problems re-
ducing to the PLCP. Most of the papers dealing with the PLCP look
at it from an algebraic point of view. We analyze the combinatorial
structure of the PLCP.

Wherever possible, we state our results for the generalized PLCP
(PGLCP), a natural generalization of the PLCP. In the first part of the
thesis, we present further generalizations of the PGLCP. We show that
the PGLCP fits into the framework of unique sink orientations (USO)
of grids. Finding a solution to the PGLCP can therefore be done by
finding the sink in a grid USO. Several algorithms are known for this
latter task, and we analyze the behavior of some of them on small grids.
We thereby make use of the result that PGLCP-induced USOs fulfill a
combinatorial property known as the Holt-Klee condition.

Grid USOs are then shown to fit into the framework of violator
spaces. Violator spaces have been introduced as a generalization of LP-
type problems capturing the combinatorics behind many problems like
linear programming or finding the smallest enclosing ball of a point
set. We prove that Clarkson’s algorithms, originally developed for low-
dimensional linear programs, work for violator spaces that in contrast
to LP-type problems have a cyclic structure in general. This yields an
optimal linear time algorithm for solving PGLCP with a fixed number
of blocks.

III

The second part of the thesis deals with specializations of the PGLCP.
We first focus on a subclass of P-matrices, known as hidden K-matrices.
The hidden K-matrix PGLCP is known to be solvable in time polyno-
mial in the input size. We give an alternative proof for this fact and
strengthen it by the following statement: the USO arising from a hidden
K-matrix PGLCP is LP-induced and therefore always acyclic. Further-
more, a nontrivial and large subclass of non hidden K-matrices is given,
and we prove that the PLCP with a 3-dimensional square P-matrix in
this class reduces to a cyclic USO in general.

Our last result is that simple stochastic games (SSG) can be refor-
mulated as PGLCP. People have unavailingly been trying to show that
games like SSG are polynomial-time solvable for over 15 years. The
connection to PGLCP gives us powerful tools to further attack this.
Unfortunately, SSG do in general not reduce to PGLCP with a matrix
in a known polynomially solvable class.

IV

Zusammenfassung

Das Ziel dieser Dissertation ist es, das lineare Komplementaritätsprob-
lem mit einer P-Matrix (PLCP) besser zu verstehen. Einen Algorith-
mus zu finden der das PLCP in polynomieller Zeit löst ist ein seit langem
offenes Problem. So ein Algorithmus würde den Komplexitätsstatus
vieler Probleme festlegen, die auf das PLCP reduzierbar sind. In den
meisten Arbeiten über das PLCP wird es von einer algebraischen Sicht-
weise analysiert. Im Gegensatz dazu schauen wir uns die kombina-
torische Struktur des PLCP genauer an.

Wann immer möglich formulieren wir unsere Resultate für das ver-
allgemeinerte PLCP (PGLCP), eine natürliche Verallgemeinerung des
PLCP. Im ersten Teil dieser Arbeit präsentieren wir eine weitere Ve-
rallgemeinerung des PGLCP. Wir zeigen dass das PGLCP formuliert
werden kann als das Problem, die eindeutige Senke einer eindeutige-
Senke-Orientierung (USO) eines Gitters zu finden. Wir schauen uns
das Verhalten einiger Algorithmen für das USO-Problem auf kleinen
Gittern an. Dabei benutzen wir das Resultat, dass die USO, die von
einem PGLCP stammen, die Holt-Klee Eigenschaft haben.

Danach zeigen wir, dass USO auf Gittern wiederum verallgemeinert
werden können, und zwar auf Verletzer-Räume. Diese wurden als Ver-
allgemeinerung von Problemen, die ähnlich wie lineares Programmieren
(LP) sind, eingeführt und haben eine zyklische zugrunde liegende Struk-
tur. Wir beweisen, dass die bekannten LP-Algorithmen von Clarkson
auf Verletzer-Räume angewandt werden können und erhalten so einen
optimalen Algorithmus, der das PGLCP mit einer fixen Anzahl Blöcken
in linearer Zeit löst.

V

Im zweiten Teil dieser Dissertation befassen wir uns mit Spezial-
isierungen des PGLCP. Zuerst schauen wir uns eine Unterklasse von P-
Matrizen an, bekannt als versteckte K-Matrizen. Das PGLCP mit einer
versteckten K-Matrix kann mittels LP gelöst werden. Wir geben einen
alternativen Beweis für diese Aussage und stärken sie zudem wie folgt:
die USO die aus dem PGLCP mit einer versteckten K-Matrix resul-
tiert stammt von einem LP und ist deshalb azyklisch. Zudem definieren
wir eine neue Unterklasse von Matrizen die nicht versteckt K sind und
zeigen, dass das PLCP mit 3-dimensionalen quadratischen P-Matrizen
in dieser Klasse im Allgemeinen in einer zyklischen USO resultiert.

Unser letztes Resultat ist, dass einfache stochastische Spiele (SSG)
als PGLCP formuliert werden können. Seit über 15 Jahren versucht
man zu zeigen, dass SSG in polynomieller Zeit gelöst werden können.
Die von uns aufgezeigte Verbindung zum PGLCP gibt neue und mächtige
Werkzeuge um dieses Ziel weiter zu verfolgen. Leider reduziert sich das
SSG im Allgemeinen auf PGLCPs mit Matrizen die zu keiner bekannten
polynomiell lösbaren Klasse gehören.

VI

Acknowledgments

My deepest gratitude goes to my advisor Bernd Gärtner who made
my PhD possible. He was there whenever I needed advice and helped
me out of many dead ends. All my papers are co-authored by him and
without his broad knowledge, they would not have reached their quality.
Thanks for all your support!

A big thank you goes to Emo Welzl for letting me be part of his
research group and for his uncomplicated and upright manner, making
the time at ETH unforgettable.

I thank my co-referees Hans-Jakob Lüthi for reviewing this thesis
and sharing the passion for the LCP and Walter D. Morris for reviewing,
supporting me over the years via e-mail and the joint paper.

The following people made it a pleasure to work at ETH:

Robert Berke, Yves Brise, Tobias Christ, Kaspar Fischer, Heidi
Gebauer, Jochen Giesen, Franziska Hefti, Michael Hoffmann, Martin
Jaggi, Shankar Lakshminarayanan, Andreas Meyer, Dieter Mitsche,
Yoshio Okamoto, Andreas Razen, Dominik Scheder, Eva Schuberth,
Ingo Schurr, Miloš Stojaković, Marek Sulovský, Tibor Szabó, Patrick
Traxler, Floris Tschurr, Elias Vicari, Uli Wagner, Frans Wessendorp,
Philipp Zumstein. Moreover all the members from the other research
groups at our institute and, of course, the 22 red and blue guys on the
H-floor.

Further a big thank you to the following people:

My co-authors Jirka Matoušek and Petr Škovroň for interesting

VII

meetings and the joint paper.

Markus Brill, Matúš Mihal’́ak, Rahul Savani, Alex Souza-Oftermatt
and the A-Team for an incredible time in Denmark.

Aniekan Ebiefung, Nir Halman, Klaus Simon, Roman Sznajder, Ola
Svensson, Takeaki Uno, Bernhard von Stengel for inspiring discussions.

My family and all of my friends outside ETH for always being there.

My wife for loving me and my boys for tearing me away from the
computer and trying to convince me that playing tag is more important
than writing a thesis.

VIII

Contents

Abstract III

Zusammenfassung V

Acknowledgments VII

1 Introduction 1

1.1 Overview . 1

1.2 Short Outline of the Thesis 11

1.3 The P-Matrix Linear Complementarity Problem 13

Part I: Generalizations 19

2 The P-Matrix Generalized LCP 21

2.1 The Setup . 21

2.2 Π-Compatible Linear Programming 25

3 Unique Sink Orientations 29

3.1 Reduction from PGLCP to Grid USO 30

IX

3.2 The Holt-Klee Condition 34

3.3 Ladders . 36

4 Violator Spaces 59

4.1 LP-Type Problems . 59

4.2 The Violator Space Framework 62

4.3 Clarkson’s Algorithms 65

4.4 Grid USO as Models for Violator Spaces 72

Part II: Specializations 77

5 Hidden K-Matrices 79

5.1 Matrix Classes . 81

5.2 Hidden K-Matrix GLCP and LP 85

5.3 Non Hidden K-Matrices 95

6 Simple Stochastic Games 107

6.1 The Setup . 108

6.2 Reduction from SSG to PGLCP 110

6.3 Negative Results . 117

Bibliography 129

Curriculum Vitae 139

X

Chapter 1

Introduction

Against widespread belief, the abbreviation LCP does not stand for
Leo’s Core Problem but for the Linear Complementarity Problem. How-
ever, the former interpretation of the abbreviation is true for sure. This
thesis collects results achieved during the author’s PhD studies, all of
which nicely connect to the LCP. It is based on three papers [33, 31, 34],
their journal versions [32, 30] and unpublished material (for example
Section 3.3 or Chapter 5).

The next section gives a detailed overview about our work and about
what has been done and known before. It describes which of our results
have been published where, with whom (all results are published to-
gether with Bernd Gärtner, so only different co-authors are mentioned
below) and with what differences to the thesis at hand. The hurried
reader looking for specific results might prefer the condensed overview
given in Section 1.2.

1.1 Overview

Although special instances of the LCP first appear in a paper by Du Val
already in 1940 [23], intensive analysis started in the mid 1960’s where
also the name linear complementarity problem originated. One of the

1

2 Chapter 1. Introduction

earliest applications is that the first-order optimality conditions of a
quadratic program can be written as an LCP [43, 1]. Besides countless
other applications – a small but significant selection is for example given
in [80] – there are also connections to game theory: bimatrix games allow
an LCP formulation [15, 95]. We show in this thesis that other games
like simple stochastic games can be reduced to the LCP as well.

The most comprehensive sources for the LCP are the books [17]
by Cottle, Pang, and Stone and [67] by Murty. The LCP is given
by linear equations, described by a square matrix M ∈ R

n×n and a
right-hand side vector q ∈ R

n, and nonnegativity conditions as well as
complementarity conditions. More concretely, given M and q, it is to
find vectors w ∈ R

n and z ∈ R
n such that

w −Mz = q
w, z ≥ 0
wT z = 0,

or to show that no such vectors exist.

Many relevant applications reduce to an LCP where M has special
properties. A lot of research has been done on various matrix classes, a
classical paper is [26] and a rich collection of results about matrix classes
and their connections to the LCP can be found in [17]. We focus on the
class of P-matrices. A matrix is a P-matrix if the determinants of all
principal submatrices are positive. This class is interesting because it is
known that the LCP has a unique solution for every q if and only if the
matrix is a P-matrix [79]. Applications for the P-matrix LCP (PLCP)
can be found for example in [7, 80, 77, 20].

It has been shown by Megiddo that hardness of the PLCP would im-
ply that NP = co-NP [58]. Despite this fact, no polynomial algorithm
is known up to date. Finding such an algorithm is one of the major
goals of the LCP community since it would settle the complexity status
of many problems reducing to the PLCP. One of the main LCP algo-
rithms is the one from Cottle and Dantzig [15]. It is a principal pivot
algorithm, pivoting from one basis of the LCP to the next according to
a specified pivot-rule. The behavior of principal pivot algorithms has
been investigated for many different pivot-rules, see [17] in general or
[66, 27] for a nice appetizer.

Another important algorithm for the LCP is the one given by Lemke

2

1.1. Overview 3

in [50]. Remarkably, the Lemke-Howson algorithm, which is a variant
of Lemke’s algorithm tailored for LCPs arising from bimatrix games,
is an efficient constructive procedure for obtaining mixed equilibrium
strategies for bimatrix games [51]. This constituted the simplest and
most elegant constructive proof for the existence of Nash equilibria in
bimatrix games (Nash’s previous proof was based on the nonconstruc-
tive Brouwer fixed point theorem [68, 69]).

Besides the classical algorithms by Lemke and Cottle and Dantzig,
there are still new ones being developed, see for example [38] for a
more recent one. Interior point algorithms are also known, described
for instance in [49]. Each of the above mentioned algorithms works
for a larger class of matrices than P-matrices. See the references for
discussions about termination depending on the matrix class.

We tackle the PLCP from two sides in this thesis. On the one hand,
we show in the first part of this work that it fits into more general, easily
structured frameworks. Although the generalizations are proper, and
we therefore lose information, the simplicity of the frameworks allows
for an improvement of algorithm running time. In fact, the fastest
known algorithms solving PLCP were developed for these frameworks.
On the other hand, we describe two specializations in the second part
of this thesis. We first look at a subclass of P-matrices and examine the
combinatorial structure behind the LCP associated with these matrices.
The second specialization is actually a new application for the PLCP.
We reduce a game theory problem to the PLCP. The relations between
the frameworks and problem classes discussed in this thesis are depicted
at the end of this section in Figure 1.2 on page 11.

Generalized linear complementarity problems. The first gener-
alization we look at is the generalized linear complementarity problem
with a P-matrix (PGLCP) in Chapter 2. The PGLCP was introduced
by Cottle and Dantzig in [16]. It is more general than the PLCP since
the matrix M is not restricted to be square. The matrix in the GLCP is
a vertical block matrix to which the notion of P-matrix can be extended.
The important properties of the PLCP generalize to the PGLCP: the
GLCP has a unique solution for every right-hand side vector q if and
only if its matrix is a P-matrix (see [16, 90, 39] or also [37]), and hard-
ness of the PGLCP would imply NP = co-NP (this is easy to prove
along the lines in [58]). In our paper [33, 32], we state the PGLCP and

3

4 Chapter 1. Introduction

correlated results in a form dual to the one of Cottle and Dantzig. In
this thesis, we mostly stick to the original setting of Cottle and Dantzig,
but we explain the dual setting in Section 2.2, revealing connections to
linear programming (LP). These connections are useful to derive results
about the PGLCP with the special matrix class described in Chapter 5.

Unique sink orientations of grids. In Chapter 3 we then present
our result from [33, 32], that the PGLCP fits into the framework of
unique sink orientations of grids. A grid is a graph whose vertex set
is the Cartesian product of finite sets, with edges joining all pairs of
vertices that differ in exactly one component. Alternatively, we can
view a grid as the skeleton (vertex-edge graph) of a specific polytope,
namely a product of simplices. If all sets have size two, which is the case
if we reduce the PLCP, we get the graph of a cube. A face or subgrid
is any induced subgraph spanned by the Cartesian product of subsets
of the original sets. An orientation ψ of the grid is called a unique sink
orientation (USO) if every face has a unique sink with respect to ψ.
USOs can in general be cyclic.

A polynomial-time algorithm for finding the sink of a grid USO (us-
ing an oracle that returns the orientation of a given edge) would solve
the PGLCP in strongly polynomial time. Candidates for strongly poly-
nomial algorithms must be combinatorial in the sense that the number
of arithmetic operations they perform depends only on the combinato-
rial structure of the PGLCP but not on the actual numbers that encode
it.

Most of the papers dealing with PLCP or PGLCP analyze the prob-
lem from an algebraic point of view. With the USO approach we shed
more light on the combinatorial structure of the PGLCP. First efforts
in this direction have been made by Stickney and Watson [87], who con-
sidered orientations of cubes as digraph models for PLCP. Although the
name USO was formed only later in [89], their orientations are in fact
USOs. Stickney and Watson give an example of a PLCP resulting in a
cyclic 3-dimensional cube USO. Morris constructed highly cyclic PLCP-
induced USOs in higher dimensions for which the algorithm following
a random outgoing edge at every cube-vertex performs very badly [64].
Most remarkably, Szabó and Welzl gave algorithms for finding the sink
of any n-cube USO by looking at only O(cn) vertices and edges, for some
c strictly smaller than 2 [89]. This in particular yields the first combina-

4

1.1. Overview 5

torial algorithms for PLCP with nontrivial runtime bounds. For acyclic
cube USO, Gärtner gives a subexponential algorithm in [28]. Cube
USO are useful as combinatorial models for many other problems, see
[89, 33, 32] and references therein for more detailed discussions.

The generalization from PGLCP to grid USO reveals some (algo-
rithmically useful) hidden structure, leading to new results for PGLCP.
Since most of these results were already derived in the author’s Master
thesis [78], we present only the actual reduction from PGLCP to grid
USO in Chapter 3. In [33, 32] we presented the result that PGLCP-
induced grid USOs satisfy the Holt-Klee condition. The Holt-Klee con-
dition is a combinatorial property shared by a diminishing fraction of all
USO [22]. The fraction of PGLCP-induced grid USOs is even smaller,
since there are Holt-Klee grid USOs that do not come from PGLCP
[63].

The problem of finding an optimal sink-finding algorithm can be
stated as a zero-sum game which in turn can be solved by linear pro-
gramming [29]. Unfortunately, the LP gets too big already for small
grid USOs. In the last section of Chapter 3, Section 3.3, we analyze
a subclass of 2-dimensional grids called ladders. Ladders are the sim-
plest grid USO for which we don’t know optimal algorithms. For small
enough ladders, by making use of isomorphisms as described in [91], the
LP whose solution encodes an optimal algorithm is solvable in reason-
able time. We describe optimal algorithms derived this way for small
ladders. These give us an intuition how optimal algorithms might be-
have on general ladders. At the end of Chapter 3, we give an almost
optimal algorithm for ladders satisfying the Holt-Klee condition. Our
findings about ladders have not been published.

Violator spaces. A further result, motivated by our ambition to an-
alyze the combinatorics behind the PGLCP, is the generalization from
grid USOs to violator spaces in Chapter 4. Violator spaces are proper
generalizations of LP-type problems. The framework of LP-type prob-
lems, invented by Sharir and Welzl in 1992 [84], was used to show that
LP is solvable in subexponential time in the RAM model (independent
of the precision of the input numbers) [57].

Violator spaces were introduced by Jirka Matoušek and Petr Škovroň
in [85]. In this thesis, we present results derived together with them in

5

6 Chapter 1. Introduction

our joint paper [31, 30]. The reason we look at violator spaces is that
LP-type problems have an acyclic structure, which prevents general
grid USOs (in particular PGLCP-induced cyclic ones) to fit into this
framework. To our knowledge, violator spaces are, besides oriented
matroid programs (see for example [6]), the only abstract optimization
framework allowing cycles. We prove that grid USOs, and therefore
PGLCPs, are subsumed by violator spaces.

Section 4.3 shows that Clarkson’s randomized algorithms [11], de-
veloped for low-dimensional LP (they are also applicable to LP-type
problems, see [35, 9]) work in the context of violator spaces. These al-
gorithms give us an optimal linear time algorithm for the PGLCP with
a constant number of blocks. More results about violator spaces can be
found in [85, 86, 31, 30], for example that LP-type problems and acyclic
violator spaces are equivalent.

Hidden K-matrices. Chapter 5 is dedicated to the PGLCP with
hidden K-matrices, a proper subclass of P-matrices that also appears
under the name hidden Minkowski matrices or mime matrices (see [93]).
Hidden K-matrices show up in real world problems, for example the
problem of pricing American put options can be solved with the help of
a hidden K-matrix LCP [7] (more precisely, the matrix belongs to the
even smaller subclass of K-matrices). The theory behind the hidden K-
matrix GLCP was founded by Mangasarian in his papers [52, 53, 54, 55].
Mangasarian analyzed GLCPs that can be restated as linear programs.
Cottle and Pang extended research in this direction [19, 18, 72, 71, 70],
finally ending up with the main result that the hidden K-matrix LCP
can be solved by linear programming and therefore in time polynomial
in the input size [47] (see also the strongly polynomial time algorithms
for matrices whose transpose is hidden K [73, 62]). This was generalized
to the GLCP by Mohan and Neogy in [61].

We strengthen the hidden K theory by showing that the grid USO
we get from the hidden K-matrix GLCP is an orientation we get from
an LP. The USO is therefore acyclic for any right-hand side vector q.
In an attempt to characterize those non hidden K but P-matrices that
yield a cyclic orientation for some q (we call such a q a cyclic q), we
first derive a characterization for matrices that are not hidden K. Our
characterization generalizes the characterization of [65] to the GLCP
case. We then introduce a new nontrivial and large subclass of non

6

1.1. Overview 7

hidden K-matrices and prove that 3-dimensional P-matrices in this class
have a cyclic q. However, we fail to prove this for higher dimensions. It
thus remains an open problem to characterize those P-matrices having
a cyclic q. None of our results about the hidden K-matrix GLCP has
been published yet.

Simple stochastic games. The last chapter of the thesis is about
simple stochastic games. Simple stochastic games (SSG) form a subclass
of general stochastic games, introduced by Shapley in 1953 [83]. Condon
was first to study the complexity-theoretic aspects of SSG [12]. She
showed that the decision version of the problem is in NP∩ co-NP. This
is considered as evidence that the problem is not NP-complete, because
the existence of an NP-complete problem in NP ∩ co-NP would imply
NP = co-NP. Despite this evidence and a lot of research, the question
whether a polynomial time algorithm exists remains open. This reminds
us of the PGLCP, whose hardness would also imply NP = co-NP and
for which no polynomial time algorithm is known. Indeed, we present
in Chapter 6 our result from [34] that SSG can be reduced to PGLCP.

A SSG is played by moving a token on a directed graph whose ver-
tex set consists of two sinks, the 0-sink and the 1-sink, and the rest
partitioned into three parts, vertices belonging to the max player, min
player, and average vertices, respectively. At a vertex, the player it be-
longs to chooses along which outgoing edge to move the token. The goal
of the max player is to (maximize the probability to) reach the 1-sink,
the goal of the min player to reach the 0-sink. We consider SSG with
vertices of arbitrary outdegree and with average vertices determining
the next vertex according to an arbitrary probability distribution. This
is a natural generalization of binary SSG introduced by Condon [12].
As a specialization of the results in Chapter 6 we get that a binary SSG
reduces to the PLCP.

SSG are significant because they allow polynomial-time reductions
from other interesting classes of games. Zwick and Paterson proved a
reduction from mean payoff games [98] which in turn admit a reduc-
tion from parity games, a result of Puri [75]. See the references for
applications of these games.

A strategy of a player determines for every vertex belonging to the
player along which outgoing edge to move the token. Given a strategy

7

8 Chapter 1. Introduction

of one player, the optimal counterstrategy of the other player can be
computed by a linear program [21]. Using this, Halman could show that
the problem of finding an optimal strategy for one of the players can be
stated as an LP-type problem [41] (see also [42, 40]) and can therefore
be solved in strongly subexponential time.

Independently, Björklund et al. arrived at subexponential methods
by showing that SSG can be mapped to the combinatorial problem of
optimizing a completely local-global function over the Cartesian product
of sets [3]. This setup is the same as the setup of acyclic grid USOs,
which can in turn be formulated as LP-type problems. In fact, they find
the sink of the acyclic USO by applying LP-type algorithms, so their
approach is actually equivalent to Halman’s.

The methods of Halman and Björklund et al. focus on the strat-
egy of one player while recomputing the optimal counterstrategy of the
other player in every step. By solving the SSG via PGLCP we do not
distinguish between the two players. This is best explained in the USO
world. An algorithm following an outgoing edge in a grid USO induced
by an SSG via the PGLCP formulation improves the strategy of the
player the “edge belongs to”. The dimension of the grid is the num-
ber of player vertices in the SSG and an edge along dimension i in the
grid is associated with player vertex i. Following one edge in the USO
setting means to switch the strategy of one player at one vertex in the
game. Condon [13] (see also the example in Subsection 6.3.1) shows that
switching algorithms can cycle, so the underlying USO can be cyclic.
This is not the case in the setting of Björklund et al. Their USO is
with respect to one player, the max player, say, so the dimension of
the grid is the number of vertices of the max player. Every vertex in
the grid corresponds to a strategy of the max player, and a grid-vertex
evaluation, returning the orientations of incident edges, is achieved by
computing the optimal counterstrategy of the min player. An edge in
the grid is outgoing, if the strategy at the neighboring grid-vertex is
better for the max player. This implies that the grid USO is acyclic.

In [78, 33] we introduced the concept of projected (or inherited)
grid USOs. Roughly, a projected grid USO is derived by merging sets
of vertices along a subset of the grid’s dimensions into single vertices
and taking the outgoing edges of the sink in the set of original vertices
merged into one to be the outgoing edges of the resulting vertex. One
can show that this is again a (smaller dimensional) grid USO. See Fig-

8

1.1. Overview 9

Figure 1.1: A 3-dimensional grid USO and a projected grid USO of it
derived by merging vertices along one dimension.

ure 1.1 for an example. If, in the grid USO derived from an SSG via
PGLCP, all dimensions corresponding to one player are merged, then
the resulting grid USO is exactly the one from Björklund et al. and
therefore acyclic. This is a very special property, which we don’t expect
from general PGLCP-induced USO. This is the reason why we think
that PGLCP is more general than SSG, meaning that it is not possible
to get every P-matrix in the reduction from SSG to PGLCP.

Nevertheless, by looking at a superclass of SSG, derived from SSG by
adding payoff-values to the edges, our reduction may yield any right-
hand side vector q in the PGLCP (changing the payoffs changes the
q-vector but does not affect the matrix). Shapley’s stochastic games
still contain this superclass of SSG and Shapley’s theorem [83] proving
uniqueness of game values then implies that the GLCP has a unique
solution for every q and its matrix must therefore be a P-matrix. Our
result that the matrix in the reduction is a P-matrix thus provides an
alternative proof of Shapley’s theorem, specialized to SSG, and it makes
the connection to matrix theory explicit.

There are interesting connections between algorithms in the USO
setting and algorithms for the SSG. The algorithm bottom-antipodal in
the USO world, for example, being at vertex v jumps to the vertex
antipodal in the face spanned by all the outgoing edges of v. There are
exponential lower bounds for the performance of this algorithm [82]. We
can interpret the behavior of bottom-antipodal in SSG. In the setting
of Björklund et al. it means that given a strategy for the max player,
simultaneously switch the strategy at every max vertex that has a switch
improving the strategy. Then compute the optimal counterstrategy of

9

10 Chapter 1. Introduction

the min player and proceed as before. This algorithm is a variant of the
Hoffman-Karp algorithm for SSG [44, 13].

The fact that there is a connection between games and LCP is not
entirely surprising, since, as noted in the beginning of this section, for
example bimatrix games can be formulated as LCP [15, 95]. Also Cottle,
Pang and Stone [17, Section 1.2] list a simple game on Markov chains as
an application for LCP, and certain (very easy) SSG are actually of the
type considered. Björklund et al. describe a reduction from games to
what they call controlled linear programming [4]; controlled linear pro-
grams are easily mapped to (non-standard) LCP. Independently from
our work, Björklund et al. have made this mapping explicit by deriving
LCP-formulations for mean payoff games [5]. Their reduction is very
similar to ours, but the authors do not prove that the resulting matrices
are P-matrices, or belong to some other known class. In fact, Björklund
et al. point out that the matrices they get are in general not P-matrices,
and this stops them from further investigating the issue. We have a sim-
ilar phenomenon here: applying our reduction to non-stopping SSG, we
may also obtain matrices that are not P-matrices. The fact that comes
to our rescue is that the stopping assumption incurs no loss of general-
ity and, in contrast to our paper [34], we make heavy use of it in this
thesis, simplifying the reduction a lot. For mean payoff games, a similar
result holds. They can without loss of generality be transformed into
discounted mean payoff games [98]. Jurdziński and Savani [45] could
prove that reducing discounted mean payoff games results in LCP with
a P-matrix.

Our result that SSG-induced GLCPs come with P-matrices puts SSG
into the realm of ‘well-behaved’ GLCP, but it does not give improved
runtime bounds. Unfortunately, the matrices we get from SSG do in
general not belong to a class known to be polynomial-time solvable, see
Section 6.3. Still, properties of the subclass of matrices we ask for might
allow their PGLCP to be solved in polynomial time. By, without loss
of generality, simplifying the graph underlying the SSG first, Svensson
and Vorobyov managed to reduce SSG to PGLCP with a very simply
structured matrix [88]. However, no progress has been made so far in
algorithmically exploiting this structure.

10

1.2. Short Outline of the Thesis 11

PSfrag replacements

Violator Spaces

Grid USO

LP-Type Problems

PGLCP

PGLCP

PLCP

Hidden K

SSG

Figure 1.2: An overview of the classes used in this thesis.

1.2 Short Outline of the Thesis

In the next section, we define the linear complementarity problem and
introduce the necessary notations. After that, the thesis is split into
two parts. In the first part we present three generalizations of the
PLCP, the first being the P-matrix generalized linear complementarity
problem (PGLCP) in Chapter 2. Most of the chapter is consumed by
definitions and setting notation, but we also provide a dual view of
the PGLCP which we introduced in our paper together with Walter D.
Morris [33, 32], making visible connections to linear programming.

The second generalization described in Chapter 3 is that of unique
sink orientations (USO). We show, in a different setting than the one
we used in [33, 32], how the PGLCP reduces to finding the sink of a
USO on a grid graph. Moreover, we review the Holt-Klee condition, a
combinatorial property shown to hold for PGLCP-induced grid USO in
[33, 32]. The chapter ends with a detailed presentation of unpublished
results about special instances of grid USOs, which we call ladders.

11

12 Chapter 1. Introduction

These are the simplest grid USOs for which we don’t know the optimal
algorithms. We give an almost optimal algorithm to find the sink in a
Holt-Klee ladder.

The third generalization is that of violator spaces. Violator spaces
form a framework subsuming LP-type problems, a framework invented
by Sharir and Welzl [84]. We show in Chapter 4 that grid USOs (and
therefore the PGLCP) are models for violator spaces but not for LP-
type problems in general. Moreover, Clarkson’s algorithms, that have
been designed for low dimensional linear programs and later adapted for
LP-type problems, are shown to work for violator spaces. This yields an
optimal linear time algorithm for solving PGLCP with a fixed number
of blocks. These results, together with some structural results about
violator spaces, are published in [31, 30]. This is joint work with Jirka
Matoušek and Petr Škovroň.

In the second part we look at specializations of the PLCP. In Chap-
ter 5 we consider LCPs associated with a subclass of P-matrices: hidden
K-matrices. Altough being in the specialization part here, we look at
the hidden K-matrix generalized LCP whenever possible. The main
achievement is a proof that the USO arising from a hidden K-matrix
GLCP is LP-induced and therefore always acyclic. Additionally, we at-
tempt to characterize those matrices from which a cyclic USO arises
and succeed to define a nontrivial and large subclass of 3-dimensional
non hidden K-matrices that give rise to a cycle. The material in this
chapter has not been published yet.

The final Chapter 6 extends our results from [34]. Using a simpler
setting than in the paper, we show how simple stochastic games can
be reduced to the PGLCP. This makes the whole PGLCP machinery
available for games. We further give some negative results, for example
that the resulting matrix in the PGLCP is not hidden K in general.

12

1.3. The P-Matrix Linear Complementarity Problem 13

1.3 The P-Matrix Linear Complementarity

Problem

Given a matrix M ∈ R
n×n and a vector q ∈ R

n, the linear complemen-
tarity problem (LCP) is to find a vector z ∈ R

n such that

z ≥ 0
q +Mz ≥ 0

zT (q +Mz) = 0
(1.1)

or to show that no such vector exists. In this thesis, we use an often
encountered equivalent formulation of the LCP, that will simplify our
analysis in later chapters: given a matrix M ∈ R

n×n and a vector
q ∈ R

n, the LCP is to find vectors w ∈ R
n and z ∈ R

n such that

w −Mz = q
w, z ≥ 0
wT z = 0

(1.2)

or to show that no such vectors exist. We refer to (1.2) as LCP(M, q).
Note that the nonnegativity conditions w, z ≥ 0 together with the com-
plementarity condition wT z = 0 force at least one of the variables wi
and zi to be zero for all i ∈ {1, . . . , n}.

We are interested in the LCP(M, q) where M is a P-matrix.

Definition 1.3 A matrix M ∈ R
n×n is a P-matrix if the determinants

of all principal submatrices are positive.

We refer to determinants of principal submatrices as principal minors.
The relevance of the LCP with a P-matrix, abbreviated as PLCP, stems
from the following theorem, first proved in [79].

Theorem 1.4 The LCP(M, q) has a unique solution for all vectors q ∈
R
n if and only if M ∈ R

n×n is a P-matrix.

Beauty and simplicity of the PLCP are best explained in the geometric
view. In order to be able to do this, we first need some notation. We
denote by [n] the set of integers from 1 to n. Given matrix A ∈ R

n×n

13

14 Chapter 1. Introduction

and a set α ⊆ [n], the matrix Aα ∈ R
n×|α| is derived by deleting those

columns from A whose indices are not in α. For readability, we let
Aᾱ := A[n]\α. The same notation is applied to n-vectors, with the
obvious meaning. Moreover, for B ∈ R

n×n we define (Aα||Bᾱ) ∈ R
n×n

to be the matrix whose ith column is A{i} if i ∈ α and B{i} otherwise.
The same definition analogously holds for vectors, so given a ∈ R

n and

b ∈ R
n, the ith component of

(
aα

bᾱ

)

is ai if i ∈ α and bi otherwise. To

make the reader more familiar with this notation, we give an example
for n = 3. Let

A :=

1 2 3
1 2 3
1 2 3

 , B :=

4 5 6
4 5 6
4 5 6

 ,

and

a :=

1
2
3

 , b :=

4
5
6

 .

Then

(A{1,3}||B{2}) =

1 5 3
1 5 3
1 5 3

 and

(
a{1,3}
b{2}

)

=

1
5
3

 .

There are 2n possibilities to satisfy the complementarity condition in
the PLCP, achieved by setting either wi or zi to zero in each coordinate
i. As soon as we fix the complementary set of variables that should be

zero, say the variables
(
wᾱ

zα

)

for some α, then the values of the remaining

variables
(
wα

zᾱ

)

are uniquely determined: pre-multiplying the PLCP

with (Iα|| − Mᾱ)−1 (note that existence of the inverse easily follows
from the fact that M is a P-matrix) results in

(
wα
zᾱ

)

−M ′

(
wᾱ
zα

)

= (Iα|| −Mᾱ)−1q

for M ′ := −(Iα||−Mᾱ)−1(Iᾱ||−Mα). Since
(
wᾱ

zα

)

are the zero variables,

we get
(
wα

zᾱ

)

= (Iα|| −Mᾱ)−1q.

14

1.3. The P-Matrix Linear Complementarity Problem 15

Definition 1.5 A subset α ⊆ [n] is called a basis of the PLCP (1.2),
and

B(α) := (Iα|| −Mᾱ)

is the corresponding basis matrix.

A basis α determines that the variables wᾱ and zα are set to zero.
Taking into account the nonnegativity constraints for w and z, solving

the PLCP is equivalent to finding a basis α ⊆ [n] for which
(
wα

zᾱ

)

=

B(α)−1q ≥ 0. We often say that such an α is a solution to the PLCP,
since w and z are derived immediately from it.

The procedure of computing M ′ = −B(α)−1B(ᾱ) from M as above
is known as a principal pivot transform, abbreviated as PPT. Tucker
first proved that a matrix derived from a P-matrix via a PPT is again a
P-matrix [94]. A PPT corresponds to rewriting the PLCP with variables
wi and zi interchanged for some indices i ∈ [n].

This thesis deals with nondegenerate PLCPs only. A PLCP is de-
generate if B(α)−1q has a zero entry for some α and it is nondegenerate
otherwise. Nondegeneracy can easily be achieved by slightly perturbing
the vector q, such that for all α, B(α)−1q has no zero entries. For a solu-
tion α, this implies that all nonzero variables are positive, B(α)−1q > 0.
Moreover, there is a unique set α for which B(α)−1q > 0, since two dif-
ferent sets fulfilling the condition would imply two different solutions
(because different variables are nonzero in the two solutions) to the
PLCP, contradicting Theorem 1.4. We come back to the nondegener-
acy issue in the geometric view of the PLCP which we describe now.

The 2n basis matrices of the PLCP can be interpreted as n-dimen-
sional cones in R

n, called complementary cones. For any α, the com-
plementary cone associated with B(α) is spanned by the n vectors cor-
responding to the columns of B(α) (since B(α) is non-singular, those
columns are linearly independent). Finding the unique α such that
B(α)−1q > 0 is then to find the unique complementary cone which
contains the vector q. Since the PLCP has a unique solution for all q
(Theorem 1.4), the complementary cones cover the whole space. More-
over, they intersect only in lower dimensional cones, since otherwise, a q
lying in the interior of a full dimensional intersection would be contained
in two distinct complementary cones (contradicting the uniqueness of

15

16 Chapter 1. Introduction

���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������

���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������

���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������

���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������

� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �

� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �

PSfrag replacements

(
1
0

)

(
0
1

)

(
−1
−1

) (
0
−1

)

(
−1
1
2

)

= q

Figure 1.3: Geometric view of the PLCP (1.6).

the basis α with B(α)−1q > 0). As an example for the geometric view,
look at the PLCP

1 0

0 1

w1

w2

−

1 0

1 1

z1

z2

 =

−1

1
2

w1, w2, z1, z2 ≥ 0

w1 · z1 + w2 · z2 = 0

(1.6)

whose geometric view is given in Figure 1.3. From the picture we see
that q lies in the complementary cone spanned by the columns of the
basis matrix B({2}). The variables w1 and z2 are therefore zero and
the positive values of the variables z1 and w2 can be computed as

(
w{2}

z{1}

)

=

(
z1
w2

)

= B({2})−1q =

(
−1 0
−1 1

)−1(−1
1
2

)

=

(
1
3
2

)

.

16

1.3. The P-Matrix Linear Complementarity Problem 17

If q is contained in a hyperplane that contains the (n− 1)-dimensional
intersection of two complementary cones, then the PLCP is degenerate.
Let B(α) and B(α′) correspond to two complementary cones whose
(n−1)-dimensional intersection is contained in a hyperplane containing
q as well. Since the intersection of the two cones is (n− 1)-dimensional,
α and α′ differ only in one element, i.e., their symmetric difference
is 1: |α ⊕ α′| = |{i}| = 1. Although the solution to the PLCP is still
unique, the complementary cone containing q might not be unique since
B(α)−1q and B(α′)−1q are zero at coordinate i and possibly positive
in all other coordinates. In order to get rid of such cases, we perturb
q a little bit, i.e., we move it slightly such that it is no more contained
in any hyperplane containing the intersection of two complementary
cones. This affects the solution to the PLCP in a controllable way
(variables that are zero in the original setting can have arbitrarily small
solution values in the perturbed setting) and for the rest of this thesis we
therefore stick to the assumption of nondegeneracy, i.e., (B(α)−1q)i 6= 0
for all α and i. In particular, B(α)−1q > 0 for the solution α.

17

18 Chapter 1. Introduction

18

Part I: Generalizations

In this first part of the thesis we present three generalizations of the
PLCP, the first being the generalized linear complementarity problem
(PGLCP) in Chapter 2. We define the notation needed for the PGLCP
and also state the problem in the dual setting we used in [33, 32]. All
further results, if possible, are then stated for the PGLCP.

Chapter 3 shows how PGLCP can be reduced to unique sink orien-
tations (USO) of grids. In [33, 32] we showed that these orientations
fulfill a well-known combinatorial property, the Holt-Klee condition. At
the end of this chapter, the Holt-Klee condition is useful in the analysis
of algorithms for the smallest class of grid USOs for which no optimal
algorithms are known.

The last chapter in this part introduces violator spaces as a further
generalization of grid USOs (and therefore PGLCP). Violator spaces
form a simple combinatorial framework, and our result that Clarkson’s
algorithms work for them yields an optimal linear time algorithm for
solving PGLCPs of fixed dimension.

19

20

Chapter 2

The P-Matrix

Generalized LCP

The generalized linear complementarity problem, abbreviated as GLCP,
was introduced by Cottle and Dantzig in 1970 [16]. It generalizes the
LCP(M, q) by dropping the requirement of M being a square matrix.

2.1 The Setup

In order to state the GLCP, we first define the type of a matrix.

Definition 2.1 A matrix G is a vertical block matrix of type (g1, . . . , gn)
if it is of the form

G =

G1

...
Gn

where the ith block Gi, i ∈ [n], has order gi × n.

21

22 Chapter 2. The P-Matrix Generalized LCP

For reasons that will become clear in the next chapter, we define N to
be

N :=
n∑

i=1

gi + n,

i.e., G is an (N−n)×n matrix. The definition of a vertical block matrix
applies in a straightforward way also to vectors.

Given a vertical block matrix G ∈ R
(N−n)×n and a vertical block

vector q ∈ R
N−n, both of type (g1, . . . , gn), the GLCP is to find a

vertical block vector w ∈ R
N−n of type (g1, . . . , gn) and a vector z ∈ R

n

such that
w −Gz = q

w, z ≥ 0

zi

gi∏

j=1

wij = 0, for all i ∈ [n].
(2.2)

In analogy to Gi, wi is the ith block of size gi of the vector w. In the
GLCP, complementarity holds block-wise, i.e., either zi is zero or at
least one variable in the block wi. We refer to (2.2) as GLCP(G, q).

Definition 2.3 A representative submatrix Ḡ ∈ R
n×n of G is derived

by letting the ith row of Ḡ be one row out of the block Gi for all i ∈ [n].

There are
∏n
i=1 gi different representative submatrices of G. With their

help, the P-matrix notion can be generalized to vertical block matrices.

Definition 2.4 A vertical block matrix G ∈ R
(N−n)×n is a vertical

block P-matrix if all principal minors of all representative submatrices
are positive.

So, every (square) representative submatrix of a vertical block P-matrix
is itself a P-matrix (as defined in Definition 1.3). We sometimes omit
the words “vertical block” when it is clear from the context what kind
of matrix we mean. Cottle and Dantzig show that a solution to the
P-matrix GLCP always exists [16], and Szanc shows in his dissertation
that the solution is unique for all q [90, 39], so Theorem 1.4 generalizes
to the GLCP.

22

2.1. The Setup 23

Theorem 2.5 The GLCP(G, q) has a unique solution for all vectors
q ∈ R

N−n if and only if G ∈ R
(N−n)×n is a P-matrix.

We abbreviate the P-matrix GLCP by PGLCP. For our analysis, it will
be easier to restate the PGLCP in the following form. Let I be the
identity matrix in R

(N−n)×(N−n) and divide it into n blocks of columns
with the ith block having size (N−n)×gi. Now expand the ith block by
appending −G{i}, the negated ith column of G. The resulting matrix
H1 is of order (N −n)×N and consists of n blocks of columns with the
ith block having size (N − n) × (gi + 1). The first gi columns of block
i are the ones from I and the last column is −G{i}. The same is done
with the vectors w and z. A new vector x ∈ R

N is formed from w by
appending zi to the bottom of wi. The first gi components of block xi

are therefore the components of wi and the last component of xi is zi.
Finally, in order to simplify notation, we set hi := gi + 1 for all i and
rewrite the PGLCP (2.2) as

Hx = q
x ≥ 0

hi∏

j=1

xij = 0, for all i ∈ [n].
(2.6)

We refer to this setting as PGLCP(H, q). In this form, it is easier to
define bases for the PGLCP. The partition ofH into n blocks of columns
corresponds to a partition Π of [N] into n subsets Πi of size hi each,

Π = (Π1, . . . ,Πn).

Let β ⊆ [N] be an n-element set consisting of one element out of each
Πi, i = 1, . . . , n. Such a set is called representative and the element
in β belonging to Πi is denoted by βi. There are

∏n
i=1 hi many rep-

resentative sets β. To shortcut notation, we set β̄ := [N] \ β. Then,
Hβ̄ ∈ R

(N−n)×(N−n) is the matrix H restricted to columns whose in-
dices are not in β.

Definition 2.7 A representative subset β ∈ [N] is called a basis of the
PGLCP(H, q), and

B(β) := Hβ̄

1Since the matrix is a mixture of −G and I, it seems appropriate to choose the
letter which lies between G and I in the alphabet.

23

24 Chapter 2. The P-Matrix Generalized LCP

is the corresponding basis matrix in R
(N−n)×(N−n).

We also define xβ̄ to be the vector x restricted to elements with indices
not in β. More precisely, the ith block of xβ̄ is the ith block of x reduced
by the element with index βi in x.

The elements of β correspond to the variables in x that are set to zero
such that complementarity is fulfilled. Once β is fixed, the remaining
variables are determined, since the PGLCP(H, q) can be pre-multiplied
by B(β)−1 (nonsingularity of B(β) comes out ofG’s P-matrix property):

B(β)−1Hx = H ′x = B(β)−1q

with H ′
β̄

being the identity matrix in R
(N−n)×(N−n) and H ′

β being a

vertical block matrix −G′. Setting xβ to zero then yields xβ̄ = B(β)−1q.

The matrix G′ is derived from the original matrix G via a principal
pivot transform. Habetler and Szanc generalized Tucker’s result that
square P-matrices are closed under PPT to vertical block P-matrices
[39]. The matrix G′ is thus a vertical block P-matrix.

As in the PLCP case, solving the PGLCP amounts to finding the
β for which B(β)−1q > 0, where we again assume that the PGLCP is
nondegenerate. Note that the geometric point of view can also be taken
in the PGLCP. Any basis matrix can be interpreted as an (N − n)-
dimensional complementary cone in R

(N−n) and Theorem 2.5 makes
sure that these cones cover the whole space and intersect only in lower
dimensional cones. The same considerations about nondegeneracy as
for the PLCP apply, and we therefore assume for the rest of the thesis
nondegeneracy of the PGLCP.

The cone point of view will be important in Section 3.2, where we
state the result derived in [33, 32] that the orientation implicitly under-
lying a PGLCP (described in the next section) satisfies a special prop-
erty. But first we devote a section to the description of the PGLCP in
the dual setting we used in [33, 32], revealing connections to the linear
programming problem.

24

2.2. Π-Compatible Linear Programming 25

2.2 Π-Compatible Linear Programming

Consider a linear program (LP) in the variables x = (x1, . . . , xN)T , of
the form

minimize cTx
subject to Ax = b

x ≥ 0,
(2.8)

where A ∈ R
n×N , b ∈ R

n and c ∈ R
N . The index set [N] of A’s columns

is partitioned into n blocks by Π = (Π1, . . . ,Πn). As in the previous
section, let β be a representative set consisting of exactly one element
per block Πi. Assume that for all β, Aβ is a nondegenerate basis matrix
in (2.8), meaning that Aβ is invertible and A−1

β b > 0. We say that the
LP is Π-compatible, and we call Aβ a representative submatrix. We will
assume that the ordering of the columns in Aβ is compatible with Π,
meaning that the i-th column of Aβ comes from AΠi

, i ∈ [n].

Using Cramer’s rule, the following is not hard to establish.

Observation 2.9 Consider a Π-compatible LP of the form (2.8). Then

(i) all determinants det(Aβ) of representative submatrices have the
same (nonzero) sign, and

(ii) the Aβ are the only basis matrices of the LP (2.8).

Proof. Let the n× n basis matrices Aβ and Aβ′ differ in one column,
column i. Then, by Cramer’s rule, the ith component of the solution to
Aβxβ = b and Aβ′xβ′ = b respectively, is given by

(xβ)i =
det(Aiβ)

det(Aβ)
, (xβ′)i =

det(Aiβ′)

det(Aβ′)
,

where the matrix Aiβ is Aβ with the ith column replaced by the vec-
tor b which is the same as Aβ′ with the ith column replaced by b.
Since xβ > 0 for all β, we get that sign(det(Aβ)) = sign(det(Aiβ)) =

sign(det(Aiβ′)) = sign(det(Aβ′)). This proves (i).

For (ii), assume that there is a basis matrix Aγ ∈ R
n×n for a non-

representative set γ, so A−1
γ b > 0. For the time being, assume that γ

25

26 Chapter 2. The P-Matrix Generalized LCP

has its first two elements out of block Π1, no element out of block Π2

and exactly one element out of every other block. Cramer’s rule then
tells us that

det(A1
γ)

det(Aγ)
> 0,

det(A2
γ)

det(Aγ)
> 0.

So sign(det(A1
γ)) = sign(det(A2

γ)). Note that det(A2
γ) = det(A2

β) for

some representative set β and det(A1
γ) = − det(A2

β′) for some other

representative β′ (by swapping the first two columns in A1
γ), imply-

ing sign(det(A2
β)) 6= sign(det(A2

β′)). This is a contradiction since by

Cramer’s rule and (i) we have sign(det(A2
β)) = sign(det(A2

β′)). Thus,

Aγ is not a basis matrix and sign(det(A1
γ)) 6= sign(det(A2

γ)) must hold.
Using this, we can pivot to the next γ (for example the one having two
elements in the first and third block, none in the second and fourth, and
one element in the other blocks) and derive a contradiction by the same
arguments as above. Pivoting to all non-representative sets γ proves
(ii). �

If A fulfills condition (i) of Observation 2.9, we say that A has property
P.

For any c ∈ R
N , a canonical Π-compatible LP is obtained by setting

bi = 1 and

Aij :=

{
1, j ∈ Πi

0, otherwise
, i ∈ [n], j ∈ [N].

In this case, all representative submatrices are equal to the n-dimensional
identity matrix, and the feasible region is the product of n simplices,
where the i-th simplex is defined in the space of variables xj , j ∈ Πi,
via the constraints ∑

j∈Πi

xj = 1, xj ≥ 0.

The LP dual to (2.8) is

maximize bT y
subject to yTA ≤ cT .

(2.10)

Since (2.8) is Π-compatible, an optimal solution x∗ fulfills x∗β > 0 for
some representative set β. By complementary slackness (see for exam-
ple [56]), the constraints corresponding to this set β in yTA ≤ cT are
fulfilled with equality in an optimal solution to (2.10).

26

2.2. Π-Compatible Linear Programming 27

By dropping the requirement that (2.8) is Π-compatible, but still
insisting on A to have property P, we get the following more general
problem: given matrix A with property P and vector c, find a vector
y ∈ R

n such that
cT ≥ yTA, (2.11)

and with the property that for every i ∈ [n], there is a j ∈ Πi satisfying

cj = (yTA)j . (2.12)

We refer to this problem as PGLCP*(A, c), since, according to the fol-
lowing lemma, it is a dual form of the PGLCP.

Lemma 2.13 Let A ∈ R
n×N and c ∈ R

N such that A has property
P. The PGLCP*(A, c) is equivalent to a PGLCP, in the sense that a
solution to one problem yields a solution to the other.

Proof. Given the PGLCP*(A, c) withA partitioned by Π = (Π1, . . . ,Πn),
fix a representative set β and define

GT := A−1
β A,

qT := cT − cTβA
−1
β A.

G is a vertical block P-matrix of type (|Π1|, . . . , |Πn|) which easily fol-
lows from the fact that GT has property P and contains a representative
identity submatrix. We look at the following PGLCP:

w −Gz = q (2.14)

w, z ≥ 0 (2.15)
∏

j∈Πi

wj = 0, i ∈ [n]. (2.16)

Since the z-variables do not appear in the complementarity condition
(2.16), this is actually not a proper PGLCP. But by definition, qβ = 0
and (GT)βi = ei for βi being the unique element in β ∩Πi and ei ∈ R

n

being the i-th unit vector. Consequently, every solution to (2.14) must
satisfy zi = wβi for i ∈ [n]. This means that (2.16) may be replaced
with

zi
∏

j∈Πi

wj = 0, i ∈ [n],

27

28 Chapter 2. The P-Matrix Generalized LCP

making the PGLCP proper.

Given a solution w, z to this PGLCP, a solution y to the PGLCP* is
given by yT = (cTβ−zT)A−1

β . This is because (2.14) gives wT = cT−yTA
and conditions (2.15) and (2.16) then ensure that y is as desired.

Vice versa, given a PGLCP(G, q) we enhance G ∈ R
(N−n)×n by a

representative identity submatrix and q accordingly by n zero entries
at coordinates corresponding to the representative identity submatrix.
Given a solution y to the PGLCP* with A := GT and c := q, a solution
w, z to the (enhanced) PGLCP is given by zT = −yT and wT = cT −
yTA. �

Intuitively, PGLCP* is LP of the form (2.8) ’without a right-hand
side’ and therefore a generalization of Π-compatible linear program-
ming. The generalization is proper, because given a PGLCP* instance
(A, c), it is not always possible to find a right-hand side b such that
A, b, c form a Π-compatible LP. We prove this in Chapter 5, where we
show that b exists if and only if the matrix G, constructed from A as in
the proof above, belongs to the class of hidden K-matrices.

28

Chapter 3

Unique Sink Orientations

The term unique sink orientation (USO) first appears in a paper by
Szabó and Welzl [89]. There, a USO is an edge-orientation of the n-
dimensional hypercube such that every face/subcube of the cube has a
unique sink (a vertex with all edges within the subcube incoming). In
the author’s Master thesis, this concept has been generalized to orien-
tations of grids (to be defined shortly) and it has been shown that the
PGLCP can be mapped to finding the unique sink of a grid USO [78].
This result, which was later published as part of [33, 32], is a generaliza-
tion of the work of Stickney and Watson [87], who reduced the PLCP
to unique sink orientations of cubes.

We show the reduction from PGLCP to grid USO in the setting (2.6)
that is different from the setting in [33, 32] (where we used the PGLCP*
setting of Section 2.2), but more natural in the context of this thesis.
We review the Holt-Klee condition in Section 3.2, and at the end of this
chapter we devote a section to the analysis of special 2-dimensional grid
USOs which we call ladders. We describe an optimal algorithm to find
the sink in a ladder of size 3 and an almost optimal algorithm to find
the sink in a Holt-Klee ladder of general size.

29

30 Chapter 3. Unique Sink Orientations

PSfrag replacements
(

1
0

)

Figure 3.1: The 3-dimensional grid([N],Π) with N = 7 and Π =
({1, 2, 3}, {4, 5}, {6, 7}) and a USO of it.

3.1 Reduction from PGLCP to Grid USO

An n-dimensional grid is given by a partition Π = (Π1, . . . ,Πn) of some
ground set [N] into n blocks. We consciously use the same letters Π, N
and n as in the PGLCP(H, q), since the PGLCP with (N−n)×N matrix
H , partitioned into blocks of columns according to Π = (Π1, . . . ,Πn),
reduces to an n-dimensional grid defined by [N] and Π.

Definition 3.1 The n-dimensional grid([N],Π), spanned by the set [N]
and a partition Π = (Π1, . . . ,Πn) of it with |Πi| ≥ 2 for all i, is the
undirected graph G = (V , E) with

V := {V ⊆ [N]: |V ∩ Πi| = 1, i = 1, . . . , n},
E := {{V, V ′} ⊆ V : |V ⊕ V ′| = 2}.

The vertices naturally correspond to the Cartesian product of the Πi.
The edges in E connect vertices/sets in V that differ in exactly one
component. Every vertex therefore has (N − n) neighbors. See Fig-
ure 3.1 left for an example of a grid. We ask for |Πi| ≥ 2 in the defini-
tion of the grid([N],Π), since a block Πi∗ of size one, holding element
j say, results in a smaller dimensional grid that is equivalent to the
grid([N \ j], (Π1, . . . ,Πi∗−1,Πi∗+1, . . . ,Πn)).

Every subset F ⊆ [N] defines a vertex induced subgrid(F,Π) of the
grid([N],Π) by restricting to vertices V ∈ V for which V ⊆ F (we should
actually also restrict Π to act only on elements of F , but for notational

30

3.1. Reduction from PGLCP to Grid USO 31

simplicity we ask the reader to keep this in mind and leave it as it is).
The subgrid(F,Π) is the empty graph whenever F ∩ Πi = ∅ for some
i. We say that such an F is not Π-valid, and it is Π-valid otherwise.
A nonempty subgrid(F,Π) has less dimensions than the grid([N],Π) if
|F ∩ Πi| = 1 for some i ∈ [n].

Definition 3.2 An edge-orientation ψ of the grid([N],Π) is called a
unique sink orientation (USO) if all nonempty subgrids have unique
sinks w.r.t. ψ.

Grid USOs can in general be cyclic, see Figure 3.1 right for an example.
All 2-dimensional grid USOs are acyclic [33, 32], so the smallest cyclic
grid USO is the one given in Figure 5.2 on page 92. The orientation
given in Figure 3.1 right is special, since it is a smallest cyclic grid USO
with all subcube USOs being acyclic.

We now show how to reduce the PGLCP to grid USO. The repre-
sentative sets β in the PGLCP naturally correspond to the vertices V
in the grid. There is an edge between vertex β and β ′ if and only if β
and β′ differ in exactly one component that belongs to a block Πi, so
βi 6= β′

i. This is in turn the case if and only if, up to reshuffling columns,
the basis matrices B(β) and B(β′) differ in exactly one column. More
precisely, there is a column with index iββ′ in B(β) and a column with
index iβ′β in B(β′), such that removing column iββ′ from B(β) results
in the same matrix as removing column iβ′β from B(β′). Note that
iββ′ = iβ′β if and only if βi = β′

i ± 1.

An orientation ψ of this grid graph is derived according to the fol-
lowing rule, where the notation

β′ ψ→ β

denotes that the orientation ψ induces the edge directed from β ′ to β:

β′ ψ→ β ⇔ (B(β)−1q)iββ′ > 0. (3.3)

In the simpler PLCP setting, where bases and basis matrices are defined
according to Definition 1.5, this can equivalently be stated as

α′ ψ→ α ⇔ (B(α)−1q)i > 0, (3.4)

31

32 Chapter 3. Unique Sink Orientations

where α⊕ α′ = {i}.

Theorem 3.5 The grid-orientation ψ induced by the PGLCP via (3.3)
is a unique sink orientation.

Proof. Since the PGLCP has a unique solution β that fulfillsB(β)−1q >
0, β is the global unique sink with all (N − n) edges incoming. It thus
remains to show that every proper subgrid has a unique sink, which we
do by showing that the orientation of each subgrid is again PGLCP-
induced. Since edges are subgrids, this also proves that each edge is
directed into exactly one direction, so

(B(β)−1q)iββ′ > 0 ⇔ (B(β′)−1q)iβ′β
< 0.

Fix a nonempty subgrid(F,Π), F ⊆ [N], and let β be any ver-
tex in it. We pre-multiply the PGLCP(H, q) by B(β)−1 and get the
PGLCP(H ′, q′). This is a principal pivot transform, transforming the
P-matrix G underlying H into P-matrix G′ underlying H ′, as discussed
at the end of Section 2.1. The PPT rearranges the variables. The grid
orientation arising via (3.3) from the transformed PGLCP is isomor-
phic to the original one. The orientation in the subgrid(F,Π) is then
induced by the PGLCP derived as follows. For all j ∈ [N] \ F delete
the corresponding column in H ′. This column is zero in all entries ex-
cept one, where it is 1 (that’s the reason we did the PPT). Delete the
row from H ′ that contains this 1 and delete the corresponding entry
in q′. The deleted row contains the information how xj is determined
in terms of the other x-variables and a constant in q′. Since xj does
not appear in any other equation, the orientation induced by the re-
sulting (non-standard) sub-GLCP coincides with the orientation of the
subgrid([N] \ j,Π) (because at every basis common to the PGLCP and
the sub-GLCP, the x-variables different from xj have the same values
in the PGLCP as in the sub-GLCP).

The sub-GLCP might be non-standard because we might end up
with only one column in a block, but we need two columns per block
for the complementarity condition to make sense. After deletion of all
columns in [N] \F and the corresponding rows from H ′, the remaining
matrix is a merging of an identity matrix and a matrix G′′, derived from
G′ by deleting rows. If there is only one column left in one block (which
must be a column of G′′ corresponding to a vertical block in G′ that

32

3.1. Reduction from PGLCP to Grid USO 33

has been erased completely), it can be deleted since the corresponding
variable has to be zero by the complementarity condition. This results
in a standard GLCP. And the fact that G′ is a P-matrix immediately
implies that G′′ is a P-matrix. �

The PLCP is a special case of the PGLCP where every block of the
matrix H consists of two columns. Or, in the setting (2.2), every block
of G has one row. The reduction thus works for the PLCP, too, in which
case the grid is a cube.

Thanks to the reduction, finding the solution to a PGLCP is equiv-
alent to finding the sink of a grid USO. Indeed, the fastest algorithms
known to solve PLCP as well as PGLCP are sink-finding algorithms.
We refer the reader to the literature for descriptions and analysis of
algorithms working for general cube [89] and grid [33, 32] USOs. Our
new contribution in this direction is the development of new algorithms
for some special classes of grid USOs in Section 3.3. Moreover, the ap-
plication of the violator space framework described in Chapter 4 results
in a fast algorithm for fixed-dimensional grid USOs.

An interesting problem is to characterize USOs that are PGLCP-
induced. Acyclicity is not required, since there are examples of PLCPs
that reduce to cyclic USOs [87]. But it is known [33, 32], that PGLCP-
induced grid USOs have a simple property known as the Holt-Klee con-
dition. Before we look at this condition, we define the outmap of a grid
USO, a concept which we will need in later sections.

Any USO can be specified by associating each vertex V with its
outgoing edges. Given V and j ∈ [N] \ V , we define V B j to be the
unique vertex V ′ ⊆ V ∪ {j} that is different from V , and we call V ′ the
neighbor of V in direction j. Note that V is a neighbor of V ′ in some
direction different from j.

Definition 3.6 Given an orientation ψ of the grid graph G = (V , E)
determined by the set [N] and its partition Π, the function sψ : V →
2[N], defined by

sψ(V) := {j ∈ [N] \ V :V
ψ→ V B j}, (3.7)

is called the outmap of ψ.

33

34 Chapter 3. Unique Sink Orientations

��

������

����

������

	

��

Figure 3.2: The forbidden non-HK subgrid USOs up to dimension 3.

By this definition, any sink w.r.t. ψ has empty outmap value.

3.2 The Holt-Klee Condition

A set of directed paths from the unique source to the unique sink of
a grid USO is called vertex-disjoint if no two of the paths share any
vertices other than the source or sink. A proof that a grid USO has
a unique source can be found in [33, 32]. We say that a grid USO is
Holt-Klee (HK) if the following definition applies.

Definition 3.8 A grid USO satisfies the Holt-Klee condition if there
are as many vertex-disjoint paths from the unique source to the unique
sink as there are neighbors of the source, and if in addition, every
nonempty subgrid USO satisfies the Holt-Klee condition.

One can show that grid USOs up to 3 dimensions are HK if and only
if no subgrid orientation is one of those given in Figure 3.2 [25, 33, 32].
The leftmost grid orientation in Figure 3.2 is called the double twist,
and the two cubes are the only 3-cube USOs that are not HK [87].

This does not generalize to higher dimensions, so excluding the dou-
ble twist and all cubes that are not HK is not enough for a grid USO
to be HK. The smallest example is the orientation of the grid depicted
in Figure 3.3, where the big arrow indicates the common orientation
of all edges between the left and right subgrid. The orientation itself
is not HK (try to build two vertex-disjoint paths from source to sink,
starting with edges 1 and 2), but all its subgrids are. In other words,
this orientation is a minimal, non-cubical obstruction for the Holt-Klee

34

3.2. The Holt-Klee Condition 35

PSfrag replacements
1

2

Figure 3.3: A minimal non HK 4-dimensional grid USO.

condition in dimension n = 4. The example can be extended to yield a
minimal non-cubical obstruction in any dimension n ≥ 4.

An open question is whether there is a finite family of forbidden
subgrid orientations for given n whose absence makes any n-dimensional
grid USO HK.

Let’s go back to the cone point of view of the PGLCP. Remember
that the columns of basis matrices B(β) of PGLCP(H, q) span comple-
mentary (N − n)-dimensional cones. Further, the existence of a unique
PGLCP solution for all q implies that these cones cover the whole space
and that the intersection of two complementary cones is a lower di-
mensional cone. The dual graph underlying the cone point of view is
derived by interpreting the (N − n)-dimensional complementary cones
as vertices. Two vertices are joined by an edge if the corresponding com-
plementary cones intersect in a (N−n−1)-dimensional cone. This dual
graph is exactly the grid graph we get in the reduction from PGLCP to
grid USO.

In a nondegenerate PGLCP, q is in general position, meaning that it
is not contained in any hyperplane containing a (N−n−1)-dimensional
intersection of two complementary cones. If a vector q is in general
position, we can define an orientation of the dual graph, in which an

35

36 Chapter 3. Unique Sink Orientations

edge joining the neighboring complementary cones K and K ′ is oriented
from K to K ′ if K \K ′ and q are on opposite sides of the hyperplane
containing K∩K ′. The digraph derived that way has a unique sink and
source, which are the cones containing q and −q. In [33, 32] we presented
the proof that these orientations fulfill the Holt-Klee condition. Since
results in [33, 32] are derived in the PGLCP* setting (see Section 2.2),
we give a short argument why the orientation defined in Section 3.1
through Equation (3.3) is in fact the same as the one of the dual graph
just described.

The neighboring complementary cones K and K ′ are spanned by
the columns of the basis matrices B(β) and B(β ′), respectively. Up to
reshuffling columns, B(β) differs from B(β ′) only by the column with
index iββ′ in B(β) (as discussed in the previous section). The vectors
q and B(β){iββ′} (corresponding to K \K ′) lie on opposite sides of the

hyperplane containing the cone spanned by the columns shared by B(β)
and B(β′) (corresponding to K ∩K ′) if and only if (B(β)−1q)iββ′ < 0.
PGLCP-induced grid USOs defined through (3.3) therefore fulfill the
Holt-Klee condition.

The fact that PGLCP-induced USOs are HK might be exploited by
sink-finding algorithms. In the next section, we design such an algo-
rithm for 2-dimensional grids with one dimension fixed to size 2.

3.3 Ladders

The work in this section evolved from a problem posed at the 2nd
Gremo’s Workshop on Open Problems (GWOP) 20041. We abstract
from the PGLCP and focus on the problem of finding a sink in a grid
USO.

A USO is usually implicitly given through a vertex evaluation ora-
cle that returns for any given vertex the orientations of the incident
edges. An optimal algorithm finding the sink in the 1-dimensional
grid([N], (Π1)) can easily be seen to need expected HN vertex evalu-
ations, where HN is the Nth harmonic number: the runtime of the
best deterministic algorithm on the input of uniformly at random dis-

1http://www.ti.inf.ethz.ch/ew/workshops/gwop04/

36

3.3. Ladders 37

tributed USOs can be computed to be HN expected vertex evaluations.
By Yao’s Principle [96], this is a lower bound for the expected worst-
case runtime of the best randomized algorithm. Since the randomized
algorithm that follows a random outgoing edge needs expected HN ver-
tex evaluations (independent of the USO distribution), HN is optimal
in the 1-dimensional grid.

For general grid USO, two sink finding algorithms have been pre-
sented in [33, 32]. Here, we specialize to s-ladders, 2-dimensional grids
with one block of size 2 and the other of size s. By the previous dis-
cussion, this is the simplest nontrivial case of a (non-cubic) grid (see
[89] for algorithms for cube USOs). The goal of this specialization is
to reuse gained knowledge in higher dimensional grids and to show how
HK can be exploited.

This section is structured as follows. After the formal definition
of ladders, we analyze the behavior of a simple but general grid USO
algorithm on them. Then a specific algorithm for ladders is given which
seems to make a lot of sense but surprisingly turns out to be slower
than the simple algorithm. Finally, we present an optimal algorithm for
finding the sink in a 3-ladder and a nearly optimal algorithm for HK
ladder USOs.

Definition 3.9 The s-ladder Ls is the 2-dimensional grid([s + 2],Π)
with Π = (Π1,Π2), |Π1| = 2 and |Π2| = s.

See Figure 3.4 for the example L4 with 4 steps. In general, Ls con-
sists of two complete graphs on s vertices where each vertex in one of
these graphs is connected with exactly one in the other graph. These
connections form the s steps of the ladder.

For the PGLCP, a vertex evaluation oracle can be implemented to
run in time polynomial in the size of the matrix H : returning the orien-
tations of the edges incident to vertex β amounts to computingB(β)−1q.
In case of a ladder, B(β) is a square matrix of dimension s.

37

38 Chapter 3. Unique Sink Orientations

Figure 3.4: The ladder L4 with 4 steps.

3.3.1 Simple Algorithms

Let’s first analyze how the product algorithm, developed for general
grids in [33, 32], behaves on ladders. It removes a random step of
the ladder and recursively evaluates the sink of the resulting subladder
Ls−1. In case this sink is not yet the global sink (its unique incident
edge connecting it to the removed step will tell), the global sink is in
the removed step. This happens with probability 1/s, and to find the
sink of the step, 3/2 evaluations suffice on average. We therefore get
the recurrence

t(s) = t(s− 1) +
3

2s
, (3.10)

with t(0) = 0, for the expected total number of vertex evaluations. This
yields

t(s) =
3

2
Hs, s ≥ 0.

Knowing that the sink of L2 (the 2-cube) can be found with an expected
number of 43/20 vertex evaluations (this is optimal) [89], we can slightly
improve the product algorithm by using

t(2) =
43

20

as a base of the recurrence. This yields

t(s) =
3

2
Hs −

1

10
, s ≥ 2. (3.11)

Another approach to construct an algorithm is via a property of grid
USO. Specialized to ladder USO, it says that for every pair (i, j), 0 ≤
i < 2, 0 ≤ j < s, there is exactly one vertex with i outgoing vertical

38

3.3. Ladders 39

edges and j outgoing horizontal edges [33, 32]. The pair (i, j) is the
refined index of that vertex.

Choose one vertex v at random. If its refined index is (0, j), then a
vertex like v′ in Figure 3.5 can not be the sink, since that would result
in v and v′ both being sinks in the 2-cubical face spanned by them. The
global sink is therefore in the subladder Lj spanned by the j steps that
contain the neighbors of v along its j outgoing edges, see Figure 3.5.
Thus, we recursively evaluate the sink of this subladder and are done.
If j = 0, the subladder is empty and v itself is the global sink.

PSfrag replacements

· · ·

· · ·

Lj

v

v′

Figure 3.5: Case 1: v has refined index (0, j); the global sink is in the
subladder Lj (or equals v if j = 0).

If v’s refined index is (1, j), we know that the global sink is either in
the complete graph Ks not containing v, or in the Kj spanned by the
neighbors of v along its j outgoing edges, see Figure 3.6. Strategy 1 is
to evaluate the sink of the Ks first, and if this didn’t turn up the global
sink, do the Kj afterwards. Strategy 2 proceeds vice versa. Taking into
account that Hm evaluations are necessary and sufficient to deal with
Km, we arrive at the following runtimes of the two strategies.

sink is in Ks sink is in Kj

Strategy 1 Hs Hs +Hj

Strategy 2 Hs +Hj Hj

We choose a mixed strategy resulting from running Strategy 1 with
probability p and Strategy 2 with probability 1 − p. The best p is
obtained when the mixed strategy has the same expected runtime for

39

40 Chapter 3. Unique Sink Orientations

PSfrag replacements

· · ·

· · ·

Kj

Ks

v

Figure 3.6: Case 2: v has refined index (1, j); the global sink is in the
upper Ks or in the lower Kj .

both possible locations of the sink. Therefore, we solve

pHs + (1 − p)(Hs +Hj) = p(Hs +Hj) + (1 − p)Hj,

which gives

p =
Hs

Hs +Hj
,

and the expected runtime of the mixed strategy is

Hs +Hj −
HsHj

Hs +Hj
.

Because any refined index value (i, j) has probability 1/(2s) of appear-
ing, we can summarize the above in the recurrence

t(s) = 1 +
1

2s

s−1∑

j=0

(

t(j) +Hs +Hj −
HsHj

Hs +Hj

)

, (3.12)

with t(0) = 0.

We are unable to solve this recurrence, but a rough calculation shows
that it will probably not improve over the product algorithm, asymp-
totically. Assume we inductively want to prove t(s) ≤ cHs, for some
constant c. For most j, Hj is very close to Hs, so let us argue that

Hs +Hj −
HsHj

Hs +Hj
≈ Hs +Hs −

HsHs

Hs +Hs
=

3

2
Hs.

40

3.3. Ladders 41

In order for the inductive proof to work, we should then have

1 +
1

2s

s−1∑

j=0

(

t(j) +Hs +Hj −
HsHj

Hs +Hj

)

≈ 3

4
Hs +

c

2s

s−1∑

j=0

Hj

≈ 3

4
Hs +

c

2
Hs

≤ cHs,

which gives c ≥ 3/2.

Let us do some numerical evaluations of the bounds in (3.11) and
(3.12). The following table gives some values (all values have been
exactly computed first and then rounded).

s 1 2 3 13 14 50 100
Product 3/2 86/40 2.65 4.670 4.7773 6.65 7.68
Refined Index 3/2 89/40 2.71 4.672 4.7769 6.61 7.62

The product algorithm is still better than the refined index algorithm
for s ≤ 13, but starting from s = 14, refined index wins. The margin
is not very large, though, and it is not clear whether this margin goes
to infinity with s, or whether it is bounded by some constant. Exact
computations of values become very slow for s > 100, and even when
we do all computations in floating-point, Maple2 is slow. For s = 200,
the floating-point computations almost reach their limit; we get 8.72 for
product and 8.65 for refined index.

3.3.2 A better Algorithm for s = 3?

Here is a specific algorithm for s = 3 which seems to make sense. As
in the refined index algorithm, a random vertex is evaluated first, and
depending on its refined index, further actions are taken. Figure 3.7
summarizes the algorithm.

Here are the runtimes in the various cases. As above, we apply the
optimal mixed strategy in cases (1, 1) and (1, 2). In all other cases, we

2http://www.maplesoft.com/

41

42 Chapter 3. Unique Sink Orientations

PSfrag replacements

v

v

v

v

vv

(0, 0)

(0, 1)

(0, 2)

(1, 0)

(1, 1)

(1, 2)

Figure 3.7: Case (0, 0): v is the sink; Case (0, 1): evaluate right column;
Case (0, 2): evaluate right 2-cube; Case (1, 0): evaluate upper row; Case
(1, 1): evaluate lower right vertex first (Strategy 1), or upper row first
(Strategy 2); Case (1, 2): evaluate upper left vertex first (Strategy 1),
or right 2-cube first (Strategy 2).

apply the optimal strategies for rows/columns and the 2-cube.

(0, 0) : 1,

(0, 1) : 1 +
3

2
,

(0, 2) : 1 +
43

20
,

(1, 0) : 1 +
11

6
,

(1, 1) : 1 + 1 +
11

6
− 1 · 11

6
/

(

1 +
11

6

)

= 1 +
223

102
≈ 3.19,

(1, 2) : 1 + 1 +
43

20
− 1 · 43

20
/

(

1 +
43

20

)

= 1 +
3109

1260
≈ 3.47.

42

3.3. Ladders 43

The average of these six values is

43207

16065
≈ 2.69

and equals the expected number of vertex evaluations. Unfortunately,
this number is larger than that obtained from the product algorithm,
so what went wrong? It seems that in cases (0, 1), (0, 2), (1, 0), we can
hardly do better: we know a subgrid containing the sink, but we have
no information about the edge orientations within the subgrid. In this
situation, the generic optimal algorithm for the subgrid should be ap-
plied. In the difficult cases (1, 1) and (1, 2), it is not clear, though, that
it is best to handle the two subgrids that may contain a sink (one of
them a vertex) separately. Apparently, it’s not. Other subdivisions are
depicted in Figure 3.8, but they are worse, as you can check. The prob-

PSfrag replacements

vv

(1, 1) (1, 2)

Figure 3.8: Worse ways of subdividing the possible sink locations into
two subgrids.

lem is therefore to find better or even optimal strategies to deal with
cases (1, 1) and (1, 2). In the following, by solving a linear program, we
will develop an optimal algorithm for the 3-ladder. But first – in order
to keep the LP as small as possible – we define isomorphisms of grids.

3.3.3 Isomorphisms on General Grid USOs

Remember that a vertex in the n-dimensional grid([N],Π) is a set con-
sisting of exactly one element out of each block Πi, i = 1, . . . , n. In the
following, we stick to the bit-model, where we represent such a set by
its N -dimensional characteristic vector, partitioned into n blocks. The
number of bits of a block is the size of the corresponding grid dimension.
Given a USO ψ of the grid([N],Π), the outgoing edges of a vertex V

43

44 Chapter 3. Unique Sink Orientations

are again described by a set of labels in [N], namely the labels given
by the outmap sψ(V), see Definition 3.6. Like vertices, the outmap is
represented in the bit-model by its N -dimensional characteristic vector,
partitioned into n blocks.

Two USOs induced on a grid are isomorphic to each other if one can
be derived from the other by swapping columns and/or rows in the grid.
In the bit-model, these isomorphisms correspond to applying a number
of bit-swaps, where a bit-swap swaps two bits in the same block. This
is what we call an isomorphism of the first kind. Additionally, in case
the grid has dimensions of the same size, isomorphisms of the second
kind are described through swapping whole blocks of bits, i.e., they
correspond to interchanging dimensions of the grid.

As an example take the (3 × 2 × 2)-grid. By this we mean the
grid([N],Π) with N = 7, |Π1| = 3, |Π2| = 2 and |Π3| = 2. A possi-
ble vertex has the form 001|01|10 and we assume that it has outmap
110|00|01. An isomorphism of the first kind might swap the second and
the third bit in the first block while an isomorphism of the second kind
might swap the second and the third block. Combined we get the iso-
morphism which maps the original vertex to 010|10|01 and its outmap
to 101|01|00. In this example, the number of isomorphisms of the first
kind is 3! ∗ 2! ∗ 2! and the number of second kind isomorphisms is 2!,
thus all together 48 possible isomorphisms.

In the special case of the n-dimensional cubical grid, there are 2n∗n!
isomorphisms.

The C++ program isos3 returns all possible isomorphisms in the
2-dimensional array isomorphisms, where an isomorphism is described
through bit-swaps. For example

isomorphisms[2] = [1,2,4,5,-1,-1,-1,-1]

means that applying isomorphism 2 is to swap bits 1 and 2 as well as
bits 4 and 5. The −1’s are there for programming reasons only.

The set of combinatorial USO types is the maximal set of USOs of a
grid that are pairwise non-isomorphic. Considering only isomorphisms
of the first kind, the number of combinatorial types times the number
of isomorphisms is the number of possible USOs on a grid. This is not

3All used C++ programs are available from the author.

44

3.3. Ladders 45

PSfrag replacements

(i) (ii) (iii)

Figure 3.9: Number of combinatorial USO types of Ls.

the case with isomorphisms of the second kind (for example, regarding
only second kind isomorphisms, there are 8 combinatorial USO types of
the 2-cube and two isomorphisms). The following table collects some
values computed by the programs isos and lp generator (to which
we return later). Since we’ll analyze HK orientations shortly, we also
include the number of combinatorial types that are HK.

#Isos #Combs #HK-Combs #Usos

1-cube 2 1 1 2
2-cube 8 2 2 12
3-cube 48 19 17 744
4-cube 384 14614 ? 5541744
d-grid d! 1 1 d!
(3 × 2)-grid 12 11 10 132
(4 × 2)-grid 48 47 40 2256
(5 × 2)-grid 240 231 192 55440
(3 × 3)-grid 72 82 45 5796
(3 × 2 × 2)-grid 48 2330 1322 110760

The number of combinatorial USO types for the 4-cube is due to Schurr
[81]. We restrict our focus to ladders, which are (2 × s)-grids. Isomor-
phisms of the second kind do not apply here (for s 6= 2).

Lemma 3.13 The number of combinatorial USO types on the s-ladder,
c(s), obeys the following recurrence:

c(s) =

s∑

i=1

c(s− i) ∗ i!, c(0) = 1.

Proof. Fix the leftmost edge to go upwards and all edges in the bottom

45

46 Chapter 3. Unique Sink Orientations

row of the ladder to go from left to right. This is indicated by the thick
arrow in Figure 3.9 (i). Every USO that can be achieved by completing
this partial orientation to a USO defines a distinct combinatorial type.
An orientation of the vertical edges gives us a partition of the ladder
into blocks of upward and downward going edges. For example, in
Figure 3.9 (ii), the first block consists of 2, the second of 3 and the
third of 3 up-/downward directed edges. Such a partition is given by its
characterization P := (p1, p2, ..., pk), where pi is the number of vertical
edges in the ith block. Given a characterization, the number of possible
USO completions is P ! := p1! ∗ p2! ∗ . . . ∗ pk!. This can be seen through
Figure 3.9 (iii), where the forced orientations of three further edges are
shown. One can see that the horizontal edges between different blocks
have to be oriented to the right in order to prevent cycles or multiple
sinks in subgrids. Edges connecting two vertices in the same block are
thus the only ones whose orientation is not yet fixed. In block i, there
are pi! possibilities to orient the edges.

All together, the number of combinatorial USO types is
∑

P P !.
Arguing in terms of the formula in the lemma, we have i! possibilities
to orient the edges in the first block of size i (note that the first block
has size at least 1) and then c(s− i) possibilities to orient the remaining
(s− i)-ladder. �

For s = 1, . . . , 6 we get 1, 3, 11, 47, 231, 1303 combinatorial USO
types. Observe that for the 2-ladder – which is the 2-cube – we get
3 combinatorial types in contrast to 2 combinatorial types in the table
above. This is because we ignore isomorphisms of the second kind.

We are not able to give a closed form for the recurrence. Karttunen
points out [46] that the sequence generated by the recurrence could be
the invert transform of the factorial numbers, but he has no proof. The
invert transform is given for example in [2].

3.3.4 Optimal Strategies and Zero-Sum Games

The problem of finding an optimal strategy, w.r.t. the number of ver-
tex evaluations needed to find the sink in a grid USO, can be stated as
a zero-sum game between two players [29]. One player, the algorithm
player, wants to find a probability distribution over the possible algo-

46

3.3. Ladders 47

rithms such that the number of vertex evaluations is minimized with
respect to the underlying USO played by the second player. The sec-
ond player, the adversary, wants to play the USOs according to some
probability distribution maximizing the number of evaluations the al-
gorithm player needs. Using results in game theory, it is possible to
get the optimal strategies for both players by solving a linear program.
Although this LP is in general too big to handle, the methods of Tessaro
[91] allow us to drastically reduce the size of the LP by making use of
isomorphisms and thereby restricting to combinatorial USO types. We
adapted Tessaro’s program for cube USOs to work for grids.

The C++ program lp generator needs as inputs the possible
USOs of the grid (generated with the program grid uso) and all iso-
morphisms (generated with isos, see above). It outputs the LP either
in Maple or cplex format. The latter can be processed by the cplex

solver4 or can be converted (using cplex) to MPS format which in turn
can be processed by Masashi Kiyomi’s exlp solver5. While cplex is
very fast but does not compute with exact arithmetic, exlp is exact but
slow (but still faster than Maple). Here is an overview of the solutions
found:

Optimal expected number of vertex evaluations
Rational value Floating value

1-cube 3/2 1.5
2-cube 43/20 2.15
3-cube 4074633/1369468 2.9753400591
3-cube HK 62386353/21024728 2.9672846659
d-grid Hd

(3 × 2)-grid 10001/3912 2.5564928425
(3 × 2)-grid HK 611/240 2.5458333333
(4 × 2)-grid 28491130033/9987432048 2.8526982608
(4 × 2)-grid HK 4827433/1704792 2.8316844518
(3 × 3)-grid 2.9941171939
(3 × 3)-grid HK 2.9654439873

The LP for the (3 × 3)-grid is already too large to be solved by exlp.
It is remarkable that all grids in the table need less than 3 expected
vertex evaluations (the 1-dimensional d-grid for d ≤ 10).

4http://www.cplex.com
5http://members.jcom.home.ne.jp/masashi777/exlp.html

47

48 Chapter 3. Unique Sink Orientations

Figure 3.10: The eye (left) and the bow (right).

An optimal strategy for the algorithm player is encoded in the solu-
tion to the primal LP. For the 1-cube, the strategy is easy: evaluate one
of the two vertices. If it is the sink stop, else evaluate the second vertex
as well. The strategy for the 2-cube is described in [89]. Not given
there is the strategy for the adversary, which can be derived by solving
the dual LP. Optimally, the adversary chooses an eye (see Figure 3.10)
with probability 1

5 and a bow with probability 4
5 . The strategy for the

3-cube has first been computed by Rote (this was not published, the
paper [89] contains a “personal communication” reference). It has been
verified and analyzed in more detail in [91]. We restrict ourselves to
the optimal strategy for the 3-ladder, optimal strategies for larger grids
seem too difficult to describe.

3.3.5 The 3-Ladder

After presolving, cplex solves the sparse LP consisting of 48 rows, 179
columns and 1073 nonzeros in a few milliseconds. The LP is actually
small enough to be solved by Maple, which yields the rational value
of 10001/3912 for the objective function (expected number of vertex
evaluations) and rational values for the solution values of the variables,
from which an optimal strategy can be read off. The LP is degenerate,
i.e., there exists more than one solution. In fact there are infinitely
many solutions, since every convex combination of solutions is again a
solution (Lemma 3.29 in [91]).

The optimal strategy found is given in form of a game tree [29] in
Figures 3.11 and 3.12, where the latter figure describes the strategy
when the first vertex evaluated is the source.

Going from top to bottom in the game tree, moves of the algorithm

48

3
.3

.
L
a
d
d
e
rs

4
9

263/652

200/26363/263

171/652218/652

582/652 70/652

PSfrag replacements

Figure 3.12

Figure 3.11: An optimal strategy. See Figure 3.12 for the case where the source is evaluated first.

4
9

5
0

C
h
a
p
te

r
3
.

U
n
iq

u
e

S
in

k
O

ri
e
n
ta

ti
o
n
s

226/652

110/226116/226 84/226 142/226

110/652316/652

Figure 3.12: The first vertex evaluated is the source.

5
0

3.3. Ladders 51

PSfrag replacements

0 10
163

11
163

22
163

20
163 0 91

326 0

20
163

11
163

47
326

Figure 3.13: The 11 combinatorial USO types of the 3-ladder and their
probabilities to be chosen by the adversary playing an optimal strategy.

player and the adversary alternate, starting with the algorithm player
choosing a first vertex to evaluate (the bottom left vertex in the 3-
ladder). Moves of the algorithm player not labeled by a probability are
chosen with probability 1. Since the figures represent the point of view
of the algorithm player, moves of the adversary have no probability: the
tree shows how to react to any possible USO. In the game tree of the
dual LP, the roles of the players are interchanged and the adversary’s
optimal strategy is visualized (not shown here). To save space, once the
sink is determined, its evaluation is not given in the figure.

By our restriction to combinatorial types, the USOs given in the
figures are actually classes of isomorphic USOs, thus choosing the vertex
at the bottom left in the first move is equivalent to choosing any vertex.
Generally, if the probability to evaluate a vertex is p in the game tree,
then p is uniformly distributed among all vertices in the same orbit (see
[91]). Vertices are in the same orbit if they are indistinguishable with
respect to the partial combinatorial USO type determined so far.

An optimal strategy for the adversary is to choose a combinatorial
USO type with its corresponding probability given in Figure 3.13. These
probabilities can be read off a solution to the dual LP. The strategy
shown is Maple’s solution. Again, there are infinitely many solutions
to the dual LP. Note that every optimal strategy of the adversary is a

51

52 Chapter 3. Unique Sink Orientations

200 / 652

53 / 652

72 / 652

38 / 652

70 / 652

46 / 652

Algo 8

Algo 7

bility

63 / 652

Algo 6

Algo 5

Algo 4

Algo 3

Algo 2

Algo 1 110 / 652

Proba−

Figure 3.14: The behavior of the eight deterministic algorithms at the
six partial USOs at which the randomized algorithm chooses among
several next moves with certain probabilities.

best response to every optimal strategy of the algorithm player and vice
versa.

The strategy (or the randomized algorithm) of Figures 3.11 and 3.12
can be described in terms of eight deterministic algorithms that are
chosen by certain probabilities. The deterministic algorithms behave
exactly as given in the figures, except that they branch deterministically
at vertices in the tree having more than one choice for the next move.
Figure 3.14 shows the choices of the algorithms at these partial USOs
and the probabilities with which an algorithm is chosen.

Let matrix M hold at position Mij the number of vertex evaluations
algorithm i needs to find the sink in the combinatorial USO j (enumerat-
ing them from left to right and top to bottom in Figure 3.13). Moreover,
let x be the vector holding at position i the probability of taking deter-
ministic algorithm i (the probability given in Figure 3.14) and y be the

52

3.3. Ladders 53

vector holding at position j the probability that the adversary chooses
the combinatorial USO j (the probability given in Figure 3.13), both
vectors of appropriate size. Then one can verify that xTMy is indeed
10001/3912 = 2.556, where M is the following matrix.

11/4 11/4 11/4 8/3 31/12 5/2 29/12 11/4 8/3 29/12 5/2

11/4 31/12 8/3 5/2 8/3 31/12 31/12 31/12 7/3 11/4 5/2

11/4 31/12 17/6 5/2 8/3 31/12 31/12 31/12 7/3 31/12 5/2

29/12 9/4 7/3 17/6 8/3 31/12 31/12 11/4 5/2 29/12 5/2

25/12 7/3 2 31/12 5/2 31/12 8/3 29/12 11/4 5/2 31/12

2 5/2 2 31/12 29/12 8/3 8/3 7/3 11/4 5/2 31/12

29/12 17/6 5/2 29/12 9/4 29/12 5/2 29/12 11/4 8/3 11/4

7/3 5/2 5/2 29/12 7/3 5/2 5/2 7/3 17/6 8/3 11/4

We remark that the eight deterministic algorithms actually don’t behave
purely deterministically. The first vertex to evaluate is chosen in every
algorithm with probability 1/6 and in partial USOs where there is more
than one vertex in the orbit, the next one is chosen u.a.r. among all of
them. For example in Figure 3.12, an algorithm that branches left after
the very first vertex evaluation would evaluate one of the two marked
vertices in the following figure with probability 1/2 each (the single
marked vertex in Figure 3.12 is a representative for the two vertices in
the same orbit).

We see that an optimal algorithm is hard to describe already for
small ladders. By plugging in t(3) = 10001/3912 as a base case for the
recurrence (3.10)

t(s) = t(s− 1) +
3

2s
,

that we derived on page 38 for the product algorithm, gives

t(s) =
3

2
Hs −

757

3912
.

53

54 Chapter 3. Unique Sink Orientations

It remains open whether an optimal algorithm finds the sink in asymp-
totically less than the 3

2Hs vertex evaluations needed by the product
algorithm.

3.3.6 Strategies for the s-Ladder

Since describing a strategy for general ladders is too complicated, we
restrict our analysis to the following three distributions of the adversary:

(D1) Only combinatorial USO types that are HK are played by the
adversary.

(D2) Uniform distribution (every combinatorial USO type has the same
probability to be played by the adversary).

(D3) Adversary chooses HK combinatorial USO types uniformly at ran-
dom.

For the following analysis, we assume that the upper horizontal edges are
all directed from left to right and the leftmost vertical edge is directed
upwards. It is easy to see that a combinatorial USO of a ladder is HK
if and only if it has at most two blocks, one of upward the other one of
downward going edges: as soon as this is not the case, the double twist
of Figure 3.2 appears and the ladder is no longer HK. The number of
downward going edges is denoted by k = 0 . . . s−1. See the next figure.

s k 1

We look at the following three algorithms, all of which evaluate a
random vertex in the first step:

54

3.3. Ladders 55

(A1) If the vertical edge of the evaluated vertex is outgoing, follow it
and evaluate the corresponding edge-neighbor. If it is incoming,
evaluate a random neighbor reachable through outgoing horizontal
edges. Repeat this strategy.

(A2) If the vertical edge of the evaluated vertex is outgoing, jump to
a vertex antipodal in the 2-cubical face spanned by the vertical
edge and a random outgoing horizontal edge (if there is no outgo-
ing horizontal edge, just follow the vertical edge). If the vertical
edge is incoming, evaluate a random neighbor reachable through
outgoing horizontal edges. Repeat this strategy.

(A3) Proceed as in (A2). If there is more than one possible vertex to
be evaluated next, choose randomly one that has fewest incoming
edges evaluated so far. Repeat this strategy.

Here are some results.

(A1) (A2) (A3)
(D1) Hs + 3/2 − 1/s ? ?
(D2) ? ? Optimal for s ≤ 4
(D3) ≤ Hs + 3/2 − 1/s ≤ Hs + 3/2 − 1/s Optimal for s ≤ 4

The expected number of vertex evaluations (runtime) of (A1) on HK
ladders depends only on the (adversary’s) choice of k. For k = 0 it is
Hs + 1/2. For k > 0 we distinguish between start vertices in one of the
four areas given in the following figure. If the first vertex evaluated is

s k 1

the one connected to the jth step in the upper left area (j > k), then

55

56 Chapter 3. Unique Sink Orientations

the expected number of vertex evaluations is given by the recurrence

t(j) = 1 +
1

j − 1

j−1
∑

i=k+1

t(i) +
1

j − 1

k∑

i=1

(1 +Hk).

So (j−1) · t(j)− (j−2) · t(j−1) = 1+ t(j−1) holds for j ≥ k+2 which
implies t(j) = 1

j−1 + t(j − 1). This results in t(j) = Hj−1 + 2 for j > k.

Given this, the runtime for start vertices in the other areas are easy
to derive. Since the starting vertex is picked uniformly at random, the
overall runtime is

T (s) =
1

2s
(

upper left
︷ ︸︸ ︷
s∑

i=k+1

t(i) +

s∑

i=k+1

(1 + t(i))

︸ ︷︷ ︸

lower left

+

upper right
︷ ︸︸ ︷

k∑

i=1

(1 +Hk)+

k∑

i=1

Hk

︸ ︷︷ ︸

lower right

)

=
1

s

s∑

i=k+1

t(i) +
k

s
Hk +

1

2

=
1

s

s∑

i=k+1

(Hi−1 + 2) +
k

s
Hk +

1

2

=
1

s
(sHs−1 − kHk − (s− 1) + k) +

k

s
Hk +

2(s− k)

s
+

1

2

= Hs−1 +
1 − k

s
+

3

2

= Hs −
k

s
+

3

2
,

where we use that
∑b
i=aHi = (b+ 1)Hb − aHa − b+ a. This is largest

for k = 1 which gives us the worst case runtime of Hs + 3/2 − 1/s on
any HK ladder.

A lower bound for the runtime on a HK ladder is derived as follows.
Let the adversary choose the distribution described by the following
construction: choose an orientation of the 1-dimensional s-grid (which
is the complete graph on s vertices) uniformly at random among all pos-
sible orientations. Let the upper and lower part of the s-ladder be this
orientation and orient all vertical edges upwards, except the one forming
the step connecting the two sinks in the s-grids. This edge is directed

56

3.3. Ladders 57

upwards or downwards with probability 1/2. The resulting orientation
is a HK ladder USO (k is 0 or 1). An optimal deterministic algorithm
finds the sink by evaluating either the lower or upper s-grid first and
then, if necessary (with probability 1/2), jumping to the other side for
one last vertex evaluation. This results in an optimum of Hs + 1/2
vertex evaluations (see also the discussion on page 37). By using Yao’s
Principle [96] again, this is a lower bound for an optimal randomized
algorithm finding the sink in a HK s-ladder. Our worst case runtime of
Hs + 3/2− 1/s for HK ladders is therefore close to optimum. However,
it is not optimal, which we can easily check by comparing to the values
given in the table on page 47.

For general (not HK) ladders, the distribution where the adversary
orients all horizontal edges from left to right and all vertical edges with
probability 1/2 downwards or upwards, yields a runtime of Hs · 3/2 for
(A1). So (A1) is not better than the product algorithm in general.

Algorithm (A2) is harder to analyze, since its runtime depends on
the adversary’s distribution (not only on k). If the HK ladders are
chosen u.a.r., then its runtime can be computed (but the formula is
quite messy) and computer experiments suggest that (A2) performs
slightly better than (A1) on HK ladders chosen u.a.r.

By solving a linear program as we did it for 3-ladders, we computed
the optimal strategy for 4-ladders when the adversary chooses the uni-
form distribution, once over all ladders and once only over HK ladders.
It is interesting that in both cases, (A3) is an optimal algorithm to find
the sink in s-ladders with s ≤ 4. We don’t know whether this remains
true for s > 4.

57

58 Chapter 3. Unique Sink Orientations

58

Chapter 4

Violator Spaces

Sharir and Welzl introduced an abstract framework for optimization
problems, called LP-type problems or also generalized linear program-
ming problems [84], which proved useful in algorithm design. Here we
present the new framework of violator spaces, introduced by Matoušek
and Škovroň in [85]. Violator spaces form, as we believe, a simpler and
more natural framework and they constitute a proper generalization of
LP-type problems. We show that grid USOs fit into this framework
and that Clarkson’s randomized algorithms for low-dimensional linear
programming work in the context of violator spaces. Via the reduction
from PGLCP to grid USO (Section 3.1), we obtain the fastest known
algorithm for the PGLCP with a constant number of blocks.

4.1 LP-Type Problems

An (abstract) LP-type problem is given by a finite set H of constraints
and a value w(G) for every subset G ⊆ H . The values can be real
numbers or, for technical convenience, elements of any other linearly
ordered set. Intuitively, w(G) is the minimum value of a solution that
satisfies all constraints in G. The assignment G 7→ w(G) has to obey
the axioms in the following definition.

59

60 Chapter 4. Violator Spaces

Definition 4.1 An abstract LP-type problem is a quadruple

(H,w,W,≤),

where H is a finite set, W is a set linearly ordered by ≤, and w: 2H →W
is a mapping satisfying the following two conditions for all F ⊆ G ⊆ H:

Monotonicity: w(F) ≤ w(G), and
Locality: if w(F) = w(G) and w(G) < w(G ∪ {h})

for h ∈ H, then w(F) < w(F ∪ {h}) holds.

As our running example, we will use the smallest enclosing ball prob-
lem, where H is a finite point set in R

d and w(G) is the radius of the
smallest ball that encloses all points of G. In this case monotonicity is
obvious, while verifying locality requires the nontrivial but well-known
geometric result that the smallest enclosing ball is unique for every set.

It seems that the order ≤ of subsets is crucial; after all, LP-type
problems model optimization problems, and indeed, the subexponen-
tial algorithm for linear programming and other LP-type problems [57]
heavily relies on such an order.

A somewhat deeper look reveals that we often only care whether
two subsets have the same value, but not how they compare under the
order ≤. The following definition is taken from [84]:

Definition 4.2 Consider an abstract LP-type problem (H,w,W,≤). We
say that B ⊆ H is a basis if for all proper subsets F ⊂ B we have
w(F) 6= w(B). For G ⊆ H, a basis of G is an inclusion-minimal subset
B of G with w(B) = w(G).

We observe that a minimal subset B ⊆ G with w(B) = w(G) is
indeed a basis.

Solving an abstract LP-type problem (H,w,W,≤) means to find a
basis of H . In the smallest enclosing ball problem, a basis of H is a
minimal set B of points such that the smallest enclosing ball of B has
the same radius (and is in fact the same) as the smallest enclosing ball
of H , w(B) = w(H).

In defining bases, and in saying what it means to solve an LP-type
problem, we therefore do not need the order ≤. This is formalized by the

60

4.1. LP-Type Problems 61

new framework of violator spaces, defined in Section 4.2. Intuitively, a
violator space is an LP-type problem without order. This generalization
of LP-type problems is proper, and we can exactly characterize the
violator spaces that “are” LP-type problems [31, 30].

Probably the most surprising insight is that Clarkson’s algorithms
[11] work for violator spaces of fixed dimension, leading to an expected
linear-time algorithm for “solving” the violator space. This is shown in
Section 4.3. Clarkson’s algorithms were originally developed for linear
programs with small dimension. They can be generalized for LP-type
problems [35, 9]. The fact that the scheme also works for violator spaces
may come as a surprise since the structure of violator spaces is not
acyclic in general (in contrast to LP-type problems). Actually, it turns
out that problems effectively solvable by Clarkson’s algorithms are in a
well-defined sense exactly the violator spaces [86]; see Property 4.15 for
a precise formulation.

In Section 4.4 we show that any grid USO gives rise to a violator
space, but not to an LP-type problem in general. The sink of a grid USO
can thus be found by solving the violator space, for example with Clark-
son’s algorithms. A concrete new result is obtained by applying this to
the PGLCP. Since any PGLCP gives rise to a unique sink orientation
(Theorem 3.5), we may use violator spaces and Clarkson’s algorithms to
solve the problem in expected linear time in the (polynomially solvable)
case of a fixed number of blocks. This is optimal and beats all previous
algorithms.

A unique sink orientation can be cyclic and we show that a cyclic
orientation gives rise to a cyclic violator space and does therefore not
fit into the LP-type framework. Unique sink orientations are thus non-
trivial examples of possibly cyclic violator spaces. We are confident
that more applications of violator spaces that are not subsumed by the
LP-type framework will be discovered in the future.

61

62 Chapter 4. Violator Spaces

4.2 The Violator Space Framework

Let (H,w,W,≤) be an abstract LP-type problem. It is natural to define
that a constraint h ∈ H violates a set G ⊆ H of constraints if

w(G ∪ {h}) > w(G).

For example, in the smallest enclosing ball problem, a point h violates a
set G if it lies outside of the smallest ball enclosing G (which is unique).

Definition 4.3 The violator mapping of (H,w,W,≤) is defined by
V(G) = {h ∈ H :w(G ∪ {h}) > w(G)}. Thus, V(G) is the set of all
constraints violating G.

It is shown in [31, 30] that the knowledge of V(G) for all G ⊆ H
is sufficient to describe the “structure” of an LP-type problem. That
is, while we cannot reconstruct W , ≤, and w from this knowledge,
it is natural to regard two LP-type problems with the same mapping
V: 2H → 2H as isomorphic. Indeed, the algorithmic primitives needed
for implementing the Sharir-Welzl algorithm and the other algorithms
for LP-type problems mentioned above can be phrased in terms of test-
ing violation (does h ∈ V(G) hold for a certain set G ⊆ H?), and they
never deal explicitly with the values of w.

We now introduce the notion of violator space:

Definition 4.4 A violator space is a pair (H,V), where H is a finite
set and V is a mapping 2H → 2H such that

Consistency: G ∩ V(G) = ∅ holds for all G ⊆ H, and
Locality: for all F ⊆ G ⊆ H, if G ∩ V(F) = ∅,

then V(G) = V(F).

A basis of a violator space is defined in analogy to a basis of an
LP-type problem.

Definition 4.5 Consider a violator space (H,V). We say that B ⊆ H
is a basis if for all proper subsets F ⊂ B we have B ∩ V(F) 6= ∅. For
G ⊆ H, a basis of G is a minimal subset B of G with V(B) = V(G).

62

4.2. The Violator Space Framework 63

Observe that a minimal subset B ⊆ G with V(B) = V(G) is indeed
a basis: Assume for contradiction that there is a set F ⊂ B such that
B ∩ V(F) = ∅. Locality then yields V(B) = V(F) = V(G), which
contradicts minimality of B.

In [31, 30] it is shown that an abstract LP-type problem (H,w,W,≤)
is, in a natural sense, isomorphic to an acyclic violator space (H,V) with
V being the violator mapping. We now prepare to define the notion of
an acyclic violator space. The example of a cyclic violator space at
the end of this section then shows that violator spaces are a proper
generalization of LP-type problems.

We fix a violator space (H,V). The set of all bases in (H,V) will be
denoted by B.

Definition 4.6 B,C ∈ B are equivalent, B ∼ C, if V(B) = V(C).

Clearly, the relation ∼ defined on B is an equivalence relation. The
equivalence class containing a basis B will be denoted by [B]. The
following definition of an ordering of the equivalence classes is needed
for the notion of acyclicity in violator spaces.

Definition 4.7 For F,G ⊆ H in a violator space (H,V), we say that
F ≤0 G (F is locally smaller than G) if F ∩V(G) = ∅. For equivalence
classes [B], [C] ∈ B/∼, we say that [B] ≤0 [C] if there exist B′ ∈ [B]
and C ′ ∈ [C] such that B′ ≤0 C

′.

The intuition of the locally-smaller notion comes from LP-type prob-
lems: if no element of F violates G, then G ∪ F has the same value as
G (this is formally proved in [31, 30]), and monotonicity yields that
value-wise, F is smaller than or equal to G.

Note that in the definition of [B] ≤0 [C] we do not require B′ ≤0 C
′

to hold for every B′ and C ′. It may happen that B′ 6≤0 C
′ for some

bases B′ and C ′. However, C ′ ≤0 B
′ cannot hold, as one can check.

We are now ready to define acyclic violator spaces.

63

64 Chapter 4. Violator Spaces

�

�

�

Figure 4.1: A cyclic violator space.

Definition 4.8 Let the relation ≤1 on the equivalence classes be the
transitive closure of ≤0. The relation ≤1 is clearly reflexive and tran-
sitive. If it is antisymmetric, we say that the violator space is acyclic,
and we define the relation ≤ as an arbitrary linear extension of ≤1.

To show that acyclicity need not always hold, we conclude this Sec-
tion with an example of a cyclic violator space. We begin with an
intuitive geometric description, see Figure 4.1, where we consider a tri-
angle without the center point. We say that one point of the triangle is
“locally smaller” than another if it is farther clockwise with respect to
the center. The constraints in our violator space are the three halfplanes
f, g, h.

The locally smallest point within each halfplane is marked, and a
halfplane violates a set of halfplanes if it does not contain the locally
smallest point in their intersection.

Now we specify the corresponding violator space formally. We have
H = {f, g, h}, and V is given by the following table:

G ∅ f g h f, g f, h g, h f, g, h
V(G) f, g, h h f g h g f ∅

This (H,V) is really a violator space, since we can easily check both
consistency and locality. The bases are ∅, one-element sets, and H . We

64

4.3. Clarkson’s Algorithms 65

have {f} ≤0 {h} ≤0 {g} ≤0 {f}, but no two of the one-element bases
are equivalent; i.e., ≤1 is not antisymmetric.

4.3 Clarkson’s Algorithms

We show that Clarkson’s randomized reduction scheme, originally de-
veloped for linear programs with many constraints and few variables,
actually works for general (possibly cyclic) violator spaces. The two
algorithms of Clarkson involved in the reduction have been analyzed
for LP and LP-type problems before [11, 35, 9]. The analysis we give
below is almost identical on the abstract level. Our new contribution is
that the combinatorial properties underlying Clarkson’s algorithms also
hold for violator spaces.

We start off by deriving these combinatorial properties. The analysis
of Clarkson’s reduction scheme is included for completeness. We note
that the Sharir-Welzl algorithm is also applicable for violator spaces in
a straightforward way. However, the most obvious translation of this
algorithm to the setting of violator spaces is not even guaranteed to
finish, since for a general violator space it may run in a cycle and the
subexponential analysis thus breaks down.

4.3.1 Violator Spaces revisited

We recall that an abstract LP-type problem is defined by a quadruple
(H,w,W,≤). In this subsection we will view a violator space as an “LP-
type problem without the order ≤”, i.e., we will only care whether two
subsets F and G, F ⊆ G ⊆ H , have the same value, but not how they
compare under the order ≤. It turns out that the order is irrelevant for
Clarkson’s algorithms.

Even without an order, we can talk about monotonicity in violator
spaces:

Lemma 4.9 Any violator space (H,V) satisfies monotonicity defined
as follows:

65

66 Chapter 4. Violator Spaces

Monotonicity: V(F) = V(G) implies V(F) = V(E) = V(G)
for all sets F ⊆ E ⊆ G ⊆ H.

Proof. Assume V(E) 6= V(F),V(G). Then locality yields ∅ 6= E ∩
V(F) = E ∩ V(G) which contradicts consistency. �

Recall Definition 4.5: a basis is a set B satisfying B ∩ V(F) 6= ∅ for
all proper subsets F of B. A basis of G is an inclusion-minimal subset of
G with the same violators. This can be used to prove Observation 4.10,
well-known to hold for LP-type problems [35].

Observation 4.10 Let (H,V) be a violator space. For G ⊆ H and all
h ∈ H, we have

(i) V(G) 6= V(G ∪ {h}) if and only if h ∈ V(G), and

(ii) V(G) 6= V(G \ {h}) if and only if h is contained in every basis of
G.

An element h such that (ii) holds is called extreme in G.

Proof. (i) If h /∈ V(G), we get V(G) = V(G ∪ {h}) by locality. If
h ∈ V(G), then V(G) 6= V(G ∪ {h}) is a consequence of consistency
applied to G ∪ {h}. (ii) If V(G) = V(G \ {h}), there is a basis B of
G \ {h}, and this basis, which does not contain h, is also a basis of
G. Conversely, if there is some basis B of G not containing h, then
V(G) = V(G \ {h}) follows from monotonicity (Lemma 4.9). �

We are particularly interested in violator spaces with small bases.

Definition 4.11 Let (H,V) be a violator space. The size of a largest
basis is called the combinatorial dimension δ = δ(H,V) of (H,V).

Observation 4.10 implies that in a violator space of combinatorial
dimension δ, every set has at most δ extreme elements. This in turn
yields a bound for the expected number of violators of a random subset
of constraints:

66

4.3. Clarkson’s Algorithms 67

Lemma 4.12 Let (H,V) be a violator space of combinatorial dimension
δ and W ⊆ H some fixed set. Let vr be the expected number of violators
of the set W ∪R, where R ⊆ H \W is a random subset of size r < N =
|H |. Then

vr ≤ δ
N − r

r + 1
.

The lemma can be proved using the Sampling Lemma of [36]. We give
an independent proof here.

Proof. By definition of vr and Observation 4.10

(|H \W |
r

)

vr =
∑

R⊆H\W
|R|=r

∑

h∈(H\W)\R

[h violates W ∪R]

=
∑

R⊆H\W
|R|=r

∑

h∈(H\W)\R

[h is extreme in W ∪ (R ∪ {h})].

Here [A] is the indicator variable for the event A that has value 1 if A
holds and 0 otherwise.

Substituting Q for R ∪ {h} and using the fact that any set has at
most δ extreme elements, we can rewrite this as

(|H \W |
r

)

vr =
∑

Q⊆H\W
|Q|=r+1

∑

h∈Q

[h is extreme in W ∪Q]

≤
∑

Q⊆H\W
|Q|=r+1

δ =

(|H \W |
r + 1

)

δ.

This yields vr ≤ δ(|H \W | − r)/(r + 1), and the lemma follows. �

4.3.2 The Trivial Algorithm

Given a violator space (H,V) of combinatorial dimension δ, the goal is
to find a basis of H . For this, we assume availability of the following
primitive, which we use for sets G of size at most δ.

67

68 Chapter 4. Violator Spaces

Primitive 4.13 Given G ⊆ H and h ∈ H \ G, decide whether h ∈
V(G).

Given this primitive, a basis of H can be found in a brute-force
manner by going through all sets of size at most δ, testing each of them
for being a basis of H . More generally, B ⊆ G is a basis of G if and
only if

h ∈ V(B \ {h}), for all h ∈ B, and
h /∈ V(B), for all h ∈ G \B.

Consequently, the number of times the primitive needs to be invoked in
order to find a basis of H (|H | = N) is at most

N
δ∑

i=0

(
N

i

)

= O(N δ+1).

The next two subsections show that this can be substantially improved.

4.3.3 Clarkson’s First Algorithm

Fix a violator space (H,V) of combinatorial dimension δ, implicitly
specified through Primitive 4.13. Clarkson’s first algorithm calls Clark-
son’s second algorithm (Basis2) as a subroutine. Given G ⊆ H , both
algorithms compute a basis B of G.

Basis1(G):
(* computes a basis B of G *)
IF |G| ≤ 9δ2 THEN

RETURN Basis2(G)
ELSE

r := bδ
√

|G|c
W := ∅
REPEAT

choose R to be a random r-element subset of G \W
C := Basis2(W ∪R)
V := {h ∈ G \ C:h ∈ V(C)}
IF |V| ≤ 2

√

|G| THEN
W := W ∪ V

68

4.3. Clarkson’s Algorithms 69

END

UNTIL V = ∅
RETURN C

END

Assuming Basis2 is correct, this algorithm is correct as well: if B
is a basis of W ∪ R ⊆ G that in addition has no violators in G, B is
a basis of G. Moreover, the algorithm augments the working set W at
most δ times, which is guaranteed by the following observation.

Observation 4.14 If C ⊆ G and G∩V(C) 6= ∅, then G∩V(C) contains
at least one element from every basis of G.

We remark that the condition resulting from Observation 4.14 can
be used instead of locality in the definition of violator spaces. More
precisely, the following is proved in [86].

Property 4.15 Consider a set H and a mapping V : 2H → 2H , where

(i) V(G) ∩G = ∅ for every G ⊆ H, and

(ii) if a set C ⊆ G satisfies G ∩ V(C) 6= ∅, then G ∩ V(C) contains
at least one element from every inclusion-minimal subset B of G
with V(B) = V(G).

Then (H,V) is a violator space.

Proof of Observation 4.14. Let B be a basis of G. Assuming

∅ = B ∩G ∩ V(C) = B ∩ V(C),

consistency yields C ∩ V(C) = ∅, implying (B ∪ C) ∩ V(C) = ∅. From
locality and monotonicity (Lemma 4.9), we get

V(C) = V(B ∪ C) = V(G),

meaning that G ∩ V(G) = G ∩ V(C) = ∅, a contradiction. �

69

70 Chapter 4. Violator Spaces

It is also clear that Basis2 is called only with sets of size at most
3δ
√

|G|. Finally, the expected number of iterations through the REPEAT
loop is bounded by 2δ: by Lemma 4.12 (applied to (G,V|G), where V|G
is V restricted to elements inG) and the Markov inequality, the expected
number of calls to Basis2 before we next augment W is bounded by 2.

Lemma 4.16 Algorithm Basis1 computes a basis of G with an ex-
pected number of at most 2δ|G| calls to Primitive 4.13, and an expected
number of at most 2δ calls to Basis2, with sets of size at most 3δ

√

|G|.

4.3.4 Clarkson’s Second Algorithm

This algorithm calls the trivial algorithm as a subroutine. Instead of
adding violated constraints to a working set, it gives them larger prob-
ability of being selected in further iterations. Technically, this is done
by maintaining G as a multiset, where µ(h) denotes the multiplicity of
h (we set µ(F) :=

∑

h∈F µ(h)). Sampling from G is done as before,
imagining that G contains µ(h) copies of the element h.

Basis2(G):
(* computes a basis B of G *)
IF |G| ≤ 6δ2 THEN

RETURN Trivial(G)
ELSE

r := 6δ2

REPEAT

choose random R ∈
(
G
r

)

C := Trivial(R)
V := {h ∈ G \ C:h ∈ V(C)}
IF µ(V) ≤ µ(G)/3δ THEN
µ(h) := 2µ(h), h ∈ V

END

UNTIL V = ∅
RETURN C

END

70

4.3. Clarkson’s Algorithms 71

Here Trivial(G) refers to calling the brute-force search algorithm
described below Primitive 4.13.

Invoking Lemma 4.12 again (which also applies to multisets as we
use them), we see that the expected number of calls to Trivial before
we next reweight elements (a successful iteration), is bounded by 2. It
remains to bound the number of successful iterations.

Lemma 4.17 Let k be a positive integer. After kδ successful iterations,
we have

2k ≤ µ(B) ≤ |G|ek/3,
for every basis B of G. In particular, k < 3 ln |G|.

Proof. Every successful iteration multiplies the total weight of ele-
ments in G by at most (1 + 1/3δ), which gives the upper bound (not
only for µ(B) but actually for µ(G)). For the lower bound, we use
Observation 4.14 again to argue that each successful iteration doubles
the weight of some element in B, meaning that after kδ iterations, one
element has been doubled at least k times. Because the lower bound
exceeds the upper bound for k ≥ 3 ln |G|, the bound on k follows. �

Summarizing, we get the following lemma.

Lemma 4.18 Algorithm Basis2 computes a basis of G with an ex-
pected number of at most 6δ|G| ln |G| calls to Primitive 4.13, and ex-
pected number of at most 6δ ln |G| calls to Trivial, with sets of size
6δ2.

4.3.5 Combining the Algorithms

Theorem 4.19 Using a combination of the above two algorithms, a ba-
sis of H in a violator space (H,V) can be found by calling Primitive 4.13
expected

O
(

δN + δO(δ)
)

many times.

71

72 Chapter 4. Violator Spaces

Proof. Using the above bound for the trivial algorithm, Basis2 can be
implemented to require an expected number of at most

O
(

δ log |G|(|G|+ δO(δ))
)

calls to the primitive. Applying this as a subroutine in Basis1(H) with
|H | = N , |G| is bounded by 3δ

√
N , and we get an overall expected

complexity of

O
(

δN + δ2(logN(δ
√
N + δO(δ)))

)

in terms of the number of calls to Primitive 4.13. The terms δ2 logN δ
√
N

and δ2 logN δO(δ) are asymptotically dominated by either δN or δO(δ),
and we get the simplified bound of O

(
δN + δO(δ)

)
. �

4.4 Grid USO as Models for Violator Spaces

We show in this section that the problem of finding the sink in a USO
of the n-dimensional grid([N],Π) can be reduced to the problem of
finding the (unique) basis of a violator space (H,V) with H = [N] and
combinatorial dimension n. For a better understanding, we recommend
to refresh the definitions of grid, subgrid, USO and outmap, given in
Section 3.1 starting on page 30.

A vertex J in the grid graph is a subset of [N] consisting of one
element out of each block Πi. There is an edge between two vertices J
and J ′ if and only if J and J ′ differ in exactly one element. In order
to reduce a grid USO ψ, we need the outmap sψ(J) of a vertex J . It is
important that a sink w.r.t. ψ has empty outmap value.

Let us fix a USO ψ of the n-dimensional grid graph G = (V , E).
Given a Π-valid subset G ⊆ [N] (a subset consisting of at least one
element out of each block Πi), we define sink(G) ∈ V to be the unique
sink vertex in the subgrid(G,Π). For a subset G that is not Π-valid, let

Ḡ :=
⋃

i:G∩Πi=∅

Πi.

Thus Ḡ is the set of elements occurring in blocks of Π disjoint from G.

72

4.4. Grid USO as Models for Violator Spaces 73

Definition 4.20 For G ⊆ [N], define

V(G) =

{
sψ(sink(G)), if G is Π-valid
Ḡ, if G is not Π-valid.

Theorem 4.21 The pair ([N],V) from Definition 4.20 is a violator
space of combinatorial dimension n. Moreover, for all Π-valid G ⊆ [N],
the unique sink of the subgrid(G,Π) corresponds to the unique basis of
G in ([N],V).

Proof. For every G ⊆ [N], consistency holds by definition of sink(G),
sψ(J) and Ḡ. In order to prove locality for F ⊆ G ⊆ [N], we look at
three different cases. To shortcut notation, we abbreviate subgrid(F,Π)
by G(F) for any F ⊆ [N].

G is not Π-valid. Then, F ⊆ G is not Π-valid either. The condition
∅ = G ∩ V(F) = G ∩ F̄ means that F is disjoint from the same blocks
as G. This implies Ḡ = F̄ , hence V(G) = V(F).

G and F are both Π-valid. Then G(F) is a nonempty subgrid of
G(G), and G ∩ V(F) = ∅ means that the sink of G(F) has no outgoing
edges into G(G). Thus the unique sink of G(F) is also a sink of G(G)
and therefore the unique one. This means that sink(G) = sink(F), from
which V(G) = V(F) follows.

G is Π-valid, F is not Π-valid. Then the condition G ∩ V(F) = ∅
can never be satisfied since V(F) = F̄ contains at least one full block
Πi, and G ∩ Πi 6= ∅.

Next we prove that a largest basis in ([N],V) has at most n elements.
For this, let G ⊆ [N] be a set of size larger than n. If G is Π-valid, we
have

V(G) := sψ(sink(G)) = sψ(sink(sink(G))) =: V(sink(G)),

since J = sink(J) for any vertex J . This means that G has a subset of
size n with the same violators, so G is not a basis.

73

74 Chapter 4. Violator Spaces

If G is not Π-valid, we consider some subset B that contains exactly
one element from every block intersected by G. By definition, we have
Ḡ = B̄ and V(G) = V(B). Since B has less than n elements, G cannot
be a basis in this case, either.

It remains to prove that for G being Π-valid, the vertex sink(G) is
the unique basis of G in ([N],V). We have already shown that V(G) =
V(sink(G)) must hold in this case. Moreover, V(sink(G)) contains no
full block Πi. On the other hand, any proper subset F of sink(G) is not
Π-valid, so its violator set does contain at least one full block. It follows
that V (F) 6= V (sink(G)), so sink(G) is a basis of G. The argument
is complete when we can prove that no other vertex J ⊆ G is a basis
of G. Indeed, such a vertex J is not a sink in G(G), meaning that
G ∩ V(J) 6= ∅. This implies V(J) 6= V(G). �

Note that the global sink of the grid USO corresponds to the unique
n-element (and Π-valid) set B with V(B) = ∅. This is exactly the set
output by the call Basis1([N]) of Clarkson’s algorithms, when we apply
it to the violator space constructed in Definition 4.20.

Primitive 4.13 corresponds to one edge evaluation in the USO set-
ting. With Theorem 4.19 we then get the following result:

Theorem 4.22 The sink in a USO of the n-dimensional grid([N],Π)
can be found by evaluating expected O

(
nN + nO(n)

)
edges.

For small n, the running time given in the theorem is faster than the
one from the product algorithm [33, 32] which needs expected O(n!N +
Hn
N) edge evaluations, where HN , as used earlier, is the N -th harmonic

number. Via the reduction from PGLCP to grid USO (Section 3.1) this
yields the fastest known algorithm for PGLCP with fixed number of
blocks.

The PGLCP has in general a cyclic structure and therefore gives
rise to a cyclic USO. The following lemma shows that a violator space
obtained from a cyclic USO is cyclic as well, proving that grid USO (and
PGLCP) can not be reduced to LP-type problems in general (since LP-
type problems are equivalent to acyclic violator spaces [31, 30]).

Lemma 4.23 The violator space arising from a cyclic grid USO via

74

4.4. Grid USO as Models for Violator Spaces 75

Definition 4.20 is cyclic.

Proof. Remember that given a grid vertex J and j ∈ [N]\J , JBj is the
unique vertex J ′ ⊆ J ∪ {j} that is different from J . J ′ is the neighbor
of J in direction j. Assume that the edge {J, J ′} is directed from vertex
J ′ to vertex J in the grid USO ψ. We want to show that J ′ is locally
smaller than J , meaning that J ′ ∩ V(J) = ∅ (Definition 4.7). This is
indeed true, since by consistency, the only element that could possibly
be in the intersection of J ′ and V(J) is j. But j ∈ V(J) would imply
that j ∈ sψ(J), meaning that J has an outgoing edge into direction j,
a contradiction to the assumption that the edge is directed from J ′ to
J .

We have shown above that every vertex J is a basis in the violator
space. From the fact that the outmap function sψ is an injection [33, 32],
it follows that no two vertices in the grid belong to the same equivalence
class in the violator space. The result that an edge directed from J ′ to J
implies that J ′ is locally smaller than J , means that a cycle in the grid
USO immediately implies a cycle in the violator space, see Definition 4.8.
�

It is interesting that there are no cycles in a 2-dimensional grid USO
[33, 32]. Whether the same is true for nondegenerate (no two bases have
the same violators) violator spaces of combinatorial dimension 2 is an
open question, see also [86].

75

76 Chapter 4. Violator Spaces

76

Part II: Specializations

In this second part of the thesis, we present two specializations of the
PGLCP. The first is achieved by restricting to a subclass of P-matrices
called hidden K-matrices in Chapter 5. The GLCP with a hidden K-
matrix has been proved to be solvable in polynomial time. Using the
concept of Π-compatible LPs defined in Section 2.2, we give an alterna-
tive proof for this fact and strengthen the statement by showing that the
arising grid USO is LP-induced and therefore acyclic. Further, a char-
acterization for vertical block matrices that are not hidden K is derived.
Towards the end of the chapter, we introduce a nontrivial and large sub-
class of matrices that are not hidden K and show that 3-dimensional
P-matrices in this class give rise to a cyclic USO in general.

The second specialization is actually an application. We show that
simple stochastic games (SSG) can be reduced to the PGLCP. It is
open to characterize the P-matrices we get from the games, but we give
arguments indicating that not all P-matrices are SSG-induced (that’s
why we speak of a specialization). At the end of the thesis, we give
examples of SSGs, showing that the resulting matrix in the PGLCP is
neither (transpose) hidden K nor well-conditioned in general.

77

78

Chapter 5

Hidden K-Matrices

We focus on the class of hidden K-matrices which also appear under the
name hidden Minkowski matrices or mime matrices (see [93]). Hidden
K-matrices form a proper subclass of P-matrices. The importance of the
hidden K-matrix GLCP comes from the fact that the solution can be
computed by a linear program. In order to show how this LP looks like,
we need some definitions of matrix classes first, given in Section 5.1.

We then reprove that the hidden K GLCP can be solved by LP and
concurrently show that the grid USO arising from a hidden K-matrix
GLCP is LP-induced and therefore acyclic for any q (Section 5.2).

Early computer experiments suggested that it might hold that a
right-hand side q making the USO cyclic (a cyclic q) exists if and only
if the P-matrix is not hidden K. But this can’t be true, since the set
of hidden K-matrices is open as well as the set of P-matrices having a
cyclic q (slightly perturbing such a matrix does not destroy the cycle).
Indeed, exploiting this knowledge, we found a 3-dimensional non hidden
K P-matrix that does not have a cyclic q, see Subsection 5.2.1.

However, the matrix M1 found is very unstable, in the sense that if
one perturbs it only slightly, then it either becomes hidden K, or there
will pop up a cyclic q. Our updated conjecture is therefore the following.

Conjecture 5.1 There exists a vector q such that the grid USO arising

79

80 Chapter 5. Hidden K-Matrices

PSfrag replacements

Hidden K Non hidden K

Strongly non hidden K(Acyclic for all q)

(Cyclic q exist in dimension 3)M1

M2

Figure 5.1: The picture shows the partition of the P-matrix class. The
classes of hidden K-matrices and strongly non hidden K-matrices are
open, while the class of non hidden K-matrices is closed. The text in
brackets says what we know about the existence of cyclic q-vectors for
the given classes. For matrix M1 there exists no cyclic q, for M2 there
are cyclic q-vectors.

from PGLCP(G, q) is cyclic if and only if the P-matrix G is interior non
hidden K.

A P-matrix G is interior non hidden K if all P-matrices in an arbitrarily
small neighborhood of it are not hidden K as well. In other words, we
can slightly perturb the matrix within the set of P-matrices and it stays
non hidden K.

The problem we have is that we have no simple characterization
for interior non hidden K-matrices, which would help us in order to
analyze whether there exists a cyclic q. We present a characterization
for non hidden K-matrices in Section 5.3 and a characterization for
a nontrivial subclass of them, called strongly non hidden K-matrices
in Subsection 5.3.1. Intuitively, the class of strongly non hidden K-
matrices seems to be very close to the class of interior non hidden K-
matrices. It is included in the latter class but we give a 4-dimensional
P-matrix M2 that is not strongly non hidden K but nevertheless interior
non hidden K. We know that it is interior non hidden K because we have
q-vectors generating cyclic orientations for this matrix M2. Perturbing
the matrix slightly won’t destroy such a cycle, which proves that the
matrix is interior non hidden K (by Theorem 5.20, which states that the
hidden K-matrix GLCP gives rise to acyclic orientations). Moreover,
we can show that there are matrices arbitrarily close to M2 that are
strongly non hidden K, so the situation is as depicted in Figure 5.1.

We conclude the chapter by proving in Subsection 5.3.2 that a cyclic

80

5.1. Matrix Classes 81

q always exists for 3-dimensional strongly non hidden K P-matrices.

5.1 Matrix Classes

The first class of matrices we look at is the class of square Z-matrices,
for which the corresponding LCP is solvable in polynomial time [8].

Definition 5.2 A square matrix is a Z-matrix if all off-diagonal entries
are nonpositive.

This generalizes to vertical block matrices.

Definition 5.3 A vertical block matrix is a vertical block Z-matrix if
all representative submatrices are Z-matrices.

The Z-matrix GLCP is not known to be solvable in polynomial time.
See for example [24] for more information about the Z-matrix GLCP.
A proper subclass of (vertical block) Z-matrices is the following.

Definition 5.4 A (vertical block) matrix is a (vertical block) K-matrix
if it is a (vertical block) Z-matrix as well as a (vertical block) P-matrix.

In [7], Borici and Lüthi give an application for the K-matrix LCP. We
will need the following results about K-matrices, all of them proved for
example in [26].

Lemma 5.5 The following are equivalent for a square Z-matrix M ∈
R
n×n.

(i) M is a K-matrix.

(ii) M−1 exists and is nonnegative.

(iii) There exists a positive vector x ∈ R
n such that Mx > 0.

81

82 Chapter 5. Hidden K-Matrices

We now define a class of matrices for which the corresponding LCP
is solvable by linear programming. The class was introduced by Man-
gasarian [52] and generalized for vertical block matrices by Mohan and
Neogy [61].

Definition 5.6 A matrix G ∈ R
(N−n)×n is called a vertical block hid-

den Z-matrix if there exists a square Z-matrix X ∈ R
n×n and a vertical

block Z-matrix Y ∈ R
(N−n)×n of the same type as G, such that

(i) GX = Y ,

and if there exist nonnegative vectors r ∈ R
n and s ∈ R

N such that

(ii) rTX + sTY > 0.

Along Mangasarian’s lines, Mohan and Neogy show how the hidden Z-
matrix GLCP can be solved by a linear program if the witness X of
conditions (i) and (ii) above is known. The problem is that such an X
is in general hard to find, since condition (ii) is nonlinear. But if the
hidden Z-matrix G is also a P-matrix, then this is easy according to
Characterizations 5.9 and 5.10 below, for which we need the following
definition and theorem taken from [61].

Definition 5.7 A matrix is a vertical block hidden K-matrix if it is a
vertical block hidden Z-matrix as well as a vertical block P-matrix.

Theorem 5.8 A matrix G ∈ R
(N−n)×n is a vertical block hidden K-

matrix if and only if

(i) G is vertical block hidden Z and

(ii) there exists a positive vector x ∈ R
n such that Gx > 0.

For the square case, Pang [71] derived the following characterization.

Characterization 5.9 A matrix M ∈ R
n×n is hidden K if and only if

there exist Z-matrices X ∈ R
n×n and Y ∈ R

n×n such that

82

5.1. Matrix Classes 83

(i) MX = Y ,

(ii) Xe > 0, where e ∈ R
n is the all-one vector, and

(iii) there exists a positive vector x ∈ R
n such that Mx > 0.

A positive vector x as in (iii) always exists for P-matrices [17], so (i) and
(ii) are enough for a P-matrix to be hidden K. It is known that condition
(iii) can be replaced by Y e > 0, see [93] and [65]. We generalize this to
vertical block matrices.

Characterization 5.10 A vertical block matrix G ∈ R
(N−n)×n is hid-

den K if and only if there exist Z-matrices X and Y as in (i) of Defi-
nition 5.6 such that

(i) GX = Y ,

(ii) Xe > 0, and

(iii) Y e > 0, where e ∈ R
n is the all-one vector.

Proof. If G is vertical block hidden K, then one can prove [61] that
there exists a positive vector v ∈ R

n such that for the witnesses X and
Y in Definition 5.6 it holds that Xv > 0 and Y v > 0. Replacing X by
XD and Y by Y D where D ∈ R

n×n is the diagonal matrix diag(vT),
the Z-matrix property is preserved and conditions (i), (ii) and (iii) are
satisfied.

For the other direction, assume that conditions (i)−(iii) hold. Con-
dition (ii) assures by Lemma 5.5 that the Z-matrix X is a P-matrix.
Its transpose, XT , is therefore also a P-matrix and as noted before, it
is well-known that a positive vector r ∈ R

n exists such that XT r > 0.
Using (i) and setting s ∈ R

N to zero we get that G is a hidden Z-matrix
by Definition 5.6. By Theorem 5.8 it remains to show that Y e > 0
implies existence of a vector x ∈ R

n such that Gx > 0. This is achieved
by setting x to be the positive vector Xe, since Gx = GXe = Y e > 0.
�

The nice thing about hidden K-matrices is that the witness P-matrix
X can be found by solving a linear program. Since hidden K-matrices

83

84 Chapter 5. Hidden K-Matrices

(and their witnesses) are closed under scaling, the strict positivity con-
straints in Characterization 5.10 can easily be realized by nonnegativity
constraints using standard tricks [71], see also Section 5.3.

Pang showed that square hidden K-matrices are closed under princi-
pal pivot transforms [70]. We conclude this section by generalizing this
result to vertical block matrices. Principal pivot transforms for vertical
block matrices have been defined for example in [39].

Theorem 5.11 Let G′ be a vertical block matrix derived from G by
doing a principal pivot transform. Then G′ is hidden K if and only if
G is hidden K.

Proof. A PPT corresponds to an interchange of variables in the equa-
tion

w −Gz = q (5.12)

of the GLCP. Let’s without loss of generality look at the PPT that
interchanges variables w1

1 and z1 and let’s assume (by scaling G and q)
that the entry G1

11 is 1. The first row of (5.12) tells us that w1
1 − z1 −

G1
12z2 − . . . − G1

1nzn = q11 . After the PPT, the first row of (5.12) will
be z1 − w1

1 + G1
12z2 + . . . + G1

1nzn = −q11 and all occurrences of z1 in
the other rows will be replaced by w1

1 −G1
12z2 − . . .−G1

1nzn (we forget
about the −q11 term, since it affects the right-hand side of the GLCP
and we are interested in G′ only). The matrix G′ derived by this PPT
is therefore G∗T where G∗ is G with the first row replaced by the first
row of the n× n identity matrix and T ∈ R

n×n is

1 −G1
12 −G1

13 . . . −G1
1n

0 1 0 . . . 0
0 0 1 . . . 0
...

...
...

. . .
...

0 0 0 . . . 1

.

The inverse of T is

1 G1
12 G1

13 . . . G1
1n

0 1 0 . . . 0
0 0 1 . . . 0
...

...
...

. . .
...

0 0 0 . . . 1

.

84

5.2. Hidden K-Matrix GLCP and LP 85

The first row of T−1 is exactly the first row of G. Let X be the hidden
K witness of G and Y = GX as in Characterization 5.10. Then T−1X
is a hidden K witness for G′ since

(i) G′T−1X = G∗TT−1X = G∗X is a Z-matrix because the first row
is the first row of X and the other rows are the same as in Y , and

(ii) T−1X is Z and T−1Xe > 0 because the first row of T−1X is the
first row of Y (Y is Z and Y e > 0), and because the other rows
are the same as in X (X is Z and Xe > 0).

In general, let G be hidden K with witnesses X and Y and let G′ be
derived through a PPT interchanging variables zi and wij (i ∈ [n] and
j ∈ [gi]). Then G′ is hidden K with witnesses X ′ and Y ′, where X ′ is
X with the ith row replaced by the jth row of Y i, and Y ′ is Y with the
jth row of Y i replaced by the ith row of X. �

5.2 Hidden K-Matrix GLCP and LP

Here comes the central theorem in hidden Z-matrix theory. It’s proved
in [61] by a straightforward generalization of the square case, one direc-
tion of which was proved in [19] and the other in [72], using the theory
developed in Mangasarian’s papers [52, 54, 55]. We state it for hidden
K-matrices, i.e., we restrict it to P-matrices.

Theorem 5.13 Let G ∈ R
(N−n)×n be a vertical block P-matrix and q

any (N−n) vector. There is a vector p ∈ R
n (independent from q) such

that the GLCP(G, q) has the same solution z as the linear program

minimize pT z
subject to Gz + q ≥ 0

z ≥ 0
(5.14)

if and only if G is hidden K. If G is hidden K w.r.t. witness X, then p
can be chosen as any n-vector for which XT p > 0.

As mentioned in the proof of Characterization 5.10, X is a P-matrix
and it is well-known that a vector p with XT p > 0 thus exists. Note

85

86 Chapter 5. Hidden K-Matrices

that the constraints of the LP (5.14) assure that w and z in the GLCP
are nonnegative. The theorem states that for a hidden K-matrix G and
suitable p, the LP gives us complementarity of w and z for free.

In this section, we reprove one direction of the theorem. Using the
notion of a Π-compatible linear program derived in Section 2.2, we show
that the GLCP(G, q) with hidden K-matrix G can be solved by (5.14).
Moreover, we prove that the grid USO arising from the hidden K-matrix
GLCP (Section 3.1) and the orientation of the following linear program
are the same (the orientation derived from a linear program will be
defined later).

minimize qTx
subject to GTx ≤ p

x ≥ 0,

where p is any vector such that XT p > 0 (X a hidden K witness of
G). This linear program is in fact the dual to (5.14) and it is in turn
equivalent to

minimize

(
0
q

)T (
x′

x

)

subject to (I |GT)

(
x′

x

)

= p,
(
x′

x

)

≥ 0,

(5.15)

where 0 is the vector of all 0’s of appropriate size and x′ an n-vector of
slack variables. We still require XT p > 0.

We induce a partition Π on the set [N] of column indices of (I |GT)
by letting Πi be the set of column indices corresponding to the rows of
Gi (the ith block of G) plus the index i of column I{i} (the ith column
of I). A representative set β is then a set having exactly one element
out of each block of Π and (I |GT)β is the matrix (I |GT) restricted to
columns in β.

In the following, we will write ATα with the interpretation (AT)α
for some matrix A. For every β, (I |GT)β is equal to (Iα||ḠTᾱ) for
some representative submatrix Ḡ of G and some α ⊆ [n]. It’s an easy
observation that every representative submatrix Ḡ of the hidden K-
matrix G is hidden K w.r.t. the same witness X. For such a submatrix,
let Ȳ = ḠX.

86

5.2. Hidden K-Matrix GLCP and LP 87

The hidden K property of G allows us to prove that the LP (5.15)
is Π-compatible, see Section 2.2. This is because using (i) of Charac-
terization 5.10, we can write

(Iα||ḠTᾱ) = (XT)−1(XT
α ||Ȳ Tᾱ)

and derive that

((I |GT)β)
−1p = (Iα||ḠTᾱ)−1p = (XT

α ||Ȳ Tᾱ)−1XT p > 0, (5.16)

where the inequality follows fromXT p > 0 and the fact that (XT
α ||Ȳ Tᾱ) is

a K-matrix ([17, Theorem 3.11.19]) and its inverse therefore nonnegative
(Lemma 5.5). The proof that (XT

α ||Ȳ Tᾱ) is a K-matrix makes use of the
existence of a positive vector v for which Xv > 0 and Ȳ v > 0 (as
mentioned in the proof of Characterization 5.10). So (XT

α ||Ȳ Tᾱ)T v > 0
for all α implying that (XT

α ||Ȳ Tᾱ)T is a K-matrix by Lemma 5.5 (it
is obviously Z). Since K-matrices are closed under taking transposes
(because P- and Z-matrices are), the result follows.

Observation 2.9 therefore tells us that the matrix (I |GT) has prop-
erty P (which in this case is easy to see because G is a P-matrix) and
that the representative sets β are exactly the bases of the LP (5.15). The
bases of the LP are thus in one to one correspondence with the bases of
the PGLCP(G, q) defined (via the PGLCP(H, q)) in Definition 2.7 on
page 23.

An optimal solution x∗ to (5.15) fulfills x∗β > 0 for some representa-
tive set β, and by complementary slackness, an optimal solution z∗ to
(5.14) therefore fulfills the constraints corresponding to β with equality,
thus giving us exactly the complementarity constraints for the GLCP.
This finishes the alternative proof for the statement that the hidden
K-matrix GLCP(G, q) can be solved by solving (5.14) and we also get

Corollary 5.17 There is a vector p ∈ R
n such that the LP (5.15) with

vertical block P-matrix G is Π-compatible if and only if G is hidden K.

Proof. We have just seen the proof for the sufficiency part accord-
ing to Equation (5.16). For the necessity part, assume that (5.15) is
Π-compatible for some p but G is not hidden K. By complementary
slackness, the solution of the dual to (5.15), which is (5.14), is also
the solution to the GLCP(G, q) for all q. This is a contradiction to
Theorem 5.13. �

87

88 Chapter 5. Hidden K-Matrices

We note that p can be chosen to be positive (because XT is a P-
matrix). For a square hidden K-matrix MT , according to (5.16), p
fulfills

(Iα||Mᾱ)−1p > 0

for all α. Up to reshuffling rows and/or columns, this is equivalent to

(
Iα,α −Mα,ᾱ(Mᾱ,ᾱ)−1

0ᾱ,α (Mᾱ,ᾱ)−1

)

p > 0

for all α, where 0 is the matrix of all zeros and the notation Aα,α′ for
α, α′ ⊆ [n] denotes the matrix we get from A ∈ R

n×n if we restrict to
rows with indices in α and columns with indices in α′. The positive
vector p thus satisfies the following property:

(Mα,α)−1pα > 0 for all α. (5.18)

By making use of this positive vector p, Lemke’s algorithm solves
the LCP(M, q) in at most n iterations [14]. Our result states that if
MT is hidden K, then a positive vector p fulfilling (5.18) exists and
the LCP(M, q) can therefore be solved in n steps of Lemke’s algorithm.
This has been proved before [73], and the converse is also known [62]
(if a p fulfilling (5.18) exists, then MT is hidden K).

We now proceed to show that the orientations underlying the hidden
K GLCP and the LP (5.15) are the same. As noted above, the bases
β of the LP are in one to one correspondence with the bases of the
PGLCP(H, q) which implies that the underlying grid graph is the same.
According to (3.3) on page 31, the orientation of edges incident to vertex
β in the PGLCP(H, q) can be read off the (N − n)-dimensional vector
B(β)−1q, where a negative component corresponds to an outgoing edge
and a positive component to an incoming edge. For the LP (5.15) it is
known that the reduced cost vector

c̄(β) :=

(
0
q

)

β̄

−
(

I
G

)

β̄,[n]

((
I
G

)

β,[n]

)−1 (
0
q

)

β

(5.19)

encodes the orientation at vertex β in the same way, see for example
Chvátal’s book [10]. It thus suffices to prove that c̄(β) = B(β)−1q. For
that we fix a basis β and define kI to be the number of columns of the
identity matrix in (I |GT)β . Similarly, kG is the number of columns

88

5.2. Hidden K-Matrix GLCP and LP 89

of the matrix GT in (I |GT)β . It holds that kI + kG = n. For nota-
tional convenience we assume without loss of generality that the matrix

(I |GT) (and the vector

(
0
q

)

) is sorted according to β, meaning that

the first kI columns in I (entries in the vector 0) and the first kG columns
in GT (entries in q) are those covered by β. Moreover, we define [kI]
to be the set [n] \ [kI] and [kG] to be the set [N − n] \ [kG]. Note
that [kI] consists of kG elements. In the following, we omit information
concerning the dimensions of the identity- and zero-matrices, but the
reader is able to figure out from the context of which dimension the
matrices/vectors are. Equation (1) below holds because

(

I[kI],[kI] 0[kI],[kI]

G[kG],[kI] G[kG],[kI]

)−1

=

(

I[kI],[kI] 0[kI],[kI]

−(G[kG],[kI])
−1G[kG],[kI] (G[kG],[kI])

−1

)

.

c̄(β) =

(
0
q

)

β̄

−
(

I
G

)

β̄,[n]

((
I
G

)

β,[n]

)−1 (
0
q

)

β

=

(
0
q

)

β̄

−
(

I
G

)

β̄,[n]

(
I[kI],[n]

G[kG],[n]

)−1 (
0[kI]

q[kG]

)

=

(
0
q

)

β̄

−
(

I
G

)

β̄,[n]

(

I[kI],[kI] 0[kI],[kI]

G[kG],[kI] G
[kG],[kI]

)−1(
0[kI]

q[kG]

)

(1)
=

(
0
q

)

β̄

−
(

I
G

)

β̄,[n]

(
0[kI]

(G[kG],[kI])
−1q[kG]

)

=

(
0
q

)

β̄

−
(

0[kI],[kI] I[kI],[kI]

G[kG],[kI] G[kG],[kI]

)(
0[kI]

(G[kG],[kI])
−1q[kG]

)

=

(

0[kI]

q
[kG]

)

−
(

(G[kG],[kI])
−1q[kG]

G
[kG],[kI]

(G
[kG],[kI]

)−1q[kG]

)

=

(

−(G[kG],[kI])
−1 0[kI],[kG]

−G[kG],[kI](G[kG],[kI])
−1 I[kG],[kG]

)(
q[kG]

q[kG]

)

=

(

−G
[kG],[kI]

0
[kI],[kG]

−G[kG],[kI] I[kG],[kG]

)−1 (
q[kG]

q[kG]

)

= (Hβ̄)
−1q = B(β)−1q,

89

90 Chapter 5. Hidden K-Matrices

where the sorting of (I |GT) according to β resulted in H being (G | I)
in the PGLCP(H, q) with the first columns in G and I ∈ R

(N−n)×(N−n)

being the ones covered by β.

An LP orientation is acyclic, since following an outgoing edge means
improving the objective function. We have thus proved

Theorem 5.20 The grid-orientation (given by (3.3)) of the GLCP with
hidden K-matrix G and right-hand side vector q is the same as the
acyclic grid-orientation (given by the reduced cost vector in (5.19)) of
the linear program (5.15).

So the orientation induced by a hidden K-matrix GLCP is acyclic for
every q. The converse is in general not true. In the following subsection
we give a family of examples of P-matrices whose members are not
hidden K and for which there is no q yielding a cyclic orientation. We
refer to a q yielding a cyclic orientation as a cyclic q in the following.

5.2.1 A Family of Acyclic Non Hidden K-Matrices

We show that the following family of square matrices are P-matrices
that are not hidden K and for which there is no cyclic q, if the entries
a, b, c are chosen in a suitable way.

M1 =

(1 a 0
0 1 b
c 0 1

)

Matrices in this family generalize the matrix of [87] yielding a cyclic
3-cube USO (we get this matrix by setting a = b = c = 2). We restrict
our analysis to P-matrices in this family. M1 is a P-matrix if and only
if its determinant 1 + abc is positive.

Lemma 5.21 The P-matrix M1 is a hidden K-matrix if and only if
one of the following is true.

1. At least one of the three entries a, b, c is nonpositive.

2. All entries a, b, c are positive and abc < 1.

90

5.2. Hidden K-Matrix GLCP and LP 91

Proof. If all three entries a, b, c are nonpositive, then M1 is a Z-matrix
and therefore a (hidden) K-matrix. For the other cases, we use that
conditions (i) and (ii) of Characterization 5.9 are enough for a P-matrix
to be hidden K. If exactly two entries are nonpositive (let’s say a and
b, wlog), then the following X is a hidden K witness:

(1 0 0
bc 1 − bc 0
−c 0 1 + c

)

.

For exactly one entry being nonpositive (let’s say a, wlog), the following
X is a hidden K witness:

(
1 − ab 0 ab(1 + c)

0 1 + b+ bc −b(1 + c)
−c(1 − ab) 0 1 + c

)

.

It remains to show that in the case where a, b and c are positive, M1 is
hidden K if and only if abc < 1. If abc < 1 then the following X is a
witness for M1 being hidden K.

(
1 + a+ ab −a(1 + b+ bc) 0

0 1 + b+ bc −b(1 + c+ ac)
−c(1 + a+ ab) 0 1 + c+ ac

)

IfM1 is hidden K, then (i) and (ii) of Characterization 5.9 imply (among
others) the two constraints

x12 + ax22 ≤ 0

x11 + x12 + x13 > 0

for a Z-matrix X. The second constraint implies that x11 + x12 > 0
(since x13 ≤ 0; note that x12 ≤ 0 also implies x11 > 0). Together
with the first constraint this yields x11 > ax22. By the same argument
we also get x22 > bx33 and x33 > cx11. Taking the three constraints
together (and making use of a, b, c > 0) gives abc < 1. �

Lemma 5.22 The following two statements are equivalent.

1. There is a right-hand side vector q such that the LCP USO (given
by (3.3)) induced by the P-matrix M1 and q is cyclic.

91

92 Chapter 5. Hidden K-Matrices

��

��

Figure 5.2: The cyclic USO of the 3-cube.

2. All entries a, b, c of M1 are positive and abc > 1.

Proof. The only cyclic USO of the 3-dimensional cube (up to iso-
morphic ones derived by rotation and reflection of the cube, see also
Subsection 3.3.3) is the one given in Figure 5.2 [87]. Note that the
orientation has the following two properties.

(P1) All 2-dimensional faces are bows, i.e. the sink and the source in
these faces are neighbors.

(P2) In every dimension, there are three edges having the same orien-
tation and one edge going into the opposite direction.

Let q = (q1, q2, q3)
T . The orientation induced by M1 is determined by

the following table, where B(α) are the basis matrices of the PLCP(M1, q)
as defined in Definition 1.5 on page 14.

α (B(α)−1q)1 (B(α)−1q)2 (B(α)−1q)3
{1, 2, 3} q1 q2 q3
{2, 3} −q1 q2 −cq1 + q3
{1, 3} q1 − aq2 −q2 q3
{3} −q1 + aq2 −q2 −cq1 + acq2 + q3
{1, 2} q1 q2 − bq3 −q3
{2} −q1 bcq1 + q2 − bq3 cq1 − q3
{1} q1 − aq2 + abq3 −q2 + bq3 −q3
{} −q1 + aq2 − abq3 −bcq1 − q2 + bq3 cq1 − acq2 − q3

The entry q2 at position ({2, 3}, (B(α)−1q)2) for example tells us
that (B({2, 3})−1q)2 = q2. That is, according to (3.4), the edge starting

92

5.2. Hidden K-Matrix GLCP and LP 93

{2} {1,2}

{1}{}

{3} {1,3}

{2,3} {1,2,3}

{2} {1,2}

{1}{}

{3} {1,3}

{2,3} {1,2,3}

Figure 5.3: Construction of a cyclic orientation induced by M1.

at vertex {2, 3} is outgoing into the direction of the second dimension if
q2 < 0 and incoming if q2 > 0 (the ith dimension is the one along which
we go when switching from vertex α to α⊕ i).

The entries in the row where α = {} are missing a positive (since
M1 is a P-matrix) factor 1/(1 + abc). But since we will be interested in
the sign of the entries only, we left it away.

How does a q yielding a cycle look like? We can assume that q1 > 0,
otherwise we look at −q which yields the orientation with every edge
reversed and thus preserves cycles (q1 = 0 would yield a degenerate
orientation). According to the table above, this fixes the orientation
of the two edges in Figure 5.2.1 left. Also from the table, we can read
that the edges from {1, 2, 3} and {2, 3} into direction 2 have the same
orientation. The same holds for the edges from {1, 2, 3} and {1, 3} into
direction 3. This is indicated by an equality sign on the edges.

Properties (P1) and (P2) let us fix the edges from {1, 3} to {3} and
{1} to {} in Figure 5.2.1 right. (P1) tells us that the edge from {3} to
{} should have the same orientation as the one from {1, 3} to {1}. By
(P1) again, the edge from {1, 2} to {1} has opposite direction to the
edges with equality signs in dimension 2, which is equivalent (by (P2))
to stating that the edge from {2} to {} gets an equality sign.

If the edges with equality signs in dimension 3 would all be directed
downwards (and the unique one without the equality sign upwards),
then it wouldn’t be possible to set sink and source antipodal, because
the only possibilities left for the sink would be {1} and {1, 2} and the
vertices antipodal to them would both already have an incoming edge

93

94 Chapter 5. Hidden K-Matrices

and could therefore not be the source. However, in order to get a 3-
dimensional cyclic USO it is necessary to have sink and source antipodal.
Thus, the edges with equality sign in dimension 3 have to be oriented
upwards. There is only one way to complete the USO such that sink
and source are antipodal, resulting in the USO of Figure 5.2.

The USO constrains the entries in the above table. Leaving away
redundant constraints (the constraint for an edge in one direction is the
constraint for the edge into the opposite direction multiplied by −1),
the table can be shrunken to the following system of constraints which
is feasible if and only if there exists a q yielding a cycle.

q > 0 {1, 2, 3} is the sink

q1 − aq2 < 0 edge ({1, 3}, {3})
q2 − bq3 < 0 edge ({1, 2}, {1})
q3 − cq1 < 0 edge ({2, 3}, {2})

q1 > 0 edge ({1, 2}, {2})
q2 > 0 edge ({2, 3}, {3})
q3 > 0 edge ({1, 3}, {1})

q1 − aq2 + abq3 > 0 {} is the source

bcq1 + q2 − bq3 > 0 {} is the source

−cq1 + acq2 + q3 > 0 {} is the source

One can check that given the first four constraints (implying a, b, c >
0), the last six are redundant. The proof of the lemma is therefore
finished once we show that the system

q > 0
q1 − aq2 < 0
q2 − bq3 < 0
q3 − cq1 < 0

(5.23)

is feasible if and only if the system

a, b, c > 0
abc > 1 (5.24)

94

5.3. Non Hidden K-Matrices 95

is feasible. It’s easy to see that (5.23) implies (5.24). For the other
direction, having a, b, c > 0 and abc > 1, the following q is feasible for
(5.23):

q =

(
ab+ a+ 1
bc+ b+ 1
ac+ c+ 1

)

.

�

Lemmas 5.21 and 5.22 imply that P-matrix M1 with a, b, c > 0 and
abc = 1 is a non hidden K-matrix for which there does not exist a q
yielding a cyclic orientation. This M1 is a boundary case, in the sense
that if one perturbs its entries only a little bit, it either becomes hidden
K or there appears a cycle for some q.

In the next section, we derive a characterization for vertical block
non hidden K-matrices, a generalization of a characterization first shown
in [65]. By strengthening the conditions in the characterization, we are
then able to determine a nontrivial subclass of 3-dimensional P-matrices
for which a cyclic q exists.

5.3 Non Hidden K-Matrices

We first state the linear program that arises from Characterization 5.10.
It is feasible if and only if G is hidden K.

maximize 0

subject to
n∑

j=1

Xij ≥ 1 for all i

n∑

l=1

GiklXlj ≤ 0 for all i, k and j 6= i

n∑

j=1

n∑

l=1

GiklXlj ≥ 1 for all i, k

Xij ≤ 0 for all i 6= j

(5.25)

By “for all i, k” we mean all i ∈ [n] and, depending on i, all k ∈
[gi]. The index j is also in [n]. Note that by scaling the witness X in

95

96 Chapter 5. Hidden K-Matrices

Characterization 5.10, the constraints Xe > 0 (Y e > 0) are feasible if
and only if the constraints Xe ≥ 1 (Y e ≥ 1) are feasible. The second set
of constraints in the above LP assures that Y i

kj ≤ 0 for all i, k and j 6= i,
implying that Y is a Z-matrix, and the third set of constraints assures
that Y e > 0. The linear program (5.25) is thus feasible if and only if
G ∈ R

(N−n)×n is a hidden K-matrix. Its dual is derived by linking the
first n constraints to variables Rii for all i, the next (N − n)(n − 1)
constraints to variables Sikj for all i, k and j 6= i, and the next (N − n)

constraints to variables Siki for all i, k. The S-variables thus form a
vertical block matrix of the same type as G.

min

n
X

i=1

(Rii +

n
X

k=1

S
i
ki)

s.t. Rii +
X

l6=j

gl
X

k=1

G
l
kiS

l
kj +

n
X

l=1

gl
X

k=1

G
l
kiS

l
kl ≤ 0 for all i 6= j

Rii +
X

l6=i

gl
X

k=1

G
l
kiS

l
ki +

n
X

l=1

gl
X

k=1

G
l
kiS

l
kl = 0 for all i

Rii ≤ 0, Si
ki ≤ 0 for all i, k

Si
kj ≥ 0 for all i, k and j 6= i.

(5.26)

The first n2 − n constraints in (5.26) correspond to the variables Xij ,
i 6= j, in (5.25) and the next n constraints to the variables Xii.

We replace variables Rii by −Rii and variables Sikj by −Sikj for all
i, j, k, move some terms from the right double sum to the left double
sum, and get

max

n
X

i=1

(Rii +

n
X

k=1

S
i
ki)

s.t. Rii +

n
X

l=1

gl
X

k=1

G
l
kiS

l
kj +

X

l6=j

gl
X

k=1

G
l
kiS

l
kl ≥ 0 for all i 6= j

Rii +

n
X

l=1

gl
X

k=1

G
l
kiS

l
ki +

X

l6=i

gl
X

k=1

G
l
kiS

l
kl = 0 for all i

Rii ≥ 0, Si
ki ≥ 0 for all i, k

Si
kj ≤ 0 for all i, k and j 6= i.

By defining R′ and S′ to be the matrices with R′
ij := Rii and

S′i
kj :=

{

Siki if j 6= i
0 if j = i

96

5.3. Non Hidden K-Matrices 97

for all i, j, k, the previous LP can be written as

maximize

n∑

i=1

(Rii +

n∑

k=1

(Siki + S′i
ki))

subject to R′ +GT (S + S′) = T

Rii ≥ 0, Siki ≥ 0, Tii = 0 for all i, k

Sikj ≤ 0, Tij ≥ 0 for all i, k and j 6= i.

Replacing S + S′ by a new matrix S and merging the constraints for
the matrix R′ and the slack matrix T into constraints for the matrix R,
we can equivalently state this as

maximize

n∑

i=1

(Rii +

n∑

k=1

Siki)

subject to R+GTS = 0

Rii ≥ 0, Siki ≥ 0 for all i, k

Rij ≤ Rii, S
i
kj ≤ Siki for all i, k and j 6= i.

(5.27)

Since (5.27) is always feasible, it is unbounded if and only if (5.25) is
infeasible (a standard fact in linear programming theory) which is in
turn the case if and only if G is not hidden K. We therefore get the
following characterization for non hidden K-matrices:

Characterization 5.28 A vertical block matrix G ∈ R
(N−n)×n of type

(g1, . . . , gn) is not hidden K if and only if

(i) R+GTS = 0 for some matrix R ∈ R
n×n and some vertical block

matrix S of the same size and type as G with

(ii) Rii ≥ 0, Siki ≥ 0, Rii ≥ Rij , S
i
ki ≥ Sikj for all i, j ∈ [n] and k ∈ [gi],

and

(iii) at least one diagonal element of R or at least one diagonal element
of some representative submatrix of S is nonzero.

For the remainder of this chapter, we focus on square matrices. The
specialization of Characterization 5.28 to square matrices is:

97

98 Chapter 5. Hidden K-Matrices

Characterization 5.29 A matrix M ∈ R
n×n is not hidden K if and

only if

(i) R+MTS = 0 for some matrices R and S in R
n×n with

(ii) Rii ≥ 0, Sii ≥ 0, Rii ≥ Rij , Sii ≥ Sij for all i, j, and

(iii) at least one diagonal element of R or S is nonzero.

This is the same characterization for square matrices as the one given
in [65], except that condition (iii) is replaced by:

(iii′) R and S are not both zero.

However, if R and S satisfy (i), (ii) and (iii′), then the matrices R′

and S′ we get from R and S by post-multiplying them with the square
n × n matrix with all off-diagonal entries being −1 and all diagonal
entries being n satisfy (i), (ii) and (iii). The two characterizations are
therefore equivalent.

The characterization of [65] has been derived using different meth-
ods than dualization of linear programs. Characterization 5.29 can be
tightened for minimal non hidden K P-matrices.

Definition 5.30 A square non hidden K matrix is called minimal if all
proper principal submatrices of all principal pivot transforms are hidden
K-matrices.

Given a P-matrix M that is minimal non hidden K with witnesses
R and S as in Characterization 5.29, we first show that S does not
have a row with all entries being zero. For that remember the nota-
tion Aα,α′ introduced on page 88. Assume for contradiction that the
ith row of S is zero. Then R[n]\i,[n]\i and S[n]\i,[n]\i are witnesses for
M[n]\i,[n]\i being non hidden K and therefore yield a contradiction to
minimality, given that at least one diagonal element of R[n]\i,[n]\i or
S[n]\i,[n]\i is nonzero. This is indeed the case: assume for contradiction
that all diagonal elements in R and S are zero, except Rii. By (ii) in
Characterization 5.29, the ith column of S is nonpositive (S{i} ≤ 0 and
Sii = 0), and R{i} = −MTS{i} ≤ 0 at all components except Rii. M

T

98

5.3. Non Hidden K-Matrices 99

then reverses the sign of the nonzero (because Rii 6= 0) vector S{i},
meaning that (S{i})j(M

TS{i})j ≤ 0 for all j ∈ [n]. The existence of
this sign reversing vector is well-known [17] to contradict the P-matrix
property of MT and with this also of M . We conclude that S has no
zero row.

All we needed to prove that S has no zero row was minimality and
the P-matrix property of M which implies that no sign reversing vector
exists. By pre-multiplying R + MTS = 0 with (M−1)T we get S +
(M−1)TR = 0. Since the inverse of a minimal P-matrix is again a
minimal P-matrix (the inverse is derived by a PPT), and since R and
S share the same properties, this situation is completely symmetric to
the original one and we can prove along the same lines that R can not
have a zero row as well.

By post-multiplying R and S with the square n× n matrix with all
off-diagonal entries being −1 and all diagonal entries being n, we get
new R and S matrices with all diagonal entries being strictly positive,
while R and S keep the properties of Characterization 5.29. We thus
derive

Lemma 5.31 For a minimal non hidden K P-matrix M ∈ R
n×n the

witnesses R ∈ R
n×n and S ∈ R

n×n as in Characterization 5.29 do
not have zero rows. Moreover, there exist R and S matrices with the
following properties.

(i) R+MTS = 0,

(ii) Rii > 0, Sii > 0, for all i and

(iii) Rii ≥ Rij , Sii ≥ Sij , for all i, j.

We note that it is known that every 3-dimensional P-matrix that is
not hidden K is minimal, since all P-matrices of dimension at most 2
are hidden K. For general minimal non hidden K P-matrices it is not
possible to find witnesses R and S satisfying the constraints (iii) with
strict inequalities. We give an example of a minimal non hidden K P-
matrix for which no R and S with strict constraints exist in the next
subsection.

99

100 Chapter 5. Hidden K-Matrices

5.3.1 A Nontrivial Subclass

The example in Subsection 5.2.1 proves that there are non hidden K-
matrices for which there exists no cyclic q. The question is how to tell
matrices with cyclic q-vectors and others apart. Looking at Lemma 5.31,
a first idea might be to tighten all the constraints in Characteriza-
tion 5.28. We define the following nontrivial and large subclass of non
hidden K-matrices.

Definition 5.32 A matrix M ∈ R
n×n is strongly not hidden K if

(i) R+MTS = 0 for some matrices R and S in R
n×n with

(ii) Rii > 0, Sii > 0, Rii > Rij , Sii > Sij for all i and j, i 6= j.

A non hidden K-matrix not fulfilling (i) and (ii) is weakly not hidden
K.

One might hope that strongly not hidden K-matrices are exactly those
non hidden K-matrices which have a cyclic q. Although this could be
true in 3 dimensions (see also the next subsection) where we don’t have
a counterexample, it is not true in general: the 4-dimensional P-matrix

M2 =

45 −44 81 −9
76 17 −21 81
−76 9 83 −81
−83 −79 61 53

is minimal weakly not hidden K (checked by computer) and there exist
cyclic q-vectors, an example is

q =

1
6
3
2

 .

The matrix M2 was found by Maple doing a brute force search (using
the LP formulation arising from Lemma 5.36 below) and q was found
by a C++ program computing all the possible cells generated by the
hyperplanes containing the 3-dimensional intersections of the comple-
mentary 4-dimensional cones of the PGLCP (only later we were pointed

100

5.3. Non Hidden K-Matrices 101

to an existing software doing this: TOPCOM, written by Jörg Rambau
[76] and available on the web).

We need some definitions in order to give a certificate for the fact
that the above matrix M2 is weakly not hidden K.

Definition 5.33 A matrix M ∈ R
n×n is a Z◦-matrix if all off-diagonal

entries are negative.

Definition 5.34 A matrix M ∈ R
n×n is strongly hidden K if there

exist Z◦-matrices X ∈ R
n×n and Y ∈ R

n×n such that

(i) MX = Y ,

(ii) Xe > 0, and

(iii) Y e > 0, where e ∈ R
n is the all-one vector.

One can prove [65] that a matrix is hidden K if and only if it is strongly
hidden K, so the two classes are in fact the same.

Definition 5.35 A matrix M ∈ R
n×n is weakly hidden K if there exist

Z-matrices X ∈ R
n×n and Y ∈ R

n×n, X nonzero, such that

(i) MX = Y ,

(ii) Xe ≥ 0, and

(iii) Y e ≥ 0, where e ∈ R
n is the all-one vector.

Lemma 5.36 A matrix M ∈ R
n×n is strongly not hidden K if and

only if it is not weakly hidden K. The matrices in R
n×n are therefore

partitioned into three classes:

(1) (strongly) hidden K-matrices,

(2) strongly not hidden K-matrices,

(3) matrices that are weakly hidden K as well as weakly not hidden K.

101

102 Chapter 5. Hidden K-Matrices

Proof. According to Definition 5.35, it is easy to see that the matrix
M is not weakly hidden K if and only if the following LP is bounded
(note that it is always feasible).

maximize
∑n

i=1Xii + Yii
subject to MX = Y

Xe ≥ 0
Y e ≥ 0
Xij ≤ 0, Yij ≤ 0, for all i and j 6= i

(5.37)

On the other hand, according to Definition 5.32, M is strongly not
hidden K if and only if the following LP is feasible (it is always bounded).

minimize 0
subject to −∑n

k=1MkiSki = 1 + ai for all i
−∑n

k=1MkiSkj ≤ ai for all i and j 6= i
Sii = 1 + bi for all i
Sij ≤ bi for all i and j 6= i
ai ≥ 0, bi ≥ 0 for all i

(5.38)

One can check that these two LPs are dual to each other, the constraints
MX = Y , Xe ≥ 0, Y e ≥ 0 in (5.37) correspond to variables −S, −a,
−b in (5.38). From LP theory, we get that (5.37) is bounded if and only
if (5.38) is feasible, which proves the lemma. �

The matrix M2 above belongs to class (3) of Lemma 5.36. It is weakly
not hidden K:

9576 −18088 9576 9576
2142 2142 −62695 2142
−2646 19754 87300 −2646
10206 −19278 10206 10206

+MT
2

0 0 −827 0
−126 0 0 −126

0 −238 0 0
0 0 −333 0

 = 0.

And it is weakly hidden K:

M2

81 0 0 −81
0 0 0 0
0 0 0 0

−76 0 0 76

 =

4329 0 0 −4329
0 0 0 0
0 0 0 0

−10751 0 0 10751

 .

These witness matrices can be found using the Maple hidden K library
provided by the author. Also, the above q can be tested to be cyclic for
M2. This is done by solving a linear program that tries to find a flow
of maximal value in the corresponding USO between source and sink.
The value of the flow is infinite if there exists a cycle.

102

5.3. Non Hidden K-Matrices 103

5.3.2 Dimension 3

We prove that 3-dimensional strongly non hidden K P-matrices have a
cyclic q.

Theorem 5.39 Let M ∈ R
3×3 be a non hidden K P-matrix for which

matrices R ∈ R
3×3 and S ∈ R

3×3 with

(i) R+MTS = 0,

(ii) Rii > 0, Sii > 0,

(iii) Rii > Rij and Sii > Sij

for all i and j, i 6= j exist. Then S can be assumed to be invertible and
q := (ST)−1e is cyclic (e is the 3-dimensional all-one vector), meaning
that the 3-cube USO arising from the PLCP(M, q) has a cycle.

Proof. Note first that the properties of R and S allow us to perturb S
by small amounts (and adjust R) while preserving R + MTS = 0 and
the strict inequality constraints. This implies existence of an invertible
S.

By pre-multiplying the equation w−Mz = q in the PLCP with ST ,
we arrive at STw − STMz = ST q which evaluates according to (i) to
STw+RT z = ST q. This is not a standard PLCP anymore, but we still
have bases α ⊆ [n] (determining which variables are to be set to zero
in order to fulfill the complementarity conditions) and basis matrices
C(α) := (STα ||RTᾱ). The underlying USO stays the same, since

C(α)−1ST q = ((ST)−1C(α))−1q

= ((ST)−1(STα ||RTᾱ))−1q

= (Iα|| −Mᾱ)−1q

= B(α)−1q,

or simply because for bases in the two settings it holds that STB(α) =
C(α) which implies C(α)−1ST q = B(α)−1q (it’s clear that C(α) is
regular).

103

104 Chapter 5. Hidden K-Matrices

Up to now, we haven’t used the fact that we are in 3 dimensions.
But now we fix an α ⊆ [3] and define C := C(α). The matrix C consists
of some columns out of ST and some out of RT . We label its entries as
follows (

C11 C21 C31
C12 C22 C32
C13 C23 C33

)

,

because this way, the transposes are directly taken care of, and we have
Cii > 0 and Cii > Cij for all i 6= j. We look at the orientations of edges
incident to the vertex α if q is (ST)−1e. We define q̄ := C(α)−1ST q =
C−1e. By Cramer’s rule, the components of q̄ can be computed as

q̄1 =

det

(
1 C21 C31
1 C22 C32
1 C23 C33

)

det(C)
,

q̄2 =

det

(
C11 1 C31
C12 1 C32
C13 1 C33

)

det(C)
,

q̄3 =

det

(
C11 C21 1
C12 C22 1
C13 C23 1

)

det(C)
.

Now take the two entries q̄1 and q̄2. Expanding the numerator in q̄1
along column 2 yields

C21 (C32 − C33)
︸ ︷︷ ︸

<0

+C22 (C33 − C31)
︸ ︷︷ ︸

>0

+C23(C31 − C32) (5.40)

and expanding the numerator in q̄2 along column 1 yields

C11 (C33 − C32)
︸ ︷︷ ︸

>0

+C12 (C31 − C33)
︸ ︷︷ ︸

<0

+C13(C32 − C31). (5.41)

The terms in brackets are the same except for reversed signs in both
determinants. We do a case analysis on the sign of (C31 − C32) (note
that the signs of the other terms in brackets are determined by the
property that Cii > Cij for all i 6= j). If (C31 − C32) ≤ 0 then (5.40)
can be shown to be positive by making use of C21 < C22 and C23 < C22.
With the same argument, (C31 − C32) > 0 implies positivity of (5.41).

104

5.3. Non Hidden K-Matrices 105

�� ����

��

������

	�	
�

��

����

−

−
−

−

+

+
+

+

−

−
−

−

+

+
+

+

−

−
−

−

+

+
+

+

−

−
−

−

+

+
+

+

−

−
−

−

+

+
+

+

Figure 5.4: The cyclic USO enforced by the pattern.

So, if (5.40) is negative (it’s never zero by the nondegeneracy as-
sumption), then (C31 − C32) > 0 which in turn implies that (5.41) is
positive. On the other hand, if (5.41) is negative, then (C31 −C32) ≤ 0
implying that (5.40) is positive. This means that if det(C) > 0, then if
one of the edges in dimensions 1 and 2 adjacent to vertex α is outgoing,
the other edge has to be incoming. And if det(C) < 0, then if one of
the edges in dimensions 1 or 2 is incoming, the other edge has to be
outgoing. Since this argumentation works for any two indices of q̄ and
any set α, we get the following pattern for all α:

det(C(α)) > 0 An outgoing edge forces the other two to be incoming
det(C(α)) < 0 An incoming edge forces the other two to be outgoing

By the P-matrix property of M , it is easy to see that det(B(α)) is
positive if and only if ᾱ has an even number of elements. Determi-
nants of basis matrices differing in one column therefore have oppo-
site signs and since C(α) = STB(α) this is also true for C(α). So
sign(det(C(α))) 6= sign(det(C(α′))) whenever |α ⊕ α′| = 1. We il-
lustrate this by pluses and minuses in Figure 5.4, meaning that the
determinant of basis matrix C(α) is positive (negative) if there is a plus
(minus) at vertex α.

By the pattern, the source has to sit at a minus-vertex, wlog the
one at the bottom left corner in Figure 5.4. Since the source is unique,
the other minus-vertices have to have one incoming and two outgoing
edges. Look at the minus-vertex antipodal to the source in the front 2-
dimensional facet (shaded in Figure 5.4). The edge pointing away from
the facet has to be oriented as in the figure, since the other direction
would imply two sources (and two sinks) in the facet (by the pattern).
The same argument holds for the remaining two minus-vertices, forcing
the sink to be antipodal to the source in the 3-cube. It’s easy to see
that the pattern forces the remaining edges to form a cycle, either the
one given in the figure or the one with opposite direction. �

105

106 Chapter 5. Hidden K-Matrices

Using our Maple library, it is easy to find examples proving that
Theorem 5.39 does not generalize to higher dimensional strongly non
hidden K P-matrices (we tried dimensions 4 and 5). However, cyclic
q-vectors are in all examples (where we could find a cyclic q-vector by
different methods) very close to the vector (ST)−1e, so the problem
might be that the properties of our S are not strong enough.

In three dimensions, we haven’t found any cyclic q-vectors for ma-
trices in the class (3) of Lemma 5.36. Trying q := (ST)−1e resulted in
a degenerate orientation always (we always found an invertible witness
S, although it is not clear that such a witness has to exist). Here is an
example of such a matrix:

(
49 −53 63
27 74 −71
−5 −64 85

)

.

We don’t know whether Theorem 5.39 can be generalized in any
way to the GLCP. One problem is that the witness S is a vertical
block matrix in the GLCP case and therefore not square (invertible) in
general.

106

Chapter 6

Simple Stochastic Games

In this chapter, we show that the problem of finding optimal strate-
gies for both players in a simple stochastic game (SSG) reduces to the
PGLCP. This makes the rich PGLCP theory and algorithms available
for SSG. As a special case, we get a reduction from binary SSG to
PLCP.

SSG are two-player games on directed graphs, with certain random
moves. If both players play optimally, their respective strategies assign
values v(i) to the vertices i, with the property that the first player wins
with probability v(i), given the game starts at vertex i. For a given
start vertex s, the optimization problem associated with the SSG is
to compute the game value v(s); the decision problem asks whether
the game value is at least 1/2. The formal setup of SSG is given in
Section 6.1.

Section 6.2 then shows the actual reduction to PGLCP and con-
cludes with an argument why P-matrices are probably more general
than the matrices we get in SSG-induced PGLCPs. Section 6.3 gives
some negative results, for example that the matrix in the SSG-induced
PGLCP is not a hidden K-matrix in general.

107

108 Chapter 6. Simple Stochastic Games

6.1 The Setup

We are given a finite directed graph G whose vertex set has the form

V = {1,0} ∪ Vmax ∪ Vmin ∪ Vavg,

where 1, the 1-sink, and 0, the 0-sink, are the only two vertices with no
outgoing edges.

Vertices in Vmax belong to the first player which we call the max
player, while vertices in Vmin are owned by the second player, the min
player. Vertices in Vavg are average vertices. For i ∈ V \ {1,0}, we
let N (i) be the set of neighbors of i along the outgoing edges of i.
The elements of N (i) are {η1(i), . . . , η |N (i)|(i)}. An average vertex i
is associated with a probability distribution P(i) that assigns to each
outgoing edge (i, j) of i a probability pij > 0,

∑

j∈N (i) pij = 1.

The SSG defined by G is played by moving a token from vertex to
vertex, until it reaches either the 1-sink or the 0-sink. If the token is at
vertex i, it is moved according to the following rules.

vertex type rule
i = 1 the game is over and the max player wins
i = 0 the game is over and the min player wins
i ∈ Vmax the max player moves the token to a vertex in N (i)
i ∈ Vmin the min player moves the token to a vertex in N (i)
i ∈ Vavg the token moves to a vertex in N (i) according to P(i)

A SSG is called stopping, if no matter what the players do, the token
eventually reaches 1 or 0 with probability 1, starting from any vertex.
In a stopping game, there are no directed cycles involving only vertices
in Vmax ∪ Vmin. The following is well-known and has first been proved
by Shapley [83], see also the papers by Condon [12, 13]. Our reduction
yields an independent proof of part (i).

Lemma 6.1 Let G define a stopping SSG.

108

6.1. The Setup 109

(i) There are unique numbers v(i), i ∈ G, satisfying the equations

v(i) =

1, i = 1
0, i = 0

max
j∈N (i)

v(j), i ∈ Vmax

min
j∈N (i)

v(j), i ∈ Vmin

∑

j∈N (i)

pijv(j), i ∈ Vavg

. (6.2)

(ii) The value v(i) is the probability for reaching the 1-sink from vertex
i, if both players play optimally.

For a discussion about what it means that ‘both players play optimally’,
we refer to Condon’s paper [13]. The important point here is that
computing the numbers v(i) solves the optimization version of the SSG
in the sense that for every possible start vertex s, we know the value
v(s) of the game. It also solves the decision version which asks whether
v(s) ≥ 1/2. Additionally, the lemma shows that there are pure optimal
strategies that can be read off the numbers v(i): if v is a solution to
(6.2), then an optimal pure strategy is given by moving from vertex i
along one outgoing edge to a vertex j with v(j) = v(i).

The stopping assumption can be made without loss of generality: in
a non-stopping game, replace every edge (i, j) by a new average vertex
tij and new edges (i, tij) (with the same probability as (i, j) if i ∈ Vavg),
(tij , j) with probability 1 − ε and (tij ,0) with probability ε. Optimal
strategies to this stopping game (which are given by the v(i) values)
correspond to optimal strategies in the original game if ε is chosen small
enough [12].

Our original reduction is described in [34]. There we also assume
that the SSG is stopping, but we don’t insist on the replacement of
every edge with the average vertices tij as above. Here we do that,
which simplifies the reduction. Since consecutive average vertices can
be merged into one average vertex, we can assume bipartiteness of the
game graph, in the sense that all neighbors of player vertices are average
vertices and all neighbors of average vertices are player vertices or sinks.

109

110 Chapter 6. Simple Stochastic Games

6.2 Reduction from SSG to PGLCP

This section describes the core result of this chapter. As a help for the
reader, we provide the reduction step by step for a specific example in
Subsection 6.3.1.

In the following, G defines a bipartite, transformed (as described
above) stopping SSG and every non-sink vertex of G has at least two
outgoing edges (a vertex of outdegree 1 can be removed from the game
without affecting the values of other vertices). In order to solve (6.2), we
first write down an equivalent system of linear equations and inequali-
ties, along with (nonlinear) complementarity conditions for certain pairs
of variables. The system has one variable xi for each vertex i and one
slack variable wij for each edge (i, j) with i ∈ Vmax ∪ Vmin. It has
equality constraints

xi =

1, i = 1
0, i = 0

wij + xj , i ∈ Vmax, j ∈ N (i)
−wij + xj , i ∈ Vmin, j ∈ N (i)
∑

j∈N (i)

pijxj , i ∈ Vavg,

(6.3)

inequality constraints

wij ≥ 0, i ∈ Vmax ∪ Vmin, j ∈ N (i), (6.4)

and complementarity constraints

∏

j∈N (i)

wij = 0, i ∈ Vmax ∪ Vmin (6.5)

to model the max- and min-behavior in (6.2).

The statement of Lemma 6.1 (i) is equivalent to the statement that
the system consisting of (6.3), (6.4) and (6.5) has a unique solution
x = (x1, . . . , xn), and we will prove the latter statement. Actually,
we prove that the variables x are redundant and that there exists a
unique solution for the variables w. From this we can recover the unique
solution for the xi, which are the game values v(i). Note that edges with
wij = 0 in the solution correspond to strategy edges of the players, i.e.,

110

6.2. Reduction from SSG to PGLCP 111

if wij = 0 then xi = xj and the best strategy for the player at vertex i
is to move the token to vertex j.

In order to obtain a proper GLCP formulation, we remove the re-
dundant x-variables (the fact that we can remove them implies that
they are redundant). For variables xi, i /∈ Vavg, this is easy. For each
player vertex i we choose one arbitrary neighbor along an outgoing edge
and call it η1(i). In order to reveal connections to the final GLCP al-
ready now, we call edges going from i to η1(i) z-edges and rename their
slack variables to zi, so zi := wiη1(i). Because of bipartiteness of the
game graph, every edge originating from a player vertex connects to an
average vertex j. For i ∈ Vmax we can therefore replace all occurrences
of xi in (6.3) by zi + xη1(i), and for i ∈ Vmin by −zi + xη1(i), and end
up with equalities consisting of xi for i ∈ Vavg only (x0 and x1 can be
replaced by 0 and 1 immediately):

wij − zi − xη1(i) + xj = 0, i ∈ Vmax, j ∈ N (i) \ η1(i)
wij − zi + xη1(i) − xj = 0, i ∈ Vmin, j ∈ N (i) \ η1(i)

−xi +
∑

j∈N (i)

pijSj = 0, i ∈ Vavg,
(6.6)

where Sj in the last equation is zj + xη1(j) if j ∈ Vmax, −zj + xη1(j) if
j ∈ Vmin and 0 or 1 if j is a sink. Note that the right-hand sides of the
first two equations are zero since player vertices do not connect to sinks
(after the stopping transformation). Nevertheless, allowing connections
from player vertices to sinks is no problem, resulting in constant values
on the right-hand side.

6.2.1 A Non-Standard GLCP

Let us assume that Vmax ∪ Vmin = {1, . . . , u}, Vavg = {u + 1, . . . , n}.
We define vectors

z = (w1η1(1), . . . , wuη1(u))
T = (z1, . . . , zu)

T

and

w = (w1, . . . , wu)T , x = (xu+1, . . . , xn)
T ,

where wi = (wiη2(i), . . . , wiη |N(i)|(i)) is the vector consisting of the wij
for all j ∈ N (i)\η1(i). Conditions (6.4), (6.5) and (6.6) – and therefore

111

112 Chapter 6. Simple Stochastic Games

the problem of computing the v(i) – can now be written as

find w, z
subject to w, z ≥ 0

zi

|N (i)|−1
∏

j=1

wij = 0, i ∈ Vmax ∪ Vmin

(
w
0

)

−
(
I C
A B

)(
z
x

)

=
(
s
t

)

,

(6.7)

where
P =

(
I C
A B

)

, q =
(
s
t

)

are a suitable matrix and a suitable vector. The vertical block matrix
I is partitioned according to w and all representative submatrices of it
are the identity matrix in R

u×u. The square matrix B of dimension
n − u encodes the connections between average vertices along z-edges.
A and C describe how player and average vertices interconnect.

6.2.2 The Structure of the Matrix P

After the transformation to stopping SSG and the merging of the av-
erage vertices, all average vertices i have an escape-edge to the 0-sink,
pi0 > 0. The matrix B is therefore row diagonally dominant with posi-
tive diagonal entries, meaning that Bii >

∑

j 6=i |Bij |. This implies that
B is a P-matrix [93]. Since it is a Z-matrix by construction, it is even
a K-matrix, see Definition 5.4.

Property 6.8 An (n× n) representative submatrix

P̄ =
(
Ī C̄
A B

)

of P is given by a representative submatrix Ī of I and C̄ which consists
of the rows of C corresponding to the rows of Ī. P̄ corresponds to a
subgame where (non-z-)edges have been deleted such that every player
vertex has exactly two outgoing edges.

Such a subgame is a slightly generalized binary SSG, since average ver-
tices can have more than two outgoing edges and arbitrary probability
distributions on them.

112

6.2. Reduction from SSG to PGLCP 113

Lemma 6.9 Using elementary row operations, we can transform a rep-
resentative submatrix P̄ of P into a matrix P̄ ′ of the form

P̄ ′ =

(

Ī C̄
0 B′

)

with B′ being a P-matrix.

Proof. We process the rows of the lower part (AB) of P̄ one by one.
In the following, we restrict to the subgame corresponding to P̄ , where
all player vertices have two outgoing edges.

For k ∈ {1, . . . , n}, let Rk be the kth row of P̄ and assume that we
are about to process Ri, i ∈ {u+ 1, . . . , n}. According to (6.6), we have

Ri

(
z
x

)

= xi −
∑

j∈N (i)\{0,1}

pij(±zj + xη1(j)), (6.10)

with +zj if j ∈ Vmax and −zj if j ∈ Vmin. We will eliminate the
contribution of ±zj +xη1(j) for all j ∈ N (i) \ {0,1}, by adding suitable
multiples of rows Rj , j ∈ {1, . . . , u}. For such a j, (6.6) implies

Rj

(
z
x

)

=

{
zj + xη1(j) − xη2(j), j ∈ Vmax
zj − xη1(j) + xη2(j), j ∈ Vmin

,

where η2(j) is the second neighbor of j in the subgame corresponding to
P̄ . Thus, adding a fraction (either −pij or pij) of such a row to (6.10)
for all j ∈ N (i)\{0,1} transforms our current matrix into a new matrix
whose ith row has changed and yields

R′
i

(
z
x

)

= xi −
∑

j∈N (i)\{0,1}

pijxη2(j). (6.11)

This transformation is realized through elementary row operations. Be-
cause (6.11) does not contain any z-variables anymore, we get the
claimed structure after all rows Ri, i ∈ {u + 1, . . . , n}, have been pro-
cessed.

B′ is again a P-matrix (even a K-matrix) since it is row diagonally
dominant and positive on the diagonals. �

Lemma 6.12 P is a vertical block P-matrix.

113

114 Chapter 6. Simple Stochastic Games

Proof. We show that every representative submatrix P̄ of P is a P-
matrix. By Lemma 6.9, det(P̄) = det(P̄ ′) = det(Ī) det(B′) = det(B′),
so P̄ has positive determinant since B ′ is a P-matrix. To see that all
proper principal minors are positive, we can observe that any principal
submatrix of P̄ is again the matrix resulting from a SSG. The subgame
corresponding to a principal submatrix can be derived from the SSG by
deleting vertices and redirecting edges. The deletion of a player vertex
is described in Figure 6.1. Squares correspond to average and trian-

Figure 6.1: Removing a player vertex.

gles to player vertices. The dots indicate that there can be arbitrarily
many average vertices having a directed edge to the vertex we want to
delete. The bold edge indicates the z-edge of the player vertex (remem-
ber that player vertices in the subgame described by P̄ have outdegree
2). Strictly speaking, the resulting game is not bipartite anymore, but
looking through the reduction once more, we see that consecutive av-
erage vertices are handled easily: there are in fact less entries in the
submatrix A of P̄ we have to get rid of in order to prove that P̄ is a
P-matrix along the lines of Lemma 6.9.

Figure 6.2 shows that the deletion of an average vertex is achieved
by redirecting all incoming edges to the 0-sink. Since we now have sinks
after player vertices, the game is not of the original form anymore. But
again, the reduction deals with that (some entries in the matrix C of P̄
are zero instead of 1 or −1 and the s-vector in (6.7) might no longer be
zero, see also the remark after (6.6)) and the matrix corresponding to
the subgame has positive determinant. �

114

6.2. Reduction from SSG to PGLCP 115

PSfrag replacements
0

Figure 6.2: Removing an average vertex.

6.2.3 A Standard GLCP

Problem (6.7) is a non-standard GLCP because there are variables x
with no complementarity conditions. But knowing that B is regular
(since B is a P-matrix), we can express x in terms of z and obtain an
equivalent standard GLCP.

find w, z
subject to w, z ≥ 0

zi

|N (i)|−1
∏

j=1

wij = 0, i ∈ Vmax ∪ Vmin

w − (I − CB−1A)z = s− CB−1t

(6.13)

Lemma 6.14 The matrix I − CB−1A is a P-matrix.

Proof. We have to show that every representative submatrix of I −
CB−1A is a P-matrix. Such submatrices are derived through Ī −
C̄B−1A. It thus suffices to show that Ī − C̄B−1A is a P-matrix, given
that P̄ (as defined in Property 6.8) is a P-matrix. This is well-known,
Ī − C̄B−1A is called the Schur complement of B in P̄ (Tsatsomeros
[92]). �

We therefore have

Theorem 6.15 A simple stochastic game is reducible in polynomial
time to a generalized linear complementarity problem with a P-matrix.

115

116 Chapter 6. Simple Stochastic Games

This theorem also provides a proof of Lemma 6.1: going through our
chain of reductions again yields that the equation system in Lemma 6.1
(i) for the values v(i) has a unique solution if and only if the PGLCP
(6.13) has a unique solution for the slack variables w and z. The latter
holds because the matrix of (6.13) is a P-matrix, see Theorem 2.5.

As mentioned earlier in Section 1.1, the reduction works for a su-
perclass of SSG in which edges are associated with a payoff. But for
general stochastic games as introduced by Shapley [83], our reduction
is not possible. This follows from two facts. First, optimal strategies
for stochastic games are generally non-pure. Second, it is possible to
get irrational solutions (vertex values) for the stochastic game even if
all input data is rational [74]. This is not possible for GLCP.

Projecting the grid USO we get from a SSG-induced PGLCP to
dimensions of one player only (see [33, 32] for details about projected
USOs), results in the acyclic grid USO that Björklund et al. derive via
their reduction [3]. This phenomenon makes us believe that PGLCP is
more general than SSG since we don’t expect to observe it for general
P-matrices. We record this observation in a lemma.

Lemma 6.16 Consider a SSG-induced PGLCP instance. The grid
USO evolving from it has the property that there is at least one sub-
set of dimensions (corresponding to one of the players in the SSG) such
that the USO resulting from projecting w.r.t. the dimensions in the sub-
set as well as the USO resulting from projecting w.r.t. all dimensions
not in the subset is acyclic.

An interesting open question is whether the acyclic grid USOs of Björk-
lund et al. satisfy the Holt-Klee condition. The result that PGLCP-
induced grid USO fulfill it does not answer the question in the affirma-
tive, since the Holt-Klee property might get lost in a projected USO, see
Figure 1.1 on page 9 for an example. There, the left orientation is LP-
induced and therefore satisfies the Holt-Klee condition while the right,
projected orientation does not (it’s the double twist from Figure 3.2 on
page 34).

116

6.3. Negative Results 117

6.3 Negative Results

We show that the matrix in a SSG-induced PGLCP is in general not
(transpose) hidden K and not positive semi-definite. Moreover, it is pos-
sible that the SSG reduces to a PLCP that in turn reduces to a USO of
the cube known as the Klee-Minty orientation. In such an orientation,
there is a directed path visiting all vertices of the cube. A potential al-
gorithm following this path would therefore need an exponential number
of steps to find the sink.

6.3.1 A SSG whose Matrix is not Hidden K

In order to illustrate the reduction, we provide an example here. More-
over, the matrix we get through the reduction is not hidden K, thus
destroying one possible hope of getting a polynomial time algorithm for
SSG via PGLCP. The example is an adaptation of Condon’s original
game designed to show that switching algorithms can cycle [13]. The
cycle translates to the PGLCP USO in a straightforward way (switching
the strategy at a player vertex is to move along one edge in the USO),
which proves that the matrix is not hidden K (Theorem 5.20).

The reason we look at an adaptation and not at the original game
is that we also get a negative result in the setting of Svensson and
Vorobyov [88]. We come back to this after the reduction.

Figure 6.3 shows the SSG, with upper triangles denoting max player
and lower triangles denoting min player vertices. Squares are average
vertices and bold numbers correspond to sink values. The arrow point-
ing to the bold number 9/10, for instance, is an abbreviation for an
arrow pointing to an average vertex having two outgoing edges, one of
them connecting to the 1-sink with probability 9/10 and the other con-
necting to the 0-sink with probability 1/10. Since this average vertex
will have value 9/10, we can disregard it in the reduction (by replacing
all occurrences of its x-variable by 9/10). The game consists of 4 player
vertices, the resulting vertical block matrix in the PGLCP will thus be
of dimension 4 (consist of 4 vertical blocks). We don’t know of any
game giving a 3-dimensional non hidden K-matrix.

We first write down the equations according to (6.3), nonnegativity

117

118 Chapter 6. Simple Stochastic Games

3/4

1/41/4

3/4

9/10

0

0

0 1/2

01

2/5

ε

1−ε

ε

1−ε

ε

1−ε

1

1

5

3

7

28 9

4

6

Figure 6.3: A SSG yielding a non hidden K-matrix.

118

6.3. Negative Results 119

and complementarity constraints omitted. The variables wij are the
slacks for the edges from vertex i to vertex j. The bold arrows in the
figure denote the z-edges, so z1 for instance, is the slack of the edge
going from vertex 1 to the value 9/10.

x1 = z1 + 9/10 x5 = (1 − ε)(−z3 + 2/5)
x1 = w15 + x5 x6 = ε+ (1 − ε)(z1 + 9/10)
x2 = z2 x7 = (1 − ε)z2
x2 = w28 + x8 x8 = 3/4(−z3 + 2/5) + 1/4
x2 = w29 + x9 x9 = 3/4(−z4 + 1/2)
x3 = −z3 + 2/5
x3 = −w37 + x7
x4 = −z4 + 1/2
x4 = −w46 + x6

Eliminating the xi for the player vertices (see (6.6)) yields

w15 − z1 + x5 = 9/10 x5 = (1 − ε)(−z3) + 2/5 − 2/5ε
w28 − z2 + x8 = 0 x6 = (1 − ε)z1 + 9/10 + 1/10ε
w29 − z2 + x9 = 0 x7 = (1 − ε)z2
w37 − z3 − x7 = −2/5 x8 = 3/4(−z3) + 11/20
w46 − z4 − x6 = −1/2 x9 = 3/4(−z4) + 3/8

.

Written in matrix form, this is

w15
w28
w29
w37
w46
0
0
0
0
0

− P

z1
z2
z3
z4
x5
x6
x7
x8
x9

=

9/10
0
0

−2/5
−1/2

−2/5 + 2/5ε
−9/10 − 1/10ε

0
−11/20
−3/8

with P being the matrix

1 0 0 0 −1 0 0 0 0
0 1 0 0 0 0 0 −1 0
0 1 0 0 0 0 0 0 −1
0 0 1 0 0 0 1 0 0
0 0 0 1 0 1 0 0 0
0 0 (1 − ε) 0 1 0 0 0 0

−(1 − ε) 0 0 0 0 1 0 0 0
0 −(1 − ε) 0 0 0 0 1 0 0
0 0 3/4 0 0 0 0 1 0
0 0 0 3/4 0 0 0 0 1

.

The partition of P is according to its submatrices I, A,B,C as given in
(6.7). Note that columns in A and rows in C corresponding to the max

119

120 Chapter 6. Simple Stochastic Games

player have nonpositive entries (all the other entries are nonnegative).
This fact assures that the matrix in the standard GLCP as in (6.13) is
nonnegative:

w15
w28
w29
w37
w46

−

1 0 (1 − ε) 0
0 1 3/4 0
0 1 0 3/4
0 (1 − ε) 1 0

(1 − ε) 0 0 1

(z1
z2
z3
z4

)

= q,

where

q =

1/2 + 2/5ε
−11/20
−3/8
−2/5

2/5 + 1/10ε

.

This vertical block matrix of type (1, 2, 1, 1), as indicated by the hori-
zontal lines, is easily seen to be a P-matrix, since both representative
submatrices are row diagonally dominant with ones on the diagonal.
The matrix has in fact a very simple structure. There are two reasons
for that. The first is the choice of the z-edges in the reduction. All
of these edges lead directly to (sink) values. The second reason is that
the game is tripartite, meaning that every max vertex is followed by
average vertices that are followed by min vertices. These min vertices
are followed by average vertices that are followed by max vertices.

Any SSG can without loss of generality be transformed in a tripartite
one where every player vertex is connected to a sink. This can be
achieved by introducing additional vertices and introducing an edge to
the 1-sink for every min vertex and an edge to the 0-sink for every max
vertex. Such edges are called retreat edges and they are redundant, since
it makes no sense for the players to choose such an edge. Applying the
same reduction as we do, Svensson and Vorobyov [88] show that on such
games, the matrix in the final standard GLCP (the matrix I −CB−1A
in (6.13)) is a so called D-matrix. The drawback of reducing to a D-
matrix is that binary SSG don’t reduce to LCP in general (since we
introduce the retreat edges). Here is the definition of D-matrices:

Definition 6.17 A vertical block matrix Q consisting of n blocks is
a D-matrix if it is nonnegative, strictly row diagonally dominant and
if there is a set α ⊆ [n] such that in every representative submatrix
Q̄ ∈ R

n×n

120

6.3. Negative Results 121

(i) there are ones on the diagonal, and

(ii) Q̄α,α and Q̄ᾱ,ᾱ are identity matrices of appropriate size.

Remember that Q̄α,α, as defined on page 88, is Q̄ restricted to rows
and columns with indices in α. After having reduced SSG to D-matrix
GLCP, the set α corresponds to the set of max player vertices. The
reader is encouraged to check that our matrix above is indeed a D-
matrix for 0 < ε ≤ 1.

Every D-matrix is a P-matrix. It is interesting that every square
D-matrix Q is hidden K. A possible witness is X := 2I −Q, that is Q
with all off-diagonal entries turned into their negative values. Since Q
is row diagonally dominant, we have Xe > 0 and according to Charac-
terization 5.9 it thus suffices to check that QX is a Z-matrix. This is
easy.

Despite these nice properties, D-matrices are not hidden K in gen-
eral. The matrix above is a counterexample for instance for ε = 1/100.
This can be checked by formulating Characterization 5.28 as an LP
that can be solved for example by Maple. More elegantly, computing
the (2×3×2×2)-grid USO corresponding to the PGLCP derived above,
we see that it is cyclic. The cycle corresponds exactly to Condon’s orig-
inal cycling-sequence, i.e., it appears in a 4-dimensional subcube of the
grid. The size 3 of the second dimension in our example was only needed
to reduce to a D-matrix. The changes we made to Condon’s example
were to add a retreat edge for vertex 2 (this gives size 3 of the 2nd
dimension) and to insert the average vertices 5, 6, 7 to make the game
tripartite.

The reader might wonder why the ε-edge of vertex 6 goes to the 1-
sink, whereas the ε-edges of vertices 5 and 7 go to the 0-sink. Although,
in order to solve the game, adding average vertices with an ε-edge to any
sink value works if ε is small enough, the reason of the values here is to
avoid a degenerate USO. Indeed, if we would direct the ε-edge of vertex
6 to the 0-sink as well, the following two strategies would have the same
values for all vertices (which is not a bad thing for SSG): choose the
non-z-edges for player vertices 1, 3, 4 and for vertex 2 the edge going to
9 (first strategy) or the retreat edge (second strategy). This results in
an undirected edge in the USO.

Our result that every submatrix being hidden K is not enough for

121

122 Chapter 6. Simple Stochastic Games

a vertical block matrix to be hidden K is a strengthening of the same
result for vertical block Z-matrices by Mohan and Neogy [60].

Here is the solution to the above PGLCP with ε = 1/100:

w15
w28
w29
w37
w46

 =

63/125
0

7/40
289/2000
401/1000

,

(z1
z2
z3
z4

)

=

0
11/20

0
0

 .

From this we can read off that the optimal strategy is to choose the
z-edge for all player vertices except vertex 2. There, the edge going to
vertex 8 should be taken. Given this strategy, the values v(i) in (6.2),
or equivalently the values xi in (6.3), can be computed and checked to
fulfill the max and min constraints in (6.2).

The outgoing edges of a player vertex correspond to one block of
variables in the PGLCP. The choice of the z-edges determines the z-
variable in one block. If we choose different z-edges, then the new
PGLCP we get can be derived by doing a principal pivot transform on
the old one (moving the z-variables at the right place). Since hidden K-
matrices are closed under principal pivot transforms (Theorem 5.11), the
matrix resulting from the SSG in Figure 6.3 is not hidden K independent
of the choice of z-edges.

If we remove the edge going from vertex 2 to the 0-sink in Figure 6.3
and choose the z-edge at vertex 2 to be the one going to vertex 8, then
the reduction yields the square matrix

M =

1 0 (1 − ε) 0
0 1 −3/4 3/4
0 (1 − ε) (1/4 + 3/4ε) 0

(1 − ε) 0 0 1

and right-hand side vector

q =

1/2 + 2/5ε
7/40

3/20 − 11/20ε
2/5 + 1/10ε

 .

Setting ε to 1/100, the USO arising from this LCP is cyclic, implying
that the matrix M is not hidden K. Moreover, the transpose of M is
not hidden K either, so the polynomial time algorithms known for the

122

6.3. Negative Results 123

LCP(M, q) with MT being hidden K (see [17] and also the discussion
on page 88) can not be used for solving games in general. The transpose
of the above matrix M (with ε = 1/100) is not hidden K, because the
following matrix is a witness S as in Characterization 5.29 on page 98
(witness R can be computed as −MS):

1 1 1 −60497
29403

1 1 −503
396 1

−3 1 1 1
1 −602

297 1 1

 .

We finish the example by stating our negative findings as a lemma:

Lemma 6.18 Simple stochastic games do in general not reduce to PGLCP
with a hidden K-matrix or with the transpose of a hidden K-matrix.

6.3.2 A SSG whose Matrix is Ill-Conditioned

In his book [97], Ye presents an interior point method to solve PLCP
in time polynomial in the input size, given that the condition number
of the P-matrix M is bounded by a polynomial in the dimension of M .
The condition number of a P-matrix M is defined as

−λ
θ(M)

,

where λ is the smallest eigenvalue of (M +MT)/2 and

θ(M) = min
||x||=1

max
j
xj(M

Tx)j .

Note that θ(M) is always positive, since M is a P-matrix and does not
reverse the sign of any nonzero vector [17]. We look at the game given
in Figure 6.4. Doing the reduction yields matrix

M =

(

1 1
ε − 1

0 1

)

.

The smallest eigenvalue of (M +MT)/2 is λ = 3
2 − 1

2ε and θ(M) can be
seen to be at most 1 by choosing x = (0, 1)T . The condition number is
then at least 1

2ε − 3
2 which is exponential in the dimension of M if 1/ε

is. Since ε can be chosen arbitrarily small, we get the following result.

123

124 Chapter 6. Simple Stochastic Games

0 0

0

0

1−ε

ε

εε

1−ε1−ε

Figure 6.4: A SSG yielding an ill-conditioned matrix.

124

6.3. Negative Results 125

0

1

Figure 6.5: A SSG yielding a Klee-Minty cube.

Lemma 6.19 Simple stochastic games do not reduce to PLCP with
well-conditioned matrix in general.

By Ye’s definition, every P-matrix with positive eigenvalues is well-
conditioned. A matrix M ∈ R

n×n is positive semi-definite if xTMx ≥ 0
for all x ∈ R

n. It’s an easy observation that M is positive semi-definite
if and only if (M +MT)/2 is as well. Moreover, it is known that a sym-
metric matrix is positive semi-definite if and only if all eigenvalues are
nonnegative (see [17] for example). Positive semi-definite P-matrices are
therefore well-conditioned and Ye’s algorithm solves such LCPs in poly-
nomial time (polynomial time algorithms are also known for the LCP
with general positive semi-definite matrices [67]). The above lemma
therefore includes the result that simple stochastic games do not reduce
to PLCP with positive semi-definite matrix in general.

6.3.3 Exponential Lower Bound for SSG

Melekopoglou and Condon give examples of binary SSG needing an
exponential number of switches in the worst case [59]. Basically, such a
game is a generalization of the example with 3 player vertices given in
Figure 6.5, where edges at average vertices have probability 1/2.

Since switching an edge at a player vertex amounts to following an
outgoing edge in the corresponding PLCP USO, their result states that

125

126 Chapter 6. Simple Stochastic Games

the cube USO resulting from the game belongs to a class of orientations
described by Klee and Minty in [48]. A necessary condition for members
in their class of orientations is the existence of a path from the source to
the sink visiting all vertices of the cube. And indeed, certain switching
algorithms follow this path.

A Klee-Minty cube USO is actually generated by LP and was the
first example to show that the simplex method with Dantzig’s pivot
rule may require an exponential number of pivot steps [48]. For the
example of Figure 6.5, a longest possible switching sequence is given
in Figure 6.7. Numbers at vertices denote the vertex values for the
strategy determined by thick arrows.

Interestingly, the game uses only min player vertices. The path of
the 3-cube USO, corresponding to the switching sequence, is given in
Figure 6.6. Numbers at cube-vertices denote the strategy of Figure 6.7
corresponding to the vertex.

1 2

34

5 6

78

Figure 6.6: The resulting Klee-Minty path.

126

6.3. Negative Results 127

1/2

4/7 1/2 1/2 11/14

9/14 1/24/7

1/2 1/2 1/2 3/4

9/16 5/8

4/7

4/7 9/14 1/2
11/14

9/14 1/2

2/3 2/3 1/2 5/6

7/12 2/3 1/2

3/4 2/3

4/5 7/10 9/10
9/10

4/5 7/10 1/2

2/3 2/3 5/6 5/6

1/2

1 1 1
1

1/23/47/8

4/5 9/10 9/10 9/10

1/27/104/5

Strategy 2

Strategy 4

Strategy 5

Strategy 7 Strategy 8

Strategy 1

Strategy 3

Strategy 6

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

Figure 6.7: A longest possible switching sequence.

127

128 Chapter 6. Simple Stochastic Games

128

Bibliography

[1] E. W. Barankin and R. Dorfman, A method for quadratic program-
ming, Econometrica 24 (1956), 340.

[2] M. Bernstein and N. J. A. Sloane, Some canonical sequences of
integers, Linear Algebra and its Applications 226/228, 1-3 (1995),
57–72.

[3] H. Björklund, S. Sandberg, and S. Vorobyov, Randomized subex-
ponential algorithms for infinite games, Technical Report 2004-09,
DIMACS: Center for Discrete Mathematics and Theoretical Com-
puter Science, Rutgers University, NJ, 2004.

[4] H. Björklund, O. Svensson, and S. Vorobyov, Controlled linear pro-
gramming for infinite games, Technical Report 2005-13, DIMACS:
Center for Discrete Mathematics and Theoretical Computer Sci-
ence, Rutgers University, NJ, 2005.

[5] H. Björklund, O. Svensson, and S. Vorobyov, Linear complemen-
tarity algorithms for mean payoff games, Technical Report 2005-05,
DIMACS: Center for Discrete Mathematics and Theoretical Com-
puter Science, Rutgers University, NJ, 2005.

[6] A. Björner, M. Las Vergnas, B. Sturmfels, N. White, and G. M.
Ziegler, Oriented Matroids, Cambridge University Press, Cam-
bridge, 1999.

[7] A. Borici and H.-J. Lüthi, Fast solutions of complementarity formu-
lations in American put pricing, Journal of Computational Finance
9, 1 (2005), 63–81.

129

130 Bibliography

[8] R. Chandrasekaran, A special case of the complementary pivot
problem, Opsearch 7 (1970), 263–268.

[9] B. Chazelle and J. Matoušek, On linear-time deterministic algo-
rithms for optimization problems in fixed dimension, Journal of
Algorithms 21 (1996), 579–597.

[10] V. Chvátal, Linear Programming, W. H. Freeman, New York, NY,
1983.

[11] K. L. Clarkson, Las Vegas algorithms for linear and integer pro-
gramming, Journal of the ACM 42 (1995), 488–499.

[12] A. Condon, The complexity of stochastic games, Information &
Computation 96, 2 (1992), 203–224.

[13] A. Condon, On algorithms for simple stochastic games, in: Ad-
vances in Computational Complexity Theory (J. Cai, ed.), vol-
ume 13 of DIMACS Series in Discrete Mathematics and Theoretical
Computer Science, American Mathematical Society, 1993, 51–73.

[14] R. W. Cottle, Monotone solutions of the parametric linear comple-
mentarity problem, Mathematical Programming 3 (1972), 210–224.

[15] R. W. Cottle and G. B. Dantzig, Complementary pivot theory of
mathematical programming, in: Mathematics of the Decision Sci-
ences (G. B. Dantzig and A. F. Veinott, eds.), American Mathe-
matical Society, 1968, 115–136.

[16] R. W. Cottle and G. B. Dantzig, A generalization of the linear com-
plementarity problem, Journal on Combinatorial Theory 8 (1970),
79–90.

[17] R. W. Cottle, J. Pang, and R. E. Stone, The Linear Complemen-
tarity Problem, Academic Press, 1992.

[18] R. W. Cottle and J. S. Pang, A least-element theory of solving
linear complementarity problems as linear programs, Mathematics
of Operations Research 3 (1978), 155–170.

[19] R. W. Cottle and J. S. Pang, On solving linear complementarity
problems as linear programs, Mathematical Programming Study 7
(1978), 88–107.

130

Bibliography 131

[20] C. W. Cryer and Y. Lin, An alternating direction implicit algorithm
for the solution of linear complementarity problems arising from
free boundary problems, Applied Mathematics and Optimization
13 (1985), 1–17.

[21] C. Derman, Finite state Markovian decision processes, Academic
Press, New York, 1972.

[22] M. Develin, LP-orientations of cubes and crosspolytopes, Advances
in Geometry 4 (2004), 459–468.

[23] P. du Val, The unloading problem for plane curves, American Jour-
nal of Mathematics 62 (1940), 307–311.

[24] A. A. Ebiefung and M. M. Kostreva, The generalized linear comple-
mentarity problem: least element theory and Z-matrices, Journal
of Global Optimization 11, 2 (1997), 151–161.

[25] S. Felsner, B. Gärtner, and F. Tschirschnitz, Grid orientations,
(d, d + 2)-polytopes, and arrangements of pseudolines, Discrete
Computational Geometry 34, 3 (2005), 411–437.

[26] M. Fiedler and V. Pták, On matrices with non-positive off-diagonal
elements and positive principal minors, Czechoslovak Mathematical
Journal 12 (1962), 382–400.

[27] K. Fukuda and M. Namiki, On extremal behaviors of Murty’s least
index method, Mathematical Programming 64 (1994), 365–370.

[28] B. Gärtner, The Random-Facet simplex algorithm on combinato-
rial cubes, Random Structures & Algorithms 20, 3.

[29] B. Gärtner, Randomized algorithms: an introduction through
unique sink orientations, Lecture notes, 2003.

[30] B. Gärtner, J. Matoušek, L. Rüst, and P. Škovroň, Violator spaces:
structure and algorithms, Discrete Applied Mathematics To ap-
pear.

[31] B. Gärtner, J. Matoušek, L. Rüst, and P. Škovroň, Violator spaces:
structure and algorithms, in: Proceedings of the 14th Annual Eu-
ropean Symposium on Algorithms (ESA), volume 4168 of Lecture
Notes in Computer Science, Springer-Verlag, 2006, 387–398.

131

132 Bibliography

[32] B. Gärtner, W. D. Morris, Jr., and L. Rüst, Unique sink orienta-
tions of grids, Algorithmica To appear.

[33] B. Gärtner, W. D. Morris, Jr., and L. Rüst, Unique sink orien-
tations of grids, in: Proceedings of the 11th Conference on Inte-
ger Programming and Combinatorial Optimization (IPCO), volume
3509 of Lecture Notes in Computer Science, 2005, 210–224.

[34] B. Gärtner and L. Rüst, Simple stochastic games and P-matrix
generalized linear complementarity problems, in: Proceedings of the
15th International Symposium on Fundamentals of Computation
Theory (FCT), volume 3623 of Lecture Notes in Computer Science,
Springer-Verlag, 2005, 209–220.

[35] B. Gärtner and E. Welzl, Linear programming - randomization
and abstract frameworks, in: Proceedings of the 13th Annual Sym-
posium on Theoretical Aspects of Computer Science (STACS),
Springer-Verlag, London, UK, 1996, 669–687.

[36] B. Gärtner and E. Welzl, A simple sampling lemma - analysis
and applications in geometric optimization, Discrete and Compu-
tational Geometry 25, 4 (2001), 569–590.

[37] M. S. Gowda and R. Sznajder, The generalized order linear com-
plementarity problem, SIAM Journal on Matrix Analysis and Ap-
plications 15, 3 (1994), 779–795.

[38] G. J. Habetler and C. N. Haddad, Projective algorithms for solving
complementarity problems, International Journal of Mathematics
and Mathematical Sciences 29, 2 (2002), 99–113.

[39] G. J. Habetler and B. P. Szanc, Existence and uniqueness of solu-
tions for the generalized linear complementarity problem, Journal
of Optimization Theory and Applications 84, 1 (1995), 103–116.

[40] N. Halman, Simple stochastic games, parity games, mean payoff
games and discounted payoff games are all LP-type problems, Al-
gorithmica To appear.

[41] N. Halman, An EGLP formulation for the simple stochastic game
problem, or a comment on the paper: A subexponential randomized
algorithm for the simple stochastic game problem by W. Ludwig,
Technical Report RP-SOR-01-02, Department of Statistics and Op-
erations Research, 2001.

132

Bibliography 133

[42] N. Halman, Discrete and Lexicographic Helly Theorems and Their
Relations to LP-type problems, Ph.D. thesis, Tel-Aviv University,
2004.

[43] C. Hildreth, Point estimates of ordinates of concave functions,
Journal of the American Statistical Association 49 (1954), 598–
619.

[44] A. Hoffman and R. Karp, On nonterminating stochastic games,
Management Science 12, 5 (1966), 359–370.

[45] M. Jurdziński and R. Savani, A simple P-matrix linear complemen-
tarity problem for discounted games, Manuscript, 2007.

[46] A. Karttunen, Go to http://www.research.att.com/∼njas/sequences/
and enter the first numbers of the sequence: 1,3,11,47,231,...

[47] L. G. Khachiyan, Polynomial algorithms in linear programming,
U.S.S.R. Computational Mathematics and Mathematical Physics
20 (1980), 53–72.

[48] V. Klee and G. J. Minty, How good is the simplex method?, in:
Inequalities III, Academic Press, 1972, 159–175.

[49] M. Kojima, N. Megiddo, T. Noma, and A. Yoshise, A unified
approach to interior point algorithms for linear complementarity
problems : a summary, Operations Research Letters 10 (1991),
247–254.

[50] C. E. Lemke, Bimatrix equilibrium points and mathematical pro-
gramming, Management Science 11 (1965), 681–689.

[51] C. E. Lemke and J. T. Howson, Equilibrium points of bimatrix
games, SIAM Journal on Applied Mathematics 12 (1964), 413–
423.

[52] O. L. Mangasarian, Linear complementarity problems solvable by a
single linear program, Mathematical Programming 10 (1976), 263–
270.

[53] O. L. Mangasarian, Solution of linear complementarity problems
by linear programming, in: Numerical Analysis (G. W. Watson,
ed.), volume 506 of Lecture Notes in Mathematics, Springer-Verlag,
Berlin, Heidelberg, New York, 1976, 166–175.

133

134 Bibliography

[54] O. L. Mangasarian, Generalized linear complementarity problems
as linear programs, Operations Research Verfahren 31 (1979), 393–
402.

[55] O. L. Mangasarian, Simplified characterizations of linear comple-
mentarity problems solvable as linear programs, Mathematics of
Operations Research 4 (1979), 268–273.

[56] J. Matoušek and B. Gärtner, Understanding and Using Linear Pro-
gramming, Springer-Verlag New York, Inc., Secaucus, NJ, USA,
2006.

[57] J. Matoušek, M. Sharir, and E. Welzl, A subexponential bound for
linear programming, Algorithmica 16 (1996), 498–516.

[58] N. Megiddo, A note on the complexity of P-Matrix LCP and com-
puting an equilibrium, Technical report, IBM Almaden Research
Center, San Jose, 1988.

[59] M. Melekopoglou and A. Condon, The complexity of the policy im-
provement algorithm for Markov decision processes, ORSA Journal
on Computing 6, 2.

[60] S. R. Mohan and S. K. Neogy, The role of representative submatri-
ces in vertical linear complementarity theory, Linear & Multilinear
Algebra 41, 2 (1996), 175–187.

[61] S. R. Mohan and S. K. Neogy, Vertical block hidden Z-matrices and
the generalized linear complementarity problem, SIAM Journal on
Matrix Analysis and Applications 18, 1 (1997), 181–190.

[62] W. D. Morris and J. Lawrence, Geometric properties of hidden
Minkowski matrices, SIAM Journal on Matrix Analysis and Appli-
cations 10, 2 (1989), 229–232.

[63] W. D. Morris, Jr., Distinguishing cube orientations arising from
linear programs, Manuscript, 2002.

[64] W. D. Morris, Jr., Randomized principal pivot algorithms for P-
matrix linear complementarity problems, Mathematical Program-
ming, Series A 92 (2002), 285–296.

[65] W. D. Morris, Jr. and M. Namiki, Good hidden P-matrix sand-
wiches, Linear Algebra and its Applications To appear.

134

Bibliography 135

[66] K. G. Murty, Note on Bard-type scheme for solving the comple-
mentarity problem, Opsearch 11 (1974), 123–130.

[67] K. G. Murty, Linear Complementarity, Linear and Nonlinear Pro-
gramming, Helderman-Verlag, 1988.

[68] J. Nash, Equilibrium points in n-person games, in: Proceedings of
the National Academy of Sciences, volume 36, 1950, 48–49.

[69] J. Nash, Non-cooperative games, Annals of Mathematics 54 (1951),
286–295.

[70] J. Pang, Hidden Z-matrices with positive principal minors, Linear
Algebra and its Applications 23 (1979), 201–215.

[71] J. Pang, On discovering hidden Z-matrices, in: Constructive Ap-
proaches to Mathematical Models (C. V. Coffman and G. J. Fix,
eds.), Proceedings of a conference in honor of R. J. Duffin, Aca-
demic Press, New York, 1979, 231–241.

[72] J. S. Pang, On cone orderings and the linear complementarity prob-
lem, Linear Algebra and its Applications 22 (1978), 267–281.

[73] J. S. Pang and R. Chandrasekaran, Linear complementarity prob-
lems solvable by a polynomially bounded pivoting algorithm, Math-
ematical Programming Study 25 (1985), 13–27.

[74] T. Parthasarathy and T. E. S. Raghavan, An orderfield property for
stochastic games when one player controls transition probabilities,
Journal of Optimization Theory and Applications 33, 3 (1981),
375–392.

[75] A. Puri, Theory of Hybrid Systems and Discrete Event Systems,
Ph.D. thesis, University of California at Berkeley, 1995.

[76] Jörg Rambau, TOPCOM: triangulations of point configurations
and oriented matroids, in: Mathematical Software — ICMS 2002
(A. M. Cohen, X-S. Gao, and N. Takayama, eds.), World Scientific,
2002, 330–340.

[77] J. Rohn, Systems of linear interval equations, Linear Algebra and
its Applications 126 (1989), 39–78.

[78] L. Rüst, Unique Sink Orientations of Grids, Master’s thesis, ETH
Zurich, Institute of Theoretical Computer Science, 2004.

135

136 Bibliography

[79] H. Samelson, R. M. Thrall, and O. Wesler, A partition theorem for
Euclidean n-space, in: Proceedings of the American Mathematical
Society 9, 1958, 805–807.

[80] U. Schäfer, A linear complementarity problem with a P-matrix,
SIAM Rev. 46, 2 (2004), 189–201.

[81] I. Schurr, Unique Sink Orientations of Cubes, Ph.D. thesis, ETH
Zurich, 2004.

[82] I. Schurr and T. Szabó, Jumping doesn’t help in abstract cubes,
in: Proceedings of the 11th Conference on Integer Programming
and Combinatorial Optimization (IPCO), volume 3509 of Lecture
Notes in Computer Science, Springer-Verlag, 2005, 225–235.

[83] L. S. Shapley, Stochastic games, Proceedings of the National
Academy of Sciences, U.S.A. 39 (1953), 1095–1100.

[84] M. Sharir and E. Welzl, A combinatorial bound for linear program-
ming and related problems, in: Proceedings of the 9th Symposium
on Theoretical Aspects of Computer Science (STACS), volume 577
of Lecture Notes in Computer Science, Springer-Verlag, 1992, 569–
579.

[85] P. Škovroň, Generalized Linear Programming, Master’s thesis,
Charles University, Prague, 2002.

[86] P. Škovroň, Abstract Models of Optimization Problems, Ph.D. the-
sis, Charles University, Prague, 2007.

[87] A. Stickney and L. Watson, Digraph models of Bard-type algo-
rithms for the linear complementarity problem, Mathematics of
Operations Research 3 (1978), 322–333.

[88] O. Svensson and S. Vorobyov, Linear complementarity and P-
matrices for stochastic games, in: Proceedings of the 6th Interna-
tional Andrei Ershov Memorial Conference “Perspectives of System
Informatics”, to appear.

[89] T. Szabó and E. Welzl, Unique sink orientations of cubes, in: Pro-
ceedings of the 42nd IEEE Symposium on Foundations of Computer
Science (FOCS), 2000, 547–555.

[90] B. P. Szanc, The Generalized Complementarity Problem, Ph.D. the-
sis, Rensselaer Polytechnic Institute, Troy, NY, 1989.

136

Bibliography 137

[91] S. Tessaro, Randomized algorithms to locate the sink in low dimen-
sional unique sink orientations of cubes, Semester thesis, Depart-
ment of Computer Science, ETH Zurich, 2004.

[92] M. J. Tsatsomeros, Principal pivot transforms: properties and ap-
plications, Linear Algebra and its Applications 307 (2000), 151–
165.

[93] M. J. Tsatsomeros, Generating and detecting matrices with pos-
itive principal minors, in: Focus on Computational Neurobiology,
Nova Science Publishers, Inc., 2004, 115–132.

[94] A. W. Tucker, A combinatorial equivalence of matrices, in: Combi-
natorial Analysis (R. Bellman and M. Hall, eds.), American Math-
ematical Society, 1960, 129–140.

[95] B. von Stengel, Computing equilibria for two-person games, in:
Handbook of Game Theory, volume 3, Elsevier Science Publishers
(North-Holland), 2002, 1723–1759.

[96] A. C-C. Yao, Probabilistic computations: toward a unified measure
of complexity, in: Proceedings of the 18th Symp. on Foundations of
Computer Science, IEEE, 1977, 222–227.

[97] Y. Ye, Interior Point Algorithms, John Wiley and Sons, 1997.

[98] U. Zwick and M. Paterson, The complexity of mean payoff games
on graphs, Theoretical Computer Science 158, 1-2 (1996), 343–359.

137

138 Bibliography

138

Curriculum Vitae

Leo Rüst
born March 23, 1980
citizen of Thal (SG), Switzerland

1992-1999
High School
Kantonsschule Zug, Switzerland
Maturität Typus B (Latein)

1999-2004
Technical University
ETH Zurich, Switzerland
Master of Computer Science ETH

2004-2007
Doctorate
ETH Zurich, Switzerland
Doctor of Sciences ETH

139

