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Abstract

Many multimedia algorithms have in common that their quality not only
depends on objective evaluation criteria like running time or memory
consumption but also on the human perception of the output. However,
a systematic analysis of the perceived quality in user studies is often
missing. Reasons for this shortcoming are that there are often no stan-
dardized methods to conduct and evaluate user studies and, even if there
are methods, these often come to their limits as soon as the number of
algorithms to be compared is large. In practical applications the number
of algorithms to be compared indeed can be very large, so that straight
forward evaluation methods cannot be applied anymore. A large number
of algorithms especially arises in the context of parameterized algorithms
where each parameter setting can be seen as an algorithm of its own.
For parameterized algorithms the goal is to compare the perceived qual-
ity induced by different parameter settings. In this thesis we develop
methods to measure and compare the perceived quality induced by the
different parameter settings of a parameterized multimedia algorithm.
We study the problem in the broader context of choice based conjoint
analysis.

Choice based conjoint analysis is an instrument in market research to
measure a respondent’s preferences on a set of items. It deals with
preferences on item sets that possess a conjoint structure. A set of items
possesses a conjoint structure if it can be described in terms of attributes
and attribute levels. In choice based conjoint analysis preferences are
elicited in a sequence of choice tasks. In a choice task a small number
of items is presented to a respondent who then is asked to choose the
one that he prefers. The crucial observation is that a parameterized
algorithm can be viewed as a set of items with conjoint structure where
the parameters correspond to the attributes and the parameter values
to the attribute levels. This allows to measure the quality of different
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parameter settings of a multimedia algorithm using choice based conjoint
analysis.

The results of the thesis are twofold: on the one hand we study the
problem of choice based conjoint analysis and develop our own frame-
work for eliciting respondents’ preferences on a set of items with conjoint
structure. On the other hand we are to our knowledge the first to ap-
ply choice based conjoint analysis to measure the perceived quality of
parameterized multimedia algorithms.

The thesis is divided into two parts: in the first part we investigate the
combinatorics of choice based conjoint analysis. We derive lower bounds
for the number of choice tasks a respondent has to perform in order to
derive a (preference) ranking of the items from his choices. There is
no query strategy that can derive an item ranking from only polynomi-
ally many choice tasks (polynomial in the number of attributes and the
number of levels). Therefore we take an approximation approach, i.e. we
pursue the question of how many choice tasks are necessary to derive a
respondent’s approximate ranking of the items. Finally we develop our
own framework to process data elicited in choice based conjoint studies
which is based on the introduction of new modeling assumptions and the
aggregation of preferences for different respondents.

In the second part of the thesis we use our framework to measure the
perceived quality of algorithms from two different applications: volume
visualization and gamut mapping. Both areas have in common that the
output of the algorithms are images. We report on a large user study that
we conducted to measure the perceived quality of the different parameter
settings for an existing parameterized volume visualization algorithm.
Furthermore we develop a new gamut mapping algorithm and compare
it in a user study to standard reference algorithms. The user study shows
that with our algorithm we are able to improve the perceived quality over
the standard reference algorithms.



Zusammenfassung

Die Qualität von Multimedia Algorithmen wird meist mit Hilfe von tra-
ditionellen Bewertungskriterien wie Laufzeit oder Speicherbedarf der Al-
gorithmen gemessen. Ein wichtiger Aspekt wird dabei oft vernachlässigt:
die vom Menschen wahrgenommene Qualität des berechneten Ergebnis-
ses. Leider wird ein systematischer Vergleich verschiedener Algorithmen
im Hinblick auf die wahrgenommene Qualität nur selten durchgeführt.
Für dieses Versäumnis gibt es mehrere Gründe: In vielen Gebieten gibt
es keine standardisierten Methoden, um Benutzerstudien durchzuführen
und auszuwerten. Selbst wenn es solche Methoden gibt, so stossen diese
an ihre Grenzen sobald die Anzahl der zu vergleichenden Algorithmen
gross ist. Speziell im Zusammenhang mit parametrierten Algorithmen
führt dies zu Problemen. Hier will man unterschiedliche Parameterein-
stellungen im Hinblick auf die wahrgenommene Qualität der Ergebnisse
vergleichen. In praktischen Anwendungen kann die Anzahl der Parame-
tereinstellungen allerdings sehr gross werden, so dass einfache Methoden
zur Qualitätsmessung nicht angewendet werden können. Deshalb ent-
wickeln wir in dieser Arbeit neue Methoden, um die wahrgenommene
Qualität eines parametrierten Multimedia Algorithmus für verschiedene
Parametereinstellungen zu vergleichen. Dazu betrachten wir das Problem
der Qualitätsmessung im breiteren Kontext der wahlbasierten Conjoint-
Analyse.

Die wahlbasierte Conjoint-Analyse ist ein Instrument der Marktforschung
um die Präferenzen eines Befragten bezügliche einer Menge von Produk-
ten zu messen. Dabei besitzen die Produktmengen eine ganz spezielle
Struktur: die Conjoint-Struktur. Eine Menge von Produkten besitzt ei-
ne Conjoint Struktur, wenn sie mit Hilfe von Attributen und Attribut-
Ausprägungen beschrieben werden kann. In der wahlbasierten Conjoint-
Analyse werden dem Befragten nacheinander kleine Mengen von Pro-
dukten gezeigt und der Befragte wird gebeten, sein bevorzugtes Pro-
dukt auszuwählen. Wir haben die wichtige Beobachtung gemacht, dass
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ein parametrierter Algorithmus nichts anderes als eine Menge von Pro-
dukten mit Conjoint-Struktur ist. Die Parameter entsprechen dabei den
Attributen und die Parameter-Werte den Attribut-Ausprägungen. Diese
Beobachtung erlaubt es nun, die wahrgenommene Qualität von parame-
trierten Multimedia-Algorithmen mit Hilfe von wahlbasierter Conjoint-
Analyse zu messen.

Die Ergebnisse dieser Arbeit sind zweischichtig: zum einen untersuchen
wir wahlbasierte Conjoint-Analyse und entwickeln ein eigenes Frame-
work, das es erlaubt, die Präferenzen von Befragten bezüglich einer Pro-
duktmenge mit Conjoint-Struktur zu bestimmen. Zum anderen sind wir
unseres Wissens die Ersten, die wahlbasierte Conjoint Analyse auf die
Messung der wahrgenommenen Qualität von parametrierten Multimedia-
Algorithmen anwenden.

Diese Arbeit gliedert sich in zwei Teile: Im ersten Teil untersuchen wir
die Kombinatorik von wahlbasierter Conjoint-Analyse. Wir bestimmen
untere Schranken für die Anzahl von Fragen, die einem Befragten ge-
stellt werden müssen, um von seinen Antworten eine Präferenzordnung
der Produkte abzuleiten. Es gibt keine Fragestrategie, die eine solche
Ordnung mit nur polynomiell vielen Fragen bestimmen könnte (poly-
nomiell in der Anzahl der Attribute und der Attribut-Ausprägungen).
Deshalb verfolgen wir einen Approximationsansatz: wir bestimmen die
Anzahl der Fragen die nötig sind, um die Präferenzordnung approxima-
tiv zu bestimmen. Schliesslich entwickeln wir ein Framework, das es uns
erlaubt, die wahrgenommene Qualität von parametrierten Multimedia-
Algorithmen zu messen. Dieses Framework stützt sich auf zusätzliche
Modellannahmen und die Aggregation von Präferenzinformation für ver-
schiedene Befragte.

Im zweiten Teil wenden wir unser Framework an, um die wahrgenomme-
ne Qualität von Algorithmen aus den Bereichen Volumen Visualisierung
und Gamut Mapping zu messen. Die beiden Gebiete verbindet, dass die
Ausgabe der Algorithmen Bilder sind. Wir führen eine grosse Benutzer-
studie durch, um die wahrgenommene Qualität verschiedener Parame-
tereinstellungen eines existierenden Volumen Visualisierungsalgorithmus
zu messen. Ausserdem entwickeln wir einen neuen Gamut Mapping Algo-
rithmus und vergleichen seine Qualität mit standardisierten Referenzal-
gorithmen. Eine Benutzerstudie zeigt, dass unser Algorithmus deutlich
bessere Bilder erzeugt als die Referenzalgorithmen.
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CHAPTER 1

Introduction

1.1. Motivation

The work on this thesis started with a project on image-dependent gamut
mapping. Gamut mapping is a fundamental task in digital color repro-
duction. It is concerned with adapting an image to the limitations of
a color space. For example, the set of colors that can be reproduced
by a printer can be different from the set of colors contained in an im-
age. During the printing process the non-reproducible colors have to be
replaced by reproducible colors. Such a replacement strategy is called
a gamut mapping algorithm. If the gamut mapping algorithm depends
on the properties of the input image it is called image-dependent. The
main design goal in gamut mapping is to change the color appearance of
the image as little as possible during the adaptation. Therefore the eval-
uation of a gamut mapping algorithm should not only take traditional
performance measures for algorithms like running time or memory con-
sumption into account but also the degree to which the goal of color
appearance preservation is satisfied. The latter can only be judged by
humans. Thus we conducted a field study to measure the quality of a
gamut mapping algorithm that we developed in comparison to standard
reference algorithms.

We soon realized that it is true for many multi-media algorithms, i.e.,
algorithms whose output is an image, a video or an audio file, that their
performance needs human evaluation. However, in practice the number
of algorithms to be compared can be very large, so that straight for-
ward quality measurement methods cannot be applied. Therefore we
looked for alternative approaches to measure the perceived quality of
multimedia algorithms. Another field where perceived quality and hu-
man evaluation plays a major role is market research. So it was quite
natural to look into the market research literature to see if some of the
methods there can be adapted to our needs in evaluating multi-media
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2 Chapter 1. Introduction

algorithms. One first finding of our literature search was that choice
tasks are very popular means to elicit preferences in a market research
study. In a choice task a very small number of items (say up to five) is
presented to a respondent, who then has to indicate which one of these
he is most likely to buy. Since choice tasks simulate to a certain extent
real buying situations they tend to provide quite reliable data. Choice
based preference analysis — which got its name from the preference
elicitation procedure via choice tasks — is very similar in nature to com-
parison based sorting, one of the most classical subjects in algorithms.
Assume that the choice task is to choose only among two items, i.e., to
perform paired item comparisons. If we want to assess a respondent’s
ranking of the items, then we have essentially to run a comparison based
sorting algorithm where the comparisons are done by the respondent.
This already shows one of the key problems people in market research
have to face: in order to derive the ranking a lot of comparisons are
necessary. If n items have to be ranked, then the information theoretic
lower bound on comparisons based sorting tells us that at least n log n
comparisons are needed. However, respondents often get worn out after
a very small number of choice tasks and do not answer further questions
faithfully anymore. This problem is mitigated in market research prac-
tice by giving to each respondent only a small number of choice tasks
and aggregating information from many respondents.

The most important idea that we took from the market research litera-
ture is that sets of items, e.g., cars, detergents or laptop bags often come
with a structure, namely, they can be described in terms of attributes
and attribute levels. Such a structure is called a conjoint structure and
preference analysis involving items with conjoint structure is called con-
joint analysis. We realized that multi-media algorithms often also have
a conjoint structure where the attributes are the parameters of the al-
gorithms and the levels are the parameter values. One example of a
multi-media algorithm with conjoint structure that we examined in de-
tail is a volume visualization algorithm.

In marketing researchers often want finer information than just a rank-
ing: instead of measuring the differences on an ordinal scale as for a
ranking they measure the differences on an interval scale. To measure
preferences on an interval scale completely different methods than for
combinatorial (choice based) sorting algorithms need to be developed.
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1.2. Contributions

Our contributions are twofold: First, we contribute to the theoretical
underpinnings of choice based conjoint analysis by studying its com-
binatorial structure and devising new data analysis methods based on
approximation, modeling and aggregation ideas. In particular we inves-
tigate a popular choice base conjoint analysis technique and raise some
doubts about its reliability. Second, we use our insights into prefer-
ence measurement to measure the perceived quality of two multimedia
algorithms: On the one hand we develop our own framework for image-
dependent gamut mapping and measure the influence of the parameter
image-dependence on the quality of the result. On the other hand we
measure the perceived quality induced by different parameter settings of
an existing volume visualization algorithm. The outline of the thesis is
as follows:

In Chapter 2 we introduce conjoint analysis in more detail. In an at-
tempt to understand the good practical performance of a very popular
volume-based approach to choice based conjoint analysis we investigate
the combinatorics of choice based conjoint analysis in Chapter 3. We
pursue the question of how many choice tasks a respondent needs to
perform in order to derive an item ranking from his choices and compare
the problem of sorting a set of items possessing a conjoint structure (con-
joint structure case) with the problem of sorting a set of items without
any additional structure (structureless case). We give a geometric inter-
pretation which for both problems leads to a hyperplane arrangement.
It is known (see for example [Mat02]) that in the structureless case
the different cells in the hyperplane arrangement have the same com-
binatorial and geometric structure. From this observation an efficient
volume-based query strategy can be derived. However, we can show
that in the conjoint structure case the different cells have a different
combinatorial and thus a different geometric structure. This has impli-
cations for the volume-based approach and also for commonly applied
methods to validate choice based conjoint analysis algorithms. These
methods rely heavily on insights from the geometric interpretation of
the structureless case and try to carry these insights over to the con-
joint structure case. Our findings, however, raise some doubts about the
reliability and applicability of these methods.

There is no algorithm that can derive an item ranking in the conjoint
structure case from only polynomially many choice tasks (polynomial in
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the number of attributes and the number of levels). At the same time
respondents are only willing to answer a very small number of choice
tasks. Therefore we strive for alternative approaches that permit elicit-
ing people’s preferences by only confronting them with a small number
of choice tasks. Basically we see three possible alternative approaches
which are, in their applicability, not mutually exclusive: First, instead
of heading for an exact item ranking for an individual person, one could
determine an approximation of the ranking. Second, instead of finding
an item ranking for every person individually, one could aggregate pref-
erence information and find an item ranking for the whole population.
Third, one could introduce additional modeling assumptions. In this
thesis we pursue all three approaches.

In Chapter 4 we investigate the approximation approach for the struc-
tureless case, where we are given n items without any additional (con-
joint) structure. We pursue the question of how many choice tasks are
necessary to derive a respondent’s approximate ranking of the items
when preference information is elicited from paired comparisons. We
show that in order to obtain a ranking at Spearman’s footrule distance
n2/ν(n) to the respondent’s item ranking with any query strategy, in
general at least

n (min{log ν(n), log n} − 6)

choice tasks have to be performed in the worst case.

In Chapter 5 we introduce new modeling assumptions and use the aggre-
gation approach. We develop a new framework to derive an aggregated
interval scale for the whole population for a set of items with conjoint
structure. Our framework is based on Thurstone’s method of compara-
tive judgment [Thu27], which was designed for the case when the items
have no additional structure. We extend this method to the case when
items possess a conjoint structure. We can test all modeling assumptions
of our framework and therefore the appropriateness of its application. In
the second part of the thesis, the application part, we put our framework
to work in practical applications.

In Chapter 6 we present a framework for image-dependent gamut map-
ping which is based on an optimization approach. We investigate the
influence of image-dependence on the perceived quality of gamut map-
ping algorithms. We compare the developed algorithm to standard ref-
erence algorithms in a user study. We evaluate the user study by using
Thurstone’s method. The user study shows that image-dependence is
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indeed an important parameter and that with our algorithm we are able
to improve the perceived quality over the standard reference algorithms.

In Chapter 7 we measure the perceived quality of an existing parame-
terized volume visualization algorithm. In volume visualization one is
concerned with creating a two-dimensional representation (in the form of
an image) of three dimensional volume density data. Such a representa-
tion is by no means unique. The main objective of volume visualization
is to produce images that allow humans to gain more insight into the
data. The algorithm that we consider possesses a conjoint structure and
therefore we apply the framework that we developed in Chapter 5. We
describe the design of a large user study that we conducted to test the in-
fluence of the different parameters of the algorithm. The purpose of this
study was twofold: On the one hand we gained valuable insights into
quality perception by users in volume visualization, and on the other
hand we were able to put our conjoint framework to test and learned
about how to improve the user study design in general.





CHAPTER 2

Basics of Conjoint Analysis

Conjoint Analysis originated in Mathematical Psychology and is now
used in many applied sciences like market research as an instrument to
measure people’s preferences on a set of items. Conjoint analysis has its
name from the structure of the items that are considered — the conjoint
structure.

Conjoint Structure. A class of items possesses a conjoint structure if
it can be described in terms of attributes Ai and attribute levels aij ∈ Ai.
That is, we consider sets of items whose profile is given as an element
in A = A1 × . . . × An, where the attribute set Ai has the levels Ai =
{ai1, . . . , aiki}. An item profile a ∈ A is just a vector (a1j1 , . . . , anjn) of
attribute levels aiji ∈ Ai.

Example 2.1. A set of cars can be described by a conjoint structure
with the four attributes Color, Number of Seats, Cargo Area and
Price, where

• Color = {black, green,blue, red}
• Number of Seats = {5, 7}
• Cargo Area= {small,medium, large}
• Price= {20000CHF, 30000CHF, 40000CHF}

A car profile is then given as a vector in Color×Number of Seats×
Cargo Area×Price, like for example (blue, 5,medium, 40000CHF)

Example 2.2. The set of all possible parameter settings of a param-
eterized algorithm can be described by a conjoint structure where the
attribute sets are just the parameter sets and the attribute levels are
the parameter values. In Chapter 7 and Chapter 6 we will investigate
(parameterized) multi-media algorithms in the framework of conjoint
analysis.

7



8 Chapter 2. Basics of Conjoint Analysis

Conjoint analysis is concerned with the task to find a scale, i.e. a function

s : A → R

that assigns to each item a number that represents its value. Conjoint
analysis techniques can be distinguished by two (not independent) pa-
rameters

(1) The elicitation procedure, i.e., the way how preference data are
obtained from respondents

(2) The data processing procedure, i.e. the way how the scale is de-
fined. The data processing procedure usually is based on modeling
assumptions. Modeling assumptions are necessary since in general
the elicited data tends to be very sparse and can be interpreted
meaningfully only in the context of some model, which already en-
codes general assumptions on the structure of the preferences.

Elicitation procedure. Preference information can be elicited in many
different ways. The most direct approach is to ask respondents to state
their valuation of a given item, for example in terms of money. In recent
years choice based conjoint analysis has become the most popular con-
joint analysis technique. It got its name from the employed elicitation
procedure, namely preferences are elicited in a more indirect way using
a sequence of discrete choice tasks. A choice task consists of a small
number of item profiles—typically between two and four—presented to
a respondent, who has to state which one he prefers or is most likely to
buy (often also a none choice option is included). Preference elicitation
in the form of discrete choice tasks has two advantages, the cognitive
burden on the respondent in each task is comparatively low, and choice
tasks also simulate to a certain extent real buying situations. One draw-
back of data elicitation with choice tasks is, that in order to derive a
scale from the choices many choice tasks are necessary in general. Adap-
tive elicitation methods deal with this problem by trying to choose the
next choice task dependent on the choices in previous tasks such that
the information gained in the worst case outcome of the choice task is
approximately maximized. Information gain maximization in the worst
case means that the minimum of the information gain among all possi-
ble outcomes of the choice task is maximized. The rules according to
which the choice tasks are chosen are called the query strategy. We will
measure the effectiveness of a query strategy in terms of the number of
choice tasks that are performed in the query strategy in order to derive
the desired scale s.
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Data processing procedure. There are many different ways to an-
alyze the obtained preference data, however, any processing procedure
defines a scale that assigns a number to each item. The assigned numbers
should faithfully represent the preference structure of either a single re-
spondent or of a group of respondents. When a scale is defined for every
respondent separately we call the scales individual scales whereas when
only one scale is defined for a group of respondents we call the scale an
aggregated scale. Furthermore, data processing procedures also differ in
the type of scale they define. Stevens [Ste46] identified four types of
scales which differ in the nature of information that can be derived from
them. Each type can be characterized by a set of permissible transfor-
mations. A permissible transformation is a function f : R → R such
that a scale s and the transformed scale s′ = f ◦ s reveal the same na-
ture of information about the measured data. In the context of conjoint
analysis two types are of particular interest: ordinal scales and interval
scales. On an ordinal scale the number assigned to an item represents
its rank in a linear order. The permissible transformations of an ordinal
scale are all strictly increasing functions. These functions preserve the
underlying linear order of the items. On an ordinal scale the nominal
difference between the assigned numbers has no meaning. For example
one can only state that the first ranked item is preferred over the third
and the 50’th ranked item, but not that the first and the third are much
closer in value than the third and the 50’th ranked item.

On an interval scale the ratio of differences of the assigned numbers have
a meaning. The permissible transformations of an interval scale are all
affine functions of the form x → αx + β where α, β ∈ R and α > 0,
i.e. an interval scale can be translated and scaled by a positive factor.
From an interval scale one can for example conclude if the first and the
third or the third and 50’th ranked item are closer by looking at the
ratio of the distances of their assigned numbers. If the distance between
the third and 50’th ranked item turns out to be smaller than between
the first and the third, then the first pair is closer then the second. But
note that on an interval scale ratios of scale values themselves have no
meaning since there is no natural zero.

Example 2.3. Temperature measured in Celsius defines an interval
scale. Assume that we measure the temperature in the morning to be
10◦C, in the afternoon to be 20◦C and at night to be 5◦C. As on a Celsius
scale the zero point is arbitrarily chosen the statement that the tempera-
ture in the afternoon was twice as large as in the morning does not make
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sense. However, to say that the temperature difference between after-
noon and morning(10◦C) is twice as large as the temperature difference
between morning and night (5◦C) is a valid statement. Multiplying all
temperature measurements by a positive factor α and translating it by
a real-value β does not change the nature of information that we can de-
rive. For example we can make the same statement about temperature
differences for temperatures given in Fahrenheit.

Modeling. Depending on a conjoint study’s objectives different mod-
eling assumptions need to be made in order to derive meaningful infor-
mation from the elicited sparse data. A typical assumption that we will
make throughout the thesis is the additivity assumption or linear model
assumption. It is assumed that a respondent’s (or a respondent group’s)
preference structure can be represented by an additive function, i.e. that
for every attribute level aij there is a partworth λij ∈ R and the scale
value of an item a = (a1j1 , . . . , anjn

) can be computed as the sum of the
partworths for all levels that describe the item:

s(a) =
n∑

i=1

λiji .

The data processing task then is to compute the partworths λij from
the choice data elicited from the respondent. The vector whose entries
are the partworths is called the partworth vector. Note that an addi-
tive model really makes an assumption on the structure of the respon-
dent’s preferences. Every additive scale induces a ranking of the set of
items, however, there are rankings that cannot be induced by an addi-
tive scale. Therefore the additivity assumption essentially reduces the
number of item rankings that are considered. In case that the attributes
Ai are continuous sets, i.e., real intervals, this assumption can be made
more explicit, namely, an additive scale exists if and only if the prefer-
ence structure of the respondent is such that the attributes are mutually
preferentially independent, see Keeney and Raiffa [KR93] for details.
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CHAPTER 3

Combinatorics of Choice Based Conjoint
Analysis

3.1. Introduction

In this chapter we investigate choice based conjoint analysis from a com-
binatorial point of view. We will pursue the question of how many choice
tasks a respondent needs to perform in order to derive an ordinal scale
from his choices. Moreover we will introduce choice based polyhedral
conjoint analysis, a celebrated conjoint analysis technique developed at
MIT [THS04] and raise some doubts about its reliability. The setup
for this chapter is the following: Given is a set of items described by a
conjoint structure A = A1×. . .×An with attributes Ai = {ai1, . . . , aim}.
Note that in order to keep the exposition simple we assume that every
attribute has exactly m levels. The goal is to derive an ordinal scale
for the items in A that represents an individual respondent’s preference
structure. We assume that a respondent’s preference structure can be
represented by an additive scale, i.e. his preferences obey the linear
model. That is, the goal becomes to find a partworth value λij for every
attribute level aij such that the scale value for an item can be computed
as sum of the partworths of the levels that describe this item.

As elicitation procedure we use paired comparisons, i.e., the respondent
performs a sequence of choice tasks with each choice task involving two
items. Each choice task can be chosen in dependency of the choices in
previous choice tasks.

A conjoint structure is quite intricate once one has a closer look. To make
this more explicit we will compare choice based conjoint analysis with
choice based preference analysis on product sets without any structure.
In the latter case the item set A is just a finite set {a1, ..., ak} of items
that does not possess any additional structure. We refer to that case
as the structureless case as opposed to the conjoint structure case. The
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14 Chapter 3. Combinatorics of Choice Based Conjoint Analysis

structureless case can be seen a special case of the conjoint structure
case where the number n of attributes is 1. The goal in the structureless
case is to assign values µi to the items ai which represent the underlying
preference ranking of the respondent.

In this chapter we will interpret both, the conjoint structure case and
the structureless case geometrically. For both cases we will derive lower
bounds on the number of choice tasks that a respondent needs to per-
form in the worst case in order to determine an ordinal scale describing
his preferences. In the structureless case the geometric interpretation
leads to a hyperplane arrangement where all cells have the same geo-
metric structure. This permits an efficient volume-based query strategy.
Choice based polyhedral conjoint analysis [THS04] tries to carry over
insights from the structureless case to the conjoint structure case. In par-
ticular it implicitly assumes that in the conjoint structure case all cells in
the induced hyperplane arrangement have the same geometric structure.
Moreover, even the method to validate polyhedral choice based conjoint
relies heavily upon this assumption. However, we were able to show
that this implicit assumption is not true, i.e. in the conjoint structure
case different cells in the hyperplane arrangement can have a different
combinatorial and thus a different geometric structure. These results
raise serious doubts about the reliability and applicability of polyhedral
choice based conjoint analysis and the validation method.

3.2. Geometric interpretation

Let us first of all give a geometric interpretation of choice based con-
joint analysis for the conjoint structure case. A respondent performs a
sequence of paired comparisons and we want to derive partworths λij

that induce his item ranking. We can assume without loss of general-
ity that every partworth λij is a real number in the interval [−1, 1]. A
valid fit of the partworths is a point in the cube [−1, 1]nm. Of course a
valid fit needs not to be a good fit. A good fit would allow to predict
correctly the outcome of a choice task not encountered so far with high
probability. If a respondent prefers item p = (a1j1 , . . . , anjn) over item
q = (a1l1 , . . . , anln) in a choice task, then the parameters of the linear
model—the partworths—have to satisfy the following constraint

n∑
i=1

λiji
≥

n∑
i=1

λili ⇔
n∑

i=1

λiji
−

n∑
i=1

λili ≥ 0.
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This constraint can be rewritten by using the inner product 〈·, ·〉 on Rnm

as

〈h, λ〉 ≥ 0,

where λ is the partworth vector and h is a vector in {−1, 0, 1}nm whose
entries are 1 at positions iji and −1 at positions ili for all i = 1, . . . , n
where iji 6= ili. All other entries in h are 0. This inequality defines a
halfspace H ⊆ Rnm,

H = {λ ∈ Rnm|〈h, λ〉 ≥ 0},

whose boundary, a hyperplane, contains the origin and has the inward
pointing normal vector h. That is, all partworth vectors that are compli-
ant with the comparison between p and q are contained in the intersection
of [−1, 1]nm with the halfspace H. Every possible item comparison—
there are only finitely many—leads to a hyperplane (bounding the cor-
responding halfspace). The arrangement of all these hyperplanes subdi-
vides the cube [−1, 1]nm into polyhedral cells. All points in the same cell
of the arrangement encode exactly the same ranking of all items with
profile in A1×. . .×An, i.e., any such point is a perfect fit for the ranking.
Note however, that not all rankings of A1× . . .×An can be expressed by
a partworth vector, i.e. in the linear model. But once we assume that
a respondent’s preference structure can be represented by a partworth
vector, the goal in choice based conjoint analysis becomes to set up the
choice tasks such that one can identify a perfect (good) partworth vector
from the respondent’s choices in as few choice tasks as possible. The task
to identify a perfect partworth vector from choice tasks is equivalent to
identifying a cell in the hyperplane arrangement. Any vector in this cell
can serve as a perfect fit for the linear model. The information provided
in a sequence of choice tasks is in geometric terms a nested sequence of
polyhedra: The first polyhedron is just the cube [−1, 1]nm. Each choice
task provides one or more halfspaces (a one out of k choice task provides
k − 1 halfspaces). The common intersection of [−1, 1]nm with all the
halfspaces provided up to a given choice task represents the information
gathered up to that task. Two questions arise naturally:

(1) How can one find the the cell that encodes the preference ranking
efficiently, i.e., using as few choice tasks as possible.

(2) How to choose a ’good’ representative point out of the unique cell
once it has been identified.
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Polyhedral choice based conjoint analysis, a heuristic introduced by
Hauser, Toubia and Simester [THS04] is based on this geometric in-
terpretation. The answers to the above questions are intertwined in this
approach: a deep point inside the cell, the so called analytic center of
the polyhedral cell, is considered to be a good representative point and a
comparison whose corresponding hyperplane is close to the analytic cen-
ter and cuts the cell into two polyhedra of almost equal volume is con-
sidered to be a good next comparison. The intuition for this approach
comes from the structureless case where there exists a volume-based ef-
ficient query strategy. We will show however, that one cannot directly
carry over insights from the structureless case to the conjoint structure
case.

Before we investigate the structureless case and the volume based query
strategy we want to make one further remark on the equivalence of find-
ing a ranking of elements in A and finding an ordinal scale for the ele-
ments in A. Assume that the preference structure of a respondent can
be represented by an additive scale s and remember that in our compu-
tational model only item comparisons count that are performed by the
respondent. Then the following two problems are equivalent:

(1) Derive the respondent’s ranking of the elements in A from his
choices

(2) Derive a partworth vector λ that describes the respondent’s pref-
erences from his choices.

Given a partworth vector λ we can compute a scale value for every item in
A by summing up the partworths for the levels that describe the item.
Then we can sort the elements in A which gives us the respondent’s
ranking. This all does not require further comparisons of items by the
respondent. Conversely, given the respondent’s ranking of elements in
A we can find the common intersection of the halfspaces induced by
the ranking and choose an arbitrary point in this intersection as the
partworth vector. This again does not require further comparisons of
items in A.

3.3. The structureless case

We also have a purely geometric interpretation in the structureless case,
where we want to find a value µi for an item ai for i = 1, . . . , k . If
we again assume that the values µi are contained in the interval [−1, 1],
then any point in the cube [−1, 1]k is a valid fit as long as we do not



3.3. The structureless case 17

have any information about the ranking of the k different items. Infor-
mation is gathered by item comparisons. A comparison of the i’th and
the j’th item tells us which one of µi and µj is larger. In geometric
terms this means, the comparison tells us on which side of the hyper-
plane passing through the origin and with normal h ∈ {−1, 0, 1}k the
vector s = (µ1, . . . , µk) has to lie. The normal h has entry 1 at the i’th
position, −1 at the j’th position and is 0 at all other positions. There
are

(
k
2

)
comparisons and thus

(
k
2

)
hyperplanes. The arrangement of all

these hyperplanes subdivides the the cube [−1, 1]k into cells. Each cell of
this arrangement corresponds to one of the k! rankings of the µi. Hence
determining the ranking of the k items from item comparisons is equiva-
lent to determining a cell in the hyperplane arrangement. In Figure 3.3
we show two views on the subdivision of [−1, 1]3 by the comparison
hyperplanes for the case k = 3.

Figure 3.1. Subdivision of [−1, 1]3 into the six cells
that correspond to the six possible rankings of three
items.

3.3.1. Information theoretic lower bound. We assume that we as-
sess a respondent’s preference ranking of k items from paired compar-
isons, i.e., from a sequence of choice tasks that each involve only two
items. A query strategy to find the item ranking is nothing else but a
comparison based sorting algorithm. Here we want to state the informa-
tion theoretic lower bound in sorting, see [Knu73]. It gives an answer
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to the question of how many item comparisons are needed in the worst
case in order to infer an item ranking. For simplicity assume that no two
items have the same value, i.e. for items p and q either p is strictly pre-
ferred over q or q is strictly preferred over p. In the information theoretic
argument the notion of decision tree plays a central role. A decision tree
for ranking k items represents a query strategy by describing all possible
sequences of comparisons between items needed to sort the items. In the
end, each of these sequences leads to a different ranking of the items.
Assume that we want to rank three items p1, p2, p3 according to their
values µ1, µ2, µ3. In Figure 3.3.1 we show one possible decision tree, i.e.,
query strategy for that problem.

p2 � p3

p2 � p3 p1 � p3

p1 � p3

p1 � p2

p1 � p2 � p3 p2 � p1 � p3

p1 � p3 � p2 p3 � p1 � p2 p2 � p3 � p1 p3 � p2 � p1

YES

YES

YES

YES

YES NO

NO

NO

NO

NO

Figure 3.2. A decision tree for ranking three items

Every inner node—oval in Figure 3.3.1—represents an item comparison.
Depending on the outcome of the comparison the subsequent comparison
is determined. After a sequence of comparisons one ends up in a leaf of
the tree—rectangular node in Figure 3.3.1. This leaf corresponds to the
item ranking compliant with the sequence of comparison outcomes. For
a particular item ranking the number of inner nodes on the path from
the root to the corresponding leaf is just the number of comparisons
that is needed for that particular query strategy. The height of a tree
is the maximum number of inner nodes that are visited when traversing
the tree from the root to its leaves. In the example of Figure 3.3.1 the
height is 3. The height of a decision tree is just the number of compar-
isons that the query strategy needs in the worst case. We know that
every decision tree for the sorting problem has k! leaves corresponding
to the k! possible rankings. The height of any binary tree on k! leaves
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is at least log2(k!). Using Stirling’s approximation this number can be
lower bounded by k log2(

k
e ) which is in Ω(k log(k)). Therefore any query

strategy for determining a ranking of k items needs at least k log2(
k
e )

comparisons in the worst case. This bound is called the information
theoretic lower bound in sorting.

In the following section we will show that the information theoretic lower
bound can be reached, i.e., there is a query strategy which can deter-
mine any ranking of k items with no more than ck log2(k) comparisons,
where c is a constant independent of k. Later we will see that the same
does not hold for the case that the item profiles are described by a con-
joint structure. In that case there is no algorithm that can reach the
information theoretic lower bound.

3.3.2. Volume cuts. There are many query strategies known that
reach the information theoretic lower bound up to a constant, i.e., query
strategies that always infer the ranking of k items with at most ck log2(k)
comparisons for some constant c. Here we describe such a strategy which
is based on the geometric interpretation of the problem and the following
two observations.

Observation 1. [Mat02] Assume a respondent has performed already
i comparisons. Let Pi be the set of rankings of the items that are com-
patible with his answers. Any query strategy that always reduces the set
Pi for all i by at least a constant fraction δ reaches the information the-
oretic lower bound. Ideally δ would be 1/2, but it can be shown that this
is not always possible.

Observation 2. [Mat02] Every cell in the subdivision of [−1, 1]k by
the hyperplanes corresponding to paired item comparisons is a simplex
with volume 2k/k!.

In geometric terms a sequence of comparisons provides us with a nested
sequence of polyhedra. The polyhedron at the beginning when no com-
parison was performed is just [−1, 1]k. See Figure 3.3.2 for an example
of such a nested sequence in the case k = 3. The volume of each poly-
hedron multiplied with k!/2k gives us exactly the number of rankings
that are compatible with the comparisons performed so far. More im-
portantly, any comparison whose corresponding hyperplane in the worse
of the two outcomes of the comparison cuts a δ-fraction of the volume
of the polyhedron, also cuts a δ-fraction of the rankings compatible with
the comparisons so far. An application of the famous Brunn-Minkowski
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Figure 3.3. Nested sequence of polyhedra compliant
with a sequence of comparisons.

inequality shows that any comparison of two items whose average rank
in the rankings compatible with the comparisons so far differs by only
1 cuts of at least a 1/2e ∼ 0.184 fraction of the volume (and thus also
of the compatible rankings). Here the rank of an item in a ranking is
the number of items that are ranked below the item plus 1. It can be
shown that such a comparison always exists as long as there are at least
two compatible rankings. Of course we are done once there is only one
compatible ranking left. See Matousek [Mat02] for details and a proof.
At this moment we know that a good next comparison exists, but can we
also find one efficiently? A heuristic to search for a good next compari-
son can be derived from the following observation: for any convex body
in Rd any hyperplane that passes through the center of gravity cuts the
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body into two bodies whose volume is at least a
(

d
d+1

)d

-fraction of the
volume of the original body. Of course this leaves us with the problem
to find the center of gravity of a polyhedron, which is not an easy task.
The analytic center as used in [THS04] can be seen as an approximation
to the center of gravity, but no guarantees are known for the latter.

3.4. The conjoint structure case

According to the linear model each item p has a value s(p) =
∑n

i=1 λiji

where λiji is the respondent’s partworth for the jith level of attribute i.
These values induce a ranking of the items in A1× . . .×An. Like in the
unstructured case we want to determine how many item comparisons are
needed to infer this ranking. Furthermore we want to study the geomet-
ric structure of the hyperplane arrangement introduced in Section 3.2.
But at first we want to determine the information theoretic lower bound.
Fredman has studied the information theoretic lower bound for the case
of two attributes. Here we generalize his bound to the case with n > 2
attributes.

3.4.1. Information theoretic lower bound. As in the unstructured
case any query strategy can be represented by a decision tree. Every leaf
of the tree corresponds to a ranking of the items in A1 × . . .× An. For
simplicity we again assume that no two items have the same value, i.e.
for two items p and q either p is strictly preferred over q or q is strictly
preferred over p. To determine the information theoretic lower bound
one needs to determine the number of possible leaves of any decision tree,
i.e., the number of possible item rankings. Let us call this number l. The
height of a decision tree is lower bounded by log2(l), which means that
any query strategy to determine a ranking of A1× . . .×An needs at least
log2(l) item comparisons in the worst case. The total number of items in
A1× . . .×An is mn, but the number of possible rankings is substantially
less than mn!—as we would have in the unstructured case. To determine
the number l of possible item rankings in the conjoint structure case we
have a closer look at the hyperplane arrangement that corresponds to
all comparisons of two items. This hyperplane arrangement gives us a
subdivision of the cube [−1, 1]nm into cells and any cell corresponds to
exactly one ranking of A1× . . .×An. Hence, if we can count the number
of cells we know the number of rankings and can therefore determine
the information theoretic lower bound. Let us first count the number of
hyperplanes: we have as many hyperplanes as we have possibilities to
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choose two items p and q. We can choose two items by choosing for every
attribute Ai two levels aij and aik. There are m2 possibilities to do so
for one attribute and therefore m2n possibilities to choose two items. It
is known that h hyperplanes partition the d-dimensional space into at
most

(
h
d

)
+
(

h
d−1

)
+ . . .+

(
h
0

)
many regions and thus the number of cells in

the hyperplane arrangement is at most nm
(
m2n

nm

)
≤ nm2n2m+1. Having

found an upper bound for the number of cells we now can upper bound
the information theoretic lower bound of the problem by the logarithm
of this number. The information theoretic lower bound for ranking in
the conjoint structure case is at most (2n2m + 1) log2(m) + log2(n).
Note again that the only thing we obtain here is an upper bound on the
information theoretic lower bound and not the information lower bound
itself.

3.4.2. Volume cuts. Fredman [Fre76] also used a different technique
than employed for the information theoretic lower bound to show a lower
bound on the number of necessary comparisons for the case of two at-
tributes. He showed that any query strategy to determine a ranking
obeying the linear model of the items in A1×A2 needs at least (m− 1)2

comparisons in the worst case. In particular it follows from his proof that
there is a cell in the hyperplane arrangement induced by all comparisons
of elements in A1 ×A2 that has at least (m− 1)2 facets.

In the following we consider the case of n > 2 attributes. We will show
that in the subdivision of [−1, 1]nm by the hyperplanes corresponding to
paired item comparisons

(1) there exists a cell that has at least (m− 1)2 facets and that
(2) there exists a cell that has at most m− 1 facets.

That is, in the conjoint structure case not all cells have the same combi-
natorial and thus geometric structure. This is in contrast to the struc-
tureless case where all cells are congruent simplices. This has important
implications for volume based approaches to conjoint analysis. We will
detail these implications after the proof in Section 3.5.

Note that (1) gives a lower bound of (m − 1)2 on the number of com-
parisons needed to derive a ranking of the elements in A1 × . . . × An.
However, this result also follows directly from Fredman’s lower bound
for two attributes. To see this note that because of the linear model
assumption a ranking of elements in A1 × . . . × An for n > 2 uniquely
determines the ranking of elements in Ai ×Aj for any two attributes Ai
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and Aj . If for n > 2 any ranking of elements in A1×. . .×An could be de-
rived from less than (m− 1)2 comparisons this would be a contradiction
to Fredman’s lower bound for the case of two attributes.

Now, let us prove that there is a cell in the subdivision of [−1, 1]nm by
the hyperplanes corresponding to paired item comparisons that has at
least (m − 1)2 facets. Suppose we have n > 2 attributes A1, . . . , An

where Ai = {ai1, . . . , aim} for i = 1, . . . , n. To keep the exposition short
we assume that n is even. We say that item q ∈ A1 × A2 × . . . × An is
a successor of item p ∈ A1 ×A2 × . . .×An in a ranking if the rank of q
is one higher than the rank of p. An outline of the proof is as follows:
we start with an item ranking ω induced by carefully chosen partworths.
For every choice of r ∈ {1, . . . ,m− 1} and t ∈ {2, . . . ,m} we modify the
partworths a little bit to get another ranking ωrt which differs from ω in
exactly one transposition, namely in the transposition of an item prt and
its successor in ω. Geometrically that means: since there are (m − 1)2

possible rankings ωrt that differ from ω in exactly one transposition the
cell corresponding to ω in the hyperplane arrangement introduced above
has at least (m− 1)2 facets.

Definition 3.1. For an item p = (a1k1 , . . . , ankn
) we call the sum∑n

i=1 ki the index sum of p, the vector (k1, . . . , kn) the index vector
of p and ki the i-th index of p. Note that the index vector uniquely
determines an item.

Definition 3.2. Let ω be the ranking of elements in A1, . . . , An defined
by the following property: an item q is preferred over an item p in ω
if and only if either the index sum of q is strictly larger than the index
sum of p or the index sum of q is equal to the index sum of p and the
index vector of q is lexicographically larger than the index vector of p.

Lemma 3.3. If we choose ε > 0 such that
∑n

i=1 εi < 1
2(m−1) and define

the partworth for the j-th level of the i-th attribute as λij = j(1 + εi),
then these partworths induce the ranking ω on A1 × . . .×An.

Proof. Let the partworths be chosen as in the lemma. Then, in the
induced ranking, an item q = (a1l1 , . . . , anln) is preferred over an item
p = (a1k1 , . . . , ankn) if and only if

n∑
i=1

li(1 + εi) >
n∑

i=1

ki(1 + εi)
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which can be rewritten as
n∑

i=1

li −
n∑

i=1

ki +
n∑

i=1

εi(li − ki) > 0 (3.1)

First, we show that (3.1) is true if
∑n

i=1 li >
∑n

i=1 ki (case 1 ) or∑n
i=1 li =

∑n
i=1 ki and (l1, . . . , ln) is lexicographically larger than

(k1, . . . , kn) (case 2 ).

Case 1: Consider the case that
∑n

i=1 li >
∑n

i=1 ki. As the values of the
two sums are integral

∑n
i=1 li −

∑n
i=1 ki ≥ 1. Moreover the difference

between any two indices li−ki can be lower bounded by 1−m. Therefore∑n
i=1 εi(li − ki) ≥ −(m − 1)

∑n
i=1 εi > −1/2, where the last inequality

follows from our choice of ε. It follows that
n∑

i=1

li −
n∑

i=1

ki +
n∑

i=1

εi(li − ki) > 1− 1/2 > 0.

Case 2: Consider the case that
∑n

i=1 li =
∑n

i=1 ki and (l1, . . . , ln) is
lexicographically larger than (k1, . . . , kn).
Let i0 := min{1 ≤ i ≤ n : li − ki ≥ 1}. Note that for all indices i
that are smaller than i0 the difference li − ki = 0 because (l1, . . . , ln)
is lexicographically larger than (k1, . . . , kn). As

∑n
i=1 li =

∑n
i=1 ki it

remains to show that
∑n

i=i0
εi(li − ki) > 0:

n∑
i=i0

εi(li − ki) = εi0 (li0 − ki0)︸ ︷︷ ︸
≥1

+
n∑

i=i0+1

εi (li − ki)︸ ︷︷ ︸
≥−(m−1)

≥ εi0 − (m− 1)
n∑

i=i0+1

εi

= εi0 − εi0 (m− 1)
n−i0∑
i=1

εi

︸ ︷︷ ︸
<1/2

> 0

where the fourth inequality follows from our choice of ε.

It remains to show the other direction of the equivalence, namely that
(3.1) implies that

∑n
i=1 li >

∑n
i=1 ki or

∑n
i=1 li =

∑n
i=1 ki and (l1, . . . , ln)

is lexicographically larger than (k1, . . . , kn). This follows immediately by
the same arguments as above. �
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In Figure 3.4 we illustrate the ranking ω for the case of two attributes
A = {a1, . . . , a5} and B = {b1, . . . , b5} where each attribute has five
levels. In the figure every item is represented by a square in a rectangular

Figure 3.4. Ranking ω.

diagram. Altogether there are m2 = 25 items/squares. One can read
off the levels that describe a particular item from the column and line
labeling. The lower left square represents the item described by the
levels a1 and b1. This item is the lowest ranking item. The items are
connected in increasing order by an oriented path through the diagram
that represents the ranking ω, i.e., (a1, b2) is the second least preferred
item. One can easily verify that the illustrated ranking indeed satisfies
the defining property.

Remember that our goal is to define for every r ∈ {1, . . . ,m − 1} and
every t ∈ {2, . . . ,m} a ranking ωrt that differs from ω in only one trans-
position, namely in the transposition of the item prt and its successor
qrt in ω. We now define the item prt and the item qrt.

Definition 3.4. For 1 ≤ r ≤ m − 1 and 2 ≤ t ≤ m let prt =
(p(1)

rt , . . . , p
(n)
rt ) be the item whose i-th entry is given as

p
(i)
rt =


air if i = 1
aim if 1 < i ≤ n

2
ait if i = n

2 + 1
ai1 if n

2 + 1 < i ≤ n

i.e. prt has the index vector (r, m, . . . , m, t, 1, . . . , 1)
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The item qrt = (q(1)
rt , . . . , q

(n)
rt ) is the item whose i-th entry is given as

q
(i)
rt =


ai(r+1) if i = 1
ai1 if 1 < i ≤ n

2
ai(t−1) if i = n

2 + 1
aim if n

2 + 1 < i ≤ n

i.e. qrt has the index vector (r + 1, 1, . . . , 1, t− 1,m, . . . , m)

Lemma 3.5. For 1 ≤ r ≤ m − 1 and 2 ≤ t ≤ m the item qrt is the
successor of the item prt in the ranking ω.

Proof. Both items have the same index sum and the index vector of
qrt is lexicographically larger than that of prt. Therefore qrt is ranked
higher in ω than prt. To see that qrt is the successor of prt in ω assume
that there is an item x which is different from prt and qrt and which is
ranked higher than prt and lower than qrt in ω. Then x has the same
index sum as prt and qrt. Furthermore the index vector of x must be
lexicographically larger than that of prt and lexicographically smaller
than that of qrt. Therefore the first entry of the index vector of x is
either r or r+1. Assume that it is r. Then for 1 < i < n/2 its i-th entry
is m because otherwise the index vector of x would be lexicographically
smaller than that of prt. Furthermore there are positions i1 and i2 with
n/2 < i1 < i2 such that the i1-th entry of the index vector of x is larger
than that of prt and the i2-th entry is smaller than that of prt. However,
since all entries at positions larger than n/2 + 1 of the index vector of
prt are 1, i.e. equal to the smallest index, such an x does not exist. A
similar argument can be applied for the case that the first entry of the
index vector of x is r + 1. Therefore qrt is the direct successor of prt in
ω. �

Definition 3.6. For an item p = (a1k1 , . . . , ankn) and a partworth vector
λ = (λij) let sλ(p) denote the (scale) value of p induced by the partworths
λij , i.e.

sλ(p) =
n∑

i=1

λiki
.

Lemma 3.7. The scale value difference between qrt and prt induced by
the partworths λij is given as

sλ(qrt)− sλ(prt) = ε− εn/2+1 + (m− 1)

 n∑
i=n/2+2

εi −
n/2∑
i=2

εi

 .
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Proof. The scale value difference between prt and qrt with respect to
sλ can be written as the sum of partworth differences over all attributes.

sλ(qrt)− sλ(prt) = (1 + ε)︸ ︷︷ ︸
attribute 1

+
n/2∑
i=2

(1−m)(1 + εi)︸ ︷︷ ︸
attributes 2 to n/2

− (1 + εn/2+1)︸ ︷︷ ︸
attribute n/2+1

+
n∑

i=n/2+2

(m− 1)
(
1 + εi

)
︸ ︷︷ ︸

attributes n/2+2 to n

= ε− εn/2+1 − (m− 1)

n/2− 1 +
n/2∑
i=2

εi


+(m− 1)

n/2− 1
n∑

i=n/2+2

εi


= ε− εn/2+1 + (m− 1)

 n∑
i=n/2+2

εi −
n/2∑
i=2

εi


�

Remember that for two indices r and t we want to modify the partworths
λij a little bit such that the induced ranking differs from ω in exactly
one transposition.

Definition 3.8. For 1 ≤ r ≤ m − 1 and 2 ≤ t ≤ m let ωrt be the
ranking of elements in A1 ×A2 × . . .×An that differs from ω in exactly
one transposition, namely in the transposition of prt and its successor
qrt in ω.

The goal is now to find partworths that induce ωrt. To this end we
introduce the modification values δij .
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Definition 3.9. For 1 ≤ r ≤ m − 1 and 2 ≤ t ≤ m we define the
modification values δij as

δij =



ε(1−mε) + εn/2 if i = 1 and j = r
εi(1−mε) if 1 < i < n/2 and j = m
εi(1− ε) if i = n/2 and j = m
εi+1(m− 1) if i = n/2 + 1 and j = t or

if n/2 + 1 < i < n and j = 1
0 else

Furthermore, let δ denote the sum of all δij , i.e.

δ =
n∑

i=1

m∑
j=1

δij .

Note that δij ≥ 0 for all i and all j. We now define the partworths λ̂ij

by modifying the partworths λij . In the remaining part of this section
we will show that the ranking induced by the partworths λ̂ij is exactly
the ranking ωrt.

Definition 3.10. For 1 ≤ r ≤ m − 1 and 2 ≤ t ≤ m we define the
modified partworth of the level aij as

λ̂ij = λij + δij .

By λ̂ we denote the partworth vector containing the modified partworths.
For an item p we denote by sλ̂(p) its scale value induced by the modified
partworths.

Note that δij has been chosen such that all levels that describe the item
prt gets assigned a strictly larger partworth in the modification, whereas
the partworths for all other levels remain unchanged. Note that when
modifying the partworths the value of an item p can increase by at most
δ, i.e.

sλ̂(p) ≤ sλ(p) + δ.

In particular the scale value of prt increases exactly by the value δ. Let
us now determine the value of δ.

Lemma 3.11. The value of δ is given as

δ =
1
2
εn + sλ(qrt)− sλ(prt)
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Proof. Remember that δ is the sum of all δij . Using Definition 3.9, δ
can be written as

δ =
1
2
εn +

n/2−1∑
i=1

εi(1−mε) + εn/2(1− ε) +
n−1∑

i=n/2+1

εi+1(m− 1)

=
1
2
εn +

n/2−1∑
i=1

εi −mε

n/2−1∑
i=1

εi + εn/2 − εn/2+1 +
n−1∑

i=n/2+1

εi+1(m− 1)

=
1
2
εn +

n/2∑
i=1

εi −m

n/2∑
i=2

εi − εn/2+1 +
n∑

i=n/2+2

εi(m− 1)

=
1
2
εn +

n/2∑
i=1

εi −
n/2+1∑

i=2

εi + (m− 1)

 n∑
i=n/2+2

εi −
n/2∑
i=2

εi


=

1
2
εn + ε− εn/2+1 + (m− 1)

 n∑
i=n/2+2

εi −
n/2∑
i=2

εi


=

1
2
εn + sλ(qrt)− sλ(prt)

where the last equality follows from Lemma 3.7. �

In order to prove that the ranking induced by the partworths λ̂ij is
indeed the ranking ωrt we will proceed in three steps:

(1) In Lemma 3.12 we show that prt is ranked higher than qrt in the
ranking induced by the modified partworths λ̂ij .

(2) In Lemma 3.13 we then show that the successor of qrt in ω is still
ranked higher than prt in the ranking induced by the modified
partworths λ̂ij

(3) In Lemma 3.14 we prove that for any two items p and q where
p 6= prt the following holds: if q is ranked higher than p in ω then q
is also ranked higher than p in the ranking induced by the modified
partworths λ̂ij .

These three facts together imply that the ranking induced by the part-
worths λ̂ij is indeed the ranking ωrt.
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Lemma 3.12. The item prt is ranked higher than the item qrt in the
ranking induced by the modified partworths λ̂ij. In particular it holds
that

sλ̂(prt)− sλ̂(qrt) =
1
2
εn > 0

.

Proof. Modifying the partworths we increase the value of prt by δ, i.e.,
sλ̂(prt) = sλ(prt) + δ, whereas the value of qrt remains unchanged, i.e.
sλ̂(qrt) = sλ(qrt). On the other hand we have shown in Lemma 3.11 that
δ = 1

2εn + sλ(qrt)− sλ(prt). Therefore it holds that

sλ̂(prt)− sλ̂(qrt) = sλ(prt) + δ − sλ(qrt)

= sλ(prt) +
1
2
εn + sλ(qrt)− sλ(prt)− sλ(qrt)

=
1
2
εn

> 0

�

Lemma 3.13. Let q be the successor of qrt in the ranking ω. Then q is
ranked higher than prt in the ranking induced by the partworths λ̂ij, i.e.

sλ̂(q)− sλ̂(prt) > 0.

Proof. Remember that the index vector of qrt is given as

(r + 1, 1, . . . , 1, t− 1,m, . . . , m)

where the entry t − 1 is at position n/2 + 1. Let q be the successor of
qrt in ω. Then the index vector of q is given as

(r + 1, 1, . . . , 1, t,m− 1,m, . . . , m)

where the entry t is again at position n/2 + 1. Note that qrt and q have
the same index sum and that the index vector of q is lexicographically
larger than that of qrt. Therefore q is ranked higher than qrt in ω. It
is easy to see that q is the successor of qrt in ω by applying similar
arguments as in the proof of Lemma 3.12.

The items qrt and q differ only in the levels for attribute n/2 + 1 and
attribute n/2 + 2. This permits to express the value of q in terms of
the value of qrt and the partworth differences for the two levels in which
they differ:
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sλ̂(q) = sλ̂(qrt) + 1 + εn/2+1 + εn/2+2(m− 1)︸ ︷︷ ︸
partworth difference for attribute n/2+1

−(1 + εn/2+2)− εn/2+3(m− 1)︸ ︷︷ ︸
partworth difference for attribute n/2+2

= sλ̂(qrt) + εn/2+1 − εn/2+2 + (m− 1)ε(εn/2+1 − εn/2+2)︸ ︷︷ ︸
>0

> sλ̂(qrt) + εn/2+1(1− ε)

≥ sλ̂(qrt) + εn/2+1

(
1− 1

2(m− 1)

)
≥ sλ̂(qrt) +

1
2
εn/2+1

≥ sλ̂(qrt) +
1
2
εn.

It follows that

sλ̂(q)− sλ̂(prt) > sλ̂(qrt) +
1
2
εn − sλ̂(prt).

In Lemma 3.12 we have shown that sλ̂(qrt)− sλ̂(prt) = − 1
2εn. Therefore

we can conclude that sλ̂(q)− sλ̂(prt) > 0 �

Lemma 3.14. For any two items p and q where p 6= prt the following
holds: if q is ranked higher than p in ω then q is also ranked higher than
p in the ranking induced by the partworths λ̂ij.

Proof. Let p = (a1k1 , . . . , a1kn
) and q = (a1l1 , . . . , a1ln) be two items

in A1 × . . . × An with p 6= prt and with q being ranked higher than p
in the ranking ω. Throughout the proof we denote by ∆i = li − ki the
index difference at the i-th position. Note that −(m− 1) ≤ ∆i ≤ m− 1
for all 1 ≤ i ≤ n.

For the partworth difference of levels aili and aiki with li 6= ki it holds

λ̂ili − λ̂iki
= λili + δili − λiki

− δiki

≥ λili − λiki
− δiki

= ∆i(1 + εi)− δiki
. (3.2)
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Note that δiki
is only strictly larger than 0 if aiki

is the level that is also
contained in prt.

In the following we distinguish two cases. We know that q is ranked
higher than p in the ranking ω. Therefore either q has a larger index
sum than p (which we investigate in case 1 ) or both items have the same
index sum and the index vector of q is lexicographically larger than that
of p (which we investigate in case 2 ).

Case 1: Let us first consider the case that the index sum of q is larger
than the index sum of p, i.e. that

∑n
i=1 ∆i ≥ 1. As prt 6= p there is at

least on level aiki
of item p whose partworth has not been modified, i.e.

λiki = λ̂iki
. This means that under the modification the overall value of

p increases by at most δ − min{δij : δij > 0}. The minimum of all δij

with δij > 0 is δn−1,1 = εn(m− 1) ≥ εn. Therefore it holds that

sλ̂(q)− sλ̂(p) > sλ(q)− sλ(p)− δ +
1
2
εn

Using inequality 3.2 and summing up for all attributes we get for the
scale value difference of q and p:

sλ̂(q)− sλ̂(p)

>

n∑
i=1

∆i(1 + εi)− δ +
1
2
εn

=
n∑

i=1

∆i(1 + εi) +
1
2
εn

−

1
2
εn + ε− εn/2+1 + (m− 1)

 n∑
i=n/2+2

εi −
n/2∑
i=2

εi


=

n∑
i=1

∆i(1 + εi)− ε + εn/2+1 − (m− 1)

 n∑
i=n/2+2

εi −
n/2∑
i=2

εi


where the first equality follows from plugging in the value of δ which we
have determined in the proof of Lemma 3.11. Using that

n∑
i=n/2+2

εi −
n/2∑
i=2

εi < 0
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we get

sλ̂(q)− sλ̂(p)

>

n∑
i=1

∆i︸ ︷︷ ︸
≥1

+
n∑

i=1

∆iε
i︸︷︷︸

≥−(m−1)εi

−ε + εn/2+1

≥ 1− (m− 1)
n∑

i=1

εi − ε + εn/2+1

≥ 1− 1
2
− 1

2
+ εn/2+1

> 0

We used that (m− 1)
∑n

i=1 εi < 1/2. This follows from our choice of ε.
In particular it also holds that ε < 1/2.

Case 2: Let us now consider the case that the index sum of q equals the
index sum of p and that the index vector of q is lexicographically larger
than that of p. Let i0 := min{1 ≤ i ≤ n : ∆i ≥ 1}. Note that again
for all i that are smaller than i0 it holds that ∆i = 0 because of q being
lexicographically larger than p and that

∑n
i=i0

∆i =
∑n

i=1 ∆i = 0. We
again distinguish different cases, now depending on the value of i0. Let
us consider first the case that n/2 < i0 < n. Using Equation 3.2 and
the definition of δij (see 3.9) and summing up over all attributes starting
from the i0-th attribute, the following holds:

sλ̂(q)− sλ̂(p)

≥ ∆i0(1 + εi0)− εi0+1(m− 1) +
n∑

i=i0+1

∆i(1 + εi)−
n−1∑

i=i0+1

εi+1(m− 1)

=
n∑

i=i0

∆i(1 + εi)− εi0+1(m− 1)−
n−1∑

i=i0+1

εi+1(m− 1)

=
n∑

i=i0

∆i + ∆i0ε
i0 +

n∑
i=i0+1

∆iε
i −

n−1∑
i=i0

εi+1(m− 1)

≥ ∆i0ε
i0 +

n∑
i=i0+1

∆iε
i −

n∑
i=i0+1

εi(m− 1)

= ∆i0ε
i0 +

n∑
i=i0+1

εi(∆i − (m− 1))
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≥ ∆i0ε
i0 − εi02(m− 1)

n−i0∑
i=1

εi

> εi0 − εi0

= 0

For the case that i0 ≤ n/2 the same result can be shown analogously.
This concludes the proof of the lemma.

�

Theorem 3.15. There are at least (m − 1)2 different realizable rank-
ings of the elements in A1 × . . . × An that differ from ω in exactly one
transposition.

Proof. The theorem follows directly from Lemma 3.12, Lemma 3.13
and Lemma 3.14. �

Figure 3.5. Ranking ωrt.

In Figure 3.5 we illustrate the ranking ωrt for the two attributes A =
{a1, . . . , a5} and B = {b1, . . . , b5} and for r = 2 and t = 3. Observe that
in ωrt the item (a2, b3) is now preferred over (a3, b2).

Considering again the subdivision of [−1, 1]nm by the hyperplanes cor-
responding to paired item comparisons we have shown that the cell cor-
responding to the ranking ω has at least (m− 1)2 facets. On the other
hand there are cells in this hyperplane arrangement that have less facets
and therefore a different combinatorial structure. Consider for example
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the ranking induced by the lexicographic ordering of the index vectors.
The cell corresponding to this lexicographic ranking has at most m− 1
many facets. Figure 3.6 illustrates that for the case of two attributes
A = {a1, . . . , a5} and B = {b1, . . . , b5}. It shows the two purely lex-
icographic rankings on A × B. One can observe that only the items
at the turning points of the paths are candidates for items that can
be exchanged with their successor to get another linearly representable
ranking.

Figure 3.6. The two lexicographic rankings. In the
left figure A is preferred over B and in the right figure
B is preferred over A.

In the following we generalize this observation:

Definition 3.16. Let π be the ranking on A1× . . .×An which is defined
by the following property: An item q is preferred over an item p in π if
and only if the index vector of q is lexicographically larger than that of
p.

Note that π is linearly realizable, for example by choosing the partworth
λij = jεi where ε > 0 is chosen such that

∑n
i=1 εi < 1/(m− 1).

Lemma 3.17. There are at most m − 1 linearly realizable rankings that
differ from π in exactly one transposition.

Proof. Consider the linearly realizable ranking πp which differs from
π only in the transposition of p = (a1k1 , . . . , ankn

) and its successor
q = (a1l1 , . . . , anln) in π. Then the set of levels describing p is disjoint
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from the set of levels describing q. To see this, assume for a contradiction
that there is an index i such that aiki

= aili . Without loss of generality
we assume that this index is 1, i.e. that a1k1 = a1l1 . We consider the
item q′ which is given as q′ = (b, a2l2 , . . . , anln) where b ∈ A1 \ {a1l1}.
That is, q′ is described by the same levels as q, except that the first
level a1k1 is replaced by another level b. Analogously, we define p′ =
(b, a2k2 , . . . , ankn

). For any partworth vector λ it holds: sλ(q) > sλ(p) if
and only if sλ(q′) > sλ(p′). To see this note that

sλ(q)− sλ(p) =
n∑

i=1

(λili − λiki)

= λ1l1 − λ1k1︸ ︷︷ ︸
=0

+
n∑

i=2

(λili − λiki)

= λb − λb +
n∑

i=2

(λili − λiki)

= sλ(q′)− sλ(p′)

where λb is the scale value of the level b. But this means that no matter
how the partworths that induce πp are chosen, π differs from πp in at
least two transpositions, which leads to a contradiction. Therefore the
set of levels describing p must be disjoint from the set of levels describing
q. In the lexicographic ordering π there are exactly m − 1 items whose
set of levels is disjoint from that of their successor. These are the items
whose index vector is in {1, . . . ,m − 1} × {m} × . . . × {m}. Therefore
there are at most m− 1 realizable rankings that differ from π in exactly
one transposition. �

3.5. Discussion

We showed that in the subdivision of [−1, 1]nm by the hyperplanes cor-
responding to paired item comparisons there exists a cell that has at
least (m− 1)2 facets and that there exist cells that have at most m− 1
facets. This leads to the following observation:

Observation 3. The cells in the subdivision of [−1, 1]nm by the hyper-
planes corresponding to paired item comparisons have different combina-
torial and thus also different geometric structures.

This observation has to be seen in contrast to Observation 2 for the
structureless case where all cells are congruent simplices.
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Polyhedral choice based conjoint analysis is based on the intuition from
the structureless case and implicitly assumes that also in the conjoint
structure case the cells have the same geometric structure. Our findings
raise some doubts about the reliability of this approach. Nevertheless, it
is reported in literature that polyhedral choice based conjoint performs
very well with respect to certain evaluation methods. This might be
explained by having a closer look at the evaluation methods themselves:

The performance of conjoint analysis techniques, in particular of poly-
hedral choice based conjoint analysis is often evaluated by using a sim-
ulation and not by conducting a real conjoint study. A respondent is
simulated by drawing a partworth vector p uniformly at random from
the cube [−1, 1]nm. The vector p simulates the respondent’s true pref-
erences. Then a conjoint study is simulated where choices are made
according to p. The conjoint study results in an estimation p̂ of the true
partworth vector. Then different performance measures are applied: A
commonly applied measure is the hit rate. For a series of choice tasks
that have not been used in the conjoint study itself, the hitrate is com-
puted as the fraction of choice tasks whose outcome can be predicted
correctly by using p̂, i.e. for which p and p̂ lead to the same outcome.
The drawback of this evaluation method is that the partworth vector p
is chosen uniformly at random from the cube [−1, 1]nm. Because of Ob-
servation 3 this strategy does not uniformly sample the space of rankings
compliant with a linear structure. The probability that the partworth
vector p represents a ranking ω depends on the volume of the cell in the
hyperplane arrangement that corresponds to ω. That is, the probability
to draw a ranking which corresponds to a cell with large volume is higher
than to draw a ranking corresponding to a cell with small volume. The
uniform geometric sampling strategy therefore induces a combinatorial
bias. On the other hand it seems likely that rankings corresponding to
cells with large volume are easier to reconstruct for a volume based ap-
proach than rankings corresponding to cells with small volume. That is,
polyhedral choice based conjoint is evaluated using instances on which
it should perform well, anyway.

Another performance measure used to evaluate conjoint techniques in
simulations is the Euclidean distance ‖p − p̂‖ between the true and the
estimated partworth vector. Polyhedral choice based conjoint is just de-
signed to make this distance small. Therefore it is not surprising that
very good results are reported with respect to that measure in compari-
son to other conjoint techniques. However, the Euclidean distance is no
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measure for the combinatorial distance between the rankings induced by
p and p̂, respectively.

To conclude: we doubt that polyhedral choice based conjoint is a reliable
approach to conjoint analysis. The good performance results might be
due to inappropriate evaluation methods.

3.6. Conclusion

We shed some light on the geometric and combinatorial structure of
polyhedral conjoint analysis. Our analysis shows that one has to be
careful when transferring insights and ideas from the structureless case
to the case with conjoint structure.

Recently we could improve our results 1: it is possible to show as in this
chapter that there exists a cell in the hyperplane arrangement introduced
in 3.2 that has at least (m − 1)n facets. In particular this means that
in order to derive a ranking of the elements in A = A1 × . . . × An at
least (m − 1)n paired comparisons have to be performed in the worst
case. For conjoint studies arising in practice it is infeasible to ask a
respondent that many questions. Respondents usually get worn out after
a very small number of choice tasks and do not answer further questions
faithfully anymore. The number of feasible choice tasks does not even
scale with the problem size, i.e., is some sort of of ”universal constant”.
Therefore one has to strive for alternatives in preference analysis. We
see three possible alternative approaches which are, in their applicability,
not mutually exclusive:

(1) Approximation. Instead of determining a respondent’s exact rank-
ing of the items one could determine only an approximate ranking.
For many applications an approximation might be enough.

(2) Aggregation. Instead of determining a scale for every respondent
individually one could aggregate choice information and find an
aggregated scale for the whole population or for parts of the pop-
ulation.

(3) Modeling. One could introduce additional modeling assumptions
and therefore reduce the number of free parameters.

In Chapter 4, we will investigate the approach of approximation. We
will pursue the question of how many comparisons are necessary and

1Discussion at the 5’th GWOP with Jǐŕı Matoušek, Miloš Stojaković, Sonja Čukić,

Martin Jaggi, Joachim Giesen and Eva Schuberth
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sufficient to approximately rank k items. We will restrict ourselves to
the case where the items do not possess a conjoint structure.

In Chapter 5 we will combine aggregation and modeling and develop an
algorithm to derive aggregated interval scales for the whole population.
The algorithm is based on a new statistical model.





CHAPTER 4

Approximation

4.1. Introduction

In this chapter we are dealing with a set of n items without conjoint
structure. That is, for the sake of simplicity we restrict ourselves to
the structureless case here. A respondent performs a sequence of choice
tasks, each involving two items and we assume that the respondent’s
preference structure — according to which he performs the choice tasks
— can be represented by a ranking of the items. We will pursue the
question of how many choice tasks are necessary and sufficient in the
worst case in order to derive an approximate ranking of the n items.

In Chapter 3 we have seen that a query strategy that presents a sequence
of item pairs to the respondent from which a ranking has to be derived is
nothing else than a comparison based sorting algorithm and that there
is no such sorting algorithm that can determine the ranking by posing
less than n log n

e paired comparison questions in the worst case, i.e., in
general Ω(n log n) comparisons are needed (see [Knu73]). Here we will
answer the question whether it is true that we need substantially less
comparisons when we only want to know the ranking approximately.

In order to give sense to the term “approximately” we need some metric
to compare rankings. Assume that we are dealing with n items. Since a
ranking is a permutation of the items, this means that we need a metric
on the permutation group Sn. Not all of the metrics, e.g., the Hamming
distance that counts how many items are ranked differently, are mean-
ingful for our application. For example, if in the respondent’s ranking
one exchanges every second item with its predecessor, then the resulting
ranking has maximal Hamming distance to the original one. Neverthe-
less, this ranking still tells a lot about the respondent’s preferences. In
marketing applications Kendall’s tau metric [DG77] is frequently used

41
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since it seems to capture the intuitive notion of closeness of two rank-
ings and also arises naturally in the statistics of certain random rank-
ings [Mal57]. Kendall’s distance of a permutation π ∈ Sn to the sorted
permutation is the minimum number of pairwise adjacent transpositions
required to bring π into sorted order. In [Knu73] it is shown that this
is equivalent to the number of inversions in π. Instead of working with
Kendall’s metric we use Spearman’s footrule metric [DG77] which essen-
tially is equivalent to Kendall’s metric, since the two metrics are within
a constant factor of each other [DG77]. The maximal distance between
any two rankings of n items in Spearman’s footrule metric is less than
n2. We show that in order to obtain a ranking at distance n2/ν(n) to
the respondent’s ranking with any strategy, a respondent has in general
to perform at least n (min{log ν(n), log n} − 6) comparisons in the worst
case. Moreover, if we allow the strategy to be randomized such that the
obtained ranking is at expected distance n2/ν(n) to the respondent’s
ranking, we can show that the same bound on the minimum number of
comparisons holds. On the other hand, there is a deterministic strategy
(algorithm), suggested in [Cha00], that shows that 6n log ν(n) compar-
isons are always sufficient.

At first glance this work seems related to work done on pre-sorting. In
pre-sorting the goal is to pre-process the data such that fewer compar-
isons are needed afterwards to sort them. For example in [HYY00] it is
shown that with O(1) pre-processing one can save Θ(n) comparisons for
Quicksort on average. Pre-processing can be seen as computing a partial
order on the data that helps for a given sorting algorithm to reduce the
number of necessary comparisons. The structural quantity that deter-
mines how many comparisons are needed in general to find the ranking
given a partial order is the number of linear extensions of the partial
order, i.e., the number of rankings consistent with the partial order. Ac-
tually, the logarithm of this number is a lower bound on the number of
comparisons needed in general [KK92]. Here we study another struc-
tural measure, namely, the maximum diameter in the Spearman’s metric
of the set of rankings consistent with a partial order. Our results shows
that with o(n log n) comparisons one can make this diameter asymptot-
ically smaller than the diameter of the set of all rankings. That is not
the case for the number of linear extensions which stays in Θ(2n log n).

Notation. The logarithm log in this chapter is assumed to be binary,
and by id we denote the identity (increasing) permutation of [n].
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4.2. Algorithm

The idea of the ASort algorithm is to partition the items into a sorted
sequence of equal-sized bins such that the elements in each bin have
smaller rank than any element in subsequent bins. This approach was
suggested by Chazelle [Cha00] for near-sorting. The output of the algo-
rithm is the sequence of bins. Note that we do not specify the ordering
of elements inside each bin, but consider any ranking consistent with the
ordering of the bins. We will show that any such ranking approximates
the actual ranking of the elements in terms of Spearman’s footrule metric

D(π, id) = D(π) =
n∑

i=1

|i− π(i)|,

where π(i) is the rank of the element of rank i in an approximate ranking,
i.e., |i − π(i)| measures deviation of the approximated rank from the
actual rank. Note that for any ranking the distance in the Spearman’s
footrule metric to id is at most n2

2 .

Since for every i the value |i − π(i)| is bounded by n divided by the
number of bins, we see that the approximation quality depends on the
number of bins.

The algorithm ASort iteratively performs a number of median searches,
each time placing the median into the right position in the ranking. Here
the median of n elements is defined to be the element of rank bn+1

2 c.

ASort (B : set, m : int)
1 B01 := B // Bij is the j’th bin in the i’th round
2 for i := 1 to m do
3 for j := 1 to 2i−1 do
4 compute the median of B(i−1)j

5 Bi(2j−1) := {x ∈ B(i−1)j | x ≤ median}
6 Bi(2j) := {x ∈ B(i−1)j | x > median}
7 end for
8 end for
9 return Bm1, . . . , Bm(2m)

To compute the median in line 4 and to partition the elements in line 5
and 6 we use the deterministic algorithm by Blum et al. [BFP+72] that
performs at most 5.73n comparisons in order to compute the median
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of n elements and to partition them according to the median. We note
that in putting the algorithm ASort to practice one may want to use a
different median algorithm, like, e.g., Hoare’s Find algorithm [Hoa61].

In the following we determine the number of comparisons the algorithm
ASort needs on input B with |B| = n in order to guarantee a prescribed
approximation error of the actual ranking for any ranking consistent with
the ordering of the bins Bm1, . . . , Bm(2m) computed by the algorithm.

Lemma 4.1. For every x ∈ Bij, where 0 ≤ i ≤ m and 1 ≤ j ≤ 2i, it
holds

j−1∑
k=1

|Bik|+ 1 ≤ rank(x) ≤
j∑

k=1

|Bik|.

Proof. The lemma can be proven by induction on the number of rounds.
By construction, the elements in B01 have rank at least 1 and at most
n = |B01| =

∑1
k=1 |B0k|. The claim for i = 0 follows if we set the empty

sum
∑0

k=1 |B0k| to 0.

Now assume that the statement holds after the (i − 1)’th round. The
algorithm partitions every bin B(i−1)j into two bins Bi(2j−1) and Bi(2j).
Again by construction the elements in bin Bi(2j−1) have rank at least

j−1∑
k=1

|B(i−1)k|+ 1 =
j−1∑
k=1

(|Bi(2k−1)|+ |Bi(2k)|) + 1 =
(2j−1)−1∑

k=1

|Bik|+ 1,

and at most
(2j−1)−1∑

k=1

|Bik|+ |Bi(2j−1)| =
2j−1∑
k=1

|Bik|.

Similarly, the elements in bin Bi(2j) have rank at least
∑2j−1

k=1 |Bik| + 1
and at most

∑j
k=1 |B(i−1)k| =

∑2j
k=1 |Bik|. �

Lemma 4.2. b n
2i c ≤ |Bij | ≤ d n

2i e for 0 ≤ i ≤ m and 1 ≤ j ≤ 2i

Proof. We prove by induction that in any round i the sizes of any two
bins differ by at most 1, i.e.,

∣∣|Bij | − |Bik|
∣∣ ≤ 1 for 0 ≤ i ≤ m and

1 ≤ j, k ≤ 2i. The statement of the lemma then follows since by an
averaging argument and the integrality of the bin sizes, the size of each
bin must be of size either d n

2i e or b n
2i c.
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For i = 0 all n elements of B are in bin B01. The claim for i = 0 follows
since bnc ≤ n ≤ dne.
Now assume that the statement holds for i − 1. Take two bins B(i−1)j

and B(i−1)k. We distinguish two cases.

Case 1. B(i−1)j and B(i−1)k have the same size c. If c is even, then both
bins get split up into two bins each and the resulting four bins all have
the same size. If c is odd, then each of the bins gets split up into two
bins of sizes b c

2c and d c
2e, respectively, which differ by 1.

Case 2. Without loss of generality, |B(i−1)j | = c and |B(i−1)k| = c + 1.
If c is even, then B(i−1)j gets split up into two bins both of size c

2 and
B(i−1)k gets split up into two bins of size c

2 and c
2 +1, respectively. If c is

odd, then B(i−1)j gets split up into two subsets of size c+1
2 and c+1

2 − 1,
respectively, and B(i−1)k gets split up into two bins of size c+1

2 . In any
case the bins differ in size by at most 1. �

Lemma 4.3. In m rounds the algorithm ASort performs less than 6nm
comparisons.

Proof. The algorithm by Blum et al. [BFP+72] needs at most 5.73n
comparisons to find the median of n elements and to partition the ele-
ments with respect to the median. In the i’th round ASort partitions
the elements in every bin Bij , 1 ≤ j ≤ 2i with respect to their median.
Thus the i’th round needs at most

2i∑
j=1

5.73|Bij | = 5.73
2i∑

j=1

|Bij | = 5.73n ≤ 6n

comparisons. As the algorithm runs for m rounds the overall number of
comparisons is less than 6nm. �

Theorem 4.4. Let r = n2

ν(n) . Any ranking consistent with the ordering
of the bins computed by ASort in log ν(n) rounds, i.e., with less than
6n log ν(n) comparisons, has a Spearman’s footrule distance of at most
r to the actual ranking of the elements from B.

Proof. Using the definition of Spearman’s footrule metric and Lem-
mas 4.1 and 4.2 we can conclude that the distance of the ranking of the
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elements in B to any ranking consistent with the ordering of the bins
computed by ASort in m rounds can be bounded by

n(d n

2m
e − 1) ≤ n2

2m

Plugging in log ν(n) for m gives a distance less than r as claimed in the
statement of the theorem. The claim for the number of comparisons
follows from Lemma 4.3. �

4.3. Lower Bound

For r > 0, by BD(id, r) we denote the ball centered at id of radius r with
respect to the Spearman’s footrule metric, so

BD(id, r) := {π ∈ Sn : D(π, id) ≤ r}.

Next we estimate the number of permutations in a ball of radius r.

Lemma 4.5. ( r

en

)n

≤ |BD(id, r)| ≤
(

2e(r + n)
n

)n

.

Proof. Every permutation π ∈ Sn is uniquely determined by the se-
quence {π(i) − i}i. Hence, for any sequence of non-negative integers
di, i = 1, . . . , n, there are at most 2n permutations π ∈ Sn satisfying
|π(i)− i| = di.

If D(π, id) ≤ r, then
∑

i |π(i)− i| ≤ r. Since the number of sequences of
n non-negative integers whose sum is at most r is

(
r+n

n

)
, we have

|BD(id, r)| ≤
(

r + n

n

)
2n ≤

(
2e(r + n)

n

)n

.

Next, we give a lower bound on the size of BD(id, r). Let s := dn2

r e,
and let us first assume that n is divisible by s. We divide the index set
[n] into s blocks of size n/s, such that for every i ∈ {1, 2, . . . , s} the ith
block consists of elements (i − 1)n

s + 1, (i − 1)n
s + 2, . . . , in

s . For every
s permutations π1, π2, . . . , πs ∈ Sn/s we define the permutation ρ ∈ Sn

to be the concatenation of the permutations applied to corresponding
blocks, so ρ := π1(b1)π2(b2) . . . πs(bs). Note that the distance of ρ to
id with respect to Spearman’s footrule metric is at most n · n/s ≤ r,
since |ρ(i) − i| ≤ n/s, for every i ∈ [n]. Obviously, for every choice
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of π1, π2, . . . , πs we get a different permutation ρ, which means that we
have at least ((n

s

)
!
)s

≥
( r

en

)n

different permutations in BD(id, r).

If n is not divisible by s, we divide [n] into s blocks of size either dn/se
or bn/sc, again apply an arbitrary permutation on each of them and we
can obtain the same bound in an analogous fashion. �

Remark. A slightly better upper bound on |BD(id, r)| than it was given
in the lemma can be obtained using a result of Knuth. In [Knu73]
he gives an explicit formula for the number In(k) of permutations of
n elements having exactly k inversions. It can be shown that In(k) ≤(
n+k−1

k

)
. Therefore the size of the ball BK(id, r) with respect to Kendall’s

tau metric K centered at id and having radius r can be upper bounded
as

|BK(id, r)| =
r∑

k=0

In(k) ≤
r∑

k=0

(
n + k − 1

k

)
=
(

n + r

n

)
.

Diaconis showed that for every π ∈ Sn

K(π) ≤ D(π) ≤ 2K(π),

where K(π) is Kendall’s distance of π to id. It follows that BD(id, r) ⊆
BK(id, r) and therefore

|BD(id, r)| ≤ |BK(id, r)| ≤
(

n + r

n

)
≤
(

e(n + r)
n

)n

,

which implies the upper bound that we have shown in the lemma.

Using this upper bound we now give a lower bound for the worst case
running time of any comparison based approximate sorting algorithm.

Theorem 4.6. Let A be a randomized approximate sorting algorithm
based on comparisons, let ν = ν(n) be a function, and let r = r(n) =
n2

ν(n) .

If for every input permutation π ∈ Sn the expected Spearman’s footrule
distance of the output to id is at most r, then the algorithm performs at
least n (min{log ν, log n} − 6) comparisons in the worst case.

Proof. The proof of this theorem follows Yao’s Minimax Principle,
which is detailed for example in [MR95]. Let k be the smallest integer
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such that A performs at most k comparisons for every input. For a
contradiction, let us assume that

k < n (min{log ν, log n} − 6) .

First, we are going to prove

1
2
n! > 2k

(
2e(2r + n)

n

)n

. (4.1)

Since log ν − 6 > k/n, we have ν
26 > 2k/n and since ν = n2

r we get

n

2e
> 2k/n 2e · 2r

n
. (4.2)

On the other hand, from log n− 6 > k/n we get n
26 > 2k/n implying

n

2e
> 2k/n 2e · n

n
. (4.3)

Putting (4.2) and (4.3) together, we obtain

n

e
> 2k/n 2e(2r + n)

n
.

Hence
1
2
n! ≥

(n

e

)n

> 2k

(
2e(2r + n)

n

)n

,

proving (4.1).

We denote by R the source of random bits for A. One can see R as
the set of all infinite 0-1 sequences, and then the algorithm is given a
random element of R along with the input. For a permutation π ∈ Sn

and α ∈ R, we denote by A(π, α) the output of the algorithm with input
π and random bits α.

We fix α̃ ∈ R and run the algorithm for every permutation π ∈ Sn. Note
that with the random bits fixed the algorithm is deterministic. For every
comparison made by the algorithm there are two possible outcomes.
We partition the set of all permutations Sn into classes such that all
permutations in a class have the same outcomes of all the comparisons
the algorithm makes. Since there is no randomness involved, we have
that for every class C there exists a σ ∈ Sn such that for every π ∈ C we
have A(π, α̃) = σ ◦ π, where ◦ is the multiplication in the permutation
group Sn. In particular, this implies that the set {A(π, α̃) : π ∈ C}
is of size |C|. On the other hand, since the algorithm in this setting is
deterministic and the number of comparisons of the algorithm is at most
k, there can be at most 2k classes. Hence, each permutation in Sn is the
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output for at most 2k different input permutations. From Lemma 4.5
we have |BD(id, 2r)| ≤

(
2e(2r+n)

n

)n

, and this together with (4.1) implies
that at least

n!− 2k

(
2e(2r + n)

n

)n

>
1
2
n!

input permutations have output at distance to id more than 2r.

Now, if both the random bits α ∈ R and the input permutation π ∈ Sn

are chosen at random, the expected distance of the output A(π, α) to id
is more than r. Therefore, there exists a permutation π0 such that for a
randomly chosen α ∈ R the expected distance dD(A(π0, α), id) is more
than r. Contradiction. �

4.4. Conclusion

We showed that any comparison based, randomized algorithm in the
worst case needs at least

n (min{log ν(n), log n} − 6)

comparisons to approximate a given ranking of n items within expected
distance n2/ν(n) . This result is complemented by an algorithm that
shows that 6n(log ν(n)) comparisons are always sufficient.

In particular, this means that in some cases substantially less compar-
isons have to be performed than for sorting exactly, provided that a suf-
ficiently large error is allowed. That is, as long as the desired expected
error is of order n2−α for constant α one needs Ω(n log n) comparisons,
which asymptotically is not better than sorting exactly. But to achieve
expected error of order n2−o(1) only o(n log n) comparisons are needed.

This result is interesting as a theoretical result, however, it does not
help for problems arising in market research. Usually the item sets are
very large in practice, especially when they are described by a conjoint
structure. Then it is not even feasible to ask a respondent a linear
number of choice tasks. Therefore, in the subsequent chapter we will
introduce additional modeling assumption and use aggregation in order
to derive a scale for the whole population.





CHAPTER 5

Modeling and Aggregation

5.1. Introduction

In this chapter we describe a method to define an interval scale for a
set of items with conjoint structure from choices in paired comparisons.
We will use aggregation and define an interval scale for a population
of respondents. To this end we use Thurstone’s method of comparative
judgment [Thu27] — which was designed for the structureless case —
and extend it to the conjoint structure case. In a nutshell our method
works as follows: At first we estimate scale values for all levels of a single
attribute. To this end we interpret any paired comparison as a compar-
ison of just the two levels of the given attribute that are present in this
comparison, ignoring differences in the levels of all other attributes. We
can apply this method to all attributes to obtain scale values for all
levels of all attributes. However, the scale values for levels of different
attributes need not to be comparable yet. To make all partworths com-
parable we design a rescale method. It builds on the fact that for the
computation of the partworths for any attribute, always the same stated
preferences are used, namely, the outcomes of all paired comparisons.
Finally, the scale value of an item is just the sum of the scale values
(partworths) of the levels describing the item.

Like most techniques in conjoint analysis our method builds on a statis-
tical model. Our method has the advantage that all model assumptions
are testable, which is not the case with off-the-shelf conjoint analysis
software like Sawtooth’ software [Sof].

5.2. The structureless case: Thurstone’s method

A good introduction into Thurstone’s work is given in [Eng00]. Here
we summarize it only briefly: Our goal is to define a meaningful scheme
to assign scale values on an interval scale to k items that we label by

51
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1, . . . , k. Thurstone’s intuition was that the relative frequency Fi�j that
i was preferred over j by the respondents is an indirect measure for
the distance between i and j. He derived an interval scale from this
intuition under the assumption that the scale values Si of the items i are
uncorrelated normally distributed random variables with expectations
µi and variances σ2

i ≡ σ2, i.e., all the variances are the same.

The idea is to assign to each item i the value µi, on an interval scale
which still has to be defined. To do so we need to estimate all the µi’s
from the paired comparison data that we have available. It turns out
that it is easier to estimate the differences µi − µj . Instead of assigning
to item i the value µi we assign the the scale value

λi =
1
k

k∑
j=1

(µi − µj) = µi −
1
k

k∑
j=1

µj =: µi − µ̄.

That is, we only shift the scale that assigns µi to item i by the value
µ̄, i.e., as interval scales both scales are the same. By the properties of
normal distributions also the differences Si−Sj are normally distributed
with expectations µi − µj and variance 2σ2. This yields

P [Si − Sj > 0] =
1√

4πσ2

∫ ∞

0

e−
(x−(µi−µj))2

4σ2 dx

=
1√
2π

∫ ∞

−
µi−µj√

2σ

e−
x2
2 dx

= 1− 1√
2π

∫ −
µi−µj√

2σ

−∞
e−

x2
2 dx

= 1− Φ
(
−µi − µj√

2σ

)
= Φ

(
µi − µj√

2σ

)
,

where Φ is the cumulative distribution function

Φ(x) =
1√
2π

∫ x

−∞
e−

y2

2 dy.

of the standard normal distribution. Hence,

µi − µj =
(√

2σ
)

Φ−1
(
P [Si − Sj > 0]

)
.
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We can estimate P [Si − Sj > 0] by the observed quantity Fi�j , i.e., the
relative frequency that item i was preferred over j and thus estimate
µi − µj by

√
2σΦ−1

(
Fi�j

)
=: µ̂ij . Note that these estimated differences

in general are not consistent in the sense that in general there do not exist
scale values λi ∈ R that satisfy λi − λj = µ̂ij for all i, j ∈ {1, . . . , k}. To
define the scale values λi we use a least square approach, i.e. we choose
the λi such that

∑
i,j((µ̂ij − (λi − λj))2 is minimized. In order to get a

unique solution we introduce the constraint that all scale values add up
to zero. It turns out that the least squares solution for the scale values of
the items can be easily determined as the column average of the matrix
of estimated differences

S =


0 µ̂21 . . . µ̂k1

µ̂12 0 . . . µ̂k2

...
...

. . .
...

µ̂1k µ̂2k . . . 0

 .

That is, the scale value for item i can be estimated as

λi =
1
k

k∑
j=1

µ̂ij =
√

2σ

k

∑
j 6=i

Φ−1
(
Fi�j

)
.

The choice of σ essentially fixes the scale, but the ratio of differences of
scale values is not affected by the choice of σ, i.e., any fixed choice of σ
would work. A natural but arbitrary choice is σ = 1.

5.3. Conjoint structure case

In order to define the aggregated scale in the conjoint structure case we
assume that the population’s scale can be represented by an additive
interval scale. Let us recall that in conjoint analysis we assume that the
items come from set A with conjoint structure, i.e., A = A1 × . . .×An.
Thus we have choice data (from paired comparisons), where the elements
in A were compared. The set A is typically fairly large and we do not
have enough choice information to apply Thurstone’s method directly.
Instead we take a decompositional approach and first order the levels
in each of the attributes Ai, i = 1, . . . , n on interval scales. For that
purpose, whenever in a choice task (a1, . . . , an) ∈ A was preferred over
(b1, . . . , bn) ∈ A, we consider this as ai was preferred bi, provided ai 6= bi.
That is, we derive choice information on the attribute level from choice
information on the item level. We then can apply Thurstone’s method to
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the choice data on attribute level to get a scale for each attribute. When
applying Thurstone’s method we set all variances to 1, which fixes the
scales for all the attributes but does not necessarily make these scales
comparable. For any attribute Ai with levels ai1, . . . , aiki

let λi1, . . . , λiki

be the scale values that we get from applying Thurstone’s method on the
attribute level. The next step is to aggregate these scales. We make the
following assumption that extends the distribution assumption needed
for Thurstone’s method for a single attribute:

Assumption. For any attribute Ai the scale values Si1, . . . , Siki
are all

normally distributed with variance σ2
i1 and expectation drawn from an-

other normal distribution with expectation 0 and variance σ2
i2. That is,

we assume that the scale values for the levels of attribute Ai are drawn
from a normal distribution Ni with expectation 0 and variance σ2

i1 +σ2
i2

(the convolution of the two normal distribution functions introduced be-
fore).

As when applying Thurstone’s method the value σ2
i1 is the same for all

the Sij , but not necessarily 1. Later it will be chosen such that the
scales for all attributes become comparable, i.e., the scaled scale values
σi1λij (our final partworths) will be comparable. Now remember that
we derived the scales on the attribute level from paired comparisons
on the item level. That is, all the distributions Ni, i = 1, . . . , n should
describe the distribution of scale values on the item level, i.e., the item
scale values should follow the Ni distributions and all these distributions
should be the same, i.e.,

σ2
i1 + σ2

i2 = σ2
j1 + σ2

j2 ≡ 1 for all attributes Ai and Aj ,

here the value 1 is arbitrary (we just need to choose one fixed value).
Note that if we knew the values σi2, then these equalities would deter-
mine the values for the σi1 (that we kept variable so far) and by that
make the scales for all the attributes comparable. We can estimate the
σi2 from the scaled observed scale values σi1λij by

√√√√√ 1
ki − 1

ki∑
j=1

(
σi1λij −

1
ki

ki∑
i=1

σi1λij

)2

=

√√√√ σ2
i1

ki − 1

ki∑
j=1

λ2
ij .
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Remember that we chose the scale values such that
∑ki

j=1 λij = 0. Using
this estimate we can solve σ2

i1 + σ2
i2 = 1 for σi1 to estimate σi1 as

σi1 =
1√

1 + 1
ki−1

∑ki

j=1 λ2
ij

.

That is, in order to make the scales for the different attributes com-
parable we need to rescale the λij that we computed with Thurstone’s
method (with constant variance 1) by this estimate of σi1.

Since now the scales of all the attributes are comparable we can get
the scale value for an item just as the sum of the partworths of the
attribute levels involved, i.e., the scale value of (a1j1 , . . . , anjn), aiji ∈ Ai

is given as
∑n

i=1 σi1λiji . Note also that on comparable scales each value
σi2 can be interpreted as a measure of how important attribute Ai is
(contributes larger values to the sum). But we have to be careful, the
additivity assumption does not hold for all practical applications. It only
holds when the attributes are independent. Later when computing scale
values on the item level we will explicitly test if the additivity assumption
holds.

5.3.1. Theoretical sample size error. Let us briefly describe our er-
ror analysis. Our observed quantities are the relative frequencies Fi�j .
We assume that any comparison of items i and j is an independent
Bernoulli trial with success probability p (here “success” means that i
is preferred over j). We want to estimate p by Fi�j . For Bernoulli
trials Fi�j converges to p with increasing number of repetitions of the
Bernoulli trial, but here we make only a finite number mij of compar-
isons which procures some error. To estimate this error note that by
our assumption of independent Bernoulli trials mijFi�j is drawn from
binomial distribution with expectation mijp and variance mijp(1 − p).
By the central limit theorem the binomial distribution can be approxi-
mated by a normal distribution with the same expectation and variance.
By rescaling with 1/mij we get a normal distribution with expectation
p and variance p(1− p)/mij . We estimate this variance by

Fi�j (1− Fi�j)
mij



56 Chapter 5. Modeling and Aggregation

and the error of our estimate of p by the square root of the variance, i.e.,
by the standard deviation√

Fi�j (1− Fi�j)
mij

.

To compute errors of our scale values we use error propagation (see
Subsection 5.3.3).

5.3.2. Experimental error. We will also simulate errors by randomly
dividing the respondents into two groups. For each group we can com-
pute the scale values for all attribute levels on comparable scales as
described above. So we get for each attribute level a scale value from
each group. Averaging the absolute difference of these two scale values
over several random groupings of the respondents provides us with an
experimental error for the scale value of this attribute level. Similarly
we also compute experimental errors by randomly dividing the choice
tasks (paired comparisons) into two groups.

5.3.3. Error propagation. To compute errors of our scale values we
use error propagation. Briefly, in error propagation we have a function
f(x1, . . . , xn) depending on uncorrelated observable quantities x1, . . . , xn.
Assume the errors (standard deviations) of the observed quantities are
δx1 , . . . , δxn

. The variation of f with respect to xi is given by ∂f/∂xi.
Since the error in xi will only increase the error in f we weight the
error in xi with the absolute value |∂f/∂xi| of the variation to ob-
tain δi = |∂f/∂xi| δxi for the error of f incurred by the error in xi.
The total error in f is then obtained from the individual errors as
δf =

√
δ2
1 + . . . + δ2

n.

5.4. Testing the model

In our model of scale values we made two assumptions, one on the at-
tribute level and one on the item level. The assumption on the attribute
level is, that the scale values for all levels of a given attribute are un-
correlated and have the same variance, and the assumption on the item
level is, that the scale value of an item is the sum of the partworths of
its attribute levels.



5.4. Testing the model 57

5.4.1. Additivity assumption (linear model). Here we want to de-
scribe how to test the second assumption of our model, i.e., the additivity
assumption. Let A1 and A2 be two attributes and let C = A1×A2 be the
new attribute that results from combining A1 and A2 and let c1, . . . , ck

be its levels. We compute scale values for the levels of C in two different
ways. First, for every level ci = (ai1, ai2) with ai1 ∈ A1 and ai2 ∈ A2 we
add up the comparable scale values for ai1 and ai2 that we compute as
described before. Let λ1, . . . , λk be the resulting scale values. Second,
we apply Thurstone’s method directly to the combined attribute C and
make the resulting scale values comparable with the scales values of all
levels of attributes different from A1 and A2. This results in scale values
λ′1, . . . , λ

′
k.

If additivity holds, then we expect that λi ≈ λ′i. Our scale values are
the expectations of normal distributions, i.e., the mean value parameter
of such a distribution. Due to our sample size error that we compute as
described in Section 5.3.1 we have that these parameters are also nor-
mally distributed themselves with expectations λi and λ′i, respectively,
and with variance σ2

i and σ′2i , respectively. Here σi and σ′i are computed
by error propagation from the errors of the observed frequencies as de-
scribed in Section 5.3.3. Thus, our null hypothesis is that λi = λ′i for all
1 ≤ i ≤ k. As test statistic we use

χ2 =
k∑

i=1

(λi − λ′i)
2

σ2
i + σ′2i

=:
k∑

i=1

y2
i ,

where σi and σ′i are computed by error propagation from the errors of
the observed frequencies. If the null hypothesis is true then the test
statistic χ2 is χ2-distributed with k − 1 degrees of freedom. To see this
note that yi is a realization of a standard normally distributed random
variable. As k − 1 scale values already determine the remaining scale
value (the scale values have mean 0) the text statistic χ2 has k − 1
degrees of freedom. The null hypothesis is rejected at a significance
level of α if χ2 > χ2

1−α,k−1 where χ2
1−α,k−1 is the 1 − α quantile of the

χ2-distribution with k − 1 degrees of freedom.

5.4.2. Mosteller’s test. On the attribute level we make the assump-
tions that the scale values are uncorrelated normally distributed with
with equal variances. A test for this assumption was devised by Mosteller
[Mos51] and is also described in [Eng00]. Here we only briefly review
Mosteller’s test, which boils down to test if our model can explain the
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observed frequencies Fi�j . To this end we compute

pij =
1
2

∫ ∞

0

e−
(x−(λi−λj))2

4 dx = Φ
(

λi − λj√
2

)
,

where we use λi and λj as computed by Thurstone’s method with σ = 1.
Then we transform both Fi�j and pij into angles θij and θ′ij , respectively,
using the arcsine transformation given by

θij = arcsin (2Fi�j − 1) and θ′ij = arcsin (2pij − 1)

The arcsine transformation converts binomially distributed frequencies
into asymptotically normally distributed variables with variance 1/mij ,
where mij is the number of comparisons of level i with level j for the
given attribute. The null hypothesis is that θij is normally distributed
with expectation θ′ij and variance 1/mij for all i < j. As test statistic
we use

χ2 =
∑
i<j

mij(θij − θ′ij)
2.

If the null hypothesis is true then the test statistic χ2 is χ2-distributed
with

(
n−1

2

)
degrees of freedom. Thus, at level α we have to compare

our test statistic to the 1− α quantile of the χ2-distribution with
(
n−1

2

)
degrees of freedom.

5.5. Conclusion

We have introduced a framework to derive an aggregated interval scale
for a set of items with conjoint structure. The framework builds on
aggregation and on additional modeling assumptions. Our framework
permits to test all these modeling assumptions. This is a big advantage
of our framework in comparison to off-the-shelf conjoint analysis software
like Sawtooth’ software [Sof] where modeling assumptions cannot be
tested. Our framework can be applied to very large item sets which are
described by a conjoint structure. In particular the introduced modeling
assumptions permit to compute scale values for items that have never
been compared in any choice task.

This chapter concludes Part 1. In Part 2, the application part, we apply
the introduced framework to parameterized multimedia algorithms from
two applications: volume visualization and gamut mapping. On the one
hand this allows valuable insights in the influence of different parameters
on people’s quality perception in these areas. On the other hand we will
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test if our framework is suited for practical problems and in particular
if practical data sets fulfill the modeling assumptions.





Part 2

Applications



In Part 1 of this thesis we provided the theoretical foundations for con-
joint analysis and devised a new method to derive an interval scale for
a class of items with conjoint structure. Here we use this method to
measure the perceived quality of parameterized multimedia algorithms.
We consider a multimedia algorithm to be an algorithm whose output
is an image, a video or an audio file. Many multimedia algorithms have
in common that their quality not only depends on objective evaluation
criteria like running time or memory consumption but also on the human
perception of the output.

Here we suggest to measure the perceived quality of parameterized mul-
timedia algorithms in the framework of conjoint analysis. The crucial
observation is that a parameterized algorithm is nothing else but a class
of items with conjoint structure. Every parameter can be seen as an
attribute and every parameter value as an attribute level. An item then
corresponds to the output of the algorithm for a certain parameter set-
ting. The goal is to measure the perceived quality of outputs for the
different parameter settings on a scale.

We use conjoint analysis to measure the perceived quality of multimedia
algorithms from two different applications: gamut mapping and visual-
ization. Both areas have in common that the output of the algorithms
are images. In Chapter 6 we develop a new gamut mapping algorithm
and compare it in a user study to standard reference algorithms. As the
number of algorithms to be compared is small we can apply Thurstone’s
law of comparative judgement directly here without extending it to the
case of more than one attribute. In Chapter 7 we report on a large
user study that we conducted to measure the perceived quality of the
different parameter settings for an existing parameterized volume visu-
alization algorithm. For the evaluation we use the method introduced in
Chapter 5.



CHAPTER 6

Image-Dependent Gamut Mapping

6.1. Introduction

A gamut is the entirety of colors that are contained in an image or that
can be reproduced by a device like a monitor screen or a printer. As such
a gamut is a subset of a color space. Typically the color space is three
dimensional and gamuts are (finite) subsets of it. Gamut mapping is
the process of adapting a color image to device gamut limitations, such
that the original color appearance is preserved as well as possible. It is
a fundamental task in digital color reproduction. Here we understand
gamut mapping as a point-to-point mapping of color points from a source
to a device gamut.

Example 6.1. An image can contain more and/or different colors than
a printer can reproduce. Therefore the non-printable colors need to be
replaced by printable colors during the printing process. A rather trivial
way to do so is to replace every non-printable color by white. Figure
6.1 illustrates the result of this gamut mapping algorithm for a photo
printer, a coated offset printer (used for example in package printing)
and a newspaper printer. Note that the photo printer has the largest
gamut and the newspaper printer has the smallest one. It becomes clear
from Figure 6.1 that the suggested algorithm is not the best way to do
gamut mapping. In Section 6.3 we will develop an algorithm that yields
better results.

Gamut mapping algorithms can be classified along several dimensions.
Here we are interested in one particular dimension, namely, we dis-
tinguish device-to-device and image-to-device techniques, depending on
whether the source gamut is derived from the color properties of the
source device or from the colors found in a specific image. In other
words device-to-device mappings are defined for all color points that are
potentially contained in an image whereas image-to-device algorithms
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Figure 6.1. On top: the original image. Below:
Gamut mapping of the original image where all non-
printable colors are set to white for a photo printer, a
coated offset printer and a newspaper printer (from left
to right).

only consider color points actually contained in the specific image gamut.
Device-to-device gamut mapping algorithms typically are very fast since
for any image color point its mapping into the device gamut can simply
be determined by a fast table look up in a pre-computed table. In con-
trast to that image-to-device algorithms have to determine the mapping
for each image individually. This increase in complexity should lead to
higher quality mappings, i.e., mappings that preserve color characteris-
tics better than device-to-device mappings. In this chapter we want to
explore the potential of image-to-device gamut mapping—also referred
to as image-dependent gamut mapping. To this end we introduce a whole
class of image-dependent gamut mapping algorithms and compare them
in a field study to standard reference algorithms.

Our approach towards image-dependent gamut mapping is via constrained
optimization: for every image we distort its colors as little as possible
while preserving typical characteristics of the image. The optimization
approach allows us to combine different gamut mapping concepts in a
modular way. In a field study we determined the perceived visual quality
induced by specific components of our approach.
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6.2. Preliminaries

6.2.1. Gamut Mapping. For a detailed overview over the wide variety
of gamut mapping techniques see the paper by Morovic [Mor03]. Here
we only give a short review of the concepts most important to our work.
As we already mentioned in the introduction, gamut mapping algorithms
can be classified along several dimensions one of which is the device-to-
device vs. image-to-device categorization. Another categorization is
into global and local algorithms: in contrast to global algorithms local
algorithms, like for example [KSES05, BdEW01, ZS07], also take the
colors in the neighborhood of a pixel into account. That is, the mapping
of a color point depends on where in an image the color appears. Note
that local mappings are one-to-many, i.e., the same image color point
can be mapped to different device color points depending on its context.

Most of todays gamut mapping algorithms are global and device-to-
device [Mor98, BF99, MS01, KIO99], in particular in connection
with ICC color management. However image-to-device algorithms can
in general be expected to perform better in color rendering than device-
to-device. The basic idea behind the image-to-device concept [GWA90,
MF97, KS03] is to determine the shape and size of the source gamut
by image statistics. Therefore the definition and description of a gamut
boundary surface is a key issue for which a series of methods have
been proposed, like for example the segment maxima boundary descrip-
tion [ML00], alpha shapes [CL99] and flow shapes [GSSZ05].

Except for clipping algorithms, most gamut mapping algorithms make
use of gamut border colors to define the mapping of the in-gamut col-
ors. The performance of these algorithms thus heavily depends on the
appropriate definition of a gamut boundary surface. To get an appro-
priate boundary surface is not always an easy task, especially for image
gamuts that in general have much more complex shapes than device
gamuts. Device gamuts are typically described by convex (or close to
convex) sets. Moreover some algorithms, see for example [Cen04], rely
on a unique definition of a cusp within a hue plane of the gamut, a notion
which is problematic for image gamuts. Therefore the use of most image
gamut descriptions may require a subsequent smoothing of the gamut
boundary surface. Alternatively additional constraints on the mapping
of neighboring colors can be imposed, a method, which will be used in
this work.
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Here we do not consider local algorithms but it is an interesting questions
open for future research if the techniques that we are going to present
here can be localized.

6.2.2. Mathematical Optimization. Since we want to treat gamut
mapping as an optimization problem we also shortly review the basics of
mathematical optimization. A mathematical optimization problem has
the general form

minimizex f(x)
subject to ci(x) ≤ 0, i = 1 . . . n,

where f : Rd → R is called objective function, the ci : Rd → R are
functions that define constraints and x ∈ Rd is the optimization vari-
able. Note that a maximization problem obeys this general form if one
multiplies its objective function by −1. A point in Rd that satisfies all
constraints is called feasible point. A point x∗ ∈ Rd is a local optimum
for the problem if there exists a neighborhood U(x∗) ⊂ Rd such that
f(x∗) ≤ f(x) for all feasible x ∈ U(x∗). The point x∗ ∈ Rd is a global
optimum if f(x∗) ≤ f(x) for all x ∈ Rd that are feasible. In general a
mathematical optimization problem neither needs to have a local nor a
global minimum.

The probably best known special class of optimization problems are lin-
ear programs, where the objective function f and all constraint functions
ci are linear in the optimization variable x. One reason for the popular-
ity of linear programs is that there are many efficient algorithms known
to solve them. Another class of optimization problems that also can
be solved efficiently are convex quadratic programs, where the objective
function is convex and quadratic in x while the constraints are linear in
x. Both, linear- and convex quadratic programs always have a global
optimum, provided that the feasible region is bounded and not empty
and the global optimum can be computed efficiently. This is in contrast
to non-convex optimization problems, which in general cannot be solved
efficiently. Already problems with about ten variables can be extremely
challenging, and problems with a few hundreds of variables can already
be intractable. For more details on convex optimization see for example
Boyd and Vandenberghe [BV04].
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6.3. Algorithm

6.3.1. Gamut Mapping as Optimization Problem. It seems quite
natural to formulate gamut mapping as a multi-criteria optimization
problem since there are several (competing) objectives to take care of
[ML01, ZS06]:

(1) Detail preservation: image details should be preserved by the map-
ping.

(2) Hue preservation: the hue of a color should not be changed by the
mapping.

(3) Gray axis preservation: a gray color point should be mapped onto
a gray color point. In all color spaces that are usually considered
for gamut mapping the gray colors lie on an axis of the color space.
This is where the expression gray axis comes from.

(4) Continuity of the mapping: color points that are perceptually close
should also stay close under the mapping.

(5) Low image distortion: a color should not be changed “too much”
by the mapping.

One popular approach to multi-criteria optimization is to search for a so
called Pareto optimum [Ehr05], i.e., a solution that is not dominated
by another feasible solution. In general an optimization problem has
many Pareto optima, which by definition cannot be compared to each
other. The Pareto approach is usually taken if all the different crite-
ria (objectives) are equally important (or cannot be compared to each
other). In gamut mapping the objectives that we listed above are not
always equally important depending on the intended application.

Therefore we take another approach towards image-dependent gamut
mapping by treating different objectives differently. Preservation and
continuity objectives are encoded as hard constraints, i.e., we prescribe
the extent to which they are allowed to be violated by providing strict
bounds, whereas low image distortion is an objective that we want to
optimize under the condition that the preservation and continuity con-
straints are satisfied. The rationale behind this approach is that strong
violations of detail preservation, hue preservation, gray axis preserva-
tion or continuity of the mapping create artifacts that harm the per-
ceived quality drastically and thus have to be avoided by providing hard
constraints.
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In order to formulate the mathematical optimization problem for gamut
mapping we will discuss the geometric setup of gamut mapping as we
need it here. The image gamut I and the target gamut T are finite
subsets (point clouds) of our working color space. We assume that the
working color space is

(1) approximately hue preserving, i.e. all color points in a plane which
contains the gray axis have the same hue and

(2) approximately perceptually uniform (equidistant), i.e., equal Eu-
clidean distances in color space correspond to equal distances in
visual perception.

Color spaces like OSA-UCS, hue-linearized CIELAB (see for example
[BFCE98, FE98]) or DIN 6164 fulfill these properties. Note that the
color space is one parameter of our optimization problem and that the
overall quality of our mapping will depend on the extent to which it
fulfills the two required properties. As the color space is approximately
perceptually uniform one can treat gamut mapping as a problem in Eu-
clidean geometry, where a point cloud that describes the image gamut
has to be mapped into a shape described by the target gamut.

Let us for the moment assume that we have the following operations
available:

(1) We can compute a continuous shape Shape(T ) that approximates
the target gamut T . The shape should capture the geometry of the
target gamut well as the quality of the overall mapping will depend
on the quality of the computed shape.

(2) We can determine for every point in the working color space, if it
is contained in Shape(T ) or not.

(3) We can determine the intersection points of a line with Shape(T ).

As we mentioned earlier the objective function of our optimization prob-
lem is low image distortion. Intuitively the image distortion is low if the
points in the image gamut I are not displaced too much by the map-
ping from I into Shape(T ). In order to give sense to the term ”displace
too much” we need some metric on the color space. Here we want to
use the Euclidean metric, which also explains our assumption that the
color space has to be approximately perceptually uniform. The following
optimization problem is a candidate to model low image distortion:
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minimizef

∑
x∈I ‖x− f(x)‖2

subject to f(x) ∈ Shape(T ) for all x ∈ I
(6.1)

The objective function takes care of a low image distortion while the
constraints just state that the solution should give a valid gamut map-
ping, i.e., the points from the image gamut are actually mapped into the
target gamut. We optimize over all functions f : Rd → Rd, where d is
the dimension of the color space. This means that the objective function
is a functional. In this form the optimization problem does not fit into
the class of optimization problems as we have introduced them earlier.
To make it fit we restrict the class of functions over that we optimize
to a parameterized family of functions, which leaves us to optimize the
parameters. In order to restrict the family of functions we exploit our
second assumption on the color space, namely, that it is approximately
hue preserving. This allows us to choose a focal point c in Shape(T )
and restrict the mapping of any point x ∈ I to the ray originating in
c and shooting in the direction of x. This ensures that the hue of x is
preserved. Thus the family of allowed functions is given as

f(x) = c + λx(x− c), λx ≥ 0,

where the ray is parameterized by λx. Note that the center point c is a
parameter of our optimization problem. If we assume that Shape(T ) is
star shaped with respect to c, i.e., that for every point x ∈ Shape(T ) the
line segment xc is completely contained in Shape(T ), then the constraint
f(x) ∈ Shape(T ) for x ∈ I can be written as

0 ≤ λx ≤ λ̂x,

where λ̂x is such that c + λ̂x(x − c) is the intersection of the boundary
of Shape(T ) with the ray originating in c and shooting in the direction
of x. The restriction that Shape(T ) has to be star shaped is not really
necessary. To deal with not star shaped shapes one just has to add
additional constraints for each intersection point of the shape with the
ray. The only reason we restrict ourselves here to star shaped shapes is
to keep our exposition as simple as possible.

Since ‖x − f(x)‖2 = (1 − λx)2‖x − c‖2 our optimization problem now
reads as follows:
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minλ

∑
x∈I(1− λx)2‖x− c‖2

subject to
λx − λ̂x ≤ 0 for all x ∈ I

−λx ≤ 0 for all x ∈ I

(6.2)

This is an optimization problem that falls into the class that we intro-
duced earlier. But we are not done yet. So far we have only modeled
our goals of low image distortion and hue preservation. However we do
not want to neglect the other goals of gamut mapping. We take care of
them by adding additional constraints to the optimization problem.

Detail preservation. To ensure detail preservation we add the con-
straints c1‖x− y‖ ≤ ‖f(x)− f(y)‖ for all pairs x, y ∈ I. Here c1 > 0 is
a constant that again is a parameter of our optimization problem. In-
formally speaking the added constraint enforces that points that have a
large distance to each other cannot be mapped close together.

Continuity. Zolliker [ZS06] pointed out that the mapping should be
continuous in the following sense: points that are close to each other
should not be mapped too far away from each other. We take care of
this goal by adding the constraints ‖f(x) − f(y)‖ ≤ c2‖x − y‖ for all
pairs x, y ∈ I. Again c2 > c1 is a constant that is a parameter of our
optimization problem.

Gray axis preservation. To ensure this goal it suffices to impose an
additional condition on the position of the focal point: it has to be lo-
cated on the gray axis. As all mappings that we allow in the optimization
problem move points towards the focal point on a straight line they all
map gray axis points onto gray axis points.

Combining everything we finally end up with Optimization Problem (7.3).
We summarize the input and the parameters of the optimization problem
in Table 1.

6.3.2. Turning the optimization problem feasible. The optimiza-
tion problem for image-dependent gamut mapping that we derived in
the previous section from theoretical considerations seems infeasible to
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minλ

∑
x∈I(1− λx)2‖x− c‖2

subject to
c1‖x− y‖ − ‖f(x)− f(y)‖ ≤ 0 ∀x, y ∈ I, x 6= y
‖f(x)− f(y)‖ − c2‖x− y‖ ≤ 0 ∀x, y ∈ I, x 6= y

λx − λ̂x ≤ 0 ∀x ∈ I
−λx ≤ 0 ∀x ∈ I

(6.3)

Parameter Explanation Constraints

Image gamut I Given as a discrete point cloud
Underlying shape with certain

Target gamut T properties
Working color 1. Hue preserving
space 2. Equidistant

Determined by Shape(T )
Constants λ̂x which captures the geometry

of discrete point cloud
1. Interior point of
Shape(T )

Point to which points are 2. Located on gray
Focal point c contracted axis

Determine the degree to which
Constants continuity and detail 0 < c1 < c2

c1 and c2 preservation are taken care of

Table 1. Input and parameters of the gamut mapping
optimization problem.

solve for typical image and target gamuts. First of all the optimiza-
tion problem is in a general non-convex form because the constraints are
non-convex, see [BV04] for more information about convex functions.
Second, it has far too many variables. For every point in an image gamut
we have to add one variable to the optimization problem. As the num-
ber of points contained in a typical image gamut can be very large this
makes also the optimization problem very large. Third, the number of
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constraints is very large, it is essentially quadratic in the number of vari-
ables. Altogether these three factors lead to the practical infeasibility of
the problem. In this section we show how one can modify the optimiza-
tion problem to make it feasible also in practice. The modification has
less variables and fewer and linear constraints. It is a convex quadratic
program, which can be solved using standard methods. In general a so-
lution to the modified problem is different from a solution to the original
problem. But we will argue that a solution to the modified problem still
meets our needs.

Number of variables. In order to reduce the number of variables we
modify the optimization problem such that only the points in the image
gamut boundary are taken into account. The idea is that once we have
found a good mapping for the boundary points we can easily extend this
mapping to interior points of the image gamut. That is, the optimiza-
tion problem essentially stays the same only the number of variables is
reduced by discarding all points that do not belong to the boundary of
the image gamut. The modification needs an operator Boundary(I)
that provides us with a finite set of points which are considered to be
located on the boundary of the shape that underlies the point set I.
We assume that for every pair of points p1, p2 ∈ Boundary(I) the an-
gle between the rays shooting from the focal point c ∈ Shape(T ) to
p1 and p2, respectively, is not equal to zero. A solution to the modi-
fied optimization problem gives for every image gamut boundary point
x ∈ Boundary(I), a parameter λx which determines its displacement
as f : x 7→ c + λx(x− c).

To extend the mapping from the boundary points to the interior points,
i.e., the points of I not contained in Boundary(I) we make the assump-
tion that the shape that underlies the target gamut T is star shaped with
respect to the focal point c and proceed as described in the following,
see also Figure 6.2. For x /∈ Boundary(I) determine the point y ∈
Boundary(I) that lies closest to the ray originating in the focal point
and shooting in the direction of x. Closeness can be measured here in
terms of the angle between two rays. Project the point x onto the ray
from c through y. Let x′ be the projection. Now compute a displacement
of x′ on the ray from c through y. If x′ is not contained in the segment
cy, then the displacement of x′ is chosen as f : x′ 7→ f(y) = c+λy(y−c),
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gy(x′)
x′

yf(y)

x

f(x)

c

Figure 6.2. Extending the mapping from boundary
points to interior points.

where λy is determined by a solution to the modified optimization prob-
lem. In that case we set λx = λy‖y−c‖/‖x′−c‖. Otherwise the displace-
ment of x′ is computed via some compression function gy : cy → cf(y),
which maps the segment cy onto the segment cf(y). The compression
function gy is another parameter of our optimization problem, examples
include linear and non-linear compression. The displacement of x′ is now
given as x′ 7→ gy(x′). Define λx as ‖c− gy(x′)‖/‖c−x′‖, i.e., as the quo-
tient of the lengths of the segments cgy(x′) and cx′. The displacement
of x is finally given as

f : x 7→ c + λx(x− c)

Number of constraints. Reducing the number of variables also de-
creases the number of constraints. To reduce this number even further we
only retain the detail and continuity constraints for those points x, y ∈
Boundary(I) that are close to each other. Again we measure closeness
by the angle between the rays shooting from the focal point c to x and y,
respectively. More specifically we retain only constraints between those
points x, y ∈ Boundary(I), where the angle between the corresponding
rays is smaller than some value α, where α becomes another parame-
ter of the optimization problem. Note that the number of constraints
increases with increasing value of α.

Linearization. Finally we linearize the continuity and detail constraints.
Let x, y ∈ Boundary(I) be two points that are close to each other in
terms of the angle between the corresponding rays. Without loss of gen-
erality we assume that y is closer to c in Euclidean distance than x, i.e.,
‖x − c‖ ≥ ‖y − c‖. Since x and y are close to each other we measure
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distances along the rays shooting from c to x and y respectively and
approximate the expression

‖x− y‖ by ‖x− c‖ − ‖y − c‖
and the expression

‖f(x)− f(y)‖ by
∣∣‖f(x)− c‖ − ‖f(y)− c‖

∣∣.
The modified continuity and detail constraints are now written as follows

c1(‖x− c‖ − ‖y − c‖) ≤
∣∣∣‖f(x)− c‖ − ‖f(y)− c‖

∣∣∣
≤ c2(‖x− c‖ − ‖y − c‖),

which we further modify as follows

c1(‖x− c‖ − ‖y − c‖) ≤ ‖f(x)− c‖ − ‖f(y)− c‖
≤ c2(‖x− c‖ − ‖y − c‖).

Note that the last modification implicitly introduces the following new
monotonicity constraint

‖x− c‖ ≥ ‖y − c‖ ⇒ ‖f(x)− c‖ ≥ ‖f(y)− c‖,
i.e., as mentioned earlier we only introduce the modified constraints if
‖x−c‖ ≥ ‖y−c‖. Using ‖f(x)−c‖−‖f(y)−c‖ = λx‖(x−c)‖−λy‖(y−c)‖
the modified continuity and detail constraints become

c1(‖x− c‖ − ‖y − c‖) ≤ λx‖(x− c)‖ − λy‖(y − c)‖
≤ c2(‖x− c‖ − ‖y − c‖)

which can be rewritten as

(c1 − λx)‖x− c‖ − (c1 − λy)‖y − c‖) ≤ 0

and
(c2 − λy)‖y − c‖ − (c2 − λx)‖x− c‖) ≤ 0.

Note that both constraints are now linear functions in λx as well as in
λy.

Combining all the modifications leads to the Optimization Problem (7.4).

Using the variable substitution µx = 1− λx one can see that this prob-
lem is a convex quadratic program, which can be solved using standard
methods. The modifications introduce three new parameters into our
optimization problem: the operator Boundary(I), which determines
the boundary points of the discrete point cloud I, the angle α which
determines the size of the neighborhood of a boundary point and the
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minλ

∑
x∈Boundary(I)(1− λx)2‖x− c‖2

subject to

(c1 − λx)‖x− c‖ − (c1 − λy)‖y − c‖ ≤ 0 ∀x, y ∈ Boundary(I),
‖x− c‖ ≥ ‖y − c‖,
∠(c− x, c− y) < α
and x 6= y

(c2 − λy)‖y − c‖ − (c2 − λx)‖x− c‖ ≤ 0 ∀x, y ∈ Boundary(I),
‖x− c‖ ≥ ‖y − c‖,
∠(c− x, c− y) < α
and x 6= y

λx − λ̂x ≤ 0 ∀x ∈ Boundary(I)

−λx ≤ 0 ∀x ∈ Boundary(I)
(6.4)

compression function g, which we use to extend the displacement map-
ping from boundary to interior points. We also have to assume now that
the shape underlying the target gamut is star shaped with respect to the
focal point. In Table 2 we summarize the input and the parameters of
the modified optimization problem.

6.3.3. Parameterizations. The optimization approach towards image-
dependent gamut mapping as described above is general in the sense that
it contains several unspecified parameters. In the following we will de-
scribe choices for these parameters that we used in our experiments. We
tried several options for determining the image gamut boundary points,
i.e., for the operator Boundary(I), and the compression function g.

6.3.3.1. Boundary(I). The problem to determine the boundary points
of an image gamut can be solved by associating a shape with the finite
point set I ⊂ R3 and by defining the boundary points of I as a appropri-
ate, finite set of points that lie on the boundary of the shape. Frequently
encountered objectives for the associated shape are: it should capture
the “geometry” of the point set as well as possible and it should be ef-
ficiently computable. Here we describe two different shapes that can be
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Parameter Constraints

Image gamut I
Target gamut T Underlying shape star shaped with

respect to the focal point
1. Hue preserving

Working Color Space 2. Perceptually uniform
Determined by Shape(T ), which
should capture the geometry

Constants λ̂x of the discrete point cloud T well
Operator Boundary(I) 1. Should capture the boundary

shape of the point cloud I well
2. ∠(p1 − c, p2 − c) 6= 0
for all p1, p2 ∈ Boundary(I)
with p1 6= p2

Compression function g
1. Interior point of Shape(T )

Focal point 2. Located on gray axis
Constants c1 and c2 0 < c1 < c2

Angle α 0 < α

Table 2. Input and parameters of the feasible gamut
mapping optimization problem.

associated with a point cloud. Both shapes have continuous boundaries.
In order to have a finite representation for Boundary(I) we choose a
finite sample from these continuous boundaries.

Convex Hull. The convex hull of a finite point set I ⊂ R3 is the set of
all convex combinations of elements in I, i.e., the set

conv(I) :=

∑
p∈I

αpp
∣∣αp ≥ 0 for all p ∈ I and

∑
p∈I

αp = 1

 .

Since the line segment defined by any two points in conv(I) is contained
in conv(I) the set conv(I) is star-shaped with respect to any of its points,
i.e., any point in conv(I) can be connected to any other point in conv(I)
by a line segment that itself is a subset of conv(I). The convex hull
of n points in R3 and its boundary can be efficiently computed in time
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O(n log n), see for example [Ski98]. The drawback of working with the
convex hull is that in general it does not fit the point cloud (image gamut)
tightly. To mitigate the latter problem alpha shapes [CL99, EM94]
have been used in the context of gamut mapping. Since we did not use
alpha shapes we skip the exact definition here—roughly speaking alpha
shapes allow some non-convexity controlled by a real parameter.

Star Shape. Besides the convex hull we use another shape that we
simply call star shape.

Let again I be a finite set of points in R3. Additionally we assume now
that we are given a center point c ∈ R3. The star of I with respect to c
is the set of all line segments connecting I to c, i.e.,

starc(I) = {αp + (1− α)c | p ∈ I, 0 ≤ α ≤ 1}.

By definition the starc(I) is star shaped with respect to c, in fact it is the
smallest subset of R3 that contains I and is star-shaped with respect to
c. The star of I can be seen as a special case of gamut description with
the segment maxima method for infinitesimal small angles [Mor98].

In general almost all points of I will be in the boundary of starc(I).
Since our goal was to work only with a small set of boundary points
we modify the definition of a star in order to get a shape that better
suits our purposes. Therefore we replace the line segments cp, p ∈ I of
starc(I) by cylinders symmetrical to the line segments whose two ends
we replace by circular cones with focal points c and p, respectively, see
Figure 6.3. This construction effectively (depending on the width of the
cylinders and the size of the cones) reduces the the number of boundary
points in starc(I). We call the modified star of I the star shape of I.

pc

Figure 6.3. Modified line segments in the definition of
the star shape.

6.3.3.2. Compression Functions. We solve the optimization problem only
for image gamut boundary points. To compute the mapping also for in-
terior points we use a compression function g described in Section 6.3.2.
For every boundary point y ∈ Boundary(I) the compression function
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gy maps the line segment connecting c and y to the line segment con-
necting c and f(y), i.e. gy : cy → cf(y). Remember that we get λy and
thus the point f(y) = c+λy(y− c) by solving the optimization problem.
We use two different types of compression functions, namely linear and
non-linear compression.

Linear compression. For a boundary point y ∈ Boundary(I) the
linear compression function is given as

gy(x) = c + λy(x− c).

In other words: λx = λy for all points x on the line segment connecting
c and y. But note that only λy is obtained from the solution to the
optimization problem.

Non-linear compression. For a boundary point y ∈ Boundary(I)
we use the non-linear compression function

gy(x) = c +
(

ω

q

(
λy tanh

(
λ−1

y tanh−1(q)
))

+ (1− ω)λy

)
(x− c),

where ω ∈ [0, 1] is a parameter that controls the non-linearity and q =
‖x − c‖/‖y − c‖. Note that for ω = 0, we get the linear compression
function as a special case. For ω > 0 the factor λx for a point x on the
line segment cy depends on the distance from x to c and therefore differs
with varying x. Figure 6.4 shows how the distance of a mapped point
from the focal point, i.e., ‖f(x) − c‖, depends on the distance of the
original point to the focal point, i.e. ‖x− c‖, for different parameters ω
and for a clipping function. The clipping function leaves all points that
are closer to c than f(y) untouched and clips all points that a further
away from c than f(y) onto the point f(y). For ω > 0 the non-linear
compression function compresses colors near the focal point less than
colors that are further away.

6.3.3.3. Combinations. The general optimization approach permits dif-
ferent parameter settings. We did extensive studies for four of these
settings where we altered the operator Boundary(I) and the compres-
sion function g. Note that we do not test all possible parameter settings
but make a pre-selection of reasonable parameter settings. Specifically
these are the following:

(1) LOptConv. Here we use the convex hull to determine Bound-
ary(I) and linear compression to map the interior points.
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Figure 6.4. Comparison of the non-linear compres-
sion function for different parameters ω and the clipping
function.

(2) NOptConv. Non-linear compression is used instead of linear com-
pression. For the determination of Boundary(I) again the convex
hull is used.

(3) LOptStar. Here we use the star shape to determine Boundary(I)
and linear compression to map the interior points.

(4) NOptStar. Non-linear compression is used instead of linear com-
pression. For the determination of Boundary(I) again the star
shape is used.

For the remaining parameters we fix the values as follows: our work-
ing color space is CIELAB, although CIELAB has a poor hue linear-
ity particularly in the blue region, see [BFCE98, FE98]. We used
CIELAB only for the reason that we had software ready for process-
ing in CIELAB. It is straight forward to solve the optimization problem
also for another color space. For a more sophisticated implementation
the use of a color space that preserves hue better, like for example the
hue-corrected CIELAB [BFCE98] may be more appropriate. In order
to determine the values for the constants λ̂x we use the description of
the target gamut in the ICC profiles. For a point x ∈ Boundary(I)
we determine λ̂x by intersecting the target gamut boundary with a ray
originating in c and shooting in the direction of x. We fix the remaining
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parameters to values that turned out to perform well: c1 = 0.1, c2 = 1.0,
c = (57, 0, 0), α = 2◦.

6.3.4. Implementation. We implemented a small test environment
for image-dependent gamut mapping using Java 5. As an optimization
tool we used the software MOSEK [mos]. The test environment has
a graphical user interface that makes it easy to experiment with differ-
ent parameter configurations for the gamut mapping. Additionally it
permits a visualization of the shape of image and target gamuts.

In our experimental implementation we quantized for efficiency and and
legacy software reasons the image gamut to a grid in CIELAB space.
The quantization was done as follows: the L∗-axis of the CIELAB space
is discretized to 101 equal distant values and the a∗ and b∗ axes are both
discretized to 256 equal distant values each. The maximal error we make
by quantizing the continuous CIELAB values is

√
3

2 which is negligible,
as under normal conditions most humans cannot perceive it.

6.3.5. Qualitative results. Here we show the effect of using different
source gamut descriptions. Figure 6.5 shows three different source gamut
descriptions for the FRUIT image and Figure 6.6 shows the mapping
results.

Figure 6.5. Full device gamut (left), convex hull of
image gamut (middle) and star shape of image gamut
(right) of FRUIT image, each compared to target gamut
(dark)
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Figure 6.6. FRUIT image mapped with linear com-
pression using device gamut, (left), convex hull of the
image gamut (middle) and star shape of the image
gamut (right).

The three different source gamut descriptions are (1) the device gamut,
i.e., the space of all colors that potentially could be contained in an
image, (2) the convex hull of the color points that are actually contained
in the image and (3) the star shape of the color points contained in
the image. For the mapping linear compression is used in all three cases.
Major visual improvements can be seen in the brown colors for the basket
and in the color of the apple.

Figure 6.7 shows the star shape of the image gamut of the FRUIT image
before and after the mapping. An appropriate choice of the constants c1

and c2 for the detail preservation and continuity constraint, respectively,
ensures, that the basic shape of the gamut surface is conserved. Note
that comparing the geometry of the original and the mapped gamut
surface is a visual sanity check of the extent to which the mapped image
could suffer from continuity artifacts or detail loss.

6.4. Psycho-visual Tests

We conducted a user study to assess the performance of our optimization
based image-dependent gamut mapping algorithm in terms of perceived
quality. For our experiment we have chosen the sRGB to newspaper
printing work-flow, since it has an especially small destination gamut
and we expect therefore a maximum effect in applying different map-
ping algorithms. We made a pre-selection of suitable parameter settings
in Section 6.3.3.3 and obtained four different incarnations of our param-
eterized gamut mapping algorithm. In the field study we compared these
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Figure 6.7. Mapping of the star shape of the image
gamut of the FRUIT image into the target gamut. Note
that the shape of the image gamut is partially retained
due to the detail preservation and continuity con-
straints.

four algorithms to standard reference algorithms which are not image-
dependent. For the evaluation we were able to directly apply Thurstone’s
method which we introduced in Chapter 5. This was possible because
the number of algorithms to be compared is relatively small. Before we
report on the data analysis however, we first give a short description of
the used reference algorithms and the experimental setup.

6.4.1. Reference gamut mapping algorithms. As reference algo-
rithms we used the following two algorithms that were proposed as ref-
erence algorithms in the CIE-guidelines [Cen04]:

(1) SGCK. This algorithm is one of the two gamut mapping algo-
rithms recommended by CIE to be used as reference algorithm in
psycho-visual tests. The details of this algorithm are described
in the CIE-guidelines [Cen04]. This algorithm is a combination
of GCUSP [Mor98] and the sigmoid lightness mapping and cusp
knee scaling proposed by Braun and Fairchild [BF99].

(2) Hue preserving minimal ∆E (HPMinDE). The details of this
algorithm are described in the CIE-guidelines [Cen04]. It keeps
colors inside the target gamut unchanged and maps outside colors
to the target gamut border. This is done by minimum distance
clipping within planes of constant hue.
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We also compared our optimization based image-dependent algorithms
to their non-image-dependent counterparts, namely:

(3) LDev, linear compression for the device gamut.
(4) NDev, non-linear compression for the device gamut.

6.4.2. Experimental set-up. The test procedure for the psycho-visual
test was done following the CIE-guidelines [Cen04]. For data elicita-
tion we used paired comparisons: the original image and two mappings
thereof were shown simultaneously on a monitor screen, the original in
the middle of the upper half of the screen and the two mappings below
the original side by side. All images had a constant height of 10.5 cm.
The observing person had to select the mapped image which he or she
judged to be the better representation of the original image. If both
mappings were judged to have equal quality, the original image had to
be selected.

All paired comparisons have been performed on calibrated LCD screens
(EIZO cg220 and EIZO cg210). The background of the screen was set
to neutral gray. Behind the screen and in the back of the observer
dark gray and black paper backgrounds, respectively, were used. The
illuminance of the surrounding (with monitor switched off) was well
below the recommended upper limit of 35 lx. On the screen no reflections
of the illumination were visible to the observer.

Two types of test images were used: first, 8 traditional test images, four
of them ISO test images and the SKI image recommended by the CIE
guidelines (see Fig. 6.8) and second, a set of 62 images from a newspaper
agency [KEY03]. In the analysis we consider the frequency that an
algorithm was preferred over the other, independent of the image that
was mapped by the algorithms, i.e., all images contribute to the same
study. Note that for the volume visualization study in the following
Chapter we take a different approach: there each one of two different
visualization objects yields its own conjoint study.

The participants of our study were students or staff of our institutes.
Every participant had passed the ”Ishihara test” [Ish62]. The partici-
pants were instructed by means of a pre-test where twelve image pairs
had to be compared. In total 42 persons, made a total of 3920 paired
comparisons. For each of the 28 pairs of algorithms all 70 test images
were shown twice during the test. This results in 140 comparisons of
every algorithm pair. A single observer made 80-160 comparisons on 10-
20 different images (each image was presented for 8 different algorithm
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Figure 6.8. ISO test images plus the SKI image as
recommended by CIE. The captions of the images are
used as reference in the paper.

pairs). For each respondent the pairs were presented in random order.
Moreover the positions of the images were determined randomly in order
to eliminate effects of preference for the left or the right position.

6.4.3. Data Analysis. To analyze the elicited data we used Thur-
stone’s method which we introduced in Chapter 5. Altogether there
are eight gamut mapping algorithms that we compared to each other.
Table 3 shows the relative frequencies Fi�j that algorithm i was pre-
ferred over algorithm j. If algorithm i and algorithm j were judged to
be equivalent we counted that as half a comparison towards i and half a
comparison towards j.

Applying Thurstone’s method yields a scale value for every algorithm.
These are shown in Figure 6.9. The interval on top of each bar shows
the computed theoretical error.

6.5. Discussion

The performance of LDev (linear compression) and HPMinDE (clip-
ping) is poorer than that of the more sophisticated algorithms SGCK
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HPMinDE - 0.53 0.69 0.56 0.64 0.62 0.82 0.85
SGCK 0.47 - 0.30 0.45 0.62 0.66 0.68 0.79
LDev 0.31 0.70 - 0.72 0.89 0.84 0.78 0.88
LOptConv 0.44 0.55 0.28 - 0.76 0.66 0.78 0.79
LOptStar 0.36 0.38 0.11 0.24 - 0.37 0.72 0.70
NDev 0.38 0.34 0.16 0.34 0.63 - 0.65 0.66
NOptConv 0.18 0.32 0.22 0.22 0.28 0.35 - 0.58
NOptStar 0.15 0.21 0.12 0.21 0.30 0.34 0.42 -

Table 3. Relative frequency matrix. The numbers
have to be read as the relative number of observations
where the row algorithm was preferred over the column
algorithm.

Figure 6.9. Scale values for the algorithms: algo-
rithms using device gamuts are in light color, algorithms
using the convex hull of the image gamut are in gray
color and algorithms using the star shape of the image
gamut are in dark color.

and NDev. The reason why clipping is rated so poorly in our appli-
cation is that we use a particularly small target gamut, the newspaper
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gamut. This leads to a very high loss of detail when clipping colors onto
the target gamut boundary. The most interesting result is the gain in
scale value of any algorithm if image gamuts are used instead of device
gamuts. Both linear compression and non-linear compression show a
significant gain if the device gamut is replaced by the convex hull of the
image gamut. A further gain is reached when the star shape of the image
gamut is used. This is more pronounced for linear compression than for
non-linear compression, which is not surprising, as non-linear compres-
sion already has a high preference level and its potential for improvement
is smaller than that of linear compression. However, the use of image
gamuts together with a not so sophisticated algorithm (like linear com-
pression) can not compensate for using a more sophisticated algorithm
(like non-linear compression) together with device gamuts. NDev per-
forms better or equivalently to linear compression with image gamuts.

Considering Figure 6.5 it is surprising that using the star shape instead of
the convex hull yields such a high gain in scale value for both, linear and
non-linear compression, as the volumes of the star shape and the convex
hull on first sight appear to be of similar size. Note however that the
2-dimensional projection of a 3-dimensional shape may be misleading:
the volume of the star shape is actually much smaller than the volume of
the convex hull (it has indentations which are not visible in Figure 6.5).
This is in line with the high gain in scale value when using the star shape
instead of the convex hull.

In the following we will elaborate on how one could improve the quality
of the optimization algorithms even further. The choice of only one focal
point to which we map colors simplifies our analysis, however it is not
necessary. Our optimization approach permits to choose different focal
points for different colors, for example in dependency of the hue, which
gives us more degrees of freedom in the optimization problem. Then we
only have to ensure that any ray along which we map a color intersects
the target gamut boundary exactly once, i.e., we have to choose the
boundary description appropriately. Furthermore in our implementation
we used the CIELAB color space. We would expect an improvement of
our results when using a color space that has a better hue preservation,
like for example the hue corrected CIELAB.

Our optimization approach also can be modified in order to obtain a
local algorithm that preserves spatial variations, see also [KSES05,
BdEW01] for work in that direction. However this is not completely
straight forward. The biggest challenge is that the obtained optimization
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problems usually get very large and thus are not easily turned feasible
in practice.

6.6. Conclusion

We have applied Thurstone’s method to explore the potential of image-
dependent gamut mapping. To this end we have developed a new pa-
rameterized image-dependent gamut mapping algorithm based on opti-
mization. We did not measure the perceived quality of every possible
parameter setting, but made a pre-selection of four different incarna-
tions of the algorithm that seemed reasonable to us. We compared these
to standard reference algorithms. The advantage of this procedure is
that we had to compare only a small number of algorithms in the user
study instead of comparing all possible parameter settings. Therefore
substantially less respondents were necessary.

Our starting point was the time-quality tradeoff one faces in gamut map-
ping: in comparison to image-independent methods image-dependent al-
gorithms have a worse running time, however the perceived quality of
the mapping should improve. The user study permits to quantify this
tradeoff. It shows that with the suggested algorithm we can improve the
perceived quality significantly over standard reference algorithms.





CHAPTER 7

Volume Visualization

In the previous chapter we developed our own parameterized gamut map-
ping algorithm and investigated the importance of image-dependence for
the perceived quality of a gamut mapping algorithm. Here we consider
an existing volume visualization algorithm. We measure the perceived
quality induced by different parameter settings using the extension of
Thurstone’s method introduced in Chapter 5.

7.1. Introduction

Volume visualization is a fast growing field in computer graphics and
data visualization. It is concerned with creating a two dimensional image
of three-dimensional volume data, which most commonly is acquired by
a 3D-scanner. Every volume element is directly projected into the view-
plane of the observer. To this end a transfer function is designed which
assigns to every volume element a color and a opacity value. Then, in the
ray casting step, rays are shot from the position of the observer into the
data and are traversed with a certain step size to sample data from the
ray. From the sampled data finally the projection into the image plane
is computed. The main purpose of volume visualization is to produce
images that allow users to gain more insight into the data. Therefore
the quality of visualization algorithms should be evaluated on how well
they serve this purpose. Such an evaluation needs the involvement of
humans.

In this chapter we apply the conjoint analysis technique from Chapter 5
to derive a scale for the different parameter settings of an existing param-
eterized volume visualization algorithm. We report on a large user study
that we conducted in order to determine parameter settings that fit two
important visualization purposes: visual aesthetics and conveyance of
detail. By doing so we test our conjoint analysis method in practice and
we also gain further insights for volume visualization. For example it is

89
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possible to determine the relative importance of the algorithm’s param-
eters. It is also possible to decide if improving on one parameter’s level
significantly increases the perceived quality of the algorithm, i.e., it could
turn out that decreasing the algorithms step size below some level does
not influence the quality of resulting renderings anymore, thus allowing
to optimize the algorithm’s speed without sacrificing on the perceived
quality. Finally, we can also study how age, gender or color deficiencies
affect users’ preferences.

In the following we first discuss the setup of the user study in which
we elicited the preference data. Then we introduce the parameterized
visualization algorithm that we consider. Finally we present and discuss
the results of our evaluation.

7.2. Data Collection

As elicitation procedure we chose choice based conjoint analysis, where
each choice task was a paired comparison between two renderings, i.e.,
between two parameter settings. Note that the cognitive burden in-
creases when the number of items from which to choose increases. Higher
cognitive burden usually results in poorer data quality. We decided to
use choice tasks with the least cognitive burden, namely paired compar-
isons.

For our study we used two data sets. The first data set Foot is meant
to cover the medical application domain, whereas the second data set
Engine covers the engineering application area. See Figure 7.5 and
Figure 7.7 for various images rendered for these two data sets. For the
Foot data set we had 2250 different parameter settings resulting in 2250
different renderings (images) and for the Engine data set we had 2700
different parameter settings. Perceived quality itself can be measured
along different directions. We made this more explicit by asking two dif-
ferent questions: Which image do you like best? and Which image shows
more detail? We will later refer to the first question as Aesthetics and
the second as Detail. Note that the second question is more specific
than the first, which is fairly general.

Each combination of data set and a question is considered as a differ-
ent conjoint study, i.e., we conducted the four different conjoint studies
[Engine, Aesthetics], [Engine, Detail], [Foot, Aesthetics] and
[Foot, Detail].
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We elicited data for our conjoint studies from visitors at an exhibition
that took place to celebrate the 25th anniversary of the computer science
department at ETH Zürich. Our survey took place in a room at the ex-
hibition that was darkened using light-impermeable black curtains. The
room had six work places each having a computer with mouse and LCD
screen with resolution 1280x1024 pixels. During the survey the light in
the room was switched off. 786 visitors of the exhibition participated
in our study. From them we collected the following data: age, gender
and color deficient (yes or no). To test for color blindness we used the
Ishihara test [Ish62].

Every respondent took part in exactly two of our conjoint studies, i.e.,
a respondent always had to answer the same randomly chosen question
on both data sets. That is, each respondent participated in one study
for each data set Foot and Engine, respectively. We did not conduct
the two studies one after the other, but interleaved them: alternately
a respondent was shown Engine image pairs and Foot image pairs to
choose from, altogether 20 pairs for each data set. Our motivation for
this procedure was that in conjoint analysis surveys respondents often
get bored after only a couple of questions. So we tried to make the
survey a little more exciting by alternating the data sets. The image
pairs for the comparisons were determined as follows: the first image
was drawn uniformly at random from the set of all images. The second
image was then drawn uniformly at random from the set of images having
for each parameter a different value than the first image. The images
were presented side by side on the screen with a black stripe separating
them. The background of the screen was set to black. All images had
a resolution of 512x512 pixels. Respondents chose an image by clicking
on it with the mouse. After a click the next image pair was shown.
Typically the respondents needed three to five minutes to complete the
survey.

7.3. Algorithm

We consider a parameterized volume visualization algorithm where the
visualization of an object can be described in terms of the parameters
Colormap, Rendering, Viewpoint, Resolution, Step size and
Background. The parameter Colormap has three values which cor-
respond to different color maps that are applied for transfer function de-
sign. For all transfer functions, the opacity value has been set to always
reveal most of the object’s structures, in order to suppress ‘occlusion’ to
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act as an independent variable. The parameter Rendering describes
the applied rendering mode and has five values: DVR (Direct Volume
Rendering), DVRNS (Direct Volume Rendering with No Shading, just
compositing), DVRGM (Direct Volume Rendering with Gradient Modu-
lation to highlight surfaces), XRAY (Colored X-Ray) and MIP (Colored
Maximum Intensity Projection). The parameter Viewpoint has six
values for Engine and five values for Foot. It describes the viewpoint
under which the observer sees the object. Different viewpoints are cho-
sen in such a way that most structures are always kept visible, again to
prevent ‘occlusion’ to play a significant role in the study. The parameter
Resolution describes the screen resolution used for rendering and has
two values: rendering at the resolution of the dataset and twice that.
Step size is the ray traversal increment (measured in voxel size), which
has three values, 0.2, 0.5 and 1.0. Finally the parameter Background
describes the color of the background and has five values: black, white,
dark green, dark blue and yellow. Combining these parameters
results in 2700 Engine images and in 2250 Foot images. The image size
is always 512 × 512 (the image rendered at reduced resolution, that is,
at volume resolution, was scaled up with bilinear filtering). The Engine
data size is 256× 256× 256, and the Foot data size is 154× 263× 222.

7.4. Results

In this section we report on how we applied our data analysis method
that we described in Chapter 5 to obtain meaningful scale values for
our four conjoint studies. All subsequent results refer to respondents
that are more than 10 years old1 and have passed the Ishihara test for
color blindness. Among all respondents fulfilling these two criteria there
were 317 respondents participating in the two studies with test question
Detail and 366 respondents participating in the other two studies with
test question Aesthetics.

In a first step we computed scale values using the method described in
Section 5.3. These scale values need not to be meaningful since model
assumptions that underlie these computations might not be met in our
studies. Hence we discuss in the following how to obtain meaningful
scale values from the initially computed ones.

1We found no significant differences between respondents younger and older than 17,

respectively.
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Figure 7.1. The images with the highest scale val-
ues for the studies [Foot,Aesthetics] (left) and
[Foot,Details] (right) before taking care of parameter
dependencies.

7.4.1. Testing additivity. As pointed out earlier if the linear model
assumption holds, then the scale values for different parameters are com-
parable and we can determine the scale value of an image (rendering for
a specific choice of parameter values) by adding up the scale values for
the parameter values used to render the image. However, the top ranked
image that we get this way for the Foot data set and Aesthetics
question does not look like a reasonable first choice, see Figure 7.1. The
reason is not surprising: the parameters Color and Background are
not independent of each other for this study.

We tested all pairs of parameters on interdependencies for all four studies
using the additivity test described in Section 5.4.1. Table 1 summarizes
the result of this test for all combinations of parameters.

Based on the additivity test results we decided to to combine the pa-
rameters Rendering and StepSize for both data sets [Foot,Engine]
and both questions [Aesthetics,Details]. For the Foot data set and
both questions we also combine the parameters Colormap and Back-
ground2. That is, we compute new scale values for the combined param-
eters and use them to replace the scale values for the original parameters.

2Note that though the top ranked image for the study [Foot, Detail] looks reason-
able, see Figure 7.1 it turns out that we have to combine the two color parameters

also for this study.
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Foot
C R1 V R2 S B

Colormap C * 4 1
Rendering R1 2 * 5 3 2
Viewpoint V *
Resolution R2 *
StepSize S 4 * 6
Background B 1 3 *
Engine

C R1 V R2 S B
Colormap C *
Rendering R1 * 1
Viewpoint V *
Resolution R2 *
StepSize S 1 *
Background B 2 *

Table 1. Test of additivity assumption for pairs of pa-
rameters with significance level α = 0.01. The numbers
denote the rank order of relevance, i.e., smaller values
indicate more relevant dependencies. The values below
the diagonal are for the Aesthetics question and the
values above the diagonal are for the Details question.

This already gives our final scale values that we summarize in Table 4
to Table 7. Figure 7.4 to Figure 7.7 show the top twelve renderings for
each of the four studies.

7.4.2. Mosteller’s test. We also tested our model assumptions on the
parameter (attribute) level using Mosteller’s test, see Section 5.4.2, for
all parameters (including the combined ones). With a few exceptions
all parameters passed the test at the α = 0.01 significance level. All
exceptions concerned the Rendering parameter. Possible reasons are
unequal variances of the distributions of the scale values for different lev-
els, inappropriateness of a one-dimensional scale or an underestimation
of the error.

To further investigate the last point, underestimation of the error, we
compared the computed sample size error with the two experimental
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errors described in Section 5.3.2. In Figure 7.2 we show a comparison
between the two experimental errors and the computed error. All com-
puted errors are within 15% of the experimental errors, except for the
parameter Rendering which shows an underestimation of up to 40%.
This finding also puts the results on the additivity tests involving the
Rendering parameter into a new perspective. Some of the detected
interdependencies in Table 1 are not significant anymore if the error
estimates for Rendering are adjusted.
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Figure 7.2. Three types of error estimation for the
scale values for the [Engine, Aesthetics] study.

7.5. Discussion

We now demonstrate how the computed scale values can be used to
gain insight into several (related) questions like: What is the relative
importance of the parameters? For one parameter, what are the most
preferred levels? Do the preferences depend on age, gender or color
deficiencies? Do the preferences depend on the data set or the question
asked? What preferential dependencies are there among the different
parameters?
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Aesthetics

Foot 1. Rendering-StepSize (0.31)
2. Colormap-Background (0.3)
3. Viewpoint (0.14)
4. Resolution (0.05)

Engine 1. Rendering-StepSize (0.56)
2. Background (0.19)
3. Resolution (0.12)
4. Viewpoint (0.09)
5. Colormap (0.05)

Table 2. Rank order of the parameters used in the two
Aesthetics studies. The rank order is derived from
estimated variances (shown in brackets).

7.5.1. Relative importance of parameters. As we pointed out at
the end of Section 5.3 the standard deviation σi2 for attribute Ai can
be interpreted as the relative importance of attribute Ai. In our setting
the attributes are the parameters of the visualization algorithm. Us-
ing the estimated standard deviation we get the rank ordering of the
parameters as shown in Table 2 and Table 3. From these results it is
safe to conclude that overall the rendering mode (combined parame-
ter Rendering-StepSize) is the most important parameter. A second
important parameter is the color scheme used (or the background), al-
though this finding is not as pronounced. The viewpoint is somewhat
important (mostly for the foot), while the resolution is somewhat impor-
tant for the engine. The other parameters are relatively unimportant,
at least at the levels we have measured.

7.5.2. Most preferred levels. The results of Tables 2 and 3 as well
as Figure 5 reveal useful information. We observe that the algorithms
Xray and MIP are not considered useful by our respondents (but note
that these were non-expert viewers – doctors can see a lot more in those
renderings). The DVRGM algorithm performs (slightly) better than
DVR, which performs better than DVRNS.

There is also a clear preference for achromatic backgrounds. Only blue
is also found to be somewhat useful, possibly because blue in human
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Detail

Foot 1. Rendering-StepSize (0.52)
2. Colormap-Background (0.35)
3. Viewpoint (0.12)
4. Resolution (0.08)

Engine 1. Rendering-StepSize (0.77)
2. Resolution (0.09)
3. Viewpoint (0.08)
4. Background (0.05)
5. Colormap (0.01)

Table 3. Rank order of the parameters used in our
two Detail studies. The rank order is derived from
estimated variances (shown in brackets).

perception creates depth and forms a good background for this reason.
Highly saturated backgrounds are generally disliked. Interestingly, there
are also differences between the two achromatic backgrounds: a black
background is considered more aesthetic, but white seems to show detail
better. This is particularly true for the engine which is overall a more
complex dataset. It is most likely also an object less familiar to the
respondents. Therefore they require more detail and a higher resolution
is also more important (than for the less complex foot).

For the engine, the colormap applied does not seem to matter as much,
but for the detail views, the foot (bone) is strongly preferred to be seen
in a color resembling that of bright bone (skin grey). This indicates
that for object inspection, viewers like to see objects in colors that are
most natural and at the same time bright (when such a color is generally
agreed on), but for objects less defined in that respect the color choice
is a matter of taste (as is the case for the engine), as long as they are
bright and define contrast well. In the aesthetics category viewers still
preferred a natural color (for the foot), but the brightness condition was
no longer so important (by definition of the task criterion).

An interesting observation can also be made with respect to the view-
point. A common feature is that viewers prefer to see objects at oblique
angles, which generally gives objects a more three-dimensional appear-
ance and also reveals more features (such views are also used for product
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advertisements). But the engine was general preferred to be situated as
standing on a surface — the ‘flying’ views where the engine was rotated
at an arbitrary angle were rated low. On the other hand, the foot was
acceptable at most orientations. We believe that the ‘flying’ engine was
deemed unrealistic, and perhaps even dangerous and therefore unappeal-
ing, while a foot is seen at general orientation commonly in real life (just
not as a bone).

7.5.3. Dependency on the respondent. We observed that the ex-
perimental error, see Section 5.3.2 is larger when dividing respondents
into different sets than when dividing choice tasks into different sets.
This indicates that although the respondents answered only 20 choice
tasks for each data set, we can already detect a dependency on the in-
dividual’s preferences, i.e., preferences are not homogeneous over the
population.

We also analyzed preferential differences between different sub-groups
male vs. female and young vs. old, respectively) of our population
respondents 3:

We only found significant differences between male and female respon-
dents for the Colormap parameter in the [Foot,Aesthetics] study:
female respondents most prefer BlueCyan (scale value: 0.07(3)4), which
is also liked by the male respondents (0.07(2)) but not as much as Sk-
inGray (0.99(2)), which is the least preferred color of the females (-
0.04(3)). Magenta is least preferred by the males (-0.12(2)), whereas
females (-0.03(3)) prefer it over SkinGray.

In general we found no significant differences between the two age classes
17 years or younger (teenagers) and older than 17 years (adults). We
only found two exceptions concerning the Aesthetics question. For
adults the preferences within the Rendering parameter are more pro-
nounced than for teenagers, though the ranking order of the individual
levels remained the same. On the other hand teenagers tend to have
more pronounced preferences concerning the background color, again
with basically the same order on the individual levels.

3We collected preference data from 37 persons showing color deficiencies, but the sam-

ple size was not sufficient to detect significant differences to the rest of the population.
4Numbers in parenthesis show the estimated standard deviation in units of the last

shown digit.
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These findings have interesting consequences if one wants to personalize
visualization systems: it seems hard to do so based on socio-demographic
data (as age and gender) only.

7.5.4. Dependency on the data set. Preferences obtained for the
Foot dataset differ significantly from preferences for Engine dataset.
This difference is most pronounced for the combined parameter
Rendering-StepSize, which is much more important for the Engine
dataset for both questions.

Note, that the parameters Viewpoint and Color can not be compared
directly for the two datasets, because different colors and viewpoints were
used as parameter levels.

7.5.5. Dependency on the question. The observed preferences in
the Detail studies are significantly different from the preferences in
the Aesthetics studies. The question about detail separates the pref-
erences for different parameter values better. This means that there is
more mutual consent in the test population about detail. We believe this
is due to the fact that the question about detail is more specific, and
less subject to personal taste. The question about details separates the
preferences on the Engine data set into two distinct preference classes
(DVRxx against XRAY/MIP). This separation does not show in the
[Engine,Aesthetics] study. We visualize this by plotting the sorted
list of scale values for all images, see Figure 7.3.

7.5.6. Parameter interdependence. As discussed earlier, our addi-
tivity test shows that the independence assumption is not fulfilled for
the parameters Colormap and Background for the Foot data set.
This finding seems very reasonable since similar object and background
color certainly should have a negative impact on the perceived image ap-
pearance. Furthermore details are better visible if the contrast between
foreground and background color is high.

The additivity test also shows that the parameters Rendering and
StepSize are not independent. The observed interdependency is less in-
tuitive than the one between Colormap and Background, but can be
explained also. The scale values for the combined parameter show that
the changes in StepSize do not induce the same magnitude of change
for the scale values of the different Rendering levels. In particular for
XRay and MIP levels the changes in StepSize seem to have no or only
marginal influence. This can be due to the fact that MIP and XRay
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Figure 7.3. Sorted list of scale values for the [Engine,
Details] and [Engine, Aesthetics] studies. For the
first study a clear separation is visible.

algorithms lack coherency in structure and are mostly used for quick sur-
vey modalities, but not for careful diagnosis. Our study seems to show
that the visual system cannot detect errors or even inconsistencies, and
thus viewers do not become aware of possible errors.
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7.6. Tables and Figures

Engine Aesthetics Details

Colormap MagentaBlue -0.061(17) -0.006(18)
RedYellow 0.065(17) -0.001(18)
BlueGreen -0.004(17) 0.007(18)

Background Black 0.378(26) 0.049(28)
White -0.034(26) 0.078(28)
Green -0.162(26) -0.018(28)
Blue -0.063(26) -0.062(28)
Yellow -0.120(26) -0.046(28)

Rendering DVR 0.514(25) 0.719(28)
DVRNS 0.353(24) 0.530(25)
DVRGM 0.385(24) 0.629(26)
XRAY -0.305(23) -1.005(31)
MIP -0.947(28) -0.872(28)

StepSize 0.5 0.028(17) 0.026(18)
0.2 0.051(17) 0.066(18)
1.0 -0.078(17) -0.093(18)

Viewpoint side-front 0.132(30) 0.118(32)
side-back 0.052(30) 0.071(33)
side-top 0.060(30) 0.027(32)
side-down -0.120(30) -0.041(32)
front -0.007(30) -0.073(32)
side -0.117(29) -0.101(32)

Resolution high 0.115(10) 0.091(11)
low -0.115(10) -0.091(11)

Table 4. Scale values for all parameter levels of the
two Engine conjoint studies. Numbers in parenthesis
show the estimated standard deviation in units of the
last shown digit.
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Engine Aesthetics Details

Rendering DVR, 0.5 0.60(5) 0.81(7)
-StepSize DVR, 0.2 0.51(5) 0.86(6)

DVR, 1.0 0.41(5) 0.49(5)
DVRNS, 0.5 0.18(4) 0.41(5)
DVRNS, 0.2 0.44(4) 0.64(5)
DVRNS, 1.0 0.40(4) 0.49(5)
DVRGM, 0.5 0.63(5) 0.85(6)
DVRGM, 0.2 0.48(5) 0.71(5)
DVRGM, 1.0 0.07(4) 0.32(4)
XRAY, 0.5 -0.29(4) -0.95(5)
XRAY, 0.2 -0.32(4) -1.00(6)
XRAY, 1.0 -0.29(4) -1.05(8)
MIP, 0.5 -0.89(5) -0.89(5)
MIP, 0.2 -0.93(5) -0.86(5)
MIP, 1.0 -1.03(6) -0.83(6)

Colormap MagBlu-BBlk 0.29(5) -0.05(5)
-Background MagBlu-BWht -0.12(5) 0.05(5)

MagBlu-BGrn -0.22(5) 0.07(5)
MagBlu-BBlu -0.10(5) -0.11(5)
MagBlu-BYel -0.17(5) 0.01(5)
RedYel-BBlk 0.44(5) 0.20(5)
RedYel-BWht -0.08(5) 0.11(5)
RedYel-BGrn -0.06(5) -0.13(5)
RedYel-BBlu 0.07(5) -0.01(5)
RedYel-BYel -0.04(5) -0.17(5)
BluGrn-BBlk 0.40(5) -0.00(5)
BluGrn-BWht 0.10(5) 0.06(5)
BluGrn-BGrn -0.20(5) 0.01(5)
BluGrn-BBlu -0.17(5) -0.06(5)
BluGrn-BYel -0.15(5) 0.02(5)

Table 5. Scale values for all combined parameter levels
of the two Engine conjoint studies. Numbers in paren-
thesis show the estimated standard deviation in units of
the last shown digit.
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Foot Aesthetics Details

Colormap SkinGrey 0.039(17) 0.146(18)
BlueCyan 0.070(17) -0.079(18)
Magenta -0.109(17) -0.067(18)

Background Black 0.419(27) 0.246(28)
White -0.063(26) 0.047(27)
Green -0.105(26) -0.097(28)
Blue 0.007(26) -0.103(28)
Yellow -0.258(26) -0.093(28)

Rendering DVR 0.095(26) 0.361(27)
DVRNS -0.001(25) 0.058(26)
DVRGM 0.484(26) 0.561(27)
XRAY -0.308(26) -0.758(28)
MIP -0.270(25) -0.223(26)

StepSize 0.5 0.035(17) 0.065(18)
0.2 0.061(17) 0.038(18)
1.0 -0.096(17) -0.103(18)

Viewpoint side-60 0.126(26) 0.174(28)
top-90 -0.158(26) -0.118(28)
top-0 -0.133(26) -0.151(28)
side-30 0.208(27) 0.098(28)
top-135 -0.044(26) -0.003(28)

Resolution high 0.045(10) 0.080(11)
low -0.045(10) -0.080(11)

Table 6. Scale values for all parameter levels of the
two Foot studies. Numbers in parenthesis show the
estimated standard deviation in units of the last shown
digit.
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Foot Aesthetics Details

Rendering DVR, 0.5 0.00(5) 0.17(5)
-StepSize DVR, 0.2 0.29(5) 0.64(5)

DVR, 1.0 0.02(5) 0.26(5)
DVRNS, 0.5 0.08(5) 0.17(5)
DVRNS, 0.2 -0.01(5) -0.03(5)
DVRNS, 1.0 -0.09(5) 0.02(5)
DVRGM, 0.5 0.67(5) 1.07(6)
DVRGM, 0.2 0.60(5) 0.64(5)
DVRGM, 1.0 0.16(5) 0.04(5)
XRAY, 0.5 -0.31(5) -0.80(5)
XRAY, 0.2 -0.36(5) -0.77(5)
XRAY, 1.0 -0.25(5) -0.73(6)
MIP, 0.5 -0.24(5) -0.26(5)
MIP, 0.2 -0.26(5) -0.23(5)
MIP, 1.0 -0.31(5) -0.19(5)

Colormap SkinGray-BBlk 0.73(5) 0.74(6)
-Background SkinGray, Wht -0.29(5) -0.30(5)

SkinGray, Grn -0.11(5) 0.11(5)
SkinGray, Blu 0.24(5) 0.47(5)
SkinGray, Yel -0.40(5) -0.24(5)
BluCya, Blk 0.30(5) -0.13(5)
BluCya, Wht 0.26(5) 0.36(5)
BluCya, Grn 0.02(5) -0.11(5)
BluCya, Blu -0.26(5) -0.75(6)
BluCya, Yel 0.04(5) 0.17(5)
Mag, Blk 0.20(5) 0.16(5)
Mag, Wht -0.14(5) 0.08(5)
Mag, Grn -0.19(5) -0.29(5)
Mag, Blu 0.03(5) -0.07(5)
Mag, Yel -0.42(5) -0.19(5)

Table 7. Scale values for the combined parameters of
the two Foot studies. Numbers in parenthesis show the
estimated standard deviation in units of the last shown
digit.
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Figure 7.4. Best 12 renderings (ranking decreasing
from left to right and from top to bottom) for the [En-
gine, Detail] study

.
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Figure 7.5. Best 12 renderings (ranking decreasing
from left to right and from top to bottom) for the [En-
gine, Aesthetics] study

.
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Figure 7.6. Best 12 renderings (ranking decreasing
from left to right and from top to bottom) for the
[Foot, Detail] study

.
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Figure 7.7. Best 12 renderings (ranking decreasing
from left to right and from top to bottom) for the
[Foot, Esthetics] study

.
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7.7. Conclusion

We have demonstrated that the conjoint analysis method that we have
derived in Chapter 5 is a useful and efficient tool to determine the in-
dividual and grouped influence of a large set of parameters on human
perception in volume visualization. The user study gave us insights into
quality perception by users in volume visualization, but we also learned
about how to improve the user study design in general.

7.7.1. Volume Visualization. We verified a few known results in vol-
ume visualization, such as the effect of rendering fidelity, but we also
teased out some lesser known but important results, such as preferred
object orientations, color schemes, and the relationship of step size and
rendering mode. Our method assigns scale values to parameter levels,
which allows to determine the relative importance of the parameters
and their levels. The scale values can be used to rank all the differ-
ent parameter settings but also provides insights beyond that: we were
able to conclude from the computed scale values that preferences de-
pend on the individual, which in itself is not so surprising, but we also
found that one cannot predict an individual’s preferences from the socio-
demographic data available to us (age and gender). Another interesting
finding is that our conjoint analysis method can help to resolve tradeoff
decisions. For example our data show that for the DVRGM algorithm
it is not necessary to go down to a step size of 0.2—step size 0.5 even
gives perceptually better results. That is, it is not worth to invest the
extra time needed for a smaller step size (time-quality tradeoff). If time
is of the essence, then one can also lower the resolution since our data
show that the influence of the resolution on the perceived quality is low.
In the future our conjoint analysis method could be used to test various
algorithms devised for automated viewpoint selection, transfer function
design, and others.

7.7.2. Study design. During the evaluation of the volume visualiza-
tion study it turned out that one could improve our strategy to determine
the choice tasks. Remember that the image pairs presented in a choice
task were chosen as follows: the first image was drawn uniformly at
random from the set of all images. The second image was then drawn
uniformly at random from the set of images having for each parameter
a different level than the first image. This strategy leads to problems —
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caused by ’missing’ preference data — in case that at least one of the
following two things happen:

(1) There are at least two parameters for which the additivity assump-
tion does not hold, i.e. the two parameters have to be combined.

(2) There is a large difference in the relative importance of different
parameters, for example there is one dominating parameter which
is much more important than the others.

In our study both things happened and in the following we illustrate
which problems are involved:

First, we found two pairs of parameters for which the additivity assump-
tion does not hold and which therefore have to be combined. Because
of our strategy to choose the choice tasks there are pairs of levels of the
combined parameters that have never been compared by any respon-
dent. To see this, assume we combine parameters A and B and obtain
the new parameter C := A × B. Then level c1 = (a1, b1) ∈ C and level
c2 = (a2, b2) ∈ C have never been compared by any respondent when-
ever a1 = a2 or b1 = b2. For these pairs of levels the relative frequency
that c1 was preferred over c2 is not defined and therefore our evalua-
tion method cannot be applied directly. In the presented study we got
around this problem by estimating the missing relative frequencies using
the observed ones. However, we suggest for future studies to avoid this
problem from the beginning.

Second, the parameter Rendering dominates the other parameters, i.e.
it has a much higher relative importance than the other parameters.
Probably this is the reason why Mosteller’s test fails for Rendering. We
suppose that in many choice tasks an image is selected because it has a
’better’ level for Rendering, independent of the levels for the remaining
parameters. Two images in a choice task have always a different level for
Rendering because of our strategy to choose the choice tasks. That is,
the levels for Rendering will most of the time determine the decision
in a choice task. One might want to investigate the influence of the
remaining parameters closer by keeping the level for Rendering fixed
and thus blinding out its influence. However, the data that we elicited
does not contain such information as there is no choice task where the
level for Rendering is the same for both images.

To avoid these problems in future studies one could change the query
strategy such that a choice task is drawn uniformly at random from
all item (image) pairs. Alternatively one could conduct pre-studies to
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determine the parameters that have to be combined and to learn about
the relative importance of parameters. Then, in the main study one can
directly work with the combined parameters. Furthermore, if it turns
out for example that there is a dominating parameter, then one might
want to conduct an additional study where the level of this parameter
is kept fixed.





CHAPTER 8

Conclusion

We started this thesis with developing an image-dependent gamut map-
ping algorithm. Since the output of a gamut mapping algorithm needs
human evaluation we conducted a field study to test the algorithm. We
evaluated the field study using Thurstone’s law of comparative judgment.
Soon we realized that it is true for many algorithms whose output is an
image, a video or an audio file, that their quality should be evaluated by
humans. However, when these algorithms are parameterized and allow a
large number of different parameter settings, Thurstone’s method cannot
be applied anymore and new methods have to be found. Therefore this
thesis is about how to measure the perceived quality of parameterized
multimedia algorithms. The observation that a parameterized algorithm
is nothing else but a set of items with conjoint structure motivated us to
investigate this problem in the broader context of choice based conjoint
analysis.

In the first part of the thesis we gained some theoretical insights into
conjoint analysis. Triggered by a celebrated volume-based approach we
started to study the combinatorics of choice based conjoint analysis. As-
suming a linear model we compared the problem of finding a ranking of
items that possess a conjoint structure with the problem of finding a
ranking of items without any structure and gave a geometric interpre-
tation for both cases. It turned out that insights from the structureless
case cannot be carried over to the conjoint structure case. These find-
ings raise doubts about the reliability and applicability of volume-based
approaches to conjoint analysis.

Moreover it turned out, that there is no algorithm that can derive an
item ranking in the conjoint structure case from only polynomially many
choice tasks (polynomial in the number of attributes and the number of
levels). Since it is not feasible to ask respondents many questions in a
field study we strove for alternative approaches. First we investigated

113
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the question of how many item comparisons are necessary in order to
derive an approximate ranking of the items. Second, we introduced new
modeling assumptions and used aggregation in order to build a frame-
work for the evaluation of choice based conjoint studies. The framework
permits to test all modeling assumptions. This is a big advantage of our
framework in comparison to off-the-shelf conjoint analysis software like
Sawtooth’ software [Sof] where modeling assumptions cannot be tested.
Our framework can be applied to very large item sets which possess a
conjoint structure. In particular the introduced modeling assumptions
permit to compute scale values for items that have never been compared
in any choice task.

In the second part of the thesis we put our framework to work in prac-
tical applications. First, we presented a new image-dependent gamut
mapping algorithm. The gamut mapping algorithm is based on an opti-
mization approach and involves the determination of an image gamut’s
boundary. Let us remark at this point that in the course of the project
we also studied in detail different methods for gamut boundary deter-
mination. In particular we used flow shapes and kernel methods to
compute the boundary of an image gamut. It turned out that these ap-
proaches are suited only to a certain degree for boundary computation
in practice. Details about these approaches can be found in [GSSZ05]
and [GSSZ06]. We used Thurstone’s method to evaluate a field study
that we conducted to test the quality of the gamut mapping algorithm.
The user study showed that image-dependence is an important param-
eter and that with our algorithm we are able to improve the perceived
quality over standard reference algorithms.

Finally we measured the perceived quality of an existing volume visu-
alization algorithm. The algorithm has quite large number of different
parameter settings that we want to compare. This large number renders
Thurstone’s method not applicable to this task, but fortunately the algo-
rithm in terms of its parameters has a conjoint structure. Therefore we
were able to apply our framework that we developed in Chapter 5. We
described the design of a large user study that we had conducted to test
the influence of the different parameters of the algorithm. Our insights
were twofold: On the one hand we gained valuable insights into quality
perception by users in volume visualization. We verified a few known
results, such as the effect of rendering fidelity, but we also teased out
some lesser known but important results, such as preferred object ori-
entations, color schemes, and the relationship of step size and rendering
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mode. On the other hand we were able to put our conjoint framework to
test and learned about how to improve the user study design in general.

Our two applications — gamut mapping and volume visualization —
have in common that the output of the algorithms are images. However,
as the title of the thesis suggests our framework for choice based conjoint
analysis should be suitable to measure the perceived quality of all kinds of
parameterized multimedia algorithms, like for example algorithms whose
output is an audio file or a video. It would be interesting for future
research to conduct field studies in theses areas.
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