Diss. ETH No. 13188

Computation of Additively
Weighted Voronoi Cells for
Applications in Molecular Biology

A dissertation submitted to the
SWISS FEDERAL INSTITUTE OF TECHNOLOGY
ZURICH

for the degree of
Dr. sc. techn.

presented by
HANS-MARTIN WILL
Dipl. Math. University of Bonn
born January 6th, 1970
citizen of the Federal Republic of Germany

accepted on the recommendation of
Prot. Dr. E. Welzl, examiner
Prof. Dr. H. Edelsbrunner, co-examiner
Prof. Dr. S. Wodak, co-examiner

1999

Abstract

This thesis is concerned with the design and implementation of an efficient algo-
rithm for the computation of additively weighted Voronoi (AWV) cells for applica-
tions in molecular biology, namely volume and density calculations of atoms and
amino acid residues. An AWV cell of a sphere ¢ out of a collection S of spheres
describes the nearest neighborhood of ¢ with respect to all the other spheres in
S. To our knowledge, this is the first implementation of an algorithm computing
these cells that is suited for practical application.

We begin by studying the geometric and combinatorial properties of AWV cells.
We show that an AWV cell can be conveniently described using a spherical sub-
division data structure, where each edge corresponds to a circular arc. It is also
shown that the best previously known upper bound on the worst-case complex-
ity of one such cell defined by n other spheres, which is ©(n?), is tight. Based
on these insights, we present a new randomized incremental algorithm computing
one such cell amidst n other spheres in expected time O(n*logn), which is optimal
up to a logarithmic factor. However, the experimentally observed behavior of the
complexity of those cells arising in the intended domain of application is linear in
n. In this case our algorithm performs the task in expected time O(n log”n).

We implemented a variant of this algorithm and took care to provide a robust im-
plementation. Robustness is ensured by application of methods for dynamic error
analysis at runtime that trigger numerical perturbations. The empirical behavior
of this implementation on real data sets is studied, both from the point of view of
robustness and computational resources required.

Finally, we demonstrate the benefits of using AWV cells for volume computations
in molecules compared to methods based on convex polyhedra that have been
proposed previously.

Zusammenfassung

In dieser Arbeit beschreiben wir den Entwurf und die Implementation eines
effizienten Algorithmus fiir die Berechnung additiv gewichteter Voronoizellen
(AWV-Zellen). Diese Implementation zielt auf molekularbiologische Anwendun-
gen ab, namentlich die Berechnung von Volumina und Dichten einzelner Atome
und Aminosiurereste. Die AWV-Zelle einer Kugel ¢ aus emer Menge S von
Kugeln beschreibt die nichste Nachbarschaft von ¢ beziiglich S. Nach unserem
Wissen ist dies die erste Implementierung eines solchen Algorithmus, die fiir den
praktischen Einsatz tauglich ist.

Wir beginnen damit, die geometrischen und kombinatorischen Eigenschaften von
AWV-Zellen zu studieren. Wir zeigen, dass eine AW V-Zelle sich durch eine Un-
terteilung einer Kugeloberfliche darstellen ldsst, wobei jede Kante in dieser Un-
terteilung einem Kreisabschnitt entspricht. Weiterhin zeigen wir, dass die bisher
beste bekannte obere Schranke auf die schlimmstmogliche Komplexitit einer
durch n Kugeln definierten Zelle, die ©(n?) ist, scharf ist. Aufbauend auf diesen
Erkenntnissen stellen wir einen randomisierten Algorithmus vor, der eine solche
Zelle, die durch n Kugeln definiert ist, in O(n® logn) erwarteter Zeit berechnet,was
bis auf einen logarithmischen Faktor optimal ist. Jedoch ist das experimentell
beobachtete Verhalten der Komplexitit dieser Zellen im Bereich der geplanten
Anwendung linear in n. In diesem Fall berechnet der neue Algorithmus eine
solche Zelle in O(n log” n) erwarteter Zeit.

Wir implementierten eine Variante dieses Algorithmus und legten daber Wert
darauf, eine robuste Implementierung zur Verfiigung zu stellen. Um Robustheit
zu gewihrleisten, benutzen wir Techniken zur dynamischen Fehlerkontrolle zur
Laufzeit, die geeignete numerische Perturbationen auslosen. Das empirische Ver-
halten dieser Implementierung wurde anhand realer Daten studiert, sowohl unter
dem Gesichtspunkt der Robustheit als auch der benotigten Laufzeit.

Schiiesslich demonstrieren wir die Vorteile von AW V-Zellen zur Volumenberech-
nung in Molekiilen und vergleichen dies mit fritheren Methoden, die auf konvexen
Polyedern basieren.

Acknowledgements

This thesis would not exist without the support and contributions by my teachers,
colleagues and friends. The idea of writing a thesis on the application of Voronoi
diagrams to geometric problems arising in molecular biology originates from
discussions with B. Korte at the Research Institute of Discrete Mathematics in
Bonn. The research group of E. Welzl at ETH Zurich provided the inspiring
environment to concentrate on this topic. Emo’s influence on this thesis is
ubiquitous, and his aim for structural simplicity served as a driving force to carve
out the essential. Besides, I am especially grateful to my colleagues L. Kettner
and J. Giesen for both friendship and many valuable discussions.

An invitation by the research group of C. Frommel at the Humboldt University
Berlin helped to select the right biological applications, and the discussions with
J. Fauck, R. Preifiner and A. Goede initiated the idea of calculating atomic
volumes using AWV cells. These studies, in turn, would not have been possible
without the kind support of the research group of S. Wodak at the Free University
of Brussels and the EBI in Cambridge, where 1. Coutinho and L. Wernisch helped
me in setting up the experiments. Shoshana’s guidance and experience kept me
from getting lost in all those many numbers when preparing the results of
chapter 6. Finally, in the end game, H. Edelsbrunner accepted to examine and
report on this thesis even though he was literally on the move, and the final
schedule turned out to be rather tight.

Last but not least, I would like to thank my parents. Without their constant
encouragement and support this thesis would not have been possible.

Brussels
QOctober 1999

Contents

Introduction

1.1 Tessellationsofspace
1.2 The additively weighted Voronoi tessellation
1.3 Structure and contributions of this thesis

Geometric properties of additively weighted Voronoi cells

2.1 Imtroductiono

2.2 Previousworko 0o

2.3 Theedges of a 3-dimenstionalcell

2.4 A tight lower bound on the worst case complexity of an additively
weighted Voronoi cell in 3 dimensions

Computing additively weighted Voronoi cells
3.1 Introduction
3.2 Directextraction oo
32.1 Regularpatcheso
3.2.2 Extraction algorithm
3.3 Lowerenvelope algorithms
3.3.1 Subdivisions of the sphere
3.3.2 Random incremental construction using vertical decom-
positiono
3.3.3 Non-vertical refinement

A practical algorithm for the computation of a single additively
weighted Voronoi cell

4.1 Introduction oL
4.2 Geometric primitives
4.3 Combinatorial description 0oL

43.1 Spherical subdivisionso 000000 S8

432 Datastructures 59

43.3 Conflictinformation 03

4.4 Thealgorithm o 64

441 Outline o 64

44.2 Changing the subdivision 65

4.4.3 Update of conflict information 69

4.5 Preprocessingo e e 71

4.5.1 Verificationof output L 72

4.6 POSG-Processing u e 79

4.6.1 Computing the straight approximation 81

4.6.2 Triangulating simple polygons 84

4.6.3 Computing the Delaunay triangulation 87

4.6.4 Refinement of the triangulation 91

47 The graphical userinterface 92

Practical considerations and experimental results 95

5.1 Cellcomplexities 96

5.1.1 Overall combinatorial complexity of AWV cells. 96

5.1.2 Relation between AWV cells and 4D powercells 99

5.2 Numerical behavior and robustness 101

5.2.1 Exactcomputation 102

5.2.2 Degenerate configurations L. 107

5.2.3 The implemented strategy 108

5.24 Structure and precision of inputdata 109

53 Runningtimes 111

5.4 Experiences with other approaches 112
54.1 Extracting an explicit representation using Aurenham-

mer’smethodo 12

54.2 Simulating a vertical decomposition scheme 116

55 Conclusionso 118

Standard volumes of amino acids and their constituent atoms 122

6.1 Introduction 123

6.1.1 Previous approaches 123

6.1.2 Statistical parameters o0 124

6.1.3 Boundary conditions, 125

6.2

Volumes of amino acid residues L] 125
6.2.1 Comparison of computed residue volumes with previous

studies. Lo 128

6.3 Volumes for individual atom types 130
6.3.1 Carbonatoms 130

6.3.2 Nitrogenatoms 132

6.3.3 Oxygenatoms 134

6.34 Sulfuratoms oL 134

6.4 Packingdensities 141
6.5 Conclusions 144
6.6 Experimentalsetup oL 145
0.6.1 Methodsemployed, 145

6.6.2 Radiusset L 145

6.6.3 Dataset 145

7 Summary 150

(8]

Chapter 1

Introduction

Proteins comprise more than 50% of the dry weight of most biological species,
and virtually any property that characterizes a living organism is controlled or
affected by its constituent proteins. Built essentially out of a set of 20 different
building blocks, the amino acids, proteins catalyze chemical reactions as enzymes,
fight against intruders in the form of antibodies, or they show up as purely struc-
tural material as can be found in our nails, hair, skin, or bones. This tremendous
diversity is possible because proteins form large and complicated macromolecules
built of up to several thousands of atoms. From this perspective, it should come as
no surprise that the subject of modern biochemistry is essentially the study of the
roles and interactions of proteins in living systems. This core knowledge, in turn,
forms the foundation of several applied disciplines collectively known as molec-
ular life sciences, such as molecular medicine and rational drug design, to name
only two prominent representatives.

The specific role and function of a protein within an organism is governed by
its unique stereo-chemical properties'. These properties not only comprise purely
quantum-chemical features such as polarity or valences, but also include the ge-
ometric configuration of the individual atoms in space. Therefore, an important
step in the investigation of a protein is the determination of its three dimensional
structure. This s typically done using X-ray diffraction or NMR spectroscopy
techniques. The result of these studies and the subsequent refinement steps is a set
of coordinates for all constituent atoms of the molecule.

To fully understand the reaction of, say, an enzyme and its substrate molecule

'Creighton (1993) or Kyte (1995) are general references for this chapter.

4

Figure 1.1: The hard sphere model of a small molecule involved in electron trans-
fer (iron-sulfur protein, PDB entry Ipij).

at its most profound level would require a detailed quantum-chemical model of
the two molecules involved. Though the required theory is well understood?, the
simulation of these detailed models on a computer is by far out of reach for the
next decades to come’. Hence, to obtain computationally feasible models of the
biochemical processes of interest, these models have to be simplified significantly.

A very popular model is the van der Waals (VDW) or hard-sphere model. In
this model, each atom is represented as a sphere in space whose radius is chosen
depending on the element or hybridization type of the atom. Since spheres are
fundamental and well-understood geometric objects, the van der Waals model has
been applied extensively for geometric considerations on macromolecular struc-
tures. See figure 1.1 for an illustration. In this thesis, we restrict ourselves to purely
geometric problems, and the van der Waals model is chosen as foundation.

This choice is not without problems: Van der Waals radii are not available for all
chemical elements, and, even worse, there exist several different agsignments of
radii to atomic types. To complicate things, sometimes a united-atom approach is
used. In this approach, certain atoms are assigned a larger radius with the inten-

2Cf. Atkins and Friedman (1997) or Szabo and Ostlund (1996)
3CE. Doucet and Weber (1996)

[V 5

Qutside
~Accessible

Contact (

/— Reentra
* 11

S,)
nt

A

Inside

Figure 1.2: The molecular surface is obtained by rolling a probe sphere of a speci-
fied radius R over the atomic spheres. The molecular surface comprises the contact
surface and the reentrant surface. The contact surface is the subset of the union of
the surfaces of the spheres that can be touched by the probe sphere. The reentrant
surface is a part of the probe sphere surface that fills canyons unreachable to the
probe sphere. The solvent accessible surface is the surface ruled out by the center
of the probe sphere in this process. Picture taken from Creighton (1993).

tion to represent an atomic group, such as the carbon atom representing a methyl
group. This variant is commonly used in conjunction with atomic coordinate sets
gained from X-ray diffraction patterns, which do not yield reliable information
about the location of hydrogen atoms. Hence, it is always necessary to tabulate
the specific set of radii used when reporting any kind of experimental result or
conclusion.

A concept tightly related to the hard-sphere model is the molecular surface, which
is also known as Richards (1977) or Connolly (1983) surface. For an illustration
of this concept see figure 1.2. In mathematical terms, this surface is defined as
follows: Let V denote the union of the volumes of the atomic spheres comprising
the molecule. Let

A, ={xeR: B(0)NV =0},

where B,(x) denotes a probe ball of radius r centered at x. Then the molecular
surface with respect to a probe sphere of radius r is given as the boundary set

0 U B(x).

YEA,

6

The set 0A, is also known as the solvent accessible surface of the molecule. There
exist many different implementations of algorithms for computing these sur-
faces by Connolly (1981, 1983), Alard and Wodak (1991), Varshney et al. (1994),
Sanner et al. (1995), Akkiraju (1996), to name only a few. The computation of
these surfaces is closely related to the power diagram and to the concept of
weighted o-shapes, see Edelsbrunner (1992).

1.1 Tessellations of space

When the first crystal structures of proteins became available, it was a surprising
to what extent the interior of globular proteins is packed. According to the calcu-
lations by Richards (1974). about 75% of the interior volume is filled with atoms,
as defined by their van der Waals radii. This value has to be compared with the
corresponding value obtained for an optimal packing of identical spheres, which is
approximately 74%. Since proteins are synthesized as polymeric chain molecules,
a complicated folding process is necessary in order to arrange all atoms into the
right configuration. This folding process is driven by the laws of statistical me-
chanics, and it is the common belief that the primary structure, i.e. the specific
sequence of amino acids along the polymeric chain, determines the three dimen-
sional structure of the molecule®. Subsequent studies revealed that the aforemen-
tioned tight packing is a key factor in the folding process of globular proteins.
Since we are at the atomic level, quantifying packing densities essentially means
to partition the space occupied by a molecule among its constituent atoms. The
reader is referred Gerstein and Chothia (1996) for further motivations to perform
these calculations. Most notably, Pontius et al. (1996) propose computing these
volumes as a method of quality assessment of experimentally gained crystal struc-
tures.

Atomic volumes in proteins were first modeled using Voronoi (1908) tessella-
tions by Richards (1974, 1977) and Finney (1975). For x,y € RY, let d(x,y) =

[
tessellation of a set of points P = {p;, | <i < n} can be defined as follows:

\/ X(-] 1 (X — yi)? denote the Euclidean distance between x and y. Then the Voronoi

Definition 1 (Voronoi tessellation) Lern € N, P={p;,, 1 <i<n}, p; € R4 Then

*A few proteins, collectively known as chaperones, have been identified that might help other
proteins in finding the correct folding. However, since chaperones are proteins themselves, this
does not really provide any new aspect to the problem.

the collection V = V(P) of all non-empty sets
Vi=V(pi) = {x eR: d(x,pi) < dlx,p;)) V1< j<n,j+# i}

is called the Voronoi tessellation induced by P. For each 1 <1i < n, the set V; is
called the (unweighted) Voronoi cell of the point p; with respect to P.

We will also refer to the cell V; as the cell defined by p;. In the original Voronoi
method, which Richards also called method A, the Voronoi cells of the centers
of the atomic spheres are computed. and the volume assigned to each atom is
the volume of its Voronoi cell. As it 1s well known, Voronoi cells are convex
polyhedra, and the cell Vi, 1 <i<n, can be written as the common intersection of

a set H; of open halfspaces
Vi = ﬂ h, where
hEH;

Hi = {hij1<j<nj#i},

and for each | < j <n, j 5 i the halfspace A;; is defined by

= {x R 20p; = prx) < llps - pill*}

Here, (x,y) = 2;’:1 x;y; denotes the scalar product, and ||x||* = (x,x). We will also
use the short-hand x* = ||x||>. However, treating all atoms equally tends to chem-

ically misallocate volume between atoms of a priori different size (e.g. carbon
and oxygen). Two previous approaches try to consider the different atomic radii
by using different rules for the placement of the bisecting planes oh;; between the
cells.

Already in his initial study, Richards (1974) proposed a method B that places the
bisecting planes based on chemical reasoning’. Again, let P = {p; € R} 1 <i <
n} denote a set of atomic coordinates, and let {r;: r; > 0,1 < i < n} denote the
corresponding atomic radii. As before, we assign to each atom p; a polyhedron
that is given as the common intersection of a set of open halfspaces H; = {/’li‘/‘, 1<
7 < n,j+#1i}. Depending on whether ¢; and ¢; are covalently bonded or not, the

halfspace /;; is defined as follows:

3In fact, Richards originally proposed to represent aromatic rings by ellipsoids. However, this
variant is very seldomly used,

(a) (b)

} 5 r. -
/ i Ly i \\ .
/ } / L J
| | | |
C. C. C } I C. i
| i b i [
\\
D i D
L S 4-«~——l”——>‘
» A =
- d(c,c.
d(ci‘c_/) (,C‘,)

Figure 1.3: Richards’ rules for placing bisector surfaces between atoms. The left
picture shows the rule for non-bonded atoms, the right picture the rule for bonded
atoms.

1. If atoms ¢; and ¢; are not covalently bonded, then we set
hij={x € R’ : 2(p; —pi,x) < (dlci.cj)—rj+r)-dlcic;)}.
See also the left picture of figure 1.3.

2. If the atoms ¢; and ¢; are bonded, then we set

See also the right picture of figure 1.3.

However, as exemplified in figure 1.4, these rules do not assign all intramolecu-
lar space to atoms. Richards reports that this "vertex error” is usually very small,
reaching up to 3% and occasionally up to 10% of the molecular volume. In Gel-
latly and Finney’s (1982) study of ribonuclease S, this error summed up to 4.1%
and 3.7% of the total volume depending on slight variations of the method. On
the other hand, Gerstein et al. (1995) measured a total error of only 0.002% with
respect to the total volume of pancreatic trypsin inhibitor. Nonetheless, the latter
authors discuss the possible use of curved instead of planar bisector surfaces.

9

Figure 1.4: The vertex error that can occur with Richards’ partitioning scheme.
Small tetrahedra may be left unassigned.

Gellatly and Finney (1982) propose the radical plane method. Instead of comput-
ing ordinary Voronoi cells, the power cells of the atomic spheres are computed. If
all radii are equal then this tessellation is equal to the Voronoi tessellation. Power
cells are defined via the Laguerre metric, also known as the power of a point p
with respect to a sphere ¢ = (¢, r) with center ¢ and radius 7.

Definition 2 (Laguerre metric) The power or Laguerre metric of a point x € R
with respect to a sphere G = (c¢,r) is given by

px,0) =d(x, R

We can define the power tessellation defined by a set of spheres § = {0;, 1 <i<n}
in RY as follows:

P=P(c) = {‘ ER: plr.o)) < p(x.o)) V1< j<n,j# f}

is called the power tessellation induced by S. For each 1 < i < n, the set P; is
called the power cell of the sphere G; with respect to S.

10

If S'is a set of atomic van der Waals spheres, it may happen that the center ¢; of
an atomic sphere ©; is not located within its own cell V; even though the cell is
non-empty. This is considered chemically counter-intuitive by later authors, see
e.g. Gerstein et al. (1995).

For geometric properties of this tessellation the reader is referred to the papers
by Aurenhammer(1987,1991). From the computational point of view, the most
important aspect proved in these papers is that a power tessellation in RY is in
one-to-one correspondence to an upper convex polyhedron in R*+1. Hence, algo-
rithms for computing intersections of halfspaces can be used to compute these
tessellations, see e.g. those given by Seidel (1981), Clarkson and Shor (1989),
Chazelle (1993).

In a recent study, Goede et al. (1997) compared several methods to partition space
among atoms. Based on chemical and experimental reasoning, they propose to
assign to each atom the volume of its additively weighted Voronoi (AWV) cell.
An AWV tessellation divides space based on the distance to the surfaces of the
spheres. We will introduce this tessellation in the next section in greater detail.
A major problem Goede et al. faced was the fact that they could not devise an
analytic and efficient algorithm for the computation of these cells.

1.2 The additively weighted Voronoi tessellation

(ci,ri) defined by its center ¢; € R4 and radius r; € R. We can introduce a distance
function d(x,0;) = d(x,¢;) - r;. For a point x outside o; this function measures the
distance to the surface of the sphere. We assign to each of the spheres ¢; € S the
set of all points "nearer” to ¢; than to all other spheres by defining:

Definition 4 (Additively weighted Voronoi tessellation) Letn € N, S={c;, 1 <

sets

Vi=V (o)) = {x eRY: dix,5) < dx,c) V1< j<n,j# 1'}

is called the additively weighted Voronoi (AWYV) tessellation induced by S. For
each 1 <i < n, the set V; is called the additively weighted Voronoi cell of the

sphere ; with respect to S.

Figure 1.5 shows an additively weighted Voronoi cell defined by a small col-
® as a set theoretic object from
a diagram as a combinatorial object. The combinatorial structure induced by
AWV tessellations will be discussed in the next chapter. Another name for the
AWV tessellation is Johnson-Mehl tessellation, since Johnson and Mehl (1939)

introduced this structure as a model for crystal growth processes. According to

lection of spheres. We distinguish a fessellation

Stoyan et al. (1995), this specific model for crystal growth processes was already
considered by Kolmogoroff (1937).

®Formally, slightly generalizing Stoyan et al, (1993), a tessellation of space can be defined as
follows:

Definition 3 (Tessellation) Ler d denote an arbitrary but fixed dimension, and let A denote a
collection of open star-shaped subsets of RY. Then A is a tessellation if and only if

I VAL A € A A £ Ay = AjNA =0,

b

- Uaeacl(d) = RY, and

3. Ve e R r>0wehave card({A € A2 ANB,(x) £#0}) €N,

Here, card(A) denotes the cardinality of a set A, and cl(4) denotes the closure of A. For x € R r>
0, B,{(x) is the open ball of radius r around v, We will not use this general definition of tessellation.
Stoyan et al. (1993) discuss Johnson-Mehl tessellations as special case of general tessellations.
However, they define a tessellation to comprise a collection of convex polyhedral sets. As we will
see, in general this is not the case for AWV tessellations.

Figure 1.5: An additively weighted Voronoi cell defined by a small collection of
spheres in space.

Figure 1.6: A planar AWV tessellation obtained as a model of crystal growth.
Crystals start growing radially from seed points, which arrive randomly dis-
tributed on both space and time. Whenever two crystals meet, they stop growing
at that point. Points arriving at a location already occupied by a crystal are fil-
tered out. This illustration is taken from Mahin et al. (1980). These authors also
compare the Johnson-Mehl model to real crystal growth processes and find an
astonishing correspondence between the theoretic model and reality.

In the Johnson-Mehl model of crystal growth, crystals start growing radially from
a collection of seed points. These seeds, however, are not given at the begin-
ning of the growth process but rather arrive in time and space distributed ac-
cording to a Poisson distribution, see also figure 1.6. The probabilistic proper-
ties of this specific stochastic process have been studied by Kolmogoroff (1937),
Johnson and Mehl (1939), Avrami (1939), Meijering (1953), and Mgller (1992).
For an overview of probabilistic results on AWV tessellations, we refer the reader
to the books by Okabe et al. (1992) and by Stoyan et al. (1995). Analytic algo-
rithms for the computation of the tessellation induced by a set S of spheres were
given by Sharir (1985) for the planar case and by Aurenhammer (1987) for the
general case. Aurenhammer (1987) relates AWV tessellations to the power tes-
sellation defined using the Laguerre metric and reduces the computation of a d-
[3

dimensional AWV tessellation to the computation of a d +2-dimensional intersec-
tion of halfspaces. However, to our best knowledge, no practical implementation
of this approach for the non-planar case has been provided so far’. Mgller (1995)
describes a simple algorithm based on discretization to simulate various stochastic
processes of AWV tessellations obtained from different point distributions.

1.3 Structure and contributions of this thesis

In this thesis, we will derive and implement a new and efficient algorithm for the
computation of AWV cells. To our knowledge, this is the first implementation
suitable for practical application. We will analyze the algorithm both theoretically
and empirically, and we will demonstrate the benefits of using AWV cells for
volume computations in molecules. Specifically, the structure of this thesis is as
follows:

In the next chapter, we will discuss the geometric properties of AVW cells. We
will show that an AWV cell can be conveniently described using a spherical sub-
division data structure, where each edge corresponds to a circular arc. We will also
show that the best previously known upper bound on the worst-case complexity of
one such cell defined by n other spheres, which is @(n?), is tight. The following
chapter will discuss different methods to compute AWV cells from a theoretical
point of view. Based on the new insights gained into the geometry of AWYV cells,
we will introduce a new randomized incremental algorithm for computing sin-
gle AWYV cells. In chapter 4, we will describe the implementation of a variant of
this algorithm. This implementation also involves several pre- and postprocessing
steps to make it usable for practical purposes. The practical behavior of this im-
plementation with respect to computing resources and numerical round-off is the
subject of chapter 5. Finally, in chapter 6, we use this implementation to compute
volumes of atoms and amino acid residues in proteins. Our results demonstrate
clearly the superiority of the AWV method over previous methods using planar
bisector surfaces.

TF. Aurenhammer passed the following note: “Mein Ansatz ist vor einiger Zeit von Leuten aus
Japan mmplementiert worden. Leider habe ich keinen Zugrifl auf die Details mehr, das Ergebnis
war im Wesentlichen, dall das Verfahren relativ aufwendig ist.”

14

Chapter 2

Geometric properties of additively
weighted Voronoi cells

2.1 Introduction

In this chapter, we will discuss the geometric properties of AWV cells in R3. We
will use these properties to design efficient algorithms for their computation in the
chapters to follow.

After a short review of previously published properties of AWV cells, we will
concentrate on two major issues: First, we will give a detailed account on the ge-
ometry of the edges of these cells. The geometric formulas derived in this section
will become the very foundation of our new algorithms in the next two chapters.
In addition, we will prove a new and tight lower bound of ®@(n?) on the combi-
natorial worst-case complexity of a single AWV cell defined by »n spheres in 3
dimensions.

2.2 Previous work

When searching the literature for previous treatises on the geometry of AWV cells,
we found only a handful of references. Often, the results are stated without proof,
or the proof is formulated only for the planar case.

General references on Voronoi tessellations are the survey paper by Aurenham-
mer (1991) and the book by Okabe et al. (1992). However, neither of them pro-

[

vides very much information about the geometry of spatial AWV cells. Specifi-
cally, Okabe et al. (1992) discuss only planar AWYV tessellations in more detail.
Aurenhammer (1991), on the other hand, concentrates on his observation that a
cell of the additively weighted Voronoi tessellation in R can be represented as
the projection of the intersection of a cell of a suitably defined power tessellation
in R4 with a d -~ 1-dimensional cone. This construction also provides an upper
bound of O(rﬂ(l/ 2]) on the worst case complexity of a single cell defined by n
spheres in d dimensions. However, Aurenhammer could discuss optimality of this
result only for the planar case.

A rather self-contained and comprehensive description of the geometric properties
of planar AWV tessellations was given by Sharir (1985). In his paper, he describes
a sweep line algorithm for their efficient computation.

Very useful references on the geometry of AWV-cells turned out to be the
two papers by Mgller (1992, 1995) about the probabilistic properties of higher-
dimensional AW V-cells generated by Poisson point processes. Among other ob-
servations, these papers contain general parameterizations of the k-faces, 0 <k <
d, of these cells in arbitrary dimension d.

Elementary properties. Letne N, S={c.1<i<n}in R, ;= (ciyri), i €
by §. The reader may observe that translating all ¢ € S by a vector ¥ will simply
map each cell V; to its translate V; -7, 1 < i < n. Moreover, we are free to add
or subtract a common constant Ar to or from all radii without changing the shape
of the individual cells. From the latter we can always derive the assumption that
either all radii are non-negative, or that a specific radius is equal to zero,

Again, let B,(c) denote the closed ball of radius r centered at ¢, and let int(A) and
cl(A) denote the topological interior and closure of a set A C RY, respectively.

Proposition 1 The additively weighted Voronoi cell of a sphere 6 among n other

o C int (B, ().

Proof: The simple proof given in Sharir (1985) is actually independent of the di-
mension: Observe, that ¢ C int(By,(¢;)}) is equivalent to d(¢,¢;) < r; —r. Then for
all x € R we have

d(x,0;) =d(x,¢;)—ri < d(x,c)+d(cei)—r

16

< d(x,c)+(ri—r)—ri=d(x,c)—r=d(x,0)

Setting x = ¢ we obtain

N <i<n: de,0;) =d(c,c;)—r; < dlc,o)=d(c,c)—r

e A <i<n: de,e) < ri—n
which is equivalent to ¢ € int (B, (¢i)). 0

Definition 6 (star-shaped) Ler A C R We sav A is a star-shaped set with kernel
k, if k € int(A) and for each x € 0A we have

0AN {}\,k%‘ (l — }L)\O <N 1} — ().

We call a set A star-shaped if there exists a kernel k € int(A) such that 4 is a
star-shaped set with kernel k.

Proposition 2 An AWV cell V() £ 0 in RY is star-shaped.

Proof: See also Sharir (1985). Letx € V(o) and z € (c.x) a point in the interior of
the line segment connecting ¢ and x. Suppose there exists an | < i < n such that
d(z,6;) < d(z,0). Then we have

d(x,6) = d(c,x)=r=d(c,z2)+d(z.x)—r=d(z,0)+d(z,x)
(I(Z7Gi> + (l(i‘.,l’) = (1(27 Ci) + (](Z,X) =Ty

>
> d(x,¢i) —ri=d(x,0;)

contradicting the assumption that d(x,) < d(x,5;). 0

If the spheres defining two adjacent cells have different radii, then the bisector
surface separating these cells bends around the smaller sphere. In fact, the bisector
is one branch of a rotational hyperboloid whose foci are the centers of the two
defining spheres. Therefore, a cell can be bounded without having a single vertex,
as depicted in the left image of figure 2.1. More specifically, the following holds:

Proposition 3 Let 61 and G be two spheres in RY. Then the bisector

Ggo = G(O‘; ,O":) = {,\‘ & Rd : (](1’,61) == (](,xt. 63)} is

17

Figure 2.1: Two special cases of additively weighted Voronoi cells. The left pic-
ture shows the cell of a small sphere between two larger ones having only a single
elliptic edge. In the right picture, we added another small sphere to obtain a dis-
connected edge skeleton.

1. the empty set, if one of the spheres is contained in the open interior of the
other.

2. a half line, if the strictly smaller sphere is contained in the closed, but not
the open interior of the other sphere.

3. a hyperplane, if both spheres have the same radius ry = ry, but have distinct
centers ¢| # ¢s.

4. a rotational hyperboloid with ¢1 and ¢y being the foci, which bends around
the smaller of the two spheres.

5. the whole space, if both spheres coincide.

The proof in Okabe et al. (1992) for the planar case easily generalizes to higher
dimensions.

k-faces. Mgller (1992) gave by far the most general description of bisectors in
the appendix of his paper on the probabilistic properties of AWV cells generated
by Poisson point processes. It is important to note that Mgller can assume the most
general restrictions concerning degeneracy, since these hold almost surely in the
stochastic setting considered.

He distinguishes “mathematical™ faces of the tessellation, which give the func-
tional description of a face, from combinatorial faces, which are the bounded and
trimmed components of a mathematical face actually realized in the tessellation:

Definition 7 (Mathematical k-face) Let oy,...,0;, | < j<d be distinct spheres
in R, Then

Ge=G(00,...,07) = {xe R dlv.00) = ... = d(x.0)) },

where k = d — j, is called the mathematical k-face defined by ©y,...,0;.

For a discrete set A and » € N, let (7\) denote the set of all subsets of A with
cardinality r.

Definition 8 (Combinatorial k-face) Ler S = {5,.0 < i < n} be distinct spheres
in RY, 00,...,0; €S, 1 < j <d. Then each connected component of the set

)

k
Y = F(oo,...,0;

where k = d — J, is called a (combinatorial) k-face defined by oy, ...,o;. Further,
we denote by

F = F(5)
— U {F o Fis connected component in F <0‘Q, O

{601G}}€</i]>

the set of all combinatorial k-faces. We define F_ = {0}.

k-faces have Hausdorff dimension &, and combinatorial k-faces are k-dimensional
semi-algebraic sets. In fact, this can be used as defining property for what we
mean by saying that the spheres are in general position.

Mgller (1992) also provides parameterizations for mathematical k-faces in d di-
mensions. Since the description of these parameterizations is rather lengthy, and
we will not use them for our algorithms, the reader is referred to the original paper.

19

Definition 9 (Additively weighted Voronoi diagram) Let n € N, S = {c;,1 <
i<n}in RY, o; = (ci,ri), ¢; € R 1 € R and let V = V() ={V,1 <i<n}
be the AWV tessellation induced by S. Then the additively weighted Voronoi dia-

d
V = U FA<S>

k=0
E = {{fict, i}t fict € Ba(S) fi € B (S), fr1 Cel(fz),0 <k < d}.

Parameterization over a sphere. Since an AWV cell is a star-shaped, it is nat-
ural to look at the projection of the boundary of the cell onto a unit sphere §¢~!
around the center of its defining sphere.

Proposition 4 Ler o = (0.0), 62 = (¢2.12) be two spheres with non-empty bi-
sector Gq_i = G(61,63). Then the projection of Gy_, onto a unit sphere 897!
around cy = 0 is given by

{_\7 e S(Z~1 : <,\:Cg> > —~--I"3}

Proof: See also Mgller (1995). Let x € G41. Then the inverse of the projection of
xonto p € S, ie. the lifting map ¢ such that ¢(p) = x, is given by
~)

Ch 15

q) : [) },___) J— C- . S . l)

We obtain this mapping by plugging the equations x = d - p and ||p|| = 1 into the
equation of the graph of the distance function

N

(d+1) = (x=e2),

where d = d (x,07). We see that the image of the projection of G,.; onto S9! is
the set of points p € S9~! for which the denominator of ¢(p) is non-negative. [

The relation between AWYV diagrams and power diagrams. Aurenhammer
(1987) showed the following relation between AWV diagrams and power dia-
grams, which is very useful from the computational point of view: Let S = {o;, 1 <
i < n} be aset of spheres in RY. To each o; € S we assign its power cell

P =P(c) = {x eRY: ple.o) < ple.o V1< j<n,jt i} :

20

where p(x,0;) = d(x,c;)* — 7. For each 6, € S let x; denote the cone which is the
embedding of the graph of the distance function d(-. ;) in R“!, ie,

d
L pdtl . N 2
K= qx € R x> D (=) = (Y)7
=1

and let %; denote the lifted sphere
/~
2= <(Ci)1> s Cids 7'{) V2 7?) .

Finally, let proj, : R+ 5 R, (x1,..-yxg01) = (x1,...,xy) denote the natural
projection from R¥*1 to RY.

R and x; and 3; be defined as above, | < i< n. Then
i = proj, (KNP,
where P; is the power cell of X; within the power tessellation defined by the set of

lifted spheres {Z;, 1 <i<n}.

This lemma has the following implication: Consider two AWV cells V; and V},
i # j. If V; and V; have a face of any dimension in common, then so have the
corresponding power cells P; and Pj, i.e. ¢l (V;) Nel (V;) 0.

A nice presentation of this relation between AWV and power cells can also be
found in the book by Boissonnat and Yvinec (1998).

2.3 The edges of a 3-dimensional cell

A mathematical 1-face Gy defined by three spheres 61.0,, 63 in R is symmetric
with respect to the plane A through the centers of these spheres. Hence Gy passes
through the common vertex Gf, = G'(c61NA,62MA,03NA) in the restricted dia-
gram within the plane of symmetry A, see figure 2.2.

We say a set of spheres S is in convex position it each ¢ € S is located on the
convex hull of | JS.

Lemma 2 Let 61, 62, 63 be three spheres in R? and assume that the common
bisector

G = G(G‘],O‘Q,G}) == {;K‘ < R (/(ﬁx,(}‘l) = ('](A‘.,(Tg) = ('](:\’, O“g)}

Figure 2.2: Three spheres ¢, 0,, 03 and their plane of symmetry A. In the plane,
we see the lower dimensional AWV tessellation. The white edges are the intersec-
tion of A with the pairwise bisectors of the three spheres. A mathematical edge —

shown in black — defined by these spheres passes through a vertex of the lower
dimensional diagram.

has Hausdor{f dimension 1. Then Gy is

2. a circle if ¢y, ¢» and c3 are collinear and the spheres are in non-convex
position.

3. a branch of a hyperbola, if 61, Oy and Gz are in convex position.

4. a branch of a parabola, if one of the spheres is contained in the convex
hull of the other two spheres, and if this sphere touches the convex hull in a
single point.

5. an ellipse, otherwise.
Proof: If all radii are equal, than the bisector is simply a line as in the ordinary

Voronoi diagram. Hence, we assume ry 2, 1 7 r3. We also assume ¢ 5 ¢y # ¢3
due to proposition 1.

We parameterize (G depending on whether ¢y, ¢> and c3 are collinear or not:

. Case ¢y, ¢ and ¢z are not collinear: According to lemma 1, let P denote the
4-dimensional power cell corresponding to o1, and let f be the 2-face of P

22

such that Gy = proj; (/N x;). Furthermore, let A3 := aff (¢g, , ¢, , Coy) C R’
be the affine hyperplane containing the centers of the spheres, Ay 1= A3 B éy,
é;. denoting the kth unit vector.

To parameterize Gj, we choose V & R? such that ¥ = (vi,v2,v3) L As,
ie. V= (c; —c2) X (c1 —ca), and W = (wy, w2, w3, wy) € R* such that
w L (vi,v2,v3,0),w L Ay, 1e.

o
e Vp Ccr1— 1 1 a3
L |6 v ocipman a6
yv__, -
€3 V3 133 13033
M(Z’i; 0 m—1m o

Further, we determine P as the minimum point of A4 MKy with respect to the
4th coordinate. Each point x € G1 = f MKy has a unique representation x =
P+ sV tw. We have to consider three cases depending on the “steepness”
of the intersection plane with respect to the cone, i.e. the sign of
y 2 Pl r
A= n‘i - w’% — W5 = W3, 2.0
(a) If A > 0, then the bisector is hyperbolic.
(b) If A= 0, then the bisector is parabolic.

(c) If A < 0, then the bisector is elliptic.

(5,0,0), ¢3 = (u,v,0), ry = 0, ra,r3 # 0. Then
w= (s P2V STV — suvr, 0,50 \:3) :

i.e. the previous sign condition 2.1 1s equivalent to

SN
I
o~
P
~
[N R]
H
2]
9%
~
L
—
-~
~
1)
———”’
<
~~
]
[\
S’

4 4 2 2.2 '
sty 2y (rﬁ Vst s

Let us assume that ¢, 07 and 63 are in convex position. This, in turn, is
equivalent to the statement that there exists a supporting planc A, i.e. a com-
mon tangent plane to all three spheres. An oriented plane (a,x) = b is tan-
gent to a sphere G = (m,r) in such a way that a points to the outside of o, if
and only if!

(m.ay—b-+rllalla=0.

1Cf. Benz (1992)

o
%

We obtain the following system of equations
lalz = 1
(ciyay —b+4-r; = 0, fori=1,2,3,

say+ry = 0 (2.3)

Since we assumed that Gy is 1-dimensional and that the centers of the
spheres are not collinear, we have s # 0, v % 0. Using standard transfor-
mations, we obtain the solution

a; = ——

({,3 o \/ IZ) vy \/ 1 — a,‘;‘ — (1%

B ’/ ([z_i B _(1”'2 —"17;3)2

\/ §2 242
Multiplying out we see that the discriminant D 1s just the left hand side A
of inequality (2.2) divided by the positive term s* v*. Observe, that we have
a single solution for a common tangent plane if D is zero, which implies
geometrically that one of the spheres touches the convex hull of the other
two spheres from the interior in a single point.

. Case ¢y, ¢y and c3 are collinear: We may assume that we have ¢y == 0, ¢y =
(5,0,0), c3 = (11,0,0), ry = 0, 2,73 # 0. Then the system of equations

solves to

2.2, 2 2
Fuss4ris—urs—u-s
(] e ——- = s B
2 UFrs~— 13§
2 2 2 2
Fsoratrr —rmu —rin ,
Xy o= - = = (2.4)
2 F3S—1liF
X2 == VCoso
X3 = Vsindo, where
Vo= \/’:(]~ -7

1= (0,0, 0)

ey =(s,0,0)
Figure 2.3: Case v = 0.

for any o0 € [0...2n]. This is either the description of a circle if 7 € R, or
the description of the empty set if v ¢ R.

To show that i # 0 implies that the spheres are in non-convex position, we
try again to find a common tangent plane starting from the system of equa-
tions (2.3). If v = 0, then this system of equations yields the requirement

2 3

ayp = —-— = ——=

S u’
as depicted in figure 2.3. Observe, that this implies that the denominator of
the equations 2.4 vanishes. Hence, these equations do not have a common
solution if there exists a common tangent plane to the three spheres.

L]

The following lemma will be the heart of the new algorithms presented in chapters
3 and 4:

Lemma 3 The projection of a \-dimensional mathematical edge G, =
G(6,6;,6;) of an AWV cell V(6) onto a unit sphere around the center ¢ of &
is a circular arc.

Proof: Equating the distance equations

b

o - 9
B o CY—F
Cz ! i -]

2(ri+ <]);c,'1:>) 2 (r.,- + <p,c/~>)

e

(Z =

for two neighboring spheres 6; = (¢;.7y) and 6; = (c;,r;), | <i,j < n, i jyields
the equation describing the projection of G(o. ;) NG(0,6;):

<ai,j-,/?> P }),‘?]’, \\"}]CI'G

[
[

aij = C,‘-((:t"v‘

2
] .
bij = i (ri—c)) = (7 =)
Ll

We denote the halfspaces defined in this way by Ji; ; = {x € R? : {a; ;,x) > b; ;}.
For an illustration of this representation, see figure 2.4.

2.4 A tight lower bound on the worst case complex-
ity of an additively weighted Voronoi cell in 3
dimensions

According to lemma 1, a single AWV cell V = V(o) in R? can be described as
projection of the intersection of a 4-dimensional cone x and a 4-dimensional con-
vex polytope P to R, If & has n neighboring spheres S = {6;,1 <i<n}, then P
can be defined as the intersection of n halfspaces. By the upper bound theorem?,
the combinatorial complexity of both P and V is O(n*). To put it boldly, the total
complexity of the diagram can be concentrated on a single cell. In this section,
we specify a family of configurations of n spheres realizing single AWV cells of
combinatorial complexity @(n?).

We obtain the construction by applying a specific perturbation to a highly degen-
erate configuration of spheres. We will show that this perturbation leads to the
realization of a large number of vertices.

2Cf. McMullen (1970)

Figure 2.4: The edges of an additively weighted Voronoi cell project as circular
arcs.

A °Gp-1 = ((4,6,0),0)

(4.3.0)

G = ((a.0,0),1)

60 = ((0,0,0).2)

Figure 2.5: Cross section z = 0 of our worst case construction. For g = %

1 <i<[%], 6; =0, is the sphere centered at (44 (1+ £)a.0,0) with radius

G

=0 +a2—-3.1fe =0, 6, is tan gent to a sphere centered at (4,3,0) with radius

Theorem 1 An additively weighted Voronoi cell in R* defined by n spheres can
realize ®(n?) vertices.
Proof: Consider the following set of spheres depending on 7 and €:

6o = ((0,0,0),2)

o = ((4+(1+0)5.0.0)\ o+ 2 -3) fori<i<]|

3 drlie1Yy . dwliw . T .
o, = ((4,() COS iﬂ‘—,’;ﬂ,é sin ﬂ&_&) ,()), for j’ﬂ <ic<

:

n

»I)

Y

1

Figure 2.5 shows a cross section of this configuration. We focus our interest on the
combinatorial complexity of V(op). If € = 0 then V(o) has a single circular edge,
namely the circle of radius 3 around the center (4,0,0) parallel to the yz-plane of
the coordinate system.

We will show the following behavior of this configuration depending on £ > 0:

-
2

1. For small € > 0, each triple (60,0‘,‘,0‘,’41) of spheres, 1 <i <

erates a circular edge ¢; of V(op).

27

Figure 2.6: The worst case construction for n = 7 seen from the positive x direc-
tion. The spheres have been re-scaled a little to make the effect more visible.

n

2. For sufficiently small ¢ > 0, each &, | %] < j < n, generates two vertices
} / 2 [>~/ > S

with each edge ¢;, 1 <i < {’ﬂ - 1.

2

The case n = 7 is depicted in figure 2.6 O

Lemma 4 Using the notation introduced above, the following statement holds:
For small € > 0, each triple (60,6;,Git1), | <1< ‘iﬂ — 1, generates a circular
edge e; of V(0p).

Proof: We restrict our argumentation to the cross section z == 0 as shown in figure
2.5. Then we have to show the following: For n and ¢ let
Co = ((0,0),2)
; /‘““MT - R -~ s]
C = <(4+ (14€)L,0), V/94- L - 3) , for L<i< [2].

Then each triple (Cp.C;. Ciey) of circles, 1 < < [2] 1, generates two vertices
zi,Z; of V(Cp). Rotating these circles and vertices around the the x-axis will bring
us back to the 3-dimensional case.

Consider three circles ((0,0),2), ((x1.0),r). and (x2,0),72). An AW V-vertex
(x,y) at distance d generated by these circles is a solution to the following system

28

of equations:

Xy (d42)7 =
(v=x1)? 4y = (d+r1)? =

"

(,\‘ — .\7'3)2 'J(“' \: e (d _+) > e

8]

Standard transformations yield the solution

According to our construction, we substitute

xy = A+(1+8&)ay, rn — 9+a%-3

Xy > A4 (lde)an, xp o \/ 9+ a% -3

to obtain functions x(aj,az;€), v(ap,aze), and d(ay,ar:e). For an addi-
tional circle C, = ((x4,0),r,) with parameter a, i.e. x, = 4+ (1+4¢€)a, ry =
VO9-+a? -3 let dist(a,a;,a:;e) denote the function measuring the distance of
(x(ay,az;€),v(ay,az:€)) to Cy:

dist(a;ay,a2;€) = \/(_3\”((71,(’12;8) -—_x(,)z—i*)?((lljc”lz;ﬁ): ----- o

We have to show that for fixed 0 < aj.ax < 1 and € > 0 and for all a € (0, 1)\
[ahalﬂ

dist(aay,axie) > d(ay.axse),
which is equivalent to showing
.fﬂ],(l}_lﬁ(Cl) = (x(a] ,az;&‘,> - v\"('z)z + :\‘((l] 702;5)2 - (7‘(‘1 + d(“l ,-,(7’2;8))2 > 0.

Since fo, a,0(a) =0 and f, 4e{a) is continwous in ay, as. a, and €, it is sufficient
to show that for any fixed €, a;. a, the function f,, a,.¢(a) s convex. By continuity,
it suffices to show

".‘“ﬁ“:‘ﬁn ,(7328((1‘\) = 0

29

We calculate '(]—%‘z“ﬂlhaz;g as

d a* \ d(ay,az;e) 3
;];“jfal,az;E(a) =12 <1 T 9. az) V9 + a2 +2e(l+e).

This expression is positive if we can show that d(ay,a;€) — 3 > 0. We calculate
the latter expression as

A = 42+e)(a3—af)+(2+3e)arar(ar—ay)

+ (1+¢) (m V//,@ +ai—a \/9 +a2 +5(ay — a])).

In the case ay > ay we see that A > 0. B > 0 follows if we can show ay /9 -+ az;

5

solution satisfying ay,ay > 0, namely a; = ay. Let d[x/v] denote the substitution
of all free occurrences of x in expression ¢ with v. Then, since

9 [— —— &
(é;zz ((1.1 \/9 + (l% i) \/ “"Cl%)) [(IQ/(I{J = "*";.___”‘%: > O;
g

we have B > 0 for ay > ay. The case a) < a; is symmetric.

]

Lemma S Using the notation introduced above, the following statement holds:

SN 00 2n D . .
For sufficiently small € > 0, each c;, 4| < j < n, generates two vertices with

each edge e;, 1 <i< [4]—1.
Proof: Let e be the edge generated by two spheres

6(11 = <(V‘C] ,(), O> I'j) = <(4 +- (1 + E) ay ,'O', 0)5 \/thY% o 3)

o, = ((x2,0.0),17) = ((4 +(1+¢)a2,0,0), \/9 — ag ----- 3)

together with 69, We will show that for small € > 0 the sphere 6,..; = ((4,6,0),0)
generates two vertices on ¢. The lemma follows from the fact that our construction
is rotationally symmetric with respect to the x-axis.

30

An AW V-vertex (x,y,z) at distance d generated by these four spheres is a common
solution to the system of equations

Py (de2)? = 0
(x=x)P ¥ b= (d+r)? = 0
(x—x) 4y 42— (d+r)P = 0

(x—=d)"+(y—06)"+z" d? = 0

(R 423 (3 -g e
2x1 (2 —4)—2x (21 —4)
g = 207 —x7 = 4)x2 - 2(r5 —x3 —4)xy
o 2x1 (21 —4) = 2x0 (27 - 4)
—8x+4d+56
Yoo 12
7 = :i:-i: \/8 d?+8d— 1332 +56x-+4xd — 160.

As in the previous lemma, we substitute

/ a,
xp — 4+(1+€eay, rnn —> \/9-Far—3

B o Ad(l4ga, » — ([9+ad -3

in the discriminant A = 84% +8d — 13x% + 36x + 4xd — 160. We have to show,
that for any valid parameterization @y # az € (0,1) we have A, 4,(g) > 0 for
sufficiently small € > 0.

Observe, that the common denominator of A 1s the quadratic term
(231 (21 = 4) =23, (211 = 4))%,

which is always greater than zero if a; # a». Hence, it suffices to show the posi-
tivity of the numerator

Faran(8) = 32(040: — 030,)7 +16(0402 — 030,) 65— 16004” —~ 13057
+560506+805(040,—0361), where
01 =4+ (1+¢)a
0y =4+ (1+¢e)m

o= (Vo Tar-3) o4
05 =01 (10-2v0+ax?) -0 (10-29+ar?)

B :— 26, (2 9 sl — 10) —26, (2 VOta?— 10).

Since, by construction, Ay, 4,(0) = 0, it suffices to show (ﬁ%fa] w(€))(0) > 0.
Using MAPLE we calculate

o= (if (e>> (0)=

—20736 (ay* -+ a3)—%«6336(11(% (\/Q Lcu a1~+ \/9+a2 02>

1152

+1152<a \/()+aq : (7/76[1 \/9+a —chﬁf]La %alav \/9+aq>

aj ch C)'Hz] ~f~a as \/9—~ aq>

fw

+ 2304 (; a 9 -+ a" 9 4 a~ + 5760 (a; aq +ay a2>

+6912 9+a al%«\/9+a,+a7 ‘\/9ﬁ~f~a al \/9—1 a~*+aq>

+ 576 <(c11 +az)aras \/9% ((1\/9 + a3 — ai a3 (ay }~~ag)>

— 8640 (a) +ax) ay ar +3456 (aj +a3) — 16128aj a3

Figure 2.7 shows a plot of this expression. Such a linear combination of radicals
can vanish only if either the coefficients of the different radicals sum up two zero
or if the radicals are linear dependent over the rational numbers. The first case can
be excluded by substituting values for a; and a> into this expression. Therefore
the expression g vanishes only if a; = a>. We have

(5?{157) lay/ax] =0,

this can also be seen in figure 2.7. So, similar to the proof of the previous lemma,
we are done if we can show that g is convex for (a1, a2) € (0,1) x (0,1), i.e. we

32

8000+

£0007}

Figure 2.7: A plot of the expression (4 f, o,(€)) (0). As it is easily seen, the
function vanishes for a; = a» and 1s positive elsewhere.

have to show that

0 . ' .
h(ag) = <—é%5g> iLa1/a-3_‘ >0 forallay € (0./ '1).
1

We calculate

ha) = 1152a (108+ 16202+ 14as® +6ar /9 + a2 +36 /9 + ar?

Again using MAPLE, we calculate that this expression has four roots, of which
only 0 is contained in the interval [0, 1]. We evaluate (1) to verify that indeed
h(ap) > O forall ay € (0,1). 0

Conclusion

In this chapter, we gave a detailed account on the geometry of the edges of AWV
- ~ o0 . .

cells. We proved a new and tight lower bound of ©(n~) on the combinatorial

worst-case complexity of asingle AWV cell defined by 7 sphetes in 3 dimensions.

s

To our best knowledge, the exact worst-case complexity of single AWV cells in
odd dimensions d > 5 and of the complete AWV diagram for even dimensions

%
|9'S]

d > 4 1s still open. The lower bound construction we gave in this chapter might
suggest that the AWV diagram can achieve an intrinsically higher complexity in
even dimensions ¢ > 2 than it is possible for the unweighted diagram. Providing
a tight bound on the worst-case complexity of AWV cells and diagrams in higher
dimensions might be a challenging problem for future research.

34

Chapter 3

Computing additively weighted
Voronoi cells

3.1 Introduction

From the theoretical point of view, lemma 1 solves the problem to compute the
cells of an AWV diagram in RY by giving an implicit representation of these cells:
According to this lemma, all we have to do is to compute the corresponding power
diagram in R?T! and then to intersect each of the resulting power cells with a
d + 1-dimensional cone.

In the 3-dimensional case, which 1s the case relevant to our intended applica-
tions, the power diagram can be computed in time O(n*), where n is the total
number of spheres, using, for example, the algorithms given by Seidel (1981),
Clarkson and Shor (1989), or Chazelle (1993). The second step, 1.e. the extraction
of an explicit representation of the AWV cells, is the major topic of the present
chapter. We will restrict ourselves to the 3-dimensional case.

In section 3.2, we will discuss how we can extract the geometry of an AWV cell
directly from the power diagram. This approach makes use of the information
encoded in the 2 and 3 dimensional faces of the power diagram. However, the
resulting representation is rather inconventent for visualization or volume compu-
tations. Moreover, as we will see in chapter 3, the approach suffers from numerical
problems when implemented using floating point arithmetic.

To remedy this, we will discuss in section 3.3 approaches based on spherical pa-
rameterizations of the resulting cells. These are much better suited for the appli-

|9]
I

cations we have in mind, but effectively use only the information encoded in the
3-dimensional faces of the power diagram. Because the spheres given by molecu-
lar models are nicely distributed in space, the numerical behavior of this approach
is very satisfying.

3.2 Direct extraction

3.2.1 Regular patches

Let the letters (x,v,z) denote the coordinates of points in R? and let (x,v,z,d)

in R and let &, = <(c,:;1 LCi2,Ci3, i) s x/‘f—Z/',-) denote the corresponding lifting of
sphere ¢; into R* for 1 < i < n. Finally, let PI- denote the 4-dimensional power cell
of %;, and let V; denote the AWV cell of ¢; for I <i < nu. Lemma 1 tells us that

Vi = proj; (NP 3.0

However, in spite of an extensive survey of the computational geometry literature,
we could not find a reference to a previous implementation of an algorithm based
on this lemma.

Therefore, we have to answer the following two questions:

1. Which data structure is the most suitable to represent the left hand side of
equation 3.17

2. How can we evaluate the right hand side of equation 3.1 efficiently to actu-
ally obtain this representation?

The right hand side of equation 3.1 describes the faces of the cell as the projection
of the intersections of linear subspaces with a cone. These intersections are most
naturally computed using successive elimination of the variables involved. Hence,
it seems to be natural to choose a data structure supporting this computation. We
represent the boundary of each cell as a set of patches described by a triangular
description. Our chosen representation is similar to a delineation as defined by
Collins (1975). Of course, we do not have to compute a full cylindrical algebraic
decomposition of the cell, but rather it is sufficient to compute a thinned-out ver-
sion for each face individually, very much in the spirit of the stratification scheme
for semi-algebraic sets proposed by Chazelle et al. (1991).

36

Definition 10 (regular patch) A regular patch is defined as a quintuple of values
and functions

Xmin Xinax Xmins Xmax € R
Ymin <X>> Ymax (x): xXe (—Xmi 11~5\'tnax>
z(x, V) ye (}7 min (), Vmax (X))

such that xpmin < Xmax, Ymin (X) = R and v (x) — R are continuous and ymin (x) <
Ymax (X) for X € (Xmin, Xmax), and z{x,y) — Ris continuous in each point (x,y) such
that x € (xminaxmax) andy € (E‘"min (-\’)-j\’max (\7)
For each 1 < i < n we will represent the boundary dV; as a disjoint collection of
regular patches %; such that dV; = ge g ¢l (R). Computing such a representation
is not trivial because a mathematical face of an AWV cell can generate several

combinatorial faces, each of them possibly containing holes.

3.2.2 Extraction algorithm

The algorithm we propose to compute an explicit representation of an AWV cell
from the corresponding 4-dimensional power cell P is a specialization of the al-
gorithm given by Chazelle et al. (1991). The algorithm transforms the defining
equations and inequalities describing the faces, edges and vertices of the AVW
cell into a triangular form by successive elimination of the variables d, z, and y.
Then, in a second step, it selects the relevant patches based on successive substi-
tution and then checking the necessary sign conditions.

To describe the algorithm, we introduce the following notation: We assume that
we wish to compute the AWV cell of a sphere ¢ € § of radius O around the origin.
We denote by P the 4-dimensional power cell of ¢ within all the other spheres in

S.

Let fi,f2,....fj+1 be polynomials in the variables vy,.. ., v, J < k. Then we de-

; i

note by solve,, ,, },_,,V/.(f] . f2,..., fie1) the function that computes the polynomial
g obtained by eliminating the variables vy, vy, v; from f1. fa2,.. ., fit1. If the

input polynomials fy, f5,..., fi+1 do not describe a complete intersection, then

g =0or g = 1, depending on whether there exists a common (complex) solution
to these polynomials at all or not. solvey, v,y (f1. /2, fj+1) can be computed

using Kronecker’s elimination procedure based on resultants, see van der Waerden
(1955).

Given a quadratic polynomial p = av* +bv + ¢ in a variable v, we denote the dis-
criminant by disc, (p) = b*> —4ac. If a = 0 then we set disc,(p) = 1. A quadratic
polynomial p = av® -+ bv -+ ¢ in a variable v together with a sign m € {+,~}
can be used to identify its roots. Assume that a, b, ¢ are dependent on variables
Vi,.. Vg, v vy, for 1 <i < d. Then we define py(ay,...,0q,m) as follows: If
a(oy,. .., o) # 0 then

—b(0, . O/ D0, 0g)? —dalan o) (o, 0g)
2a(oty, ... o)

3

if this number is real. Otherwise we say that p.(o,...,0,M) does not exist.
If a(o,...,0q) = 0 then p.(0o,.... 0. +) is the unique solution of the lin-
ear equation ¢(0t,...,0y) — b(oy,...,ay)v =0 if such a solution exists, and
pu(0ty,. .., 0, —) does not exist at all.

For each j-face f of P let def;(i). 0 < i< 4~ j denote the defining hyperplanes
of the support of f. Let ¥ be the polynomial x° +v> 422 — d?

Having set up all the required notation, the extraction algorithm can be formulated
as follows:

L. Compute a triangulation 7 of P.
2. Foreach A € 7 do:

(a) Foreach facet f C A, f C dP, compute the polynomial equation in the
variables x,y, z describing a hyperbolic surface in 3 dimensions

poly ;= solvey(x. def(0)).

(b) Calculate the bivariate quadratic polynomial discy = disc; (pcly f).

(¢) Calculate the set of boundary curve polynomials in x and y
C= {solve:,d(}c, def,(0),def, (1)), r ridge of A on boundary of j} .
(d) Calculate the set of event points
Ec = {p. pisareal solution to disc,(c),c € C}.

(e) For each pair of polynomials (p;. p2) € (CU {discv/-})2 and each pair
of signs (ny,1M2) € {+.—}* do:

38

1. Calculate the set of intersection polynomials
[= {Solve)v('c],c@) o € CU{discs},cr € {p],pz}}.
ii. Calculate the set of event points
E;= {x: xisareal solution to some p € I'}

iii. Let E = {steo} UEUEc and let L = {ly,.... 1, } be the sequence
of all event points in I sorted in increasing order.
iv. Scanning L in increasing order, identify maximal subintervals

isfied:
A. Both pi(x.m1) and pa(x.12) exist for each x € (1, ;).
B. pi(x,n1) < palx,ma) foreach x € (15, 1;).
C. For all p € (CU{discs})\{p1.p2} and m € {+,—} either
p(x,m) does not exist or p(x.n) & (p1(x,N1), p2(x,M2)).
v. For each of the retained subintervals (/;,/;) from L and for n €
{-,—} create a patch

]j "
pr-mi) pa(ma)
poly (-~ 1),

if polyf(x, v,1) does exist as boundary of the AWV cell for all
x € (L,). and v € (pr(x,m), pa(x.m)).

The running time of the preceding algorithm is trivially proportional to the struc-
tural complexity of P. Hence, this approach allows us to compute an explicit rep-
resentation of all AWV cells defined by a set S = {o;,1 <i < n} of n spheres in
time O(n?).

However, with regard to our intended applications, this algorithm suffers from two
problems: First of all, regular patches are not a very suitable starting point for com-
puting the volume of individual AWYV cells. Second, as we we will demonstrate
in chapter 5, the algorithm is subject to large numerical errors when implemented
using floating point arithmetic.

3.3 Lower envelope algorithms

3.3.1 Subdivisions of the sphere

Since a non-empty cell is a star-shaped region, it is natural to represent its surface
using a spherical parameterization, i.e. we parameterize a cell V by a unit sphere
around the center ¢ of its defining sphere 6. We denote this unit sphere by S2. In
the following, we assume that ¢ is the origin and that » = 0.

Letm: p— ﬂ%T denote the map projecting a point p # ¢;, onto the parameter range

$2. The collection
P:={n(f): fisacombinatorial 2-face of V'}

is a subdivision of $2. For any element v € P let &(x) denote its lifting back to the
current boundary of the cell. As it is common parlance, we identify a map with its
image. According to proposition 4 and lemma 3, the boundaries of the elements
of P can be represented as circular arcs on §°.

Hence, the problem of computing an additively weighted Voronoi cell can be

envelope min d; of the functions

F<i<n

and the subdivision P it induces on the parameter space S”. This subdivision can
be described using a set of planes intersecting S°. Figure 3.1 shows an example
of this representation. Of course, if we have a description of the 4-dimensional
power cell P(X;) available that corresponds to V; when applying Aurenhammer’s
lifting procedure, then we can restrict the set of spheres to consider in computing
Vi to the subset of spheres

D;={c;: X;is facet-defining for P(¥;), 1 < j <n}.
3.3.2 Random incremental construction using vertical decom-
position

Randomized incremental (RIC) algorithms computing the lower envelope of alge-
braic surface patches in 3 dimensions were proposed by Mulmuley (1989, 1994)

40

Figure 3.1: A spherical subdivision representing an additively weighted Voronoi
cell. The left picture shows the unrefined map, the right picture displays a refined
counstrained Delaunay triangulation of this map used to produce the renderings of
cells throughout this thesis.

and Boissonnat and Dobrindt (1992, 1996). Mulmuley’s algorithm is a static RIC
algorithm using conflict lists. The algorithm by Boissonnat and Dobrindt, on the
other hand, is semi-dynamic and utilizes a history data structure based on trees.
The common outline of these two algorithms is as follows:

e The input to these algorithms is a set S := {py,...,p, } of bounded alge-
braic surface patches of constant description complexity. This means, that
each patch p € § is specified as a partially defined function f,(x,y) for
(x,¥) € Dy, the domain of p. The algorithms assume f, to be monotone
in x and y. Note, that any algebraic surface patch of fixed maximum degree
d can be decomposed into a constant number of monotone patches, where
the constant only depends on d. However, the authors only report imple-
mentations for triangles, i.e. patches defined by linear functions.

e The algorithms represent the lower envelope
min p; | (x,y) = min p;(x,v)
1<i<n ' 1 <i<n '

using a trapezoidal decomposition 7 of the x,v plane, such that for each
trapezoid 1 € T there is a unique p; € S satisfying
Viey) et min pi(x,y) = p(x,v).
1<i<n

Each trapezoid 1s bounded to the left and to the right by line segments par-
allel to the y-axis, and is bounded to the top and to the bottom by an x-
monotone algebraic curve of bounded degree. In the case of computing the
lower envelope of triangles, these curves are line segments.

41

Two trapezoids #1 and 1, are considered to be neighbors in 7" if they share a
common vertical slab and are bounded by the same curve either at the top
or at the bottom. Incidence information is stored only between trapezoids
being neighbors in this strict sense.

In the context of spherical subdivisions as needed for the computation of a
single AWV cell, we use the following definition of a trapezoid on a sphere
as given by Halperin and Shelton (1997, 1998): Fix a pair of antipodal points
on the sphere as poles. We call the great circles through the poles polar
circles and arcs of polar circles polar arcs. For an arbitrary circle ¢ on the
sphere we call each of the two points of ¢ that are tangent to a polar circle a
polar tangency. A trapezoid is bounded to the left and to the right by polar
circles, and the top and the bottom are circular arcs, which may degenerate
to one of the poles.

The algorithms start with an empty decomposition 7y and add one patch p &
S after another in random order 7. In this manner, they compute a sequence
of trapezoidal decompositions 1y, Ty, ..., T,, such that 7; is the trapezoidal
decomposition representing the lower envelope defined by Pr(1)s -+ Prfi)s

trapezoids of 7;_; have to be updated when adding the i-th patch p := Pr(i):

L. Vertex conflicts: Let v be a vertex of a trapezoid t € T;._q. v conflicts p
if pi(v) > p(v).

2. Edge conflicts: Let e be the top or the bottom boundary of a trapezoid
t € Ti_y. e conflicts p if there are points (x1,v1), (x2,2) € e such that
pr(x,yvr) > plxy.yvy) and py(x0.2) < p(xa.32).

3. Face conflicts: t conflicts p if D), C t and there exists a point (x,y) €1
such that p,(x,y) > p(x,v).

Mulmuley’s algorithm propagates this conflict information after each step
using conflict lists, i.e. it explicitly stores this information between all trape-
zoids and all patches not yet added. The algorithm by Boissonnat and
Dobrindt, on the other hand, traverses the history graph associated with
Tp, ..., T; to determine this information right before performing the inser-

tion of the i-th patch. The history graph is obtained by linking a trapezoid 1

conflict between 7y and prjyy.

The authors give the following bounds on the running times of their algorithms:
The first and older bound by Mulmuley is based on 8-series, which try to capture
the depth structure of the input objects:

all
0,() = 3 1)
[

where v,(1) is the number of junctions of degree a at level [— 1. Using our previous
definitions, a junction can be defined as follows: Consider each of the different
conflicts which might be generated for some specific order of insertion of the
patches. Each conflict ¢ is located at a specific point (x.v) in the plane (for each
face conflict we can choose a representative). The collection of all these points for
all possible orders of insertion is the set of junctions. The degree of a junction j
is the number of input objects needed to define j. The level of a junction j 1s the
number of patches which prevent j from being part of the final output 7. Using
these definitions, Mulmuley proved the following bound:

Theorem 2 (Mulmuley (1994a)) The total expected time taken by the algorithm
is O(nlog?n+01(1) +03(2) +62(2) logn -+ 03(3) logn).

Boissonnat and Dobrindt, on the other hand. give their bound in terms of the ex-
pected complexity of the trapezoidal decomposition generated by a random sam-
ple of the input objects. They remark that they get the same bound as given by
Mulmuley when doing the analysis in terms of 6-series.

Theorem 3 (Boissonnat and Dobrindt (1996)) The lower envelope of a set of
n surface patches in R* satisfving the above conditions can be constructed in
O(nlogn¥l_t(r) /1) expected time with O(Y_, t(r)/r) expected space, where
T(r) is the expected complexity of the lower envelope of v surface patches. Further-
more, the insertion of the n-th surface patch can be done in O(logny,_ t(r)/)
expected time.

When computing a single AWV cell, a tight worst-case upper bound on t(n) is
O(n?), as shown in the previous chapter. In this case, the bound on the expected
time for computing an AWV cell defined within n other spheres simplifies to
O(n*logn).

S
(O8]

3.3.3 Non-vertical refinement

Halperin and Shelton (1997,1998) reported numeric problems when using trape-
zoidal decompositions to represent molecular surfaces. Besides a small number of
degeneracies necessarily present due to the input data, these problems result from
the introduction of polar arcs through polar tangency points, which are needed to
define the left and right boundary arcs of certain trapezoids. They reported that
the angles between these polar arcs may be very small, such that sorting these
arcs along the equator suffers from large numerical errors when done using float-
ing point arithmetic. Hence, we will describe another data structure that does not
rely on the choice of a particular set of poles. In chapter 5, we will examine these
issues in an experimental setup.

Let t(r;n) denote a function bounding the expected complexity of a single ad-
ditively weighted Voronoi cell V(o) defined by r out of n input spheres. As a
shorthand notation, we leave out the second argument value for the parameter n
and simply write T(r), if the argument value is implicitly given in the context or if
t(r;n) does not depend on n. As shown in the previous chapter, a tight worst-case
upper bound on (r) is O(r%). On the other hand, the interior of a protein pos-
sesses a packing density comparable to crystal structures'. Probabilistic models
of crystals and quasi-crystals based on additively weighted Voronoi cells suggest
a constant bound on the expected complexity of such a cell, regardless of n and
2. Hence, for families of restricted data sets, T(r;77) might be considerably lower
than the worst-case bound.

Our goal is to formulate an algorithm computing V(o) with a running time tightly
dependent on t(r) = T¢(r) + T.(r) + T.(r). T4(r). T.(r) and 7,(r) bounding the
expected number of faces, edges and vertices of an additively weighted Voronoi
cell amidst » out of 1 other spheres, respectively. To simplify the presentation, we
assume that the defining sphere ¢ 1s centered at the origin.

Similar to the algorithms discussed in the previous section, our new algorithm

n} in their given order. At each step i, the algorithm maintains a subdivision P; of
) . . . ~ .
S= that describes the lower envelope min d; of the functions

1<i<n
e
/. S S S
p) 2(ri+(p.ci))

LCF Kyte (1995)
>Cf. Meijering (1953), Moller (1992)

44

defined by o1, ...,0;. For the analysis, we will turn this algorithm into a random-
ized one by randomly permuting § in the beginning.

Similar to the algorithm by Mulmuley, our new algorithm maintains a set of con-
flicts C;. Again, Cj is a relation between the combinatorial elements of P, i.e. the
vertices, edges, and faces, and all sites from the set S;= S\ S, S = {c1,...,0i}

The basic ideas behind our approach are the following:

e We want to analyze our algorithm in the framework by Clarkson and Shor
(1989). This framework requires that each object that our algorithm cre-
ates to represent its output is defined in terms of at most a constant number
of input sites. Hence, we have to refine the faces of the spherical subdivi-
sion representing the boundary of the AWV cell into elements of constant
description complexity. The previous algorithms achieved this using trape-
zoids. We take a different approach:

Let f be a combinatorial face of the cell V(). The projection of f onto
the parameter space S? can be represented as the intersection of a convex
polytope Hy with S?. Instead of using H directly, we use a triangulation of
Hy. Obviously, the intersection of each simplex A of this triangulation with
S? has a description of constant combinatorial size.

e It may happen that in the course of the algorithm the apex used to trian-
gulate one of these polytopes (or only a facet of them) is cut off. Then the
complete polytope (or at least the part next to the respective facet) must be
re-triangulated. Therefore, the sizes of these polytopes have to be taken into

account in the analysis of the algorithm.

e The polytopes may accumulate redundant parts in the course of the algo-
rithm: They might accumulate edges and facets that do not intersect S at
all. Eliminating redundant defining halfspaces from the polytopes after each
insertion of a site is too expensive. Therefore, at steps i = 25, 1 <k < |logn],
the algorithm performs a cleanup operation on F;. This cleanup guarantees a
deviation of the combinatorial complexity of the polytopes from the combi-
natorial complexity of the spherical subdivision by at most a constant factor
throughout the course of the algorithm.

We will now discuss our approach in detail.

45

The subdivision. We describe our algorithin restricted to computing V(o)
within the first octant. Eight similar copies will compute V(o).

For each 1 < i < n, let ¢;(p) denote the partially defined function ¢;(p) : p —
p-di(p) describing the bisector surface between ¢ and 6y, and let ¢; denote the
bisector surface itself. In addition, the algorithm uses a symbolic value of ¢q to
represent the unbounded part of the cell.

For 1 < i < n, the subdivision P; is represented by a collection of polytopes H;(i),
1 < j<i, such that §;(H;(i) " §?) = {x € IV : d(x,0) = d(x,6;)}. Hy(i) repre-
sents the unbounded portion of the cell. Set Ay = {(x,v,7) € R :x>0,vy>0,z>
0,x+y-+z <3} For | < j<i<nlet;(i) be the minimum subset of {0,...,i}
identifying non-redundant halfspaces, i.e.

S2 M AO ['\I ﬂ /IIA s S': M AQ ‘fj m hj,k'
0<k<i k] kel;i)

Define H;(i) = Ag N (Mker (i) Mk Recursively we define for0 < j<i

Ao N eery iy s ifiis apowerof 2
Hi(iy=< Hi(i—1)Nhj; AESTOH(i—1)Nhj# SPNH;(i—1)
H(i—1) otherwise

That is, either H;(7) is the result of a cleanup operation, or it was changed due to
some conflict.

At each step i, the algorithm maintains a canonical triangulation of all H;(i), 0 <
j < i, for which H;(i) N S* + 0:

Definition 11 Let H C R3 be a convex polvtope and i & R® an arbitrary but fixed
direction. For each facet f C H, choose the minimum vertex vy (f) with respect
to direction d and triangulate f towards vimin(f). The canonical triangulation® is
obtained as the collection of all 3-dimensional simplices being the convex hull of
one of these triangles and vin (H), the minimum vertex of H with respect to d.

Let 7;(i) denote the collection of all those simplices of /;(i). We store adjacency
information between all simplices A € 7;(i), but not between simplices from dif-
ferent sets 7;(i) and 7. (1), j # k. The subdivision P; is obtained as the collection

3 Apparently, the present algorithm also introduces an additional prescribed direction. How-
ever, confrary to the situation when constructing tangent planes to circular arcs as it occurs in
vertical decomposition schemes, ties with respect to @ can be broken very easily using, say, a lex-
icographical ordering of the coordinates, and we do not bave to deal with algebraic numbers (or
their approximations).

46

of all intersections of these simplices with $*. Let A € 7;(i) be a simplex obtained
by lifting a triangle ¢ of the triangulation of a facet f of H;(i) towards the minimal
vertex vimin (H](l)) . Then we set Viin(#) (A) = vinin(f) and viyin (A) = Vigin (H;(l))

Search structures. To introduce new conflicts efficiently into our data structure,
we use the following two data structures: On each facet f € H;(i), 0 < j < i, we
maintain a binary tree search structure for point location within f. Using red-black
trees?, this structure can be constructed in time linear in the number of vertices Ll
queries can be answered in time O(log|f]), and once the location of insertion is
known, the structure can be updated in amortized constant time.

At certain steps, namely if vy, (F;(1)) % vimin (H;(i — 1)), we establish a static

point location structure for the complete polytope H;(i) using the following re-
5
sult™:

Theorem 4 (Kirkpatrick (1983)) For any n vertex planar graph, one can build
a point location structure of O(n) size in O(nlogn) time, guaranteeing O(logn)
query time.

So, given a polytope A with n facets and a set M of m points, we can determine
for each point p € M the simplex A of the canonical triangulation of A such that
p € A, or verify that no such A exists in time O((n+m)logn).

Conflict information. The algorithm maintains three kinds of conflicts that
are associated with the vertices, edge fragments and face fragments of all A €

=0 T/(l)
1. Vertex conflicts: A vertex v € P; conflicts with 6; € S;if o; will cut the
vertex o(v) off the cell.

2. Edge conflicts: An edge e € P; conflicts with 6; € S; if ¢; intersects ¢(e).
We maintain a distinct conflict for each point of intersection. For a single
edge e the set of all conflicts {(e,)} is linearly ordered along e. This allows
us to split an edge e in constant time regardless of the number of conflicts
allocated to it.

4Cf. Guibas and Sedgewick (1978)

SThere are several other algorithms for planar point location problems, such as Edelsbrunner
et al. (1986), Sarnak and Tarjan (1986), or Adamy and Seidel (1998). However, all these methods
are based on monotone subdivisions.

47

3. Face conflicts: A face f € P, 0(f) C ¢ for some 0 < k < i conflicts with
o; € Siif oMoy # 0 and dpNd; C int(0(f)). For each A € P, each face
conflict is represented by a point contained in the conflicting region AN S>.

We make the following assumptions concerning general position: Any edge con-
flict is defined as the projection of the intersection of exactly three surfaces
$i, 07,0k, 0 <1< j <k <n,and all points of intersection are not points of tan-
gency.

Initialization. The algorithm begins by constructing an unbounded cell repre-
sented by Hp(0) = Ao, 75(0) = {Ao} and setting Py = S* M Ag. Foreach 1 <i<n
all conflicts of ¢; with respect to Py are calculated. All this can be done in time
O(nlogn) and space O(n).

Update step. The i-th update step when adding sphere o; to P, resulting in F;
is as follows: Let

/

Ci—1j(0:) = {A:Ae T (i—1) c;conflicts A}
i1
Ciei(oi) = |JCim1(o0)
7=1
Aioi(oy) = {j:1<j<i3Ae Ti(i—1),0;conflicts A}

Ci—1;(0;) is the set of simplices of the j-th polytope that have to be changed due
to the addition of 6;. C—1 (o) is the collection of all these simplices, and A;_1(o;)
the the index set of all polytopes that have to be changed. For each j € A, (0;)
we compute the polytope H;(i) from H;(i — 1) using the conflict information
Ci—1,;(07). We re-triangulate the updated part of H;(i) and update the search struc-
tures on the facets. If no minimal vertex vimin (/) of afacet f < H;(i—1) oreven the
total minimal vertex v (}Ij(i — 1)) is deleted then this update can be performed

within O (|Ci—1 j(0;)| log(n)) time.

For each conflict ¢ associated with a deleted simplex in Z;(i — 1), we can deter-
mine in constant time whether it remains a conflict for a simplex A € 7;(i), and,
if so, reinsert it as conflict in the updated structure in time O(logn). Conflicts that
are located on a new face that is created for site ©; are collected into a set Chew.

If we delete a minimum vertex vmis(f) of a facet f C H;(i— 1), then we re-
triangulate f and reallocate all affected conflicts to their new locations. This can

48

be done in time O(| f| +mlogn), m being the number of conflicts to be reallocated,
and requires no additional space.

Similarly, if the vertex vin(H;j(i — 1)) happens to be deleted, then we triangulate
H (i) from scratch. We compute the point location structure described above and
use it to assign all conflicts associated with any A € Z;(i— 1) to their new lo-
cations. This amounts to O(|H;(i)|logn -+ mlogn) time and temporarily requires
space O(/H(i)]).

If Ci—1(0;) # 0, we compute the polytope H;(i). its canonical triangulation, the
subdivision P;, and the point location structures. Note, that exactly sites of sim-
plices in Ci—1(0;) have facet defining halfspaces 7, ; for H;(7). This amounts to
time requirements O(|C;—;(0;)|logn) and O(|C;~1(o;)|) space. Then for each con-
flict ¢ € Cyew, we find A € Z;(i) such that ¢ € A in O(n) time, and check if its cor-
responding site 6, k > i, associated with ¢ still conflicts A. If so, we allocate this
conflict to A and visit recursively all neighboring simplices, as long as they have
not been visited yet and provided they also conflict with o. This traversal can be
charged onto the number of newly created conflicts times a factor of O(logn) for
the sorted insertion.

Finally, if i € {251 < k < [logn|}, we perform a cleanup operation. For each
polytope H; (i), such that H;(i) N S* # 0, we determine the set I;(i). We compute
the H;(i), 0 < j < i, their triangulations, the point location structures, and we

reallocate all conflicts to their new locations.

Probabilistic analysis. We want to analyze the expected work performed by
the algorithm if the ¢; are inserted in random order. We do this, as it is common
practice, in the manner described by Clarkson and Shor (1989) and Seidel (1993).
For R = {o;,...,0;,} C Slet f(R) = X |7,(r)| be the total complexity of the
representation of the cell defined by R. Let

be the expectation of this value. In a first step, we will analyze the behavior of our
algorithm in terms of n and f,.. Then we will bound f, in terms of t(r).

Proposition 5 Let S = {0, | <i<<n}. Then the expected total number of conflicts
created or reallocated by the above algorithm when adding the elements from S

49

in random order is bounded by

N\ N - fre S
1 (n—1)f +— — fp1 1107 Y, = - 121) =R
(=0 fit o for (P ey 20

Proof: Observe, that every simplex of our subdivision is defined by at most 11
spheres. Setting the parameter d = 11 in the generic analysis due to Clarkson®, we
obtain the claimed bound. O

Proposition 6 Ler S = {c;,1 <i<n}. Then the expected total number of sim-
plices created due to re-triangulation operations by the above algorithm when
adding the elements from S in vandom order is bounded by

Gii'
re1 !

Proof: As in the proof of the previous proposition we apply backwards analysis.
Let A be a simplex that is created during step » of the algorithm because either
one facet or a complete polytope requires re-triangulation. Running the algorithm
backwards, this is equivalent to the situation that removing ¢, from the cell at step
r would delete at least one of the two minimal Vertices viin() (A) or vinin(A). Each
of these vertices is defined by at most 3 sites from S. Therefore, the expected value
1, of the number of simplices created due to re-triangulation in step r is bounded

by

oo 6 . 6 .
1r§*§> > =f(R) =~
(". RCS‘R;“-/ ! !
Summing up for r = 1...n we obtain the claimed bound. 0

Because the functions T,(r) and T.(r) might not be monotone increasing in r, we
set Ty (r) = maxj<;<, Tx (1) for X € {e. f,v.-}.

Proposition 7 Let S = {c;. 1 < i < n}. Then at each step r of the algorithm the
following bound holds:
Jr <2737 (r) +8%(r)

Proof: Let f be the number of faces and ¢ the number of edges of an addi-
tively weighted Voronoi cell V. Then, by Eulet’s relation, the number of simplices

5Cf. Seidel (1993)

needed to represent V is bounded by f +4e¢. Therefore, if r is a power of 2, the
cleanup operation guarantees f, < Ty(r) +471.(r). Otherwise, let 7* = |logr| be
the index of the latest cleanup. Any creation of a new polytope is caused by the
creation of at least one new face of the cell, and any addition of a halfspace to a
polytope is caused by the creation of at least one new edge of the cell. Hence,

o<

A

245(r) + 81,(1)

0

Theorem 5 Let S = {0}, 1 < i <n}. Then the described algorithm computes the
additively weighted Voronoi cell of a sphere & in expected time
n
ndr,
O Y, —5~1(r)logn
r=1

Observe, that the time requirements are simply the space requirements times a
factor of logn.

Proof: According to propositions 5 and 7 the expected total number of conflicts

created is O (n - Tl(é)) Similarly, as shown in proposition 6, the expected total

e . ‘ . , A
number of simplices created due to re-triangulation is bounded by O <L}:1 m(}l

Hence, the expected total computational effort required by these steps is bounded
by
n 7 ‘4_ 3
0 ——1(r)logn
3 " g

r=1

A cleanup operation at step i, i a power of 2, obviously involves a subset of all
operations performed by the algorithm up to step i. Therefore, the expected total
computational effort required for cleanup is bounded by the sum

Corollary 1 The described algorithm computes the additively weighted Voronoi
cell of a sphere & amidst n other spheres in expected time O(n*logn).

For restricted families F of input sets, such as all configurations of sphetes arising
from molecular models of globular proteins, we might be able to give a much
better bound for t(r:n).

Corollary 2 If the function ©(r) is at most linear in r, i.e. if ©(r) = O(r), then the
algorithm accomplishes the computation in expected running time ()(n]og2 n.

, 7 “IL »
= Cup,+alogn Z .
= Cupy+an(H, —Hy)logn+a(n—r)logn,

whete C, 5, s a suitably chosen constant, and H,, denotes the n-th harmonic num-
ber. O

{J}
b

Chapter 4

A practical algorithm for the
computation of a single additively
weighted Voronoi cell

4.1 Introduction

To begin, let us recapitulate the algorithm presented in the previous chapter. Our
major effort concentrated on guaranteeing the bounded description complexity of
the individual fragments of the subdivision, which we needed for the probabilistic
analysis. To achieve this, we introduced a triangulation of the polytopes H; de-
scribing the faces defined by the spheres ¢;, | < i < n. On these polytopes we
mtroduced point location structures to insert new conflicts efficiently. These data
structures could be damaged in the course of the algorithm. The necessary rebuild
steps of these data structures require an effort depending on the complexity of the
polytopes. Hence, we came up with clean-up operations to establish a tight depen-
dency of the running time of the algorithm on the combinatorial complexity of the
AWYV cell.

As it turns out, the AWV cells occurring within our intended domain of appli-
cation behave much better, i.e. they exhibit only a rather moderate combinatorial
complexity. We will examine this behavior in the discussion of our experimental
results in chapter 5.

In the present chapter, we describe an algorithm that exploits this low complex-
ity. Again, the algorithm will be a randomized incremental algorithm. Since we

Ut
[OV]

assume that the polytopes H; have a moderate complexity, there is no need to tri-
angulate them. In fact, we will go even further: We will not work with polytopes
at all, but will rather work directly using a spherical subdivision data structure
describing the partition P of the parameter space S*. As we will see, this represen-
tation is suited very well for further processing steps of the computed cell. How-
ever, we do not simplify the algorithm in every respect by this design decision:
In the algorithm of the previous chapter we did not care whether the intersection
of a simplex A € 7; with the parameter space S° yielded one or more connected
components. In the algorithm to be described in this chapter, on the other hand,
we will have to distinguish the different components of each H; ;N 52,

The outline of this chapter is as follows: First, we will introduce the geometric
primitives employed by the algorithm. Then, we will introduce the data structures
used by the new algorithm to represent the subdivision P. After that, we will de-
scribe the algorithm itself in detail. Finally, we discuss the further processing steps
of the computed cells that are necessary for volume computations and visualiza-
tion.

4.2 Geometric primitives

The algorithm is formulated in terms of geometric primitives based on
oriented geometry!. During the time the algorithm was implemented,
Andrade and Stolfi (1998) presented how to evaluate these predicates exactly with
purely rational operations only. Currently, our implementation does not use these
exact predicates but rather relies on controlled floating point arithmetic with dy-
namic error bounds to trigger perturbation operations. Nonetheless, the following
operations are specified in the notation used in the paper by Andrade and Stolfi, if
only as a convenience to the reader.

Oriented geometry. The algorithm works in 3-dimensional projective space P2,
Each point p € P3 can be represented by its four coordinates w,x, v, z). I w s 0,
this corresponds to the point (x/w,v/w,z/w) € R, If w = 0, then p represents the
point at infinity in direction (x.v,z).

point with homogenous coordinates [w.x.v.z]. We say that p is on the positive

LCE. Stolfi (1991)

side of o if opw + o x-+ 0 y+ o3z > 0. An oriented line [can be represented
by six Pliicker coordinates (lp, 11,0, 13,14, 15). A 6-tuple of coordinates, in turn,

infinity dir(7) = [0,ls, —I4, /2] the direction of /. We notate the halfspace oriented
opposite to o as —0, and line oriented opposite to [as /.

Let p = [po, p1, P2, p3] and ¢ = [q0,41,42, q3] be two points, o = {0y, 01, 0l O13)

basic operations A (meet) and V (join) are defined as

aAB = (aoBr— o Po. oo P2 — o o, oy B2 — 02 B,
0o B3 — o3 Po, oty Bz — a3 P o2 Bz — 03 Ba)
INO = [=hds-+1y0 — 500,y o3 — 13000 -+ 15 O,

—ly 0z + 130t — Ly 0, In 0ty — 1y 0ty - Iy 0l
pVil = {lopi1+Lpr+bLps.~lopo+lpr+laps,

~lypo—h pr+1sp3,—lpo—Ilapr —Isp2)
pVa = (p2g3—piqa,p3qi— P143, Pogs — P3qo,

PLg2 = P241.P2G0 ~ Poq2. P11 = P1qo)

Given an oriented line [= (lp1,lo2. 112,003,113, 13). we define I =
(3,113,103, 112, Lo, Dot) -

Oriented geometry on the sphere. As we have shown in lemma 3, each
halfedge of the spherical subdivision describing the cell can be represented by
an oriented circular arc. We call an oriented circle on S* an S-circle. Each S-
circle ¢ can be represented by an oriented plane o such that ¢ = §* N a and
c¢ is oriented positively with respect to the normal of o. This fact can be no-
tated as ¢ = scre(o). o is called the supporting plane of ¢, and this is written
as oo = spIn(c). Hence, ¢ can be represented by the coefficients of the plane o.
Ifans® 40, ie. oc% < 0(% + O&% +OL% we write sere(o) = (0, 04,0, o3). The
direction orthogonal to spin(c) and pointing to its positive side is called the nor-
mal of ¢, and is denoted by snrm(c). We think of snrm(c) as the point at in-
finity [0, 01,00, 03], The S-center of ¢ is its center on the sphere, i.e. the point

-

Let p and ¢ be two points on an S-circle ¢ = scre(a). Then p and ¢ divide ¢ into
two connected parts called S-arcs. We define the S-arc from p to ¢ on ¢, denoted

J 1
|91

ce=ere (o)

Figure 4.1: The elements of an S-circle. Picture taken from Andrade and Stolfi
(1998).

by sarc(p,q,c), as the set of points encountered on ¢ as we move starting at p in
the positive direction along ¢ until we reach ¢. Given A = sarc(p,q,c), we write
c=scrc(A), p=org(A) and ¢ = dst(A). If B= pV gV snrm(c), then A is the part
of ¢ on the positive side of 3.

Let a and b be two S-circles with spin(a) = o and spin(h) = B. In general a and
b intersect in either two points, or they have an empty intersection. We define the
(canonical) meeting point of a and b as the point p = a A b where a crosses b from
its positive side into its negative side. If / = oA B, then p is the point ext(l) where
I leaves 8. See also figure 4.2.

We denote by ent(l) the point where / enters 2, and set mid(/) = %53(/_) If
[= <l(), l'] R Zz, 13, 14, 15>, we have

mid(l) = [u,~hb =kl loh—13lsloly+1Is)],

ext(l) = mid(l)+V8dir(l), 4.1

ent(l) = mid(l) —v/3dir(]),

) . oy R
where =I5 -+ 17 +12 and & = pu— (I3 + [T +13).

All edges of the spherical subdivision will correspond to S-arcs, and all vertices
will be defined as canonical meeting points of the oriented planes associated with
the incident edges.

The geometric primitive employed by the algorithm to navigate within the spher-
ical subdivision is the following: Let p,g and r be three points on an S-circle
c. Then ®.(p,q,r) is true®, if p,q and r occur in that order along c. If o =

“Here we deviate a little from the notation given in Andrade and Stolfi (1998)

56

(@)]

Figure 4.2: Oriented intersection of two S-circles. Picture taken from
Andrade and Stolfi (1998).

(0, 0y, 02) = spln(c), we have

pPo P11 p2 P3
Ldo 41 42
Fo Fy M
0 o o o

[
Lad

®c(p,q,r) = >0 (4.2)

~
9%

(98]

In principle, as demonstrated in Andrade and Stolfi (1998), this predicate can be
evaluated without computing the roots in (4.1), if p, ¢ and r as given as canonical
meeting points.

Implementation note. The implementation uses distinct classes to represent
planes, lines, spheres and canonical meeting points according to the previous
specification. However, the plane and line classes are a priori non-oriented.
The actual orientation of planes and lines is stored in the low order bit of the
pointer variables referring to these non-oriented objects variables. The latter
pointer types are, of course, themselves wrapped into classes.

In addition, a computation cache is maintained for all the computations de-
scribed in this section. In this manner, no computation has to be performed
twice. These classes also keep track of numerical round-off errors as will be
described in chapter 5.

4.3 Combinatorial description

The fundamental data structure of our algorithm is a subdivision of the unit sphere.
In this section, we introduce the underlying mathematical concepts and describe

the data structures used for their representation.

57

4.3.1 Spherical subdivisions

Most of the following definitions are taken from the books by van Lint and Wilson
(1992) and by de Berg et al. (1997).
By a surface, we mean a compact 2-manifold. A Jordan arc is the image of a

continuous one-to-one mapping of the unit interval. An embedding of a graph &
on a surface § is a drawing of G on S, such that no two edges cross:

Definition 12 (Embedding) Let G = (V. E) be a graph, S a surface. An embed-
ding n(G) of G on S is a pair of maps (n(V),n(E)) with the following properties:

1. n(V): V> Sisan injection.

2. n(E) maps each edge ¢ = {u,v} € L to a Jordan arc on S that connects
n(u) to m(v).

3. Foreach e € E, we have for all ¢’ # ¢ € E that int(n(e)) Nint(n(e')) = 0.

4. Foreache € E, for eachv € V, we have n(v) ¢ int(n(e)).

Given an embedding 7(G) of a graph G = (V. E) on a surface S, we can define the
faces F(G) as the connected components of S\ (m(V) U, w(e)).

Definition 13 (Spherical subdivision) A spherical subdivision is the subdivision
of the unit sphere S* into points, arcs and faces induced by the embedding of a
planar connected finite graph G onto S*.

Note, that each face f of a spherical subdivision is a 2-cell, i.e. it 1S a compact
set homeomorphic to a disc. In the following, we restrict ourselves to embeddings
on the unit sphere, where all arcs are circular, i.e. each arc is the subset of the
non-empty intersection of a plane with S*. Moreover, the underlying graphs will
be restricted to be biconnected and to contain no loop edges.

a subdivision of G, if V.C V(H) and each edge e = {u,w} € E has been replaced
by a path u,vy,. .., Vit W, 1(e) = 0, in E(H), such that all inner vertices v;, 0 <

i < r(e) are incident to no other edges.
This definition carries over to embeddings:

58

Definition 15 An embedding n(H) of a graph H onto a surface S is a subdivision
of the embedding ©(G) of a graph G onto S, if H is a subdivision of G, and for
each edge e = {u,w} € E that was replaced by a path u,vy,...,v,(z),w r(e) >0
in E(H), we have (v;) € m(e) appearing in the specified order along 1(e).

The final output of our algorithm will be a polyhedral approximation of the actual
additively weighted Voronoi cell.

Definition 16 (Straight approximation) Let ©(G) be the embedding of a graph
G on the unit sphere S*. An embedding n(H) of a graph H on S? is a straight
approximation of ©(G), if *(H) is a subdivision of ©1(G) and all arcs of T(H) are
subsets of great circles on S*.

We call a spherical subdivision Py induced by the embedding n(H) of a graph H
a straight approximation of a spherical subdivision £ induced by an embedding
n(G), if T(H) is a straight approximation of n(G).

4.3.2 Data structures

We represent spherical subdivisions using a halfedge data structure®. The data
structure comprises five different object types: halfedge, vertex, face, site and
data. halfedge, vertex and face represent the actual subdivision, site is a descrip-
tor of the individual sites ¢;, and data is additional information associated with a
pair of halfedge objects. These object types possess certain attribute fields:

1. An object ¢ of type halfedge has the following attributes:

e.twin The twin halfedge connecting the same vertices as e but pointing in
the opposite direction. It is always e.twin.twin = e.

e.next The counterclockwise successor halfedge of ¢ along the boundary of
the incident face e.face.

e.face The face incident to and bounded by e.

e.vertex The vertex at the arrow, 1.e. incident to both e and e.next.twin.

e.data Common data to describe the edge {e,e.twin}.

A pair of halfedge objects is a set {e, ¢’} such that e.twin = ¢’ and ¢’ .twin =
e. We also simply speak of an edge when referring to a pair of halfedges.

3CE. Weiler (1985)

Ly
O

2.

9,1

Figure 4.3: The fields associated with a single halfedge e.

An object v of type vertex has the following attributes:

v.star An edge e such that v = e.vertex.

v.coordinates The coordinates of v within parameter space $2.
vlifted-coordinates The lifted coordinates ¢(v) on the boundary of the cell.
v.distance The distance d(0(v). o).

v.conflicts Access to conflict information associated with v.

. An object f of type face has the following attributes:

f.boundary An incident boundary edge e of f such that f = e.face.

f.neighbor A reference to the descriptor object of type site describing the
input site whose cell is separated from the current cell by f.

f.conflicts Access to conflict information associated with f.
An object s of type site has the following attributes:

s.sphere The geometric representation of the sphere ¢; represented by s.

s.boundary The oriented plane h; o representing the projection of the
boundary of the bisector G(c, ;) onto §2. See also proposition 4.

s.conflicts Access to conflict information associated with s.

. An object d of type data has the following attributes:

d.owners[2] References to the two twin halfedges e and ¢’ described by .
If d.owners[0] = e, then the information within e is oriented according
to e. For describing ¢/, the orientation of the information has to be
reversed.

60

d.halfspace If we have d.owners[0].face = f, d.owners|l].face = f',
f.neighbor.sphere = o;, and f’.neighbor.sphere = o, then
d halfspace is the oriented plane /1; ;.

d.orientation A partially specialized determinant to order points along the
edge represented by d. Observe, that the determinant in equation 4.2
can be written as

po PL P2 D3
oA R = (gan), spaa)),
o N ry T3

% Op Oy Oy Oy

where

p = d.owners|l].vertex.coordinates

o

snrm (d.halfspace) .

Hence, we store d.orientation = p A L.

s.conflicts Access to conflict information associated with the edge repre-
sented by d.

Implementation note. The implementation maintains objects of type vertex,
face, and data as garbage collected objects using reference counting. Hence,
e.face, e.vertex and e.data are smart pointers that automatically perform the
necessary bookkeeping operations. Only edges are deleted explicitly in the
code.

To provide a concise description of the algorithms, we introduce a number of
elementary operations on the halfedge data structure. Let e, ¢’ : halfedge, f, 7 :
face, v : vertex.

before the operation. Then split(e,v) creates a new pair of halfedges
{enew, @pew | SUCh that enext = epay, €hay-NeXt = €', eface = eney face,

¢’ face = ¢, .face, e.vertex = v, and epey.vertex = /. The new halfedge
enew 18 returned as result value. See figure 4.4.

join(e) This is the inverse operation of split(e,v).

61

€ , split(e. V) € o v Chew .
» [RE——— oV [e Y ® ®
e T .
e ¢ € new

Figure 4.4: The operation split (e, v).

link (e, ¢’, /') Introduce a new face f' by splitting a face f incident to both e and ¢’
by introducing a new edge between them: Let n = e.next and n’ = ¢’ .next be-
fore the operation. link (e,¢’, f') creates a new pair of halfedges {enew, ¢hey }
such that e.next = epew, enew.next = n', ¢ .next = e,
new-vertex = e.vertex. The new face f” is intro-
duced in such a way that e.face = epey.face = f and ¢’.face = ¢l .face = f'.

The new halfedge ey is returned as result value. See figure 4.5.

! —
Cpew-NEXL = 11,
enew-vertex = ¢’ vertex, and e

unlink (¢) This is the inverse operation of link (¢/,e”, f'). Tt removes the pair of
halfedges {e, e.twin} and joins the resulting face.

¢ .vertex, e.next==¢” and ¢’.next = e.twin. The function returns v. See figure
4.6.

detach (¢,v) This is the inverse operation of v = attach (e, ¢), if ¢/ = e.next and
e.next = e.twin.

The algorithm maintains the following two invariants on the data structure:

1. The skeleton graph, i.e. the graph formed by the halfedge and vertex ob-
jects, 1s connected.

B, e) - .
® ° ® ® ° @
n e’ Y Ty
- link(e.e”) . i ,
f < - e i f eIlC\V 4 new f
¢ n e n
P |-y T,
® o ® ® ° B
-y . — |

Figure 4.5: The operation link (e.¢’, /7).

62

attach(e,¢)

Figure 4.6: The operation attach (e, e’).
2. No edge forms a closed loop.

These invariants are maintained by introducing helper edges into the spherical
subdivision. These helper edges are introduced in two circumstances:

1. The initial subdivision Py dividing S* into eight equal parts obtained by
intersecting % with the coordinate planes is defined by helper edges.

2. Helper edges are introduced when a face f; would be bounded by a loop
edge e from a swrrounding face f,. In this case, the outer face f,, and hence
the loop edge e is split, and the end vertices of the fragments of e are con-
nected to the corresponding vertices on the original boundary of f,,. See also
figure 4.9 on page 69, where the details of this operation are discussed.

4.3.3 Conflict information

As with the previous algorithm, we maintain conflicts that are associated with the
vertices, edge framents and face fragments of the current subdivision. Again, we
denote the subdivision after the insertion of the i-th sphere o; by F;.

1. Vertex conflicts: A vertex v € P; conflicts with 6; € S;if ¢; will cut the vertex
d(v) off the cell. In fact, vertex conflicts are not used for any manipulation
of the spherical subdivision. Their only purpose is to trigger the generation
of new conflict information after a site has been added.

2. Edge conflicts: An edge e € P; conflicts with 6; € S; if ¢; intersects d(e).
We maintain a distinct conflict for each point of intersection. For a single
edge e the set of all conflicts {(e,-)} is lincarly ordered along e. Note, that
this information is shared for each pair ot halfedges.

63

3. Face conflicts: A face f € P, o(f) C ¢ for some 0 < k < i conflicts
with 6; € S; if ¢p 1 0; # 0 and ¢ NO; C int(¢(f)). Each face con-
flict ¢ is represented by a unique point contained in the conflicting re-
gion: Let o0 = (0, 011, 02, 003) be the s-circle describing ¢ M ¢;, and let
[= {1, o, Aoz, Aotz], A € R}, Then ¢ is represented by p = N1 pis
uniquely defined since each subdivision £, | <i < n, is a refinement of Fy.
Face conflicts are used in two flavors:

(a) Disc conflicts: A disc conflict (f,s) tells the algorithm to cut a hole
into the face f. The interior part is labeled with the conflicting site s.
(b) Ring conflicts: A ring conflict (f,s) tells the algorithm that when site

s is added, a hole has to be cut into the new face to remain a part of f.

Implementation note. The implementation uses three classes derived from a
common conflict base class to represent conflicts. Both sites to be added and
elements of the spherical subdivision maintain their incident conflicts using

doubly linked lists for unit cost removal.

4.4 The algorithm

In this section, we describe the main algorithm we implemented for computing
a single AWV cell. After giving an outline of the algorithm, we will discuss the
insertion of new edges into the spherical subdivision and how the conflict infor-
mation is updated.

4.4.1 Outline

The outline of the algorithm is very similar to the algorithm from the previous
chapter: We assume the sites ¢1....,0, to be given in that order after having ap-
plied a random permutation to the input set. Then the algorithm works as follows:

1. Initialization: Construct an initial spherical subdivision Py by cutting the

Compute initial conflict information between each vertex, edge and face of
Py and each site o5;, 1 <@ <n.

o4

2. Incremental step: For each i = 1...n perform the following operations:

(a) Create new edges due to edge conflicts generated by 6;.

(b) Remove redundant old edges that no longer separate different faces.
Rejoin chains of edges into single edges.

(¢) Create new edges due to face conflicts:
i. Process disc conflicts generated by o;.
ii. Process ring conflicts generated by ¢;.

(d) Update conflict information.

4.4.2 Changing the subdivision

In this subsection, we describe the individual steps that are necessary to update
subdivision P, to P; when adding site ;. Let B; denote the set of edges in P
separating a face defined by ©; from a face defined by one of the other spheres ¢,
1 < j < i. Obviously, B; is the set of new boundary edges to be introduced in step
i of the algorithm.

Processing edge conflicts

Let By = Bg) denote the subset of B; introduced due to edge conflicts. By is easily
seen to form a set of cycles in P;. In fact, in the absence of geometric degeneracies,
i.e. if no e € B passes through a vertex v € Pi_, an even stronger property holds:
Whenever the new boundary Br enters a face f & F;_y through an edge conflict,
then it also leaves f through an edge conflict. This implies that for all faces f €
P;_1 the sum of the edge conflicts with ¢; on its incident boundary edges is even.

The pseudo code of this part of the algorithm is shown in figure 4.7. The following
functions have not been introduced vet:

1. any-edge-conflict(c;) simply returns any edge conflict of an edge e with 6;
that has not been visited yet.

2. enter-edge(c) returns that halfedge h located on the edge e conflicting with
o; at ¢ such that /i enters the new face to be created at c. Hence, the algorithm
traverses the subdivision outside the new face to be created.

65

3. find-ccw-conflict() returns the neighboring conflict ¢, to the present con-
flict ¢;, and the boundary halfedge of the current face it is located on. The
neighboring conflict ¢, is selected such that the new oriented edge arc to be
created connects ¢, and ¢, in its positive sense of orientation.

Removal and contraction of superfluous edges

After the new boundary edges Br have been introduced, the interior of the newly
created faces is cleaned from edges and edge fragments that have become unnec-
essary. The identification and removal of these edges 1s performed by simple BES
traversals rooted at halfedges in Bf.

Figure 4.8 shows the pseudo-code for collecting all removable edges given the set
of new boundary edges new-boundary. find-deletable (new-boundary) returns for
each edge e that can be deleted a representative halfedge. In the implementation,
the function is called with new-boundary = Bp.

The following functions have not been introduced yet:
1. mark(halfedge) sets a Boolean flag to mark halfedge as visited.
2. is-marked(halfedge) is true if halfedge has already been visited.

After the set of deletable edges D = find-deletable (B) has been computed, the in-
dividual edges e € D are removed by unlink (¢) and detach (e, v) operations. Then,
in a second traversal very similar to the code shown for find-deletable, edge chains
starting at a half edge ¢ are contracted into single edges by join (e) operations.

Processing face conflicts

The treatment of face conflicts By = B;{ - B;\ B is conceptually very simple. If
we would not have to keep the skeleton graph connected, then each conflict ¢ € B
would give rise to a single circular edge on S* without any further vertex.

Let ¢ € By be a face conflict to be treated in step i of the algorithm. Let f be
the face conflicting ¢; at ¢ and assume that f.neighbor.sphere = ;. Then the
new circular edge e to be introduced and refined represents the circle scre(/;).
Let v denote the normal snrm(/; ;), and let p denote the unique intersection point
F{hv, k€ R} We choose two oriented planes o and 3 defining two great circles
a and b, such that

66

process-edge-conflicts (o;):

while conflict := any-edge-conflict(s;) do

~

start-edge = enter- edve(wnﬁzct

o
.
{

last-edoe = snlit (Sf(’,’

Last-e« Chie] 82

oY
next-edge = last- edge.next

loop
(next-edge, conflict) := find-ccw-conflict()

exit if next-edge = last-edge
continuation-edge == split (nexr-edge, conflicr)

if last-edge = next-edge then
last-edge := next-edge . next
end

link (next-edge, last-edge, new(face))
next-edge = continuation-edge.next
last-edge := continuation-edge

end

link (start-edge, last-edge, new(face))
end

Figure 4.7: Processing edge conflicts of site ;.

67

find-deletable (new-boundary):
find-deletable (halfedge, deletable):
if is-marked(halfedge) \V halfedge & new-boundary then
return deletable
end

mark (halfedge)

mark (halfedge.twin)

deletable := deletable U { halfedge}
around == halfedge.next

while halfedge & new-boundary A around + halfedge twin do
deletable := find-deletable (around, deletable)
around 1= around.twin.next

end

return deletable
deletable =0
for halfedge € new-boundary do

deletable = find-deletable (halfedge. deletable)
end

Figure 4.8: Identification of deletable edges when adding o;.

08

W E

Figure 4.9: Face conflicts are reduced to edge conflicts by splitting the original
face by two orthogonal planes.

—

. snrm(a) is randomly chosen within $2/{Av},

[N

o snrm(B) L v, and snrm{e) L suem(B), and
3.p€aand pcb.

We cut f into the four pieces obtained by connecting p to the nearest intersections
of the boundary of f with the circles ¢ and & in each direction. See figure 4.9
for an illustration. We label these four additional edges connecting p to four new
vertices N, S, W, E on the boundary of f as helper edges.

In this way, we have reduced the face conflict ¢ to a special case of four edge
conflicts on the edges {p, N}, {p.E}.{p.S}. and {p,W} that can be handled as
described previously.

4.4.3 Update of conflict information
Besides changing the combinatorial structure of the subdivision, the update oper-
ation adding site ¢; has maintain the conflict information associated will all ¢},

i < j < n. Basically, this update takes place in two steps:

1. During the change of the subdivision:

69

e Whenever a face f 1s split by the introduction of a new edge ¢ nto
faces f1 and f>, and there is a face conflict ¢ between f and a site 05,
J > i, there are three possibilities of how this conflict information has
to be distributed among f, and f>:

ﬂ) o ; still QGHGI'EHGS a face COﬂﬂiCt Wiﬂl f or /.
2O 2 J1 J2
b) O Qellel‘ates an €‘d9.C COI]ﬂiCt on e.

) Oj g 2

(¢) e is a helper edge, and after recoloring f; and f, with ¢; the site
o ; conflicts neither f1 nor f>.

e When a redundant edge e with edge conflicts is removed, then the sites
conflicting e are stored into a candidate set Cy of the incident face f.
Similarly, when a vertex v with conflicts to sites G}, j > i, is removed
during the merge of edge chains, these conflicting sites are also stored
into the candidate sets Cy, and Cp, of the two incident faces f1 and fa.
These candidate sets are used during step 2.

2. After updating the subdivision:

e Let f be a face, such that f.neighbor.sphere = ;. For each vertex
conflict ¢ between a boundary vertex v of f and a sphere 6, j > i,
the algorithm tests if (¢ ;(v.coordinates),s) < v.distance. If so, ¢ is
added to the set Cy of conflicting sites for f.

e For each face f, all candidates ¢ € Cy are checked against all bound-
ary edges of f. In fact, this calculation is performed only for one
of the two halfedges e constituting an edge, namely if and only if
e.data.owners[0] = e.

e Foreach face f and site 0 € Cy such that

(a) o conflicts all vertices of the boundary of f but has no edge con-
flict with any edge ¢ on the boundary of f, the algorithm checks
for a ring conflict.

(b) o conflicts neither any edge nor any vertex of the boundary of f,
the algorithm checks for a disc conflict. If f.neighbor.sphere == ¢;
and 6 = G; this amounts to checking if the S-circle scre(h; ;) ex-
ists and. if so, if its S-center is contained in f. The latter operation
requires work linear in the number of boundary edges of f.

70

4.5 Preprocessing

The previous algorithm can compute the AWV cell of a single sphere out of a
set S = {01,...,0,} of spheres. To compute the AWV cell V; for each individ-
ual sphere o;, we would have to call the algorithm n times, each time passing
n— 1 input sites as argument. To restrict the number of spheres that have to
be considered in each run, we perform a preprocessing step that identfies for
each sphere o;, 1 < i < n, of the input set § a set of neighbors N;, such that

procedure, to each AWYV cell V; there exists a corresponding 4-dimensional power
cell P(Z;), such that for all 1 < i+ j <nthe inequality ¢l (V;) Nel (V) # 0 implies
cl(P(Z)) Nel (P(X;)) # 0. Hence, we calculate N; as the set of all 6,1 < j <n,
i # j. such that cI(P(%;)) Ncl (P(X;)) # 0. Since Aurenhammer (1987) also
showed that a 4-dimensional power diagram corresponds to a 5-dimensional lower
convex polyhedron, we are left with the problem of computing the intersection

1"
H=(h.

=]

where each A; is a halfspace h; = {x € R7 : (an.x) < b;}. If we write o; =

((ci1,cipscin),ri), then we have

b, = c¢i-

To obtain the sets N;, we compute the skeleton graph G = (V,E) of H, where V
is the set of vertices of V and £ the set of edges of the polyhedron. We include a
sphere ¢ in the set V;, if there exists an edge ¢ € E such that e C cl (fiynel (f,)
where for each 1 < k < n the set f; is the facet of H with supporting plane f; =
{x € R°: (a,x) = by} or the empty set, if no such facet exists. Again, we only
consider the non-degenerate case, and define an input S to be non-degenerate, if for
each setof indices 1 < iy <Cin <1y <iy <is < ntheintersection f;; N fi, N fi; 0 fi, N
fis has Hausdorff-dimension 0, and for each six-tuple of indices the corresponding
intersection is empty. For any vertex v € V, let def(v) denote the quintuple of
indices 1 < iy < iy <13 <Ciy <is <n,suchthat fiy N fi, NV fi, O fi, O fig = {v}.

To compute the skeleton graph G = (V. E) of the polyhedron H, we implemented
the RIC algorithm as described in sections 3.2 and 7.3 of the textbook by Mulmu-
ley (1994b). Due to our non-degeneracy asswmptions, G is S-regular, i.e. the set of

71

neighbors I'(v) of each vertex v & V has cardinality 5. Effectively, the algorithm
computes the intersection of H with a sufficiently large 5-dimensional hypercube.
Hence, w.l.0.g., we can talk of H as a polytope.

Implementation note. The algorithm was implemented as static algorithm us-
ing conflict lists. The numerical predicates and computational primitives are
implemented using built-in floating point arithmetic. To increase locality of ref-
erence, intermediate data is stored on the machine stack, and dynamically allo-

cated objects are managed in a dedicated memory pool.

4.5.1 Verification of output

Since we use simple floating point arithmetic for computing the intersection H,
the implementation is vulnerable to numerical round-off errors and degeneracies.
To remedy this, we implemented a simple verification procedure that checks the
validity of the computed polytope after the algorithm has finished. Mehlhorn et al.
(1996) propose a procedure for verifying the output of an algorithm computing the
convex hull of a set of points in RY. The output O of their convex hull algorithm is
a representation of a simplicial piecewise linear hypersurface without boundary.
The verification procedure decides whether this hypersurface 1s the boundary of a
convex polytope by performing the following steps:

1. It is asserted that the surface is locally convex along all its ridges,

2. that the center of gravity o of the vertices of the output O is on the negative
side of all facets, and

3. that a ray emanating from o through the center of gravity p of any of the
facets f of O intersects only one facet, namely f.

Since our algorithm works in the dual setting, i.e. we are computing the intersec-
tion of halfspaces, we suggest the following strategy for a verification procedure
after having computed a representation G of H:

1. Verify, that the output is locally convex at each vertex, i.e. that each neighbor
w ol a vertex v &€ V satisfies the boundary equations defining v.

72

2. For any of the vertices v calculate the vector

¢ = Z Aaj.

kedef(v)

which is locally an outer normal vector at v. Verify, that for all vertices w # v

cé E crap where Yk € def(w) : ¢ >0
kedef(w)

However, we cannot just “dualize™ the proof given by Mehlhorn et al. (1996).
Specifically, the output that our algorithm generates is only a labeled connected
d-regular graph, so we cannot make the a priori assumption that it represents a
valid hypersurface. Moreover, we cannot simply apply dualization, because at this
point the concept of an interior point is not yet well-defined.

Instead, we will first prove that if an output O of our algorithm passes the tests
stated above, then we can conclude that the vertices are in convex position. The
key ingredient in this proof is the well-known Farkas-Lemma®* from linear opti-
mization, that states that a cost function x maximized at a vertex v of a convex
polytope H can be represented as a positive combination of the outer normals of
the facets incident to v. Therefore, we will partition the set of all possible direc-
tions $9~1 in such a way that we assign to each vertex v of G the set of directions
that can be represented as a strictly positive combination of the outer normals at
v. We will show that if ¢ passes the test, then these sets fit nicely together to yield
a tessellation of S9~!. This allows us to have a well-defined notion of support-
ing hyperplanes at the vertices. Finally, we may conclude that these supporting
hyperplanes indeed define the boundary of a convex polytope.

Theorem 6 (Verification of intersection of halfspaces) Let d € N, d > 0. Let
{aiti<i<n C SN a; # aj forall i # j, {bi}1<i<n CR. Let G := (V,E) be a d-
regular finite graph, where V.C RV 0 and for each vertex v € V there is a

label def (v) ¢ {1,....n} with |def(v)| =d. Forv €V define
Av) = Sx= Y cjaj where0<cjforall j& def(v)
jedef(x)
A) = A(NsTL

4Ct. Ziegler (1994), section 1.4

73

For an arbitrary but fived vertex vo €V fix xo € A{vg). The following conditions
shall be true:

1. Foreachvertexv eV the set {a;,i € def (v)} has linear rank d and (a;,v) =
b; for all i € def (v).

2. For each edge e = {v,w} € E we have |def(v)\ def(w)| = |def(w) \
def (v)] = 1.

3. For each pair of vertices v € V and w € T(v) the following holds:

(a) Foralli € def(v) we have {a;.w) < b;.

(b) For {j} = def (v)\ def (w) we have (a;,w) < b;.
4. Forall vertices v € V, v s vy the relation xo & A(v) holds.

Then G is the skeleton graph of the convex polvtope

veViedel(v)
We refer to conditions 1 to 3 as local convexity conditions. In the following ar-
gumentation, for any v € V we understand the boundary dA(v) and the closure
cl (A(v)) relative to §471.

We will prove the theorem with the help of two lemmas and corollaries, still re-
ferring to the notations introduced in the statement of the theorem.

Lemma 6 For any x € S there exists a vertex v € V such that x € cl (A(v)).

Proof: We will prove this lemma by induction on d. For d > 2 we assume the
lemma and the theorem to hold for all lower dimensions 0 < ' < d.

We will prove this lemma by contradiction. Let ¢ > 0 be the minimum dimension
such that the lemma is not true. Then there exists a direction xp € $4~1 such that
for all v € V the condition xo & cI(A(v)) holds. Let ct(x,v) = maXyeci(ap)) (¥,)-

Since V 5 0, there exist vg € V and v € ¢l (A(vp)) such that

(x0.¥) = o{xp.vp) = max oo, v).
vEY

74

y € A(vo) implies x = y, hence v € dA(vg). We represent v as

V= 2 cjaj. (4.3)

Jedef(vo)

where 0 < ¢; for all j € def (vo). Then the set Cy = {j : ¢; = 0} is non-empty.

If |Co| = 1, then only one coefficient ¢y in the representation 4.3 is zero. By dual-
ity, there exists a unique edge {vo,w} connecting vy to a neighbor of w such that
def (w) \ def (vo) = k. We might find a direction ¥’ closer to xg in A(w). If |Co| > 1,
then we could find a better direction at any of the vertices incident to the corre-
sponding “|Cy|-face” F of the polytope. However. we have to be careful since at
this point we have yet to show that indeed G represents a polytope. The idea will
be to consider the situation projected onto the affine subspace spanned by F. We

(13

will apply the induction hypothesis restricted to the projected setting, and then lift
everything back to the d-dimensional case. Formally, we have:

I. |Co| = 1: By condition 2 in the statement of theorem there exists a unique
w € T'(vp) such that def(vo) \ def (w) = Cp. Let {i} = def(vg) \ def (w),
{k} = def (w) \ def (vp) and let B = Be(v) N S/~! be a neighborhood of y
in S Let

the vectorspace orthogonal to the vector w —vq along the edge e = {vo, w}.
The orthogonality follows from condition 1 in the statement of the theorem.
By condition 3, (w—vp,a;) < 0 and (w—vp.az) > 0, so a; and a@; point
away into different directions from A. See figure 4.10 for an illustration.
Therefore, there exists € > 0 such that for all z € B we have a representation

= Y o

Jedel(vo)U{k}

where 0 < ¢; for all j € def(vo) U {k}. Let zp € B such that (xp,z¢) =
max;ep{xo,z). Since we assumed zo & cl (A(v)), we conclude 7o € A(w),
contradicting the maximality of v.

b

> 1: Let

Co

and let
Ap = {x: (a;.x) =b; foralli € D}.

7

j

Avy) A{w)

Figure 4.10: The edge e = {vy,w}, which spans the orthogonal complement of the

vector space A.

Letn,...,Mg be an orthonormal basis of R? such that span ({aj,i € D}) =

O s (M2, (Mg, x))

and let ® be the restriction of the image of ® on the first |Cyl| coordinates,
which we identify with R Let F be the component of vq in the subgraph
of G induced by the set {v € V: D < def(v)}. Let F' := (¢(V(F)),E(F)),
and let {a}}1<i<, and {bl}1<i<, be defined as

! <(I,‘. N 5C0H‘1> Ces <C?Z'3ﬂ(/> b,‘
<(”15I,H:CO{_§_1> s <C’1515T'1(/> b61

]7{ B E“U(/—H‘ <515«D§,T1|‘C0‘+1> <05|Dyvnd> .7?5][)1
|

i M)(az) H <(1,5] ,1][(70‘,,]_0 - <(l.5l 7T](/>

. .
| \aﬁiDgﬂf(‘o}-H> <f’81D|7ﬂd>

{a}1<icn and {D}}1<icy are the coefficients of the projections of the hy-
perplanes defined by {a;}1<;<, and {b;}1<;<, onto Ap, which we identified
with RI%!. Note, that F”, {al}1<icn and {bl} <<, satisfy the requirements
for G, a; and by, respectively, for d = [Cy| as stated in the theorem.

70

We factor xp by @ into image and kernel

ICo|
Xo == zcm,+ zcc()\ LA,
= =1
Since y was chosen maximal, we have ¢; > 0 for all [Cy| < i< he
induction hypothesis there exists a vp € V(F') such that
X0

_blxo) e cl(A(vp)) € RO,

o(xo) |
Note, that [|d(xp)]| = 0 would imply xg € cl(A(vg)). contradicting our as-

sumptions. Therefore, xo € ¢l (A(v)), v being the preimage ¢! (vp) € V(F)
leading to the desired contradiction and thus proving the lemma. 0

Since the previous proof works independently for every connected component of
G, we can formulate the following corollary:

Corollary 3 For any x € S91 there exists a vertex v in every connected compo-
nent of G such that x € cl (A(v)).

Lemma 7 Assume that G is connected and let v,w € V, v 54w, such that A(v) N
A(w) # 0. Then for any vertex s € V there exists a vertex t €V, s % 1, such that

A(s) OVA() # 0.

Proof: We show the lemma by proving that the claim holds for all neighbors of v.
By the connectedness of G the statement follows tor all vertices of G. Essentially,
we show that whenever we cross a part of JA(v) that is contained in A(w) into a
neighboring region A(u), then A(w) also overlaps a part of A(u).
Let R = A(v) N A(w). Then dR C dA(v)UJdA(w). Wlo.g., let e = {v,u} be an
edge such that

cl(A(v)) Nel (Au)) M A(w) # 0.
Let v € cl(A(v)) Necl (A(u)) M A(w). As in case 1 of the proof of the previous
lemma there exists an € > 0 such that

B = Be(v) NS el (A(v))Ucl (Aw).

B is the region where we “cross the boundary” from A(v) to A(u). Because y €
A(w) and A(w) is relativly open in S9!, there exists a neighborhood U of v with
U C A(w). Since y € Band y € U, and both of these sets are open, we get A(u) M
Alw) £ 0. O

77

Figure 4.11: An output satisfying the local convexity conditions essentially corre-
sponds to a surface with a winding number greater or equal to 1.

Corollary 4 Assume that G is connected and let vi,...,vi € V, v; # v; for all
1 <i< j<k such that ﬂf."__.l A(vi) £ 0. Then for any vertex sy €'V there exist
vertices $y,...,8, €V, s; # s; for all i # j, such that ﬂfm] A(si) #0.

Proof: This follows by simple induction on &k from the proof of the previous
lemma. O

The two previous corollaries imply that there exists an integer k > 0 satisfying

kg = Z a1 (A(v)),

reV
J
where wy_ | denotes the d — 1-dimensional Lebesgue-Measure and wy =]i,"i;)- is
{7,

the surface area of the d-dimensional unit sphere.

Hence, an output O of the algorithm satisfying the lTocal convexity conditions es-
sentially looks as indicated in figure 4.11.

Proof of the theorem: We will prove the theorem by showing that the set of half-

hyperplanes of the polytope H.

From condition 4 and corollary 3 we conclude that G is a connected graph. By
corollary 4, all A(v), v € V are disjoint. Moreover, also by corollary 4, if there
exists an x € S9! such that the set C == {v € V' x € cI(A(v))} has cardinality
|C] > 1, then the induced subgraph G(C) = (C.E(C)) forms a connected com-
ponent of G, and all v € C are contained in a common affine subspace given by
{{apx) = b i€ N zedef (V) }.

Let x € S A vertex v € V maximizes (x,v) if and only if x € ¢l (A(v)). This
follows from the Farkas-Lemma®, stating that a cost function x maximized at a

SCE. Ziegler (1994), section 1.4

78

vertex v can be represented as a positive combination of the outer normals a; at v,
where i € def (v).

Therefore, the h; = {{a;,x) = b;}. i € |,y def (v) form a set of supporting hyper-
planes. In fact, for any x € S9! and a vertex v € V such that x € cl (A(v)), the set
{y:{x,y) < {x,v)}isasupporting hyperplane at v. This implies that H is bounded.
Hence, we ontain V = V(H), since for any v € V(H)\ V lemma 6 would imply
A(v) =0.

Since we assumed the input coordinates to be non-degenerate, each vertex is de-
fined by a unique set of hyperplanes from the input. This implies that the edge set
E is determined uniquely by the sets def (v) ,v € V.

All in all, we have shown that

H = ﬂ ﬂ {x: {ai,x) < b}

veVicdef(v)

To show that G represents

n
H=(\h,

i=1

we have to maintain for each redundant halfspace f1;, 1 <i<n, a witnessv &€ V
such that a; € A(v). These witnesses can be obtained by a trivial modification of
the intersection algorithm.

4.6 Post-processing

At this point, we have shown how to compute an explicit representation of an addi-
tively weighted Voronoi cell. However, for practical purposes, this representation
is still not sufficient. For visualization, we have to break up the surface patches
into triangular meshes®, because the majority of current 3D hardware is limited
to accepting triangles as input. At the same time, since the cells are star-shaped, a
triangular surface mesh yields an approximation of the cell as a collection of sim-
plices spanned by the individual triangles of the surface mesh and the center of

Though there are visualization libraries appearing that can handle continuous surface patches,
such as the OpenGL Optimizer or Divect Model — actually, these hbraries perform the trian-
gulation themselves. Indeed, we would have used OpenGL Optimizer, if the first release of that
software only had been reliable enough.

79

Figure 4.12: The subdivision of the surface is triangulated, then refined to a De-
launay triangulation, which is further refined by introducing additional points.

the defining sphere. These simplices can be used to obtain a good approximation

ot the v
Ul t

-

We construct a refined constraint Delaunay triangulation describing the cell
boundary. For general background on surface meshing, the reader is referred to
the extensive survey by Bern and Eppstein (1995). This computations is done in
the following steps. see also figure 4.12:

1. In afirst step, we compute a straight approximation of the spherical subdivi-
sion representing the combinatorial structure of the cell. The main problem
to solve in this step is to guarantee that the straight approximation will have
the same topological structure as the original subdivision.

2. Then, for each face, resulting simple spherical polygons are triangulated.
We propose a very simple heuristically motivated algorithm that tries to
exploit the fact that most of the polygons in our setting are “almost convex”.
This algorithm turns out to be pretty fast in practice.

3. Using the standard Lawson-flip (1977), this triangulation is transformed
into a constrained Delaunay triangulation on the sphere. The Delaunay
property can be formulated either in terms of the parameter space, i.e. on
the sphere, or in terms of the actual surface.

4. Finally, similar to Chew (1989, 1993) and Ruppert (1995), circumcenters of
large or skinny triangles are added to the triangulation to obtain triangles
that are nicely shaped. Again, this process can be performed either with re-
spect to triangles in the parameter space or with respect to the lifted triangles
at the actual boundary of the AWV cell.

80

4.6.1 Computing the straight approximation

Let G= (V, E) denote the graph describing the spherical subdivision we have com-
puted so far. To compute a straight approximation of ©((G), we have to determine
for each edge e = {u,w} & E of the spherical subdivision how many additional
vertices vy, ..., v,(e), r(e) > 0, we have to introduce in order to guarantee that the
final approximation is topologically correct.

Definition 17 Lei e = {u,w} be an edge with a straight approximation u,
Viyeoos Vpge) W We call this approximation a & (-straight) approximation, if the
arc length along 1t(e) between any pair of consecutive points from the sequence
(m(u),m(v1),...,mw(v,), T(w)) is less than d.

Our goal is to determine for each edge ¢ € E a value o,, such that the fol-
lowing holds: For each e = {u,w} € E we fix an arbitrary §,-straight approx-
imation nt(H,). Then n(H), where V(H) = Uep V(H), E(H) = Upep E(H,),
T(V(H)) = Ueep ™V (H,)), and t(E(H)) = Upep ©(E(H,)), is a straight approx-
imation of (G).

We determine 9., ¢ € E by examining ecach pair of edges ey, ey € E that are in-
cident to a common face f € F(G) of the spherical subdivision. Let us begin by
considering two special cases:

e If ¢; and e, form a diangle, that is, they have both endpoints in common,
then we have to introduce at least one additional point on each edge.

e Letcy and ¢ denote the circles such that (e) ¢ ¢y and n(es) C ;. If both
c1 and ¢, are great circles on S7, then their approximations will not interfere
if 8¢, 0., < 5. Hence we assume that at least one of ¢y and ¢, is not a great
circle.

We distinguish the following cases:

1. ¢y and ¢» do not intersect. If ¢; and ¢y are on different hemispheres, i.e.
there exists a plane o containing the origin that separates ¢; and ¢, then any
straight approximations of e; and e¢> will not interfere as they are separated
by o Hence, we may assume that ¢y has a larger radius than ¢3. and that ¢y
1s contained inside ¢y with respect to any hemisphere containing c;.

81

Figure 4.13: Finding the arc length 8, = J,, when the two circles do not intersect.
In the left picture, we see a perspective view of the configuration. The smaller
circle ¢y is contained within circle ¢y. The cone ¥, spanned by ¢ from the origin,
intersects the plane ;. the plane defining ¢y, in an ellipse {. As shown in the right
picture, the long axis of { contains the origin of ¢|. The most restrictive constraint
on J; is given by the nearest point of { to ¢y. Hence, the arc length of the segment
of ¢ defined by the cap of height dy;,. the minimum distance between ¢ and C,
should be taken as an upper bound on ;.

Let a be an arc on a great circle on S* connecting its endpoints u,v € S2,
We call the set of all rays emanating from the origin through a point p € a
the curtain cur(a) spanned by a. Given two points u,v € §2, the curtain
cur(u, v) spanned by « and v is the curtain spanned by the shortest great arc
connecting « and v.

We will determine a value 9,,, such that for all points u,v € ¢; with an arc
distance d(u,v) < 0., we have cur(u.v) Ny = 0. Observe, that any straight
approximation of e is contained inside the cap bounded by ¢».

Let x denote the cone spanned by ¢y with its tip at the origin. Let { denote
the intersection KNy, v being the plane such that y; NS? = ¢1. According
to our assumptions, { is an ellipse. Given two points w,v € ¢y, we have

cur(u,v) Nep = 0 if and only if the segment i N { = 0.

By symmetry considerations, the long axis of { contains the origin of ¢;.
Hence, we obtain a bound for 6., by taking the arc length [of the circular
segment whose height is the distance dyy;, between £ and ¢y, which can be
easily computed using elementary geometry. See figure 4.13 for an illustra-
tion.

Figure 4.14: Finding the arc length 8; = J,, when the two circles ¢; and ¢; do
intersect in the points u and v. The hyperbolic arc / is the intersection of the

cone spanned by ¢ from the origin with the plane containing ¢;. [is the tangent

to h at u and has a second intersection ' with ¢;. &; must be bounded by the

length of the arc from u to 1. The curtain o spanned by 1 and v separates straight

approximations on c¢j and ¢; in the upper right diangle.

2

AN

c1 and ¢ have a non-empty intersection in two vertices « and v, see figure
4.14. We will only discuss the restrictions imposed on 61 = §,, due to the
presence of e;. The case for J,, is symmetric. Let B be the plane such that
BN S? = ¢y. B partitions the space and hence ¢; into two halves, one of
them containing the origin. In accordance with the picture we call the half
containing the origin the left and the other one the right half. Similarly the

Obviously, ¢ is either contained completely in the left or in the right half,
as ey 1s either contained in the upper or in the lower part of ¢. We can
distinguish the following cases:

(a) e is contained in the right part of ¢; and e, is contained in the upper
part of ¢p: Then the curtain o == cur(u,v) separates any straight ap-
proximations of ey and e2, as long as the rule for diangles is respected.

(b) e is contained in the left part of ¢; and e, is contained in the lower
part of ¢o. Then the edges imply no restrictions upon each other, since
any straight approximation of e; is in the upper part while any straight
approximation of e; is in the lower part.

(c) ey is in the left part and e; is in the upper part. Let ¥ denote the (infi-
nite) cone spanned by ¢, from the origin. Any straight approximation

83

(d)

of ey is contained in the interior of x. Let i denote the hyperbolic arc
given as the intersection of the plane defining ¢ with . A straight ap-
proximation of e; does not interfere with e; if no curtain spanned by to
adjacent vertices intersects /i. By continuity, we only have to check the
restrictions imposed on & at two locations: First, we have to look at
the apex of &, which is similar to the elliptic intersection we discussed
previously. Second, we have to check the extremal locations near the
intersections 1 and v. Precisely, let / be the tangent line at x in « within
v. Besides u, [has another intersection point u” with ¢;. The length of
the arc wu’ is an upper bound on d;.

Let us sketch the computation of «’: Let r denote the radius of ¢y, C its
center. Then every point X = (x,v,z) of x fulfills the equation

¥

F0) = X = 1 X.C) =0
C
since tan oL = |JC[where
X0 X xC]
cos QL == L L

TXTcr "= el

I

Hence, the tangent plane to x at «, which contains the origin, 1s given
by a linear equation

0 0 0
—Ff ll"H:" = ‘!I{ ?'—7@-.‘?712:: bl
Dx‘” X a},f v g fluz =0

that, together with the linear equation of y yields an expression for /.

e 1s in the right part and e is in the lower part. This 1s the same case
as before with the roles of ¢; and e, interchanged.

4.6.2 Triangulating simple polygons

In this subsection we deal with the problem of computing a triangulation of a
simple polygon on a sphere, where all edges are embedded on subsets of great
circles on the sphere. Since these polygons are contained in one octant of the

coordinate system, this problem is trivially equivalent to triangulating a simple
polygon in the plane.

There 1s a vast amount of literature devoted to triangulating simple polygons,
such as Caray et al. (1978), Asano et al. (1986), or Atallah and Goodrich (1986).

84

Figure 4.15: Proof of the existence of a triangulation of a simple polygon P. Let
wvu be a convex triangle along the boundary of P. If no boundary edge of P
intersects ww, then uw can be chosen as an edge of the triangulation, as shown in
the left picture. Otherwise, there is a vertex v/ inside this triangle that maximaizes
the distance d to the edge mw. Then, as shown in the right picture, v’ can be
chosen as an edge of the triangulation. Adapted from de Berg et al. (1997).

An optimal yet rather complicated solution running in linear time was given by
Chazelle (1990). Perhaps the most practical solution is the algorithm given by
Seidel (1991) running in time O(nlog” n). However, all these algorithms are based
on some vertical decomposition of the input domain, either implicitly in terms of
a sweep line algorithm, or even explicitly by computing a trapezoidal decompo-
sition of the input domain, from which the actual triangles are then extracted in a
second step.

Since we wanted to avoid using vertical decompositions, and considering that
almost all our polygons have less than 30 vertices, we questioned whether one of
these algorithms would be an appropriate choice for our problem. We decided to
implement a very simple heuristically motivated algorithm, that tries to exploit the
fact that most of the polygons in our setting are “almost convex”. The algorithm
is based on the well known proof of the fact that a simple polygon admids a
triangulation, see for example the textbook by de Berg et al. (1997). See figure
4.15 for a short review of this proof.

The algorithm works in three phases to triangulate a simple polygon P: an opti-
mistic phase, a cautious phase, and a “panic™ phase.

e Optimistic phase. The algorithm proceeds as if it had to triangulate a con-
vex polygon. Starting at an arbitrary edge along the boundary, the algorithm
seeks a convex corner wyie of P and pushes wir as candidate edge on a stack.

[@'e]
N

Figure 4.16: Left picture: During the optimistic phase, the algorithm walks along
the boundary and tries to push as many candidate edges as possible onto the stack.
All these edges have w as one endpoint and have their other endpoint in the cone
spanned by vw and vu. When the first boundary vertex p is reached such that wp
cannot be pushed onto the stack, the algorithm enters the cautious phase, as shown
in the right picture. All candidate edges, that are not located clockwise with repect
to wp are popped of the stack.

Then, it proceeds traversing the boundary as long as the following two con-
ditions are fulfilled:

— The current boundary vertex p is contained in the positive cone
spanned by vw and vir.

— The edge on top of the stack is located clockwise with respect to the
ray wp.

If these conditions are true, wp is pushed as new candidate edge on top of
the stack. For an illustration, see the left picture of figure 4.16.

e Cautious phase. The algorithm continues to walk along the boundary of
P, but it checks which edges have to be removed from the stack. For each
boundary vertex p, such that p is contained in the positive cone spanned
by vw and vu, the algorithm pops all edges from the stack that are located
counterclockwise with respect to wp. When the algorithm is to pop off the
initial edge wu, it enters panic mode. For an illustration, see the right picture
of figure 4.16.

o Panic mode. The algorithm continues walking along the boundary of P
until the nitial vertex w is reached again. Along its way it rethembers the

86

vertex that maximizes the distance ¢ with respect to the edge uw as shown
in the right picture of figure 4.15.

After having traversed the boundary of P, the algorithm either creates all candidate
edges that are still on the stack, or, if the stack is empty, creates the edge w' to the
maximal violator of wut. The pseudo code of this algorithm is given in figures 4.17
(optimistic and cautious phase) and 4.18 (panic mode). The following functions
and notions have not been introduced yet:

[. curtain(vertex;, vertex;) computes a an oriented plane o defining the great
circle ¢, such that both vertex; and vertex, are located on c. According to
our conventions, the normal snrm(o.) points to the left with respect to the
oriented line from vertex; through vertexs.

o

. vertex.coordinates € space tests if the embedding of verfex is contained in
a halfspace. For this notion to be well-defined, we have to remind the con-
vention that a halfspace H is defined as a set {x: (a,x) < b}, a being the
normal of the oriented boundary plane of H.

Implementation note. The pseudo code of the algorithm is simplified in that
the actual implementation decides these tests combinatorially where appropri-
ate to avoid problems of degeneracy. These might otherwise occur along refine-
ments of edges that have been (almost!) great circles in the spherical subdivi-

sion before the approximation process.

4.6.3 Computing the Delaunay triangulation

To turn the triangulation so far computed into a Delaunay triangulation, we use the
well-known Lawson (1977) flip that flips edges in the triangulation if they violate
a locally formulated in-circle predicate.

Constraint Delaunay trianglation of the sphere. Let us first define what we
mean by an arc between two points on a sphere:

v wge) . R R .
Definition 18 Let u,v € §°, u,v being not antipodal points. Then the arc uy is the
shortest circular arc from u to v within the surface S*.

triangulate-polygon (halfedge):
exit if number of edges less than 4.

Find halfedges ancor, first, and second, such that
ancor.next == first, first.next = second, and
(ancor.vertex, first.vertex, second.vertex) is a correctly oriented triangle.

push(second, curtain-plane(second.vertex, ancor.vertex)
first-space := curtain{ancor.vertex, first.vertex)
second-space ;= curtain(first.vertex, second.vertex)
iterator 1= second.next, last-edge = NIL

while iterator next # ancor A
iterator.vertex.coordinates € top.space A
iterator.vertex.coordinates & first-space A
iterator.vertex.coordinates € second-space

do
push (iterator, curtain (iterator.vertex, ancor.vertex))
iterator ;= iterator.next

end

while iterator # ancor do
if iterator.vertex.coordinates ¢ first-space A
iterator.vertex.coordinates ¢ second-space
then
while iterator.vertex.coordinates ¢ top.space do
if stack elements > 1 then
pop
else
Handle maximal violator and return, see figure 4.18.
end
end
end
iterator 1= iterator.next
end

for entrv € stack do

link (ancor, entry.edge, new face)
end
triangulate-polygon(last created edge)

Figure 4.17: A simple algorithm for triangulating simple polygons on a sphere.

88

Handle maximal violator in triangulate-polygon (halfedge):
max-value = (top.space.normal, iterator.vertex.coordinates)
last-edge = iterator, iterator .= iterator.next

loop

if iterator.vertex.coordinates ¢ first-space A
iterator.vertex.coordinates & second-space N
(top.space.normal, iterator.vertex.coordinates) > max-value

then
max-value := {top.space.normal, iterator.vertex.coordinates)
last-edge = iterator

end

iterator = iterator.next
exit if iterator = ancor
end

new-edge = link (first, last-edge. new face)
triangulate-polygon(new-edge.twin)
triangulate-polygon(new-edge)

return

Figure 4.18: Inner part of algorithm for triangulating simple polygons on a sphere.

Observe, that any arc defined in this way is a subset of a great circle on S%. The
following definitions try to transfer the corresponding definition from the planar
setting’ onto the sphere:

Definition 19 (Triangulation) Let G be a planar graph, ©(G) a straight embed-
ding of G on the unit sphere §*. Let T = (V.E) be a planar graph withV =V (G),
E C E(G) and its straight embedding ©(T), such that n(T) | = (G). If each face
induced by n(T) is a triangle then we call 1(T) a triangulation of n(G).

Definition 20 (Constraint Delaunay triangulation) Let n(G) be the straight
embedding of a graph G on the unit sphere S*. Assume that the convex hull
conv (n(V(G))) contains the origin inside its interior. Let ©(T) be a triangula-
tion of T(G). Then we call 7(T) a constraint Delaunay triangulation of ©(G) if
the following conditions hold:

1. Forall edges e = {u,v} € E we have that u and v are not antipodal points
on S°.

2. Forall edges e = {u,v} € E\E(G) let 0y be the oriented plane {x: {a,x) =
b} with normal ay, = ”—21‘— and by, = {(u.a,.). If there is another vertex
w embedded on w(w) such that (R(w).a,.y) > by, then there is an edge

¢ ={s,t} € E(G), such that m(e') cuts the great circular arcs uw resp. vw.

Note that the intersection of 0, §?% is a circle, so this definition basically spec-
ifies an in-circle test. A related definition, constraint convex hulls, was given by
Akkiraju (1996) in his thesis.

The flip algorithm, however, uses an even simpler predicate: Let abc,cbd be
two adjacent oriented triangles. Let o, be the oriented halfspace containing
n(a),n(h), and m(c) on its boundary plane, such that snrm(oyp.) points away
from the center of S°. The flip aleorithm replaces the triangles abc and chd by
ade, abd, if {bc} € E(G) and nt(d) & Ope. If all points w(a), n(bh), m(c) are con-
tained in the interior of a single hemisphere, then this criterion has the following
“in-circle” formulation: Let D denote the open disc §% M —0ype. The flip 1s per-
formed if {bc} ¢ E(G) and n(d) & D. Currently, this is the default “Delaunay
predicate” implemented in the algorithm.

TCf. Bern and Eppstein (1993)

90

Constraint Delaunay triangulation of the boundary surface. It is also possi-
ble to formulate an in-crcle predicate with respect to the actual boundary surfaces
of the AWV cell. To find a suitable definition of what a “Delaunay triangulation”
on a curved surface might be, Chew (1993) proposed to do the definition the other
way around: First define a suitable concept of what a “circle” should be, then plug
this definition in the form of an in-circle test into the flip algorithm:

Definition 21 (Chew (1993)) Given three vertices on a curved surface, consider
the infinite set of spheres through the three vertices. The centers of all these
spheres lie on a single line. We choose the sphere whose center is on the sur-
face and define the civcumcircle of the three vertices to be the set of points where
this sphere intersects the surface.

As Chew points out, the advantage of this definition is that finding the circum-
center is basically equivalent to finding the intersection of the surface with a line,
while the in-circle test is reduced to checking the distance of a vertex to the cir-
cumcenter in 3D. He notes that the normals on the portion of the surface that is
within the union of the circumecircles should not vary by more than 5. Therefore,
starting from a suitably refined triangulation, we can plug this predicate into the
flip algorithm to compute a CDT of the surface of the cell.

4.6.4 Refinement of the triangulation

The algorithms by Chew (1993) and Ruppert (1995) for refining constraint Delau-
nay triangulations are basically very simple: First, the algorithm needs a predicate
that can be applied to a triangle to tell if the triangle has to be processed further or
if it fulfills the specified requirements. These requirements can state, for example,
that the minimum angle of the triangle has to be greater than 20° and that its area
must not exceed a certain amount.

The algorithm maintains a queue of these “bad” triangles. As long as this queue
is not empty, the algorithm selects a triangle ¢ based on some strategy, such as
the largest triangle, or the triangle with the worst angle. Let ¢ denote the circum-
center of r. The algorithm tries to insert ¢ as a new vertex into the triangulation
and reestablishes the Delaunay property. However, if ¢ happens to be close to a
prespecified edge that has to be maintained, than the algorithm may decide to split
that boundary edge instead. Ruppert (1995) proposes to split such an edge e if
¢ 1s located inside the diametrical circle of e, i.e. the smallest circle containing

91

e. Chew (1993), on the other hand, suggests to split an edge only if it has to be
crossed when traversing the triangulation from ¢ to ¢.

In the present implementation, we handle each face separately and hence do not
split boundary edges. We define a triangle to be bad, if its area is greater than
a certain parameter A; and it has a smallest angle less than a parameter ®, or if
its area is greater than another parameter value A> with A> > Ay, In this way, the
algorithm is always guaranteed to stop.

4.7 The graphical user interface

To make the algorithm and its implementation described in this thesis accessible
to a non-expert audience, a graphical user interface was created. See figure 4.19
for a screen shot. Each molecule is displayed in a split frame window hosting two
panes with different views of the molecule. The tree control to the left displays
the hierarchical structure of the molecule as chains comprised of residues having
individual atoms. The window to the right shows a 3-dimensional image of the
covalent structure of the molecule. Atoms can be selected either by point-and-
click into the right window, or by selecting atomic groups in the tree control.
Having selected a set of atoms, the user can choose to calculate a graphical rep-
resentation of the AWV cells of the selected atoms, which is then included in
the graphics window. Moreover, the volumes of the AWV cells of the selected
atoms can be calculated. The volume information is captured into tables that are
displayed in separate windows. These tables can be stored onto disk for further
processing using another program, most notably a spreadsheet application such as
Microsoft Excel. Besides AWV volumes, the program can also compute atomic
volumes using Richard’s B method, the radical plane method, and, of course, the
volume of the unweighted Voronoi cells defined by the atomic centers.

A dedicated window allows the user to specify rules that radii to the specific
atoms, see figure 4.20. These rules are specified using to mappings, the first as-
signing a hybridization code to a residue/atom specification, and a second map-
ping assigning a radius to each hybridization code.

Finally, and this feature is rather relevant for applications in biochemistry, the user
can request the program cut off the computed AWV cells at a specified distance
dp. The two cells shown in the screenshot in figure 4.19 have been calculated this
way. To calculate these restricted cells, the algorithm computing the AWV cell of

92

Deépartment of. s
 Computer Science

retionl Compater Saianee.

L Vs e et W Aot e
- LIBEDB s Uit {01002 Tha Fagerdl of i Oreveriay of Calininis.

LR Res 0 R N
=

Figure 4.19: The graphical user interface implemented around the algorithm. The
right pane shows the AWV cells of two atoms that have been cut off at a distance
of 1.4A from the atomic surfaces.

r Afomic Hady
Resichis |istori _ Code | Radiis

ALA r& i3 . 210
ARG D
araCh
ARG z
ARG NE
ARG NH1

[ARG_ INHZ INC: 2 !
ASN £G Delote [Dalate f

ASH ND2 NH2

AN DT b l CRE . 2D ..'.f l
R T T e e

Figure 4.20: Setting up radius rules.

a single sphere ¢ is slightly modified in the following way: Remember that the
boundary of the projection of each bisector surface ¢ onto the parameter space S*
is a circle. The algorithm represents this circle bounding the domain of ¢ using an
oriented plane. The set of points

{xeo: d(x.0)=dn}

is also either empty or a circle. Hence, by adjusting the planes used to trim the
domains of the bisector surfaces, the algorithm can compute the intersection of
the AWV cell V(o) with as sphere (¢g.r6+do).

Conclusions

In this chapter, we have described the implementation of an algorithm for com-
puting AWV cells. We chose an engineering approach to this problem, trying to
focus on a practical solution that could be implemented with a reasonable effort.
We incorporated this implementation into an intuitive graphical user interface for
application by non-expert users.

When working on the implementation, we found it very surprising that the area of
meshing, something we considered as trivial post-processing in the first place, still
lacks a rigorous understanding as soon as our input is more complex than a planar
straight line graph. Considering the numerous possible applications of meshing
algorithm ranging from numerical mathematics to computer graphics, we believe
that designing meshing algorithms for non-linear input in non-planar domains will
remain an important and active area of research.

94

Chapter 5

Practical considerations and
experimental results

In this chapter, we want to examine how our approach to computing AWV cells
behaves in practice. We will focus on two central issues. In the first part, we will
take a close look at the combinatorial complexity of the individual AWV cells as
they arise from computations on biological macromolecules. Of special interest
will be the relationship between the combinatorial complexity of an AWV cell
and the combinatorial complexity of the corresponding 4-dimensional power cell
as given by Aurenhammer’s lifting procedure.

The second part of this chapter is dedicated with questions related to numerical
robustness and computational resources required by our implementation. After a
short overview of different approaches relevant to deal with numerical errors and
degenerate input configurations, we will present and discuss the engineering ap-
proach we chose for our implementation. We will provide experimental evidence
to provide a profound argumentation in favor of this decision.

Additionally, we will describe our experience with other approaches to compute
AWYV cells: We will describe the behavior of an implementation the direct ex-
traction of an AWV cell from its 4-dimensional power cell, and we will describe a
simulation of the numerical behavior of a vertical decomposition approach to com-
pute the spherical subdivision describing an AWV cell. Moreover, an appendix
provides detailed information on the setup used for the experiments reported in
this chapter.

95

5.1 Cell complexities

In the previous chapters, we related the running time and space requirements of
our algorithms to the combinatorial complexity of the computed cells. Therefore,
we begin by examining the complexities of AWV cells as they arise in the intended
domain of application. All the results to be presented in the following discussion
have been derived from a distinct set of 10 molecule entries selected from the
Brookhaven Protein Data Bank (PDB)' having a total number of 17196 atoms.
Detailed information on the choice of these entries is provided in the appendix of
this chapter.

First, we will examine the distribution of the combinatorial complexities of AWV
cells as defined by these data sets. Then, we will relate these values to the loca-
tion of the atoms within the molecule, that is, if the defining atom of the cell 1s
located on the outer surface, on the surface of a cavity or in the interior of the
molecule. Finally, we will look at the ratio of the combinatorial complexity of the
4-dimensional power cell of an atom as defined by Aurenhammer’s lifting proce-
dure divided by the combinatorial complexity of the AWV cell. We will see that
this ratio is related to the radius of the defining atomic sphere.

5.1.1 Overall combinatorial complexity of AWY cells

The following statistics were obtained by processing the specified data sets with
the implementation described in the previous chapter. After each computation of
acell Vi, 1 <i<n,n the number of atoms of the molecule, the total number of
combinatorial vertices nV ,xdoes n] "and faces n F> together with the identification
of the defining atom were recorded. We point out, that faces refined by helper
edges were glued together for this counting. We write

#AWV, = 71‘, o nt‘EI/) -+ ng)
for combinatorial complexity computed in this way.
Figure 5.1 shows the distribution of the overall complexity of the AWV cells as
defined by our data sets. We consider the smoothness of this graph to be a strong
indicator of the staistical relevance of the results.
The average value of the overall combinatorial complexity of an AWV cell we
computed a value of 82.17. Only 39 out of all 17196 cells, that is less than 0.227%,

"The main site of the PDB is currently located at hittp: / /www.rcesb.org/.

96

Distribution

\‘

P2 n
Voo oD b
- Vv i) &

S LB

o @ c{” n} \:,\ (\Q) Q(o 3 G C)'\'

&
S . -
o G by ov

o % Ny) o
: 2 AT AT T T 6y
L C

Q0 7 %7 o " 3 o
oG O I R R R
I A o L DA N - =Y SN NN

Faces

Figure 5.1: Distribution of the total complexities of the AWV cells as defined by
our sample data set taken from the PDB.

Type | Atoms Average Std. Dev.
Internal | 13252 86.58 36.90

Cavity 550 71.61 19.62
External | 3121 6491 20.63

Table 5.1: Dependency of the average overall combinatorial complexity of AWV
cells on the location of the defining atom.

have more than 200 faces. The most complex cell has 266 faces, the simplest
cells are lens-shaped with 3 faces of all dimensions — two 2-dimensional faces
separated by a closed edge. From a practical algorithm designer’s point of view,
it is therefore admissible to assume AWV cells arising in the application domain
have rather moderate combinatorial complexities.

An interesting question is if there is any relationship between the combinatorial
complexity of an AWV cell and the location of the defining atom within the
molecule. Using the classification as defined by Kleywegt and Jones (1994), we
labeled each atom either as surface, cavity or interior atom. An interior atom is
an atom that cannot by touched by a probe sphere of radius R = 1.4A, the radius
of a water molecule, without the probe sphere intersecting any other neighboring
atomic sphere. A cavity atom is an atom that can be touched by the probe sphere,
and that is bounding a compartment of space that either already is closed of the
external solvent volume, or that would be closed off, if the atomic radii were to be
increased. The remaining atoms are external atoms.

Table 5.1 shows how the overall cell complexity relates to the location of the defin-

97

Distribution

T

:

& 3 P
¢ PR S S L
\d AR &8

Ll

Facesg

Figure 5.2: Distribution of the total complexities of the AWV cells of cells defined
by internal atoms.

Distribution

Faces

Figure 5.3: Distribution of the total complexities of the AWV cells defined by
cavity atoms.

ing atom within the molecule. The average complexities of cells whose defining
atom is located on the surface of a cavity and those located on the outer surface
show an average complexity of 71.61 and 64.91, respectively, values that are sig-
nificantly lower than the overall average value of 82.17. See also figures 5.2, 5.3,
and 5.4.

Observe, that for interior atoms, the following argument gives a con-
stant worst-case upper bound on the combinatorial complexity of the cell.

Halperin and Overmars (1994) give a similar argument to bound the complexity
of the description of the solvent accessible surface of an atom.

Proposition 8 Let M = {1, on} be the collection of atomic spheres of a

molecular model. The combinatorial complexity of a single cell V(G), 6 € M,

98

Distribution

Faces

Figure 5.4: Distribution of the total complexities of the AWV cells defined by
external atoms.

i.e. the total number of vertices, nodes and faces incident with V(G), ¢ being a
sphere taken from the interior of M, is bounded by a constant depending on the
radius R of the probe sphere, the minimum distance dyi, between atomic centers
and maximum radius rmax of all atomic spheres.

Proof: Let T = {te M: cl(V(c))ncl(V(1)) 0}. Since o is interior, we have
d(cs,T) < 2R+ rmax. Which implies ¢ C Bygo,,) (¢g) for all T & T. Since
d(ci,cj) > dpin forall 1 <i# j<n, we get

7| < (i@>
dmi n '

Yet, we see that cells not located in the interior of the molecule tend to have even

J

lower complexity, decreasing with the amount the defining atom is exposed.

We also found a relation between the atomic radii and the cell complexity. Smaller
atoms tend to have less complex AWV cells, and especially the least complex
cells are the lens-shaped cells that occurred around the atomic spheres of smallest
radius, namely the hydrogen atoms.

5.1.2 Relation between AWYV cells and 4D power cells

Leto; and 0, 1 <i# j <n,be two distinct spheres from the input data. Lemma 1
implies that whenever V; and V; have a common face then so have the correspond-
ing power cells P; and P; obtained by Aurenhammer’s lifting procedure. However,

99

2500

2000

1500

1000 v

500

|

Faces of power cell

0 50 100 150 200 250 300

Faces of Johnson-Mehl cell

Figure 5.5: Complexity of power cell used in lifting construction versus actual
complexity of additively weighted Voronoi cell.

the opposite direction of this implication is generally not true. Therefore, an in-
teresting question 1s the relation between the combinatorial complexity #AWV; of
an AWV cell and the combinatorial complexity #PC; of its corresponding power
cell. As shown earlier, from the theoretical point of view, both a 4-dimensional
power cell as well as a 3-dimensional AWV cell can realize up to ©(m?) faces of
all dimensions, if m is the number of neighbors.

To examine this relation between #AWV; and #PC;, we modified our implementa-
tion to record these two values for each cell computed for an atom of our specified
data set. Figure 5.5 shows a plot relating these two numbers for each cell com-
puted. Of primary interest was the ratio p; = pecl-. We computed an average
value p of this ratio as p == 6.486. As we can see from the plot, the dependency
of #PC; as a function of #AWV; is not simply linear. In fact, in the figure a least
squares fit of degree 2 is shown. The fit is approximately the function

However, a per-se quadratic relationship between these two numbers seemed to
be rather inprobable. As it turns out, the atoms showing the largest values of p;
are all hydrogen atoms, whose AWV cells have very few faces but whose power
cells have a rather average complexity. Table 5.3 on page 101 shows the data for
those cells with the highest ratio p;. To make the dependency of the complexity
ration on the atomic radius even more explicit, we identified all atoms with p; > p
and sorted them by their radius. Table 3.2 gives the counts we obtained for the
individual atom types.

The zinc ions (ZN) have to be treated as special case: ZN does not occur as part

100

Element Radius Count
H 0.70 5064

C 1.38 222
S 1.55 3
ZN 2.10 2

Table 5.2: Counts of cells with an above average ratio of p; sorted by their element
type.

AWV cell Power cell

Vertices Edges Faces Total | Vertices Edges Ridges Facets Total
0 1 2 3 127 254 159 32 572
0 1 2 3 119 238 150 31 538
0 1 2 3 112 224 142 30 508
0 1 2 3 105 202 127 28 462
0 1 2 3 80 160 103 23 366
0 1 2 3 75 150 97 22 344
0 1 2 3 72 144 92 20 328
0 1 2 3 60 120 79 19 278
2 3 3 8 144 288 178 34 644
2 3 3 8 141 282 177 36 636

‘Table 5.3: Atoms with the highest ratio of the complexity of the power cell versus
the complexity of the additively weighted Voronoi cell. All atoms are hydrogen
atoms from the interior of the molecules.

of an amino acid. Rather, these ions are located in very specific chemical and ge-
ometric environments. Obviously, the ratio depends highly on the radius of the
defining sphere. Or, putting it the other way around: The combinatorial complex-
ity of a power cells #PC; depends much less on the atomic radius than does the
combinatorial complexity #AWV; of the corresponding AWYV cell.

5.2 Numerical behavior and robustness

All previous discussions about geometric computations were based on two sim-
plifications: First, we assumed that we could perform exact computations over
the real numbers that could be evaluated at unit cost per operation. Second, we

101

imposed certain non-degeneracy conditions on the input data. However, real com-
puters can perform only arithmetic of finite precision at unit cost, and degenerate
input data does occur in practice. In this section, we will discuss different ap-
proaches to deal both with the limitations imposed by real world hardware and
the problems posed by degenerate input data. Schirra (1998) gives an up-to-date
survey on robustness and precision issues in geometric computations.

5.2.1 Exact computation

In implementations of geometric algorithms, exact arithmetic over the real num-
bers is commonly replaced by using the machine’s finite precision floating-point
arithmetic. In fact, most workstations and personal computers on the market to-
day provide hardware implementations of floating-point operations as defined by
the IEEE 754 standard®. Goldberg (1991) gives a thorough introduction to TEEE
floating-point arithmetic. Yet, floating-point computations suffer from numeric
round-off errors that can lead to incorrect results or even may crash the algorithm
due to internal inconsistencies.

More precisely, most geometric algorithms can be formulated in terms of purely
combinatorial objects and operations in conjunction with certain Boolean predi-
cates, that are sign evaluations of functions in the coordinates of the input objects.
When discussing our algorithms, we already made these predicates explicit. Eval-
uation of these functions in the input coordinates using floating-point arithmetic
may lead to the situation that the sign of the corresponding value is not determined
correctly. A wrong branch of the program -— compared to an ideal implementa-
tion using exact arithmetic — might be taken, leading to undesired behavior such
as wrong results or even program crashes and “core dumps”.

We define an implementation of the geometric predicates to be exact if at each step
the same decision is taken by the implementation of the algorithm compared to
the theoretical counterpart formulated over the real numbers. Note, that this does
not imply that for all numerical values exact representations have to be computed.
In the following, we give a brief overview of techniques proposed to implement
exact computation on existing computer hardware.

2Cf, IEEE (1983)

102

Exact representations

Infinite precision libraries for integer and rational arithmetic. A large num-
ber of geometric predicates used within computational geometry algorithms are
purely rational expressions. In fact, typical textbooks on computational geome-
try exclusively deal with problems whose geometric primitives can be written in
terms of -+,—,x,/ and sign determinations. Since a rational number can be rep-
resented as an integer, library packages for computing with arbitrary long inte-
ger numbers can be used to provide exact implementations of these predicates.
Common libraries are BigNum by Serpette et al. (1989), GNU MP?, PARI by
Cohen (1993), or the integer and rational number types of the LEDA li-
brary, see Mehlhorn and Niher (1998). Of these packages, PARI and GNU MP are
tuned for applications in computer algebra. For most problems, it is even possible
to avoid division operations by embedding the Euclidean problem into projective
space*. In this case, the geometric predicates can be formulated as taking the sign
of the evaluation of a multi-variate polynomial.

However, the evaluation of geometric predicates implemented in this
way is much more expensive than using built-in floating-point arithmetic.
Karasick et al. (1997) report a slowdown factor of up to 10000.

Compiled multi-precision code. Fortune and van Wyk (1996) noticed that the
bit-lengths of the integers involved in geometric calculations are rather small com-
pared to those arising in computer algebra. For this reason, they developed a pre-
processor LN (“little numbers™) specifically designed to generate exact implemen-
tations of geometric predicates. Input to LN is a description of the input data types
in terms of coordinates and bit-lengths, and the formulas defining the intermediate
results and predicates the user wishes to compute. In a first step, LN computes for
each expression the required maximum bit-length. Then, LN generates program
code that evaluates the expressions using the required number of bits. LN also in-
troduces several optimizations such as static floating-point filters (see below) and
overlapping representations of intermediate results.

However, LN is not generally available and it has never been developed up to the
point to be useful for a general audience. For further experience with LN see the

YGNU MP 2 was finished and released by TMG Datakonsult, Sodermannagatan 5, 11623
Stockholm, Sweden, in cooperation with the IDA Center for Computing Sciences, USA.
*Cf. Stolfi (1991)

103

paper by Chang and Milenkovic (1993).

Modular arithmetic. Bronnimann et al. (1997) describe an approach to com-
pute the sign of an integer number using the Chinese remainder theorem?. Let

mi,...,my be a collection of pairwise relatively prime natural numbers, let m =
H{;l m;, and assume that m is even. Then the system of modular equations

of Bronnimann et al. (1997) for computing the sign of a large integer number x is
to compute an approximation of the value

X }I‘: (x;w;) mod m;

T

using a fixed number of b bits, where v; = m/m; and w; = vfl mod ;. The authors
give an error bound ¢; depending on b and k. They show that either |S] > ¢;, which
implies that the sign of S is the same as the sign of x, or that |x| < TT*= m,, in which
case the computation can be reduced to the case k — 1. The authors implemented
two extended versions of this basic method to compute the signs of determinants
with integer coefficients. They report that these methods perform well compared
to LN, especially if |x| is small.

It has been observed repeatedly, that in most cases when the error in evaluating
a geometric predicate exceeds the computed value, then the actual value is really
zerod. Computer algebra systems routinely apply modular arithmetic to evaluate
and check integer equalities’. Hence, it might make sense to check first for x = 0
before going into the approximation loop. Yet, the main disadvantage of using
modular arithmetic is the fact that an implementation is rather involved.

Representation of algebraic numbers. If the geometric predicates not only in-
volve the four arithmetic operations +.—,x,/ but also require the computation of
roots, then more sophisticated techniques have to be applied to realize an exact
implementation of the predicate. A general technique originating from computer

SCf. Lang (1992)
Cf. Schirra (1998)
TCt. Geddes et al. (1992)

104

algebra is to implement an algebraic number system, where each number is rep-
resented by its defining minimal polynomial and an isolating interval®. The afore-
mentioned arithmetic operations can be expressed using subresultants, and the
separating intervals can be refined using binary search.

However, the bit-lengths of the polynomial coefficients arising in this representa-
tion can be very large”. A more practical approach is a kind of “simulation” of the
subresultant evaluations, and to compute only separation bounds for numerical
approximations of the numbers. This has been done in Real/Expr and the LEDA
reals, and will be described in more detail below.

Exact computation on the sphere. Andrade and Stolfi (1998) presented a
framework for performing oriented geometry on the sphere. They devised a
scheme to compute the orientation test on circles on the sphere (see equation 4.2
on page 57) using integer arithmetic, given that all input circles are defined us-
ing integer coefficients. Andrade also implemented these predicates in Modula-3
based on the GNU-MP library. If all input coefficients have a maximal bit-length
b, then we calculated a required bit-length of 10b+ 14 to evaluate the orientation
predicate. As we will see in the next section, we have » > 50 for our implementa-
ton.

Adaptive computations

Adaptive or lazy approaches try to deliver exact results with minimal computa-
tional effort. Hence, these approaches choose a costly high-precision evaluation
of a predicate only after checking that a cheaper method could not give the right
answer. This laziness can speed up geometric computations significantly.

Floating point filters. The idea of a floating-point filter is to use floating-point
arithmetic to compute the predicate. However, contrary to a naive implementation,
the absolute value of the computed approximate result is compared to an error
bound. When the absolute value is outside the error interval, then the sign of the
floating-point approximation is known to be the exact sign. If the absolute value is
within the error interval, then a more expensive method has to be used to evaluate
the predicate.

8Ct. Loos (1983), Mishra (1993)
°Cf. Mishra (1993)

Implementations of floating-point filters vary in the type of error bounds used.
In the simplest case, the error bound is derived from a static worst-case analy-
sis of the predicate. This is, for example, the approach implemented by the LN
Preprocessor.

Another approach is to compute the error bound dynamically at run-time using
the well known equations to compute numerical round-off errors. If the machine
presicion is denoted €, then the bound error(¢) of a floating-point expression ¢
can be computed recursively via

error(a ©b) = error(a)-+error(b) +¢ela® b|
error(a®b) = error(a)|b|+error(b)|al +ela® bl (5.1)
+error(a)error(b)
error(sqrt(a)) = ey/a+/error(a)

If these bounds are computed using floating-point arithmetic, then additional
correction factors of the form (1-¢) have to be taken into account after each
floating-point operation. For IEEE double precision arithmetic, we have € =
2753 Floating point filters of this kind have been implemented in LEDA or by
Fortune and Van Wyk (1996).

Lazy evaluation schemes. Shewchuk (1996) suggested an adaptive evaluation
scheme that reuses the results from an evaluation with a lower precision in the
computation of the next, more precise evaluation of the predicate. He implemented
an adaptive evaluation scheme for planar sidedness and in-circle tests using the
multiprecision techniques proposed by Dekker (1971) and Priest (1991). This ap-
proach can be seen as a hand-tuned approach to creating predicate implementa-
tions similar to those generated by LN.

Numerical approximations based on separation bounds. As mentioned ear-
lier, it is possible to provide a complete implementation algebraic number fields
when roots have to be calculated. Each number o is represented by its mini-
mal polynomial py over the rational numbers and an isolating interval identi-
fying one root of py. Since the algebraic operations to compute these polyno-
mials are rather involved, another approach has turned out to be quite practi-
cal: Instead of trying to compute the algebraic representation, the implementation
computes a high-precision floating-point approximation. The required precision,

106

however is derived from root separation bounds that essentially capture the de-
gree and complexity of the algebraic representation that would have to be com-
puted!”. To compute the approximations, the dag (directed acyclic graph) describ-
ing the expression is stored as a data structure, and it 1s evaluated operator-node
by operator-node as required. Combined with filters using built-in floating-point
operations only, this approach has been implemented in the library Real/Expr by
Dubé et al. (1996), and as the number type leda _real contained in the LEDA
library, see Burnikel et al. (1996).

5.2.2 Degenerate configurations

Fortune (1989) requires an algorithm to always compute the correct topology,
which means that the algorithm must cope with all possible degenerate input data.
Note, that exact computation is a prerequisite to detecting and handling degenerate
configurations.

However, very often the combinatorics of dealing with all possible degeneracies
turns out to be rather complicated. Then the implementation of the algorithm
might gain significantly from the simplifications achieved by the assumption of the
input being in general position. Hence, a large number of techniques to remove de-
generacies from the input have been proposed. On the other hand, Burnikel (1996)
shows in his thesis how to implement algorithms for planar Voronoi diagrams and
line segment intersections that cope with degenerate configurations.

Symbolic perturbation schemes. A very popular approach to deal with degen-
erate configurations is to a apply a symbolic perturbation, effectively changing
the input coordinates by an infinitesimally small amount €. All intermediate re-
sults are then elements of the field Q(¢). Symbolic perturbation schemes were
introduced to computational geometry by Edelsbrunner and Miicke (1988), and
have been refined and extended by Yap (1990), Emiris and Canny (1995), and
Emiris et al. (1997). These techniques require exact evaluation of the geometric
predicates. The major objective against using symbolic perturbation schemes is
the fact that these algorithms do not compute the topologically correct solution to
a specific instance of the geometric problem, but rather the solution of the limit
e— 0.

10CF, Burnikel et al. (1997)

107

Numerical perturbation of input data. In the context of computing van der
Waals surfaces of biological macromolecules, Halperin and Shelton (1997) pro-
posed to perturb the input data numerically to avoid degenerate configurations.
This approach is viable since the geometric coordinates are imprecise estimates
obtained from statistical measurement procedures. Hence, a perturbation within
the accuracy of the measurements does not harm.

Other approaches. Fortune (1989) calls an algorithm parsimonious, if the al-
gorithm never evaluates a geometric predicates whose value can be deduced log-
ically from previous predicate evaluations and the axioms underlying the domain
of the algorithm. A parsimonious algorithm can never reach an inconsistent state,
even if the predicate evaluations would be replaced by a random process, since for
each branching taken by the algorithm a set-theoretic model m can be created. A
model can be identified with a concrete geometric input, such that the branching
taken by the algorithm corresponds to the branching that the algorithm would have
reached if 1t had been processing the model m as input. Knuth (1992) presents a
parsimonious algorithm for computing planar convex hulls that is derived from
the well-known lower bound construction on the number of comparisons needed
for sorting.

Sugihara and Iri (1994) provide a conceptually similar approach they call topolog-
ically oriented, where the model theoretic view is somewhat relaxed. For example,
their algorithm for computing planar Voronoi diagrams is guaranteed to produce
a planar graph yet the embedding computed by the algorithm may actually be
non-planar.

Also quite stmilar, Schorn (1991) proposes what he calls an axiomatic approach,
that modifies the problem to solve in such a way that a convenient axiomatic
system can be found. For example, instead of computing the closest pair of a set
of points, he rather devises an algorithm determining only the smallest distance
between any two points from the set.

5.2.3 The implemented strategy

To decide for a specific strategy to deal with numerical precision and degeneracy
issues, we first formulated a number of premises:

. Out software is intended to be run routinely on large data sets. Therefore,

108

machine-provided arithmetic should be exploited as much as possible.

2. Within a molecule, the spheres are more or less evenly distributed. Taking
into account experience gained from earlier implementations, we decided
that numerical problems would occur only seldomly.

3. The proper identification and representation of degenerate configurations is
of no importance to the intended applications.

4. As already noted by Halperin and Shelton (1997), molecular data is gained
from experiments and henceforth inaccurate data. Small changes of the co-
ordinates within the error of the physical measurements preceding the cal-
culations are acceptable.

5. The implementation of the numeric predicates should be kept as simple as
possible, since already the combinatorial part posed challenging implemen-
tation problems.

From these premises, we decided for the following strategy: In our implemen-
tation, all predicates are implemented using the built-in double precision IEEE
754 arithmetic provided by the underlying hardware. However, all computations
influencing the branching of the algorithm are performed with a dynamic error
analysis according to equations 5.1. Additional correction factors account for the
fact that the error bounds themselves are subject to round-off errors. See figure
5.13 on page 121 for an excerpt of the actual implementation. Whenever a branch
decision is taken, the actual value is compared against the computed error bound.
If the implementation cannot guarantee the correctness of the taken branch, then
an exception is thrown by the algorithm. Obviously, the implementation cannot
distinguish degenerate configurations from round-off errors.

The exception handler is located in the outermost loop controlling the computa-
tion of the individual cells. When an exception occurs, the computation of that
specific cell is aborted and all data computed so far for this cell is thrown away.
A small numeric perturbation within the precision of the data is applied, and the
computation for that specific cell s started again.

5.2.4 Structure and precision of input data

A common format used for the representation molecular structures is the
Brookhaven Protein Data Bank (PDB) format. A PDB data record describing a

109

single atom within a molecule has the following format:

ATOM 27 0Ob ARG 1 ~=9.145 -~0.560 11.890 0.00 2.69

The first number specifies the sequential number of the atom within the molecule,
the second number specifies the number of the residue. The next three numbers
are the atomic coordinates in A. Since natural molecules are of limited size, we
can assume that the coordinates of all other atoms relevant to the computation of a
single cell are contained in the interval [—128.000A, 128.000A) around the center
of the atom of interest. Hence, b, = 17 data bits and one sign bit are sufficient
to store the input coordinates after translating the center of the atom whose cell
is to be computed to the origin. The radii are all bounded by 8.0A, and they can
be represented using b, = 13 bits. In fact, as we will discuss in the next chapter,
for practical purposes the region of interest around an atom is typically restricted
even more.

As we have shown in chapter 2, for a sphere ¢ of radius 0 centered at the origin
the equation describing the projection of an edge generated by two neighboring
spheres 6; = (¢;,r;) and 6 = (¢;,r;) within the spherical map is given by the
equality

<é7»i,_j>p> = b;;, where
wy = (G =i (@)

2 o L. . - .
¢, k=1, J, 18 strictly positive, as is ;f Therefore, we have

ai;l <2 (21"” : 2”’(!) = 23l = 952
bl < 2 (22/’5 -Qb') — 23betbrtl - 48,

Hence, we can store the coordinates of the defining planes of an edge of the spher-
ical map exactly using double precision [EEE 754 floating-point numbers.

All further computations of the geometric objects according to the formulas as
given in previous chapters are performed with the dynamic errot analysis as shown
in Figure 5.13 in the appendix of this chapter.

Figure 5.6 shows the distribution of the relative errors when running the algo-
rithm on the specified test data set. The algorithm shows a very nice behavior
with respect to the distribution of the numerical errors. Only about once every 300

110

1000000

100000 -

g

) 10000

q

-

] 1000

=)

el

t)‘ 100 b
10 - Ld
14 e } 5

Bl sptierical Map

Relative error [-log]

Figure 5.6: Distribution of numerical errors using ordinary IEEE 754 floating-
point arithmetic. Both the relative error and the distribution of the error values in
sign comparisons are plotted using a logarithmic scale.

cells an exception triggering the numeric perturbation has to thrown. These results
demonstrate very clearly the suitability of our approach to computing AWV cells
in practice.

5.3 Running times

We compared the running time of our implementation with two other alternatives
and collected the results into table 5.4 and figure 5.7:

I. doubleis the algorithm using built in IEEE double precision numbers with
significants of 53 bits.

2. filter is the algorithm compiled using the code for dynamic error analy-

~

sis as shown in figure 5.13.

L

leda_real is the algorithm compiled with the corresponding data type
from the LEDA library'!.

In all cases, the underlying implementation is precisely as described in the previ-
ous chapter, and only the arithmetic base type employed by the geometric primi-
tives is changed.

UCE. Burnikel et al. (1996)

2

000 -

1,500 forem)

ialiowﬂjl.e

Rfilter

Time [s]

_ -1 }= |Bleda real

ietd reey ibla

Figure 5.7: Running times for computing additively weighted Voronoi cells using
different types of arithmetic.

In addition, we tried to use floating-point filters similar to leda_floatf!?,
which also perform a dynamic error analysis at runtime, but are much simpler
than the code shown in figure 5.13. As it turned out, the bounds computed by
these filters were so bad that not a single cell could be computed without the
filters signaling a numerical underflow!?. This mismatch of the error bounds is
caused by the high polynomial degree of the predicates to be evaluated.

As we can see, the dynamic error analysis imposes an overhead of about 25%
compared to the simple floating-point implementation. The implementation using
leda._reals, on the other hand, is about six times slower, since the expression
dags of our predicates are rather complicated, and they have to be built up and
destroyed for each single evaluation.

5.4 Experiences with other approaches

5.4.1 Extracting an explicit representation using Aurenham-
mer’s method

As mentioned earlier on page 14, we could not find a reference to a previous
implementation of an algorithm extracting the geometry of an AWV cell directly
from the corresponding power cell. Hence, we provided our own implementation

2Cf. Mehlhorn and Niher (1994)
HWe emphasize that Leda_fLoat £ is different from the dynamic error analysis used internally

by leda_real. leda.floatf is used in the planar line sweep algorithm of LEDA.

112

9L9.8 €09 68°608C1 | €¥9L1 €Tl 68 P09C wa.mﬁ LLSTIT | T9LYD TBIOL
OF'€68 86'S LST8IT 8LC8I CTTL €59 Forl £0°59¢ et Piqi
16688 €09 ¢1'19L1 LL6LT TT1T 9L6SE 0S¥l 167160 | 6L6I Aa0]
79°8L8 909 11'¢€9¢51 LS LLY €T 1661 eotl €8°LST | OLLI P1o]
9'1L8 09 9TSOSI S69L1 €T 0960¢ 0cvrl 0T 6¥FC | LTLI 1ugy
91'CL8 809 06898¥%1 6E°SLL TUlT 66'L6T 90 vl SLPYT | 6691 qudg
89PP8 S6'C 6T9VI1 LO1LT 1TT 96°C¢T L3IV CST61 LS¢] qee|
6£°6E8 809 LIVIOL 00°1L1 STT 09L0C CELElL 107991 1Ay 191
0L088 S09 097C06 SY'ELl €T 90 P81 0S0rl LO'6YI 1901 g
TLSE8 109 967¢99 6C0LT TTT 1Tsel LO6EL CTF 011 6L tly
B 9128 L6'S £¢'€8S oOrT'eLl ST LLTCI P1°8¢l ¥6'L6 60L jdey
[sw] 27 oner [s]owiry | [sw]?r onvr [s]owiy | [sw]7p [s]ouny | swoly gdd
Te2I RePST T893 7T a1gnop

Table 5.4: Running times for computing additively weighted Voronoi cells using

bR

different types of arithmetic. The columns labeled “ratio” contain the ratio of the

point

O
&

lementation using built-in floatin

running time compared to the naive imp

numbers.

Figure 5.8: Result of direct extraction of an additively weighted Voronoi cell from
its corresponding power cell. The additional hyperbolic arcs are artifacts from the
elimination process used to solve the equation systems. Moreover, the numerical

HAS S S UN

sensitivity of the elimination process is visible

of an algorithm along the outline given on page 38.

A typical result of applying this algorithm is shown in figure 5.8. For reference, the
same cell computed by the implementation as described in the previous chapter is
shown in figure 5.9. Distinctive features are:

e First, we can see many additional arcs within the individual faces of the
cell. These arcs are artifacts from the elimination process and inherent to all
variants of cylindrical algebraic decompositions. Of course, it is possible to
glue suitable patches together in a post-processing step.

e Second, we can see from the glitches and imprecisions that the algorithm
suffers from numerical errors when implemented using floating-point arith-
metic. We performed a dynamic error analysis to verify this claim. The re-
sulting error distribution is shown in figure 5.10.

e Concerning running time, our implementation of the direct extraction
method is definitely not competitive with the algorithm from the previous
chapter. To achieve a running time within the theoretical worst-case bound,
we have to compute a triangulation of the power cell and then call the ex-
traction algorithm for each simplex. However. due to the numerical prob-
lems which already showed up in the simple setting, the more advanced
approach does not appear to be viable: We were not able to compute a
single cell without significant errors using floating-point atithmetic. This
observation is what was to be expected, since the coefficients of the addi-

114

Figure 5.9: The same cell as shown in figure 5.8 computed using the algorithm
based on spherical maps described in section 5.3. The cell is shown within the
molecular neighborhood defining its shape.

tional planes introduced in the triangulation process are 4 x 4-determinants
in 4 x 4-determinants of numbers from the input data.

As a preliminary result, the algorithm performing the triangulation needs
about 2 minutes for the cell shown in the picture (yet, of course, producing
significant errors in the output). So even if the numerical issues could be
solved, it is doubtful if the running time could be lowered by a significant
factor.

1000000

100000

Distribution Ippm}
=
o
(=]

[Elsminazwn 247445502

Relative error [-~log]

Figure 5.10: Distribution of numerical errors when computing the cell shown in
figure 5.8 using floating-point arithmetic. Both the relative error and the distribu-
tion of the error values in sign comparisons are plotted using a logarithmic scale.

115

5.4.2 Simulating a vertical decomposition scheme

To examine the influence of a vertical decomposition scheme on the numerical
sensitivity of the algorithm, we compared our previous results with the following
variant of the algorithm: Again, we assume the sites G1,...,0, to be given in
random order:

1. Initialization: Construct an initial spherical subdivision Py by cutting the
.) . s
unit sphere S- with the three coordinate planes x =0, y=0and z =

Compute initial conflict information between each vertex, edge and face of
Pyandeachsite 5y, 1 <i<n.

(S8]

Incremental step: For each 1 == 1...n perform the following operations:
o

(a) Create new edges due to edge conflicts generated by ;.
(b) Remove redundant old edges which no longer separate different faces.
Rejoin chains of edges into single edges.
(c¢) Create new edges:
i. Process disc conflicts generated by 6;.
i1. Process ring conflicts generated by ;.
(d) Update conflict information.
(e) Let E; be the set of all end vertices and vertical tangencies of edges in
P,. Construct a tree T; containing all elements from E; sorted by their
degree of longitude.

(D) Insert all newly created conflicts into T; and record the numerical er-
rors during this insertion process.

Observe, that only the errors when inserting the new conflicts were recorded.

Figure 5.11 shows a plot of the error distribution when running this algorithm
on the specified data set. For comparison, the error distribution collected in the
experiments previously described is also shown. As we can see, the simulation
of the vertical decomposition shows an error distribution very similar to the basic
non-refining algorithm. However, there is a significant increase of relatively large
errors, which looked to systematic to be overlooked. Of course, our first suspicion
was that this is an artifact of our simulation process. We examined manually those
mput data sets exhibiting these unexpectedly large errors.

116

1000000

100000
)
o
2 10000
s
o |
a 1000 L
H 100 .
: -
A 10 7
i
1 i
12
[Avartical pecomposition |73
hwmnmlnm

Relative ervoxr {-log)

Figure 5.11: Distribution of numerical errors when computing additively weighted
Voronoi cells using floating-point arithmetic. Both the errors and the distribution
are plotted using a logarithmic scale.

Figure 5.12: A typical constellation causing numerical problems for algorithms
using vertical decomposition. The left picture shows a perspective view of the
spherical map. The x-axis extends to the right, the v-axis to the top, and the z-axis
towards the reader. The right picture shows the projection of the configuration on
the x,v-plane. Conflicts are marked as gray dots. The problematic area is labeled
A: Three conflicts are located on an edge which is part of a circle defined by a
plane almost parallel to the sweep plane, whose projection is drawn in light gray.

As it turned out, the errors are systematic. Yet, they are not artifacts of our sim-
ulation but are inherent to vertical decompositions: Figure 5.12 shows a typical
example. The numerical problems are caused by edges, which are almost frag-
ments of a great circles through the z-pole. Determining the circular order of any
conflicts located on these edges around the z-axis results in large errors.

The question is of course, why do these errors occur that often? An edge of a
AWYV cell that is defined by three spheres of equal radius is a line segment as
in the unweighted case. Hence, its projection onto the parameter space is a great
circle. The problematic configurations occur if the three spheres are located on
a plane that is almost parallel to the x,y-plane. In fact, all the configurations we
examined were caused by carbon atoms which occurred in chains and rings of the
molecules.

We conclude that vertical decomposition schemes exhibit inherent problems con-
cerning numerical stability.

5.5 Conclusions

In this chapter we examined the practicality of our approach to compute AWV
cells. We saw that the data sets arising in molecular biology have specific char-
acteristics that lead to distinct distributions of the combinatorial complexities of
the cells. Moreover, the more or less even distribution of the atoms within the
molecule leads to a favorable numerical behavior of our implemented algorithm.

We saw that within our domain of application, the ratio between the complexity of
an AWV cell compared to that of its corresponding 4-dimensional power cell tends
to depend on the radius of the atom; smaller atoms tend to have a significantly less
complex AWV cell.

However, we feel that the main lesson learned from our experiments is the in-
fluence of the combinatorial design on the numerical behavior of an algorithm.
We believe that this influence cannot be underestimated. Especially any kind of
projection along coordinate axes seems to be a dangerous operation from the nu-
merical point of view.

Finally, the overhead we introduced to deliver a robust implementation 1s not
too high compared to a naive implementation using simple built-in floating-point
arithmetic only.

Appendix

Equipment used

All experiments where performed on a PC with a 266MHz Pentium II Proces-
sor with 128MB of main memory. All programs where compiled using Microsoft
Visual C++ 5.0SP3 using maximum optimization. Since our algorithms are em-
bedded within a graphical user interface, the algorithms where linked to the multi-
threaded DLL versions of the runtime environment. We used the SGI STL version
2.0 and the STL by DinkumWare provided with MSVC. The LEDA release used
was 3.7R.

Selection of test data sets

The data sets taken from the PDB are not random samples but where selected ac-
cording to the following criterion: It is important to know that there are basically
two different methods to measure atom coordinates, X-ray crystallography and
NMR spectroscopy. The first method, however, cannot determine the locations of
hydrogen atoms. Using AWV cells instead of unweighted cells only makes sense
if the atomic radii vary over a sufficiently large range. There are basically two
ways how these larger ranges occur: First, larger radii may be assigned according
to quantum chemical considerations, and these radii are then typically assigned
to groups of atoms, such as a methyl group. Second, the inclusion of hydrogen
atoms, which are rather small, leads to the typical effects distinguishing AWV
diagrams from unweighted ones, such as closed elliptic edges and disconnected
faces separating a cell from the same neighboring atom. Since there is no com-
monly agreed set of rules for the first case, we chose all samples from NMR data.
Whenever a data set contained more than one coordinate set, we used the first
model defined.

Dynamic error analysis

The error analysis is performed using a modified version of the code as given in
Fig. 12 of the paper by Fortune and Van Wyk (1996). The changes are the fol-
lowing: The code for multiplication provided in the paper lacks an error term,
which we added. Second. we do not store the absolute values of the floating-point

119

PDB | Atoms | Description)

lapt 709 | ANTHOPLEURIN-B, NMR

3egf 794 | EPIDERMAL GROWTH FACTOR

3ci2 1061 | CHYMOTRYPSIN INHIBITOR 2

et 1214 | AVIAN CYSTEINE RICH PROTEIN

laab 1357 | HMGA DNA-BINDING HMG-BOX DOMAIN A OF RAT HMG1
2pnb 1699 | PHOSPHATIDYLINOSITOL 3-KINASE

Ibur 1727 | BARNASE

letd 1779 | MURINE ETS-1 TRANSCRIPTTON FACTOR

leey 1979 | CHEY COMPLEXED WITH MAGNESIUM

1bld 2443 | BASIC FIBROBLAST GROWTH FACTOR (FGE-2) MUTANT

numbers explicitly, but use the f£abs-function to calculate the information on de-
mand. On our machine, this bit-flipping operation is much faster than loading a
value from memory into the FPU. Finally, the error analysis itself is done using
floating-point arithmetic and is subject to round-off errors. We take this fact into
account using appropriate correction factors. Figure 5.13 gives an excerpt of our

code.

Table 5.5: PDB entries used in the experiments.

Element | H | C | N | O | P | S |Fe|

Radius [A] [0.7 1.38 | 1.38 | 1.27 | 1.61 | 1.55 | 1.0 |

Table 5.6: Atomic radii used in the experiments.

120

CT_FloatFilter operator+(const const

{

double r8_ _result = r& Valus + rcoco_other.r3_valu

double r§_correction =
return CT _FloatfFilter @Y. r8_Error +
fabs (r8_result) * std::nune
r8_correction);

i_error{)) *

o

CP_FloatPilter operator* (const CT_F1

loatFilters rcoco_other) const
{

double r8_result = r8_value * rcco_other,rd_Value;

double r8_correction =

1.0 + 4.0 * std::numeric_ltimits<do
return 0T _FloatFilter (v8_re
(r8_FError * rcco_other.r8_FErx
r8_FError * fabs(rcco_other.r
reco_other.r8_ _Error * fabg(ry
fabs (r8_result) *

* r8_correction);

std: inumeric_ ta<double>: rround_ervor{))

CT _FloatFilter co_Sqrt() const
{
double r8_value = sqrt(r8_value);
double r8_correction =

1.0 + 2.0 * std::numeric_limits<double>::epsilon();
double r8_error = sgrt({r8_FError);
return

Cr_Float¥Filter (r8_value, (r8_value + r8_ error) * r8_correction);

int i_Sign{) const
{
double r8_eps = r8_Error * std:
if (r8_value > r8_eps)
else if (r8_value < -r
throw CT _NumberUnderflow ()

}

Figure 5.13: An excerpt of the code used to accumulate error bounds at runtime.
This is the version used in the “production” version of our algorithm, which raises
an exception to perturb the input in case of a degeneracy.

Chapter 6

Standard volumes of amino acids
and their constituent atoms

In this chapter, we want to use our new algorithm to compute AWV cells of the
individual atoms of proteins. We will derive a set of standard volumes for the dif-
ferent amino acid residues. Additionally, we will compare the volumes computed
using the AWV with previous approaches to assign volumes to individual atoms
from crystal structures. All these previous approaches — Voronoi, Richards’ B
and radical planes — use planar bisector surfaces to separate the individual cells.
The structure of this chapter is as follows: In the first section, we will present
a short review of the experiences made with the previous approaches. These ex-
periences also guided the setting for our own experiments. In the following two
sections, we will discuss the results obtained from our experiments. First, we will
discuss the results for complete amino acid residues. then we will discuss the vol-
umes computed for the individual atomic types. In the next section, we will report
some preliminary results concerning the packing density of proteins. Finally, in
the last section, we provide all information necessary to reproduce our experi-
ments.

6.1 Introduction

6.1.1 Previous approaches

Previous studies on the volume of individual atoms in molecular structures have
shown that the individual volumes depend greatly on the method chosen for the
calculation. Comparing his “B” method with the Voronoi method, Richards (1974)
reports that

“[...] the mean volume for an atom with a small van der Waals
radius (i.e. a carbonyl oxygen) tends to decrease, while those with
large radii (i.e. —CHj3) tend to increase. [...]”

This obervation was also confirmed in the study by Gellatly and Finney (1982).
Gerstein et al. (1995) summarize these observations as follows:

“[...] Bisection systematically misallocates volume inside of a
protein, producing larger variance in the volume for any particular
atom type. [...]"

The latter authors propose two different approaches to obtain a better partitioning
scheme:

1. A hybrid approach that uses Richards’ B method to position the plane be-
tween protein atoms and to ignore the radii in all other cases.

2. An approach based on spherical bisector surfaces that bend around the
smaller atom.

However, in later studies the authors did not use these partitioning schemes again,
see Gerstein and Chothia (1996) and Tsai et al. (1999).

Concerning the radical plane method, Goede et al. (1997) remark that the
“[...] principal advantage of the radical plane method separation
scheme is the passage of the dividing plane through the intersection

circle of both atoms. [...]"

This property is of special importance when the local density of an atom is cal-
culated as the van der Waals volume contained inside its cell divided by the cell

123

volume. The Voronoi and Richards™ B method do not have this property, and hence
part of the van der Waals volume of a large atom next to a small atom is neither al-
located to the small nor to the large atom. Goede et al. computed a total loss of van
der Waals volume of 8% and 6%, respectively, for the two methods. On the other
hand, for bonded atoms (at a distance of about 1.4A), even the center of an atom
is not part of the volume assigned to the atom itself by the radical plane method if
the difference of the radii is at least 0.6A. Therefore, Goede et al. propose to use
AWYV cells for volume and density calculations, because this method

“[...] unifies the advantages of earlier approaches by

1. keeping the spirit of the geometrically rational partitioning im-
plied by the Richards’ method,

2. avoiding vertex error and meeting the intersection circle be-
tween atoms like the radical plane method, and

3. using non-planar boundaries like Gerstein et al. [...]”
Yet, as mentioned in the introduction to this thesis, they could not devise an effi-
cient and practical algorithm for the computation of AWV cells.
6.1.2 Statistical parameters

As we can see from the previous citations, the variance of the computed volumes
has been used as a quality measure of the different methods. Let X = Xy,..., X},

X; € Rforall 1 <i<n,be asequence of observations. We write the mean value
as

The standard deviation can be calculated as

l
n ;—1X

o(X)= \/ Xh

z”l

2
H~

Since we are éntercsted in the relative errors of our calculations, we use the varia-
tional coefficient -—— as index value of our results. As it is common practice, we
multiply this numbm by a factor of 100 and denote this percentage deviation by
0(X) g,

3 %

Usually, an estimation method is considered superior if the variational coeffi-
cient is lower, which is regarded as an indicator to what extend the distribution
is concentrated around the mean value. The percentage deviation has been con-
sidered as quality measure for volume computations by most previous authors!.
Pontius (1997), on the other hand, tries to relate variations of the atomic volumes
to physical properties. She argues that the lower deviation observed for Richards’
B might result in part from the “vertex error” this method exhibits, small tetrahe-
dral volumes that are not assigned to any of the atoms.

6.1.3 Boundary conditions

A consequence of modeling atoms as cells of a tessellation is that surface atoms,
being incompletely surrounded by other atoms, have the possibility of being very
large or even unbounded. Published studies vary widely in how atoms near the
surface were treated. The easiest approach is to exclude all those atoms from the
calculation that have a significant surface area accessible to the solvent. This was
the approach chosen in the early studies by Chothia (1975). Later authors such as
Harpaz et al. (1994), Pontius et al. (1996) and Pontius (1997) went even further
by excluding all atoms that have any solvent accessible surface area.

Another approach is soak the crystal structure into a hypothetical solvent.
Richards (1974) assigned solvent atoms to positions on a cubic lattice surround-
ing the protein. Finney (1975) placed solvent molecules at all surface sites that
could accommodate a hypothetical “solvent” molecule of radius 1.7A. This was
done irrespective of possible overlap between the individual solvent molecules
placed. Gerstein et al. (1995) used molecular dynamics simulations to position
water molecules.

In our studies, we considered only completely buried atoms, i.e. atoms with no
accessible surface. However, we think that modeling volume distributions near the
molecular surface using the AWV method is an interesting area of future research.

6.2 Volumes of amino acid residues

For each buried atom of the chosen data set we computed the volume of the cell
associated with the atom using the four different methods: AWV, Richards’ B,

'Cf. Richards (1974), Gellatly and Finney (1982), Gerstein et al. (1993)

12

|93

Residue AWV Richards’ B Voronoti Radical
Type # | VA o/V% | VAT o/V% | VIA] o/V% | VIR o/V%
ALA 300 914 481 90.9 4.85 91.7 543 914 491
ARG 812038 370 2019 381 197.1 3.96 202.6 3.81
ASN 22 1 1323 558 1321 554 13877 5.57 1337 5.61
ASP 25 11229 473 1229 475 1327 4.60 1247 4.86
CYS 66 | 1086 7.38 1080 753 108.1 8253 108.6 7.54
GLN 81 1528 492 1526 503 1591 582 1542 5.19
GLU 711497 276 1496 2.72 159.8 2.83 1516 271
GLY 2201 6355 539 65.0 5.26 67.2 581 65.8 5.38
HIS 19 1 1630 363 1619 3.75 1632 449 1630 3.8
ILE 221 1668 335 1660 339 163.1 373 166.0 3.37
LEU 222 1669 3.73 166.2 378 164.1 4.32 1603 382
LYS 411730 123 1706 1.20 1625 194 1709 115
MET 55 1693 434 1684 445 1665 543 1687 449
PHE 82 | 1965 378 1963 3.85 1994 4.35 197.1 3.89
PRO 24 | 1258 461 1246 4.70 1224 555 125.1 471
SER 106 | 978 505 97.1 515 1015 6.07 984 5.30
THR 56 1 1228 4.04 1222 4.08 1256 4.82 1232 420
TRP 24 12325 293 2321 291 2362 3.50 2331 298
TYR 2612020 4.13 2009 427 2087 5.09 2034 436
VAL 203 1414 332 1406 3.34 138.6 3.73 1407 3.35

Table 6.1: The mean volumes V of the different amino acid residue types as cal-
culated with different methods. For each residue, the second column labeled #
specifies the number of buried occurrences in the data set. The methods employed
are AWV, Richards” B, unweighted Voronoi, and radical planes. The values given
are the mean volume V and the percent deviation 9%2% For each row, the low-
est value of the percentage deviation is typeset using a bold font, and the second
lowest value is typeset using an italic font.

Voronoti, and radical plane. We recorded the mean value and the percentage devia-
tion of these volumes for each atomic position within each residue type. Tables 6.3
to 6.6 list the values computed. For each residue type we computed the mean and
percentage deviation of the volume based on all buried occurrences of the residue
type in the data set. A residue is buried if all its constituent atoms are so, and the
volume of the residue is computed as the sum of the volumes of the constituent
atoms. In table 6.1, we give the average volumes we computed for the individual
amino acid residues using the different methods.

The overall differences of the mean residue volumes as computed with the differ-
ent methods are not too big. Almost all standard deviations are less than 6.0% with

126

the exception of Cys, where we did not differentiate between thiol form and occur-
rences in disulfide bonds. In addition, the Voronoi volume for Ser has a standard
deviation of 6.07%. Since the data set contained only four buried occurrences of
Lys, the computed values cannot be considered statistically relevant. Indeed, for
all four methods one of the four computed volumes deviates significantly from the
other three volumes.

The most significant differences are between the unweighted Voronoi method and
the other three weighted methods. Specifically, for Arg, the mean volume com-
puted with the Voronoi method is approximately 5A” lower than those computed
with the other three methods. This is due to the fact that the Voronoi method
assigns relatively smaller volumes to large atoms types, such as carbon, and rel-
atively larger volumes to small atom types, such as oxygen and nitrogen. In the
case of Arg, Cp, Cy, and Cy receive significant less volume by the Voronoi method.
A similar effect can be observed for the aliphatic residues Leu and Iso, Lys, and
slightly less visible for Met and Val.

For Asn, on the other hand, the Voronoi volume is approximately A larger than
that computed using the other three methods. This is mainly due to the much larger
volumes associated with the small polar atoms Ng, and especially Og;. Asp, Gln,
and Glu show a quite similar behavior. The larger volume assigned to Thr can also
be related to this effect. Finally, the Voronoi methods assigns higher volumes to
aromatic ring systems, such as Phe, Trp, and Tyr.

The residue volumes computed with the AWV method appear to be rather similar
to those computed using radical planes, and both are quite similar to the volumes
computed using Richards’ B method. In general, the volume computed by the
AWYV method is slightly higher than the corresponding volume computed with
Richards’ B method. This can be attributed to the fact that AWV calculations do
not suffer from the effect of vertex errors.

Regarding the deviations of the computed volumes, the AWV computations
clearly stand out. In 14 out of 20 residue types. the AWV volumes exhibit the low-
est percentage deviation, and for two further types, Asp and Trp, this value is sec-
ond lowest among the four methods. In the remaining cases, when AWV has only
the third lowest deviation, there is a significant gap to the fourth method while the
gap to the second best methods is rather small. For Asn, we have 5.57 :5.58 : 5.61
for Voronoi: AW V:Radical; for Glu 2.72: 2.76 : 2.83 for Radical: AW V:Voronoi;
for Gly 5.38:5.39: 5.81 for Radical: AWV: Voronoi; and finally, even for Lys, we
have 1.20:1.23: 1.94 for Richards’ B:AWV:Voronoi. On the other hand, ignoring

127

the values for AWV, Richards’ B method shows the best behavior with respect to
deviations among all the three methods using planar bisector surfaces only.

The rather large deviations of the AWV volume for Glu stem from the large de-
viations computed for the atoms of the terminal carboxy-group, compare the data
in table 6.4. One reason might be the somewhat problematic assignment of the
atomic types. The older rule set by Gerstein et al. (1995) had a specific atomic
type O102H for carboxy groups, which the authors dropped in the more re-
cent study by Tsaiet al. (1999). In the present calculations, the carboxy atoms
are assigned the same type as the backbone carbonyl atom. On the other hand,
as we will discuss below in more detail, the electronic distribution for hydrogen
bonded atoms is directed towards the other atoms taking part in the hydrogen
bond. Hence, the distributions for polar atoms might be significantly better if the
hydrogen atoms are included in the data set. The data set used was obtained from
X-ray diffraction patterns, and hence does not include any coordinates for hydro-
gen atoms.

The rather high deviation of the AWV volume as computed for Asn is rather sur-
prising as all the volume computations performed for the individual atoms of this
residue show rather favorable low deviations, see table 6.3. One reason might be
a rather stronger correlation between the individual atomic volumes. Or, the se-
lected residues and their environments are not completely representative; stripping
off all water molecules might have distorted those volumes?.

6.2.1 Comparison of computed residue volumes with previous
studies.

Table 6.2 shows a comparison of the residue volumes we computed using the
AWYV method with previously published values. The studies by Chothia (1975),
Harpaz et al. (1994), and Tsai et al. (1999) were based on Richards’ B method.
The older studies by Chothia and Harpaz et al. used slightly different radius sets.
Pontius et al. (1996) used unweighted Voronoi cells and the same data set as our
study. However, we were more restrictive in selecting the atoms to include in the
statistics.

We observe that the AWV volumes computed for hydrophobic residues are sur-
prisingly similar to the early results published by Chothia (1975), while Chothia’s

2Ct. Pontius (1997)

128

Residue Volume [A7]
Residue | this study Tsaietal. Pontiusetal. Harpazetal. Chothia
ALA 91.4 90.0 915 90.1 915
ARG 203.8 194.0 196.1 192.8 ———
ASN 1323 1247 138.3 127.5 1352
ASP 1229 117.3 1352 117.1 1245
CYH 108.6™ 1137 1144 113.2 1177
CYS 108.6™ 1033 102.4 103.5 105.6
GILN 1528 1494 156.4 149.4 161.1
GLU 1497 142.2 154.6 140.8 155.1
GLY 635 64.9 67.5 63.8 66.4
HIS 163.0 160.0 163.2 159.3 167.3
ILE 166.8 163.3 162.6 164.9 168.8
LEU 166.9 164.0 1634 164.6 1679
LYS 173.0 167.3 162.5 170.0 171.3
MET 169.3 167.0 165.9 167.7 170.8
PHE 196.5 1919 198.8 193.5 2034
PRO 1258 122.9 1234 1231 129.3
SER 97.8 954 102.0 94.2 99.1
THR 122.8 121.5 126.0 120.0 122.1
TRP 2325 228.2 237.2 231.7 2376
TYR 202.0 197.0 209.8 197.1 203.6
VAL 1414 139.0 138.4 139.1 1417

Table 6.2: Comparison of volumes of amino acid residues as given by
different authors. The studies are Tsaietal. (1999), Pontius et al. (1996),
Harpaz et al. (1994), and Chothia (1975). (*) In the present study, we do not dif-
ferentiate between disulfide-bonded and non-bonded cysteine.

129

volumes for polar residues are higher. Hydrophobic residues tend to aggregate in
the interior of the molecule, and hence a statistically meaningful sample was al-
ready present at that time. Polar residues, on the other hand, are much more likely
to be located near the molecular surface. At the time of Chothia’s study, only very
few were contained in the interior of the available protein crystal structures. There-
fore, he had to include even residues with a non-zero yet small solvent accessible
surface. Even our data set contains only very few acidic and basic residues that
are completely buried in the interior of the molecules.

Comparing the volumes we computed for the Voronoi method with the values
published by Pontius et al. yields another interesting observation: Both calcula-
tions were performed on the same data set using the same method of allocating
space to the individual atoms. The only difference between the two calculations
is that we stripped off all non-protein atoms from the data sets before starting the
calculation. However, we get the same volumes when exactly the same residues
were considered. such as for Lys, so this difference 1s not due to an error in either
calculation. We may conclude that volume calculations of this type are extremely
sensitive to the selection of the data set and to the boundary conditions such as the
inclusion/exclusion of water and cofactors®.

Considering the rather small differences between the volumes we computed with
the AWYV and the Richards’ B method on our data set, it is reasonable to assume
that the differences of our volumes to the volumes computed by Tsai et al. stem
mainly from the different data sets used.

6.3 Volumes for individual atom types

In this section, we discuss the volume distributions obtained for the individual
atom types in more detail.

6.3.1 Carbon atoms

Figures 6.1 and 6.2 show the distributions of the atomic volumes computed for
different types of carbon atoms.

(3 is the atom type assigned to planar configurations of carbon as found in the
carbonyl group along the backbone and as branching point in ring systems such

3CE. also Gerstein et al. (1993). Pontius (1997)

130

P!
)

0.35 -

0 AWV ‘
o 0.25 \
N é’ 0.2 j ------- Richards' B ‘
- g ¢ |
';; g. 0.15 i e s e e VOLONOL ‘

0.1 -
g g t s v w Radical
=4 12 0.05 - -

|
0 -
P Y 3 15} o [aY & o R > x\ o ‘\:‘\ R
Volume in Cubic Angstroms

0.12
ooy 0.1 AWV
] . |
8B .08 4 22w Richards® B |
moa o0.06 . |
é % 0.04 ot v e VOTONOL
o M 0.0z [Radical
P !

Volume in Cubic Angstroms

Figure 6.1: Distribution of cell volumes of carbon atoms with planar orbital con-
figurations as found in aromatic and carbonyl groups.

as found in Trp, Tyr, Phe, and His. As we can see from the topmost picture in
figure 6.1 and the detailed volume data in tables 6.3 to 6.6, both the radical plane
and the AWV method distinguish C3 atoms along the backbone from those in ring
systems. The smaller volume assigned to ring atoms shows up as “shoulder” to the
left of the main peak. Richards” B and Voronoi, on the other hand, do not show
this distinction.

C3H is the type assigned to carbons in aromatic rings. Especially for AWV, the
distribution is almost perfectly Gaussian as can be seen in the middle picture in
figure 6.1.

C4H is an sp -carbon bonded to a hydrogen, most notably the Cy, carbons along
the backbone of the protein, but also the branching points in aliphatic side chains,
such as Val, Leu, and Iso. Comparing the top picture of figure 6.2 with the detailed
data given in tables 6.3 to 6.6, we see that both the AWV and the radical plane
method assign significantly lower volumes to these atoms in side chains than along
the backbone. This might be an indicator for a less tight packing of the backbone
than previously assumed. Richards’ B shows almost no differences for the two
occurrence modes.

C4HH is the atomic type assigned to —CHy— groups in side chains. Both radical
planes and AWV assign significantly different volumes depending on the radius of
the neighboring atoms along the chain. Hence, C4HH atoms next to polar groups,
such as C; of Met, CB of Ser, C@ of Asp or Cy of Glu, show larger volumes than
those in aliphatic chains. The overlay of these individual distributions leads to
the long tail of the joint volume distribution depicted in the middle picture of
figure 6.2 for C4HH towards higher volumes. For the Richards” B and the Voronoi
method, this dependency 1s much less distinctive.

Methyl carbons, which are assigned type C4HHH, exhibit an almost Gaussian vol-
ume distribution for all of the four methods. However, the distributions obtained
for Richards’ B and AWYV look smoother than those obtained for the radical planes
and the Voronoi method.

6.3.2 Nitrogen atoms

Figure 6.3 shows the volume distributions for the two types of nitrogen atoms.
N3 is only assigned to Ng; of His. All methods show similar rough volume dis-
tributions. Following the argumentation by Pontius (1997), this behavior might
result from the fact that we stripped off all non-protein atoms from the data set.
Moreover, she observed variances of the cell volumes depending on the number

132

C4H

Noxmalized

C4HH

Normalized

Frequency

Freguency

Volume in Cubic Angstroms

0.12

0.1
.08
.06
.04 -

o o o o
(=} .
jse]

pE)
jy
2
7
<
2

Volume in Cubic Angstroms

C4HHH

Normalized

¥requency

0.02

Volume in Cubic Angstroms

B
o AT ONOR
- e s e Raddcal
JRSST—\ a4 !
....... Richards' B

v o e JOT OTOL i

e w = = Radical

....... Richards' B
D e = VOTONIOL

e wow Radical

Figure 6.2: Distribution of cell volumes of tetrahedral carbons.

of hydrogen bonds formed in the structure.

For type N3H, all methods show an overlay of two distributions. Comparing with

Qs Ll Lid U H LILU LY WAES V] <

¢

g
tables 6.3 to 6.6, we cannot separate this distribution into two distributions base
on a distinction by residue type and atomic position within the residue alone.
Again, the number of hydrogen bonds formed in the structure might be an expla-
nation. Both Voronoi and Richards” B method assign relatively larger volumes to
this atom type.

The atomic type N3HH is assigned to the basic groups of Asn, Gln, and to the
terminal nitrogens of Arg. Similar to N3, all methods show similar rough volume
distributions. Again, this behavior might result from the fact that we stripped off
all non-protein atoms from the data set.

6.3.3 Oxygen atoms

The atomic type Ol is assigned to backbone oxygens, and to atoms located in
acidic and basic side chains. The volume distributions for this type as computed
with the four different methods are shown in the top picture of figure 6.4. All
methods yield similar smooth distributions. However, the volumes assigned by
the Voronoi method are significantly larger than those derived using the other
three methods. The very few cells of relatively high volumes (more than 37 Ag)
might result from missing water molecules.

O2H is the type assigned to the terminal hydroxyl groups of Tyr, Ser, and Thr.
Again, we observe the rough distributions resulting from hydrogen bonds as was
the case with N3 and N3HH.

6.3.4 Sulfur atoms

Atomic type S2 is found both in Met and in the terminal position of Cys. Although
we did not distinguish between the disulfide-bonded and the thiol form of Cys,
none of the methods yields a volume distribution that can be clearly seperated into
two smooth overlayed distributions. Comparing with tables 6.3 to 6.6, the peak
at 25.5A° can be assigned to S of Met, the peak at 27.0A" would correspond
to disulfide bonds, and the tail to the right would correspond to the behavior as
exhibited by the hydrogen bonds previously discussed.

134

"~y

Z

B

Richards’®

ANV
‘R

e i e e VOYONOL

- e« Radical

Lousnbazg

POZTTRWION

Cubic Angstroms

in

Volume

N3H

WV

Al
.Richards®

|
|
\
|
|

B

Apusnbaxg

POZTTRILICN

Radical

[e Voronoi

|
I
|

i

Cubic Angstroms

in

Volume

¢

Cubic Angstroms

in

volume

different methods.

LY
o

o1

0.2
— \
Y b 0.5 AWV
N é) Richards' B
e 0.1 , |
d g' ot e s VOLONIOL !
) 5
g & 0.05 e e - = Radical
R ‘
0
T U, N Gy [Gy Gy Sy &y Gy 4y By
B B S P .
Volume in Cubic Angstroms
0,12
N 0.1 AWV
3 4] 0.08 4 e
N @ “uwme~cRichavds' B
o 0.0¢6
’Té g o o4 o e T OLONOL
F o v .
o] H 0.02 o w e o RAadical
5 = R
0
&y w I~ &y 4 EN n 4 N [& 4) < &
N o N ,\{o \/\ N 1\ R R ,,19 3 ,{3 “53

Volume in Cubic Angstroms

Figure 6.4: Distribution of cell volumes of oxygen atoms as computed with the
different methods.

S2

0.1 H
L I 0.08
]
N o2 0.06 L. Richards’ B
a8 1
g g. 0.04 {lm e e Voronod |
@ R i !
Houo 0.0z ¢\ |- Radical i
B : L e e i
o ‘
L A <y «"Q [I ATV
w7 Tt Tt T Tt TR T YT

Volume in Cubic Angstroms

Figure 6.5: Distribution of cell volumes of sulfur atoms as computed with the
different methods.

Atom AWV Richards™ B Voronoi Radical

Res. Atm. # \7'[‘&3] o/V% | VIAY o/T% {0 s/ V% V[As] 5/V%
ALA C 1108 3.1 6.01 8.2 6.87 7.84 7.9 6.58
ALA CA 792 1 182 7.78 149 8.36 10.56 18.8 7.04
ALA CB 431 | 38.0 7.94 37.1 8.00 9.58 37.1 7.92
ALA N 892 | 127 9.44 14,1 9.57 . 10.45 12.3 10.21

ALA O 670 | 144 12.17 16.7 11.61 228 10.96 15.3 13.43

ARG C 473 7.9 6.74 8.0 7.37 8.5 8.18 7.7 7.25
ARG CA 325 1 174 8.02 14.1 841 147 10.17 17.9 7.10
ARG (B 178 | 242 8.30 234 817 20.3 8.82 235 7.84
ARG CD 119 | 258 10.94 233 11.31 203 12.97 25.6 10.34
ARG CG 178 | 24.5 9.98 238 10,12 209 11.67 239 9.76
ARG (CZ 211 8.3 8.08 9.0 8.50 9.6 8.57 8.3 8.80
ARG N 415 | 124 8.49 137 8.56 141 943 12.0 9.15

ARG NE 131 14.0 1042 15.7 9.95 16.3 10.44 137 11.10
ARG NHI 76 | 231 1116 229 P11 231 12.51 232 1140
ARG NH2 53 1 245 10.16 242 10.53 239 12.32 24.6 1041

ARG O 289 1 141 10.79 16.3 10.36 223 9.53 149 11.77
ASN C 554 8.0 7.00 8.2 7.83 8.5 8.85 7.8 7.51

ASN CA 357 1175 6.88 14.0 6.61 1.2 7.81 18.0 5.74
ASN (B 142 1 272 8.89 243 8.90 201 11.08 26.8 8.29
ASN CG 323 8.5 7.38 8.8 7.98 9.3 8.22 8.3 7.85
ASN N 536 | 126 8.85 13.7 8.74 13.8 9.77 12.1 9.44
ASN ND2 80 | 25.0 16.72 24.9 17.15 253 18.51 25.2 17.05
ASN O 302 | 143 10.85 16.4 10.80 223 11.10 15.1 12.25

ASN OD1} 164 | 147 12.99 16.9 12.66 2.0 13.03 154 14.36
ASP C 709 8.0 6.70 S 716 8.4 8.39 7.8 7.08
ASP CA 352 1 176 7.01 14.2 7.4 11.3 7.80 18.1 593
ASP CB 166 | 28.1 7.74 24.8 7.91 207 9.54 27.6 7.30
ASP CG 273 1 102 8.27 9.0 7.76 9.1 7.61 10.2 7.76
ASP N 604 | 127 9.20 139 941 4.0 10,93 12.2 10.01

ASP 0 362 | 144 13.24 16.6 12.63 224 12,04 15.2 14.49
ASP op1 170 | 142 15.44 163 14.96 209 15.01 14.8 16.93
ASP 0oD2 139 | 148 19,14 169 1877 216 17.78 154 20.92
cYS C 261 8.0 6.23 8.1 6,54 8.5 7.44 7. 6.68
CYS CA 222 1 173 7.62 14.0 7.80 11.5 9.03 17.9 6.54
CYS CB 147 1 270 9.29 254 9.47 21.9 11.00 26.4 8.94
CYS N 21 12.8 10.29 14.0 10.30 14.3 11.21 12.3 11.07
cYS O 163 1 144 11.35 16.5 11.30 224 10.98 15.2 12.73

CYS SG 151 | 282 1843 289 18.28 285 19.26 27.9 18.75

GLN C 378 7.9 6.57 8.0 713 8.5 8.13 7.7 7.12

GLN CA 219 | 172 6.38 3.9 6.85 11.5 8.80 17.8 5.70
GLN CB 148 | 244 7.78 234 7.68 20.0 8.92 23.7 7.46
GLN CD 168 8.3 7.26 8.9 7.85 9.6 8.32 8.4 7.80
GLN CG 107 | 266 7.92 239 8.36 20.2 10.26 26.3 7.49
GLN N 353 | 124 9.17 136 9.19 139 9.86 11.9 9.79
GLN NE2 63 | 241 14.07 241 1448 24.8 16.59 24.4 14.71

GLN O 216 1 143 12.48 165 12,18 223 11.96 15.1 13.98

GLN QEl 71 153 16.61 17.6 13.69 237 1448 16.2 18.09

Table 6.3: Volumes of individual atoms as calculated with different methods. For
each residue, the second column specifies the number of buried occurrences in the
data set. The methods employed are AWV, Richards’ B, unweighted Voronoi, and
radical planes. The values given are mean volume and percentage deviation. The

lowest deviation is typeset in bold. the second lowest value in italic.

Atom AWV Richards” B Voronoi Radical
Res. Atm. g | VIR /e | VIAT o/Ve | VAT o/V% | VIAY] o/V%
GLU C 634 7.9 6.55 8.0 6.91 8.4 7.73 7.7 6.98
GLU CA 350 | 175 741 14.2 7.93 1.7 10.13 18.0 6.42
GLU CB 155 | 246 7.94 237 7.87 202 9.15 239 7.59
GLU CD 133 | 102 8.14 9.0 8.30 9.2 8.09 10.2 775
GLU CG 105 | 281 171.37 2501 11.65 214 12.58 276 10.60
GLU N 521 12.4 830 137 8.44 14.2 9.23 12.0 9.10
GLU O 275 1 141 11,75 16.3 17.23 223 10.23 149 12.89
GLU OEl 48 | 147 15.51 17.0 13.97 | 224 12.96 15.5 16.53
GLU OE2 52 154 17.36 17.7 16.09 1234 15.77 16.3 18.94
GLY C 803 8.3 7.70 9.1 8.61 9.4 941 83 843
GLY CA 321 | 293 857 244 9.48 20.0 11.46 293 7.72
GLY N 695 1 132 10.04 14.9 10.14 14.9 11.16 12.8 10.79
GLY O 57401 144 12.24 16.6 11.95 225 11.47 15.2 13.58
HIS C 350 7.9 7.21 8.1 7.37 8.4 8.66 7.7 7.92
HIS CA 235 17.4 7.37 4.1 7.74 114 8.91 18.0 6.35
HIS CB 175 | 268 848 242 8.79 204 10.54 26.6 §.03
HIS CD2 160 | 232 10.50 211 11,34 1 198 13.61 234 10.47
HIS CEl 76 | 227 926 203 9.68 19.2 12.07 229 9.16
HIS CG 273 6.2 597 8.9 797 10.2 795 5.5 8.43
HIS N 313 125 8§93 13.7 a9.17 13.9 10.03 12.0 9.57
HIS ND1 156 | 15.0 11.83 16.0 712.05 16.6 13.92 14.9 12.54
HIS NE2 103 | 152 14.09 17.3 13.79 18.0 15.55 14.9 15.12
HIS 0 230 1 139 10.81 16.0 10.45 216 10.60 14.6 12.19
ILE C 783 7.7 6.89 7.8 6.90 8.3 7.87 75 7.49
ILE CA G624 168 7.02 138 748 114 9.54 174 6.34
TILE CB 639 14.6 7.54 14.3 7.32 13.0 7.85 14.3 722
ILE CD1 409 38.2 913 37.9 919 359 10.47 37.7 9.7
ILE CGl 505 | 247 7.96 244 8.02 22.5 9.36 243 7.89
ILE CG2 428 1 368 8.03 36.3 8.08 335 9.17 36.1 7.97
ILE N 704 | 128 791 13.7 776 1.2 8.25 12.0 8.43
ILE (0] 556 | 14.3 10.92 16.5 10.59 22.6 9.75 15.1 12.11
LEU C 1129 8.0 6.49 8.1 7.09 3.6 7.80 7.8 7.00
LEU CA 978 17.1 643 139 6.68 1.6 7.95 17.7 5.63
LEU (B 776 1 238 713 232 7.05 208 8.00 233 6.93
LEU (DI 639 | 379 8.39 377 3352 357 10.00 37.5 8.57
LEU CD2 578 | 375 8.47 372 873 353 10.51 37.0 8.65
LEU CG 1024 151 8.67 14.9 873 13.8 9.96 14.8 8.35
LEU N 1072 124 8.20 13.6 8.27 14.0 8.90 12.0 8.81
LEU O 754 1 141 1157 16.3 11.23 224 10.32 14.9 12.85
LYS C 778 7.9 7.24 8.0 $.00 8.5 8.78 7.7 7.85
LYS CA 437 1 172 6.97 14.0 748 116 9.19 17.8 6.20
LYS CB 207 24.0 7.93 233 8.00 20.6 9.69 234 7.84
LYS CD 104 1 248 8.87 242 8.88 21.6 10.97 24.2 873
LYS CE 40 | 272 9.62 245 10.26 216 12.61 269 927
LYS CG 175 1 239 933 235 923 211 10.10 23.4 8.91
LYS N 692 | 1235 8.76 137 887 1.1 9.6l 12.0 941
LYS NZ 141228 16.98 24.5 16.16 233 17.34 2.1 17.29
LYS (0] 393 142 11.52 164 11.11 224 10.27 15.0 12.72

Table 6.4: Cont. Volumes of individual atoms as calculated with different methods.

o0

Atom AWV Richards” B Voronoi Radical
Res. A # | V[Nl o/f% | VA o/Va | VAT o/7% | VAY o/V%
MET C 268 8.0 6.78 8.1 751 8.6 8.30 7.8 7.33
MET CA 196 17.3 7.22 141 7.61 1.7 962 17.9 6.51
MET CB 168 | 243 8.54 23.6 845 211 624 238 8.28
MET CE 125 | 39.7 10.39 38.4 10.90 333 1291 39.1 10.62
MET CG 170 1 267 7.3 256 7.28 231 3.33 26.3 7.06
MET N 241 12.6 16.94 139 16.83 14.3 18.24 12.2 18.27
MET O 192 | 143 12,75 16.5 12.04 227 11.36 15.1 14.17
MET SD 175 | 2535 9.65 27.1 9.62 282 10.47 254 10.09
PHE C 514 8.0 7.68 8.1 8.75 8.5 G99 7.7 8.40
PHE CA 392 | 176 7.06 142 7.61 1.7 9.68 18.2 6.32
PHE CB 341 | 268 7.75 245 7.83 21.2 9.07 26.6 733
PHE CDl 391 4 207 938 209 9.8] 205 11.56 219 052
PHE CD2 369 | 221 §.37 21.3 8.59 20.9 9.83 22.3 8.38
PHE CEl 335 | 216 937 217 9.62 22.0 10.72 21.7 9.79
PHE CE2 305 | 219 928 220 9.3] 223 10.35 22.0 9.43
PHE CG 346 5.7 492 8.8 7.29 10.3 7.24 48 7.75
PHE CZ 319 | 218 992 219 10.02 222 11.51 219 10.25
PHE N 469 | 125 8.23 i 137 831 14.0 9.09 12.0 3.91
PHE O 361 14.4 1025 166 9.93 226 947 15.2 11.43
PRO C 501 8.0 G643 8.1 6.39 8.3 6.98 7.8 6.70
PRO CA 335 17.5 7.30 4.5 7.58 12.1 .14 18.1 6.53
PRO CB 148 | 26.0 8§27 | 235 8.69 230 10.51 255 8.24
PRO CD 136 | 254 8.00 236 8.46 20.6 10.79 252 7.74
PRO CG 127 | 268 9.84 264 9.94 242 11.94 263 9.86
PRO N 573 6.5 11.00 8.8 9.55 9.6 8.89 5.8 13.43
PRO O 247 4.6 13.60 16.8 13.04 l 229 1211 15.5 14.84
SER C 794 3.1 6.69 8.2 7.31 8.4 8.73 7.8 7.21
SER CA 478 | 18.0 747 144 8.06 116 10.14 18.4 6.62
SER CB 231 | 294 855 248 920 210 11.62 29.1 8.12
SER N 600 13.0 9.35 143 9.09 14.4 10.05 2.6 9.89
SER (6] 460 | 142 12,15 16.3 11.92 220 1175 13.0 1351
SER oG 237 1 152 14.69 19.1 14.64 23.8 15.135 15.5 17.04
THR C 787 7.9 7.20 8.0 7.50 84 7.64 7.6 7.59
THR CA S12) 173 7.1 14.0 7.51 113 0.6l 17.9 629
THR CB 299 | 183 8.38 132 9.82 13.0 1121 18.6 7.54
THR CG2 171 | 36.6 814 358 820 318 9.53 35.7 8.05
THR N 623 12.8 854 139 8.24 14.0 8.61 12.3 8.92
THR O 429 | 141 10.58 16.2 10.52 22.0 10.26 14.8 11.88
THR OGI 209 | 152 15.24 18.3 1473 1 234 15.30 15.4 17.57

Table 6.5: Cont. Volumes of individual atoms as calculated with different methods.

Atom AWY Richards™ B Voronoi Radical
Res. Atm. # VAT o/ve | VAT oV | VAT o/ | VAT o)V
TRP C 201 8.0 7.72 8.1 8.92 85 10.21 7.7 8.57
TRP CA 164 1+ 17.7 6.75 14.3 6.77 1.8 8.37 18.3 5.87
TRP CB 128 |+ 275 7.37 249 7.32 215 8.98 273 7.00
TRP CDI 102 | 235 8.09 213 8.64 20.2 10.35 237 7.95
TRP CD2 181 8.6 6.39 9.9 6.85 10.8 6.85 8.5 7.23
TRP CE2 176 7.9 8.21 9.3 9.07 10.3 8.44 7.7 9.43
TRP CE3 155 | 222 7.87 21.0 8.21 20.9 9.67 22.4 7.94
TRP CG 201 6.6 518 9.2 6.40 10.4 6.37 6.0 6.96
TRP CH2 1o | 214 9.57 215 957 215 10.26 214 9.61
TRP CZ22 94 1 229 9.14 21.6 9.32 21.0 10.51 23.0 9.05
TRP CZ3 136 | 217 8.43 21.8 8.50 222 10.06 21.8 8.73
TRP N 169 | 127 8.56 14,0 8.67 14.3 9.43 12.3 9.18
TRP NE!I 92 | 166 11.86 17.6 11.85 18.3 12.83 16.6 12.39
TRP O 142 1 142 12.09 16.3 11.51 222 10.45 14.9 13.23
TYR C 515 8.0 7.71 8.1 8.71 8.5 9.77 7.7 8.45
TYR CA 384 | 174 6,97 14.0 6.91 114 8.54 17.9 6.03
TYR CB 302 | 270 8.02 24.7 8.17 213 951 26.8 7.60
TYR CDI 339 | 213 8.76 205 9.06 20.1 10.62 215 8.84
TYR CD2 311} 216 8.88 20.8 9.26 20.2 10.96 21.8 9.00
TYR CEl 234 1 224 9.]2 21.1 9.28 203 10.90 22.5 911
TYR CE2 214 1 227 8.97 213 9.09 204 10.12 22.8 8.84
TYR CG 521 57 5.14 8.8 7.57 10.3 7.30 4.8 8.11
TYR (CZ 396 8.1 7.20 9.3 7.83 10.1 7.40 7.9 3.13
TYR N 430 | 125 819 13.7 8§.39 13.9 9.00 12.0 8.84
TYR O 336 | 142 10.88 16.3 10.51 22, 10.12 15.0 12.05
TYR OH 11 17.9 1376 19.7 13.86 24.8 15.13 18.9 15.18
VAL C 1174 78 7.14 7.9 7.35 sS4 8.30 7.6 7.74
VAL CA 937 16.9 6.79 13.8 7.38 114 9.70 17.5 6.20
VAL (B 907 | 14.9 7.93 14.6 7.80 13.3 8.70 14.7 7.67
VAL CGlI 610 | 372 7.40 36.7 7.50 33.7 8.90 36.5 7 44
VAL CG2 655 1 368 707 | 364 7.13 335 8.35 36.2 7.07
VAL N 1031 123 7.69 13.7 7.62 142 814 12.1 8.23
VAL O 756 | 144 9.78 16.5 945 227 8.39 15.2 10.72

Table 6.6: Cont. Volumes of individual atoms as calculated with different methods.

140

6.4 Packing densities

'111111\ A e T
VYo aul [SNREERLIV]

density of a 1es1dm 1s defined as the quotmnt —~"t— of the van der Waals volume
of the residue divided by the residue volume computed using the AWV method.
Again, we used the set of radii proposed by Tsai et al. (1999), and only residues
from the interior without any accessible surface were considered in the calcula-
tion. See table 6.7 for the detailed results.

We computed an overall average packing density of 64.10%. For the individ-
ual amino acid residues, the average densities range from 62.73% for Leu up
to 66.56% for Lys. Along the backbone the average packing density is 70.33%,
which is significantly higher than the average packing density of side chains,
which we computed as 59.13%. Aliphatic side chains tend to be slightly less
tightly packed than polar ones.

Apparently, these densities are much smaller than those values given by
Richards (1974). Most notably, Richards calculated an average packing density
of 75% for the interior residues of lysozyme and ribonuclease S. This number

also cited extensively in the biochemical literature, such as the textbooks by
Creighton (1993) or Kyte (1995).

We found two sources for the large discrepancy between our results and those
numbers published by Richards: First of all, the actual set of radii used in the
calculation influences the computed van der Waals volume of the residues. As
we have noted earlier, the partitioning of space given by the AWV method does
not change if all radii are increased by a common additive constant Ar. When
comparing the radii set we used with the set of radii used by Richards (1974), we
observe that most radii assigned by Richards are larger than the corresponding
radii given by Tsai et al. (1999). See also table 6.9. Therefore, we did the same
computation using Richards’ set of radii. This also implied using a slightly smaller
probe sphere with a radius of only 1.4A. Sce table 6.8 for the densities calculated
using these parameters. The average packing density increased to 69.70%, with an
average density of 75.14% along the backbone, and 65.62% for the side chains.
Yet, while these values are much higher than those obtained using the new set of
radii by Tsai et al. (1999), they are still well separated from those values reported
by Richards.

We compared the van der Waals volumina computed by our program to those
given by Liang et al. (1998). We found that the volumes computed by our program

141

Residue Density ;"T;i“;%
Name # | tot. backb. sidec.
ALA 299 | 64.27 7025 56.08
ARG 816323 6894 61.18
ASN 22 16326 6923 35926
ASP 25 1 6435 6958 6048
CYS 656656 7069 6286
GLN 816496 7324 60.87
GLU 716293 6958 59.26
GLY 220 65.72 65.72 0.00
HIS 19 | 65.88° 69.55 64.11
ILE 219 | 6323 7188 5942
LEU 221 16273 7132 5890
LYS 416593 7348 62.82
MET 5516341 7136 5998
PHE 82| 63.12 7043 6047
PRO 24 16543 7142 6198
SER 106 | 6559 6981 60.71
THR 56 6531 7174 60.68
TRP 24 | 6438 71.04 6247
TYR 2616401 7185 61.33
VAL 292 1 6331 7142 58.68

Table 6.7: Average packing densities of amino acid residues computed using the
radius set by Tsai et al. (1999). The packing density is defined as the quotient of
the van der Waals volume V, ;s divided by the volume occupied by the residues’
AWYV cells Vawy. The table gives for each residue the overall density, and sepa-
rately the density of the polypeptide group along the backbone and the density of
the side chain.

Residue Density %-‘“T“—%
Name # 1 tot. backb. sidec.
ALA 281 1 70.04 75.17 6341
ARG 86781 7329 6585
ASN 17 1 67.88 73.08 6426
ASP 2016924 7400 6573
CYS 577173 7532 6861
GLN 816972 7832 6552
GLU 716790 7395 64.59
GLY 194 | 71.07 71.07 0.00
HIS 17 16992 7466 67.62
ILE 208 | 6930 7640 66.33
LEU 213 6876 76.10 65.65
LYS S 17183 78.19 6952
MET 52 1 69.04 7601 66.15
PHE 65 6651 7473 6334
PRO 21| 7174 7571 6957
SER 95 | 71.66 7499 68.07
THR 47 | 7141 76.16 68.17
TRP 16 | 6855 7574 66.38
TYR 2616739 7562 6451
VAL 267 | 6922 76,13 6548

Table 6.8: Average packing densities of amino acid residues computed using the
radius set by Richards (1974). The packing density is defined as the quotient of
the van der Waals volume V, s divided by the volume occupied by the residues’
AWYV cells VAWV-

143

are up to 3% less than those values published by the latter authors. This implies
that all the densities computed by our software are approximately 2% below the
correct values. The reason for this difference turned out to be the rather naive
approximation of the spherical parts of the van der Waals surface of the molecule
by polyhedra from the interior. As already discussed in section 4.6, the algorithm
could be modified to take this error into account while refining the triangulation
approximating the surfaces of the individual AWV cells. Until this has been done,
we would like to consider the results in this section as preliminary.

6.5 Conclusions

To summarize, we have demonstrated that the atomic and especially the over-
all residue volumes computed using the AWV method have a significantly better
distribution than those computed using Richards’ B and radical planes, not to
mention the Voronoi method. In a way, the radical planes method tends to yield
the least percentage distribution for atoms of different sizes that are farther away,
while Richards’ B is especially good at bonded atoms of different types. The AWV
method seems to combine this in a favorable way.

The comparison with previous studies essentially confirmed the sensitivity of vol-
ume computations on the exact choice of the data set and the boundary conditions.
All the previous authors cited in this section already observed this.

Finally, neither method seems to yield adequate results for hydrogen bonded
atoms. Hydrogen bonds are highly directed, and a purely geometric division of
space based on Euclidean distance alone cannot capture this directionality. A pos-
sible solution might be the explicit inclusion of hydrogens in the data set. Another
solution might be a partition of space based on orbitals instead of atomic coordi-
nates only.

We believe that these results provide enough experimental evidence to justify
further studies of molecular volumes and density distributions using the AWV
method. In our opinion, studies of the packing density near the molecular surface,
and a detailed account on the side chain packing in the interior of the molecule
are interesting topics of future research.

144

6.6 IExperimental setup

In our study, we compared the volumes of the cells as defined by an AWV tessel-
lation to the corresponding tessellations computed using the Voronoi method, the
radical plane method, and Richards® B method. The cells of the AWV tessellation
were computed using the implementation as described in chapter 4 of this the-
sis. The polyhedral cells of the other three tessellations were computed using the
intersection algorithm for halfspaces described in section 4.5. As in the previous
studies by Harpaz et. al (1994), Gerstein et al. (1995), and Tsai et al.(1999), the
polyhedra for Richards™ B were computed without special treatment of aromatic

1y

rings.

6.6.2 Radius set

To assign radii to the individual atom types, we used the set of radii that was
recently proposed by Tsai et al. (1999), see also table 6.9. The assignment of atom
types to individual atoms was done using the rules given by the same authors.
Tables 6.10 and 6.11 list these type assignments in detail.

6.6.3 Data set

We performed the volume and density calculations on the same data set as Ponitius
et al. (1996). This data set consists of 64 high-resolution structures selected from
the PDB. These structures were selected by the cited authors because they had
been refined at a resolution of 2A or better and to an R-factor of at most 0.20.
In addition, they include representatives of different fold families as described
by Orengo et al. (1993). Table 6.12 gives a detailed list of the PDB identification
codes of these entries.

When reading the data sets, all cofactors and water molecules were stripped off
and only atoms belonging to one of the 20 standard amino acid residue types were
retained. We included only atoms and residues in the statistics that are completely
buried. An atom is considered as buried, if a probe sphere cannot touch it without
intersecting one of the other retained atoms. We used a probe sphere of radius
R = 1.5A in our calculations.

5
Radine TAT
Raaius (Aj

Type Tsai Chothia Richards
C3 L1610 176 1.70
C3H 176 1.76 1.70

C4H 1.88 1.87 2.00
C4HH 1.88 1.87 2.00
C4HHH | 1.88 1.87 2.00
N3 1.64 1.50 1.70
N3H 1.64 1.65 [.70
N3HH 1.64 1.65 1.60
N4HHH | 1.64 1.50 2.00

Ol 1.42 140 1.40
O2H 1.46 140 1.60
S2 177 1.85 1.80
S2H 177 185 —

Table 6.9: Radii assigned to the specific atom types. The first set of radii
was recently proposed by Tsai et al. (1999), and was used in the present study.
The other two columns specify the radii sets as given by Chothia (1975) and
Richards (1974).

146

Residue Atom Type Residue Atom Type
GLY 0O Ol HIS O 01
GLY C C3 HIS C C3
GLY CA CAHH HIS CA C4H
GLY N N3H HIS N N3H
ALA O Ol HIS CB C4HH
ALA C C3 HIS CG C3
ALA CA C4H HIS ND1 N3
ALA N N3H i HIS ch2 C3H
ALA CB C4HHH 5 HIS CEl C3H
VAL 0 Ol HIS NE2 N3H
VAL C C3 PHE 0 01
VAL CA C4H PHE C C3
VAL N N3H PHE CA C4H
VAL CB C4H PHE N N3H
VAL CGl CAHHH PHE CB C4HH
VAL CG2 C4HHH PHE CG 3
LEU 0 Ol PHE CDhl1 C3H
LEU C C3 PHE cD2 “3H
LEU CA C4H PHE CEL C3H
LEU N N3H PHE CE2 C3H
LEU CB C4HH PHE CZ C3H
LEU cG C4H TYR O 0Ol
LEU CD1 C4HHH TYR C 3
LEU CD2 C4HHH TYR CA C4H
ILE O Ol TYR N N3H
ILE C C3 TYR CB C4HH
ILE CA C4H TYR CG c3
ILE N N3H TYR Chi C3H
ILE CB C4H TYR D2 C3H
ILE CGl C4HH TYR CEl C3H
ILE CG2 C4HHH TYR CE2 3H
ILE CDl C4HHH TYR Cz C3
MET 0] 01 TYR OH O2H
MET C C3 TRP 0] Ol
MET CA C4H TRP C C3
MET N N3H TRP CA C4H
MET CB C4HH TRP N N3H
MET CG C4HH TRP CB C4HH
MET SD S2 TRP CG C3
MET CE C4HHH TRP Chl C3H
PRO O 01 TRP NE1 N3H
PRO C 3 TRP CD2 C3
PRO CA C4H TRP CE2 c3
PRO N N3H TRP CE3 C3H
PRO CB C4HH TRP CZ3 C3H
PRO CG C4HH TRP cz2 C3H
PRO CD C4HH TRP CH2 C3H

Table 6.10: Rule set used to associate atomic types to individual atoms. Part 1,
aliphatic residues, methinoine, proline, aromatic residues and histidine.

147

i;squue gmm 2))11)6 i Residue Atom Type
C*é c o3 | ASP 0 0l
cys CA C4H ASP ¢ c
oys N N, ASF CA C4H
CYS B CdHH ASP N N3H
cYs <G 7 ASP CB C4HH
QF{{ 0 : Oml ASP G e
LS‘I;P c 3 ASP oDl Ol
su; CA CaH ASP opz 0l
—, N‘ N3H GLU 0 01
o oy GLU c c3
SER CB C4HH =
. GLU CA C4H
SER oG O2H oLl N it
?i}:; ; (c,zu : ";?(’ GLU CB C4HH
THR c 3 GLU CG C4HH
THR A ij GLU b G
THR \,' “3H GLU OEl Ol
i ‘ o GLU OE2 Ol
THR CR C4H = = =
THR oGl 02H e . o
THR G2 C4HHH : : -
THR 6 e LYs CA C4H
SN o ‘ o 1 = LYS N N3H
o c s LYS CB C4HH
ASN cA o LYS CG C4HH
ASN < GH Lrys CD C4HH
ASN CB camm | LYS CE - CatiH
,\S\r oc o I LYS NZ N4HHH
AT ¥ L3 ¥
ASN oDl 0Ol iig 2 8;
ASN ND2 N3HH ARC’ o o
7 (‘1.
gis S ?; ARG N N3H
ol 1\ ch o ARG CB C4HH
CI N N N ARG CG C4HH
GL\ B oMM ARG CD C4HH
GLN cG CiHH ARG NE N3H
AN I S

: - ARG cz 3
gii (()E] (LN ARG NHI N3HH
oIN NEr NaHH ARG NH2 N3HH
k3 INILLL INAH

Table 6.11: Rule set used to associate atomic types to individual atoms. Part II,
polar residues, basic and acidic residues.

Ibbp lcob lese lese Tetf Ifkf 1fxd

ug
[aN
e

Igpl Thoe lifc lmba Imbc Ipaz 1169 lrbp
Iemh Irop lIsnc Itgs Ithb lub lubq 2alp
2aza 2ca2 2cdv 2ci2 2er7 2fb4 2fcr 2fx2
2¢bp 20vo 2rhe 2rsp 2sar 2sep 2sga 2sic

2trx - 2tsc 2wrp 3blm 3chy 3ebx 3grs 3lzm
4bp2 4cla 4enl 4icb dptp 5p21 Smub 6tmn
6xia 7aat 8abp 8acn 8dfr 9pap 9mt O9wea

Table 6.12: Structure set used in calculations. This selection of 64 entries from the
PDB has also been used in the study by Pontius et al. (1996).

149

Chapter 7
Summary

So, what have we achieved in this thesis? We started with a review of different
methods to calculate volumes and densities of individual atoms in molecular en-
sembles. Since none of the previous methods worked completely satisfactory both
from the mathematical as the chemical point of view, we considered the AWV tes-
sellation as possible alternative, as proposed in the article by Goede et al. (1997).

To derive an algorithm to compute AWV cells, we went back to study their geo-
metric properties and came up with the surprising result that the hyperbolic and
elliptic edges of a cell project as circular arcs onto the defining sphere of cell.
Since circles on a sphere can be handled very conveniently by an algorithm, this
observation became the very foundation of the algorithms derived in the remainder
of the thesis. In addition, we gave a new tight lower bound on the worst-case com-
plexity of a single AWV three dimensional cell defined by n spheres. This bound
of ©(n?) demonstrates that AWV cells are significantly different from ordinary
Voronoi cells, which can attain in three dimensions only a maximum complexity
of On).

Because our goal was to devise a practical solution, we decided to design a ran-
domized algorithm that would work without elimination along the coordinate
axes. This lead to the theoretical algorithm presented in chapter 3 that used a trian-
gulation of convex polytopes to represent an individual AWV cell. This algorithm
computes one such cell amidst n other spheres in expected time O(n?logn). Since
we showed the upper bound of O(nz) on the complexity such a cell to be tight,
this is optimal up to a logarithmic factor. However, the experimentally observed
behavior of the complexity of these cells is linear in n. In this case, this algorithm
would perform the task in expected time O(n log=n).

150

Motivated by experimental experience, we implemented a slightly simplified ver-
sion of the algorithm. Besides the core algorithm tfor computing an analytical rep-
resentation of an AWV cell, this implementation also includes several pre- and
post-processing steps. We used controlled floating point arithmetic combined nu-
meric perturbation techniques to deal with issues of degenracies and numerical
round-off errors. As argued by Halperin and Shelton (1997), this is a viable ap-
proach for applications in molecular biology because the data sets suffer from
experimental imprecision anyway. All these design decisions were verified in a
sequence of experiments where we applied the implementation to data sets taken
from the domain of application.

Finally, we studied the performance of the AWV method compared to other
methods for assigning volumes and densities to individual atoms and amino acid
residues of a molecule. As it turned out, the variances of volumes calculated with
the AWV method are almost uniformly lower than those obtained for the Richards’
B, the radical planes, or the Voronoi method. These results suggest that indeed the
AWV method might be the method of choice for this type of calculations.

On the other hand, several questions have been left open, and we would like to
indicate some directions of future research:

1. To our best knowledge, the exact worst-case complexity of the single AWV
cells in odd dimensions d > 5 and the complete AWV diagram for even
dimensions d > 2 is still open. The lower bound construction we gave in this
thesis might suggest that the AWV diagram can achieve a higher complexity
in even dimensions d > 2 than is possible for the unweighted diagram.

2. We found it very surprising that the area of meshing, something we con-
sidered as trivial post-processing in the first place, still lacks a rigorous un-
derstanding as soon as the input is more complex than a planar straight line
graph. Considering the numerous possible applications of meshing algo-
rithm ranging from numerical mathematics to computer graphics, we be-
lieve that designing meshing algorithms for non-linear input in non-planar
domains will remain an interesting and active area of research.

3. Finally, we think that a detailed account on the packing of side chains in the
mterior of molecular structures using the AWV method might provide new
and 1nteresting insights into the problem of protein folding and molecular
recognition. In addition, studies of the packing density of proteins near the
molecular surface using AWV could prove useful.

151

Bibliography

Adamy, U. and Seidel, R. (1998). On the Exact Worst Case Query Complexity
of Planar Point Location. In Proc. 9th ACM-SIAM Sympos. Discrete Algorithms.

Akkiraju, N. (1996). Molecule Surface Triangulation from Alpha Sphapes. Dis-
sertation, University of Illinois at Urbana-Champaign.

Alard, P. and Wodak, S. J. (1991). Detection of cavities in a set of interpenetrat-
ing spheres. J. Comp. Chem.. 12:918-922.

Andrade, M. V. and Stolfi, J. (1998). Exact Algorithms for Circles on the Sphere.
In Proc. 14th Annu. ACM Sympos. Comput. Geom.

Asano, T., Asano, T. and Imai, H. (1986). Partitioning a Polygonal Region into
Trapezoids. J. ACM, 33:290-312.

Atallah, M. J. and Goodrich, M. T. (1986). Efficient plane sweeping in parallel.
In Proc. 2nd Annu. ACM Sympos. Comput. Geom., pp. 216-225.

Atkins, P. W, and Friedman, R. S. (1997). Molecular Quantum Mechanics. Ox-
ford University Press, 3rd Edition.

Aurenhammer, F. (1987). Power diagrams: properties, algorithms and applica-
tions. SIAM J. Comput., 16:78-96.

Aurenhammer, F. (1991). Voronoi diagrams: A survey of a fundamental geomet-
ric data structure. ACM Comput. Surv., 23(3):345-405.

Avrami, M. (1939). Kinetics of phase change 1. J. Chem. Phys.
Benz, W. (1992). Geometrische Transformationen. BI-Wissenschafts-Verlag.

!

2

N

Bern, M. and Eppstein, D. (1995). Mesh generation and optimal triangulation. In
Du, D.-Z. and Hwang, F. K., Ed., Computing in Fuclidean Geometry, Volume 4
of Lecture Notes Series on Computing, pp. 47-123. World Scientific, Singapore,
2nd Edition.

Boissonnat, J.-D. and Dobrindt, K. (1992). Randomized construction of the up-
per envelope of triangles in R®. Tn Proc. 4th Canad. Conf. Comput. Geom., pp.
311-315.

Boissonnat, J.-D. and Dobrindt, K. (1996). On-line construction of the upper
envelope of triangles and surface patches in three dimensions. Comput. Geom.
Theory Appl., 5:303-320.

Boissonnat, J.-D. and Yvinec, M. (1998). Algorithmic Geometry. Cambridge
Univerisy Press.

Bronnimann, H., Emiris, 1., Pan, V. and Pion, S. (1997). Computing exact geo-
metric predicates using modular arithmetic with single precision. In Proc. 13th
Annu. ACM Sympos. Comput. Geom., pp. 174-182.

Burnikel, C. (1996). Exact Computation of Voronoi Diagrams and Line Segment
Intersections. Ph.D thesis, Universitit des Saarlandes.

Bumikel, C., Fleischer, R., Mehlhorn, K. and Schirra, S. (1997). A strong and
easily computable separation bound for arithmetic expressions involving square
roots. In Proc. 8th ACM-SIAM Sympos. Discrete Algorithms, pp. 702709,

Burnikel, C., Mehlhorn, K. and Schirra, S. (1996). The LEDA class real number.
Technical Report MPI-I1-96-1-001, Max-Planck Institut Inform., Saarbriicken,
Germany.

Chang, J. and Milenkovic, V. (1993). An experiment using LN for exact geomet-
ric computations. In Proc. 5th Canad. Conf. Comput. Geom., pp. 67-72.

Chazelle, B. (1990). Polygon Triangulation. In Proceedings of FOCS.

Chazelle, B. (1993). An optimal convex hull algorithm in any fixed dimension.
Discrete Comput. Geom., 10:377-409.

Chazelle, B., Edelsbrunner, H., Guibas, L. J. and Sharir, M. (1991). A singly-
exponential stratification scheme for real semi-algebraic varieties and its appli-
cations. Theoret. Comput. Sci., 84:77-105.

Chew, L. (1997). Guaranteed quality Delaunay meshing in 3D. In Proc. 13th
Annu. ACM Sympos. Comput. Geom., pp. 391-393.

100

Chew, L. P. (1989). Guaranteed-quality triangular meshes. Technical Report
TR-89-983, Dept. Comput. Sci., Cornell Univ., Ithaca, NY.

Chothia, C. (1975). Structural invariants in protein folding. Nature, 254:304—
308.

Clarkson, K. L. and Shor, P. W. (1989). Applications of random sampling in
computational geometry, Il. Discrete Comput. Geom., 4:387-421.

Cohen, H. (1993). A Course in Computational Algebraic Number Theory.
Springer Verlag.

Collins, G. E. (1975). Quantifier Elimination for Real Closed Fields by Cylindri-
cal Algebraic Decomposition. In Proc. 2nd GI Conference on Automata Theory
and Formal Languages, Yolume 33 of Lecture Notes Comput. Sci., pp. 134183,
Springer-Verlag, Berlin, West Germany.

Connolly, M. L. (1981). Molecular surface program. QCPE Bull.

Connolly, M. L. (1983). Analytical molecular surface calculation. J. Appl. Crys-
tallogr., 16:548-558.

Creighton, T. E. (1993). Proteins. W. H. Freemann and Company, 2nd Edition.

de Berg, M., van Kreveld, M., Overmars, M. and Schwarzkopf, O. (1997). Com-
putational Geometry: Algorithms and Applications. Springer-Verlag, Berlin.

Dekker, T. J. (1971). A floating-point technique for extending the available pre-
cision. Numerische Mathematik, 18:224-242.

Doucet, J.-P. and Weber, J. (1996). Computer-Aided Molecular Design : Theory
and Applications. Academic Press.

Dubé, T., Ouchi, K. and Yap, C. (1996). Tutorial for Real/Expr.

Edelsbrunner, H. (1992). Weighted alpha shapes. Technical Report UTUCDCS-
R-92-1760, Dept. Comput. Sci., Univ. llinois, Urbana, IL.

Edelsbrunner. H., Guibas, L. J. and Stolfi, J. (1986). Optimal point location in a
monotone subdivision. SIAM J. Comput., 15(2):317-340.

154

Edelsbrunner, H. and Miicke, E. P. (1988). Simulation of simplicity: a technique
to cope with degenerate cases in geometric algorithms. In Proc. 4th Annu. ACM
Sympos. Comput. Geom., pp. 118-133.

Emiris, 1. and Canny, J. (1995). A general approach to removing degeneracies.
SIAM J. Comput., 24:650-6064.

Emiris, 1. Z., Canny, J. F. and Seidel, R. (1997). Efficient Perturbations for Han-
dling Geometric Degeneracies. Algorithmica, 19(1-2):219-242.

Finney, J. L. (1975). Volume, occupation. environment, and accessibility in pro-
teins. The problem of the protein surface. Journal of Molecular Biology, 96:721~
732.

Fortune, S. (1989). Stable maintenance of point set triangulations in two dimen-
sions. In Proc. 30th Annu. IEEE Sympos. Found. Comput. Sci., pp. 494-505.

Fortune, S. and Van Wyk, C. J. (1996). Static Analysis Yields Efficient Exact In-
teger Arithmetic for Computational Geometry. ACM Trans. Graph., 15(3):223~
248.

Garey, M. R,, Johnson, D. S., Preparata. F. P. and Tarjan, R. E. (1978). Triangu-
lating a simple polygon. Inform. Process. Lett., 7(4):175-179.

Geddes, K. O., Czapor, S. R. and Labahn, G. (1992). Algorithms for Computer
Algebra. Kluwer Academic Publishers.

Gellatly, B. J. and Finney, J. L. (1982). Calculation of protein volumes: An
alternative to the Voronoi procedure. Journal of Molecular Biology, 161:305~
322.

Gerstein, M. and Chothia, C. (1996). Packing at the Protein-Water Interface.
Proc. Nat. Acad. Sci., 93:10167-10172.

Gerstein, M., Tsai, J. and Levitt, M. (1993). The Volume of Atoms on the Pro-
tein Surface: Calculated from Simulation, using Voronoi Polyhedra. Journal of
Molecular Biology, 249:955-966.

Goede, A., Preifiner, R. and Frommel, C. (1997). Voronoi Cell - A new method

for the allocation of space among atoms. Journal of Computational Chemistry.

[5

v
[

Goldberg, D. (1991). What Every Computer Scientist Should Know About
Floating-Point Arithmetic. ACM Comput. Surv., 23(1):5-48.

Guibas, L. J. and Sedgewick, R. (1978). A dichromatic framework for balanced
trees. In Proc. 19th Annu. IEEE Sympos. Found. Comput. Sci., Lecture Notes
Comput. Sci., pp. 8-21. Springer-Verlag.

Halperin, D. and Overmars, M. H. (1994). Spheres, Molecules, and Hidden
Surface Removal. In Proc. 10th Annu. ACM Sympos. Comput. Geom., pp. 113~
122.

Halperin, D. and Shelton, C. (1997). A perturbation scheme for spherical ar-
rangements with application to molecular modeling. In Proc. 13th Annu. ACM
Sympos. Comput. Geom., pp. 183-192.

Halperin, D. and Shelton, C. R. (1998). A perturbation scheme for spherical
arrangements with application to molecular modeling. Comput. Geom. Theory
Appl., 10:273-287.

Harpaz, Y., Gerstein, M. and Chothia, C. (1994). Volume changes on protein
folding. Structure, 2:641-649.

IEEE (1985). IELE Standard for binary floating point arithmetic, ANSI/IEEE Std
754 —1985. IEEE Computer Society, New York, NY. Reprinted in SIGPLAN
Notices, 22(2):9-25, 1987.

Johnson, W. A. and Mehl, R. F. (1939). Reaction cinetics in processes of nucle-
ation and growth. Trans. Am. Inst. Min. Engrs., 135.

Karasick, M. S., Lieber, D., Nackman, L. R. and Rajan, V. T. (1997). Visualiza-
tion of Three-Dimensional Delaunay Meshes. Algorithmica, 19(1-2):114-128.

Kirkpatrick, D. G. (1983). Optimal search in planar subdivisions. SIAM J. Com-
put., 12(1):28-35.

Kleywegt, G. T. and Jones, T. A. (1994). Detection, delineation, measurement
and display of cavities in macromolecular structures. Acta Crystallographica,
D50:178-185.

Knuth, D. E. (1992). Axioms and Hulls, Volume 606 of Lecture Notes Comput.
Sci. Springer-Verlag, Heidelberg, Germany.

156

Kolmogoroff, A. N. (1937). Statistical theory of crystallization of metals. Bull.
Acad. Sci. USSR Mat. Ser., 1:355-359.

Kyte, J. (1995). Structure in Protein Chemistry. Garland Publishing.
Lang, S. (1992). Algebra. Addison Wesley, 3rd Edition.

Lawson, C. L. (1977). Software for C! surface interpolation. In Rice, J. R., Ed.,
Math. Software I, pp. 161-194. Academic Press, New York, NY.

Liang, J., Edelsbrunner, H., Fu, P. and Sudhakar, P. V. (1998). Analytical shape
computation of macromolecules. Proteins, 33:1-17.

Loos, R. (1983). Computing in algebraic extensions. In Buchberger, B., Collins,
G. E., Loos, R. and Albrecht, R., Ed., Computer Algebra: Symbolic and Alge-
braic Computation, pp. 173-187. Springer-Verlag.

Mahin, W. K., Hanson, K. and Morris, J. W. (1980). Comparative analysis of the
cellular and Johnson-Mehl microstructures through computer simulation. Acta
Metallurgica, 28:443-453.

McMullen, P. (1970). The maximal number of faces of a convex polytope. Math-
ematika, 17:179-184.

Mehlhorn, K. and Niher, S. (1994). Implementation of a sweep line algorithm
for the straight line segment intersection problem. Report MPI-1-94-160, Max-
Planck-Institut Inform., Saarbriicken, Germany.

Mehlhorn, K. and Niher, S. (1998). LEDA: A Platform for Combinatorial and
Geometric Computing. Cambridge University Press, New York.

Mehlhorn, K., Niher, S., Schilz, T., Schirra, S., Seel, M., Seidel, R. and Uhrig, C.
(1996). Checking Geometric Programs or Verification of Geometric Structures.
In Proc. 12th Annu. ACM Sympos. Comput. Geon., pp. 159-165.

Meijering, J. L. (1953). Interface area, edge length, and number of vertices in
crystal aggregates with random nucleation. Philips Research Report.

Mishra, B. (1993). Algorithmic Algebra. Springer Verlag.

Mpgller, J. (1992). Random Johnson-Mehl tesselations. Adv. Appl. Prob., 24:814—
844,

Ut
~J

Mpgller, J. (1995). Generation of Johnson-Mehl crystals and comparative analysis
of models for random nucleation. Adv. Appl. Prob., 27:367-383.

Mulmuley, K. (1989). An efficient algorithm for hidden surface removal. Com-
put. Graph., 23(3):379-388.

Mulmuley, K. (1994a). An Efficient Algorithm for Hidden Surface Removal, 1.
Journal of Computer and Systems Sciences, 49:427-453.

Mulmuley, K. (1994b). Computational Geometry: An Introduction Through Ran-
domized Algorithms. Prentice Hall, Englewood Cliffs, NJ.

Okabe, A., Boots, B. and Sugihara, K. (1992). Spatial Tessellations: Concepts
and Applications of Voronoi Diagrams. John Wiley & Sons, Chichester, UK.

Orengo, C. A, Flores, T. P., Taylor, W. R. and Thornton, J. M. (1993). Identifica-
tion and classification of protein fold families. Protein Engineering, 6:485-500.

Pontius, J. (1997). Atomic volumes in protein crystallographic structures and
their use in structure validation. Dissertation, Université Libre de Bruxelles.

Pontius, J., Richelle, J. and Wodak, S. (1996). Deviations from Standard Atomic
Volumes as a Quality Measure for Protein Crystal Structures. Journal of Molec-
ular Biology, 264:121-136.

Priest, D. (1991). Algorithms for arbitrary precision floating point arithmetic. In
Proc. 10th Symp. on coputer arithmetic, pp. 132143,

Richards, F. M. (1974). The interpretation of protein structures: Total volume,
group volume distributions and packing density. Journal of Molecular Biology,
1:1-14.

Richards, F. M. (1977). Areas, volumes, packing and protein structure. Annu.
Rev. Biophys. Bioeng., 6:151-176.

Ruppert, J. (1995). A Delaunay Refinement Algorithm for Quality 2-
Dimensional Mesh Generation. Journal of Algorithms, 18(3):548-585.

Sanner, M. F,, Olson, A. J. and Spehner, J.-C. (1995). Fast and Robust Computa-
tion of Molecular Surfaces. In Proc. 11th Annu. ACM Sympos. Comput. Geom.,
pp. C6-C7.

Sarnak, N. and Tarjan, R. E. (1986). Planar point location using persistent search
trees. Commun. ACM, 29(7):669-679.

Schirra, S. (1998). Robustness Issues. In Sack, J.-R. and Urrutia, J., Ed.,
Handbook of Computational Geometry. Elsevier Science Publishers B.V. North-
Holland, Amsterdam.

Schom, P. (1991). Robust algorithms in a program library for geometric compu-
tation. Ph.D. thesis, ETH Ziirich, Switzerland. Report 9519.

Seidel, R. (1981). A convex hull algorithm optimal for point sets in even dimen-
stons. M.Sc. thesis, Dept. Comput. Sci., Univ. British Columbia, Vancouver, BC.
Report 81/14.

Seidel, R. (1991). A simple and fast incremental randomized algorithm for
computing trapezoidal decompositions and for triangulating polygons. Comput.
Geom. Theory Appl., 1(1):51-64.

Seidel, R. (1993). Backwards Analysis of Randomized Geometric Algorithms.
In Pach, J., Ed., New Trends in Discrete and Computational Geometry, Vol-
ume 10 of Algorithms and Combinatorics, pp. 37-68. Springer-Verlag.

Serpette, B., Vuillemin, J. and Hervé, J. C. (1989). BigNum: a portable and
efficient package for arbitrary-precision arithmetic. Technical report, INRIA.

Sharir, M. (1985). Intersection and closest-pair problems for a set of planar discs.
SIAM J. Comput., 14:448-468.

Shewchuk, J. (1996a). Adaptive precision floating point arithmetic and fast ro-
bust geometric predicates. Technical Report CMU-CS-96-140, Carnegie Mellon
Univ., Pittsburgh, PA.

Shewchuk, I. R. (1996b). Robust Adaptive Floating-Point Geometric Predicates.
In Proc. 12th Annu. ACM Sympos. Comput. Geom., pp. 141-150.

Stolft, J. (1991). Oriented Projective Geometry: A Framework for Geometric
Computations. Academic Press, New York, NY.

Stoyan, D., Kendall, W. S. and Mecke, J. (1995). Stochastic Geometry and its
Applications. John Wiley & Sons, 2nd Edition.

159

Sugihara, K. and Iri, M. (1994). A robust Topology-Oriented Incremental algo-
rithm for Voronot diagrams. Internat. J. Comput. Geom. Appl., 4(2):179-228.

Szabo, A. and Ostlund, N. S. (1996). Modern Quantum Chemistry. Dover Pub-
lishing.

Tsai, J., Taylor, R., Chothia, C. and Gerstein, M. (1999). Radii and Volumes for
Atomic Groups in Proteins. to appear.

van der Waerden, B. L. (1955). Moderne Algebra Il. Springer Verlag, 3rd Edi-
tion. The chapter on Kronecker elimination was removed in later editions.

van Lint, J. H. and Wilson, R. M. (1992). A Course in Combinatorics. Cambridge
University Press.

Varshney, A., Brooks, E. P. and Wright, W. V. (1994). Computing smooth molec-
ular surfaces. IEEE Comp. Graph. Appl., 14:19-25.

Voronoi, G. M. (1908). Nouvelles applications des parametres continus a la
théorie des formes quadratiques. Deuxieéme Mémoire: Recherches sur les par-
allélloedres primitifs. J. Reine Angew. Math., 134:198-287.

Weiler, K. (1985). Edge-Based Data Structures for Solid Modeling in a Curved
Surface Environment. IEEE Comput. Graph. Appl., 5(1):21-40.

Yap, C. K. (1990). Symbolic treatment of geometric degeneracies. J. Symbolic
Comput., 10:349-370.

Ziegler, G. M. (1994). Lectures on Polytopes, Volume 152 of Graduate Texts in
Mathematics. Springer-Verlag, Heidelberg.

160

Curriculum Vitae

Name:

Date of Birth:
Place of Birth:
Nationality:

19761980
1980-1989
1989-1990
1990-1992

1992-1995

1995-1996

19961999

1985-1989
19891992
19921994
1995-1996

1996-1998

since Oct. 1998

1991-1995
1995-1996

Hans-Martin Will
January 6th, 1970
Waiblingen
German

Karolinger Elementary School, Waiblingen
Staufer Gymnasium, Waiblingen

Military Service

University of Osnabriick

Studies in Applied Systems Sciences and Mathematics
University of Bonn

Studies in Mathematics and Biology
Diploma in Mathematics

Free University of Berlin

Ph.D. Student in Computer Science

ETH Ziirich, Dept. Computer Science
Ph.D. Student in Computer Science

TRADOS GmbH, Stuttgart

Software Developer

Maas High Software GmbH. Stuttgart
Software Developer

Research Institute for Discrete Mathematics, Bonn
Student Researcher

TRADOS GmbH, Stuttgart
Consultant

ETH Ziirich, Dept. Computer Science
Research Assistant

TRADOS Benelux S.A., Brussels
Software Engineer

Scholar of the Studienstiftung des Deutschen Volkes
Scholar of the DFG Graduate School
“Computational Discrete Mathematics”, Berlin

