
Diss. ETFI No. 13188 

A dissertation submitted to the 
SWISS FEDERAL TNSTITUTE OF TECHNOLOGY 

2xJRICW 

for the degree of 
Dr. SC. t&n. 

presented by 
HANS-MARTIN WILL 

Dipl. Math. University of Bonn 
born January Gth, 1970 

citizen of the Federal Republic of Germany 

accepted on the recommendation of 
Prof. Dr. E. Welzl? examiner 

Prof. Dr. H. Edelsbrunner, co-examiner 
Prof. Dr. S. Wodak, co-examiner 

1999 



Abstract 

This thesis is concerned with the design and implementation of an efficient algo- 
rithm for the computation of additively weighted Voronoi (AWV) cells for applica- 
tions in molecular biology, namely volume and density calculations of atoms and 
amino acid residues. An AWV cell of a sphere CT out of a collection S of spheres 
describes the nearest neighborhood of CT with respect to all the other spheres in 
S. To our knowledge, this is the first implementation of an algorithm computing 
these cells that is suited for practical application. 
We begin by studying the geometric and combinatorial properties of AWV cells. 
We show that an AWV cell can be conveniently described using a spherical sub- 

division data structure, where each edge corresponds to a circular arc. It is also 
shown that the best previously known upper bound on the worst-case complex- 
ity of one such cell defined by ~7 other spheres, which is O(r?), is tight. Based 
on these insights, we present a new randomized incremental algorithm computing 
one such cell amidst n other spheres in expected time O(r?logn), which is optimal 
up to a logarithmic factor. However, the experimentally observed behavior of the 
complexity of those cells arising in the. intended domain of application is linear in 
rz. In this case our algorithm performs the task in expectecl time O(rl log2 77.). 
We implemented a variant of this algorithm and took care to provide a robust im- 
plementation. Robustness is ensured by application of methods for dynamic error 
analysis at runtime that tri,, n*er numerical perturbations. The empirical behavior 
of this implementation on real data sets is studied, both from the point of view of 
robustness and computational resources required. 
Finally, we demonstrate the benefits of using AWV cells for volume computations 
in molecules compared to methods based on convex polyhedra that have been 
proposed previously. 



Zusanimenfassung 

In diesel- Arbeit beschreiben wir den Entwurf und die Implementation eines 
effizienten Algorithmus fiir die Bereclinung additiv gewichteter Voronoizellen 
(AWV-Zellen). Diese Implementation zielt auf mole~L~larhiologische Anwendun- 
gen ab, namentlich die Berechnun, 0 von Volumina und Dichten einzelner Atome 
und Aminos%nrereste. Die AWV-Zelle e,iner Kugel B aus einer Menge S von 
Kugeln beschreibt die n%chste Nachbarschaft von o beziiglich S. Nach unserem 
Wissen ist dies die erste Il~lplerncntier~~ung eines solchen Algorithmus, die fiir den 
praktischen Einsatz tauglich ist. 
Wir beginnen damit, die geometrischen und kombinatorischen Eigenschaften von 
AWV-Zellen zu studieren. Wir zeigen, dass eine AWV-Zelle sich durch eine Un- 
terteilung einer Kugeloberfltiche darstellen I%$ wobei jede Kante in dieser lln- 
terteilung einem Kreisabschnitt entspricht. Weiterhin zeigen wir, dass die bisher 
beste bekannte obere Schranke auf die schlimmstrrliigliche Komplexit%t einer 
durch IZ Kugeln definierten Zelle, die O(Y?) ist. scharf ist. Aufbauend auf diesen 
Erkcnntnissen stellen wir einen randomisierten Algorithmus vor, der eine solche 
Zelle, die durch n Kugeln definiert ist, in O(Y? logrl) erwarteter Zeit bereclmet,was 
bis auf einen logarithmischen Faktor optimal ist. Jedoch ist das experimentell 
beobachtete Verhalten der Komplexitiit dieser Zellen im Bereich der geplanten 
Anwendung linear in YI. In diesem Fall berechnet der neue Algorithmus eine 
solche Zelle in O(f, log” 72) erwarteter Zeit. 
Wir implementierten eine Variante dieses Algorithmus uncl legten dabei Wert 
darauf, eine robuste Itnplcmentierun, 0 zw Verfiigung zu stellen. Um Robustheit 
zu gew%hrleisten, benutzen wir Techniken zur dynamischen Fehlerkontrolle zw 

Laufzeit, die geeignetc numerische Perturbationen ausltisen. Das empirische Ver- 
halten dieser Tmplementierung wurde anhand realer Daten studiert: sowohl unter 
dem Gesichtspunkt der Robustheit als such cler beniitigten Laufzeit. 
Schliesslich demonstrieren wir die Vorteile von AWV-Zcllen zur Volumenberech- 
nung in Molekiilen und vergleichen dies mit friiheren Methoden, die auf konvexen 
Polyedern basieren. 
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Proteins comprise more than 50% oi‘ the dry weight of most biological species, 
and virtually any property that characterizes a living organism is controlled or 
affected by its constituent proteins. Built essentially out of a set of 20 different 
building blocks, the, amino acids, proteins catalyze chcmicai reactions as enzymes, 
fight against intruders in the form of antibodies, or they show up as purely struc- 
tural material as can be found in our nails. hair? skin, or bones. This tremendous 
diversity is possible because proteins folm large and complicated macromolecules 
built of up to several thousands of’ atoms. From this perspective, it should come as 
no surprise that the subject of modern biochemistry is essentially the study of the 
roles and irlteractions of proteins in livin, i_ ~7 svsterns. This core knowledge, in turn, 
forms the foundation of several applied disciplines collectively known as molec- 
~Znr- Z(fc scimcxs, such as molecular medicine and rational drug design, to name 
only two prominent representatives. 

The specific role and function of a protein within an oqanism is governed by 
its unique stereo-chemical properties’. These properties not only comprise purely 
quantum-chemical features suc11 as polarity or valences, but also include the ge- 
ometric configuration of the individual atoms in space. Therefore, an important 
step in the investigation of a protein is the. determination of its three dimensional 
structure. This is typically done using X-ray diffraction or NMR spectroscopy 
techniques. The result of these studies and the subsequent refinement steps is a set 
of coordinates for all constituent atoms of the molecule. 

To fClly understand the reaction of, sap, an enzyme and its substrate molecule 
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Figure 1 .I: The hard sphere n~otlel of a small molecule involved in electron trans- 
fer (iron-&fur protein, PDB entry lpi;). 

at its most profound level would require a detailed quantum-clielnical model of 
the two molecules involved. Though the required theory is well understood’, the 
simulation of these detailed models on a computer is by far out of reach for the 
next decades to come3. Hence, to obtain computationally feasible models of the 
biochemical processes of interest, these models have to be simplified significantly. 

A very popular model is the VC/U der l4~7c7ls (VDW) or hard-sphere model. In 
this model, each atom is represented as a sphere in space whose radius is chosen 
depending on the element or hybridisation type. of the atom. Since spheres are 
fundamental and well-understood geometric objects, the van der Weals model has 
been applied extensively for geometric considerations on macromolecular struc- 
tures. See figure 1. I for an illustration. In this thesis, we restrict oiirselvcs to purely 
geometric problems, and the van dcr- Waals model is chosen as foundation. 

This choice is not without problems: Van der Waals radii al-e not available for all 
chemical elements, and, even worse, there exist several different assignments of 
radii to atomic types. To complicate things, sometimes a rmil’ed-nto77l npproaclz is 
used. In this approach, certain atoms are assigned a larger- rndi~ts with the inten- 
_-----“...~..~~..“I--- .--- -.I . . .._ 

'Cf. Atkins and P~iechnan ( 1997) or S7ah and Ostluncl ( 19961 
‘Cf. Ihucet and Wcbcr- ( 1996,l 



Outside 
,-Accessible 

Figure 3.2: The molec~~la~~sr~r~fcrce is obtained by rolling a probe sphere of a speci- 
fied radius R over the atomic spheres. The molecular surface comprises the contact 
surfkce and the reentrant surface. The corltact surface is the subset of the union of 
the surfaces of the spheres that can be touched by the probe sphere. The reentrant 
surface is a part of the probe sphere surface that fills canyons unreachable to the 
probe sphere. The sohmt nccessihle slwfc~ce is the surface ruled out by the center 
0.f the probe sphere in this process. Picture taken from Creighton ( 1993). 

tion to represent an atomic gro~q~, such 3s the carbon at-om representing a methyl 
group. This variant is commonly used in couljunction with atomic coordinate sets 
gained from X-ray diffraction patterns? which do not yield reliable information 
about the location of hydrogen atoms. Hence, it is always necessary to tabulate 
the specific set of radii used when reportin g any kind of experimental result or 
conclusion. 

A concept tightly related to the hard-sphere model is the nlolcc~clnl-srl~fnce, which 
is also known as Richards ( 1977) or Connolly ( 19S3) surface. For an illustration 
of this concept see figure 1.2. In mathematical t-erms, this surface is defined as 
follows: Let V denote the union of the volumes of the atomic spheres comprising 
the molecule. L,et 

A,. = {.Y E R’ : B,.(.Y) i-11’ = 131, 

where II,. denotes a probe ball of radius r centered at 1. Then the 7~~oleculnr 
,swfcIce with respect to a probe sphere of radius I’ is given as the boundary set 



The set &I,. is also known as the solvent nccessible s~~yfrrce OF the molecule. There 
exist many different implementations of algorithms for computing these sur- 
faces by Connolly (19s 1, 1983), Alard and Wodak (l?Ol), Varshney et al. (1994): 
Sanner et al. (199.5), Akkiraju (1996). to name only a few. The computation of 
these surfaces is closely related to the power diagram and to the concept of 
weighted a-shapes, see Edelsbrunner (1992). 

ssellations of space 

When the first crystal structures of proteins became available, it was a surprising 
to what extent the interior of globular proteins is packed. According to the calcu- 
lations by Richards (1974). about 75% of the interior \701ume is filled with atoms, 
as defined by their van der Waals radii. This value has to be compared with the 
corresponding value obtained for an optimal packing of identical spheres, which is 
approximately 74%. Since proteins are synthesizcd as polymeric chain molecules, 
a complicated folding process is necessary in order to arrange all atoms into the 
right configuration. This folcling process is driven by the laws of statistical me- 
chanics, and it is the common beljef that the primary structure, i.e. the specific 
sequence of amino acids along the polymeric chain, determines the three dimen- 
sional structure of the molecule’, Subsequent studies revealed that the aforemen- 
tioned tight packin g is a key factor in the folding process of globular proteins. 
Since we are at the atomic level, quantifying packing densities essentially means 
to partition the space occupied by a molecule among its constituent atoms. The 
reader is referred Gerstein and Chothia (1996) for further motivations to perform 
these calculations. Most notably, Pontius et al. (1996) propose computing these 
volumes as a method of quality assessment of experimentally pained crystal struc- 
Ox-es. 

Atomic volumes in proteins were first modeled using Voronoi (190s) tcssella- 
tions by Richards (1973, 1977) and Finney (1975). For XJ E R”, let d(qy) := 

L’ 

-~. 
z$, (x; -- yi)” denote the Euclidean distance between I and !;. Then the Voronoi 

tessellation of a set of points P =: {l-ii: 1 5 i 5 II} cm he defined as follows: 

Definition 1 (Voronoi tessellation) LPf II E N, P = {pi, 1 <: i 2 71}, pi E R”. Then 



is cnlled tile Votonoi tessellation im/~ecl by P. For ecrch 1 5 i 5 n, the set V; is 
cnlled th,e (unweighted) Voronoi ccl 1 of tlzc point pi with respect to P. 

We will also refer to the cell l< as the cell ~l~j?/lcrl h?~ yi. In the original Voronoi 
method, which Richards also called n~etl~ocf A> the Voronoi cells of the centers 
of the atomic spheres are computed, and the volume assigned to each atom is 
the volume of its Voronoi cell. As it is well known, Voronoi cells are convex 
polyhedra, and the cell I$? 1 _. < i 5 7). can be written as the common intersection of 
a set H; of open hcc@~?nces 

Here, (~,y) = ‘j$!, .\-iyi denotes the scalar products and /us/’ = (X,.X). We will also 

use the short-hand x2 = /1.%-/i’. H owever, treating all atoms eq~mlly tends to chem- 
ically misallocate volume between atoms of N priori different size (e.g. carbon 
and oxygen). Two previous approaches try to consider the different atomic radii 
by using different rules for the placement of the bisecting planes ahii between the 
ceils. 

Already in his initial study, Richards ( 1974) proposed a m&m! N that places the 
bisecting planes based on chemical reasoning’. Again, let P = {pi E R”, 1 <: i _i 
II} denote a set of atomic coordinates. and let (1.i : 7.i 2 0, 1 5 i < 77) denote the 
corresponding atomic radii. As before, we assign to each atom 17; a polyhedron 
th2.t iS given aS the COlll\llOJl intersection Of a set Of op.Xl halfspaces Hi = { hi,j! 1 5 
,j <: rl,,j # i}. Depending on whether ci and c,i are covalmtly bonded or not, the 
halfspace lzij is defined as follows: 



Dij c t .-* 
--- --e .*--.+ 

d( Ci’Ci) cl(c;,c;) 

Figure 1.3: Richards’ rules for placing bisector surfaces between atoms. The left 
picture shows the rule for non-bonded atoms, the right picture the rule for bonded 
atoms. 

1. If atoms ci and c,j are not covalently bonclecl, then we set 

hi,i ~= {X E K3 

See also the left picture of figure I .3. 

2. If the atoms cj and cj are bonded, then we set 

See also the right picture of figure 1.3. 

However, as exemplified in figure I .4: these rules do not assign all intramolecu- 
lar space to atoms. Richards reports that this “vertex error” is usually very small, 
reaching up to 3% and occasionally up to 10% of the molecular volu~ne. Tn Gel- 
latly and Finney’s (1982) study of ribonuclease S, this error summed up to 4.1% 
and 3.7% of the total volume dependin, 0 on slight variations of the method. On 
the other hand, Gerstein et al. (1995) measured a total error of only 0.002% with 
respect to the total vol-lune of pancreatic trypsin inhibitor. Nonetheless, the latter 
authors discuss the possible USC of mnwl instead of plmx bisector surfaces. 
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Figure 1.4: The vertex error that can OCCLU with Richards’ partitioning scheme. 
Srrmll tetrahedra may be left unassigned, 

Gellatly and Finney (I 983 propose the rnclicnl plrr~e mc’fl~ncl. Instead of cotnput- 
ing ordinary Voronoi cells, the power cells of the atomic spheres are computed. If 
all radii are equal then this tessellation is equal to the Voronoi tessellation. Power 
cells are defined via the Laguerre metric. also known as the power of a point p 
with respect to a sphere o = (c. 7.) with center c and radius I’. 

We can define the power tessellation defined by a set of spheres S = (pi, 1 <= i < TL} 
in R” as follows: 



If S is a set of atomic van der Waals spheres, it may happen that the center ci of 
an atomic sphere oi is not located within its own cell V; even though the cell is 
non-empty. This is considered chemically counter-intuitive by later authors, see 
e.g. Gerstein ct al. (I 995). 

For geometric properties of this tessellation the rcuder is referred to the papers 
by Aurenhammer( 1957.1991). From the computational point of view, the most 
important aspect proved in these papers is that a power tessellation in R” is in 
one-to-one correspondence to an upper convex polyhedron in R”+l. Hence, algo- 
rithms for computin g intersections of halfspaces can be used to compute these 
tessellations, see e.g. those given by Seidel (1 OS 1). CIarkson and Shor (1989), 
Chazelle (1993). 

In a recent study, Goede et al. (1997) compared se~,eral methods to partition space 
among atoms. Based on chemical and experimental reasoning, they propose to 
assign to each atom the volume of its crdditir:e!\: \\skglrfcrl Wmtzoi (AWV) cell. 
An AWV tessellation divides space based on the distance to the surfaces of the 
spheres. We will introduce this tessellation in the next section in greater detail. 
A major problem Goede ct al. faced was the fact that they could not devise an 
analytic and efficient algorithm for the computation of these cells. 

1.2 he additively weighted Voronoi tessellation 

Again, consider a set of spheres S = {cY~; 1 < i <: rr} in R”, each sphere oi = 
(ci, tpi) defined by its center ci E R” and radius I’; E R. We can introduce a distance 
function d(X, 0;) = C/(-Y; Ci) -.- I’,. For n point x outside Cii this function measures the 
distance to the surface of the sphere.. \Ve assign to each of the spheres CY~ E S the 
set of all points “nearer” to oi than to all other spheres by defining: 

Definition 4 (Additively weighted Voronoi tessellation) Let II E N, S = (oi, 1 5 
i <: TX}, CTi = (c;; F;), pi E R”, r; E R. T/Iu/ the c.ollcctim V :::: V(S) qf nbl TIO~I-CWIJI~J 

sets 



Figure 1.5 shows an additively weighted Voronoi cell defined by a small col- 
lection of spheres. We distinguish n fes,sel/rriionh as a set theoretic object from 
a diagmm as a combinatorial object. The combinatorial structure induced by 
AWV tessellations will be discussed in the next chapter. Another name for the 
AWV tessellation is Jol~~~~o~~-Mel~l tewllntior~~ since Johnson and Mehl ( 1939) 
introduced this structure as a model for crystal growth processes. According to 
Stoyan et al. (1995)> this specific model for crystal growth proccsses was already 
considered by Kolmogoroff ( 1937). 
.~--~...~- ..-.. -._.II --._ 

“Fom~ally, sli&ly pcncralizin, 0 Stoyan et al. i 1995). a tessellation of space cm be detinccl as 
follows: 

Here, card(A) denotes the cardinality ot’n set/t. and cl(,A) denotes the closure of/l. Fors E R”, I’ > 
0, B,.(.Y) is the open ball oCradius 7‘ xomcl .x. We will not use this general definilion of tessellation. 
Stoyan ct al. ( 1995) discuss Johnson-iL4elil tessellations as special case 0T general tessellations. 
However, they define a tessellation to comprise a collection of cmnm polyhedral sets. As we will 
see, iii genet-al this is flat the cast for AWV tessellnrions. 

Figure 1.5: An additively weighted Voronoi cell defined by a small collection of 
spheres in space. 

12 



Figure 1.6: A planar AWV tessellation obtained as u rrmdel of crystal growth. 
Crystals start growin g radially from seed points, which arrive randomly clis- 
tributed on both space and time. Whenever two crystals rncet? they stop growing 
at that point. Points arriving at a location already occupied by a crystal are fil- 
tered out. This illustration is taken from ;‘c/lnhin et al. (1980). These authors also 
compare the Johnson-Mehl model to real crystal growth processes and find an 
astonishing correspondence between the theoretic model and reality. 

In the Johnson-Mel11 model of crystal growth, crystals start growing radially from 
a collection of seed points. These seeds, however, are not given at the begin- 
ning of the growth process but rather arrive in time and space distributed ac- 
cording to a Poisson distribution, see also figure 1.6. The probabilistic proper- 
ties of this specific stochastic process have been studied by Kolmogoroff (1937), 
Johnson and Mehl ( 1939)> Avrami ( 1939)> Meijering ( 1953), and M@ller ( 1992). 
For an overview of probabilistic results on AWV tessellations, we refer the reader 
to the books by Okabe et al. ( 1992) and by Stoyan et al. (1995). Analytic algo- 
rithms for the computation of the tessellation induced by a set S of spheres were 
given by Shamir (1985) for the planar case and by Aucenhamner (1957) for the 
general case. Aurenhamner (I 987) relates AWV tessellations to the power tes- 
sellation defined using the L(tgttm*e tttehc and reduces the comprttation of a d- 
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dimensional AWV tessellation to the computation of a L/-i-2-dimensional intersec- 
tion of halfspaces. However. to our best knowledge, no practical implementation 
of this approach for the non-planar case has been provided so far7. Mgller ( 1995) 
describes a simple algorithm based on discretization to simulate various stochastic 
processes of AWV tessellations obtained f’rom different point distributions. 

1.3 Structure and contributions of this 

In this thesis, we will derive and implement a new and efficient algorithm for the 
computation of AWV cells. To our knowledge, this is the first implementation 
suitable for practical application. We will analyse the algorithm both theoretically 
and empirically, and we will demonstrate the benefits of using AWV cells fol 
volutne computations in molecules. Specifically. the structure of this thesis is as 
follows: 

In the next chapter, we will discuss the geometric properties of AVW cells. We 
will show that an AWV cell can be conveniently described using a spherical sub- 
division data structure, where each edge corresponds to a circular arc. We will also 
show that the best previously known upper bound on the worst-case comple,xity of 
one such cell defined by II other spheres. which is O(n’), is tight. The following 
chapter will discuss different methods to compute AWV cells -from a theoretical 
point of view. Based on the new insights gained into the geometry of AWV cells, 
we will introduce a new randomized incremental algorithm for computing sin- 
gle AWV cells. In chapter 4, we will describe the ilnl_‘lernentatiorl of a variant of 
this algorithm. This implementation also involves selzral pre- and postprocessing 
steps to make it usable for practical purposes. The practical behavior of this im- 
plementation with respect to computing resources and numerical round-off is the 
subject of chapter 5. Finally, in chapter 6, we use this implementation to compute 
volumes of atoms and amino acid residues in proteins. Our results demonstrate 
clearly the superiority of the AWV method over previous methods using planar 
bisector surfaces. 

1-l 



2.1 Introduction 

In this chapter, we will discuss the geometric properties of AWV cells in R’. We 
will use these properties to design efficient algorithms for their computation in the 
chapters to follow. 

After a short review of previously published properties of AWV cells, we will 
concentrate on two major issues: First, we will give a detailed account on the ge- 
ometry of the edges of these cells. The geometric fortnulas derived in this section 
will become the very foundation of’ our new al@thrns in the next two chapters. 
In addition, we will prove a new and tight lower bound of O(r?) on the combi- 
natorial worst-case complexity of a single AWV cell defined by 7t, spheres in 3 
dimensions. 

2. Previous work 

When searching the literature for previous treatises ott the geometry of AWV cells, 
we found only a handful of references, Often. the results are stated without proof, 
or the proof is formulated orlly for the planar cnse~ 

General references on Voronoi tessellations are the surLfey paper by Aurenham- 
mer (1991) and the book by Okabe et al. ( 1993). “Ho\ve\,er. neither of them pro- 



vides very much information about the geometry of spatial AWV cells. Specifi- 
cally, Okabe et al. (1992) discuss only planar AWV tessellations in more detail. 
Aurenhammer (199 I )> on the other hand, concentrates on his observation that a 
cell of the additively weighted Voronoi tessellation in R” can be represented as 
the projection of the intersection of a cell of a suitably defined power tessellation 
in Rc’+’ with a cl --I- l-dimensional cone. This construction also provides an upper 
bound of 0 (IL rii/‘j ) on the, worst case complexity of a single cell defined by IZ 
spheres in cl dimensions. However, Aurenhamrner could discuss optimality of this 
result only for the planar case. 

A rather self-contained and comprehensive description of the geometric properties 
of planar AWV tessellations was given by Sharir ( 1985). In his paper, he describes 
a sweep line algorithm for their efficient computation. 

Very useful references on the geometry of i\WV-cells turned out to be the 
two papers by Moller (I 992, 1995) about the probabilistic properties of’ higher- 
dimensional AWV-cells generated by Poisson point processes. Among other ob- 
servations, these papers contain general l?arameterizations of the k-faces, 0 <= k 5 
cl, of these cells in arbitrary dimension (1. 

Elementary properties. Let II E N, 5’ = {oi. 1 <: i 5 n} in R”, CY~ = (c;: y.i), ci E 
R“, Q E R, and let V == V(S) = {vi. 1 5 i < II) be the AWV tessellation induced 
by S. The reader may observe that translating all CT E S by a vector v’ will simply 
map each cell V; to its translate Vi t- 7. 1 5 i 5; II. Moreover, we are free to add 
or subtract a common constant AA~- to or from all radii without changing the shape 
of the individual cells. From the latter we can always derive the assumption that 
either all radii are non-negative. or that a speciiic radius is equal to zero. 

Again, let L?,.(C) denote the closed ball of radius I’ centered at C, and let int(A) and 
cl (A) denote the topological interior and closure of a set A c R”, respectively. 

1+oqJ The simple proof given in Sharir (19%) is actually independent of the di- 
mension: Observe, that c7 C: int (U,.i(~i)) ‘, 1~ e q uivalcnt to L!(C) ci) < I^i -- 7. Then for 
all x E R” we have 



< fl(S. c) + (1.j .- I-) -- I’j = fl(,L c) - I* = d(.q 0) 

On the other hand, if V(o) = 0 then VX E R” : 3 I 5 i i: II : c/(x; 0;) < cZ(x, a). 
Setting x = c we obtain 

which is equivalent to o c int (B,.i(ci)). El 

Definition 6 (star-shaped) Lcf A (I: R”. V,G ,SL~X A is CI star-shaped set with kernel 
k, tfl-k E int(A) arzcrl,for each .t’ E i3A we have 

aAn{hk-t- (1 --4)x.0 < 3, <: 1} == 0. 

We call a set A star-shaped if there exists a kernel k E int(A) such that A is a 
stat--shaped set with kernel k. 

Proposition 2 An AWV cell V(o) f 0 ill R” i.r stw-shpd. 

PI-~@: See also Sharir ( I SSS). Let s E V(0) nncl : tI (c.11 a point in the interior of 
the line segtnent connecting c and x. Suppose there exists an 1 <: i <: 77 such that 
d(z, oi) < d(z, o). Then we have 

contradicting the assumption that cl(.~. CT) 5 rl(s, q). u 

‘If the spheres defining two adjacent cells have diRerent radii, then the bisector 
surface separating these cells bends around the smaller sphere. 1~1 fact, the bisector 
is one branch of a rotational hyperboloid ~vhose foci ar‘c the ccnters of the two 
defining spheres. Therefore, a cell can be bounded without having a single vertex, 
as depicted in the left image of figure 2.1. ~More specifically. the following holds: 
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Figure 2.1: Two special cases of additi\cly weighted Voronoi cells. The left pic- 
ture shows the cell of a small sphere between two larger ones having only a single 
elliptic edge. In the right picture, we added another small sphere to obtain a dis- 
connected edge skeleton. 

1. the empty set, if me cf the spheres is contcrirrecl in the open irlterior sf the 
other: 

2. a half line, if the strictl~~ snmlle~- sphere is corltained in the closed, but not 
the open interior of the other sphere. 

5. the whole space, $both spheres coincide. 

The proof in Okabe et al. (1992) for the planar case easily generalizes to higher 
dimensions. 

k-faces. Mgller (1992) gave by far the most general description of bisectors in 
the appendix of his paper on the probabilistic properties of AWV cells generated 
by Poisson point processes. It is important to note that Miller can assume the most 
general restrictions concerning degeneracy. since these hold almost surely in the 
stochastic setting considered. 



He distinguishes “ruathetnatical” faces of the tesscllution. which give the func- 
tional description of a face, from combinatorial faces, which al-e the bounded and 
trimmed components of a mathematical face actually realized in the tessellation: 

Definition 7 (Mathematical k-face) Let 00,. . . . O,j, I 5 ,j 5 cl hi? distinct sphef.es 
in R”. 711elt 

For a discrete set A and I‘ E Iv. let (,;‘j d enotc the set of all subsets of A with 
cardinality r. 

Definition 8 (Combinatorial k-face) Let S = (0i.0 5 i i I)) hc djsti~zct spheres 
inRNI, GO,... ,o,j t S, 1 <: ,j 5 il. Then each comccti~cl colnporle7lt of the set 

If the spheres CYi, 1 5 i 5 77 are in general position then non-empty mathematical 
k-faces have Hausdouff dimension k, and combinatorial k-faces are k-dimensional 
senli-algebraic sets, In fxt, this can be used ~1s defining property for what we 
lneau by saying that the spheres at-e in general position. 

MqGler (1992) also provides parameterizations for mnthernatical k-faces in (I di- 
mensions. Since the description of these 17n~ameterizatioIls is rathe]- lengthy, and 
we will not use thern for our algori thrns? the render is referred to the original paper. 
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Definition 9 (Additively weighted Voronoi diagram) Let TZ E N, S = {q; 1 ( 
i < n} in R”, cTi = (c-j, ri), ci E K”, 1-i E R, Ci?lCl let V z V(S) = {Vi) 1 5 i < ?I) 
be t11e AWV tessellation induced by S. 7Yrerl flte additively weighted Voronoi dia- 
gram induced by S is the gmph G = (V. E), ~~,her-e 

Parameterization over a sphere. Since an AWV cell is a star-shaped, it is nat- 
ural to look at the projection of the boundary of the cell onto a unit sphere S’-’ 
aromd the center of its defining sphere. 

Proqfi See also M@ller ( 1995). Let s E G,i- 1. Then the inverse of the projection of 
s onto p E S/‘-l. i.e. the lifting map $ such that a(!,) = x, is given by 

We obtain this mapping by plu gging the equations x = cl ’ 17 and lIpI/ = 1 into the 
equation of the graph of the distance functiort 

where rl = d (x, 02). We see that the image of the projection of GC/-.1 onto S”-l is 
the set of points y E S”-’ for which the denominator of (p(p) is non-negative. ci 

The relation between ‘4WV diagrams ant1 power diagrams. hurenhammer 
(1987) showed the following relation between AWV diagrams and power dia- 
grams: which is very useful from the computational point of view: Let 5’ := { CT~; 1 < 
i < II} be a set of spheres in R”. To each ci; E .S we assign its power cell 

I’; 1~ P (oJ z { .Y e R” : ,zI(.x. CT~) < I>(.\.: O,j)Vl 5 ,i < 71.; J’ # i , 
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where p(x; oj) = d(x, cj)’ .--- I$. F . OI each CT~ E S le,t K; denote the cone which is the 
embedding of the graph of the distance function rl(.. 0;) in R”+l, i.e. 

and let C; denote the lifted sphere 

Finally, let proj,, : R”” + R”, (-VI , . . . ,xcf..t. 1) I---) (rj . . , . ) xrl) denote the natural 
prqjection from R”“l to R”‘. 

This lemma has the following implication: Consider two AWV cells Vi and I’i, 
i # ,;. if Vi atId vj have ;I face of any dimension it1 comtnon, then SO have the 
corresponding power cells Pi and E’i, i.e. cl (1:) :? cl (vi, # 8. 

A nice presentation of this relation between AWV and power cells can also be 
found in the book by Boissonnat and Yvinec (lc)c)S~. 

2.3 The edges of a 3-dimensional cell 

A mathematical I-face GJ defined by three spheres 01 . c’iz; 03 in 1X1 is symmetrjc 
with respect to the plane A through the centers of these spheres. Hence Cl passes 
through the common vertex G;) = G’(nl r7A: 02 ii A; 0.7 17A) in the restricted dia- 
gram within the plane of symmetry A, see figure 2.2. 

We say a set of spheres S is in CO/UX\’ 13nsifio~z if each CT t-: S is located on the 
convex hull of US. 
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Figure 2.2: Three spheres CT~.O~.O~ c ?nd their plane of symmetry A. In the plane, 
we see the lower dimensional AWV tessellation. The white edges are the intersec- 
tion of A with the pairwise bisectors of the three spheres. A mathematical edge -..- 
shown in black - defined by these spheres passes through a vertex of the lower 
dimensional diagram. 

I+~qfb If all radii are equal, thn the bisector is simply a line as in the ordinary 
Voronoi diagram. Hence. we assume r1 f 1.2, 1.1 f- 1.3. We also assume cl 7”: cz # q 
due to proposition 1. 

I. Case cl . c2 and q c ‘arc not collinear: According to lcmr~a 1, let PI denote the 
4-dimensional power cell correspotldinp to 01, and let ,f be the 2-face of PI 



2, 1’1 Cl.1 - cII.1 Cl.1 ---. Cj,l 

1; x 22 1‘7 (“, ,J I.‘. CT 7 ..~_, (- / 2 --.-.- c 3 ‘) _ .I 
e’; I’_? cl:: --. cz.3 (‘j,; --- C.3.J . 
“., c&)0 _ 1.1 -- 1’7 1’1 ._I I’j 

Further, we determine P as the minimum point of& i’? ~1 with respect to the 
4th coordinate. Each point x E Cl =: .f‘n ~1 has a unique representation x = 
P + ,~i7+ t ~2. WC have to consider three cases depending OH the “steepness” 
of the intersection plane with respect to the cone. i.e. the sign of 

(a) If A > O> then the bisector is hyperbolic. 

(b) If A = 0, then the bisector is parabolic. 

(c) If A < 0, then the bisector is elliptic. 

Without loss of generality, we may assume that we have cl :.=:: 0, c2 = 
(s,O,O), c3 = (lu,v,O), r’l =:I 0, r2; 1.3 7’ 0. Then 

i.e. the previous sign condition 3. I is equivalent to 

Let us assume that ~1, 02 and 03 are in convex position. This, in turn, is 
equivalent to the statement that there exists a supporting plant A, i.e. a com- 
mon tangent plane to all three spheres. fin oriented plane (0.x) -= h is tan- 
gent to a sphere CT =: (~1: 1.) in such a way that ~7 points to the outside of CY, if 
and only if’ 

‘Cf. Hcnz (1992) 



We obtain the following system of equations 

(Cj,cr)-4-b-j = 0; fori== 1,2,3, 

which. in our cases reduces to 

i/o;/:! = 1 

,y c/ 1 + 1‘2 :z:: 0 (2.3) 

If n j -I- I’ll?_ --t- I’,? ::-z 0. 

Since we assumed that GI is l-clime11sional and that the centers of the 
spheres are not collinear, we have ,s # 0, 11 f 0. Using standard transfor- 
mations, we obtain the solution 

1’3 (1, zx - - 
,s 

21 1‘3 -’ .s I’j 
(1, = -...---.- __.. 

1’ .(‘ ,~ .__. ---I.-..- .._ 
C7j :.-:: sr, :::: c:’ ] . ,,T -.. ,,; 

Multiplying out we see. that the discriminant ZI is just the left hand side h 
of inequality (2.2) divided by the positive term s’v’, CIbserve, that we have 
a single solution for a common tnn~ent plane if D is zero, which implies 
geometrically that one of the spheres touches the convex hull of the other 
two spheres from the interior in a single point. 

(2.4) 

where 



for any a E [0 . . . an]. This is either the description of a circle if Jo E R, or 
the description of the empty set if 7 $ R. 

To show that G1 -{ 0 implies that the spheres are in non-convex position, we 
try again to find a common tangent plane starting from the system of equa- 
tions (2.3). If II == O> then this system of equations yields the requirement 

(1, z -_. 2 = _- 2 
s 11 j 

as depicted in figure 2.3. Observe. that this implies that the denominator of 
the equations 2.4 vanishes. Hence, these equations do not have a conumon 
solution if there exists a comnlon tangent plane to the three spheres. 

The following lelnlna will be the heart of the new algorithtns presented in chapters 
3 and 4: 

Pmqfl Equating the distance equations 



We denote the halfspaces defined in this ~vay by I1i.j = {-II E 113 : (cri,,j:x) > h;;,i). 
For an illustration of this representation. see figure 2.4. 

.4 A tight ower bound on the worst case complex- 
ity of an additively weighte Voronoi cell in 
dimensions 

According to lemma 1, n single AWV ccl1 V = V(o) in R” can be described as 
pr-qjection of the intersection of a kiimensional cone x and a 4-dimensional con- 
vex polytope P to R3. If CT has 71 neighboring spheres S = {cif: 1 5 i 2 n}: then P 
can be defined as the intersection of II halfspaces. By the upper bound theorem2, 
the cotnbinatorial complexity of both F’ and V is O(r?). To put it boldly, the total 
complexity of the diagram can be concentrated on a single cell. In this section, 
we specify a family of configurations of 71 spheres realizing single AWV cells of 
combinatorial complexity O(T~~). 

We obtain the construction by applyin g a specific perturbation to a highly degen- 
erate configuration of spheres. We will show that this perturbation leads to the 
realization of a large number of vertices. 

Figure 2.4: The edges of an additively Lveighted Voronoi cell project as circular 
arcs * 
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*CT,,-1 = ii-!.S.O).O) 

Figure 2.5: Cross section z == 0 of our worst case construction. For n = $ 
1 < i < [gl, 0i = CT,, is the sphere centcred at (4+ (1 .-I- E)/I~O: 0) will1 radius 

---7 Y’ = a--t a- - 3. If I =: 0, oil is tangent to a sphere centerect at (4: 3,O) with radius 
3. 

Pm@ Consider the following set of spheres depending on II and I: 

Figure 2.5 shows a cross section of this configuration. We focus our interest on the 
combinatorial complexity of V(q). If E := 0 then V(q) lm a single circular edge, 
namely the circle of radius 3 around the center (4; 0.0) parallel to the ljz-plane 0‘ 
the coordinate system. 

We will show the following behnvior of’ this configuration depending on I > 0: 



Figure 2.6: The worst case construction for I! = 7 seen from the positive .Y direc- 
tion. The spheres have been m-scaled a little to make the effect more visible. 

2. For sufficiently smnll E > 0. each 01, f$-] 5 ,j < IZ, generates two vertices 
with each edge pi, 1 < i < p-j -.. 1. ^, 

The case n = 7 is depicted in figure 2.6 

YI-o~~ We restrict our argumentation to the cross section E :::: 0 as shown in figure 
2.5. Then we have to show the following: For II and I let 

Then each triple (Co.cTi. (Y~AI ) of circles. 1 5 i < [‘;I -..- I> venerates two vertices I 
zi, zi of V (Co). Rotatitl_e these circles and vertices arou~~f the the av-axis will bring 
LIS back to the 3-ciimensional case. 

Consider three circles ((0.0); 2), ( (.YI .O): I-I). and (.I:. 0) : 1.1). An AWV-vertex 
(A-;y) at distance d generated by these circles ii; a solution to the following system 



of equations: 

Standard transformations yield the solution 

According to our construction, we substitute 

to obtain functions ~(~71 ;a,;~). y(cr1 ynl:~), and rl(ui .nl:~). For an addi- 
tional circle C, = ((X17)O),~.a) with parameter 0. i.e. .yii = 4 $-- (1 --I-. r) a, r, = 
&T-F”-3 1 e dist(n, al i a?; E) denote the function measuring the distance of t 
(x(nl,nz;&),y(nl,n2;&)) to c;,: 

which is equivalent to showing 

j&&7) := (x(17, *o-,:1) -.Yr;JZ -t-.‘( \ 01 *f-P&‘-“- (J.,? $-fl(f7, .tl~;i:))2 > 0. 



This expression is positive if we cm show that cljcr I I C-Q; E) --. 3 > 0. We calculate 
the latter expression as 

El A 
tl(a, ,nz;r) --- 3 = ---> whe1.e 

3 R 
A :::= 4(2+~)( 3 /i~-fii)‘-.(2+33,)fi,172(n2--rr~) 

b 0 follows if we can show al 
d- 

..“..“l--. 
In the case q > nl we see that A > 0. B c) + ,,; . .._ 

a2 d--- 9 -t,- a: > 0. First, observe that ~rl 6;;: ::: o:! d* has only one unique 
solution satisfying al: ~2 __ 1 0, namely ill = (72. Let $[,~/y] denote the substitution 
of all free occmmces ofs in expression 0 with \:. Then, since 

Proqf! Let e be the edge generated by two spheres 

together with ci(l. We will show that for small E > 0 the sphere CT,,- 1 = ((4: 6,0), 0) 
generates two vertices on C. The lenma follows from the fact that OLN construction 
is rotationally symmetric with respect to the .Y-axis. 
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An AWV-vertex (x; y; z) at distance cl generated by t-hese four spheres is a common 
solution to the system of equations 

As in the previous lemma, we substitute 

in the discriminant A = 88 i 8 d --- 13.~” + 56-x + 4.~~1 --- 160. We have to show, 
that for any valid parameterizatiorl NI # 02 E (0. 1) WC have 3,, .rr2(~) > 0 fol 
sufficiently small I > 0. 

Observe, that the common denominator of A is the quadratic term 

which is always greater than zero if nl # a~. Hence. it suffices to show the posi- 
tivity of the numerator 



Since, by construction, A,, ,C73 (0) = 0, it suffices to show ($&,,C,z(~)) (0) > 0. 
Using MAPLE we calculate 

Figure 2.7 shows a plot of this expression. Such a linear combination of radicals 
can vanish only if either the coefficients of the different radicals sum up two zero 
OT if the mdicals ar‘e linear dependent over the rational numbers. The first case can 
be excluded by substituting values for cl1 md a: into this expression. Therefore 
the cxpressiotl s vanishes only if ~71 =: 112. We ha*e 

this can also be seen in figure 2.7. So, similar to the proof of the previous lemma, 
we are clone if we can show that g is convex for (01.u~) Ct (0: 1) x (0, l), i.e. we 



Figure 2.7: A plot o-f the expression (&ja,;n2 (.E)) (0). As jt is easily seen, the 
function vanishes for 111 = n:! and is positive elsewhere. 

have to show that 

We cal cul ate 

Again using MAPLE, we calculate that this expression has four. roots, of which 
only 0 is contained in the interval 10. 11. We evaluate /I( 1) to \:erify that indeed 
h(a2) > 0 for all cl2 E (0, 1). w 

Conclusion 

ln this chapter, we gave a detailed account on the geometry of the edges of AWV 
cells. We proved a new and tight lower bound of O( ~1’) on the combinatorial 
worst-cast complexity of a single AWV cell defined by 12 spheres in 3 dimensions. 

To our best knowledge, the exact worst-case complexity of single AWV cells in 
odd ditmnsions cl 2 5 and of the complete AWV tliugrmi~ for even dimensions 
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cl 2 4 is still open. The lower hound construction we gave in this chapter might 
suggest that the AWV diagram can achieve an intrinsically higher complexity in 
even dimensions cl > 2 than it is possible for the unweighted diagram. Providing 
a tight bound on the worst-case complexity of AWV cells and diagrams in higher 
dimensions might be a challenging problem for future rescar-ch. 
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ronoi c 

3.1 Introduction 

From the theoretical point of view. lemma 1 solves the problem to compute the 
cells of an AWV diagram in R” by giving XI implicit representation of these cells: 
According to this lemma, all we have to do is to compute the corresponding power 
diagram in R”+’ , and then to intersect each of the resulting power cells with a 
cl -+ l-dimensional cone. 

In the 3-dimensional case, which is the case relevant to our intended applica- 
tions, the power diagram can be cotnputed in time O(77’). where 1~ is the total 
number of spheres, using, for cxatnplc, the algorithms given by Scidel (I 98 1): 
Clarkson and Shor (198% or Chnzclle (I 993). The second step, i.e. the extraction 
of an explicit representation of the AWV cells, is the major topic of the present 
chapter. We will restrict ourselves to the 3-dimensional case. 

In section 3.2, we will discuss how we can extract the geometry of an AWV cell 
directly from the power diagram. ‘This approach makes use, of the information 
encoded in the 2 and 3 dimensional faces of the power diagram. However, the 
resulting representation is rather inconvenient for \-isunlization or volurnc compu- 
tations. Moreover. as we will see in chapter 5. the approach suffers from numerical 
problems when implemented using floating point arithmetic. 

To remedy this, we will discuss in section 3.3 approaches based 011 spherical pa- 
rameterizations of the resulting cells. These are much better suited for the appli- 



cations we have in mind, but effectively use only the information encoded in the 
3-dimensional facts of the power diagram. Recnuse the spheres given by molecu- 
lar models arc nicely distributed in space, the numerical behavior of this approach 
is very satisfying. 

3.2 irect extraction 

3.2.1 Regular patches 

Let the letters (.x.JJ.:) denote the coordjnates of points in R3 and let (x;J~:z~ n) 
denote the coordinates of points in R”. Lxt S ::= (n;, 1 < i < n) be a set of spheres 
in R3 and let Ci = c 

(ci:, j CQ, ci,s; 1-i) . \ /“;I.; ) denote the corresponding lifting of 

sphere CT~ into R” for 1 ( i <: n. Finally, let Pi denote the &dimensional power cell 
of Ci, and let V; denote the AWV ccl1 of CT~ for 1 5 i 5 71. Lemma 1 tells LIS that 

However, in spite of 311 extensive survey of the computational geometry literature, 
we could not find a reference to a previous implementation of an algorithm based 
on this lemma. 

Therefore? we have to answer the l‘ollo~~~in~ t\vo questions: 

1. Which data structure is the most suitable to represent the left hand side of 
equation 3.1? 

2. How can we evaluate the right hand side of equation 3.1 efficiently to actu- 
ally obtain this representation? 

The right hand side of equation 3.1 describes the faces of the cell as the prqjection 
of the intersections of linear subspaces with a cone. These intersections are most 
naturally computed using successive elimination of the variables involved. Hence, 
it seems to be natural to choose a data structure supporting this computation. We 
represent the boundary of each cell as n set of patches described by a triangular 
description. Our chosen representation is similar to a driinmtion as clefined by 
Collins (I 97.5). Of COLUX, we do not hare to compute a full cylindrical algebraic 
decomposition of the cell, but rather it is sufficient to compute a thinned-out ver- 
sion for each face individually. very much in the spirit of the stratification scheme 
for semi-algebraic sets proposed by Chazelle et 31. ( I99 1). 



For each 1 5 i 5 n we will represcnt the boundary ali; as a disjoint collection of 
regular patches x such that 31/i = URELC cl (X). Computin g such a representation 
is not trivial because a mathematical face of an I-‘\WV cell can generate several 
combinatorial faces, each of them possibly containitlg holes. 

3.2.2 Extraction algorithm 

The algorithm we propose to compute an explicit representation of an AWV cell 
from the correspondin g 4-dimensional power cell P is ;I specializalion of the al- 
gorithm given by Chazelle e,t al. ( I99 I). The algorithm tt~unsforms the defining 
equations and inequalities describing the faces. edges and vertices of the AVW 
cell into a triangular form by successive elimination of the variables d, z, and y. 
Then, in a second step, it selects the relevant patches based on successive substi- 
tution and then checking the necessary sign conditions. 

To describe the algorithm, we introduce the following notation: Wc lissome that 
we wish to compute the AWV cell of a sphere G E 5’ of radius 0 around the origin. 
We denote by P the 4-dimensional power cell of cr within all the other spheres in 

Let fl ,.h. * . ,.fi+l be polynomials in the variables 1’1: , . . : IJ~> j < K. Then we de- 
note by solve l’,,VZ )... ,v;(.ti \.fi>. . - j &- J ) the f‘uncrion that computes the polynomial 
g obtained by eliminating the variables 1)~ : 1~. . . . . \‘,i from ,fl~ ,fl. . . . : ,fj-/- 1 If the 
input polynomials .fl j ,j2.: . . . . ,f:+;-l do not describe a complete, intersection, then 
g=Oorg= 1,d epending of7 whether there exists a common icomplex) solution 
to these polynomials at all or not. solve,., ,,;? ,.,.,, :j (,/-‘I . .f: . . . . ,tIj.i. 1 ) can be computed 
using Kronecker’s elimination procedure basecl on resultants. see van der Waerden 
(1955). 
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Given a quadratic polynomial 13 = u IJ’ -i- 0 1’ t c in a variable I;, we denote the, dis- 
criminant by disc,.(y) = b’ - 4uc. If n == 0 then we set disc,,(p) = 1. A quadratic 
polynomial p = CIV’ + ,517 + c in a variable 1~ together with a sign q E {+, --} 
can be used to identify its roots, Ass~mx that n. 0; c are dependent on variables 
VI,..., v,/, v # vi. for 1 <: i < il. ‘Then we define ~>,.(a, : . . . i a,/,?) as follows: If 

L@l, * . . , a,,) # 0 then 

if this number is real. Otherwise we say that ~j,.(cxl,. . . j cx,,,‘q) does not exist. 
If n(a, ) . . . , a,/) = 0 then y,&, > . . . . Q,/. -I-) is the unique solution of the liii- 
ear equation c(cI1,. . . . a,!) --. b(ccl, . . . . a,,) 13 =: 0 if such a solution exists, and 

P&l,. . ’ ! (xc/, ---) does not exist at all. 

For each ,j-face .f’ of 1’ let def.f(i). 0 5 i < 3 -- ,i denote, the defining hyperplanes 
of the support of j-. Let K be the polynomial .v’ --t-y” + 2’ .--. 8. 

Having set up all the required notation, the extraction algorithm can be formulated 
as follows: 

1. Compute a triangulation 57 of P. 

2. For each A t I do: 

(a) For each facet ,f c: A, ,f c aP, compute the polynomial equation in the 
variables .vJ*. c. describing a hyperbolic sutface in 3 dimensions 

polyf =:= solve,,(K. deE/@)). 

(b) Calculate the bivariate quadratic polynomial discf == disc, (pol~,~). 

(c) Calculate the set of boundary curve polynomials in x and ~1 

C = (sol~~e~,l,(~.def,.(0).de/-~~l)). . .’ 1 1 1lC 2” of h 011 boundary of j’} . 

(d) Calculate the set of event points 

EC ‘-=: (p. p is a real solution to disc>(c). c’ E C} . 



i. Calculate the set of intersection polynomials 

ii. Calculate the set of event points 

iii. Let E := (-km) U E:r U EC and let L II= {lo. . . . . l,,,} be the sequence 
of all event points in E sorted in increasin_E order. 

iv. Scanning 1, in increasing order. identify maximal subintervals 
(lj, h), 0 5 .i < x- _: ( III such that the following conditions are sat- 
isfied: 

A. Both p1 (.Y. 111) and 122 (s, 111) exist for each .X E (Zj, Ik). 

R. /!?l(S,?l,) <JP(.Y:ll’) foreact1.Y~ (ljJ& 

C. For all I)> E (C [.i {disc,f}) \ { 1~1. ~72) and q E {-t-, --} either 
~(~~11) does not exist or j?(r.Il) $Z (,)I (.~,?1,),1)2(,r,112)). 

v. For cnch of the retained subinterv~~ls (,;.lJ from L and for 11 E 
{ -+-, -- ) creak a patch 

The running time of the prececlin g algorithm is trivinlly proportional to the struc- 
tural complexity of P. Hence? this approach allows us to compute an explicit rep- 
resentation of all AWV cells defined by a set S = (0;. I 2; i <: II} of 71 spheres in 
time O(77”). 

However, with regard to our intended applications, this algorithm suffers from two 
probletns: First of all? regular patches arc not a very suitable starting pojnt for com- 
puting the volume of individual AWV cells. Second, as we we will demonstrate 
in chapter S? the algorithm is subject to large nutnerical errors when implemented 
using floating point arithmetic. 
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3.3 Lower envelope algorithms 

3.3.1 Subdi visions of the sphere 

Since a non-empty cell is a star-shaped region. it is natural to represent its surface 
using a spherical parameterization? i.e. \ve parameterize a cell V by a unit sphere 
around the cater c of its defining sphere ci. We denote this unit sphere by S2. Tn 
the following, we assume that c is the origin and that 7’ = 0. 

Let n : p -5 fi denote the map projectin, L 0 .t point 17 :# c;, onto the parameter range 

S”. The collection 

P := {n(f) : f is a coml~inntorial Z-face of V) 

is a subdivision of S2. For any element x E P let a(x) denote its lifting back to the 
current boundary of the cell. As it is common p~~rlancc. we identify a map with its 
image. According to proposition 4 and It~mma 3. the boundaries of the elements 
of P can be represented as circular arcs on S”. 

Hence, the problem of compu tin g an additively weighted Voronoi cell can be 
stated as follows: Given a set of spheres S :-= { 0;. 1 <: i 5 71) we seek for the lower 
envelope min di of the functions 

I <i<n 

and the subdivision I’ it induces on the parameter space S’. This subdivision can 
be described using a set of planes intersectin g S’. Figure 3.1 shows an example 
of this representation. Of course. if we have n description of the 4-dimensional 
power cell P@) available that corresponds to I/, \vhen applying Aurenliammer’s 
lifting procedure, then we can restrict the set of spheres to consider in computing 
b$ to the subset of spheres 

3.3.2 Random increnleutal construction using vertical decom- 
position 

Randomized incremental (RIO algorithms computing the lower envelope of alge- 
braic surface patches in 3 dimensions ~vere proposed by Mulmuley (1989, 1994) 



Figure 3.1: A spherical subdivision representin g an additively weighted Voronoi 
cell. The left picture shows the ~mrefi~~ec~ map: the right picture displays a refined 
constrained Delaunay triangulation of this map used to produce the renderings of 
cells throughout this thesis. 

and Boissonnat and Dobtindt (19 > C 3, 1996). M~~lmuley’s algorithm is a static RIC 
algorithm using conflict lists. The algorithm by Boissonnat and Dobrindt, on the 
other hand, is semi-dynamic and utilizcs a history data structure based on trees. 
The common outline of these two algorithms is as follows: 

o The input to these algorithms is a set S :- {/)I:. . . . 1),1} of bounded alge- 
braic surface patches of constant description complexity. This means, that 
each patch y E S is specified as a partially defined function ji,(,~, y) for 
(x,y) E n,,, the domain of p. The algorithms asswne ,fi, to be monotone 
in x and y. Not-c, that any algebraic surface patch of fixed maximum degree 
d can be decomposed into a constant n~~~hx of monotone patches, where 
the constant only depends on (I. I-lo~ve\~er, the authors only report imple- 
mentations for tl-iangles, i.e. patches defined by linear functions. 

o The algorithms represent the lower envelope 

using a trapezoidal decomposition T of the .I-.? plane, such that: for each 
trapezoid t E 7’ there is a unique 1’1, E S satisf’ying 

Each trapezoid is bounded to the left and to the right by line segments par- 
allel to the y-axis. and is bounded to the top and to the bottom by an x’- 
monotone algebraic CLUVC of bounded degree, In the case of computing the 
lower envelope of triangles. these cut‘l’es are line segments. 



Two trapezoids tl and tl are considered to be neighhors in T if they share a 
common vertical slab and are bounded by the same curve either at the top 
or at the bottom. Incidence information is stored only between trapezoids 
being neighbors in this strict sense. 

In the context of spherical subdivisions as needed for the computation of a 
single AWV cell, we use the following definition of a trapezoid on a sphere 
as given by Halperin and Shelton ( 1997. 1998): Fix a pair of antipodal points 
on the sphere. as ~~~le,r, We call the great circles through the poles 17oZnr 
tides and arcs of polar circles 1~1~1~ NKS, For an arbitrary circle c on the 
sphere we call each of the two points of c that are tangent to a polar circle a 
yolnr- tnrlgucy. A trapezoid is bounded to the left and to the right by polar 
circles, and the top and the bottom are circular arcs, which may degenerate 
to one of the poles. 

o The algorithms start n-ith an empty decomposition To and add one patch p E 
S after another in random order Tt. In this manner. they compute a sqience 
of trapezoidal decompositions 7;~. 7-j.. . . . ‘r,,, such that 7; is the trapezoidal 
decomposition representing the loner envelope defined by l~)~(~), . . . ,y,li), 
1 <: i < 11. They check for the follo\ving conflict types to determine which 
trapezoids of ‘&-I have to be updated when adding the i-th patch ~7 := P,(~): 

2. E&e cor~jYic&: Let e be the top or the bottom boundary of a trapezoid 
t E 7;-1. e conflicts y if there are points (.YI .?I’): (.x~:Y?) E e such that 
p&1,?:,) > ]l(.Y,.J,l) and p(.yY) (;. I’(-Y’q?). 

Mulmuley’s algorithm propagat-es this conf‘fict information after each step 
using conflict lists. i.e. it explicitly slores this information between all trape- 
zoids and all patches not yet added. The algorithm by Boissonnat and 
Dobrindt, on the other hand, traverses the history graph associated with 
r, 
10:. . . 1 Tr;: to determine, this information right before performing the inser- 
tion of the i-th patch. The history graph is obtained by linking a trapezoid 11 
in Tj to a trapezoid tl in 7)-1-l. 0 5 j < i. Lvhen tz ivas created because of a 
conflict between fk and ~,,+~li. 



The authors give the following bou~~ls on the mnnin, ~7 times of their algorithms: 
The tirst and older bound by h4ulmuley is based on @-series, which try to capture 
the depth structure of the input objects: 

where 11~~ (I) is the number of,jz~~~fi(~s of degree (I at lr1~~1 1 ‘I.. 1. Using our previous 
definitions, a junction can bc defined as follows: Consider each of the different 
conflicts which might be generated t‘ol- some specific older of insertion of the 
patches. Each conflict I: is located at a specific point (.Y.T) in t-he plane (for each 
face conflict we can choose a representative). The collection of all these points for 
all possible orders of insertion is the set ofjunctions. The degree of a junction ,j 
is the number of input objects needccl to define ,j. The level of a junction ,j is the 
number of patches which prevent ,j from being pa1.t of the final output r,. IJsing 
these definitions, Mulmuley proved the following bound: 

Boissonnat ancl Debt-inclt, on the other hand. give their bound in terms of the ex- 
pected complexity of the tmpezoidal decomposition generated by a random sam- 
ple of the input objects. They remark that they get the same bound as given by 
Mulmuley when doing the analysis in terms of 0-series. 

When computin g 3 single AWV cell, a tight worst-case upper bound on Z(R) is 
O(a”), as shown in the previous chapter. In this case, the bound on the expected 
timc for computin g an AWV cell defined Lvithin II other spheres simplifies to 
O(rz210g7z)* 



3.3.3 Non-vertical refinenlent 

Hnlperin and Shelton (I 997> 1998~ reported numeric problems when using trape- 
zoidal decompositions to represent molecular s~~rfaces. Besides a small number of 
degeneracies necessarily present due to the input data, these problems result from 
the introduction of polar arcs through polar tangency points, which are needed to 
define the left and right boundary arcs of certain trapezoids. They reported that 
the angles between these polar arcs may be \‘ery small? such that sorting these 
arcs along the equator suffers from large numcricnl errors when done using float- 
ing point arithmetic. Hence, we will describe nnother data structure that does not 
rely on the choice of a particular set of poles. In chapter SY we will examine these 
issues in an experimental setup. 

Let z(qrl) denote a function boundin, 0 the expected complexity of a single ad- 
ditively weighted Voronoi cell 1/(o) ditfined by 1‘ out of 72 input spheres. As a 
shorthand notation, we leave out the second argument value for the parameter 11 
and simply write Z(F): if the ar~umcr~t value is implicitly given in the context or if 
z(r; YZ) does not depend on 71. As shone in the previous chapter, a tight worst-case 
upper bound on T(F) is O(r.‘). On the other hand, the interior of a protein pos- 
sesses a packing density comparable to crystal structures’. Probabilistic models 
of crystals and quasi-crystals based on additively weighted Voronoi cells suggest 
a constant bound on the expected complexity of such a cell, regardless of 71 and 
r2. Hence, for families of restricted data sets. z(r.; II) might be considerably lower 
than the worst-case bound. 

Our goal is to formulate an algorithm computing V(0) with a running time tightly 
dependent on z(;l*) = ~,f(f.) i ~~(7.) -t z,.(I.). T,/ 0.). t,(l.) 2nd 7,,(r) bounding the 
expected number of faces. edges and \.ertices of an additively weighted Voronoi 
cell amidst I’ out of II other spheres. respectively. To simplify the presentation, we 
assume that the defining sphere (r is centered at the origin. 

Similar to the algorithms discussed in the previous section, our new algorithm 
works incrementally by adding the spheres CT~ from the input set S = {cT~. 1 5 i <: 
Al) in their given order. At each step i. the algorithm maintains a subdivision Pi of 
5” that describes the 1owc1. envelope min l/i of’ the functions 

1 <i<ll 



defined by 01 i. . . , CTi. For the analysis. we \viIl turn this algorithm into a random- 
ized one by randomly permuting S in the beginning. 

Similar to the algorithm by Mulmulcy. our new algorithm maintains a set of con- 
flicts CL. Again, CL is a relation between the, combinatorial c,lements of Pi, i.e. the 
vertices, edges, and f~cs, and all sites from the set s; = S\S!‘j. SC’) = (01,. . . , q}. 

The basic ideas behind our approach are the f’ollo~ving: 

o We want to analyze our algorithm in the framework by Clarkson and Shor 
(1989). This framework requires that each object that our algorithm cre- 
ates to represent its output is defined in tcrnis of at most a constant number 
of input sites. Hence, we have to refine the faces of the spherical subdivi- 
sion representing the boundary of the AWV cell into elements of constant 
description complexity. The previous algorithms achieved this using trape- 
zoids. We take a different approach: 

Let. .f be a combinatorial face of the cell i’(0). The projection of ,f onto 
the parameter space S’ can bc, represented as the intersection of a convex 
polytope Hf with S2. Instead of using H,t directly. we use a triangulation of 
H,f. CX~viously, the intersection of each simplex il of this triangulation with 
S2 has a description of constant combinatorial size. 

o It may happen that in the course of the algorithm the apex used to trian- 
gulate one of these polytopes (or only a facet of them) is cut off. Then the 
complete polytope (or at least the part next to the respective facet) must be 
re-triangulated. Therefore, the sizes of these pol\;topes have to be taken into 
account in the analysis of the algorithm, 

o The polytopes may accumulate redundant parts in the COLIIX of the algo- 
rithm: They might accumulate edges and facets that do not intersect S2 at 
all. Eliminating redundant de&ning halfspaces from the polytopes after each 
insertion of a site is too expensive. Therefore. at steps i = 25, 1 < k <= jlog~?_j , 
the algorithm performs a cleanup operation on P;. This cleanup guarantees a 
deviation of the combinatorial cornplesity of the polytopes from the combi- 
natorial complexity of the spherical subdivision by at most a constant factor 
throughout the course of the :llgorittim. 

We will now discuss our approach in detail, 



The subdivision. We describe our algorithm restricted to computing V(o) 
within the first octant. Eight similar copies will compute V(G). 

For each 1 < i < 71~ let 4;(p) denote the partially defined function &(p) : !T ++ 
p . Q(p) describin g the bisector sur-face between o and q, and let $i denote the 
bisector surface itself. In addition. the al_rorithtn uses a symbolk value of $0 to 
represent the unbounded part of the cell. 

For 1 1=_ i < II, the subdivision Pi is represented by a collection of polytopes H,i(i), 
1 < ,j 5 i, such that C/&(i) iV’) = {.Y E 21,’ : cl(.~. 0) = c/(x, oj)}. Ho(i) repre- 
sents the unbounded portion of the cell. Set 2~~1 =: { (.Y, y,z) E R3 : x 2 0,~ 2 0: T 1 
o,x+y+z 5 3). For I < ,j < i -5 II let !j( ‘i ) t tl x le minimum subset of (0; . . . j i} 
identifying non-redundant halfspaces~ i.e. 

s” n A() ii f+) 1lj.k OH’S’ ‘7A(] (7 (7 lZj,ka 
O<kji&~,j kElj(i) 

Define Hi(i) =: A0 i? nkcrijij /r;;k. RecurCxzly we define for 0 5 ,j < i 

1 

A, c-1 f-hcl, (;,, Jl,j.x- i I’ i is a power of 2 
Hi(i) = H,j(i- 1) i71li,; it’ .S’ i7 Hj(i - 1) n Ibj,i # S’ nHj(i - 1) 

H,; ( i -.-- 1) othetwise 

That is, either Nj(i) is the result of a cleanup operation, or it was changed due to 
some conflict. 

At each step i, the algorithm maintains a canonical triangulation of all JI,j(i), 0 < 
j 5 i, for which Hi(i) n S” f 0: 

Let ‘4 (i) denote the collection of all those sitnplices of H,j (i) . We store actjacency 
information between all simplices ~3 E ‘7;(i), but not between sirnplices from dif- 
ferent sets ‘T(i) and ‘z-(i). j :# k. The subdivision P; is obtained as the collection 



of all intersections of these simplices with S’. L,et A F /I;(i) be a simplex obtained 
by lifting a triangle t of the triangulation of a facet of of I-Zi( i) towards the minimal 
vertex Vlni~~ (Hi(i)). Then we set ~‘,,,j~,(j‘) (A) E 1’11,;~~ (J‘) and I~,,,~,,(A) = l~~~~in (ICI,j(i)). 

Search structures. To introduce new conflicts efficiently into our data structure, 
we use the following two data structur’cs: On each facet ,f‘ E Hi(i), 0 2 ,j 5 i, we 
maintain a binary tree search structure. for point location within ,f. Using red-black 
trees”, this structure can be constructed in time linear in the number of vertices //‘I, 
queries can be answered in time O(log /.I’/). and once the location of insertion is 
known, the structure can be updated in amot-tized constant time. 

At certain steps, namely if \i,,,i,,(fI,i(i)) f ~*r~~in(H,j(i.~-- I))? we establish a static 
point location structure for the complete polytope H,;(i) using the following IX- 
sult5 : 

So, given a polytope f7 with II facets and a set itil of 7)r points. we can determine 
for each point 13 E M the simplex A of the canonical triangulation of N such that 

p E A, or verify that no such A exists in time (I( (72 + nl) log77). 

Conflict information. The algorithm maintains three kinds of conf’licts that 
are associated with the vertices, edge fragments and face fragments of all A E 
Uj;=Jj(i!: 

1. Vertex conflicts: A vertex I’ E Pi conflicts with CY~ E fi if b,i will cut the 
vertex $(I~) off the cell. 

2. Edge conflicts: An edge e C! 1: conflicts hvith CYJ E ,?i if $,i intersects $(e). 
We maintain a distinct conflict for each point of intersection. For a single 
edge c the set of all conflicts (( c. .I} is linearly ordered along e. This allows 
us to split an edge e in constant time regardless of the number of conflicts 
allocated to it. 
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3. Face conflicts: A face ,f E Pi,@ c @ii for some 0 5 k 2 i conflicts with 
0.j E si if Cpk fl4.j # 63 and 4~: fT 6j C1 int ($(‘J)). For each A E Pi, each face 
conflict is represented by a point contained in the conflictiflg region A i? S2. 

We make the following assumptions concernin, c 0 t~~ieral position: Any edge con- 
flict is defined as the projection of t-he intersection of exactly three surfaces 
(pi, Cp,i, Cpk, 0 5 i c: ,j < k 5 71, and all points of intersection are not points of tan- 
gency. 

Initialization. The algorithm begins by constructing an unbounded cell rcpre- 
sented by Ho(O) =: An, 5&(O) = {A,} and setting PO =-:: S” 17 Ao. For each I 5: i 5 72 

all conflicts of CY~ with respect to PO are calculated. All this can be done in time 
O(72 logn) and space Ok. 

Update step. The i-th upcl,2te step ufhen adding sphere Oi to P;.--1 resulting in P; 
is as follows: Let 

C:-~.,~(CT;) = (A:At’q(i- l).~;conflictsA} 
i-l 

Cl.- r,,j(oi) is the set of simplices of the j-th polytopc that have to be changed clue 
to the addition of CT;. Ci-1 (CT;) is the collection of all these simplices, and A;- 1 (CT;) 
the the index set of all polytopes that have to be changed, For each ,j E Ai_.. 1 (cJ~) 
we compute the polytope H,j(i) from Hj(i I’... 1) using the conflict information 
Cj-l,,j(q). We re-triangulate the updated part of i”Ij[i) and update the search struc- 
tutu on the facets. If no mini ma1 vertex 1’ min (,f) of a Eacet .f c Hi( i - 1) or even the 
total minimc?l vertex vuljl, (&(i --- I)) is deleted then this update can be performed 
within 0 (/cZ’i-l>,i(oi)j log(~)) time. 

For each conflict c associated with a deleted simples in ‘q(i -~ l), we can deter- 
mine in constant time whether it remains a conAict for a simplex A E Zj(i), and, 
if so, reinsert it as confjct in the updated structure in time O(log~). Conflicts that 
are located on a new face that is created for site oi are collected into a set (Z,,ew. 

If we delete a minimum \rrtex 1’ il,j,, (f) of a facet ,f C: H,i (,i - I ), then we re- 
triangulate .f and reallocate all affected conflicts to their new locations. This can 



be done in time O( /,f/ + m og7r). m being the number of conflicts to be reallocated, 1 
and requires no additional space. 

Similarly, if the vertex Vtnin (Hj(i - 1)) happens to be deleted, then WC triangulate 
H,i(i) from scratch. We compute the point location structure described above and 
use it to assign all conflicts zssociateci with any A E C.T;(i -- 1) to their new lo- 
cations. This amounts to O( lH;(i) / 1. ogre --I- 712 logs) time and temporarily requires 
space O(lHj(i)l). 

If Cj-&J # 0, we compute the polytope Hi(i). its canonical triangulation, the 
subdivision P;, and the point location structures. Note. that exactly sites of sim- 
plices in Ci-. 1 (0;) have facet deli nin g halfspaccs 1ti.i for Hi(i). This amounts to 
time requirements O( ICi-1 (CT;) / logrz) and O( /Ci- 1 (clii) 1) space. Then for each con- 
flict c E Cnew, we find A E ‘Z;(i) such that c E A in O(u) time, and check if its cor- 
responding site CT~, i(: > i, associated with c still conflicts A. If so. we allocate this 
conflict to A and visit recursively all neighboring simplices, as long as they have 
not been visited yet and provided they also conflict with ok. This traversal can be 
charged onto the number of newly created conflicts times a factor of O(loglz) fol 
the sorted insertion. 

Finally, if i E {- j q,x- I < k <: jloglt i }, we perform a cleanup operation. For each 
polytope 1+(i), such that Hj(i) n ?? # 0> we determine the set 1,j(‘). We compute 
the If,i(i), 0 5 ,j < i, their triangulations, the point location structures, and WC 
reallocate all conflicts to their new locations. 

Probabilistic analysis. We want to analyze the expected work performed by 
the algorithm if the CT~ are, inserted in random order. We do this. as it is common 
practice, in the manner described by Clarkron and Shor ( 19X9) and Soidel (1993). 

For Ii = {cY;~, . . . ?cY;,.} i: S let j’(R) =:= xi=, i’zj(l.)/ be the total complexity of the 
representation of the cell defined by R. Let 

be the expectation of this value. In a first step. we 41 analyse the behavior of our 
algorithm in terms of 71 and .f;.. Then wc will bound ,f;. in terms of ~(7.)~ 



Proof: Observe, that every simplex of ow subdivision is defined by at most 11 
spheres. Setting the parameter tl = 11 in the generic analysis due to Clarkson”, we 
obtain the claimed bound. El 

Pr-mf: As in the proof of the previous proposition we apply backwards analysis. 
Let A be a simplex that is created durin g step I‘ of the algorithm because either 
one facet of a complete polytope rcqi~ires le-triangul~~tiol7, Running the algorithm 
bxkwxcls. this is equivalent to the situation that removing 0,. from the cell at step 
I’ would delete at least one of the t\vo mi nitnnl vertices I’,,iil(,f) (A) or “,,,i,) (A). Each 
of these vertices is defined by at most 3 sites from S. Therefore, the expected value 
T. of the ~muber of simplices created due to re-triangulation in step Y is bounded 

bY 

Summing up for I* = 1 . . . II we obtain the claimed bound. III 

Because the fmxtions T,.(/.) arid -c,(~.) might not be monotone increasing in 1‘: we 
set ?/y(r) =lz l-rlas~ <;<xy[i) ForX E (e.J.1:. .}. 

Pr-a$ L,et .I‘ be the number of faces and c the nutnber of edges of an addi- 
tively weighted Votnrroi cell 17. Then, by Eulet‘s reIdon. the number of simplices 

"Cf. Seidcl(l993) 
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needed to represent V is bounded by j + 4e. Therefore, if I’ is a power of 2, the 
cleanup operation guarantees ,fi. 5 TV -+-AT,. Otherwise, let r” = j logr-J be 
the index of the latest cleanup. Any creation of a new polytope is caused by the 
creation of at least one new face of the cell, and any addition of a halfspace to a 
polytope is caused by the creation of at least one new edge of the cell. Hence, 

Observe, that the time requirements are simply the space requirements times a 
factor of 1ogIz. 

Proqf: According to propositions 5 and 7 the expected total number of conflicts 
created is 0 

( 
nr-_ 

l-l 
w ,.2 

1 
. Similarly. as shown in proposition 6, the expected total 

number of simplices created due to re-triangulation is bounded by 0 CL “1‘, ( r-l I )* 
Hence, the expected total computational effort required by these, steps is bounded 

bY 

A cleanup operation at step i, i a po~c’er of 2: obviously involves a subset of all 
operations performed by the algorithm up to step i. Therefore. the expected total 
computational effort required for cleanup is bounded by the SLY 

n 



For restricted families !F of input sets. such as all configurations of spheres arising 
from molecular models of globular proteins. we might be able to give a ~ILK~ 
better bound for ~‘(1.; 71). 

Pr~qfi Observe that T(T) = O(r) implies Z(r-) =:= O(Y). So assume that there exist 
r. E N and o 2. 1 such that For all r > r. WC have ?(Y) <: a~. Then 

where C,,,,., is a suitably chosen constant, and H,, denotes the rz-th harmonic num- 
ber. cl 
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4. Introduction 

To begin, let us recapitulate the algorithm presented in the previous chapter. Our 
major effort concentrated on guaranteeing the bounded description complexity of 
the individual fragments of the subdivision, which we needed for the probabilistic 
analysis. To achieve this, we introduced a triangulation of the polytopes Hi de- 
scribing the faces defined by the spheres CY~, 1 5 i <;: II. On these polytopes we 
introduced point location structures to insert fiew conrlicts efticiently. These data 
structures could be damaged in the course of the algorithm. The necessary rebuild 
steps of these data structures require at1 effort depending on the complexity of the 
polytopes. Hence, we came up with clean-up operations to establish a tight depen- 
dency of the running time of the algorithm on the combinatorial complexity of the 
AWV cell. 

As it turns out, the AWV cells occurring within our intended domain of appli- 
cation behave much better, i.e. they exhibit only a rather moderate combinatorial 
complexity. We will cxnmine this behavior in the discussion of OLIT experitnental 
results in chapter S. 

In the present chapter. we describe an algorithm that exploits this low complex- 
ity. Again: the algorithm will be a rattdotnizecl itmctnet~tal algorithm. Since we 



assume that the polytopes Hi have a moderate complexity, there is no need to tri- 
angulate them. In fact, we will go even further: We will not work with polytopes 
at all, but will rather work directly Losing a spherical subdivision data structure 
describing the partition P of the parameter space S”. As we will see, this represen- 
tation is suited very well for further processin g steps of the computed cell. How- 
ever, we do not simplify the algorithm in every respect by this design decision: 
In the algorithm of the previous chapter we did not care whether the intersection 
of a simplex A E ‘6 with the parameter space S’ yielded one or more connected 
components. Tn the algorithm to be described in this chapter, on the other hand, 
we will have to distinguish the different components of each H~,J 17 S2. 

The outline of this chapter is as follo\vs: First, we will introduce the geometric 
primitives employed by the algorithm, Then. we will introduce the data structures 
used by the new algorithm to represent the subdivision P. After that, we will de- 
scribe the algorithm itself in detail. Finally, wc discuss the further processing steps 
of the computed cells that arc necessary for volume computations and visualiza- 
tion. 

4.2 Geometric primitives 

The algorithm is formulated in terms of geometric primitives based on 
oriented geometry ’ . During the time the algorithm was implemented, 
Andrade and Stolfi (1998) presented how to evaluate these predicates exactly with 
purely rational operations only. Currently, our i mplemcntation does not use these 
exact predicates but rather relies on controlled floating point arithmetic with dy- 
namic error bounds to trigger perturbation operations. Nonetheless, the following 
operations are specified in the notation used in the paper by Andradc and Stolfi, if 
only as a convenience to the reader. 

Oriented geometry. The algorithm works in 3-dimensional projective space P”. 
Each point I> E 1” can be represented by its four coordinates [~v,x, y,z]. If 1%~ f 0, 
this corresponds to the point [.v/J~,.J/\~‘. :/~t*) E R’. If 1~ =: 0, then p represents the 
point at infinity in direction (.Y. J::z). 

We represent a hslfspacc by at1 oriented plane CI :::I (~0. csl:a?,a3). Let p be a 
point with homo~eno~~s coordinates [\ts.~.y. -1, We, say that p is on the positive 
-~ --.- -----.-- . . -_..-- _...... - 

‘Cf. Stolfi ( I99 I ) 



side of a ifao~Y+alS-t(Xi,?!-tai- > 0. An oriented line 1 can be represented 
by six Pliicker coordinates (lo, II ) 12; 13; L4: 15, 1. A 6-tiiple of coordinates, in turn, 
represents an oriented line if and only if lo 15 - II 1~ -t 12 13 = 0. We call the point at 
infinity ciir(Z) = [O,Z5: --14, I?] the direction of 1. We notate the halfspace oriented 
opposite to a as 7oli and line oriented opposite to 1 as --I. 

Let 17 = [po,y~,p2,1>3] and q = [q~,ql,~.qj] be t\vo points. a== (cxo;al;a2,a3) 
and p = (PO, PI, p2, p3) be two planes, and 1 =: (lo. II. 1:: I;. 1~: &) a line. Then the 
basic operations A (meet) and V (join) are defined as 

Given an oriented lint 1 = (lo1.102.11~;l(~3:1,3~~~:~). we define *l = 
(~23,~13,~03,~12,~02,~~1). 

Oriented geometry on the sphere. As we have, shown in lemma 3, each 
halfedge of the spherical subdivision describing the cell can be represented by 
an oriented circular arc. We call an oriented circle on S’! an S-ci~le. Each S- 
circle c can be represented by an oriented plane a such that c I= S” T-i (X and 
c is oriented positively with respect to the normal of cc. This fact can be no- 
tated as c = scrc((x). a is called the supporting ~?I~nre of c, and this is written 
as a = spin(c). Hence, c can be represented by the coefficients of the plane (x. 
If cxf7 S” # 8, i.e. tiz < C$ + c&j + 43:. we write sue(a) = ((a~), (x1, a~; a3)). The 
direction orthogonal to spln(~) and pointing to its positive side is called the IIOT- 
mal of C, and is denoted by snrn~(c). We think of snrm(c) as the point at in- 
finity /0,alia2,cx3j. The S-cmtct+ of c is its center on the sphere, i.e. the point 

[J 

-.---. 
u? + cXt + a$: ai, ~32. c1j 

! 
. See figure 4.1 for an illustrat-ion of these concepts. 

Let p and q be two points on an S-circle c = scrc(a). ‘I3e.n ~7 and q divide c into 
two connected parts called S-a~,~. We clefine the S-nl~c:,fim2 1’ fo q 071 c, denoted 



Figure 4.1: The elements of an S-circle. Picture taken from Aadrade and Stolfi 
(1998). 

by sarc(~~, q, c), as the set of points encountered on c as we move starting at I> in 
the positive direction along c until we reach 4. Given /1 = sarc(p, q, c), we write 
c == sax(A), p = erg(A) and q = dst(A). If p = ,u V q V snrrn(c)~ then A is the part 
of c on the positive side of p. 

Let n and 0 be two S-circles with spin(a) = a and spin(D) = p. In general n and 
h intersect in either two points. or they have an empty intersection. We define the 
(cnnonical) nwctirfg point of CI and 11 as the point 17 = 0 A I? where n crosses b from 
its positive side into its negative side. If 1 = CXA p> then p is the point ext(r) where 
1 leaves S2. See also figure 4.2. 

We denote by ent(l) the point where 1 enters S”, and set mid(Z) == -:a. Tf 
1 =I (lo,I~,12,13,1~it5), we have 

mid(l) == ~~~~---Z~Z~-~~IJ~I~~~~-~~J;~~~ZJ-+Z~Z~], 

ext(/) = mid(l) + &dir(i). 

entjl) =: mid(Z) - v%dir(l), 

(4.1) 

where ,D = 1,: + li -t- 1: and 6 = p ..- (1: 4.. lf + 15). 

All edges of the spher-ical subdivision will correspond to S-XCS, and all vertices 
will be defined as canonical meeting points of the oriented planes associated with 
the incident edges. 

The geometric primitive employed by the algorithm to navigate within the spher- 
ical subdivision is the following: Let 17.4 and I’ be tht-ce points on an S-circle 
c. Then @&;q~ 1.) is true’, if ,D: q and I’ OCCLX in that order along c. If (x -=-= 



G4 GO 

Figure 4.2: Oriented intersection of two S-circles, Picture taken from 
Andrade and Stolfi (1998). 

(a(), al, o/z) = sphi (c) > we have 

>o (4.2) 

In principle, as demonstrated in Andrade and Stolti ( 199S), this predicate can be 
evaluated without computing the roots in (4.1). if 17. q and I* as given as canonical 
meeting points. 

4.3 Combinatorial description 

The fundamental data structure of our algorithm is a subdivision of the unit sphere. 
In this section, WC introduce the underlying mathematical concepts and describe 
the clata structures used for their representation. 
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4.3.1 Spherical subdivisions 

Most of the following definitions are taken from the books by van Lint and Wilson 
(1992) and by de Berg et al. (1997). 

By a su@~ce, we mean a coqact 2-manifold. A Joorcil-r~ al-c is the image of a 
continuous one-to-one mappin,o of the unit interval. Au embedding of a graph G 
on a surface ,.S is a drawing of G on S, such that no two edges cross: 

2. R(E) nmys each edge e I~I (11, I)} E E to t7 .Jodm arc on S that comects 
n(u) to T(y). 

Given an embedding n(G) of a gaph G := (Ii E) on a s~nface S, we can define the 
faces F(G) as the connected components of S\ (n(V) U lJ,,,n:(e)). 

Note, that each face ,f’ of a spherical subdivision is a Z-cell, i.e. it is a compact 
set homeomorphic to a disc. In the followin,. ~7 tve restrict ourselves to embeddings 
on the unit sphere, where all arcs are circular. i.e. each arc is the subset of’ the 
non-empty intersection of a plane with S’. Moreover, the underlying graphs will 
be restricted to be biconnected nncl to contain no loop edges. 

This definition carries over to embedclin~s: 



The final output of our algorithm will be a polyhedral approximation of the actual 
additively weighted Voronoi cell. 

We call a spherical subdivision I-‘11 induced by the embedding n(H) of a graph N 
a straight approximation of a spherical subdivision PC; induced by an embedding 
n(G), if n(H) IS a straight approximation of n(G). 

43.2 Data structures 

We represent spherical subdivisions using a halfedge dntn structure”. The data 
structure comprises five different object types: halfedge, vertex, face, site and 
data. halfedge, vertex and face represent the actual subdivision, site is a descrip- 
tor of the individual sites c.T~, and data is additional information associated with a 
pair of halfedge objects. These object types possess certain attribute fields: 

1. An object e of type halfedge has the following attributes: 

e.twin The twin halfedge connecting the same vertices as c but pointing in 
the opposite direction. It is always r.twin.twin =: e. 

e.next The counterclockwise successor halfedge of e along the boundary of 
the incident face e.face. 

e.face The face incident TO and bounded by e. 

e.vertex The vertex at the arrow, i.e. incident to both e and e.next.twin. 

e.data Common data to describe the edge {e? e.twin}. 

A pail- of‘hdfedgr~ of?jccfs is a set {e: e’} such that e.twin = e’ and e’.twin := 
e. We also simply speak of an ~(1s~’ w%en referring to 3 pair of halfedges. 

--.” ..- - .-... _~- . ..^ I..~ -..... I. .-_.... -.l.__. 
'Cf. Wcilcr (1985) 



Figure 4.3: The fjelds associated with a single halfedge e. 

2. An object v of type vertex has the following attributes: 

v.star An edge e such that v = c.vertex. 

v.coordinates The coordinates of 11 within parameter space S2. 

v.lifted-coordinates The lifted coordinates $(v) on the boundary of the cell. 

v.distance The distance c/(@(v). 0). 

v.conflicts Access to conflict information associated with v. 

3. An object ,f of type face has the following attributes: 

f.boundary An incident boundary edge e of J’ such that ./(’ = e.face. 

,f.neighbor A reference to the descriptor ob.iect of type site describing the 
input site whose cell is separated from the cun-ent cell by ,f. 

,f.conflicts Access to conflict info‘ormation associated with ,f. 

4. AJI object s of type site has the following attributes: 

s,spherc The geometric representation of the sphere CT~ represented by s. 

s.boundary The oriented plane II;,o representing the projection of the 
boundary of- the bisector G(o. c’i) onto s”. See also proposition 4. 

s.conflicts Access to contlict inforn~ation associated with s. 

5. An object cl of type data has the. following attributes: 

d.owtlers[2] Rcf‘e,renccs to the two twin halfedges e and e’ described by d. 
If C/.owners[Oj = C, then the inforrnatiot~ within P is oriented according 
to e. For describing e’. the orientation of the information has to be 
reversed. 



d.halfspace 1f we have cl.owners[Oj.face = ,f. cl.owners[:l/.face == ,f“> 
f.neighbor.sphere ::= CT~, and ,f“.neighbol-.sphel.e = 0.i, then 
tlhalfspace is the oriented plane /?f, i. 

cZ.orientation A partially specialized determinant to order points along the 
edge represented by cl. Observe. that the determinant in equation 4.2 
can be written as 

where 

13 = rl.owtrer.sClj.Vel-tex.coorclinates 

a = mm (cl.halt’space) . 

Hence, we store cl.orientatiou = 17 A Q. 

s.conflicts Access to conflict information associated \vith the edge repre- 
sented by cl. 

To provide a concise description of the algorithms: tve introduce a number of 
elementary operations on the halfedge data structure. Let c, e’ : halfedge, ,f, ,f’ : 

face, 1) : vertex. 

split (e, v) Split edge e at a new vertex 1’: Let e’ = c.twin and V’ = e.vertex 
before the operation. Then split (e. 1,) creates a new pair of halfedges 

{ elleLv j &,v- } such that e.next =: c+,~~~, e:,,,V.next ~1 e’? e.face 1 encw.face, 
e’.face := ejiCw. face, e,vct’tex = I:, and e,,,,. vertex _-. 1:‘. The new hnlfedge 
enCw is retumcd as result value. See figure 4.4. 

join(e) This is the inverse operation of split ( C. I,), 



Figure 4.4: The operation split (e, v). 

link (e, e’)f’) Introduce a new face ,I“ by splitting a face ,f incident to both e and e’ 
by introducing a new edge between them: L,et II = e.next and 72’ = e’.next be- 
fore the operation. link (e, e’: .f’) creates a new pair of ha1 fedges { enCw7 e:,,,) 
such that e.next = eTie’iT;, e,,,,.next = 71’. t’.next =: e:,ew, f&,.next =: II? 
e’new. vertex = e’.vertex, and e’ ,,,,..vertex -= (l.vertex. The new face ,f’ is intro- 
duced in such a way that e.facr = e,,,,V. face =: j and ~?.face = &,.face == ,f”. 
The new halfedge I:,,,, is returned as result value. See figure 4.5. 

unlink(c) This is the inverse operation of link (e’; ,“.j”). It removes the pair of 
halfedges (CJ, e.twin} and joins the resulting face. 

attach(e,e’) Precondition to this operation is e.twin ::= e.next. L,et c?’ ::z ~“.next 
and v = c:.vertex before the operation. Then attach (e; e’) sets e.vertex =: 
e’.vertex, e.next =: e” and e’.next = e.twin. The function returns v. See figure 
4.6. 

detach (e, 11) This is the inverse operation of 1’ := attach (e; e’), if c;’ = e.next and 
e.next f e.twin. 

The algorithni maintains the following two intC:mts on the data structure: 

1. The skeleton graphs i.e. the graph formed by the halfeclge and vertex ob- 
jects, is connected. 



Figure 4.6: The operation attach (‘(0. c’). 

2. No edge forms a closed loop. 

These invariants are maintained by introducing ll~lj~r P&U into the spherical 
subdivision. These helper edges are introduced in t\vo circumstances: 

1. The initial subdivision PO dividing S’ ’ Into eight ecl~d parts obtained by 
intersecting S2 with the coordinate planes is defined by helper edges. 

2. Helper edges are introduced when a face .f; would be bounded by a loop 
edge e from a surrounding Face ,J,. In this case. the outer face ,fi,, and hence 
the loop edge c is split, and the end vertices of the fragments of e are con- 
nected to the corresponding vertices on the original boundary of.?;>. See also 
figme 4.9 on page 69. where the. details of this operation are discussed. 

4.3.3 Conflict information 

As with the previous algorithm, we maintain conflicts that are associated with the 
vertices, edge fmt~et~ts and Ike fragments of the current subdivision. Again, we 
denote the subdivision after the insertion of the i-th sphere CT~ by P;. 

. 
1. Vertex conflicts: A vertex 1; E Pi conflicts with 0.i E Si if Q,i will cut the vertex 

$(v) off the cell. In fact, vertex conflicts are not used for any manipulation 
of the spherical subdivision. Their only purpose is to trl,, ‘ooer the generation 
of new conflict information after a site has been added. 

2. Edge conflicts: An edge P E Pi conflicts wvith nj C! ,?‘; if Cp,; intersects cl(e). 
We maintain a distinct conflict for each point of intersection. For a single 
edge e the set of all conflicts {(CT. *)} 1s lnearly ordered along e. Note, that 1’ 
this information is shared for each pair of halfed:es. 
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3. Face conflicts: A face ,f E Pi.$(j’) c $h for some 0 5 k < i conflicts 
with rrj E ,s’i if $k i? ci),i # 0 and Qk ii $,i c int (9,(f)). Each face COII- 
flict c is represented by a unique point contained in the conflicting re- 
gion: Let a = (a~. (x1. a~. a.;) be the s-circle describing $k i? $,j, and let 
1 = { [ I 7 hcxl: ha-,. hcx~]. ?L E R). Then r: is represented by p = ,f fl 1. p is 
uniquely dched since each subdivision Pi, 1 <: i <: 72, is a refinement of PO. 

Face conflicts are used in two flavors: 

(a) Disc conflicts: A disc conflict (‘j’.s) tells the algorithm to cut a hole 
into the face ,f. The interior part is labeled with the conflicting site s. 

(b) Ring conflicts: A ring conflict (,j’:,~) tells the algorithm that when site 
s is added, a hole has to be cut into the 77cw face to remain a part of .f. 

4.4 The algorithm 

In this section, we describe the maitl algorithm we implemented for computing 
a single AWV cell. After giving an outline of the algorithm: we will discuss the 
insertion of new edges into the spherical subdivision and how the conflict infor- 
mation is updated. 

4.4.1 Outline 

The outline of the algorithm is very similar to the algorithm from the previous 
chapter: We assume the sites CTI . . . . , cTll to be given in that order alter having ap- 
plied a rxdom permutation to the input set. Then the algorithm works as follows: 

1. hliticrlizrrtio77: Construct 311 initial spherical subdivision PO by cutting the 
unit sphere S” with the three coordinate planes .r :::: O> J’ ::= 0 and z = 0. 

Compute initial conflict information between each vertex, edge and face o-f 
1’0 and each site (Tj. 1 5 i 5 71. 



2. Increnzentrrl step: Fos each i = 1 . . . II perform the following operations: 

(a) Create new edges due to edge conflicts generated by oi. 

(b) Remove I-edundant old edges that no longer separate different faces. 
Rejoin chains of edges into single edges. 

(c) Create new edges clue to face conflicts: 

i. Process disc conficts generated by Gi. 

ii. Process ring conflicts generated by Oi, 

(d) Update conflict information. 

4.42 Chauging the subdivision 

In this subsection, we describe the individual steps that are necessary to update 
subdivision Pi-1 to 1’i when adding site cij. L,et Bi denote the set of edges in Pj 
separating a face defined by CT~ from a ffxe defined by one of the other spheres O,j, 
1 < -. i < i. Obviously, B; is the set of new boundary edges to be introduced in step 
i of the algorithm. 

Processing edge conflicts 

Let Bs = B(F) denote the subset of Bi introduced due to edge conflicts. BE is easily 
seen to form a set of cycles in Pi. ln fact, in the absence of seonietric degeneracies, 
i.e. if no e E BE passes through a vertex 1’ E t’i-1. an even stronger property holds: 
Whenever the new boundary BE enters a face 1‘ t F;...i through an edge conflict., 
then it also leaves .f‘ through an edge conflict. This implies that for all faces ,f E 
Eli-1 the sum of the edge conflicts with oi on its incident boundary edges is even. 

The pseudo code of this part of the algorithm is shown in figure 4.7. The following 
functions have not been introduced yet: 

1. any-edge-conflict(cri) simply returns any edge conflict of an edge e with CY~ 
that has not been visited yet. 

2. enter-edge(c) returns that halfedge lz located on the edge e conflicting with 
CT; at c sucl~ that A enters the new face to be created at c’. Hence, the algorithm 
traverses the subdivision outside the new face to be created. 



3. find-ccw-conflict() returns the neighborin g conflict c,, to the present cnn- 
Rict cI, and the boundary halfedgc of the current face it is located on. The 
neighboring conflict c,, is selected such that the new oriented edge arc to be 
created connects cI,’ and c,, in its positive sense of orientation. 

Removal and contraction of superfluous edges 

After the new bo~mdary edges BE have been introduced, the interior of the newly 
created faces is cleaned from edges and edge fragments that have become unnec- 
essary. The identification and removal of these edges is performed by simple BFS 
traversals rooted at halfcdges in BE. 

Figure 4.8 shows the pseudo-code for collecting all removable edges given the set 
of new boundary edges 1lel~-Dourldl7r:\.. find-deletable (Ned-houn~~qy) returns for 
each edge e that can be deleted a representative halfedge. Tn the implementation, 
the function is called with r~el~-Dortr&~~~ = BE, 

The following functions have not been introduced yet: 

2. is-marked(hn!f’e~~~~e) is true if IM&YI~~P. has already been visited. 

After the set of deletable edges D := find-dcletable (BE) has been computed3 the in- 
dividual edges e E D are removed by unlink(c) and detach (e, v) operations. Then, 
in a second traversal very similar to the code shown for find-deletable, edge chains 
starting at a half edge t’ are contracted into single edges by join (e) operations. 

Processing face conflicts 

The treatment of f&e conflicts BF = Bi!’ = Bi \B, is conceptually very simple. If 
we would not have to keep the skeleton graph connected. then each conflict c E 6’~ 
would give rise to a single circular edge on S’ without any further vertex. 

Let c E RF be a face conflict to be treated ilt step i of the algorithm. Let j’ be 
the face conflicting csi at c and assume that ,/‘.neighbor.sphere = 0.i. Then the 
new circular edge P to be introduced and refined represents the circle sCrC(1l;,,j). 
Let v denote the normal stlrnl(hf,,j), and let 11 denote the unique intersection point 
fil {k%l: h E R}. We choose two oriented planes (X and p defining two great circles 
n and 0: such that 



process-edge-conflicts (cTj) : 
while corzjlict := any-edge-conflict(oi) do 

slart-edge :== enter-edge (cor~flicr) 
Icut-edge := split (stcwt-r&r. coi$ict) 

next-edge := lust-edge.next 

loop 
(mxt-edge, cmflict) :- find-ccw-conflict0 

if last-edge -= ne.vt-edge then 
lmt-edge :- 11cut-eclgt?.next 

end 

link (start-edge, last-edge; iiew(face)) 
end 

Figure 4.7: Processin,u edge conflicts of site oj. 
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return cleletnblc 



Figure 4.9: Face conflicts are reduced to edge conflicts by splitting the original 
face by two orthogonal planes. 

1. snrtn(a) is randomly chosen ivithin S’/{~V}, 

2. snrm(P) A- v, and snrm((x) _I- snrm(p), and 

We cut ,f into the four pieces obtained by connecting y to the nearest intersections 
of the boundary of ,f with the circles CI and 0 in each direction. See figure 4.9 
for an illustration. We label these four additional edges connecting p to four new 
vertices N, S’; IV, E on the boundary of j’ as helper edges. 

In this way, we have reduced the face conl’licr c to a special case of four edge 
conflicts on the edges {P:N}, (/I. E),(j). S}: ntxl {/T. W} that can bc handled as 
described previously. 

4.43 Update of conflict information 

Besides changing the combinatorial structure of the subdivision, the update oper- 
ation adding site oi has maintain the conflict information associated will all ~,i, 
i < j < n. Basically, this update takes place in txvo steps: 

I. During the change of the subdivision: 
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0 Whenever a face .f‘ is split by the introduction of a new edge c into 
faces ,i; and .f~. and there is a face conflict c between ,f and a site O,j, 

,j > it there are three possibilities of how this conflict information has 
to he distributed among ,fl and ,fz: 

(a) 0.i still generates a face conflict with ,f; or .fz. 

(b) 0.j generates an edge conflict on tl. 

(c) e is a helper edge. and after recoloring ,fl and fz with 0j the site 
0.j comllicts neither f1 nor .f~. 

e When a redundant edge e with edge conflicts is removed: then the sites 
conflicting e are stored into a canclidnte set Cf of the incident face ,f’. 
Siniilarly, when a vertex 11 with conflicts to sites G,j, ,j > i, is rernoved 
during the merge of edge chains, these conflicting sites are also stored 
into the candidate sets c,,, amd C+:, of the two incident faces ,fl and ,fz. 
These candidate sets are used during step 2. 

2. After updating the subdivision: 

0 Let ,f be n face, such that ,~‘.rleigliboi~.sptiere = 0i. For each vertex 
conflict c between a boundary vertex I: of ,f’ and a sphere o‘j: ,j > i> 
the algorithm tests if cl(~ji~‘.coorclinates), o) < v.distance. Tf so, o,i is 
added to the set Cr of conflicting sites for ,f. 

o For each face ,I“, all candidates CT E Cf are checked against all bound- 
ary edges of ,f, In fact, this calculation is performed only for one 
of the two halfedges e constituting an edge, nanrely if’ and only if 
P.nllta.o~~ners[01/ = e. 

(a, o conflicts all vertices of’ the boumdary of .f but has no edge con- 
flict with any edge e on the boundary of .f-‘, the algorithm checks 
for a ring oonilict. 

(b) o conflicts neither any edge mar any vertex of the boundary of ,f, 
the algorithnl checks for a disc conflict. Tf’,J.neighbor.sphere =:= Oi 
and CT = 0,~ this arnoumts to checking if the S-circle scrc(ll,i,;) ex- 
ists and. if so. if its S-center is contained in ,f. The latter operation 
requires work linear in the mutnber of boundary edges of .f. 
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4.5 reprocessing 

The previous algorithm can compute the AWV cell of a single sphere out of a 
set S= {Gl,..., q2) of spheres. To compute the AWV cell Vi for each individ- 
ual sphere q, wc would have to call the algorithm 11 times. each time passing 
12 - 1 input sites as argument. To restrict the number of spheres that have to 
be considered in each run, we perform a preprocessing step that identfies for 
each sphere c‘ii, 1 _< i <: 12, of the input set S a set of neighbors Ni. such that 
cl (IQ n cl (q) # 0 irn pl‘ les either i == ,j or else OJ E Ni. Hy Aurenhammer’s lifting 
procedure, to each AWV cell 1: there exists a corresponding &dimensional power 
cell P(&), such that for all 1 5 i f ,j < 71 the inequality cl (11,) f?cl (yj) # 0 implies 
cl (I’&)) n cl (P(X)) i: 0.1-I ence, we calculate N; ~1s the set of all o,j, 1 < j 5 I?., 
i 7’ ,j, such that cl (P(&)) i? cl (P&J) rf 0. S‘ mce Auretihammner (1987) also 
showed that a 4-dimensional power diagram corresponds to a S-dimensional lower 
convex polyhedron, we are left with the problem of computing the intersection 

To obtain the sets Nit we compute the skeleton graph CT :=z (V, E) of N, where V 
is the set of vertices of V and E the set of edges of the polyhedron. We include a 
sphere ~r,j in the set Ni, if there exists an edge ~7 E E such that e C: cl (‘J) i-1 cl (,fj). 
where for each 1 ‘: L- 5 II the set .fk is the facet of H with supporting plane ,fk = 
{x E R” : (nk;x) = Ok} or the empty set. if no such fllcet exists. Again. we only 
consider the non-degenerate case. and cl~$r~~ an input S to be non-degenerate, if for 
each set of indices 1 <r: it < il < Jo < in. < is 5 11 the intersection ,fi, lj.fiL n~f;? i?,h, ~7 
fi, has Hausdorff-dimension 0, and for each six-tuple of indices the corresponding 
intersection is empty. For any vertex 1% E 1 I. let def (1%) denote the quintuple of 
indices 1 2 ii < i2 < j3 < in < is 5 II, such that ,f;, i? ,f;, r1 ,f;, fl ,fi, ri ,f& == {II}. 

To compute the skeleton graph G = (V. E) of the polyhedron M. we implemented 
the RIC algorithm as described in sections 3.2 and 7.3 of the textbook by Mulmu- 
ley (1994b). Due to our non-degeneracy mxmptions, G is S-I-egulx, i.e. the set of 
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neighbors r(l:) of each vertex v E V has cardinality 5. Effectively, the algorithm 
computes the intersection of’ H with a sufficiently large S-dimensional hypercube. 
Hence, w.l.o.g., we can talk of H as a polytope. 

4.51 Verification of output 

Since we use simple floating point arithmetic for computing the intersection N: 
the implementation is vulnerable to numerical round-off errors and degeneracies. 
To remedy this, we, implemented a simple \.eril’lcation procedure that checks the 
validity of the computed polytope after the algorithm has finished. Mehlhorn et al. 
( 1996) propose n procedure for verif>,ing the output of an algorithm computing the 
convex hull of a set of points in R”. The output 0 of their convex hull algorithm is 
a representation of a simplicial piecavise linear liypersurface without boundary. 
The verification procedure decides whether this hypersurface is the boundary of a 
convex polytope by performing the following steps: 

1. It is asserted that the surface is locally convex along all its ridges, 

2. that the center of gravity o of the vertices of the output 0 is on the negative 
side of all facets. ;tt>d 

3. that a ray emanating from o through the center of gravity 17 of a~~~ of the 
facets .f of 0 intersects only one facet, namely ,f. 

Since our algorithm works in the dual setting, i.e. we are computing the interscc- 
tion of halfspaces. we suggest the following strate,ny for a verification procedure 
after having computed a represctltatinn C of F1: 

1. Verify, that the output is locnlly convex at each vertex. i.e. that each neighbor 
w of a vertcs 1’ E V satisties the boundary equations defining v. 



2. For any of the vertices 13 calculate the vector 

which is locally an outer normal vector at 1’. Verify. that for all vertices w # v 

However, we cannot just “dualize” the proof given by Mchlhotn et al. (I 996). 
Specifically, the output that our algorithm generates is only a labeled connected 
cl-regular graph, so we cannot make the CL priori assumption that it represents a 
valid hypersurface. Moreover, we cannot simply apply dualizntion, because at this 
point the concept of’ an interior point is not yet well-defined. 

Instead, we will first prove that if an output 0 of our algorithm passes the tests 
stated above, then we can conclude that the vertices are in convex position. The 
key ingredient in this proof is the well-known Farkas-Lemma” from linear opti- 
mization, that states that a cost function .X maximised at a vertex 1~ of a convex 
polytope H can be represented as a positive combination of the outer normals of 
the facets incident to v. Therefore, we will partition the set of all possible direc- 
ti ons S”- ’ in such a way that we assig to each vertex 1~ of G the set of directions 
that can be represented as a strictly positive combination of the outer normals at 
v. We will show that if G passes the test. then these sets fit nicely together to yield 
a tessellation of SC’-‘. This allows LIS to have a well-defined notion of support- 
ing hyperplanes at the vertices. Finally, we may conclude that these supporting 
hyperplanes indeed define the boundary of a convex polytope. 

W.l.o.g., we ass~unc that the input vectors ni, 1 .< i <: II, have been normalized, 

kf. Zicgle~ (1994). section 1.4 
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We refer to conditions 1 to 3 as 10~~71 ror~l~~if!: conditions, In the following ar- 
gumentation, for any 1~ E V we imlerstmd the boundary c3A(v) and the. closure 
cl (A(v)) relative to F’- . 

We will prove the theorem with the help of t\\ro lemmas and corollaries, still re- 
ferring to the notations introduced itI the statement of the theorem. 

Proof: We will prove this lemma by induction on rl. For cl > 2 we assume the 
lcmna and the theorem to hold for all lower dimensions 0 < d’ < cl. 

We will prove this lemma by contradiction. L,ct cl > 0 be the minitnum dimension 
such that the lemma is not true. Then there exists a direction .YO E S”-’ such that 
for all 11 E V the condition .Y() $A! cl (R(V)) holds. Let (xi.\., 17) := max,,,l(A(,.)) (,Y,JJ). 
Since V # 0. there exist \‘(l E V and y E cl (A(I~())) such that 
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y E A(vo) implies x = y. hence ?: t aA( We represent J’ as 

where 0 < c,i for all ,j E d&(110). Then the set C’,, = {.j : cj = 0) is non-empty. 

If ICol = I, then only me coefficient CI\ in the representation 4.3 is zero. By dual- 
ity, there exists a unique edge {I:o. 11’) connectin, m 1’0 to n nei&bor of ~1 such that 
def(w) \def (vg) = k. W- L might find a direction y’ closer to .q<‘in A(Iv). If /COI > 1 f 
then we could find a better direction at any of the vertices incident to the corre- 
sponding “/Co/-f xe” F of the polytope. Howe\-er. Lve have to be careful since at 
this point we have yet to show that indeed G represents n polytope. The idea will 
be to consider the situation projected onto the a#ine subspacc spanned by F. We 
will apply the induction hypothesis restricted to the projected setting, and then lift 
everything back to the r/-dimensional case. Formally, Lve have: 

I. /Co/ = 1: By condition 2 in the statement of theorem there exists a unique 
w E lY’(vvg) such that def(ty)) \ def(ctx) = Co. Let (i} = def(vo) \ def(+v), 
{k} = def (Iv) \ deli’ and let B = I&j.) ‘7 S”-’ be a neighborhood of y 
in S”-’ . Let 

the vectorspace orthogonal to the vector II’ -.- I*() along the edge c! = { vg, w}. 
The orthogonality follows from condition 1 in the statetnent of the theorem. 
By condition 3, (1,~ -- ~0) ai) < 0 and (ICI: -- 1’0. trk) > 0. so ai and q. point 
away into different directions from A. See figure 4.10 for XI illustration. 
Therefore, there exists E > 0 such that for all c E 13 we have ;k representation 

where 0 < c,i for all ,j E def (VC)) ii (1~). Let :(I E: I3 such that (so; zO) = 
maxZEjj(xg,%). Siiicc we assumed cfl q! cl (A(i,)), we conclude 20 E A(w), 
contradicting the maximality of J+. 
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Figure 4.10: The edge (v = {I*o. ~3). which spans the orthogonal complement of the 
vector space A. 

Let q 1 j . . . ,qtl be an orthonofmal basis of R” such that span ({flj, i E 1))) = 
Spa11 ((lllC;,i.i., . . *. . qcl}). L,et Q : R” 4 R” be the mapping 

and let 0 be the restriction of the image of CD on the first \Coj coordinates, 
which we identify rvith RIC12’. I.& F be the component of vg in the subgraph 
of G induced by the set { 1’ E \’ : D c def(~)). Let F’ := ($(V(F’)),E(F)), 
and let {n;)r<iln and {b;) I<i<;rr he defined as 



We factor xg by CQ into image and kernel 

ict: IDI 
,yg z c c; 11; -I- x cjq j-!-i ‘7&. 

;z: 1 i=l 

Since .y was chosen maximal. we have CL > O for all /Co/ < i ( d. Ry the 
induction hypothesis there exists a 11~ E V(F’) such that 

Note, that /~$(.L’~)// = 0 would imply 1-0 E cl (A(11o)). contradicting OLK as- 

sumptions. Therefore~ sg f cl (A(\$))> 1; being the preimage Q-l (I’D) E V(F) 
leading to the desired contradiction and thus proving the lemma. El 

Since the previous proof works independently for every connected component of 
G, we can formulate the following corollary: 

Proq? We show the lemma by proving that the claim holds For all neighbors of v. 
By the connectedness of G the statement follows for all vertices of G. Essentially, 
we show that whenever we cross a part of aA that is contained in A(tv) into a 
neighboring region A( II), then A(\\.) also overlaps a part of A( 10. 

Let I\) = A(V) n A(Iv). ?‘I len aR CI d:\(r,) 1.1 aA( W.1.o.g.. let e = {P,ZI} be an 
edge such that 

cl (A(1*,) i’?cl (A(ll)) ii A(TV) f 0. 

Let 1~ E cl (A(v)) n cl (A(u)) :7 A(]!.). A s in case 1 of the proof of the previous 
lemma there exists an I > 0 such that 

B is the region where we ‘Lc~*oss the boudary” from A(\,) to A(u). Because 3~ E 
A(kv) and A(-cv) is relativly open in Y----‘. there exists ;I ncighborhood lJ of JJ with 
U c A(w). Since y E II and ~1 C! I/, und both of these sets ur’e open. we get h(u) il 
A(w) # 0. El 
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Figure 4.1 1: An output satisfying the local convexity conditions essentially corre- 
sponds to ;I surface with a winding number greater or equal to 1. 

Pm?f: This follows by simple induction on k from the proof of the previous 
lemma. Cl 

The two previous corollaries imply that there exists an integer k > 0 satisfying 

!! 
where ,LI,/- 1 denotes the rl - I -dimensional I.,ebes~ue-Measure and t~,f = ~j is 

4 
the surface area of the d-dimensional unit sphere. 

Hence, an output 0 of the algorithm satisfying the local convexity conditions es- 
sentially looks as indicated in figure -F. 1 1. 

Proof of the theorem: We will prove the theorem by showing that the set of half- 
spaces hj == { (oj;.~) 5 J5i). i C U,,,zlr def (1,) f . 01 in a non-redundant set of supporting 
hyperplanes of the. polytope N. 

From condition -C and corollar-y 3 \ve conclude that G is a connected graph. By 
corollary 4, all A(\,), 17 t V are disjoint. Moreover, also by corollary 4, if there 
exists an .Y E S”’ ’ . such that the set C :--- (19 E V : .Y E cl (A(v))} has cardinnlity 
ICI > 1> then the induced subgraph G(C) == (C,E(C)) forms a comected coni- 
ponent of G, md all 1’ E C m contained in a conmon affine subspace given by 
((o~..Y) =:: 17; : i c n,.,&fjY)). 

Let x E 9-l. A Yertex 18 E V maxitnizcs (I, I’) it’ and only if .Y E cl (A(v)). This 
follows from the f;nrlias-Lcmina”, stating thttt a cost function .X maxinked at a 



vertex 1’ can be represented as a positive combination ot‘ the outer normals ni at I/: 
where i E def (\I). 

Therefore? the hi = { (cL~,.x) = h;}. i E lJ,,tLT dcf(\,) f OI m a set of supporting hyper- 
planes. In fact, for- any .Y E S”-’ and a vertex v E I’ such that .Y E cl (A(v)), the set 
{y : (x’,.v) 5 (x, v)} is a supporting hyperplane at 11. This implies that H is bounded. 
Hence, we ontain V z= V(EIT)~ L since for any v E V(H) \ V lemma 6 would imply 
A(v) = 8. 

Since we assumed the input coordinates to be non-clegonet-ate, each vertex is de- 
fined by a unique set of hyperplanes from the input. This implies that the edge set 
E is determined uniquely by the sets def (1%‘) . 1: E 1’. 

All in all, we have shown that 

To show that G represents 

i=l 
we have to maintain for each redundmt halfspace, /I;. I < i 5 II. a witness 1) E V 
such that a; E A(v). These witnesses can be obtained by a trivial modification of 
the intersection algorithm. 

4.6 Post-processing 

At this point, we have shown how to compute an explicit representation of an addi- 
tively weighted Voronoi cell. However, for practical purposes, this representatjon 
is still not sufficient. For visunlization. we have to break LIP the surface patches 
into triangular meshes’? because the majority of current 3D hardware is limited 
to accepting triangles as input. At the same time, since the cells are star-shaped. a 
triangular surface mesh yields an approximation of the cell as a collection of sinl- 
plices spanned by the individual triangles of the surface mesh and the center of 
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Figure 4.12: The subdivision of the surfucc is triangulated, then refined to a De- 
launay triangulation. which is further refined by introducing additional points. 

the defining sphere. These simpliccs can be used to obtain a good approximation 
of the volume of n cell. 

We construct a rc$~~ecl cmstmint Delnmq~ trimgrrlcrtiorz descsibing the cell 
boundary. For general hackground on surface meshing, the reader is referred to 
the extensive survey by lkrn nnd Eppstcin (19%). This computations is done in 
the following steps, see also figure 4.12: 

1. In a first step. WC compute a straight approximation of the spherical subdivi- 
sion representing the combinatorial structure of the cell. The main problem 
to solve in this step is to guarantee that the straight approximation will have 
the same topological structure as the original subdivision. 

2. Then, for each face, resulting simple spherical polygons are triangulated. 
We propose ;L very simple heuristically motivated algorithm that tries to 
exploit the fact that most of the polygons in our settjng are “almost convex”. 
This algorithm turns out to be pretty fast in practice. 

3. Using the standard Lawson-flip ( 1977). this triangulation is transformed 
into a constrained Delaunay triangulation on the sphere. The Delaunay 
property can bc formulated either in terms of the parameter space, i.e. on 
the sphere, of in terms of the actual surf'oce. 

4. Finally, similar to Chew ( t 989. 1993) and Ruppert (1 NS), circumcenters of 
large or skinny triangles are added to the triangulation to obtain triangles 
that are nicely shaped, Again. this process can be performed either with re- 
spect to triangles in the parameter space or Lvith respect to the lifted triangles 
at the victual boundary of the AWV cell. 
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4.6.1 Computing the straight approximation 

Let G = (V, E) denote the graph describing the spherical subdivision we have con- 
puted so far. To compute a straight approximation of n(G). we have to determine 
for each edge e = { 11: ~,r} E E of the spherical subdivision how many additional 
vertices ~1,. . . , v,.(e)> Y(C) > 0, we have to introduce in order to guarantee that the 
final approximation is topologically correct. 

Our goal is to determine for each edge c E E a value ii,: such that the fol- 
lowing holds: For each e = {Lf;+t:} E E we. fix an arbitrary &,-straight approx- 
imation n;(H,). Then n(N)? 1 wiese V(H) = U,,eV(H,). E(H) = /JeEEE(H,), 

n:(W)) = U,,l?~iW-le))~ and n(E(w)) = lJ,,En(E(~llC,)), is a straight approx- 
imation of x(G). 

We determine 6,, c’ E E by examining each pair of edges el: e2 E E that are in- 
cident to a common face ,f E F(G) of the spherical subdivision. Let us begin by 
considering two special cases: 

o If Q and e2 form a diangle, that is. they have both endpoints in common: 
then we have to introduce at least one additional point on each edge. 

o Let cl and c:! denote the circles such that n(q) C: ~‘1 and 7cj0) cz ~2. If both 
cl and Q arc great circles on 5’“. then their al3I)‘oxin.lations will not interfere 
if 6,, ,6,, <: $. Hence we assume that at least one of (11 and C;I is not a great 
circle. 

We distinguish the following cases: 

1. cl and q do not intersect. If cl and c? ar’e on different hemispheres, i.e. 
there exists a plane CI containing the origin that separates cl and cl3 then any 
straight approximations of ~1 and CJ \vilt not interfcre as they m-e separated 
by a. Hence., we may assume that cl has :I larger radius than cl. and that ~1 
is contained inside cl with respect to any hemisphcr’e containing ~1. 
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Figure 4.13: Finding the arc length 61 = 6,, when the two circles do not intersect. 
Tn the left picture? WC see a perspective \:iew of the configuration. The srnallel 
circle c:! is contained within circle ~‘1. The cone 7s. spanned by c2 from the origin, 
intersects the plane y1. the plane definin? ~1. in an ellipse il. As shown in the ri&t 
picture, the lon g axis of i contains the origin of (‘1. ‘IIe most restrictive constraint 
on 61 is given by the nearest point of < h to cl. Hence, the XC length of the segment 
of cl defined by the cap of height Janice, the minimum distance between cl and & 
should be taken as an upper bound on 61 . 

Let cl be an arc on a great circle on S2 connecting its endpoints ~1: v E S2, 
WC call the set of all rays emanating from the origin through a point 12 E n 
the czwtczin cur(a) spanned by n. Given two points CI:V E S2, the curtain 
CLK(U; I:) spanned by 11 and 11 is the curtain spanned by the shortest great arc 
connecting z( and L’. 

We will determine a 12lue 6,, , such that for all pojnts r/:v E cl with an arc 
distance cl(u. 17) < 6,,, wc have cur( II, r,) :? CL := 0. Observe, that any straight 
approximation of C:J is cont:~ined insicle the cap bounded by ~2. 

Let K denote the cone spanned by ~‘2 with its tip at the origin. Let c denote 
the intersection K i? y1 . ‘{I being thu plane such that y1 i? S” = cl. According 
to our assumptions. i is an ellipse. Given tlvo points II;II E cl, we have 
CLII.(U, 1') n CL = 0 if and only if the segment i7\-r? C = 0. 

By symmetry considerations, the Ion, 0 axis of < contains the origin of cl , 
Hence, we obtain a bound for 6,, by taking the arc length 1 of the circular 
segment whose height is the distance ~l,,,i~~ between i and ~1, which can be 
easily computed using elementary geometry. See figure 4.13 for an illustra- 
tion. 



Figure 4.14: Finding the arc length 6, = &, when the two circles cl and ~2 do 
intersect in the points II and ~1, The hyperbolic arc Ir is the intersection of the 
cone spanned by c? from the origin with the plane containing cl. 1 is the tangent 
to Iz at LL and has a second intersection I{’ with (71 . 61 must be bounded by the 
length of the arc from II to 21’. The curtain a spanned by zt and v separates straight 
approximations on cl and ~2 in the upper right diangle. 

2. cl and c2 have a non-empty intersection in two vertices ZI and v? see figure 
4.14. We will only disalss the restrictions imposed on 61 = S,, due to the 
presence of es. The case for 6,, is symmetric. Let 1-3 be the plane such that 
p f~ S” = ~3,. fi partitions the space and hence cl irlto two halves, one of 
them containing the origin. In accordance Lvith the picture we call the half 
containing the origin the lcfi and the other one the right half. Similarly the 
plane y, defined by cl = S’ i? y. divides ~2 into an rtlq~r alld a Boer part. 
Obviously, el is either contained completely in the left or in the right half, 
as e2 is either contained in the ~/IJXY or in the longer part of ~2. We can 
distinguish the Following cases: 

(a) el is contained in the right part of cl and ~2 is contained in the upper 
part of ~2: Then the curtnin (x == CLK(II.I~) separates any straight ap- 
proximations of ei and ~‘2, as long as the rule for diangles is respected. 

(b) el is contained in the left part of cl and c ‘2 is contained in the lower 
part of ~2. Then the edges imply no restrictions upon each other, since 
any straight approximation of el is in the up13cr part while any straight 
approximation of E 1 is in the lower part. 

(c) cl is in the left part and cz is in the ~rpper part. Let K denote the (infi- 
nite) cone spanned by c:! from the origin. Any straight approximation 
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of‘ cz is contained in the interior of ti. Let 12 denote the hyperbolic arc 
given as the intersection of the plane defining cl with K. A straight ap- 
proximation of el does not interfere with e2 if no curtain spanned by to 
adjacent vertices intersects 71. By continuity, we only have to check the 
restrictions imposed on 61 at two locations: First, we have to look at 
the apcs of 71, which is similar to the elliptic intersection we discussed 
previously. Second. we have to check the extrernal locations near the 
intersections II and 1’. Precisely, let 1 be the tangent line at K in 21 within 
y. Besides II, 1 has mother intersection point U’ with cl. The length of 
the arc lm’ is nn upper bound on 6, . 

Let us sketch the computation of 11’: Let I’ denote the radius of ~2, C its 
center. Then every point X = (.x:Y. z) of K fulfills the equation 

since tan (x = -.2-.-. , where ilc// 

Hence, the tangent plane to K at II. Lvhich contains the origin, is given 
by a linear equation 

that, together with the linear equation of y yields an expression for 1. 

(d) t’l is in Ihe right part and 1’2 is in the lower part. This is the same case 
as be,fore with the roles of ~‘1 and Q inter&mged. 

4.6.2 Triangulating simple polygons 

In this subsection we cleal with the problem of computing a triangulation of a 
simple polygon on a sphere. \vhere all edges are embedded on subsets of great 
circles on the sphere. Since these polygons at-e contained in one octant of the 
coordinate system, this problem is trivially equivalent to triangulating a simple 
polygon in the planc. 

There is a vast m~ount of literature devoted to triangulating simple polygons, 
such as Caray et al. (1978). Asano et al. ( 1986). or Atallah and Goodrich (1986). 
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Figure 4.15: Proof of the existence of a triangulation of a simple polygon P. Let 
wvu be a convex triangle along the boundary of P. It‘ no boundary edge of I-’ 
intersects I/W, then LIW can be chosen as an edge of the triangulation, as shown in 
the left picture. Otherwise, there is a vertex I*’ inside this triangle that maxim&es 
the distance tl to the edge [M*. Then. as sho~vn in the right picture, vv’ can be 
chosen as an edge of the triangulation. Adapted from de Berg et al. (1997). 

An optimal yet rather complicated solution rennin g in linear time was given by 
Chazelle (1990). Perhaps the most practical solution is the algorithm given by 
Seidel ( 199 1) running in time O(rl lo, *’ 11). However, all these algorithms are based 
on some vertical decomposition of the input domain. either implicitly in terms of 
a sweep line algorithm, or even explicitly by computin 9 a trapezoidal decompo- 
sition of the input domain? from which the actual triangles are then extracted in a 
second step. 

Since we wanted to avoid using vertical decompositions, and conside,ring that 
almost all OUT polygons have less than 30 vertices, we questioned whether one of 
these algorithms would be an appropriate choice for our problem. Wc decided to 
implement a very simple heuristically motivated algorithm, that tries to c,xploit the 
fact that most of the polygons in our setting are “almost cot~ex”, The algorithm 
is based on the well known proof of the fact that a simple polygon admids a 
triangulation, see for example the textbook by de Berg et al. (1997). See figure 
4.15 for a short review of this proof. 

The algorithm works in three phases to triangulate a simple polygon P: an opti- 
mistic phase, a cautious phase, and a “panic” phase. 

e Optimistic phase. The algorithm proceeds as if it had to triangulate a con- 
vex polygon. Startin, L (7 *tt an arbitrary edge along the boundary, the algorithm 
seeks a convex corner J\‘Y~( of P and pushes \\*!I as candidate edge on a stack. 
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Figure 4.16: Left picture: During the optimistic phase, the algorithm walks along 
the boundary and tries to push as ~nmy candidate edges as possible onto the stack. 
All these edges have IV IX one endpoint and have their other endpoint in the cone 
spanned by VIV and 1’~. When the first boundary vertex p is reached such that IVJT 
cannot be pushed onto the stack, the algorithm enters the cautious phase, as shown 
in the right picture. All candidate edges, that are not located clockwise with repect 
to wp are popped of the stack, 

Then, it proceeds traversing the boundary as long as the following two con- 
ditions are, fullilled: 

- The current bountlacy vcrtes p is contained in the positive cone 
spanned by NV and I’z/. 

- The edge on top of the stack is located clockwise with respect to the 
ray tvy. 

If these condi tiorls are tt’uc, 1\1p is pushed as new candidate edge 011 top of 
the stack, For ,211 illustration. see the left picture of figure 3.16. 

o Cautious phase. ‘The algorithm continues to walk along the boundary of 
P, but it checks which edges have to be removed from the stack. For each 
boundary vertex ;>. such that y is contained in the positive cone spanned 
by ISI+: and 1:~. the algorithm pops all edges from the stack that are located 
counterclock~vise with respect to \\:p. When the algol.ithm is to pop off the 
initial edge \\‘I{, it enters panic mode. For an illustration, see the right picture 
of figure 4.16. 

* Panic mode. The algorithm continues Lvalking along the boundary of P 
until the initial vertex it’ is reached again. Along its way it remember-s the 



vertex that maximizes the distance d bvith respect to the edge zov as shown 
in the right picture of figure 4. I 5. 

After having traversed the boundary of!‘, the algorithm either creates all candidate 
edges that are still on the stack? or, if the stack is empty, creates the edge vv’ to the 
maximal violator of MJII. The pseudo code of this algorithm is given in figures 4. I7 
(optimistic and cautious phase) and 4.18 (panic mode). The following functions 
and notions have not been introduced yet: 

1. curtain(vu*re~~ : vertc~;!) computes a atl oriented plane a defining the great 
circle c, such that both IWYP.Y~ and 1~ertc.x~ are located on C. According to 
our conventions. the normal snrm(cx) points to the left with respect to the 
oriented line from wrtex 1 through ver-fe.~. 

2. verfe~.coordinatcs t: SJXYCC tests if the embedding of WPY~~X is contained in 
a halfspace. For this notion to be well-defined, we have to remind the con- 
vention that a halfspacc W is defined as a set (.I- : (n:r) 5 h}, cc being the 
normal of the oriented boundxy plane of I-I. 

4.6.3 Computing the Delaunay triangulation 

To turn the triangulation so far computed into a Delaunay triangulation, we use the 
well-known Lawson (1977) Nip that flips edges in the triangulation if they violate 
a locally formulated in-circle predicate. 

Constraint Delaunay trianglation of the sphere. Let us first define what we 
mean by an arc between two points on a sphere: 
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Figure 4.17: A simple algoritlun for triangulating simple polygons on a sphere. 
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Handle maximal violator in triangulate-polygon (I~&dge): 
mm-value :== (top.space.i~ormf~l. itet.rrfo7..vertex.coorditlates) 
last-edge := iterzltor, itwntor := itrn-ittor.nes~ 

loop 
if ite7nto~.vertex.coorciinates $,first-space A 

iterrrtor.vertex.coordinates $! seco7rrl-,cptr~1~ A 
(top.sp~~tce.notmal. iter-nto7..vertex.coordinntes) > 7mu-m12~1(; 

then 
~WLY-vc~dzw := (top.spaoe.nom~al. jte7nto7..vertex.coorcliIlates) 
lnst-edge :- itetuto7. 

t?llCl 

iterator := iferuttor’.next 
exit if itemtor = a~cor 

end 

Figure 4. IS: Inner part of algorithm for triangulating si triple polygons on a sphere. 
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Observe, that any xc defined in this way is a subset of a great circle on S’. The 
following definitions try to transfer the corresponding definition h-orn the planar 
setting7 onto the sphere: 

Note that the intersection of cz. l,;,B i? S’ is a circle. so this definition basically spec- 
ifies an in-circle test. A related ciefinition. ror2,ctmint co711~~ hulls~ was given by 
Akkimju (1996) in his thesis. 

The flip algorithm, howeva, uses an even simpler predicate: Let c~l?c, cbd 1~ 
two adjacent oriented triangles. Let (x,,bC. be the oriented halfspace containing 
x(a),n(b), and R(C) on its boundat+y plane, such that snrm(cx,~,,) points away 
from the center of S’. The flip algorithm replaces the triangles crbc and CM by 
cdc, abd, if {hc) @ E(C) J :md x(d) $i? a,&,.. If all points x(a), x(h),n(c) are con- 

tained in the interior of a single heimisphere? then this criterion has the following 
“in-circle” formulation: Let 1) denote the open disc S’ n ~cx,~~,~. The flip is per- 
forn~eci if {15c) $Z E(G) and n(d) E D. C~urently, this is the default “Delaunay 
pxedicate“ irrrpleimented in the algorithm. 



Constraint Delaunay triangulation of the boundary surface. It is also possi- 
ble to formulate an in-crcle predicate with respect to the actual boundary surfaces 
of the AWV cell. To find a suitable definition of Li,hat a “Delaunay triangulation” 
on a curved surface might be, Chew (19?3) proposed to do the definition the other 
way around: First define a suitable concept of \yhat a “circle” should be, then plug 
this definition in the form of an in-circle test into the flip algorithm: 

As Chew points out, the advantage of this delinition is that finding the circum- 
center is basically equivalent to finding the intersection of the surface with a line, 
while the in-circle test is reduced to checking the distance of a vertex to the cir- 
cumcenter in 3D. Hc notes that the normals on the portion of the surface that is 
within the union of the circumcircles should not vary by more than $. Therefore, 
starting from a suitably refined triangulation. \ve can plug this predicate into the 
flip algorithm to compute a CDT of the surface of the cell. 

4.6.4 Refinement of the triangulation 

The algorithms by Chew (1993) and Kuppert (1995’) for refining constraint Delau- 
nay triangulations are basically very simple: First. the algorithm needs a predicate 
that can be applied to a triangle to tell if the trian@e has to be processed further or 
if it f~#ills the specified requirements. These requjrements can state, for example, 
that the minimum angle of the, triangle has to be greater than 20” and that its area 
must not exceed a certain amount. 

The algorithm maintains a queue of these “bad” triangles. As long as this queue 
is not empty, the algorithm selects a triangle t based on some strategy, such as 
the largest triangle, or the trinnglc with the worst angle. Let c denote the circum- 
center of t. The algorithm tries to insert c as a new vertex jnto the triangulation 
and reestablishes the Delaunay property. However. if (I happens to be close to a 
prespecified edge that has to be maintained. than the algorithm may decide fo split 
that boundary edge instead. Kuppert (1995) proposes to split such an edge e if 
c is located inside the diametrical circle of e, i.e. the smallest circle containing 



e. Chew (1993), on the other hand, sug_cests to split an edge only if it has to be 
crossed when traversing the triangulation from t to c. 

In the present i~n~lementation, we handle each face separately and hence do not 
split boundary edges. We define a triangle to be bad, if its area is greater than 
a certain parameter Al and it has a smallest angle less than a parameter (I)> or if 
its area is greater than another parameter value rZ:! with A? > Al. In this way? the 
algorithm is always guaranteed to stop. 

4.7 The graphical user interface 

To make the algorithm and its ilnplelnerltatiotl described in this thesis accessible 
to a non-expert audience, a graphical user interface was created. See figure 4.19 
for a screen shot. Each molecule is displayed in a split frame window hosting two 
panes with different views of the n~olecule. The tree control to the left displays 
the hierarchical structure of the molecule as chains comprised of residues having 
individual atoms. The window to the right shows a 3-dimensional image of the 
covalent structure of the molecule. Atoms can be selected either by point-and- 
click into the right window, or by selectin, e atomic groups in the tree control. 

Having selected a set of atoms, the user can choose to calculate a graphical rep- 
resentation of the AWV cells of the selected atoms: which is then included in 
the graphics window. Moreover3 the volumes of the AWV cells of the selected 
atoms can be calculated. The volume information is captured into tables that al-e 
displayed in separate windows. These tables can bc stored onto disk for further 
processing using another program. most notably a spreadsheet application such as 
Microsoft Excel. Besides AWV volumes. the program can also compute atomic 
volumes using Richard’s B method, the radical plane method5 and, of course, the 
volume of the unweighted Voronoi cells defined by the atomic centers. 

A dedicated window allows the user to specify rules that radii to the specific 
atoms, see figure 4.20. These rules are specified using to mappings, the first as- 
signing a hybridization code to a residue/atom specification, and a second map- 
ping assigning a radius to cnch hybridization code. 

Finally, and this feature is rather re,levant for applications in biochemistry? the user 
can request the progm~ cut off the computed AWV cells at a specified distance 
do. The two cells shown in the screenshot in figure 4.19 have been calculated this 

way. To calculate these restricted cells. the algorithm computing the AWV cell of 



Figure 4.19: The graphical user interface implemented atmnd the algorithm. The 
right pane shows the AWV cells of two atoms that ha\~~ been cut off at a distance 
of 1.4A frotn the atomic surfaces. 



a single sphere o is slightly modified in the following way: Remember that the 
boundary of the projection of each bisector surface Q onto the parameter space S” 
is a circle. The algorithm represents this circle bounding the domain of 4, using a11 

oriented plane. The set of points 

is also either empty or a circle. Hence. by adjusting the planes used to tritn the 
domains of the bisector surl‘aces~ the algorithm can compute the intersection of 
the AWV cell V(o) with as sphere (,ccT, I’~ -t- cl(j). 

Conclusions 

In this chapter, we have described the implelnentatioII~t~~tio1~ of an algorithm for com- 
puting AWV cells. We chose an engineering approach to this problem, trying to 
focus on a practical solution that could be implemented with a reasonable effort. 
We incorporated this implementation into run intuitive graphical user interface for 
application by non-expct-t users. 

When working on the implementation, we found it very surprising that the area of 
meshing, something we considered as trivial post-processing in the first place, still 
lacks a rigorous understanding as soon as our input is more complex than a planar 

straight line graph. Considering the numerous possible applications of meshing 
algorithm ranging from numerical mathematics to computer graphics, we believe 
that designing meshing algorithms for non-linear input in non-planar domains will 
remain an important and active area of research. 



ractica considerations 
erimen results 

In this chapter, we want to examine, how our approach to computing AWV cells 
behaves in practice. We will focus on two central issues. In the first part, we will 
take a close look at the combinatorial complexity of the individual AWV cells as 
they arise from computations on biological nlacromolccules. Of special interest 
will be the relationship between the combinatorinl complexity of an AWV cell 
and the combinatorial complexity of the corresponding 4dimeusional power cell 
as given by Aur.enhatnnter’s lifting procedure. 

The second part of this chapter is dedicated with questions related to numerical 
robustness and computational resources required by our implementation. After CL 
short overview of different approaches relevant to deal kvith rtumerical et~or~ and 

degenerate input configurations. we will present and discuss the engineering ap- 
preach we chose for our impler~~et~t~~tio~~. We wi 11 provide experimental evidence 
to provide a profound argumentation in favor of‘ this decision. 

Additionally, we will describe our experience with other approaches to compute 
AWV cells: We will describe the behavior of an implementation the direct ex- 
traction of an AWV ccl1 from its 4-dimensional power cell, and we will describe a 
simulation of the numerical behavior of a vertical decomposition approach to cotn- 
putt the spherical subdivision describin g an AWV cell. Moreover, an appendix 
provides detailed infornlation on the setup used for the experiments reported in 
this chapter. 



5.1 Cell complexities 

In the previous chapters, we related the runnin, 0 time and space requirements of 
our algorithms to the combinatorial complexity of the computed cells. Therefore, 
we begin by examining the complexities of AWV cells as they arise in the intended 
domain of application. All the results to be presented in the following discussion 
have been derived from a distinct set of 10 molecule entries selected from the 
Brookhaven Protein Data Bank (PDB)’ havin g a total number of 17 196 atoms. 
Detailed information on the choice of these entries is provided in the appendix of 
this chapter. 

First, we will examine the distribution of‘ the combinatorial complexities of AWV 
cells as defined by these data sets. Then. we wil I relate these values to the loca- 
tion of the atoms within the molecule, that is, if the defining atom of the cell is 
located on the outer surface. on the surface ot’ a cavity or in the interior of the 
molecule. Finally, we will look at the, ratio of the combinatorial complexity of the 
4-dimensional power cell of an atom as defined by Aurenhammer’s lifting proce- 
dure divided by the combinatorial complexity of the AWV cell. We will see that 
this ratio is related to the radius of the defining atomic sphere. 

5.1.1 Overall combinatorial complexity of AWV cells 

The following statistics were obtained by processing the specified data sets with 
the implementation described in the previous chapter. After each computation of 
a cell V;, 1 < i 5 II, II the, number of atoms of the molecule, the total x~m~bcr of 
combinatorial vertices qI . “’ edges if):! and faces 11~ w 

i together with the identification 
of the defining atotn were recorded. We point out, that faces refined by helper 
edges were glued together for this counting. JJ7e write 

for combinatorial complexity computed in this way. 

Figure S.1 shows the distribution of the overall complexity of the AWV cells as 
delined by our data sets. WC consider the smoothness of this graph to be a strong 
indicator of the staistical relevance of the results. 

The average. value of the overall combinatorial complexity of au AWV cell we 
computed a value of S2. 17. Only 39 out of all 17 196 cells. that is less than 0.227%, 
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Figure 5.1: Distribution of the total complexities of the AWV cells as defined by 
our sample data set taken from the PDB. 

Table 5.1: Dependency of the average overall combinatorial complexity of AWV 
cells on the location of the defining atom. 

have more than 200 faces. The most complex cell has 266 faces, the simplest 
cells are lens-shaped with 3 faces of all dimensions -- two 2-dimensional faces 
separated by a closed edge. Front a practical algorithm designer’s point of view, 
it is therefore admissible to assun~e AWV cells arising in the application domain 
have rather moderate combinatorial complexities. 

An interesting question is if there is any relationship between the combinatorial 
complexity of an AWV cell and the location of’ the defining atom within the 
molecule. Using the classification as defined by Kleywegt and Jones (19941, we 
labeled each atom either as surface. cavity or interior atom. An interior atom is 
an atom that cannot by touched by a probe sphere of radius R = 1 .4A1? the radius 
of a water nioleculeY without the probe sphere intersecting any other neigliboring 
atomic sphere. A cavity atom is an atom that can be touched by the probe sphere, 
and that is bounding a compartment of space that either already is closed of the 
external solvent volutne~ or that ~vo~~lcl be closed off, if the atomic radii were to be 
increased. The ren~aining atones are external atoms. 

Table 5.1 shows how the overall cell conq-‘lexity relates to the location of the defin- 
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Figure 5.2: Distribution of the total complexities of the AWV cells of cells defined 
by internal atoms. 

I I 1 - ._-_ L ____.. L-L_. . . . .- -- :I --- _ _- -_ ---- 1 ~---IL-n- --. -I.- 

Figure 5.1: Distribution of the total complexities of the AWV cells defined by 
cavity atoms. 

ing atom within the molecule. ‘The average complexities of cells whose defining 
atom is located on the surf&e of a cavity and those located 011 the outer surface 
show an average complexity of 7 1 .(il and 64.9 I. respectively, values that are sig- 
nificantly lower than the overall average value of S2.17. See also figures 5.2, 5.3, 
and 5.4. 

Observe. that for interior atoms, the following argument gives a con- 
stant worst-case upper bound on the combinatorial complexity of the cell, 
Halperin and Ovennars (1994’) give a similar nrgument to bound the complexity 
of the description of the sol\rent kaccessible surfxe of an atom. 



Figure 5.4: Distribution of the total complexities of the AWV cells defined by 
external atoms. 

Yet, we see that cells not locatecl in the interior of the ~~~olec~~le tend to have even 
lower complexity9 decreasing with the amount the defining atom is exposed. 

We also found a relation between the atomic radii and the cell conq~lesity. Snialler 
atoms tend to have less complex AWV cells. nnd especially the least complex 
cells are the lens-shaped cells that occurred around the atomic spheres of smallest 
radius, namely the hydrogen atoms. 

5.3.2 Relation betwell AWV cells and 4D power cells 

Let CTi and O,j, 1 5 i -fI ,i <= u, be two distinct spheres from the input data. Lemma 1 
implies th21t whenever Vf %lCl Vj llWt2 il COl~lIllOll t&.X tlltYl SO have the COJTeSpOild- 

ing power cells Pi and Pj ot?tained by Aurenhan~nicr’s lifting procdire. However, 
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Figure 5.5: Complexity of polver cell used in lifting construction versus actual 
complexity of additively weighted Voronoi cell. 

the opposite direction of this implication is generally not true. Therefore, an in- 
tercsting question is the relation bet\veen the combinatorial complexity ##APVS/i of 
an AWV cell and the con~binatorial complexity #PC; of its corresponding power 
cell. As shown earlier, from the theoretical point of view? both a 4-dimensional 
power cell as well as a 3-dimensional AWV cell can realize up to O(7u2) faces of’ 
all dimensions. if 112 is the number of neighbors. 

To examine this relation between #AWV; and #PC~, we modified our implernenta- 
tion to record these two values for cacti ccl 1 computed for an atom of our specified 
data set. Figure 5.5 shows a plot relating these two nutnbers for each cell com- 
puted. Of primary interest was the rntic, pj = 3~~~~. We computed ati average 
value j? of this ratio as f!j = 6.486. As Eve can see fr6nI the plot. the dependency 
of #PCi as a function of #MIVVi is not simply linear. In fact, in the figure a least 
squares fit of degree 2 is shown. The fit is approximately the function 

However? n per-se quadratic relationship between these two numbers seemed to 
be rather inprobable. As it turns out. the atoms showing the largest values o-f pi 
are all hydrogen atoms, whose AWV cells have very few faces but whose power 
cells have a rather average complexity. Table 5.3 on page t 01 shows the data for 
those cells with the highest ratio p;. To make the dependency of the complexity 
ration on the atomic radius even more explicit. we icfentiiied all atoms with pi > 13 
and sorted them by their radius. TT’abte 5.2 gives the counts we obtained for the 
individual atom types. 

The zinc ions (ZN) have to be treated as special case: ZN does not occur as part 



Element Radius Count _.--~.“..-- -..-..-- 
1-I 0.70 5064 
c 1.38 --- 773 
s 1.55 3 

ZN 2.10 3 

Table 5.2: Counts of cells with an drove aver:tge ratio of pi sorted by their element 

---- _____........ I--___ 
AWV cell 

Vertices Edges Faces Total .----~I.- 
0 1 2 3 
0 I 2 3 
0 1 2 3 
0 1 2 3 
0 1 2 3 
0 1 2 3 
0 1 2 3 
0 1 2 3 
2 3 3 s 
2 3 3 8 .--_----. ~^.I- ~.-...^ -..--.- 

.l.l_.- -_I".IX"..-___---- _-.___-, X------_".".-.~ -___ l.-. 
Power ccl I 

Vertices Edges Ridges Facets Total - ~ -...._ -.. ..- ~. 
127 

')51.‘-.-1_5c)~-..~~~- 
572 

119 2.3s 150 31 538 
112 ‘24 142 30 SOS 
105 '02 127 2s 462 
SO 160 103 23 366 
75 150 97 22 344 

72. 144 92 20 325 
60 120 79 19 278 

144 288 178 34 644 
141 282 177 36 6% ^.l..l.~--.-.l_~ . ..." ~ ._.... -..--,.-- 

Table 5.3: Atoms with the hjghest ratio of the complexity of the power cell vers~~s 

the complexity of the additively weighted Voronoi all. All atoms are hydrogen 
atoms from the interior of the molecules. 

of an amino acid. Rather? these ions are located in very specific chemical and ge- 
ometric environments. Obviously, the ratio depends highly on the radius of the 
defining sphere. Or, putting it the other way around: The combinatorial complex- 
ity of a power cells #PC; depends much less on the atomic radius than does the 
combinatol-id complexity #L4r;riI$ of the corresponding AWV cell. 

5. Numerical behavior and robustness 

All previous discussions about geometric computations were based on two sim- 
plifications: First, we assumed that we coulcl perform exact computations over 
the real numbers that could be evaluutecl at unit cost per operation. Second. we 
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imposed certain non-degeneracy conditions on the input data. However, real com- 
puters can perform only arithmetic of finite precision at unit cost, and degenerate 
input data clots OCCLU in practice. In this section, we will discuss different ap- 
proaches to deal both with the limitations ir-t~posecl by real world hardware and 
the problems posed by degenerate input data. Schirra (19%) gives an up-to-date 
survey on robustness and precision issues in c ueometric computations. 

5.2.1 Exact computation 

In ilnplemelltatiolis of geometric algorithms, exact ar-i thmetic over the real num- 
bers is com~nonly replaced by uing the machine’s tinite precision floating-point 
arithmetic. In fact, most workstations and personal computers on the market to- 
day provide hardware i;ml~lcmeutations of tlonting-point operations as defined by 
the IEEE 754 standard”. Goldberg ( 1991) gives a thorough introduction to IEEE 
floating-point arithmetic. Yet. floating-point computations suffer from numeric 
round-off errors that can lead to incorrect results or even may crash the algorithm 
clue to internal inconsistencies. 

More precisely, most geometric algorithms can be formulated in terms of purely 
combinatorial objects and operations in conjunctiorl with certain Woolcan predi- 
cates, that are sign evaluations of functions in the coordinates of the input objects. 
When discussing our algorithms. we ~~lready rnnde these predicates explicit. Eval- 
uation of these functions in the input coordinates using floating-point arithmetic 
may lead to the situation that the sign of the corresponding value is not determined 
correctly. A wrong branch of the program - comparccl to an ideal implementa- 
tion using exact arithmetic - might be taken, leading to undesired behavior squat 

as wrong results or even program crashes and “core dumps”. 

We clc$72e an it?lplenrentatiotl of the geometric predicates to be exact if at each step 
the same decision is taken by the implementation of the algorithm compared to 
the theoretical counterpart formulated over the real numbers. Note: that this does 
not imply that for all numerical values exact representations have to be computed. 

In the following, \ve give a brief overview of techniques proposed to implement 
exact cotnputation on existing computer hardware. 

“Cf. IEEE ( 1985) 



Exact representations 

lnfinite precision libraries for integer and rational arithmetic. A large num- 
ber of geometric predicates used within computational geometry algorithms are 
purely rational expressions. In fact, typical textbooks on computational geome- 
try exclusively deal with problems whose geometric primitives can be written in 
terms oE -t,---,s>/ and sign determinations. Since a rational number can be rep- 
resented as an integer, library packages for computin, u with arbitrary long inte- 
ger numbers can be used to provide exact inlplet7lentations of these predicates. 
Common librarics are BigNum by Serpctte et al. ( 1989). GNU MP3, PAR1 by 
Cohen (1993), 01 the integer and rational number types of the LEDA li- 
brary, see Mehlhom and NZher (1998). Of these packages. PAR1 and GNIJ MP are 
tuned for applications in computer algebra. For- most problems. it is even possible 
to avoid division operations by embedding the Euclidean problem into projective 
space”. In this case, the geotnetric predicates can be, formulated as taking the sign 
of the evaluation ol-‘ a multi-variate polynomial. 

However, the evaluation of geometric predicates implemented in this 
way is much more expensive than using built-in floating-point arithmetic. 
Karasick et al. (1997) report a slowdown factor of up to 10000. 

Compiled multi-precision code. Fortune and van \T7yk ( 1996) noticed that the 
bit-lengths 0 the integers involved in geometric calculations arc rather small com- 
pared to those arising in computer algebra. For this reason, they developed a pte- 
processor LN (“little numbers”) specifically designed to gcrterate exact implemen- 
tations of geometric predicates. Iuput to LX is a description of the input data types 
in terms oFcoordinates and bit-lengths. and the formulas definirq the intermediate 
results and predicates the user wishes to compute. III a tirst step, LN computes for 
each expression the required maximurn bit-length. Then, LN generates program 
code that evaluates the expressions using the required number of bits. LN also in- 
troduces several optimizations such as static floating-point filters (see below) and 
overlapping representations of intermediate results. 

However, LN is not generally availublc and it has tievet’ been developed up to the 
point to be useful for a general audience. For further experience with L,N see the 
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paper by Ghan g and Milenkovic (1993). 

Modular arithmetic. Briinnimann et al. ( 1997) describe an approach to com- 
pute the sign of an integer number using the Chinese remainder theorem’. Let 

ml,*.-, nzk be a collection of pairwise relatively prime natural numbers, let ~7 == 
n!Y, mi, and assume that HI is even. Then the system of modular equations 

has a unique solution for I E [-W/Z. M/Z). Let frac(.~) =: x - 1.~1. The basic idea 
of Bt-iinnimann et al. (1997) for computing the sign of a large integer number x is 
to compute an approximation of the value 

using a fixed number of b bits. where 1~; = HZ/‘H~~ and FV~ :E 17~ -’ mod ~7;. The authors 
give an error bound Q. depending on b and k. They show that either IS/ > Q, which 
implies that the sign ofS is the same as the sign of.~: or that 1x1 < J-J;:; rrli, in which 
case the computation can be reduced to the case k - 1. The authors implemented 
two extended versions of this basic method to compute the signs of determinants 
with integer coefficients. They report that those methods perform well compared 
to LN, especially if 1.~1 is small. 

It has been observed repeatedly, that in most cases when the error in evaluating 
a geometric predicate esceeds the computed value, then the actual value is really 
ZfXO ‘. Computer alyebra systems routinely apply modular arithmetic to evaluate 
and check integer equalities . ’ Hence. it might make sense to check first for .X = 0 
before going into the approximation loop. Yet, the maitl disadvantage of using 
modular arithmetic is the fact that an implementation is rather involved. 

Representation of algebraic numbers. If the geotnetric predicates not only in- 
volve the four arithmetic operations +.----,:k,/ but also require the computation of 
roots, then more sophisticated techniques have to be applied to realize an exact 
implementation of’ the predicate. A general technique originating from computer 



algebra is to implement an algebraic number system. \vhere each number is rep- 
resented by its defining minimal polynomial and an isolating interval’. The afore- 
mentioned arithmetic operations can be expressed using subresultants, and the 
separating intervals can be refined using binary search. 

However, the bit-lengths of the polynomial coefficients arising in this representa- 
tion can be very large 9. A more practical approach is a kind of “simulation” of the 
subresultant evaluations, and to compute only .scpnrutior~ hxrrds for numerical 
approximations of the numbers. This has been done i II RealExpr and the LEDA 
reals, and will be described in more detail below. 

Exact computation on the sphere. Andrade and Stotfi (199s) presented a 
framework for performin, (7 oriented geometry on the sphere. They devised a 
scheme to compute the orientation test on circles on the sphere (see equation 4.2 
on page 57) using integer arithmetic , given that all input circles arc defined us- 
ing integer coefficients. Anclrade also implemented these predicates in ~Moclula-3 

based on the GNIJ-MP library. If all input coefficients have a maximal bit-length 
17: then we calculated a required bit-length of 100 -t- 14 to evaluate the orientation 
predicate. As we will see in the next section. we have h > 50 for our implementa- 
tion. 

Adaptive computations 

Adaptive or lazy approaches try to deliver exact results with minimal computa- 
tional effort. Hence, these approaches choose a costly high-precision evaluation 
of a predicate only after checkin g that a cheaper method could not give the right 
answer. This laziness can speed up geometric computations significantly. 

Floating point filters. The idea of a floating-point filter is to use floating-point 
arithmetic to compute the predicate. However. contrary to a naive implementation, 
the absolute value of the computed approximate result is compared to an error 
bound. When the absolute value is outside the error interval, then the sign of the 
floating-point approximation is knotvn to be the exact sign. If the absolute value is 
within the error interval, then a more expensive method has to be Llsed to evaluate 
the predicate. 
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Ilnplementatiolls of floating-point filter‘s vary in the type of error bounds used. 
III the simplest case, the error bo~und is derived from a static Lvorst-case analy- 
sis of the predicate. This is? for example, the npproach implemented by the LN 
preprocessor. 

Another approach is to compute the error bound dynamically at run-time using 
the well known equations to compute numerical rouncl-off errors. If the machine 
presicion is denoted 1. then the bound error(@) of ;1 floating-point expression tl, 
can be computed recursively via 

If these bounds are computed usin, (7 floating-point arithmetic, then additional 
correction factors of the form (1 -I- C) have to be taken into account af‘ter each 
floating-point operation. For IEEE double precision arithmetic, we have I = 
2Y5”. Floating point filters of this kind haye been implemented in LEDA or by 
Fortune and Van Wyk (1996). 

Lazy evaluation schemes. Shewchuk (19961 suggested an adaptive evaluation 
schetne that reuses the results f-i-or-n an evaluation with a lower precision in the 
computation of the next, more precise evaluation of the predicate. He implemented 
an adaptive evaluation scheme for planar sidedness and in-circle tests usins the 
multiprecision techniques proposed by Dckker ( 197 I ) and Priest ( 1991). This ap- 
proach can be secn as n hand-tuned approach to creating predicate implementa- 
tions similar to those generated by LN. 

Numerical approximations based on separation bounds. As mentioned car- 
lier, it is possible to provide 3 complete implet~ientation algebraic number fields 
when roots have to be calculated. Each number (x is represented by its mini- 
mal polynomi:~l 17 c( over the rational numbers nnd an isolating interval identi- 
fying one root of 13~. Since the algebraic operations Lo compute these polyno- 
mials are rather involved, another approach has turned out to be quite practi- 
cal: Instead of trying to compute the algebraic representation. the implementation 
computes a high-precision floating-point nl~l~r.osi~l~atinn. The required precision, 



however is derived from root separation bounds that essentially capture the de- 
gree and complexity of the algebraic representation that tvazilfl JZCIW to he com- 
puted lo. To compute the approximations, the dag (dire~cted acyclic graph) describ- 
ing the expression is stored as a data structure. and it is evaluated operator-node 
by operator-node as required. Combined with filters using built-in floating-point 
operations only, this approach has been implemented in the library Real/Expr by 
Dub6 et al. (1996): and as the number type leda-real. contained in the LEDA 
library, see Burnikel et al. (19%). 

5.2.2 Degenerate configurations 

Fortune (1989) requires an algorithm to always compute the correct topology, 
which means that the algorithm must cope with all possible degenerate input data. 
Note, that exact computation is a prerequisite to detecting and handling degenerate 
configurations. 

However, very often the combinatorics of dealing with all possible degeneracies 
turns out to be rather complicated. Then the implementation of the algorithm 
might gain significantly from the simplifications achieved by the assumption of the 
input being in general position. I-fence, a large nu~dm of techniques to remove de- 
generacies from the input have been proposed. On the other hand. Burnikel ( 1996) 
shows in his thesis how to implement algorithms for planar Voronoi diagrams and 
line segment intersections that cope with degenerate configurations. 

Symbolic perturbation schemes. A very popular approach to deal with degen- 
erate configurations is to a apply a symbolic perturbation? effectively changing 
the input coordinates by an infinitesimally small amount 1. All intermediate re- 
sults are then elements of the field Q(E). Symbolic perturbation schemes were 
introduced to computational geometry by Edelsbrunner and Miicke (1988)> and 
have been refined and extended by Yap (I 990). Emiris and Canny (1993, and 
Emil-is et al. (1997). These techniques require exact evaluation of the geometric 
predicates. The major objective against using symbolic perturbation schemes is 
the fact that these algorithms do not compute the topologically correct solution to 
a specific instance of the geometric problem: but rather the solution of the limit 
E-j 0. 

‘°Cf. Burnikel ct al. (1997) 
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Numerical perturbation of input data. rtl tk c0ntext 0f cotnputing ~a11 der 
Weals surfaces of biological macromolecules~ Halperin and Shelton (1997) pro- 
posed to perturb the input data numerically to avoid degenerate configurations. 
This approach is viable since the geometric coordinates are imprecise estimates 
obtained from statistical measurement procedures. Hence? a perturbation within 
the, accuracy of the measurements does not harm. 

Other approaches. Fortune (1989) calls art algorithm parsimonious, if the al- 
gorithm never evaluates a geometric predicates whose value can be deduced log- 
ically from previous predicate evaluations and the axioms underlying the domain 
of the algorithm. A parsimonious algorithm can never reach an inconsistent state, 
even if the predicate evaluations would be replaced by a random process. since for 
each branching taken by the algorithm a set-theoretic model MZ can be created. A 
model can be identitied with a concrete geometric input, such that the branching 
taken by the algorithm corresponds to the branching that the algorithm would have 
reached if it had been processin g the model HI as input. Knuth (1992) presents a 
parsimonious algorithm for computing planar convex hulls that is derived from 
the well-known lower bo~tnd construction 011 the number of comparisons needed 
for sorting. 

Sugihara and Ir-i (1994) provide a conceptually si tni lar approach they call topolog- 
ically oriented, where the model theoretic view is somewhat relaxed. For example, 
their algorithm for computing planar Voronoi diagrams is guaranteed to produce 
a planar graph yet the embeddin g computed by the algorithm may actually be 
non-planar. 

Also quite similar, &horn ( 199 1) proposes what he calls an ariomrtic app~~o(~clz~ 
that modifies the problem to solve in such a way that a convenient axiomatic 
system can he found. For example, instcacl of computing the closest pair of a set 
of points. he rather devises an algorithm determining only the stnallest distance 
between any two points frotn the set. 

5.2.3 The implemented strategy 

To decide for a specific strategy to deal with numerical precision and degeneracy 
issues, we tirst formulated a number of premises: 

1. Out software is intended to be run routinely on large, data sets. Therefore: 
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machine-provided arithmetic should be exploited as much as possible. 

2. Within a molecule, the spheres are more or less evenly distributed. Taking 
into account experience gained from earlier inrplerneritations, we decided 
that numerical problems would occur only seldomly. 

3. The proper identification and representation of degenerate configurations is 
of no importance to the intended applications. 

4. As already noted by Halperin and Shelton (1997). molecular data is gained 
from experiments and henceforth inaccurate data. Small changes of the co- 
ordinates within the error of the physical measurements preceding the cal- 
culations al-e acceptable. 

5. The implementation of the numeric predicates should be kept as simple as 
possible, since already the combinatorial part posed challenging implemen- 
tation problems. 

From these premises, we decided for the followin g strategy: In our implemen- 
tation, all predicates are implemented usin g the built-in double precision IEEE 
754 arithmetic provided by the, underlyin g hardware. However, all computations 
influencing the branching of the algorithm are performed with a dynamic error 
analysis actor-ding to equations 5. 1. Additional correction factors account fhr the 
fact that the error bounds thcmselvcs are subject to round-off errors. See figure 
5.13 on page 12 I for an excerpt of the actual in~l~lenlentatio~l. Whenever a branch 
decision is taken, the actual value is compared against the computed error bound. 
If the implementation cannot guarantee the correctness of the taken branch, then 
an exception is thrown by the algorithm. Obviously, the implementation cannot 
distinguish degenerate configurations f’rom round-oK et-rors. 

The exception handler is located in the outermost loop controlling the computa- 
tion of the individual cells. When an exception occu~~s~ the computation of that 
specific cell is aborted and all data computed so far for this cell is thrown away. 
A small numeric perturbation Lvithin the precision of the data is applied, and the 
computation for that specific ccl1 is started again. 

5.2.4 Structure and precision of input data 

A co~~m~on fomat used for the representation molo~~~la~ structures is the 
Brookhaven Protein Data Bank (PDB) format. A PDI3 data record describing a 
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single atom within a molecule has the following format: 

ATOM 27 QD ARG 1 -9.145 --0.560 111.890 0.00 2.69 

The first number specifies the sequential nutnber of the atom within the molecule, 
the second number specifies the number of the residue. The next three numbers 
at-e the atomic coordinates in A. Since natural molecules are of limited size, we 
can assume that the coordinates of all other atoms relevant to the computation of a 
single cell are contained in the interval [-- I ;IS.OOO& 12S.OOOA) around the center 
of the atom of interest. Hence, li,. == 17 data bits and one sign bit are sufficient 
to store the input coordinates after translating the center of the atom whose cell 
is to be computed to the origin. The radii are all bounded by S.OA, and they can 
be represented usin, 0 b,. = 13 bits. In fact, as we will discuss in the next chapter, 
for practical purposes the region of interest around an atom is typically restrkted 
even more. 

As we have shown in chapter 7. for a sphe,re~ CT of radius 0 centered at the origin 
the equation describing the prqjection of an e&c m: generated by two neighboring 
spheres CT; = (ci; r*i) and 0.i == (c,i. 7.i) within the spherical map is given by the 
equality 

Hence, we can store the coordinates of the defining planes of an edge of the spher- 
ical map exactly using double precision IEEE 754 floating-point numbers. 

All further computations of the geometric objects according to the formulas as 
given in previous chapters are performed with the dynamic error analysis as shown 
in Figure 5.13 in the appendix of this chapter. 

Figure 5.6 sho\vs the distribution of the relative errors when running the algo- 
rithm on the specified test data set. The algorithm sho~vs a very nice behavior 
with respect to the distributiorl of the numerkd errors. Only about once every 300 
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Figure 5.6: Distribution of numericnl errot‘s using ordinary 1EEE 754 floating- 
point arithmetic. Both the relative error and the distribution of the error values in 
sign comparisons are plotted using a log3rithmic scde. 

cells an exception tri,, ceering the numeric perturbation has to thrown. These results 
demonstrate very clearly the suitability of our appronch to computing AWV cells 
in practice. 

5.3 Running times 

We compared the running time of our implcmetltation with two other alternatives 
and collected the results into table 5.4 ;tn~d figure 5.7: 

1. double is the algorithm using built in IEEE double precision numbers with 
significants of 53 bits. 

2. filter is the algorithm compiled using the cock for dynamic error analy- 
sis as shown in figure 5.13. 

3. ledaxeal is the algorithm compiled with the corresponding data type 
from the LEDA library’ ‘. 

In all cases, the underlying implemetltatioti is precisely as described in the previ- 
ous chapter, and only the arithmetic lose type employed by the geometric primi- 
tives is changed. 
~...~ .._-__. .._---_..” . -.- _“. _l,_ 

“Cf. Bumikcl et al. (1996) 



Data set 

Figure 5.7: Running times for computin g additively weighted Voronoi cells using 
different types of arithmetic. 

In addition, we tried to USC floating-point filters similar to leda-floatf 12, 
which also perform a dynamic error mt~lysis at rnntime. but are much simpler 
than the code shown in figure 5. I_?. As it turned out, the bounds computed by 
these filters were so bad that not 3 single cell could be computed without the 
filters signaling a numerical underflou~‘-‘. This mismatch of the error bounds is 
caused by the high polynomial degree of the predicates to be evaluated. 

As we can see, the dynamic error analysis imposes an overhead of about 25% 
compared to the simple floating-point impler-rientation. The implementation using 
leda-reals? on the other hand. is about six times slower, since the expression 
dags of OLN predicates are rather complicated, and they have to be built LIP and 
destroyed for each single evaluation. 

5.4 Experiences with other approaches 

5.4.l Extracting au explicit representation using Aurenhanl- 
nler’s method 

As mentioned earlier on page 14, we could not find a reference to a previous 
implementation of an algorithm extracting the geometry of an AWV cell directly 
from the corresponding power cell, Hence. n’c provided our own itllplenrentatiorl 



Table 5.4: Running times for cotnputin g additively tlei$itcif Vorotmi cells using 
different types of arithmetic. The columns labelcd “ratio” contain the ratio of the 
running time compared to the naive inlplement,ltion using built-in floating-point 
mm hers. 
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Figure 5.8: Result of direct extraction of an additively weighted Vor-onoi cell from 
its corresponding power- cell. The. additional hyperbolic xcs are artifacts from the 
elimination process used to solve the equation systems. Moreover, the nuncrical 
sensitivity of the elimination process is visible. 

of an algorithm along the outline given on page 38. 

A typical result of applying this algorithm is shown in figure 5.8. For reference, the 
sane cell computed by the inlpleme~ttation as described in the previous chapter is 
shown in fig~ue 5.9. Distinctive features XC: 

o First, we can see many additional arcs within the individual faces of the 
cell. These arcs are artifacts from the elimination process and inherent to all 
variants of cylindrical algebraic decompositions. Of course, it is possible to 
glue suitable patches together in a post-proccssing step. 

o Second. we can see from the glitches and imprecisions that the algorithm 
suffers from numerical errors ~$cri implemented using floating-point arith- 
metic. We perfortued a dynamic error analysis to verify this claim. The re- 
sulting error distribution is shown in figure S. 10. 

e Conccrning running time, our itiiplelliet7tation of the direct extraction 
method is definitely not competitive with the algorithm from the previous 
chapter. To ;Ichie\:e a running time within the theoretical worst-cast bound, 
we have to compute ~1 triangulation of the powcr cell and then call the ex- 
traction algorithm for each simplex. However. due to the nutnerical prob- 
lems which already showed ~117 in the simple setting, the more advanced 
approach does not appear to be viable: We were not able to compute n 
single cell without significant errors using floating-point arithmetic. This 
observation is what \vas to be expected, since the coefficients of the addi- 



Figure 5.9: ‘The same cell as shown in figure 5.8 computed using the algorithm 
based on spherical maps described in section 5.3, The cell is shown within the 
molecular neighborhood defining its shape. 

tional planes introduced in the triangulation process are 4 x 4-determinants 
in 4 x 4-deteminnnts of numbers from the input data. 

As a preliminary result, the algorithm performin, * the triangulation needs 
about 2 minutes for the cell shown in the picture (yet, of course, producing 
significant errors in the output). So even if the numerical issues could be 
solved, it is doubtful if the running time could be lowered by a significant 
factor. 

Figure 5.10: Distribution of numerical errors when computing the ccl1 shown in 
figure 5.S using floating-point xithinetic. Roth the relative error and the distribu- 
tion of the error values in sign comparisons al-e plotted using a logarithmic scale. 



5.4.2 Simulating a vertical clecomposition scheme 

To examine, the influence of a vertical decomposition scheme on the numerical 
sensitivity of the algorithm, we compared our previous results with the following 
variant of the algorithm: Again, we assume the sites 01 j . . . , CT,, to be given in 
random order: 

1. Inifializntion: Construct an initial spherical subdivision PO by cutting the 
unit sphere S’ with the three coordinate planes x = 0, y = 0 and z == 0, 

Compute initial conflict information between each vertex, edge and face of 
PO and each site CY~, 1 2 i ‘: II. 

2. rrlclwnentcll step: For cad1 i r= 1 . . . II petl‘om the following operatiorts: 

(a) Create new edges due to edge conflicts generated by CQ. 

(b) Retnovc redundant old edges which 110 lon_ger separate different faces. 
Rejoin chains of edges into single edges. 

(c) Create new edges: 

Observe, that only the errors when insertin_c the new contlicts were recorded. 

Figure 5.11 shows a plot of the error distribution when running this algorithm 
on the specified data set. For- comparison. the error distribution collected in the 
experiments previously described is also sho~vn. As we can see, the simulation 
of the vertical decomposition shows an error distribution very similar to the basic 
non-refining alg~r.ithm. However, there is a significant increase of relatively large 
ersoss, which looked to systematic to be, overlooked. OF copse, our first suspicion 
was that this is an artifact of our simulation process. We examined manually those 
input data sets exhibiting these unexpectedly Iaqe en’ors. 



Figure 5. II: Distribution of numerical errors when computing additively weighted 
Voronoi cells using Boating-point arithmetic, Both the errors and the distribution 
are plotted using a logarithmic scale. 

Figure 5.12: A typical constellation causing numerical problems for algorithms 
using vertical decomposition. The left picture shows a perspective view o-f the 
spherical map. The x-axis extends to the right, the y-axis to the top? and the z-axis 
towards the reader. The right picture shows the projection of the configuration on 
the x,?I-plane. Conflicts me marked as gray dots. The problematic area is labeled 
A: Three conflicts are located on an edge which is part of a circle defined by a 
plane c7lmost parallel to the sweep plane? ~vhose projection is drclwn in light gay. 
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As it turned out, the errors are systematic. Yet, they are not artifacts of our sim- 
ulation but are inherent to vertical decompositions: Figure 5.12 shows a typical 
example. The numerical problems are caused by edges, which are almost frag- 

ments of a great circles through the c-pole. TIetermining the circular order of any 
conflicts located on these edges around the :-axis results in large errors. 

The question is of course, why do these errors occur that often‘? An edge of a 
AWV cell that is defined by three spheres of equal radius is a line segment as 
in the unweighted case. Hence, its projection onto the parameter space is n great 
circle. The problematic configurations occur if the three spheres are located on 
a plane that is &IOSI. parallel to the r.!%-plane. In t‘ttct, all the configurations we 
examined were caused by cat-bon atoms Lvhich occurred in chains and rings of the 
molecules. 

We conclude that vertical decomposition schctnes exhibit inherent problems con- 
cerning numerical stability. 

5.5 Conclusions 

In this chapter we examined the practicality of our approach to compute AWV 
cells. We saw that the data sets arising in molecular biology have specific char- 
acteristics that lead to distinct distributions of the combinatorial complexities of 
the cells. Moreover, the more or less even distribution of the atoms within the. 
molecule leads to a favorable numerical behavior of our implemented algorithm. 

We saw that within ow domain of application, the ratio between the complexity of 
an AWV cell compared to that of its corresponding -I-dimensional power cell tends 
to depend on the radius of the atom; smaller atoms tend to have a significantly less 
complex AWV cell. 

However, we feel that the main lesson learned fl+om our experiments is the in- 
fluence of the combinatorial design on the numerical behavior of an algorithm. 
We believe that this influence cannot be unclerustin?ated. Especially any kind of 
projection along coordinate axes seems to be a dmger-ous operation from the m- 

merical point of view. 

Finally, the overhead Eve introduced to deliver a robust inlplementatioll is not 
too high compared to a n3iL.e it77plel~lcntatiori usin 3 simple built-in floating-point 
arithmetic only. 



Appendix 

Equipment used 

All experiments where performed on a PC with a 266Ml.I~ Pentium II Proces- 
sor with 128MB of main memory. All programs where compiled using Microsoft 
Visual C-t-+ 5.OSP3 using maximum optimization. Since our algorithms are em- 
bedded within a graphical user interface, the alprithms where linked to the multi- 

threaded DLL versions of the runtime environment. We used the SC’;1 STL version 
2.0 and the STL by DinkumWare provided lvith MSVC. The LEDA release used 
was 3.7R. 

Selection of test data sets 

The data sets taken from the PDB are not random samples but where selected ac- 
cording to the following criterion: It is irnportnnt to know that there are basically 
two different methocls to measure atom coordinates, X-ray crystallo,oraphy and 
NMR spectroscopy. The first method, however, cannot determine the locations of 
hydrogen atoms. Using AWV cells instead of unweighted cells only makes sense 
if the atomic radii vary over a sufficiently large range. There are basically two 
ways how these larger ranges occur: First. larger radii may be assigned according 
to quantum chemical considerations, and these radii are then typically assigned 
to groups of atomsY such as a methyl group. Second, the inclusion of hydrogen 
atoms, which are rather small, leads to the typical effects distinguishing AWV 
diagrams from unweighted ones, such as closed elliptic edges and disconnected 
faces separating a cell from the same tieighboriti~ T atom. Since there is no com- 
monly agreed set of rules for the first case. we chose all samples from NMR data. 
Whenever a data set contained more than one coordinate set, we used the first 
model defined. 

Dynamic error analysis 

The error analysis is performed Losing a modified version of the code as given in 
Fig. 12 of the paper by Fortune and Vat1 Wyk (1996). The changes are the fol- 
lowing: The code for multiplication provided in the paper lacks an error term, 
which we added. Second. we do not store the absolute \~alues of the floating-point 
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Table 5.5: PDB entries used in the experiments. 

i 

_/ 

Table 5.6: Atomic radii used in the experitnents. 

numbers explicitly. but use the f abs-function to calculate the information on de- 
mand. On our machine, this bit-flipping operation is much faster than loading a 
value from memory into the FPU. Finally, the error analysis itself is done using 
floating-point arithmetic and is subject to round-off errors. We take this fact into 
account using appropriate correction factors. Figure 5.13 gives an excerpt of 0~11 

code. 



CT-FloatFilter operator*(const CT-F?koatFi~tzri L --cccl-othc) const 

CT-FloatPilter co-Sjqrt() const 

double rfi-value = sqrt(r8-Val.uc); 
double r8-correction = 

1.0 + 2.0 * std: :iiumeric_lirni.ts<tl~)~tble~ : : epsilon i ! ; 
double r8-error = sqrt(rO__Error:; 
return 

Figure 5.13: An excerpt of the code used to accumulate error bounds at runtime. 
This is the version used in the “production” version of our al\lgorithrn, which raises 
an exception to perturb the input in case of a degeneracy. 



volumes 0 mino aci 
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In this chapter. we want to use out’ new algorithm to compute AWV cells of the 
individual atoms of proteins. We \vill derive a set of standard volumes for the dif- 
f’erent amino acid residues. Additionally. we wil I compare the volumes computed 
using the AWV with previous approaches to assign volumes to individual atoms 
from crystal structures. All these pte\‘ious approaches - Voronoi, Richards’ B 
and radical planes - use planar bisector surfaces to separate the individual cells. 

The structure of this chapter is ns follows: In the first section, we will present 
a short review of the experiences made with the previous approaches. These ex- 
periences also guided the settins for OLW own experiments. In the following two 
sections, we will discuss the results obtained from OLII' experiments. First, we will 
discuss the results for complete amino acid residues. then we will discuss the vol- 
umes computed for the inciividunl atomic types. In the next section, we will report 
some preliminary results concerning the packing density of proteins. Finally, in 
the last section, we provide all information necessary to reproduce our esperi- 
men ts. 



6. Introduction 

6.1.1 Previous approaches 

Previous studies on the volume of individual atom in molecular structures have 
shown that the individual volumes depend greatly on the method chosen for the 
calculation. Comparing his “B” method with the Voronoi method? Richards (1974) 
reports that 

“[...] the mean volume for an atom with a mall van der Waals 
radius (i.e. a carbonyl oxygen) tends to decrease, while those with 
large radii (i.e. --CIIj) tend to increase. [...]” 

This obervation was also conf~tmed in the study by Gellatly and Finney (1982). 
Gerstein et al. ( 1995) summarise these obser\rations as follows: 

“[...I Bisection systematically misallocates volume inside of a 
protein, producing larger variance in the volume for any particular 
atom type. [...]” 

The latter authors propose two different approaches to obtain a better partitioning 
scheme: 

1. A hybrid approach that uses Richards‘ B method to position the plane be- 
tween protein atoms and to ignore the radii in all other cases. 

2. An approach based on spherical bisector surfaces that bend around the 
smaller atom. 

However, in later studies the authors did not use these partitioning schemes again, 
see Gerstein and Chothia ( 1996) and Tsni ct al. (1999). 

Concerning the radical plane method. Goede et al, (I 997) remark that the 

‘i[...] principal advantage oE the radical plane method separation 
scheme is the passage of‘ the dividing plane through the intersection 
circle OF both atoms. [. .]” 

This property is of special importance when the local density ot‘ an atom is cal- 
culated as the van der Waals volume contained inside its cell divided by the cell 



volume. The Vor-onoi and Richards’ B method do not have this property, and hence 
part of the van der Waals volume of a large atom next to a small atom is neither al- 
located to the small nor to the large atom. Goede et al. computed a total loss of van 
der Waals volume of 8% and 6%. respectively, for the two methods. On the other 
hand, for bonded atoms (at a distance of about 1.4;1), even the center of an atom 
is not part of the volume assigned to the atom itself by the radical plane method if 
the difference of the radii is at least O.hA. Therefore. Goedc et al. propose to use 
AWV cells for volume and density calculations. because this method 

“[...:] unifies the advantages of earlier approaches by 

‘I. keeping the spirit of the geometrically rational partitioning im- 
plied by the Richards’ method, 

2. avoiding vertex error and meeting the intersection circle be- 
tween atoms like the radical plane muthod, and 

3. using non-planar boundaries like Gerstein et al. [...I” 

Yet, as tnentioned in the introduction to this thesis, they could not devise an effi- 
cient and practical algorithm for the computation of AWV cells. 

6.1.2 Statistical parameters 

As we can see from the previous citations, the variance of the computed volumes 
has been used as a quality measure of the different methods. Let X = XI, . . . >XT1, 
Xi E K for all 1 5 i <: II, be a sequence of observations. We write the ~J~COH \Jclllfe 
21s 

jy :::: .I i il;. 
If i-: 1 

The stnr?clar^cl devintio~ can be calculated as 

Since we are interested in the relative errors of our calculations, we use the r~nrin- 
tionnl cmflicicvzt y- as index value of our results, As it is common practice, we 
multiply this number by a factor of 100 and denote this pe,-centlr<q!e devintim by 
II(X) o/n. 

s 



Usually, an estimation method is considered superior if the variational coeffi- 
cient is lower, which is regarded as an indicator to what extend the distribution 
is concentrated around the mean value. The percentage deviation has been con- 
sidered as quality measure for volume computations by most previous authors’. 
Pontius (1997), on the other hand, tries to relate variations of the atomic volumes 
to physical properties. She argues that the lower deviation observed for Richards’ 
B might result in part from the “vertex error” this method exhibits, small tetrahe- 
dral volumes that are not assigned to any of the atoms. 

6.1.3 Boundary conditions 

A consequence of modeling atoms as cells of a tessellation is that surface atoms, 
being incompletely surrounded by other atoms, have the possibility of being very 
large or even unbounded. Published studies vary widely in how atoms near the 
surface were treated. The easiest approach is to exclude all those atoms from the 
calculation that have a significant surface area accessible to the solvent. This was 
the approach chosen in the early studies by Chothia i 1975). L,ater authors such as 

Harpaz et al. (l994), Pontius et 211. (1996) and Pontius ( 1997) went even further 
by excluding all atoms that have any solvent accessible surface area. 

Another approach is soak the crystal structure into a hypothetical solvent. 
Richards (1974) assigned solvent atoms to positions on a cubic lattice surround- 
ing the protein. Finney (1975) placed solvent nioleculcs at all surface sites that 
could accommodate a hypothetical “solvent” molecule of radius 1.7A. This was 
done irrespective of possible overlap between the individual solvent molecules 
placed. Gerstein et al. (199s) used molecular dynamics simulations to position 
water molecules. 

In our studies, we considered only completely buried atoms, i.e. atoms with no 
accessible surface. However. we think that modcling volume distributions near the 
molecular surface using the AWV method is an interesting area of future research. 

6. Volumes of amino acid residues 

For each buried atom of the chosen data set we computed the volume of the cell 
associated with the atom using the four different methods: AWV. Richards’ B, 
-...-- -... l.“^---- l.l_l_-....-.... “.“.-~ ._....- 



Residue 

Type # _-.-_ 
ALA 300 
ARG 8 
ASN 22 
ASP 25 

CYS 66 
GLN 8 
GLU 7 
GLY 220 
HIS 19 
ILIZ 221 
L,EU 222 

LYS 4 
MET 55 
PHE 52 
PRO 34 
SEK 106 
THK 56 
TRP 24 
TYR 26 
VAL 293 

AWV 
1’[‘&‘] 0ps 
--91.4 4.x1-- 
203,s 3.70 
[33,..1 5.5X 
122.9 4.73 
I OS.6 7.38 / 
152.8 4.92 

149.7 2.76 
65.5 5.39 

163.0 3.63 
166.5 3.3s 
166.9 3.73 
173.0 1.23 
169.3 4.34 
196.5 3.78 / 
125.8 4.61 
97.8 5.05 

122.8 4.03 
71) 5 -I-.. 2.93 
202.0 4.13 

“‘.4 3.32 / 

Voronoi 

3[,\‘1 o/m ___.A.--- 
91.7 5.43 

197.1 3.96 
138.7 5.57 
131.7 4.60 
10s. 1 8.25 
159.1 5.82 

159.8 2.83 
67.2 5.81 

163.2 4.49 
163.1 3.73 
164. I 4.32 
162.5 1.94 
166.5 5.43 
199.4 4.35 
122.4 5.55 
101.5 6.07 
125.6 4.V 
236.2 3.5; 
208.‘7 5.09 
138.6 3.73 

91.4 4.91 
202.6 3.51 
133.7 5.61 
124.7 4.86 
108.6 7.54 
154.2 5.19 

151.6 2.7X 
65.8 i..?S 

163.0 3.78 
166.0 3.37 
166.3 3.s2 
170.9 .l.lS 
168.7 4.49 
197.1 3.89 
125.1 4.71 

98.4 5.30 

123.2 4.20 
233.1 2.98 
203.4 4.36 
140.7 3.35 

Table 6.1: The mean volumes v of the different amino acid residue types as cal- 
culated with different methods. For each residue, the second column labeled # 
specifies the number of buried OCCLUW~C~S in the data set. The methods employed 
arc AWV. Richards’ B. un~veighted Voronoi, and radical planes. The values given 

o(X) c are the mean volume 17 xncl the percent deviation --?- b. For each row, the low- 
est value of the percentage deviation is typeset using a bold font? and the second 
lowest value is typeset using an italic font. 

Voronoi, and radical plane. We recorded the mean value and the percentage devia- 
tion of these volumes for each atomic position within each residue type. Tables 6.3 
to 6.6 list the values computed. For each residue type we computed the mean and 
percentage deviation of the \.olurne based on all buried occurrences of the residue 
type in the data set. A residue is buried if all its constituent atoms are so? and the 
vohmc of the residue is computed as the SUJTI of the. vohmes of the constituent 
atoms. In table 6. 1, we sive the aveqe volumes we computed for the individual 
amino acid residues using the different methods. 

The overall differences of the mean residue volumes as computed with the differ- 
ent methods arc not too big. Mmost all standard deviations are less than 6.0% with 



the exception of Cys. where we did not diffe’erentiate between thiol form and occ~~r- 

rences in disulfide bonds. Tn addition. the Voronoi volume for Set- has a standard 
deviation of 6.07%. Since the data set contained only four buried occurrences of 
Lys, the computed values cannot bc considered statistically relevant. Indeed, for 
all four methods one of the four computed volumes deviates significantly from the 
other three volumes. 

The most significant differences are between the unweighted Voronoi method and 
the other three weighted methocls. Specifically, for Arg, the mean volume com- 
puted with the Voronoi method is approximately SA” lower than those computed 
with the other three methods. This is due to the t‘act that the Voronoi method 
assigns relatively smaller volumes to large atoms types. such 21s carbon, and rel- 
atively larger volurrm to small atom types, such as oxygen and nitrogen. In the 
case of At-g, Cp, C,{, and Ch receive significant less volume by the Voronoi method, 
A similar effect can be observed for the aliphatic residues Leu and Iso, Lys, and 
slightly less visible for Met and Val. 

For Asn, on the other hand, the Voronoi volume is approximately GA” larger than 
that computed using the other three methods. This is mainly due to the much larger 
volumes associated with the small polar atoms NQ and especially 06,. Asp, Gln. 
and Glu show a quite similar behavior. The larger volume assigned to Thr can also 
be related to this Effect. Finally, the Voronoi methods assigns higher volumes to 
aromatic ring systems. such as Phe, Trp, and Tyr. 

The residue volumes computed with the AWV method appear to be rather similar 
to those computed using radical planes. and both are quite similar to the volumes 
computed usin g Richards’ B method. In general. the volume computed by the 
AWV method is slightly higher than the correspondin g volume computed with 
Richards’ B method. This can he attributed to the fact that AWV calculations do 
not suffer from the effect of vertex errors. 

Regarding the deviations of the computed ~~~l~tmes, the AWV computations 
clearly stand out. In I4 out of 20 residue types. the AWV volumes exhibit the low- 
est percentage deviation. and for two further types, Asp and Trp, this value is sec- 
ond lowest among the four methods. In the remaining cases: when AWV has only 
the third lowest deviation, there is a significant gap to the fourth method while the 
gap to the second best methods is rather small. For Asn, we have 5.57 : S.S8 : 5.6 1 
for Voronoi:AWV:Radical: for Glu 3.72 : 2.76 * . 2.83 for Rndical:AJ$7V:Voronoi: 
for Gly 5.38 : 5.39 : 5.8 1 for Radical:AWV:Voronoi: and finally, even for Lys, we 
have 1 .20 : 1.23 : 1.94 for Richards’ B:A\;tTV:Voronoi. On the other hand? ignoring 
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the values for AWV, Richards’ B ~nethod shows the best behavior with respect to 
deviations among all the three methods using planar bisector surfaces only. 

The rather large deviations of the AWV volume for Glu stem from the large de- 
viations computed for the atoms of the terminal carboxy-group, compare the data 
in table 6.4. One reason might be the somewhat problematic assignment of the 
atomic types. The older rule set by Gerstein et al. (1095) had a specific atomic 
type 01021-I for carboxy groups, \vhich the authors dropped in the more re- 
cent study by Tsai et al. (1999). 1n the presenr calculations, the carboxy atoms 
are assigned the same type as the backbone carbonyl atom. On the other hand, 
as we will discuss below in more detail, the clcctronic distribution for hydrogen 
bonded atoms is directed towards the other atoms taking part in the hydrogen 
bond. Hence, the distributions for polar atoms mi&t be significantly better if the 
hydrogen atoms are included in the data set. The data set used was obtained from 
X-ray diffraction patterns, and hence does not include any coordinates for hydro- 
gen atoms. 

The rather high deviation of the AWV volume as computed for Asn is rather sur- 
prising as all the volume, computations performed for the individual atoms of this 
residue show rather favorable low deviations, see table 6.3. One reason might be 
a rather stronger- correlation between the individual atomic volumes. Or, the se- 
lected residues and their environments are not completely representative; stripping 
off all water molecules might have distorted those volumes’. 

6.2.1 Comparison of computed residue volumes with previous 
studies. 

Table 6.2 shows a comparison of the residue volumes we computed using the 
AWV method with previously published values. The studies by Chothia (1975): 
Harpaz et al. (199-C). and Tsai et al. ( 1999) were based on Richards B method. 
The older studies by Chothia and Harpaz et al. used slightly different radius sets. 
Pontius et al. ( 1996) used unwei~hted Voronoi cells and the same data set as our 
study. However. \ve were more restrictive in selecting the atoms to include in the 
statistics. 

We observe that the AWV volumes computed for hydrophobic residues are SLII- 

prisingly similar to the early results published by Chothin (197!3 while Chothia’s 

'Cl'. Potitim ( 1997) 
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ARC; 
ASN 
ASP 
CYH 
CYS 
GLN 
GLIJ 
GLY 
HIS 
ILE 
L>EU 
LY S 
MET 
PHE 
PRO 
SER 
THR 
TRP 
TYR 
VAI, 

--.--___-~-~-----~-.- 
Residw Volume [X’] 

this study ‘I’sai et al. Pontins et al. Hxpx LX al. Cbothia ...-_---~..“.l-. 
91.4 90.0 91.5 90.1 91.5 

203.8 194.0 I%. 1 192.X 
132.3 124.7 13s.j 117.5 135.2 
122.9 117.3 I.352 117.1 124.5 
1 ofa+ 113.7 111.4 113.2 1 17 .‘7 
1tx.6-” 103.3 101.4 103.5 105.6 
152.8 149.4 156.4 119.-k 161.1 
149.7 141.1 154.6 140,s 155.1 

6S.S 64.9 67 ._ y 63.S 66.4 
163.0 160.0 163.2 159.3 167.3 
166.8 163.3 162.6 164.9 168.8 
166.9 164.0 I63.4 164.6 167.9 
173.0 167.3 162.5 170.0 171.3 
169.3 167.0 165.9 167.7 170.8 
196.5 191.9 I98.S 193.5 203.4 
125.8 121.9 123.4 17.3.1 129.3 
97.8 9s.4 103.0 9-l.:! 90.1 

122.8 121.5 176.0 170.0 112. I 
3-j? j -_ I._ 223.2 237.2 231.7 137.6 
202.0 197.0 709.8 107, I 203.6 
141.4 1;9.0 138.4 I 3 9 I 111.7 ~---- --.-.-- .“--.-..---.---...- . ..-..... . . . -.-~... . ..-.. 

Table 6.2: Comparison of volumes of amino acid residues as given by 
different authors. The studies are Tsai et al. (1999). Pontius et al. ( 19913, 
Harpaz et al. (1994), and Chothia ( 1975). (+) In the pt-escnt study, we do not dif- 
ferentiate between disulfide-bondecl and non-bonded cysteine. 



volumes for polar residues are higher. Hydrophobic residues tend to aggregate in 
the interior of the molecule, and hence a statistically meaningful sample was al- 
ready present at that time. Polar residues. on the other hand, are much more likely 
to be located near the molecular surface. At the time of Chothia’s study, only very 
few were contained in the interior of the available protein crystal structures. There- 
fore, he had to include even residues with a non-zero yet small solvent accessible 
surface, Even out’ data set contains only very few acidic and basic residues that 
are completely buried in the interior of the molecules. 

Comparing the volumes we computed for the Voronoi method with the values 
published by Pontius et al. yields another interestin, ‘7 observation: Both calcula- 
tions were performed on the same data set using the same method of allocating 
space to the individual atoms, The only difference between the two calculations 
is that we stripped off’ all non-protein atoms from the data sets before starting the 
calculation. However. we get the same \rolurnes when exactly the same residues 
were considered. such as for Lys, so this dit‘l’erence is not due to an error in either 
calculation. We may conclude that volume crtlculations of this type are extremely 
sensitive to the selection of the data set and to the boundary conditions such as the 
inclusion/exclusion of water and cofactors”. 

Considering the rather small differences between the volumes we computed with 
the AWV and the Richards’ B method on our data set, it is reasonable to assume 
that the differences of our volumes to the volumes computed by Tsai et al. stem 
mainly from the different data sets used, 

6.3 Volumes for individual atom types 

In this section, we discuss the volume distributions obtained for the individual 
atom types in more detail. 

63.1 Carbon atoms 

Figures 6.1 and 6.2 show the distributions of the atomic volumes computed for 
different types of cabon atoms. 

C3 is the atom type assigned to planar configurations of carbon as found in the 
carbonyl group alon_ c the backbone and as branching point in ring systems such 



C3H 

. . . _ Richards ' B 

- - - - Voronoi 

,-------Radical 

Figure 6.1: Distribution of cell volumes of carbon atoms with planar orbital COB- 
figurations as found in aromatic and carbony groups. 



as found in Trp, Tyr, Phe. and His. As ~vc can see from the topmost picture in 
figure 6.1 and the detailed ~~olu~ne data in tables 6.3 to 6.6, both the radical plane 
and the AWV method distinguish C3 atoms along the backbone from those in ring 
systems. The smaller volume assigned to ring atoms shows up as “shoulder” to the 
left of the main peak. Richards B and Voronoi, on the other hand, do not show 
this distinction. 

C3H is the type assigned to cat-bon in t~romatic rings. Especially for AWV, the 
distribution is almost perfectly Gaussian 3s cnn be seen in the middle picture in 
figure 6.1. 

C4H is an ,sy3-carbon bonded to n hydrogen. most notably the C, carbons along 
the backbone of the protein, but also the branching points in aliphatic side chains, 
such as Val, Lcu, and Iso. Comparing the top picture of figure 6.2 with the detailed 
data given in tables 6.3 to 6.6: we see that both the AWV and the radical plane 
method assign significantly lolver \~olurues to these atoms in side chains than along 
the backbone. This might be an indicator for a less tight packing of the backbone 
than previously assumed. Richards’ B shows almost no diffelznces for the two 
occurrence modes. 

C4HH is the atomic type assigned to -CFfz--- groups in side chains. Both radical 
planes and AWV assign significantly different volumes depending on the radius of 
the neighboring atoms along the chain, Hence. C4HH atoms next to polar groups, 

such as CE of Met, Cp of Ser. Cp of Asp or C.{ of Glu, show larger volumes than 
those in aliphatic chains. The overlay of these individual distributions leads to 
the long tail of the joint volume distribution depicted in the middle picture of 
figure 6.2 for C4HH towards higher volumes, For the Richards’ B and the Voronoi 
method, this dependency is much less distinctive. 

Methyl carbons. which are assigned type C-IHHH. exhibit an almost Gaussian vol- 
ume distribution for all of the four m&hods. However9 the distributions obtained 
for Richards B and AWV look smoother than those obtaincd for the radical plants 
and the Voronoi method. 

6.3.2 Nitrogen atoms 

Figure 6.3 shows the Yolume distributions for the two types of nitrogen atoms. 
N3 is only assigned to ili,5, of His. All methods show similar rough volume dis- 
tributions. Following the argutnentation by Pontius ( 1997), this behavior might 
result from the Fact that we stripped off all nolqrotein atoms from the data set. 
Moreover, she obser\Fed \Yat-iances of the cell volumes depending on the nutnbel 
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of hydrogen bonds formed in the structure. 

For type N3H, all methods show an overlay of two distributions. Comparing with 
tables 6.3 to 6.6, we cannot separate this distribution into two distributions based 
on a distinction by residue type and atomic position within the residue alone. 
Again, the number of hydrogen bonds formed in the structure might be an cxpla- 
nation. Roth Voronoi and Richards’ B method assign relatively larger volumes to 
this atom type. 

The atomic type N3HH is assigned to the kit groups of Asn, Gin, and to the 
terminal nitrogens of Arg. Similar to X3. all methods show similar rough volume 
distributions. Again, this behavior might result from the fact that we stripped off 
all non-protein atoms from the data set. 

6.3.3 Oxygeu atoms 

The atomic type 01 is assigned to backbone oxygens, and to atoms located in 
acidic and basic side chains. The volutnc distributiorls for this type as computed 
with the four different methods are shown in the top picture of figure 6.4. All 
methods yield similar smooth distt-ibutiotls. However, the volumes assigned by 
the Voronoi method are significantly larger than those derived using the other 
three methods. The very few cells of relatively high volumes (more than 37 A”) 
might result from missing water molecules. 

02H is the type assigned to the terminal hydroxyl groups of Tyr, Ser, and Thr. 
Again, we observe the rough distributions resulting from hydrogen bonds as was 
the case with N3 and N3IIH. 

63.4 Sulfur atoms 

Atomic type S2 is found both in Met and in the terminal position of Cys. Although 
we did not distinguish between the disulfide-bonded and the thiol form of Cys, 
none of the methods yields a volume distribution that can be clearly seperated into 
two smooth overlayed distributions. Cornpat-in g with tables 6.3 to 6.6, the peak 
at 2S.SA3” can be assigned to S;i of Met, the peak at 27.OA’ would correspond 
to disul fide bonds, and the tail to the right wo~~lci correspond to the behavior as 
exhibited by the hydrogen bonds previously discussed. 



N3H 

Volume in Cubic Angstroms 

N3HH 

Figure 6.3: Distritmtion of cell volumes of nitrogen atoms ns computed with the 
different methods. 
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Figure 6.4: Distribution of cell volumes of o,uygen atoms as computed with the 
diRerent methods. 
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ARG CA 
AKG CB 

ARG CG 
ARG CZ 

ARG NHI 76 

ARG 0 
MN c 

ASN CR 
ASN CG 
ASN N 

ASN 0 

ASP CA 
ASP CH 
ASP CG 
ASP N 
ASP 0 

CYS 0 

GLN CD 
GLN CD 
GLN CG 
GLN N 

GLN 0 

Thble 6.3: Volumes of individual atoms as calculated with different methods. Fol 
each residue. the second column specifies the number of buried occurrences in the 
data set. The methock employed are AWV. Richards’ N, unwei@ted Voronoi, and 
radical planes, The values given are tmean volume mtl percentage deviation. The 
lowest deviation is typeset in bold, the secmtl lowest value in italic. 
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A1om 

Kes, Allll. ii 

GL,U c 65-i 
GLlj CA 350 

GLU CB 155 

GLU CD I .x3 
GLI! CG I OS 
GLU N 521 
GLU 0 175 
GLU OE I 4s 
GL,C OE2 52 -..-.~ . . . . ..-- 
GLY c 803 
GlW CA 321 
GLY N 6% 
GLY 0 s;lJ 

~.. 
HIS c 30 
HIS C.4 73.5 
HIS CK 175 
HIS CD2 160 
HIS CEI 76 
HlS CC; “75 
HIS N 313 
HIS ND1 16 
1 IIS NE2 IO1 
HIS 0 230 ____..... - -I_-- -.... 
IL,E C 7s.3 
ILE CA 62-i 

TLC CB 639 
ILE CD I 409 
ILE CC1 SOS 
ILE CG’ 428 
ILE N 701 
ILE 0 S56 _____.. I_..-._~ -_-. - 
LEU c 1129 
L,EU C’:\ 978 
LEU CH 716 
LEO CD1 65’) 
LEU CD3 57s 
LEU CG 10’4 
LEU N 10:: 

LYS CA -17 
LYS CR 707 
LYS CD 103 
L’r’S cc -ii) 
LYS CG 175 
ISS N 6’1 ’ 
LYS XL - l-i 
LSS 0 3’); ~.- ..l---“_- 

Vomnoi 

VIA’] nJV% A-.-___ 
s.4 7.73 

11.7 IO.13 
?O - ..b ‘, 9.15 

9.2 x.09 
21.4 12.58 
14.3 9.21 
‘2.3 10.23 
‘3.4 12.96 
7.3.4 15.77 
9.4 9.41 

20 0 I 1 .A6 
I-i.9 1 l.lG 
22.5 il.47 ----.-.__-- 
s 1 5.66 

27.4 10.32 --- ..-.--. - 
s.5 8.78 

11.6 3.19 
‘0 6 9.60 
71.6 10.97 
21.6 12.61 
11.1 IO.10 
1-i I ‘I.6 L 
23.3 il.34 
-- .$ 7’ 10.27 -. I . . I~ _.._. 

Radical 

P[A3] n/V% -I.-- 
7.7 6.9s 

18.0 6.42 
23.9 7.59 
10.2 7.75 
21.6 10.60 
12.0 9.10 
14.9 12.89 
IS.5 16.53 
16.3 IS.93 
s.3 8.4.: 

29.3 7.72 
12.s lo.?‘) 
IS.2 13.5s _-.--.. 
1.1 7.92 

18.0 6.35 
26.6 so.? 
23.3 10.47 
22.9 9.16 
s.5 s.43 

11.0 9.s7 
14.9 12.54 
14.9 15.12 
14.6 13.19 
7.5 

17.4 
14.3 
37.7 
24.3 
36.1 
12.0 
15.1 -_” 
7.8 

17.7 
‘3.3 
17.5 
37.0 
14.S 
1’7.0 
Id.9 
7.7 

17.8 
23.4 
24.2 
26.9 
23.4 
12.0 
22.1 
15.0 

7:!9 
6.34 
7.22 
9.1-i 
7.89 
7.!)7 
8.43 

12.11 -- 
7.00 
5.03 
6.93 
X.Sl 
8.65 
8.55 
8.81 

12.85 _-__. 
7.m 
6.20 
7.84 
8.73 
9.27 
X.91 
9.41 

17.29 
12.72 



-_l______- -- . 1------~ 
Atom 

Res. Am. ii ------__ 
MET C 268 
MET CA 196 
MET CB 168 
MET CE 175 
MET CG 171 
MET N ‘41 
MET 0 192 
MET SD 175 --l.l--- 
PHE C 5 I4 
PHE CA 392 
PHE CB 341 
PHI? CD I 391 
PHE CD2 369 9.S? ‘2.3 8.38 
PHE CEI 3.15 
PHE CE2 305 
PHE CG S46 57 4.9’ s.3 7.29 / 10.3 7.24 48 7.75 
PHE cz 
PIE N 
WE 0 ~-.._.-._- 
PRO C 

PRO CB 
PRO CD 
PRO CG 
PRO N 
PRO 0 
SEX c 

SER CB ?::I 
SER N 
SER 0 
SER OG ___-.- 
THR c 

..- .^.. --.-.--- 

TIHR CR 
THR CG1 171 36.6 8.14 j 35.8 s.20 9 s 3 : I.8 35.7 8.05 
THR N 623 1’7 s 8..% 1 .3 L) S.2-l I 4.0 8.61 12.3 8.92 
THR 0 $29 14.1 IO 5s lb.2 io.s2 , 37 0 10.26 Id.8 ll.SS 
TIIR OGl 209 15.1 15.24 IX..? 11.73 / v-1 15 ?O I-----__ ..-... L~-.-“_-.-.-.-.-~ _.,_-,_. 1 15.4 17.57 __......---- -.-- i...-.- -- ~- 



--- ___-.” .^__ “..“,^, 
Alon, 

lies. Atin. # -.....l”- .- 
TRP C 10 I 
TRP C.4 I 6-1 
TRP CB 128 
TKP Cl-l 1 102 
TRP CD2 181 
TRP cl32 176 
TRP CE? 15s 
TRP cc; 20 1 
TRP CH2 I IO 
‘SRI’ cz7 94 
TRJ’ cm 136 
‘TRP x 169 
TRP NEI 92 
TRP 0 112 ----~_I. 
TYR c 51s 
TYR CA 3s.i 
TYR CB 302 
TYR CDI 33’9 
‘I‘YR CD’ 31 I 
TYR CE I 23-i 
TYR CE.! 2 I 4 
TYR CG 511 
I-YR cz 396 
TYR N 330 
‘I-YIP 0 336 
TYR OH 111 .-...~_ 
VAL c 1174 
VAL CA 9.27 
V/IL CB 907 
VAL CGl 61 0 
VI-IL Cc2 655 
VAL N I 03 I 
VAL 0 7.50 

-.--.--.- 
:\WV 

i;[,p; 

s.0 
o/F’C --. ..-.-- 
7.72. 

17.7 6.7.7 
27,s 7..3; 
‘.X.5 KU9 

Sh 6.39 
7.9 S.21 

7’) -I -- - 7.87 
h h 5.18 

‘I.-k 9.57 
72 9 ‘I.14 
11.7 8.13 
12.7 CT.56 
16.6 il.% 
I-i.” 12.09 
8.0 7.71 

17.1 (i.97 
21 Cl 8.02 
‘I..? 8.76 
21.6 5.88 
2-1 9.12 
22.7 s.97 
.3.7 5.14 
8.1 7.20 

12.5 8 19 
14.2 IO.SS 
17.9 13.76 ___.^. 
7s 7.14 

I6 9 6.79 
l-k.9 7.93 
-17.2 7.M 
: h x 7 0’ 
12 5 7 69 
14 -1 0.7s 

Y.71 i 
6.91 

S.17 
ooh 
9.x 
‘I.75 
9.09 
7 57 
7.s.3 
S.?9 

IO.51 
i-3.S6 
7..?5 
7.38 
7.80 
7.50 
7.13 
7.62 
o-/r 

~---- 
Vouonoi 

q.4’7, op’ih 4_“_“__ ~ 
s.5 IO.21 

II 8 8.37 
21.5 8.98 
20.2 IQ.35 
1O.S 6.85 
IQ.3 8.44 
30.9 9 67 
IQ.4 6.37 
31.5 IO.26 
31.0 10.51 
71 7 -I.- 10.06 
i-i.3 9.43 
IS.? 12.S3 
3, ? _-.- IO.45 ~_._____ 
85 9.71 

I I.-i 85-l 
21.3 9.51 
20.1 1062 
!0.2 10.96 
10.3 IO.90 
!O.-1 10.12 
IO.3 7.30 
IO.1 7.40 
13.9 9.00 
‘2. I 10.12 
24.s 15.1:? --.....“l.-~ 

8.4 S.30 
I I.-t 9.70 

I?.? 5.70 
33.7 s 9ii 
33 5 8.35 
14.2 8.1-l 
37 7 -... 8.39 

Radical 
P[A’] o/P% -~-..- 
7.7 8.51 

18.3 5.87 
27.3 7.00 
23.7 7.95 

8.5 7.13 
7.1 9.43 

22.4 7.94 
6.0 6.96 

21.4 9.61 
23.0 9.05 
21.8 8.7.7 
12.3 9.18 
16.6 12.39 
14.9 13.23 
7.7 <y-15’-‘- 

17.9 6.03 
26.8 7.60 
213 S.84 
21.8 9.110 
22.5 9.11 
22.8 8.84 
4.8 s.l I 
7.9 8.13 

12.0 S.84 
15.0 12 OS 
18.9 IS.18 ---~ . 
7.6 7.T,l 

17.5 6.20 
14.7 7.67 
36.5 L.IJ 
36.2 7.07 
12.1 s.3 
15.2 IO.?2 

Table 6.6: Cmt. Volumes of individual ntoms as calculated with different methods. 



6.4 acking densities 

We also computed the packing densities of the amino acid residues. The packing 
density of a residue is defined as the quotient $$- of the van der Waals volume 
of the residue divided by the residue volume computed Losing the AWV method. 
Again, we used the set of radii proposed by Tsai et al, ( 1999), and only residues 
from the interior without any accessible sur-face were considered in the calcula- 

tion. See table 6.7 for the detailed results. 

We computed an overall average packin, 0 density of 6-t. 10%. For the individ- 
ual amino acid residues, the average densities range from 62.73% for Leu up 

to 66.56% for Lys. Along the backbone the average packing density is 70.33%, 
which is significantly higher than the average packin g clensity o-f side chains, 
which we computed as 59.13%. Aliphatic side chains tend to be slightly less 
tightly packed than polar ones. 

Apparently, these densities are much smaller than those values given by 
Richards (1974). Most notably, Richards calculated an average packing density 
of 75% -for the interior residues of lysozyme and ribonuclease S. This number 
is also cited extensively in the biochemical literature. such as the textbooks by 
Crcighton (1993) or Kyte ( 1995). 

We found two sources for the large cliscrepaq, between our results and those 
numbers published by Richards: First of all. the actual set of radii used in the 
calculation influences the computed van der Waals volume of the residues. As 
we have noted eariier, the partitioning of’ space gi\,cn by the AWV method does 
not change if all radii are increased by a common additive constant Ar. When 
comparing the radii set we used Lvith the set of radii used by Richards (1974), we 
observe that most radii assigned by Richards are larger than the corresponding 
radii given by Tsai et al. (1999). See also table 6.9. Therefore, we did the same 
computation using Richards‘ set of radii. This also implied using a slightly smaller 
probe sphere with a radius of only 1 .I,& Set table 6.S for the densities calculated 
using these parameters. The average packins density increased to 69.70%, with an 
average density of 75.14% along the backbone? and 65.62% for the side chains. 
Yet, while these values are much higher than those obtained using the new set of 
radii by Tsai et al. ( 1999). they are still well separated from those values reported 
by Richards. 

We compared the van der Wanls ~olumina computed by our program to those 
given by Liang et al. (1998). We found that the \-olumes computed bv ou program 



-.. 
Residue j \’ Ilen,sjtv -Aa % ’ yang\/ 

Name # 1 tot .--.~ -__. -.-L.-.L backb. sidec. ~-_.-... 
ALA 299 j 64.27 70.25 56.08 
ARG 8 / 63.23 68.94 61.18 I 
ASN 22 i 63.26 69.23 S9.26 
ASP 25 i 64.35 69.5S 60.45 ! 
CYS 65 I 66.56 70.69 62.86 
GLN 8 / 64.96 73.24 60.87 
G1,T.J 7 / 62.93 69.53 59.26 
GLY 220 65.72 65.72 0.00 
HIS 19 65.88 69.55 64.11 
IL,E 219 63.23 71.88 59.42 

I,EL~ 22 1 62.73 71.32 58.90 
LYS 4 65.93 73.4s 62.82 

MET 55 63.41 71.36 59.95 
PHE S2 63. I2 70.43 60.47 
PRO 24 65.43 71.42 61.98 
SER 106 i 65.59 69.81 60.7 1 
THR 56 / 65.31 71.74 60.68 
TRP 24 1 61.35 71.04 62.47 
TYR 76 ~ 64.01 71.85 61.33 
VAL 192 1 63.31 71.42 58.68 ..I_..--...-~ 

Table 6.7: Average packin, 0 densities of- amino acid residues computed using the 
radius set by Tsai et al, ( 1999). The packing density is defined as the quotient of 
the van der Waals volume I<,,~Q. divided by the volume occupied by the residues 
AWV cells ~b~~~~~:. The table gives for each residue the overall density, and sepa- 
rately the density of‘ the polypeptide :r.oup along the backbone and the density of 
the side chain. 
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-..-” .^.._... --__ .I....-- -.-~ 
Residue Density * % 

Name # tot. bnckb. sidec, -.” .-......-..-. --l--.----- _____ ~ .-_-_ 
ALA 2 8 1 
ARG 

~ 

70.04 75.17 63.41 
8 67.81 73.39 65.85 

ASN 17 67.8% 73.08 64.26 
ASP 20 / 69.2-I 
CYS 

74.00 ;;.-7; 
57 j 71.73 75.32 . 

GL,N s / 69.73 78.32 65.52 
GLIJ 7 67.90 73.95 64.59 
GLY 194 71.07 71.07 0.00 
HIS 17 ’ 69.92 74.66 67.62 
ILE 208 69.30 76.40 66.33 

LEU 213 68.76 76.10 65.65 
LYS 5 j 71.83 78.19 69.52 

MET 52 / 69.04 76.01 66.15 
PHE 65 / 66.5 1 74.73 63.34 
PRO 21 ’ 71.74 75.71 69.57 
SER OS 7 1.66 74.99 68.07 
THR 47 71.41 76.16 68.17 
TRP 16 68.55 75.74 66.38 
TYR 26 i 67.39 75.62 64.5 I 
VAL 267 1 69 ‘3 76 I3 65 48 -~---- -i.-Lx_---‘-_ _._. L-.- 

Table 6.8: Average packing densities of amino acid residues computed using the 
radius set by Richat-ds (I 974). The packing density is defined as the quotient of 
the van cler Wads volume b;i’il\tr divided by the volume occupied by the residues’ 
AWV ccl Is VAW~/. 
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are up to 3% less than those values published by the latter authors. This implies 
that all the densities computed by our soft\\rare are approximately 2% below the 
correct values. The reason for this difference turned out to be the rather naive 
approximation of the spherical parts of the van der Waals surface of the molecule 
by polyhedra from the, interior. As already discussed in section 4.6, the algorithm 
could be modified to take this error into account while refining the triangulation 
approximating the surfaces of the individual AWV cells. Until this has been done, 
we would like to consider the results in this section as preliminary. 

6.5 Conclusions 

To summarizc, we have demonstrated that the atomic and especially the ovcr- 
all residue volumes computed using the AWV method have a significantly better 
distribution than those computed using Richards’ B and radical planes, not to 
mention the Voronoi method. In n way, the radical planes method tends to yield 
the least percentage distribution for atoms of different sizes that are farther away, 
while Richards’ R is especially good at bonded atoms of different types. The AWV 
method seems to combine this in a fa\-orable way. 

The comparison with previous studies essentially confirmed the sensitivity of vol- 
ume computations on the exact choice of the data set and the boundary conditions. 
All the previous authors cited in this section already observed this. 

Finally, neither method seems to yield adequate results for hydrogen bonded 
atoms. Hydrogen bonds are highly directed, and a purely geometric division of 
space based on Euclidean distance alone catnot capture this dircctionslity. A pos- 
sible solution might be the explicit inclusion of hydrogens in the data set. Another 
solution might be a partition of space based on orbit& instead of atotnic coordi- 
natcs only. 

We believe that these results provide cnou@ experimental evidence to justify 
further studies of molecule volumes and density distributions using the AWV 
method. In our opinion. studies of the packing density near the molecular surface, 
and a detail& account on the side chain packin g in the interior of the molecule 
are interesting topics of future research. 



6.6 Experimental setup 

6.6.t Methods employed 

111 our study, we compared the volumes of the cells as defined by an AWV tessel- 
lation to the corresponding tessellations computed using the Voronoi method, the 
radical plane method, and Richards’ B method. The cells of the AWV tessellation 
were computed using the implementation as described in chapter 4 of this the- 
sis. The polyhedral cells of the other three tessellatiorls were computed using the, 
intersection algorithm for halfspaces described in section -1.5. As in the previous 
studies by Harpaz et. al (1994). Gerstcjn et al. (1995). and Tsai et a1.(1999), the 
polyhedra for Richards’ B were computed without special treatment of aromatic 
rings. 

66.2 Radius set 

To assign radii to the individual atom types. we used the set of radii that was 
recently proposed by Tsai et al. (1999). see also tahlc 6.9. The assignment of atom 
types to individual atoms was done using the rules given by the same authors. 
Tables 6.10 and 6.11 list these type, assignments in detail. 

6.6.3 Data set 

We performed the volume and density calculations on the same data set as Ponitius 
et al. (1996). This data set consists of 54 high-resolution structures selected from 
the PDB. These structures were selected by the cited authors because they had 
been refined at a resolution ot‘ ?A or better and to a11 R-factor of at most 0.20. 
In addition, they include representatives of different fold families as described 
by Orengo et al. (1993). Table 6.13 - gives a detailed list of the PDB identification 
codes of these entries. 

When reading the data sets, all cofactors and water molecules were stripped off 
and only atoms belonging to one of the 20 standard amino acid residue types were 
retained. We included only atoms and residues in the statistics that are completely 
buried, An atom is considered as buried, if a probe sphere cannot touch it without 
intersecting one of the other retained atoms. We used a probe sphere of radius 
R == 1 .SA in our calculations. 



Radius [Al 
Tjp Tsai Chothia Richards .-.--..-..--_ 
c3 1.61 1.76 1.70 
C3H 1.76 1.76 1.70 

i C4H 1.88 I.S7 2.00 
j C4HH 1.8s I.S7 2.00 
/ C4MHH I.SS 1.87 2.00 

N3 1.64 I.SO 1.70 
N3H 1.64 1.65 1.70 
N3HH 1.64 1.65 1.60 
N4HHH 1.63 1.50 2.00 
0 1 1.42 1.10 1.40 
02H 1.46 1.40 1.60 
s2 1.77 1.m l.SO 
S2H 1.77 I.SS .- 

Table 6.9: Radii assigned to the specific atom types. The first set of radii 
was recently proposed by Tsai et al. ( 1999). nnd was used in the present study. 
The other two columns specify the radii sets as given by Chothia (1975) and 
Richards ( 1974). 
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Rcsiduc Al0111 Type 
GL,Y 0 01 - 
GLY C c3 
GLY CA C4HH 
GLY N N3H 
ALA 0 01 - 
ALA C C:: 
ALA CA C4H 
ALA N N?H 
ALA CH C4HHH -. ~- ~--- 
V‘4L 0 01 
VAL c c3 
VAL (2.4 C4H 
VAL N N3I-I 
k!4L CL3 C4H 
VAL CGI C4HHH 
VAL cc;2 C4HHH .~-- 
LEU 0 01 
LIXJ C C3 
LElJ CA C4H 
LEU N N?f-I 
LEU CR C4HI-l 
LEU CG c41-I 
LElJ CD1 C4HI II 1 
LEU cm C41~IHH 
11X 0 01 
11x C c3 
ILE CA C4H 
1LE N N3H 
ILE CR C41-I 
ILE CGI C4HH 
ILE CG? C-IHHH 
lL,E CD1 C4H HH -_..---.-.~ 
MET 0 (> I 
MET C c3 
MET CA C4H 
MET N N?H 
MET CR C-tHH 
MfTr CC c-IHH 
MET SE SL‘ 
ME7 CT: CIFI I 1 f-l 
PRO 

o ---“-.oT----- 

PRO c c-3 
PRO CC\ c‘-IH 
PRO N S3H 
PRO CR C-II-I H 
PRO cc C4Ilfl 
PRO CD Clf-1H ..--_ ..*.l.-.. -. 

111s 
HIS 
HIS 
HIS 
HIS 
HIS 
HIS 
111s 
HIS 
HE 
WE 
Pl IE 
PHC 
PHC 
I’IIE 
PHB 
PHE 
PHI: 
PHC 

c 
CA 
N 
CH 
cc; 
NT) 1 
CD2 
CEI 
KE2 ---_ 
0 
C 
CA 
N 
Cl3 
CG 
CD1 
CD? 
CEI 
Cl3 

C3 
c41-I 
N3l-I 
C4HH 
C3 
N3 
C3H 
C3H 
N3F1 
01 
C3 
C4H 
N31-I 
C4HH 
c3 
C3FI 
C::H 
C? H 
C.!lII 

TYR 
‘TYR 
‘TYR 
TYR 
1‘YR 
TYR 
f3’R 
I’YR 
TYR 
T>‘R 
[‘YK 
l-RF 
‘TfiP 
TRl’ 
TRP 
TRP 
TRP 
‘IX I’ 
TRP 
‘I‘RI’ 
TRP 
TRP 
TRP 
TK I’ 
‘lx P 

0 01 
C C3 
CA C4H 
N N.3H 
CR C4HI-I 
CG C3 
CD1 C3H 
CD? c31-I 
(‘E 1 C3H 
CEll C3H 
CL Ci 
OH 011-I 
0 01 
C C-3 
c:\ CJH 
IN N.?IH 
Cf1 CJHH 
CG cx 
CD1 C?f-I 
NE1 N3H 
cm. c3 
CE?. c3 
CE? C3I-I 
cz3 C’H 
CZ‘ C?l-I 
CH’ C3H 

Table 6.10: Rule set used to associate atomic types to individual atoms. Part. T> 
aliphatic residues, tnethitmine. prolit~, aromatic residues and histidine. 
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_-- _.__. - ..--------- 
KCSidllC i\torn l\f” _.A-- Ai 
CYS 0 0 1 

Residue Type ___.--- 

0.s c c: 
;\SP 0 01 

CYS C.-i c-LH 
.ASP C C? 

CYS N x.711 
ASP C4 C41-I 

CYS CH CJHH 
ASP N N3H 

CYS SG s2 
:\SP CR C4 f-11-1 

-- ASP CG C3 
SER 0 0 I 
SW c C? 

ASP 0111 01 

SER CA C4H 
ASP OK? 01 ~~ 

SCR N N3H 
GLIJ 0 0 1 

SER CR C4HM 
GLlJ C C3 

SER OG OlH 
G1.U C.4 C4H 

SER OGI -=OG 
GLU N N?H 

--.-.--- -..l_l-...-.--~-_-.. 
Tf-f f< 0 0 I 

GLL CK C4H f-1 

THR c C3 
GLll cc; C-if IH 

‘Tf IR c.4 C-if1 
GLU CD C3 

THR N NiH 
GLU OEl 01 

‘IXR CB C-i11 
G1.U OE:! 01 

THR OGI O?H 
LYS 0 01 

THR CGL CJHHH 
LYS c c3 

THR CG 3x2 
LYS CA C4f-I 

--- -- l~-.“l... . 
I\SN 0 01 

LYS N N31-1 

ASN C C3 
LYS CB C-ii-11-l 

ASN c4 C-II-1 
LYS CG Cdl 11-I 

ASN N x.31 f 
L-l’ s CD C4HH 

ASN CR CJHH 
L.YS CF. C4HH 

ASN CG C3 
L.YS NZ N4HHH 

ASN 0131 01 
.4RG 0 01 

MN NIX N.\FlH 
ARG C C3 

GL,N- _.._ o”“---~i---- ARG CL.4 C4H 

GLN C C? 
ARG N N3H 

GLN C,\ CJH 
4RG CD C4HtI 

GLX N NJH 
ARG CG C4lHl-l 

GLN CA C-IHH 
.4RG c 11 C4HH 

GLX CG C-!HH 
ARG NE N3H 

GLN CD -. 

GL?i OEI Xl 

ARG cz ci 
ARG NH1 NlHH 

G1.N NE! N.?IfH 
ARC NH? NiHH 

Td3le 6. I I: Rule set mxd to associate atomic types to individual atoms. Part II, 
polar residues, basic and acidic residues. 
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1 bbp 
kpl 
I ml1 
2LlZZL 

2&P 
2tsx 
4bp2 
6xia 

I cob 
I hoe, 
1 sop 
2ca2 
2ovo 
2tsc 
4cla 
7aat 

lcsc 
iilk 
lsnc 
2cdv 
2rhe 
2wsp 
4enl 
8 abp 

lcse 
1 mba 
1 tp 
3ci2 
kp 
3bh-i 

4icb 
8 3Ctl 

I ctf 
1 mbc 

1 thb 

3es7 
2,sar 
3Chy 

4PQ 
8 dfr 

1 fxd IgcSl 
Is69 lrbp 
I ubq 2alp 
2fcs 2fX2 

2sga 2sic 
3gss 31zm 
5sub 6tmn 
9snt C)Wpi 

Table 6.12: Structure set used in calculntions. This selection of 64 entries -fsom the 
PDR has also been used in the study by Pontius ct al. ( 1996). 



er 7 

umm~ry 

So, what have we achieved in this thesis? We started with a review of different 
methods to calculate volumes and densities of individual atoms in molecular en- 
sernblcs. Since none of the previous methods worked completely satisfactory both 
from the mnthematical as the chemical point of view, WC considered the AWV tes- 
sellation as possible alternative. as proposed in the article by Goede et al. (1997). 

To derive an algorithm to compute AWV cells, we went back to study their geo- 
metric properties and cane ~113 with the surprising result that the hyperbolic and 
elliptic edges of ;1 cell project as circular WCS onto the defining sphere of cell. 
Since circles on a sphere can be handled very conveniently by an algorithm, this 
observation became the very foutldation of the alsorithtns derived in the remainder 
of the thesis. In addition, we gave a new tight loiver hound on the worst-case com- 
plexity of a single AWV three dimensional cell defined by II spheres. This bound 
of @(II*) delnonstrates that AWV cells are significantly different from ordinary 
Voronoi cells, which can attain in three dimensions only a maximum complexity 
of O(ll). 

Because our goal was to del,ise a pmctical solution, we decided to design a ran- 
domized algorithm that would work without eli rnination along the coordinate 
axes. This lead to the theoretical algorithm presented in chapter 3 that used n tvian- 
gulation of convex polytopcs to represent an indivicM AWV cell. This algorithm 
computes one such cell amidst 12 other spheres in expected time O(H” log7r). Since 
WC showed the upper bound of’ O(H’) on the complexity such a cell to be tight, 
this is optimal up to 3 logarithmic factor. Houm~~, the experimentally observed 
behavior of the complexity of these ~011s is linear in H, In this case? this algorithm 
would perform the task in expected time O(7t log' 71). 



Motivated by experitncntal expe,rience. we implemented a slightly simplified ver- 
sion of the algorithm, Besides the core algorithm for computing an analytical rep- 
resentation of an AWV cell, this implement~~tion also includes several pre- and 
post-processing steps. We used controlled floating point arithmetic combined nu- 
meric perturbation techniques to deal with issues of clegenracies and numerical 
round-off errors. As argued by Halperin and Shelton (1997). this is a viable ap- 
proach for applications in molecular biology because the data sets suffer from 
experimental imprecision anyway. All these design decisions were verified in a 
sequence of experiments where we appliecl the irnplcmentation to data sets taken 
from the domain of application. 

Finally, we studied the performance of the AWV method compared to other 
methods for assigning volu~nes and clcnsities to individual atoms and amino acid 
residues of a molecule. As it turned out, the variances of volunxs calculated with 
the AWV tnethod arc almost uniformly lower than those obtained for the Richards’ 
B? the radical planes? or the Voronoi method, These results suggest that indeed the 
AWV method might be the method of choice for this type of calculations. 

On the other hand, several questions have been left open, and we would like to 
indicate some directions of future research: 

1. To our best knowledge, the exact worst-case complexity of the single AWV 
cells in odd dimensions cl >- 5 and the complete AWV dirrgmm for even 
dimensions ~-1 > 2 is still open. The lower bound cor~struction we gave in this 
thesis might suggest that the AWV diagram can achieve a higher complexity 
in even dimensions cl > 2 than is possible for the unwzightcd diagram. 

2. We found it very surprisin, 0 that the area of meshing, something we con- 
sidered as trivial post-processin g in the first place, still lacks a rigorous uri- 

derstanding as soon as the input is more complex than a planar straight line 
graph. Considering the numerous possible applications of meshing algo- 
rithm ranging from numerical mathematics to computer graphics, we be- 
lieve that designing meshing algorithms for non-linear input in non-planar 
domains will remain an interesting and active area of research. 

3. Finally, we think that a detailed account on the packing of side chains in the 
interior of molecular structures using the AWV method might provide new 
and interesting insights into the problem of protein folding and molecular 
recognition. In addition. studies of the packing density of proteins near the 
molecular surface using AWV could pro\‘e useful. 
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