Piecewise Linear Approximation of Bézier-Curves*

Helmut Altt

While geometric objects are often designed and repre-
sented as smooth curves or surfaces, many efficient algo-
rithms (e.g. rendering tools) require their input in piecewise
linear form. Therefore it becomes necessary to efficiently ap-
proximate objects of the first type by objects of the second
type. We will investigate this problem for Bézier-curves in
two or higher dimensions, i.e. parameterized curves of the
form

a(t) = Zn:Bi,n(t)p,', t €10,1],

where po, p1,...pn € IR? are the control points and

Bin(t) = (’Z) H(1 -t

are the Bernstein polynomials. We consider polygonal ap-
proximations C of C with vertices on the curve C. That
is, the vertices are C(to), C(t1),...C(tx) where 0 = to <
t1 < ... < trp = 11is a suitably chosen subdivision of the
unit interval. We analyze the quality of this approximation,
if the subdivision is pre-set (independently of the control
points). In this way, the necessary coefficients B; »(t;) can
be precomputed and stored in a table, and the vertices of the
approximation can be easily retrieved as linear combinations
of the control points.

Observe that C has a parameterization
Ct)=Y_Bint)pi, te[o,1],
i=0

where the B,‘yn’s are piecewise linear approximations of the
Bin with B;n(t;) = Bin(t;) for 1 = 0,1,...n and j =
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0,1,...k (see e.g. Figure 1). More specifically,

Bun(t) = Bun(ty) + (1 — 1) Ponllort) = Prnlly)

ti+1 — ¢

for t € [t;,¢;41]. As a measure of its quality we use the dis-

Figure 1: Piecewise linear approximation 3273 of the Bern-
stein polynomial Bs s

tance function d(C, C’) = max; ||C(t) — C’(t)” This distance
measure is related to the Fréchet-distance between curves
(see [1]), where in addition the minimum is taken over all
possible monotone parameterizations of the curves.

We have
A(C,C) = (Bin(r) = Bin(m)pill = 11y vl
1=0 1=0
for some T € [0,1] and a; = B,‘yn(T)—B,'Vn(T) fori=0,...,n.
Yoy =0,since y " Bin(t) =3 Bin(t)=1for all
t.
Let o = maz;|Bin(t) — B,yn(t)| be the maximum er-

ror in the approximations of the Bernstein polynomials, i.e.
|as| < afori=0,...,n. Let 8; = a;/a for i = 0,...,n. Then



we want an upper bound on

n
all Y Bl
1=0

where |3;| < 1fori=0,..,nand ) B =0.
For a given point set P = {po,p1,...pn}, the set

bzh Pi={> " Aipi | Y A =0, and [\ <1, for all i}

1=0 1=0

has interesting relations to the so-called k-set problem. In
fact, it can be shown that this set is a convex polytope,
whose vertices have a one-to-one correspondence to subsets
of P of cardinality*' [(n+1)/2] that can be separated from
their complement in P by a hyperplane. Moreover, it follows
from the analysis of bzh P that

max{||p|| | p € bzh P} < L(n —21— I)J diam P,

where diam P is the diameter of P.

For an analysis of the factor a (see e.g. [2]), fix some B =
Bi» and some 7,0 < 5 <k —1. Let u € [¢;,t;41] such that
|B(n)
that the derivative B'(u) =

By Taylor expansion

B(t) = B(u) + (t —p)B'(u) + (t —p)*B"(£) (1)

— B(u)| is maximized in this interval, which implies

(B(tj+1) = B(£))/(ti+1 = t5).

for some ¢ between t and p. The linear approximation Bin
this interval can be written as

B(t) = B(u)+ (t —pu)B'(n) . (2)

B(t;) = B(tj) and B(t;+1) = B(tj4+1). Now substitute t;
for t in (1) and (2), and subtract (1) from (2) (similar for
tj+1). This gives us

B(u) = B(p) = (t; = n)*B"(&) = B"(&41)

for some &; and &;41 with ¢; < & < p < &41 < tj41. By
exploiting the fact that one of |t; — p| and |¢;41 — p| does
not exceed (t;41 — t;)/2, the error in y is bounded by

(tiy1 — )

_ 2
(=) max (B 3
2 E€[ty,t 4]

The second derivative of the Bernstein polynomials can be
written as ([3])

Bl”n =n(n — 1)(Bi—2;n—2 — 2Bi_1,n—2 + Bin_2)

which shows that max,¢jo 1] |B"(¢)| < 2n(n —1).
Let us first assume that the ¢;’s are evenly spaced with
distance § = 1/k.

Lemma 1 In the equidistant (in parameter space) approz-
imation with step size & of a Bézier-curve of degree n, the
error 18 bounded by

n—+1

252n(n -1 | diam P,

where P is the set of control points.

*1Note that the cardinality of P is n + 1.

A closer look at (3) suggests a more adaptive step size
which ideally makes the expression in (3) constant. More
precisely, since we have to guarantee the bound for all Bern-
stein polynomials, we have to ensure that

tiv1 —t5\?
( J+1 J) max
2 E€[t5,t41], 0<i<n

1B/ (€)]

stays below some given threshold. So for large values of the
second derivative a small and for small values a large step
size should be used. We analyzed this relationship in more
detail and developed a method for choosing an adaptive se-
quence of breakpoints.

We have run experiments both for equidistant and adap-
tive step size. Here are the results for three representative
curves with the following control point sequences (see Fig-
ures (2 - 4)).

curve 1: (0,0),(1,3),(0,1),(0,2),(4,0),(2,3).
curve 2: (1,1),(2.5,3),(5.5,1),(5.5,3.5),(8,2.5),(10,4.5).
curve 3: (1,1),(2,4.2),(6,4.2),(7, )
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Figure 2: Curve 1.

Table 1 gives for all three curves in the case of 100
equidistant breakpoints a comparison between the bound
on the error in the approximation derived in the analysis
according to the formula in Lemma 1 and the actual value.
We see that our formula is too pessimistic by a factor be-

| || Curve 1 | Curve 2 | Curve 3 |
bound 0.0067 0.0145 0.0018
distance 0.0019 0.0010 0.00032

Table 1: Derived bound and actual distance, 6 = 0.01 .

tween approximately 3.5 and 15. One of the reasons is that
Lemma 1 takes into account only the diameter of the set of
control points, not the actual configuration (an improvement
would be possible if we substitute max{||p|| | p € bzh P} for
the factor [(n + 1)/2] diam P).

Table 2 gives the same information as Table 1 for the
case of adaptive step size.
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Figure 3: Curve 2.

| || Curve 1 | Curve 2 | Curve 3 |

bound 0.00219 | 0.00473 | 0.00109
distance || 0.00070 | 0.00038 | 0.00053

Table 2: Derived bound and actual distance, adaptive sub-
division for k = 100.

Finally, Table 3 gives the result of comparing the per-
formance of equidistant vs. adaptive step size. For Curves
1 and 2 adaptation really pays yielding results nearly three
times as good as the ones for equidistant breakpoints. For
Curve 3 adaptation has a negative effect. The reason is that
Curve 3 is bent more strongly in its middle part where the
adaptive breakpoints are more sparse. However, more im-
portantly, when comparing the first lines of Tables 1 and
2 we can see that the guaranteed upper bound is by a fac-
tor of 2-3 better in the adaptive case. This means that in
our application for a given error tolerance we can choose a
polygonal chain of correspondingly less segments.

[k [ 4 [ 6 [ 8 [ 10 ] 20 [ 40 [ 100 ]
Curvel || 0.47 [ 0.43 ] 0.44 | 0.46 | 0.37 [ 0.37 | 0.36
Curve2 || 0.52 [ 0.46 | 0.43 | 0.41 | 0.38 | 0.37 | 0.36
Curved || 1.22 [ 1.40 | 1.44 | 1.59 | 1.72 | 1.29 | 1.60

Table 3: Error ratio: adaptive / equidistant.
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