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Abstract

We show that there is a constant α > 0 such that, for any set P of n ≥ 5 points in
general position in the plane, a crossing-free geometric graph on P that is chosen
uniformly at random contains, in expectation, at least (1

2 + α)M edges, where M

denotes the number of edges in any triangulation of P . From this we derive (to our
knowledge) the first non-trivial upper bound of the form cn · tr(P ) on the number
of crossing-free geometric graphs on P ; that is, at most a fixed exponential in n

times the number of triangulations of P . (The trivial upper bound of 2M · tr(P ), or
c = 2M/n, follows by taking subsets of edges of each triangulation.) If the convex
hull of P is triangular, then M = 3n − 6, and we obtain c < 7.98.

Upper bounds for the number of crossing-free geometric graphs on planar point
sets have so far applied the trivial 8n factor to the bound for triangulations; we
slightly decrease this bound to O(343.11n).
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1 Introduction

Let P be a finite set of points in the plane. If no three points in P are collinear,
then P is said to be in general position. A geometric graph on P is a graph
with vertex set P whose edges are straight segments connecting corresponding
endpoints. Such a straight-line embedded graph is crossing-free if no pair of its
edges shares any point other than common endpoints. A maximal crossing-
free graph on P is called a triangulation. We are interested in pg(P ), the
number of all crossing-free graphs on P . This quantity never exceeds a fixed
exponential in |P |, a result first established by Ajtai et al. [3] with 1013 as base
of the exponential. We will estimate pg(P ) in terms of tr(P ), the number of
triangulations of P .

Upper bounds for the total number of crossing-free geometric graphs on a
point set P also apply to specific classes of plane graphs: to triangulations,
polygonizations, perfect matchings, and spanning trees, to name just a few.
Yet better upper bounds for these classes are known. For a recent and detailed
list of such results we refer to Aichholzer et al. [2].

In the following we assume that the point set P is fixed and we write
n := n(P ) = |P | for its cardinality, and k := k(P ) for the number of points of
P on the boundary of its convex hull; we assume k ≥ 3. By Euler’s polyhedral
formula any triangulation of P contains exactly M := 3n− k− 3 edges. Since
every crossing-free geometric graph is contained in some triangulation, and
every triangulation has 2M subgraphs, we have pg(P ) ≤ 2M ·tr(P ) ≤ 8n ·tr(P ).

The upper bound is tight in the following example: Consider
a point set with triangular convex hull such that all interior
points lie on a common line containing one of the three extreme
points. Then there is a unique triangulation which has exactly
23n−6 ≈ 8n crossing-free geometric subgraphs; these subgraphs
constitute the set of all crossing-free graphs.

It is therefore surprising that even a small perturbation of the points to
general position causes the ratio between the number of crossing-free graphs
and that of triangulations to drop exponentially: We show that for any set P
of points in general position, pg(P ) ≤ 2γ·M · tr(P ) holds with γ < 1. In order
to obtain this bound we will show in Section 2 that the expected number of
edges in a crossing-free geometric graph on P chosen uniformly at random
can be significantly bounded away from M

2
. In Section 3 we prove via a mean

vs. median argument that crossing-free geometric graphs with many edges
account for a large fraction of all crossing-free graphs. This way we are able
to improve on the pessimistic 2M factor for points in general position.
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2 Lower bound for the expected number of edges

For a geometric graph G on the point set P let e(G) = |E(G)|. We define a
directed graph D = D(P ) on the set of all crossing-free geometric graphs on
P with a directed arc from G to H iff E(G) ⊆ E(H) and e(G) = e(H) − 1.
Note that the empty graph has

(
n
2

)
outgoing but 0 incoming arcs, while any

triangulation of P has 0 outgoing but M incoming arcs. By E
[
e(G)

]
we

denote the expected number of edges in a crossing-free geometric graph chosen
uniformly at random.

Proposition 2.1 M
2
≤ E

[
e(G)

]≤ M.

Proof. Clearly, e(G) ≤ M for any graph, implying the upper bound. Denote
the in- and out-degree of G in D by deg−(G) and deg+(G). Notice that
E
[
e(G)

]
= E

[
deg−(G)

]
= E

[
deg+(G)

]
, where the first identity holds since

e(G) = deg−(G) for any graph G, and the second equality is true since both
sides represent the number of arcs divided by the number of vertices of D.
Now, with deg(G) := deg−(G) + deg+(G) and by linearity of expectation

2 · E[
e(G)

]
= E

[
deg−(G)

]
+ E

[
deg+(G)

]
= E

[
deg(G)

]≥ M, (1)

which gives the first inequality of the proposition. Why does the inequality in
(1) hold? Consider some triangulation T with M edges containing the graph
G. Then an edge e ∈ E(T ) either corresponds to an incoming arc of G if
e ∈ E(G), or to an outgoing arc of G if e �∈ E(G). Thus, deg(G) ≥ M .

If P allows for more than one triangulation (which holds for all point sets
in general position with n ≥ 5) then

(
n
2

)
, the degree of the empty graph in D,

is strictly larger than M , hence E
[
deg(G)

]
> M . We will actually show that

there is a constant α > 0 such that E
[
e(G)

]≥ (1
2

+ α)M , for n large enough.

Let G be a crossing-free graph on P and let e �∈ E(G) be an edge corre-
sponding to an outgoing arc of G, hence adding e to G again yields a crossing-
free graph. If every triangulation containing G also contains e, then we call e
forced for G. Otherwise, we call edge e optional for G. For instance, if n = 4
and k = 3 then every edge not in G is forced. If n = k = 4 and G consists of
the four edges of the convex hull then there is no forced edge, but two optional
edges. Edges from the convex hull missing in G are always forced for G.

Arcs in D are labeled forced or optional to match their corresponding edge.
Hence, for a graph G we may define its forced degree, fdeg(G), and its optional

degree, odeg(G). We write fdeg+(G) and odeg+(G) for the corresponding
forced and optional out-degree, respectively.
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Lemma 2.2 Adding to a crossing-free geometric graph G the set of all its

forced edges results in a crossing-free geometric graph G without forced edges.

The straightforward proof is omitted. Let G be as in Lemma 2.2 and let
u(G) := M−e(G), the number of edges we need to add to G in order to obtain
a triangulation. Then by definition M − u(G) = e(G) = e(G) + fdeg+(G) =
deg−(G) + fdeg+(G). With Equation (1) in mind we are interested in the
expected value of excess(G) := deg(G) − M which we can rewrite as

excess(G) = deg+(G) + deg−(G) − M = odeg+(G) − u(G), (2)

using deg+(G) = fdeg+(G) + odeg+(G). We want to show that odeg+(G) is
large compared to u(G) = u(G). Note that if e corresponds to an outgoing
arc of G in D then any triangulation containing G but not e must necessarily
contain an edge f that crosses e, otherwise we could add e to the triangulation,
contradicting its maximality. Thus, also f corresponds to an outgoing arc of
G in D and clearly both arcs, e and f , are optional for G. This suggests that
one can find at least 2u(G) optional outgoing arcs of G.

Establishing this takes some care, since two edges e1, e2, corresponding to
outgoing arcs of G, could be crossed by a single edge f in a triangulation
containing G, requiring us to find a fourth optional outgoing arc of G. We
repeatedly apply a result by Aichholzer et al. [1] stating that any two trian-
gulations on the same point set have a perfect matching of their edges such
that matched edges either cross or are identical.

Lemma 2.3 For any crossing-free graph G we have odeg+(G) ≥ 2u(G).

Proof. We construct a matching C on the set of optional outgoing arcs of
G in D such that |C| = u(G). Let G be the graph from Lemma 2.2, T1 a
triangulation containing G and define E1 := E(T1) \ E(G). We now match
edges in E1 (a set of u(G) optional edges) with other edges optional for G.
Start with C := ∅, and for i ≥ 1 assume that Ei := E(T1)∩ . . .∩E(Ti) \E(G)
is not empty, where Tj, for 1 ≤ j ≤ i, are triangulations constructed so far.
Let e ∈ Ei. Since e is not forced for G there is an edge f crossing e which is
not forced for G. Let Ti+1 be a triangulation containing G and f . The afore-
mentioned result of [1] gives a perfect matching between E(T1) and E(Ti+1).
Consider the matching partners of Ei \ E(Ti+1) ⊂ E(T1). These are edges
of E(Ti+1) \

⋃i
j=1 E(Tj), since they cross edges of Ei ⊂ ⋂i

j=1 E(Tj). These
(crossing) pairs correspond to optional outgoing arcs of G. By construction
these matching pairs are disjoint from all pairs in C, hence we may safely add
them to C. In particular, all edges in Ei that cross f will be added to C in
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some matching pair. Now, we continue with Ei+1 unless it is empty. Note that
e ∈ Ei \ E(Ti+1) which implies that |Ei+1| < |Ei|. Furthermore, |Ei| − |Ei+1|
is exactly the number by which |C| increases in the i-th round. Thus, the
process terminates eventually with a matching of size |E1| = u(G).

Lemma 2.4 For a crossing-free graph G it holds that odeg(G) ≥ n−4
2

+u(G).

Proof. Extend G to a triangulation T with E(G) ⊆ E(T ) and let e ∈ E(T )
be a flippable edge, i.e., an optional incoming arc of T in D. If e ∈ E(G) then
e adds to odeg(G) as (optional) incoming arc of G in D. If e �∈ E(G) then
e adds to odeg(G) as (optional) outgoing arc of G. Hurtado et al. [5] proved
that any triangulation on n points in general position contains at least n−4

2

flippable edges. Moreover, we know by Lemma 2.3 that G has at least 2u(G)
optional outgoing edges. Since at most u(G) of them are contained in T the
remaining edges clearly add to odeg(G).

With a similar argument as in the proof of Proposition 2.1 we find that
E
[
excess(G)

]≥ 1
2

E
[
odeg+(G)

]
= 1

4
E
[
odeg(G)

]≥ n−4
8

, using (2) together with
Lemma 2.3 and Lemma 2.4. Unfortunately, we were not able to give a lower
bound for E

[
u(G)

]
other than the trivial one, E

[
u(G)

]≥ 0.
Note that E

[
e(G)

]
= 1

2
· (M + E

[
excess(G)

])
due to Equation (1).

Theorem 2.5 For a set P of n ≥ 3 points in general position in the plane

with k points on the boundary of the convex hull, M := 3n − k − 3, it holds

E
[
e(G)

]≥ M
2

+ n−4
16

= (25n − 8k − 28)/16. (3)

3 Upper bound for the number of crossing-free graphs

It remains to show how the lower bound from Equation (3) yields an upper
bound on the total number of crossing-free graphs a set of n points can have.
Let H(x) := −x log2 x−(1−x) log2(1−x) denote the binary entropy function.

Theorem 3.1 Let P be a set of n ≥ 3 points in general position in the plane

with k points on the boundary of the convex hull. Define M := 3n− k− 3 and

μ := E
[
e(G)

]
. Then pg(P ) ≤ M · 2H( μ

M
)M · tr(P ).

Proof. Markov’s inequality for the random variable M − e(G) ≥ 0 gives

P
[
e(G) ≥ μ

]
= 1 − P

[
M − e(G) ≥ M − (μ − 1)

] ≥ 1 − E
[
M − e(G)

]
M − (μ − 1)

≥ 1

M
.

Hence, crossing-free graphs with at least μ edges form a large fraction of all
crossing-free graphs. On the other hand, since μ ≥ M

2
by Proposition 2.1, we
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can upper bound the number of crossing-free graphs with at least μ edges by

M∑
m=μ

(
M

m

)
·tr(P ) =

M(1− μ

M
)∑

�=0

(
M

�

)
·tr(P ) ≤ 2H(1− μ

M
)M ·tr(P ) = 2H( μ

M
)M ·tr(P ).

Now, lower and upper bound together yield 1
M

· pg(P ) ≤ 2H( μ

M
)M · tr(P ).

Note that the binary entropy function is strictly decreasing on the interval
[1/2, 1[, thus the lower bound μ

M
≥ 1

2
+ n−4

16M
from Equation (3) comes in quite

handy. Theorem 3.1 gives a non-trivial upper bound for all point sets P with
n ≥ 5 since then H( μ

M
) < 1.

A triangular convex hull of the point set P maximizes H( μ
M

), hence we find

that pg(P ) = O
(
n 2H( 25

48
)3n

) · tr(P ) = O (7.9792n) · tr(P ). Sharir and Welzl [6]
showed that there are at most 43n triangulations on a set of n points. Hence,
n points in the plane allow for at most O(343.11n) crossing-free graphs.

Corollary 3.2 For any set P of n points in general position in the plane,

pg(P ) = O (7.98n) · tr(P ) and pg(P ) = O(343.11n).

For the other extreme case of a set P of n points in convex position, i.e.,
when k = n, we obtain that pg(P )

tr(P )
is at most O

(
n 2H( 17

32
)2n

)
= O (3.9844n).

This can be slightly improved to O
(
n 2H( 9

16
)2n

)
= O (3.9379n), since any tri-

angulation of the convex n-gon has n − 3 flippable edges. However, the exact
value is already known to be Θ

(
(3

2
+
√

2)n
)

where 3
2

+
√

2 ≈ 2.9142, cf. [4].
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