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Abstract

We show that a set of n points in the plane has at most O(10.05n) perfect matchings
with crossing-free straight-line embedding. The expected number of perfect crossing-
free matchings of a set of n points drawn i.i.d. from an arbitrary distribution in the
plane is at most O(9.24n).

Several related bounds are derived: (a) The number of all (not necessarily per-
fect) crossing-free matchings is at most O(10.43n). (b) The number of red-blue perfect
crossing-free matchings (where the points are colored red or blue, and each edge of the
matching must connect a red point with a blue point) is at most O(7.61n). (c) The
number of left-right perfect crossing-free matchings (where the points are designated as
left or as right endpoints of the matching edges) is at most O(5.38n). (d) The number
of perfect crossing-free matchings across a line (where all the matching edges must cross
a fixed halving line of the set) is at most 4n.

These bounds are employed to infer that a set of n points in the plane has at most
O(86.81n) crossing-free spanning cycles (simple polygonizations), and at most O(12.24n)
crossing-free partitions (these are partitions of the point set, so that the convex hulls of
the individual parts are pairwise disjoint).

We also derive lower bounds for some of these quantities.

Keywords: Crossing-free geometric graphs, counting, simple polygonizations, crossing-
free matchings, crossing-free partitions.
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1 Introduction

Let P be a set of n points in the plane. A geometric graph on P is a graph that has P as
its vertex set and its edges are drawn as straight segments connecting the corresponding
pairs of points. The graph is crossing-free if no pair of its edges cross each other, i.e., any
two edges are not allowed to share any points other than common endpoints. Therefore,
these are planar graphs with a plane embedding given by this specific drawing. We are
interested in the number of crossing-free geometric graphs on P of several special types.
Specifically, we consider the numbers tr(P ), of triangulations (i.e., maximal crossing-free
graphs), pm(P ), of crossing-free perfect matchings, sc(P ), of crossing-free spanning cycles,
and, cfp(P ), of crossing-free partitions1 (these are partitions of P , so that the convex hulls of
the individual parts are pairwise disjoint). We are primarily concerned with upper bounds
for the numbers listed above in terms of n.

Figure 1: 6 points with 12 crossing-free perfect matchings, the maximum possible number; see [3]
for the maximum numbers for up to ten points: 3 for 4 points, 12 for 6, 56 for 8, and 311 for 10.

History. This problem goes back to Newborn and Moser [32] in 1980 who ask for the
maximal possible number of crossing-free spanning cycles in a set of n points2—they provide
an upper bound of 2 · 6n−2

⌊
n
2

⌋
! but conjecture that the right bound should be of the form

cn for some constant c. This fact was established in 1982 by Ajtai, Chvátal, Newborn, and
Szemerédi [4], who show3 that there are at most 1013n crossing-free graphs on n points.
For motivation they mention—besides [32]—a question of David Avis about the maximum
number of triangulations a set of n points can have.

Further developments were mainly concerned with deriving progressively better upper
bounds for the number of triangulations4 [38, 17, 35], so far culminating in a 59n upper
bound by Santos and Seidel [34] in 2003.5 This compares to Ω(8.48n), the largest known
number of triangulations for a set of n points, recently derived by Aichholzer et al. [1]; this
improves an earlier lower bound of 8n/poly(n) given by Garćıa et al. [21]. (We let “poly(n)”
denote a polynomial factor in n.)

1Our research was triggered by Marc van Kreveld asking about the number of crossing-free partitions,
(see [10] for a motivation from geographic information systems) and, in the same week, by Michael Hoffmann
and Yoshio Okamoto asking about the number of crossing-free spanning paths of a point set (motivated by
their quest for good fixed parameter algorithms for the planar Euclidean Traveling Salesman Problem in the
presence of a fixed number of inner points [14]); see also [23].

2In fact, Akl’s work [6] appeared earlier, but it already refers to the manuscript by Newborn and Moser,
and improves a lower bound (on the maximal number of crossing-free spanning cycles) of theirs.

3This paper is famous for its Crossing Lemma, proved in preparation of the singly exponential bound.
The lemma gives an upper bound on the number of edges a geometric graph with a given number of crossings
can have.

4Interest was also motivated by the obviously related question (from geometric modeling [38]) of how
many bits it takes to encode a triangulation of a point set.

5Recently, this bound was improved to 43n in [37]. However, the bounds on spanning cycles and crossing-
free partitions we derive here via matchings are still better than the bounds obtained via this new triangu-
lation bound.
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Since every crossing-free graph is contained in some triangulation, and a triangulation
has at most 3n−6 edges, an upper bound of cn for the number of triangulations immediately
yields an upper bound of 23n−6cn < (8c)n for the number of all crossing-free graphs on a set
of n points. Thus, with c ≤ 59, this number is at most 472n. To the best of our knowledge,
all upper bounds derived so far on the number of crossing-free graphs of various types are
derived via a bound on the number of triangulations, albeit in more refined ways.

One such approach is to exploit the fact that graphs of certain specific types have a
fixed number of edges. For example, since a perfect matching has n

2 edges, we readily
obtain pm(P ) ≤

(3n−6
n/2

)
tr(P ) < 227.98n [18]. A short historical account of bounds on sc(P ),

with references including [6, 16, 21, 22, 24, 32, 33], can be found at the web site [15] (see also
[12, Section 8.4, Problem 8]). The best bound published so far is 3.37n · tr(P ) ≤ 198.83n,
which relies on a bound of 3.37n on the number of cycles in a planar graph [7].6

Crossing-free partitions fit into the picture, since every such

Figure 2: A crossing-free
partition and its graph.

partition can be uniquely identified with the graph of edges of
the convex hulls of the individual parts—these edges form a
crossing-free geometric graph of at most n edges; see Figure 2.

The situation is better understood for special configurations,
for example for P a set of n points in convex position7 (namely,
the vertex set of a convex n-gon), where the Catalan numbers
Cm := 1

m+1

(2m
m

)
= Θ(m−3/24m), m ∈ N0, play a prominent role.

In convex position tr(P ) = Cn−2 (the Euler-Segner problem, cf.
[39, page 212] for a discussion of its history), pm(P ) = Cn/2 for
n even (due to [20], cf. [39]), sc(P ) = 1, and cfp(P ) = Cn ([9]).

Crossing-free partitions for point sets in convex position constitute a well-established
notion because of its many connections to other problems, probably starting with “planar
rhyme schemes” in Becker’s note [9], cf. [39, Solution to 6.19pp]. The general case was
considered by [13] (under the name of pairwise linearly separable partitions) for clustering
algorithms. They show that the number of partitions into k parts is O(n6k−12) for k
constant.

Under the assumption of general posi-

Figure 3: 6 points in convex position with C3 = 5
crossing-free perfect matchings.

tion (no three points on a common line) it
is known [21] that the number of crossing-
free perfect matchings on a set of fixed size
is minimized when the set is in convex posi-
tion.8 With little surprise, the same holds
for spanning cycles, but it does not hold for triangulations [2, 25, 30]. For crossing-free
partitions, this is an open question.

6In the course of our investigations, we showed that a graph with m edges and n vertices can have at
most

`
m
n

´n
cycles; hence, a planar graph can have at most 3n cycles. Then Raimund Seidel provided us

with an argument, based on linear algebra, that a planar graph can have at most
√

6
n

< 2.45n spanning
cycles.

7For another example, it can be shown that the number of triangulations is at most 23mn−m−n for an
m × n grid (with (m + 1)(n + 1) points) [5] (cf. also [26]).

8Recently, Aichholzer et al. [1] showed that any family of acyclic graphs has the minimal number of
crossing-free embeddings on a fixed point set when the set is in convex position.
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New results. The main results of this paper are the following upper bounds, for a set P
of n points in the plane: pm(P ) = O(10.05n), sc(P ) = O(86.81n), and cfp(P ) = O(12.24n).
Also, the expected number of perfect crossing-free matchings of a set of n points drawn i.i.d.
from any distribution in the plane (as long as two random points coincide with probability
0) is at most O(9.24n).

The new bound on the number of crossing-free perfect matchings is derived by an in-
ductive technique that we have adapted from the method that Santos and Seidel [34] used
for triangulations (the adaption however is far from obvious). We then go on to derive
several improved bounds on the number of crossing-free matchings of various special types.
Specifically, we show:

(a) The number of all (not necessarily perfect) crossing-free matchings is at most O(10.43n).

(b) The number of red-blue perfect crossing-free matchings (where half of the points are
colored red and half blue, and each edge of the matching must connect a red point with a
blue point) is at most O(7.61n).

(c) The number of left-right perfect crossing-free matchings (where the points are designated
as left or as right endpoints of the matching edges) is at most O(5.38n).

(d) The number of perfect crossing-free matchings across a line (where all the matching
edges must cross a fixed halving line of the set) is at most 4n.

Finally, we derive upper bounds for the numbers of crossing-free spanning cycles and
crossing-free partitions of P in terms of the number of certain types of matchings of certain
point sets P ′ that are constructed from P . This yields the bounds O(86.81n) for the number
of crossing-free cycles, and O(12.24n) for the number of crossing-free partitions.

We summarize the state of affairs in Table 1, including lower bounds which we will
derive in Section 6, many of which use the double-chain configuration from [21].

tr pm sc cfp ma rbpm lrpm alpm rdpm

∀P :≤ 59 [34] 10.05 86.81 12.24 10.43 7.61 5.38 4 9.24
∃P :≥ 8.48 [1] 3 [21] 4.64 [21] 5.23 4 2.23 2 2 3

Table 1: Entries c in the upper bound row should be read as O(cn), and entries c in the lower bound
row should be read as Ω(cn/poly(n)), where n := |P |. “ma” stands for all (not necessarily perfect)
crossing-free matchings, “rbpm” for perfect red-blue crossing-free matchings, “lrpm” for perfect left-
right crossing-free matchings, “alpm” for perfect crossing-free matchings across a line, and “rdpm”
for the expected number of perfect crossing-free matchings of a set of i.i.d. points.

This paper shows that significantly better bounds can be derived for matchings than
those known earlier for other types of graphs, and, moreover, that matchings are a good
basis for deriving bounds for crossing-free partitions and spanning cycles—as opposed to
the situation before, where such bounds have always relied on triangulations.
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2 Matchings: The Setup and a Recurrence

Let P be a set of n points in the plane in general position, no three on a line, no two on
a vertical line. It is easy to see that this is no constraint when it comes to upper bounds
on pm(P ). A crossing-free matching is a collection of pairwise disjoint segments whose
endpoints belong to P . Given such a matching M , each point of P is either matched, if it
is an endpoint of a segment of M , or isolated, otherwise. The number of matched points
is clearly always even. If 2m points are matched and s points are isolated, we call M a
crossing-free m-matching or (m, s)-matching. We have n = 2m + s.

We denote by mam(P ) the number of crossing-free matchings of P with m segments (for
m ∈ R—this number is clearly 0 unless m ∈ {0, 1, . . . ,

⌊
n
2

⌋
}), and by ma(P ) the number of all

crossing-free matchings of P (i.e., ma(P ) =
∑

m mam(P )). Recall that pm(P ) = man/2(P ).

Let M be a crossing-free (m, s)-matching on a set P of n = 2m + s points, as above.
The degree d(p) of a point p ∈ P in M is defined as follows. It is 0 if p is isolated in M .
Otherwise, if p is a left (resp., right) endpoint of a segment of M , d(p) is equal to the
number of visible left (resp., right) endpoints of other segments of M , plus the number of
visible isolated points; “visible” means vertically visible from the relative interior of the
segment of M that has p as an endpoint. Thus p and the other endpoint of the segment
are not counted in d(p). See Figure 4 for an illustration.

Each left (resp., right) endpoint u in M can contribute at
u

v

w
z

Figure 4: Degrees in a
matching: d(u) = 2, d(v) = 5,
d(w) = 1, d(z) = 2.

most 2 to the degrees of other points: 1 to each of the left
(resp., right) endpoints of the segments lying vertically above
and below u, if there exist such segments. Similarly, each
isolated point u can contribute at most 4 to the degrees of
other points: 1 to each of the endpoints of the segments lying
vertically above and below u. It follows that

∑

p∈P

d(p) ≤ 4m + 4s.

There are many segments ready for removal. The idea is to remove segments inci-
dent to points of low degree in an (m, s)-matching (points of degree at most 3 or at most 4,
to be specific). We will show that there are many such points at our disposal. Then, in the
next step, we show that segments with an endpoint of low degree can be reinserted in not
too many ways. These two facts will be combined to derive a recurrence for the matching
count.

For each integer i ∈ N0, let vi = vi(M) denote the number of matched points of P with
degree i in M . Hence,

∑
i≥0 vi = 2m.

Lemma 2.1 Let n,m, s ∈ N0, with n = 2m + s. In every (m, s)-matching of any set of n
points, we have

2n ≤ 4v0 + 3v1 + 2v2 + v3 + 6s , and (1)
3n ≤ 5v0 + 4v1 + 3v2 + 2v3 + v4 + 7s . (2)
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Proof. Let P be the underlying point set. We have
∑

i≥0

i vi =
∑

p∈P

d(p) ≤ 4s + 4m = 4s +
∑

i≥0

2vi .

Therefore, 0 ≤ 4s +
∑

i≥0(2 − i)vi. For κ ∈ R+, we add κ times n = s +
∑

i≥0 vi to both
sides to get

κn ≤ (4 + κ)s +
∑

i≥0

(2 + κ− i)vi ≤ (4 + κ)s +
∑

0≤i<2+κ

(2 + κ− i)vi . (3)

We specialize9 to κ = 2 for assertion (1) and κ = 3 for (2).

There are not too many ways of inserting a segment. Fix some p ∈ P and let
M be a crossing-free matching which leaves p isolated. Now we match p with some other
isolated point such that the overall matching continues to be crossing-free. For i ∈ N0, let
hi = hi(p, P,M) be the number of ways that can be done so that p has degree i after its
insertion.

Lemma 2.2 4h0 + 3h1 + 2h2 + h3 ≤ 24 , and (4)
5h0 + 4h1 + 3h2 + 2h3 + h4 ≤ 48 . (5)

Proof. Let "i = "i(p, P,M) be the number of ways we can match the point p as a left
endpoint of degree i. First, we claim that "0 ∈ {0, 1}.

To show this, form the vertical decomposition of M by drawing a vertical segment up
and down from each (matched or isolated) point of P \{p}, and extend these segments until
they meet an edge of M , or else, all the way to infinity; see Figure 5 for an illustration of
such a decomposition. We call these vertical segments walls in order to distinguish them
from the segments in the matching.

We obtain a decomposition of the plane into vertical trape-

p v
τ

Figure 5: Inserting a segment
at p; d(p) = 1 after insertion.

zoids. Let τ be the trapezoid containing p (assuming general
position, p lies in the interior of τ). See Figure 5.

We move from τ to the right through vertical walls to
adjacent trapezoids until we reach a vertical wall that is de-
termined by a point v that is either a left endpoint or an
isolated point (if at all—we may make our way to infinity
when p cannot be matched as a left endpoint to any point, in
which case "i = 0 for all i).

Note that up to that point there was always a unique
choice for the next trapezoid to enter. Every crossing-free segment with p as its left endpoint
will have to go through all of these trapezoids. It connects either to v (which can happen
only if v is isolated), or crosses the vertical wall up or down from v. The former case yields
a segment that gives p degree 0. In the latter case, v will contribute 1 to the degree of p.
So pv, if an option, is the only possible segment that lets p have degree 0 as a left endpoint.
(pv will not be an option when it crosses some segment, or when v is a left endpoint.)

9We list here explicitly the two values that lead to the best results in the further derivations, although
at this point it clearly looks rather arbitrary.
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We will return to this set-up when we consider degrees ≥ 1, in which case v acts as a
bifurcation point. Before doing so, we first introduce a function f . It maps every nonnegative
real vector (λ0,λ1, . . . ,λk) of arbitrary length k + 1 ∈ N to the maximum possible value10

the expression
λ0"0 + λ1"1 + · · · + λk"k (6)

can attain (for any isolated point in any matching of any finite point set of any size). We
have already shown that f(λ) ≤ λ for λ ∈ R+

0 . We claim that for all (λ0,λ1, . . . ,λk) ∈
(R+

0 )k+1, with k ≥ 1, we have

f(λ0,λ1, . . . ,λk) ≤ max{λ0 + f(λ1, . . . ,λk), 2f(λ1, . . . ,λk)} . (7)

Assuming (7) has been established, we can conclude that f(1) ≤ 1, f(2, 1) ≤ 3, f(3, 2, 1) ≤
6, and f(4, 3, 2, 1) ≤ 12; that is11, 4"0 + 3"1 + 2"2 + "3 ≤ 12 and the first inequality of the
lemma follows, since the same bound clearly holds for the case when p is a right endpoint.
The second inequality follows similarly from f(5, 4, 3, 2, 1) ≤ 24.

So it remains to prove (7). Consider a constellation with a point p that realizes the
value of f(λ0,λ1, . . . ,λk). We return to the set-up considered above, where we have traced
a unique sequence of trapezoids from p to the right, till we encountered the first bifurcation
point v (if v does not exist then all "i vanish).

Case 1: v is isolated. We know that λ0"0 ≤ λ0. If we remove v from the point set, then
every possible crossing-free segment emanating from p to its right has its degree decreased
by 1. Therefore, λ1"1 + · · · + λk"k ≤ f(λ1, . . . ,λk), so the expression (6) cannot exceed
λ0 + f(λ1, . . . ,λk) in this case.

Case 2: v is a matched left endpoint. Then λ0"0 = 0 (that is, we cannot connect p to
v). Possible crossing-free segments with p as a left endpoint are discriminated according
to whether they pass above or below v. We first concentrate on the segments that pass
above v; we call them relevant segments (emanating from p). Let "′i be the number of
relevant segments that give p degree i. We carefully remove isolated points from P \ {p}
and segments with their endpoints from the matching M (eventually also the segment of
which v is a left endpoint), so that in the end all relevant segments are still available and
each one, if inserted, makes the degree of p exactly 1 unit smaller than its original value
(this deletion process may create new possibilities for segments from p). That will show
λ1"′1 + · · · + λk"′k ≤ f(λ1, . . . ,λk). The same will apply to segments that pass below v,
using a symmetric argument, which gives the bound of 2f(λ1, . . . ,λk) for (6) in this second
case.

The removal process is performed as follows. We define a relation ≺ on the set whose
elements are the edges of M and the singleton sets formed by the isolated points of P \{p}:
a ≺ b if a point a′ ∈ a is vertically visible from a point b′ ∈ b, with a′ below b′. As is well
known (cf. [19, Lemma 11.4]), ≺ is acyclic. Let ≺+ denote the transitive closure of ≺, and
let ≺∗ denote the transitive reflexive closure of ≺.

Let e be the segment with v as its left endpoint, and consider a minimal element a with
a ≺+ e. Such an element exists, unless e itself is a minimal element with respect to ≺.

10A priori, this value could be infinite.
11Note that !i ≤ 2i for each i ≥ 0 (which can be shown to be tight); this only yields a bound of 26 for the

linear combination in question. Moreover,
Pk

i=0 !i ≤ 2k (which again is tight), but this only improves the
bound to 15, still short of what we need.
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a is a singleton: So it consists of an isolated point; with abuse of notation we also denote by
a the isolated point itself. a cannot be a point to which p can connect with a relevant edge.
Indeed, if this were the case, we add that edge e′ = pa and modify ≺ to include e′ too; more
precisely, any pair in ≺ that involves a is replaced by a corresponding pair involving e′, and
new pairs involving e′ are added (clearly, the relation remains acyclic and all pairs related
under ≺+ continue to be so related after e′ is included and replaces a). See Figure 6(a).
We have e ≺ e′ (since, by assumption, the left endpoint v of e is vertically visible below
e′), and e′ ≺+ e (since the right endpoint a of e′ satisfies a ≺+ e)—a contradiction. With a
similar reasoning we can rule out the possibility that a contributes to the degree of p when
matched via a relevant edge pq. Indeed, if this were the case, let e′′ be the segment directly
above a, which is the first link in the chain that gives a ≺+ e, i.e., a ≺ e′′ ≺∗ e (e′′ must
exist since a ≺+ e). After adding pq with a contributing to its degree, we have either a ≺ pq
and pq ≺ e′′ (see Figure 6(b)), or we have pq ≺ a (see Figure 6(c)). In the former case, we
have a ≺ pq ≺ e′′ ≺∗ e ≺ pq—contradicting the acyclicity of ≺. In the latter case, we have
pq ≺ a ≺+ e ≺ pq, again a contradiction. So if we remove a, then all relevant edges from
p remain in the game and the degree of each of them (i.e., the degree of p that the edge
induces when inserted) does not change.

(a)

ap

v

e

e′ p

v

e

(b)

q

a

e′′

p

q
a

v
e

e′′

(c)

Figure 6: (a) The point a cannot be connected to p via a relevant edge. (b,c) a cannot contribute
from below (in (b)) or from above (in (c)) to the degree of p when a relevant edge pq is inserted.

a is an edge: It cannot obstruct any isolated point ora

q

p
v

e

Figure 7: Edge a cannot ob-
struct a point from contributing
from above to the degree of p when
a relevant edge pq is inserted.

left endpoint below it from contributing to the degree of
a relevant edge pq above v (because a is minimal with
respect to ≺). If a obstructs a contribution to a relevant
edge pq from above, then we add pq, thus pq ≺ a which,
together with a ≺+ e and e ≺ pq, contradicts the acyclic-
ity of ≺. See Figure 7. Again, we can remove a without
any changes to relevant possible edges from p.

We keep successively removing elements until e is
minimal with respect to ≺. Note that so far all the relevant edges from p are still pos-
sible, and the degree of p that any of them induces when inserted has not changed.

Now we remove e with its endpoints. This cannot clear the way for any new contribution
to the degree of a relevant edge. In fact, any such degree decreases by exactly 1 because v
disappears. The claim is shown, and the proof of the lemma is completed.
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Deriving a recurrence.

Lemma 2.3 Let n,m ∈ N0, such that m ≤ n
2 and s := n−2m. For every set P of n points,

we have

mam(P ) ≤






12(s+2)
n−3s mam−1(P ) if s < n

3 , and
16(s+2)
n−7s/3 mam−1(P ) if s < 3n

7 .

Let us note right away that the first inequality supersedes the second for s < n
5 (i.e. m > 2n

5 ),
while the second one is superior for s > n

5 .

Proof. Fix the set P , and let X and Y be the sets of all crossing-free m-matchings and
(m − 1)-matchings, respectively, in P .

Let us concentrate on the first inequality. We define an edge-labeled bipartite graph G
on X

.
∪ Y as follows: Given an m-matching M , if p is an endpoint of a segment e ∈ M

and d(p) ≤ 3, then we connect M ∈ X to the (m − 1)-matching M \ {e} ∈Y with an edge
labeled (p, d(p)); d(p) is the degree label of the edge. Note that M and M \ {e} can be
connected by two (differently labeled) edges, if both endpoints of e have degree at most 3.

For 0 ≤ i ≤ 3, let xi denote the number of edges in G with degree label i. We have

(2n − 6s) |X |︸︷︷︸
mam(P )

≤ 4x0 + 3x1 + 2x2 + x3 ≤ 24(s + 2) |Y|︸︷︷︸
mam−1(P )

.

The first inequality is a consequence of inequality (1) of Lemma 2.1. The second inequality
is implied by inequality (4) in Lemma 2.2, as follows. For a fixed (m − 1)-matching M ′

in P , consider an edge of G that is incident to M ′ and is labeled by (p, i) (if there is such
an edge). Then p must be one of the s + 2 isolated points of P (with respect to M ′), and
there is a way to connect p to another isolated point in a crossing-free manner, so that
p has degree i in the new matching. Hence, the contribution by p and M ′ to the sum
4x0 +3x1 +2x2 +x3 is at most 24, by inequality (4) in Lemma 2.2, and the right inequality
follows. The combination of both inequalities yields the second inequality in (8).

By considering endpoints up to degree 4 (instead of 3), we get the second inequality in
an analogous fashion (with the help of inequality (2) in Lemma 2.1 and inequality (5) in
Lemma 2.2).

For m,n ∈ N0, let mam(n) denote the maximum number of crossing-free m-matchings
a set of n points can have.

Lemma 2.4 Let s,m, n ∈ N0, with n = 2m + s. We have

ma0(0) = 1,

mam(n) ≤






n
s mam(n − 1), for s ≥ 1,
12(s+2)
n−3s mam−1(n), for s < n

3 , and
16(s+2)
n−7s/3 mam−1(n), for s < 3n

7 .

(8)

Proof. ma0(0) = 1 is trivial.
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The first of the three inequalities in (8) is implied by

s · mam(P ) =
∑

p∈P

mam(P \ {p}) ≤ n · mam(n − 1) ,

for any set P of n points. The second and third inequality follow from Lemma 2.3.

3 Solving a Recurrence

We derive an upper bound for a function

G ≡ Gλ,µ : N2
0 → R+

,

for a pair of parameters λ, µ ∈ R+, µ ≥ 1, which satisfies

G(0, 0) = 1,

G(m,n) ≤
{ n

s G(m,n − 1) , for s ≥ 1, and
λ(s+2)
n−µs G(m − 1, n) , for s < n

µ ,
(9)

with the convention s := n − 2m.

The recurrence in (8) implies that an upper bound on G12,3(m,n) serves also as an
upper bound for mam(n), and the same holds for G16,7/3(m,n). We will see how to best
combine the two parameter pairs, to obtain even better bounds for mam(n). Later, we will
encounter other instances of this recurrence, with other values of λ and µ.

We normalize by dividing by λmµn−m. Then (9) becomes

G(m,n)
λmµn−m

≤






n
µs

G(m,n−1)
λmµn−1−m , for s ≥ 1, and

µ(s+2)
n−µs

G(m−1,n)
λm−1µn−m+1 , for s < n

µ .

We set H(m,n) = Hµ(m,n) := G(m,n)
λmµn−m . Therefore, still with the convention s := n − 2m

and the assumption µ ≥ 1, we have

H(0, 0) = 1,

H(m,n) ≤
{ n

µs H(m,n − 1) , for s ≥ 1, and
µ(s+2)
n−µs H(m − 1, n) , for s < n

µ .
(10)

We note that this recurrence depends only on µ.

Lemma 3.1 Let m,n ∈ N0, with m ≤ n
2 . Then H(m,n) ≤

(n
m

)
.

Proof. H(0, 0) = 1 ≤
(0
0

)
forms the basis of a proof by induction on n and m. For all

n ∈ N0, H(0, n) ≤ µ−n ≤ 1 =
(n
0

)
follows, since µ ≥ 1.

10



Let 1 ≤ m ≤ n
2 . If m ≤ n− µs then s ≤ n−m

µ < n
µ . Hence, the second inequality in (10)

can be applied, after which the first inequality can be applied. Hence,

H(m,n) ≤ µ(s + 2)
n − µs

H(m − 1, n)

≤ µ(s + 2)
n − µs

n

µ(s + 2)
H(m − 1, n − 1)

≤ n

m

(
n − 1
m − 1

)
=
(

n

m

)
.

Otherwise, m > n − µs holds, which ensures µs > n − m ≥ 0, i.e., s ≥ 1. We can
therefore employ the first inequality of (10), and obtain

H(m,n) ≤ n

µs
H(m,n − 1) <

n

n − m

(
n − 1

m

)
=
(

n

m

)
.

By expanding along the first inequality for a while before employing Lemma 3.1, we get

H(m,n) ≤ n

µs
· · · n − k + 1

µ(s − k + 1)
H(m,n − k)

≤ 1
µk

(
k−1∏

i=0

n − i

s − i

)(
n − k

m

)

=
1
µk

(n
k

)
(s
k

)
(

n − k

m

)
(11)

=
1
µk

(2m
m

)
(n−m−k

m

)
(

n

2m

)
, for N0 , k ≤ s. (12)

When we stop this unwinding of the recurrence, we could have alternatively proceeded one
more step, and upper bound H(m,n − k) by n−k

µ(s−k)

(n−k−1
m

)
, provided k < s. As long as

this expression is smaller than
(n−k

m

)
, we should indeed have expanded further. That is, we

expand as long as

n − k

µ(s − k)

(
n − k − 1

m

)
<

(
n − k

m

)

⇔ n − k

µ(s − k)
(n − k − m) < n − k

⇔ k <
µs + m − n

µ − 1
= n − m

(
2µ − 1
µ − 1

)
= n − m

ρ
,

for ρ := µ−1
2µ−1 . In other words, the best choice of k in (11) is

k =
⌈
n − m

ρ

⌉
= n −
⌊

m

ρ

⌋
. (13)

In fact, if this suggested value of k is negative (or if ρ = 0), we should not expand at all.
Instead, we can try to expand along the second inequality of (10), to get (note that here

11



reducing m by 1 increases s by 2)

H(m,n) ≤ µ(s + 2)
n − µs

· · · µ(s + 2 + 2(k − 1))
n − µ(s + 2(k − 1))

H(m − k, n)

≤
(

k−1∏

i=0

s
2 + 1 + i
n
2µ − s

2 − i

)(
n

m − k

)

=

( s
2+k
k

)

( n
2µ− s

2
k

)
(

n

m − k

)
, (14)

for N0 , k < n
2µ −

s
2 +1 = m− µ−1

2µ n+1; we employ here the usual generalization of binomial

coefficients
(a
k

)
to a ∈ R, namely,

(a
k

)
:= a(a−1)···(a−k+1)

k! .

Rather than optimizing the value of k at which we stop the unwinding of the second
recurrence inequality of (10), we approximate it by

k =
⌈
m − µ − 1

2µ − 1
n

⌉
= m − .ρn/ , (15)

and note that it lies in the allowed range, provided it is positive. (With some tedious
calculations, one can show that the optimal stopping value is k = m − .ρ(n + 1)/, which is
either equal to the k in (15) or is smaller than it by 1.)

When m
n = ρ, both values suggested for k in (13) and (15) are 0, which indicates that

we have to content ourselves with the bound
(n
m

)
from Lemma 3.1. Otherwise, it is clear

which way to expand, since
m

n
< ρ ⇒ n −

⌊
m
ρ

⌋
≥ 0,

m

n
> ρ ⇒ m − .ρn/ ≥ 0.

We are now ready for an improved bound. For that we substitute k in (11) according to
(13), and in (14) according to (15).

Lemma 3.2 Let m,n ∈ N0, where 2m ≤ n, and set ρ := µ−1
2µ−1 . If m

n ≤ ρ, then

Hµ(m,n) ≤ 1
µn−'m/ρ(

( n
n−'m/ρ(

)

( n−2m
n−'m/ρ(

)
(
.m/ρ/

m

)
,

and for m
n > ρ, we have

Hµ(m,n) ≤

( n
2 −'ρn(
m−'ρn(
)

(m−n
2 (1− 1

µ )

m−'ρn(

)

(
n

.ρn/

)
.

Thus, Gλ,µ(m,n) ≤ Gλ,µ(m,n) with

Gλ,µ(m,n) :=






λmµ'm/ρ(−m

( n
n−'m/ρ(

)

( n−2m
n−'m/ρ(

)
(
.m/ρ/

m

)
, for m

n ≤ ρ, and

λmµn−m

( n
2 −'ρn(
m−'ρn(
)

(m−n
2 (1− 1

µ )

m−'ρn(

)

(
n

.ρn/

)
, for m

n > ρ.

12



Next we work out a number of properties of the upper bound Gλ,µ.

Estimates up to a polynomial factor. In the following derivations, we sometimes use
“≈n” to denote equality up to a polynomial factor in n.

We will frequently use the following estimate (implied by Stirling’s formula, cf. [29,
Chapter 10, Corollary 9])

(
αn

2βn3

)
≈n

(
αn

.βn/

)
≈n

(
αα

ββ(α− β)α−β

)n

, for α,β ∈ R, α ≥ β ≥ 0.

Big m. We note that for m−1
n ≥ ρ

Gλ,µ(m,n) =
λ(s + 2)
n − µs

Gλ,µ(m − 1, n) with s := n − 2m.

Since λ(s+2)
n−µs < 1 ⇔ s < n−2λ

λ+µ ⇔ m > (λ+µ−1)n+2λ
2(λ+µ) , the function Gλ,µ(m,n) maximizes for

integers m in the range ρn ≤ m ≤ n
2 at

m∗ :=
⌊

(λ + µ − 1)n + 2λ
2(λ + µ)

⌋
=
⌊

n

2
− n − 2λ

2(λ + µ)

⌋
, (16)

unless this value is not in the provided range. However, m∗ ≤ n
2 unless n is very small

(n < 2λ). And m∗ ≥ ρn unless λ <µ − 1.

Small m. With the identity indicated in (12) we have, for m
n ≤ ρ, that G can also be

written as

Gλ,µ(m,n) = λmµ'm/ρ(−m

(2m
m

)
('m/ρ(−m

m

)
(

n

2m

)
≈m (4λ(µ − 1))m

(
n

2m

)
. (17)

This bound peaks (up to an additive constant) at

m∗∗ :=

⌊ √
λ(µ − 1)

1 + 2
√
λ(µ − 1)

n

⌋
.

We observe that m∗∗ ≤ ρn for λ ≤ µ − 1.

We can summarize, that the function Gλ,µ(m,n) attains its maximum—up to a poly(n)-
factor—over m at

m =
{

m∗∗ if λ ≤ µ − 1, and
m∗ otherwise. (18)

In all applications in this paper we have λ >µ − 1, so the peak occurs at m∗.

13



4 Bounds for Matchings

4.1 Perfect Matchings

For perfect matchings we consider the case where n is even, m = n
2 , and s = 0. We note

that in this case m/n = 1/2 > ρ, for any value of µ. Hence, the second bound of Lemma 3.2
applies. We first calculate n

2 −
n
2 (1− 1

µ) = 1
2µ n, and n

2 −.ρn/ =
⌈

n
2 − µ−1

2µ−1 n
⌉

=
⌈

1
2(2µ−1) n

⌉
.

Hence,

Gλ,µ

(n
2
, n
)

= (λµ)n/2

( 1
2µ n

⌈
1

2(2µ−1) n
⌉
)−1(

n⌊
µ−1
2µ−1 n
⌋
)

≈n (λµ)n/2





(
1

2(2µ−1)

) 1
2(2µ−1)
(

µ−1
2µ(2µ−1)

) µ−1
2µ(2µ−1)

(
1
2µ

) 1
2µ
(

µ−1
2µ−1

) µ−1
2µ−1
(

µ
2µ−1

) µ
2µ−1





n

= (λµ)n/2
(
µ

1
2(2µ−1)−

µ
2µ−1 (µ − 1)

µ−1
2µ(2µ−1)−

µ−1
2µ−1 (2µ − 1)−

1
2µ+1
)n

= (λµ)n/2
(
(µ − 1)−

µ−1
2µ µ− 1

2 (2µ − 1)
2µ−1
2µ

)n

=
(
λ

1
2 (µ − 1)−

µ−1
2µ (2µ − 1)

2µ−1
2µ

)n
.

Substituting (λ, µ) = (12, 3) and (16, 7
3 ), as suggested by Lemma 2.4, we obtain the following

upper bounds for the number of crossing-free perfect matchings:

G12,3

(n
2
, n
)

≈n

(
2

2
3 · 3

1
2 · 5

5
6

)n
= O(10.5129n) , and

G16, 73

(n
2
, n
)

≈n

(
2

10
7 · 3−

1
2 · 11

11
14

)n
= O(10.2264n) .

While the second bound is obviously superior, we remember that the recurrence with
(λ, µ) = (12, 3) is better for m > 2n

5 (or s < n
5 ). This observation leads to the follow-

ing better bound for P a set of n points and for k = .n
2 − 2n

5 / = . n
10/, where we expand as

in the first inequality of Lemma 2.3.

pm(P ) ≤
(

k−1∏

i=0

12(2i + 2)
n − 6i

)
man/2−k(P ) ≤ 4k

(n
6

k

)−1

G16,7/3(n/2 − k, n)

≈n

(
220/21 3−2/7 51/21 1111/14

)n
= O(10.0438n).

Perfect versus all matchings. Recall from Lemma 2.3 that mam(P ) ≤ 12(s+2)
n−3s mam−1(P ).

Note that 12(s+2)
n−3s < 1 for m > 7n

15 + 4
5 (and in this range the factor 12(s+2)

n−3s is smaller than
the alternative offered in Lemma 2.3). That is, there are always fewer perfect matchings
than there are

⌊
7n
15 + 4

5

⌋
-matchings. More specifically, for sets P with n := |P | even, and

14



for k = n
2 −
⌊

7n
15 + 4

5

⌋
=
⌈

n
30 − 4

5

⌉
, we have

pm(P ) = man/2(P ) ≤
k−1∏

i=0

12(2i + 2)
n − 6i

man/2−k(P )

=
(

12 · 2
6

)k (n
6

k

)−1

man/2−k(P )

≈n 4n/30

((
1
5

)1/5(4
5

)4/5
)n/6

ma'7n/15+4/5((P )

=
(
21/3 5−1/6

)n
ma'7n/15+4/5((P ) .

This implies that pm(P ) ≤
(
21/3 5−1/6

)n
ma(P ) poly(n) = O(0.9635n)ma(P ). In every

point set there are exponentially (in the size of the set) more crossing-free matchings than
there are crossing-free perfect matchings.

4.2 All Matchings

Our considerations in the derivation of the bound for perfect matchings imply the following
upper bound for matchings with m segments.

mam(P ) ≤






G16,7/3(m,n) , m ≤ 2n
5 , and

G12,3(m,n) G16,7/3( 2n
5 ,n)

G12,3( 2n
5 ,n)

, otherwise.
(19)

To determine where the expression (19) maximizes, we note that G16,7/3 does not peak
in its “small m”-range (m ≤ 4

11) since 16 > 7
3 − 1 (recall (18)). In the “big m”-range, it

peaks at roughly 26n
55 (see (16)), which exceeds 2

5 . Therefore, the maximum occurs when
G12,3 comes into play, which peaks at roughly 7n

15 . For that value the upper bound evaluates
to ≈n (213/21 3−2/7 53/14 1111/14)n = O(10.4244n).

We summarize in the following main theorem.

Theorem 4.1 Let P be a set of n points in the plane. Then

(1) pm(P ) ≤
(
220/21 3−2/7 51/21 1111/14

)n poly(n) = O(10.0438n).

(2) pm(P ) ≤
(
21/3 5−1/6

)n
ma(P ) poly(n) = O(0.9635n)ma(P ).

(3) ma(P ) ≤
(
213/21 3−2/7 53/14 1111/14

)n poly(n) = O(10.4244n).

We note, by the way, that the first inequality in the theorem is a direct consequence of the
other two inequalities.
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4.3 Random Point Sets

Let P be any set of N ∈ N points in the plane, no three on a line, and let r ∈ N with r ≤ N .
If R is a subset of P chosen uniformly at random from

(P
r

)
, then, for λ = 16, µ = 7

3 , and
provided m ≤ µ−1

2µ−1N = 4
11N , and that r ≥ 2m, we have, using (17),12

E[mam(R)] =




∑

R∈(P
r)

mam(R)



 /

(
N

r

)
= mam(P )

(
N − 2m
r − 2m

)
/

(
N

r

)

≤ (4λ(µ − 1))m
(

N

2m

)((
N − 2m
r − 2m

)
/

(
N

r

))
poly(m)

≈m (4λ(µ − 1))m
(

r

2m

)
=
(
28 3−1
)m
(

r

2m

)
.

We see that if we sample r points from a large enough set, then the expected number of
crossing-free matchings observes for all m the upper bound derived for the range of small
m.

Suppose now that, for n even, we sample n i.i.d. points from an arbitrary distribution,
for which we only require that two sampled points coincide with probability 0. Then we
can first sample a set P of N > 11

8 n points, and then choose a subset of size n uniformly at
random from the family of all subsets of this size. We obtain a set R of n i.i.d. points from the
given distribution. If P is in general position, by the argument above the expected number
of perfect crossing-free matchings is at most ≈n (28 3−1)n/2. If P exhibits collinearities, we
perform a small perturbation yielding a set P̃ and the subset R̃. Now the bound applies
to R̃, and also to R since a sufficiently small perturbation cannot decrease the number of
crossing-free perfect matchings.

Theorem 4.2 For any distribution in the plane for which two sampled points coincide with
probability 0, the expected number of crossing-free perfect matchings of n i.i.d. points is at
most (

24 3−1/2
)n

poly(n) = O(9.2377n) .

4.4 Red-Blue Perfect Matchings

We next consider several variants of crossing-free bipartite matchings, for which better upper
bounds can be derived.

Here we assume that the given set P of n points is the disjoint union R
.
∪ B of two

subsets, and each edge in the matching has to connect a point of R with a point of B. We
refer to the points of R as red points, and to those of B as blue.

We repeat the preceding analysis, but we modify the definition of the degree d(p) of a
point: If p is a matched point in R, say the left endpoint of its edge e, then d(p) is equal
to the number of left endpoints plus the number of blue isolated points that are vertically
visible from (the relative interior of) e. A symmetric definition holds for right endpoints

12There is a small subtlety in that the second identity in the derivation relies on the fact that P is in
general position. For that consider three points on a line.
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and for points p ∈ B. (Intuitively, a blue isolated point q has to contribute only to the
degrees of red points, because, when we insert an edge emanating from a blue point p, it
cannot connect to q, and it does not matter whether it passes above or below q; that is, q
does not cause any bifurcation in the ways in which p can be connected.)

In this case we have ∑

p∈P

d(p) ≤ 4m + 2s,

because each isolated point contributes to the degree of only two matched points. This
changes the bounds in Lemma 2.1 to

2n ≤ 4v0 + 3v1 + 2v2 + v3 + 4s , and
3n ≤ 5v0 + 4v1 + 3v2 + 2v3 + v4 + 5s .

The rest of the analysis continues verbatim, except that now the recurrence (8) involves the
factors 12(s+2)

n−2s and 16(s+2)
n−5s/3 , or, in other words, (λ, µ) = (12, 2) (with ρ = 1/3) and (16, 5

3 )
(with ρ = 2/7), respectively. The first factor is superior for s < n

3 , i.e., m > n
3 .

We thus obtain, with k = .n
6 /, a bound of

(
k−1∏

i=0

12(2i + 2)
n − 4i

)

G16,5/3(n/2 − k, n)

for the number of perfect red-blue matchings. Manipulating it, as above, yields:

Theorem 4.3 Let P be a set of n points in the plane each one colored red or blue. Then
the number of red-blue perfect crossing-free matchings in P is at most

(
26/5 3−3/20 77/10

)n
poly(n) = O(7.6075n) .

4.5 Left-Right Perfect Matchings

Here we assume that P is partitioned into two disjoint subsets L,R and consider bipartite
matchings in L×R such that, for each edge of the matching, its left endpoint belongs to L
and its right endpoint to R.

We modify the definition of the degrees of the points, as in the red-blue case, and have,
as above, ∑

p∈P

d(p) ≤ 4m + 2s.

The analysis further improves, because when we insert an edge emanating from a point
p ∈ L, say, the corresponding numbers hi must be equal to "i, since p can only be the left
endpoint of the edge. A similar improvement holds for points q ∈ R. Hence, we can bound
the sum 4h0 + 3h1 + 2h2 + h3 by 12, rather than 24; similarly, we have 5h0 + 4h1 + 3h2 +
2h3 + h4 ≤ 24. That is, we have the two options (λ, µ) = (6, 2) and (8, 5

3 ). We thus obtain
the bound (

k−1∏

i=0

6(2i + 2)
n − 4i

)
G8,5/3(n/2 − k, n) , for k = .n

6 /,

which leads to the following result.
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Theorem 4.4 Let P be a set of n points in the plane and assume that the points are
classified as left endpoints or right endpoints. Then the number of left-right perfect crossing-
free matchings in P that obey this classification is at most

(
27/10 3−3/20 77/10

)n
poly(n) = O(5.3793n) .

4.6 Matchings Across a Line

Consider next the special case of crossing-free bipartite perfect matchings between two sets
of n

2 points each that are separated by a line. Here we can obtain an upper bound that is
smaller than the one in Theorem 4.4.

Theorem 4.5 Let n be an even integer. The number of crossing-free perfect bipartite
matchings between two separated sets of n

2 points each in the plane is at most Cn/2
2 < 4n;

(recall that Cm is the mth Catalan number).

Proof. Let L and R be the given separated sets. Without loss of generality, take the
separating line λ to be the y-axis, and assume that the points of L lie to the left of λ and
the points of R lie to its right. Let M be a crossing-free perfect bipartite matching in L×R.
For each edge e of M , let eL (resp., eR) denote the portion of e to the left (resp., right)
of λ, and refer to them as the left half-edge and the right half-edge of e, respectively. We
will obtain an upper bound for the number of combinatorially different ways to draw the
left half-edges of a crossing-free perfect matching in L × R. The same bound will apply
symmetrically to the right half-edges, and the final bound will be the square of this bound.

In more detail, we ignore R, and consider collections S

L R

λ

p1

p2

p3

p4

p5

p6

p7

Figure 8: Recursively counting
permutations induced on λ by
left half-edges.

of n
2 pairwise disjoint segments, each connecting a point of

L to some point on λ, so that each point of L is incident to
exactly one segment. For each segment in S, we label its
λ-endpoint by the point of L to which it is connected. The
increasing y-order of the λ-endpoints of the segments thus
defines a permutation of L, and our goal is to bound the
number of different permutations that can be generated in
this way. (In general, this is a strict upper bound on the
quantity we seek—see below.)

We obtain this bound in the following recursive manner.
Write m := |L| = n

2 . Sort the points of L from left to
right (we may assume that there are no ties—they can be
eliminated by a slight rotation of λ), and let p1, p2, . . . , pm

denote the points in this order. Consider the half-edge e1 emanating from the leftmost point
p1. Any other point pj lies either above or below e1. By rotating e1 about p1, we see that
there are at most m (exactly m, if we assume general position) ways to split {p2, . . . , pm}
into a subset L+

1 of points that lie above e1 and a complementary subset L−
1 of points that

lie below e1, where in the i-th split, |L+
1 | = i − 1 and |L−

1 | = m − i. Note that, in any
crossing-free perfect bipartite matching that has e1 as a left half-edge incident to p1, all the
points of L+

1 (resp., of L−
1 ) must be incident to half-edges that terminate on λ above (resp.,

below) the λ-endpoint of e1; see Figure 8.
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Hence, after having fixed i, we can proceed to bound recursively and separately the
number of permutations induced by L+

1 , and the number of those induced by L−
1 . In other

words, denoting by Π(m) the maximum possible number of different permutations induced
in this way by a set L of m points (in general position), we get the following recurrence

Π(m) ≤
m∑

i=1

Π(i − 1)Π(m − i),

for m ≥ 1, where Π(0) = 1. However, this is the recurrence that (with equality) defines the
Catalan numbers, so we conclude that Π(m) ≤ Cm.

A (probably weak) upper bound for the number of crossing-free
L R

λ

Figure 9: A left and a
right permutation which
are not compatible.

perfect bipartite matchings in L×R is thus Cm
2. Indeed, for any

permutation πL of L and any permutation πR of R, there is at most
one crossing-free perfect bipartite matching in L×R that induces
both permutations. Namely, it is the matching that connects the
j-th point in πL to the j-th point in πR, for each j = 1, . . . ,m.
See Figure 9 for an example of two such permutations that do not
yield a (straight-edge) crossing-free matching.

We thus obtain the asserted upper bound Cm
2 = Cn/2

2 < 4n.

5 Two Implications

5.1 Spanning Cycles

Theorem 5.1 Let P be a set of n points in the plane. Then the number of crossing-free
spanning cycles satisfies

sc(P ) ≤ (27/5 37/10 77/5)npoly(n) = O(86.8089n) .

Proof. Let P be a given set of n points. We construct a new set P ′ of 2n points by
creating two copies p+, p− of each point p ∈ P , and by placing these copies co-vertically
very close to the original location of p, with p+ lying above p−.

Let π be a cycle in P . We map π to a perfect matching in P ′ as follows. For each p ∈ P ,
let q, r be its neighbors in π. (i) If both q, r lie to the left of p, with the edge qp lying above
rp, we connect p+ to either q+ or q−, and connect p− to either r+ or r− (the actual choices
will be determined at q and r by similar rules). (ii) The same rule applies in the case where
both q, r lie to the right of p. (iii) If q lies to the left of p and r lie to the right of p, then
we connect p+ to either q+ or q−, and connect p− to either r+ or r−. It is clear that the
resulting graph π∗ is a crossing-free perfect matching in P ′, assuming general position of
the points of P , if we draw each pair of points p+, p− sufficiently close to each other. See
Figure 10 for an illustration.

We assign to each point p ∈ P a label that depends on π. A point whose two neighbors
in π lie to its left is labeled as a right point, a point whose two neighbors in π lie to its right
is labeled as a left point, and a point having one neighbor in π to its right and one to its
left is labeled as a middle point.
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We assign the cycle π to the pair (π∗,λ), where π∗ is the resulting perfect matching on
P ′ and λ is the labeling of P , as just defined.

Each pair (π∗,λ) can be realized by at most one

Figure 10: A cycle in P induces a left-
right perfect matching in P ′.

cycle π in P , by simply merging each pair p+, p−

back into the original point p. (The resulting graph
need not be a cycle; in general it is a collection
of pairwise disjoint cycles.) It therefore suffices to
bound the number of such pairs (π∗,λ).

A given labeling λ of P uniquely classifies each
point of P ′ as being either a left point of an edge of the matching or a right endpoint of such
an edge. Hence, the number of crossing-free perfect matchings π′ on P ′ that respect this
left-right assignment is at most (27/10 3−3/20 77/10)2npoly(n). The number of labellings of
P is 3n. Hence, the number of crossing-free cycles in P is at most (27/5 37/10 77/5)npoly(n),
as asserted.

Clearly, it follows from the proof that the bound holds for the number of crossing-free
spanning paths as well, and also for the number of cycle covers (or path covers) of P .13

5.2 Crossing-free Partitions

We now relate crossing-free partitions of a point set P to matchings, thereby establishing
an upper bound on cfp(P ).

To this end, every crossing-free partition of P

Spines, isolated ( ), top ( ),
and bottom ( ) points.

Figure 11: Encoding a crossing-free
partition.

is mapped to a tuple (M,S, I+, I−) where (see Fig-
ure 11)

(i) M is the matching in P , whose edges connect the
leftmost point to the rightmost point of each set in
the partition with at least two elements (we refer to
each such segment as the spine of its set),
(ii) S is the set of all points that form singleton sets
in the partition, and
(iii) I+ (resp., I−) is the set of points in P \ S that
are neither the leftmost nor the rightmost in their set,
and which lie above (resp., below) the spine of their
set.

We observe that M is crossing-free, and that the
partition is uniquely determined by (M,S, I+, I−).
Therefore, any upper bound on the number of such

tuples will establish an upper bound on the number of crossing-free partitions. For every
crossing-free matching M on P there are 3n−2|M | triples (S, I+, I−) which form a 4-tuple
with M (clearly, not all of them have to come from a crossing-free partition, so we over-
count). Therefore

∑
m 3n−2mmam(P ) is an upper bound on the number of crossing-free

partitions.

Ignoring the 3n-factor for the time being, we have to determine an upper bound on
3−2mmam(P ), for which we employ the bound from (19). We observe that 3−2mGλ,µ(m,n) =

13A slight improvement can be obtained by noting that when a cycle has j middle points, we can derive
from it 2j distinct matchings in P ′, by flipping the connections to some of the pairs of P ′ that represent
middle points.
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Gλ/9,µ(m,n), and therefore

3−2mmam(P ) ≤






G16/9,7/3(m,n) , m ≤ 2n
5 , and

G4/3,3(m,n) G16,7/3( 2n
5 ,n)

G12,3( 2n
5 ,n)

, otherwise.
(20)

Since 16
9 ≥ 7

3 − 1 (see (18)) the peak will not occur in the “small m”-range of G16/9,7/3.
In its “big m”-range, the maximum occurs at m roughly 14n

37 (see (16)) which lies in the
interval [ 4

11 , 2
5 ]. Also, G4/3,3 peaks for m ≤ 2n

5 since 4
3 ≤ 3 − 1 (consult (18)). Therefore,

the bound peaks at m roughly 14n
37 with the value

3n G16/9,7/3(.14n
37 /, n) ≈n (24/7 3−1/2 1111/14 373/14)n .

Note that we could have estimated the number of 4-tuples by first choosing a subset Q,
which is the union of S and the endpoints of M , then choose a matching in Q, and then
partition P \Q into I+ ∪ I−. This leads to a bound of ≈n

∑
k

(n
k

)
ck2n−k = (c + 2)n, where

c is the constant in the bound for all matchings. This yields a bound of O(12.43n) which
falls short of our bound obtained above.

Theorem 5.2 Let P be a set of n points in the plane. Then the number of crossing-free
partitions satisfies

cfp(P ) ≤
(
24/7 3−1/2 1111/14 373/14

)n
poly(n) = O(12.2388n) .

6 Lower Bounds

In this section we briefly derive the lower bounds mentioned in Table 1. Most of them rely
on an analysis of the so-called double chain, as it was first considered by Garćıa, Noy, and
Tejel [21] in the context of crossing-free graphs. For matchings across a line (and left-right
matchings) we use a different configuration.

6.1 The Double Chain

Given m ∈ N, the double chain D2m consists of n := 2m points.
U9

L9

Figure 12: The double
chain D18.

There is an upper half Um of m points on the parabola y = x2+1
2

with their x-coordinates in [−1,+1], and there is a lower half Lm

of m points on the parabola y = −x2+1
2 in the same x-range. The

important property is that Um and Lm are in convex position, and
the relative interior of each segment connecting a point from Um

with a point from Lm is disjoint from the convex hulls of Um and of
Lm, and thus cannot cross any segment connecting points within
these sets.

Garćıa et al. [21] show, among others, that sc(D2m) = Ω(4.64n)
and that

pm(D2m) =
'm/2(∑

k=0

(
m

2k

)2

Ck
2 ≈n 3n . (21)
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We wish to recapitulate the argument for the latter bound. A crossing-free perfect
matching with k inner edges within Um leaves m − 2k points in Um to be matched to the
same number of points in Lm. So within Lm, we also have k inner edges. If we choose the 2k
endpoints in Um for the inner edges (

(m
2k

)
choices) then we have Ck possibilities to connect

them in a perfect crossing-free matching; the same bound applies to Lm. The remaining
points from Um and Lm allow exactly one crossing-free perfect matching from the upper
set to the lower set. This gives the bound in (21). (The estimate for the sum builds on the

observation that
∑N

i=0 ai
2 ≈N

(∑N
i=0 ai

)2
for nonnegative real numbers ai.)

In a similar fashion we can argue now for

ma(D2m) =
m∑

k=0

(
m

k

)2

Mk
2 ≈n 4n ,

where Mk =
∑

i

(k
2i

)
Ci = Θ(k−3/23k) is the kth Motzkin number that counts the number

of all matchings of k points in convex position [31].

Crossing-free partitions. Along similar lines we easily get a lower bound of

cfp(D2m) ≥
m∑

k=0

(
m

k

)2

Ck
2 ≈n 5n .

This bound for crossing-free partitions counts only a restricted class of such partitions,
namely those composed of a matching between m − k points in Um with m − k points in
Lm, together with crossing-free partitions among the remaining k points in Um and among
the remaining k points in Lm.

Let us perform an exhaustive counting of crossing-free partitions of the double chain.
Here are the ingredients.

Recall first that for N ∈ N0, i ∈ N, the number N can be written as an ordered sum
of i nonnegative integers in

(N+i−1
i−1

)
ways, and as an ordered sum of i positive integers in(N−1

i−1

)
ways.

Now we “prepare” the upper half Um for a crossing-free partition as follows. We specify
the number k of parts that extend to the lower half, and we also specify which k contiguous
nonempty subsequences of points of Um form the upper portions of these extended parts;
we refer to these sequences as docking places. If the overall size of these docking places is
k + ", we have to specify numbers ai ∈ N0, 0 ≤ i ≤ k, which are the sizes of intermediate
non-docking parts, and numbers bi ∈ N, 1 ≤ i ≤ k, which are the sizes of docking parts, so
that m = a0 + b1 + a1 + · · · bk + ak, with

∑
ai = m − k − " (and so

∑
bi = k + ").

There are
(m−k−&+(k+1)−1

(k+1)−1

)
=
(m−&

k

)
ways to choose the ai’s, and

(k+&−1
k−1

)
ways to choose

the bi’s. That is, the number of configurations with k docking places (with the non-docking
points already forming a crossing-free partition within Um) is exactly

m−k∑

&=0

(
m − "

k

)(
k + "− 1

k − 1

)
Cm−k−& .

Hence, repeating the same analysis to the lower half Lm, and observing that, as in the case
of matchings, there is a unique way to connect the upper and lower docking places in a
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non-crossing manner, we obtain

cfp(D2m) = Cm
2 +

m∑

k=1

(
m−k∑

&=0

(
m − "

k

)(
k + "− 1

k − 1

)
Cm−k−&

)2

.

So for an estimate up to a polynomial factor in m, it remains to find k and " so that
f(m, ", k) :=

(m−&
k

)(k+&−1
k−1

)
Cm−k−& is large. We have

f(m, .0.05m/, .0.22m/) > 5.23mpoly(m) ,

which gives cfp(D2m) > (5.23mpoly(m))2 = 5.23npoly(n). (The coefficients 0.05 and 0.22
were chosen via a numerical experimentation.)

Red-blue matchings. It is worthwhile to notice that if we color n points in convex
position, n even, alternately red and blue along the boundary of their convex hull, then all
perfect matchings on this set are compatible with this coloring. That is, we have a colored
set of n points with Cn/2 ≈ 2n crossing-free perfect red-blue matchings. Again, we will
employ the double chain for a better lower bound.

Assume m to be even, consider D2m, and color the points in Um alternately red and
blue, starting with red at the leftmost point. Then color Lm alternately blue and red,
starting with blue at the leftmost point. Given that coloring we generate perfect red-blue
matchings as follows.

• Choose some k, 0 ≤ k ≤ m
2 .

• Select k red points in Um (
(m/2

k

)
possibilities).

• Select k blue points in Lm (
(m/2

k

)
possibilities).

• Match the selected red points and their next (to the right) blue neighbors in Um with
the selected blue points and their next (to the right) red neighbors in Lm. This can
be done in a unique crossing-free manner, which is also red-blue compatible.

• Match the remaining m − 2k points in Um. By the way points were selected, the
remaining points are still alternately red and blue and thus allow Cm/2−k red-blue
matchings, and the same holds for the lower chain Lm.

This gives

m/2∑

k=0

(
m/2
k

)2

Cm/2−k
2 ≈m

m/2∑

k=0

(
m/2
k

)2

(4m/2−k)
2 ≈m 5m =

√
5

n
= Ω(2.23n)

perfect crossing-free red-blue matchings as claimed in Table 1. The above procedure does
not catch all possible perfect crossing-free red-blue matchings—a more accurate analysis
might lead to a better bound.
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Perfect matchings in random sets. Finally, let us describe a distribution in the plane
such that the expected number of crossing-free perfect matchings of n i.i.d. points, for n
even, is at least 3n/poly(n). We draw a random point p by first choosing an x uniformly at
random in [−1,+1], and then by letting p = (x, x2+1

2 ) or p = (x,−x2+1
2 ), each of the two

possibilities with probability 1
2 . A set P of n i.i.d. points from this distribution is of the

form Uk ∪ Ln−k with probability 1
2n

(n
k

)
. Therefore,

E[pm(P )] =
1
2n

n∑

k=0

(
n

k

)
pm(Uk ∪ Ln−k) ≥

1
2n

(
n

n/2

)
pm(Un/2 ∪ Ln/2︸ ︷︷ ︸

Dn

) ≈n 3n .

6.2 Matchings Across a Line

We present a simple construction with about 2n different crossing-free perfect bipartite
matchings across a line.

Assume that n = 8k, and refer to Figure 13. Take two

2k

2k 2k

2k

A B

C

D

Figure 13: The lower bound
construction for crossing-free
perfect matchings across a
line.

disjoint horizontal segments that lie on the x-axis to the left
of the y-axis, and place on each of them 2k points. Denote by
A (resp., B) the set of points on the left (resp., right) segment.
The set L is A ∪ B. To form R, draw two lines that separate
A and B, one with positive slope and one with negative slope.
Place 2k points on each of these lines to the right of the y-axis,
and denote the set on the line with positive (resp., negative)
slope by C (resp., D). The set R is C ∪ D.

In order to specify a crossing-free perfect bipartite match-
ing, we proceed as follows: Split A into two sets AC and AD

of size k each, split B into two sets BC and BD of size k each,
split C into two sets CA and CB of size k each, and split D into two sets DA and DB of
size k each. The total number of choices is

(2k
k

)4 ≈k 28k = 2n. Now we match AC with CA,
AD with DA, BC with CB, and BD with DB , which can always be done in a unique way
that is non-crossing; see Figure 13.

We have thus shown:

Theorem 6.1 The maximum number of crossing-free perfect bipartite matchings between
two separated sets, each of n

2 points, is at least
(2'n/8(
'n/8(
)4

≈n 2n.

Clearly, this serves also as a lower bound for the more general case of perfect left-right
matchings, for which we were not able to improve over the 2n bound.

7 Discussion, Open Problems

Relating the basis-constants. For n ∈ N, let pm(n) := max|P |=n pm(P ) and14 cpm :=
lim supn→∞

n
√

pm(n). In an analogous fashion, define the constants cma, csc, ccfp, and clrpm

14In fact, there is a unique limit for n over the even integers.
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for the corresponding matching bounds. Also, define

rdpm(n) := sup
µ

E [pm(P ) |P a set of n i.i.d. points from distribution µ] ,

and put crdpm := lim supn→∞
n
√

rdpm(n).

Apart from the absolute bounds that we derived for these constants, we have shown a
number of relations among them, e.g.

cpm ≤ 21/3 5−1/6 cma (note also that cma ≤ cpm + 1),
csc ≤ 3 clrpm

2 (also csc ≤ cpm
2), and

ccfp ≤ cma + 2 (see the remark preceding Theorem 5.2).

We also derived a better upper bound on crdpm than on cpm (while these constants still share
the same lower bound of 3). It would be interesting to know whether that is an artifact
of our proof. We believe not, supported by the following observation: If we consider four
points, then in non-convex position they have three crossing-free perfect matchings. If,
however, we choose four i.i.d. points from any distribution, then they are in non-convex
position with probability less than 5

8 [28], and thus the expected number of crossing-free
perfect matchings is less than 5

8 · 3 + 3
8 · 2 = 2.625.

Conjecture 1 crdpm < cpm.

Also, can the bound for i.i.d. points be improved for specific distributions, uniform distri-
bution in a disk, say?

Counting and enumeration. As far as we know, the algorithmic complexity of com-
puting the number pm(P ) of crossing-free perfect matchings for a set P of points is open—
neither a polynomial algorithm is known, nor any lower bounds, #P-complete, say. The
same is true for the numbers tr(P ), sc(P ), etc.

The situation looks somewhat more promising for enumeration. For triangulations and
crossing-free spanning trees of a point set, Avis and Fukuda [8] show how to enumerate
these objects in time poly(n) times the size of the output (see [27] for an application for
enumeration of crossing-free graphs on a point set).

Nothing of the kind is known for perfect crossing-free matchings and spanning cycles.
We mention on the side that maximal crossing-free matchings can be enumerated efficiently,
due to a general result of that kind for maximal cliques in graphs [11]. To see this, define
a graph for an n point set as follows. Let the vertices be the

(n
2

)
segments connecting

pairs of points. Two such segments are connected by an edge if they are disjoint, i.e. they
neither cross nor share an endpoint. Now cliques in this graphs correspond to crossing-free
matchings of the point set.

For perfect crossing-free matchings, we would need maximum cliques in the constructed
graph. For these, no efficient enumeration algorithms exist (and are unlikely to exist at all),
but it is still feasible that the special geometric structure allows such an algorithm for our
problem.
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