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Abstract
We propose a scalably efficient scheme for detecting

large-scale physically-correlated events in sensor networks.
Specifically, we show that in a network of n sensors arbi-
trarily distributed in the plane, a sample of O( 1

ε log 1
ε ) sensor

nodes (mice) is sufficient to catch any, and only those, events
that affect Ω(εn) nodes (elephants), for any 0 < ε < 1, as
long as the geometry of the event has a bounded Vapnik-
Chervonenkis (VC) dimension. In fact, the scheme is prov-
ably able to estimate the size of an event within the approx-
imation error of ±εn/4, which can be improved further at
the expense of more mice. The detection algorithm itself
requires knowledge of the event geometry (e.g. circle, el-
lipse, or rectangle) for the sake of computational efficiency,
but the combinatorial bound on the sample size (set of mice)
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depends only on the VC dimension of the event class and not
the precise shape geometry.

While nearly optimal in theory, due to implicit constant
factors, these “scale-free” bounds still prove too large in
practice if applied blindly. We, therefore, propose heuris-
tic improvements and perform empirical parameter tuning
to counter the pessimism inherent in these theoretical esti-
mates. Using a variety of data distributions and event ge-
ometries, we show through simulations that the final scheme
is eminently scalable and practical for large-scale network,
say, with n ≥ 1000. The overall simplicity and generality
of our technique suggests that it may be well-suited for a
wide class of sensornet applications, including monitoring
of physical environments, network anomalies, network se-
curity, or any abstract binary event that affects a significant
number of nodes in the network.

1 Introduction
Sensor networks are enablers of what has been called sen-

sory ubiquity or omnipresence: tiny, inexpensive, unteth-
ered sensor devices can measure and observe various envi-
ronmental parameters, often in hazardous or humanly inac-
cessible places, thereby allowing real-time and fine-grained
monitoring of physical spaces around us. Many potential ap-
plications of this technology relate to surveillance [1] or en-
vironmental monitoring [6, 25, 29], necessitating large-scale
networks spanning wide-spread geographical areas. In many
of these applications, the phenomena of interest are global
in the sense that they are not discernible at the level of in-
dividual nodes, and require corroborative input from many
sensors—that is, events only become significant if sensed
data of many nodes support them. Indeed, this issue of
making global inferences from local data is characteristic of
many distributed systems, but it takes on a uniquely geomet-
ric form due to the physical embedding of sensor networks.
Let us begin by considering a few motivating examples to
frame the context.

• Imagine a sensor network in an environmental monitor-
ing application, e.g., to detect wild fires in a forest or to
track pollution levels in a habitat [16, 19]. An abnor-
mal or above average sensor reading at a single node,
or even several but widely scattered nodes, is hardly



a cause for concern, as local and temporal variations
are routine in nature. On the other hand, abnormal
measurements by a large number of nodes concentrated
in a geographical neighborhood suggest a significant
event that may require immediate action.

• Due to the conditions of their physical deployment (out-
doors, often hazardous and hostile environments), sen-
sor networks are especially vulnerable to natural faults
and adversarial attacks [30, 32]. Thus, maintaining a
visibility into the operational health of the system is
crucial. Given the physical conditions, isolated node
failures or poor quality of wireless medium in some lo-
cation is both expected and routine. On the other hand,
a systemic failure that affects or partitions a large seg-
ment of the network is a significant event.

One can imagine many other examples of this kind: sudden
energy drop among sensor nodes in a neighborhood, abnor-
mal congestion in a region, correlated changes in the sensed
data at nodes in a neighborhood, and so on. Since a cen-
tralized data collection approach, where a central processor
continuously collects signals from all the nodes and learns
the state of the network, does not scale well with the size
and the complexity of large scale sensor networks, we seek
more efficient solutions. In a nutshell, our approach will be
to monitor only a small subset (sparse sample) of the nodes
in the network, and infer the presence or absence of a signif-
icant event just from the signals received from this subset.

Our vision is that these sparse samples will act as a trig-
ger system, allowing most of the network to exist in a state
of low alertness, to be “woken up” only when an event of
interest is reliably detected. In many settings, highly de-
tailed sensor measurements are desirable only after a sig-
nificant event occurs. Yet sensors may be forced to collect
and communicate enormous quantities of data all the time,
draining precious system resources, since events are often
unpredictable. With our scheme, most of the network can
essentially “sleep” or gather data at a very conservative rate,
and only switch to the high-alert mode when our sparse sam-
ples sound an alarm. (We note that our work differs from the
existing work on “sensor coverage” that attempts to choose a
subset of sensors that cover the field of interest. Indeed, our
sample nodes are too sparse to cover the field—they are only
guaranteed to catch large-events.) Before we formally define
our problem and its main parameters, let us continue with an
informal description of the main technical issues.

1.1 Of Elephants and Mice
Two important features characterize the kinds of phenom-

ena we aim to address in this paper: relative scale and non-
locality. By relative scale, we mean that our focus is on phe-
nomena that affect a given (user-specified) fraction of the
network, rather than an absolute number of nodes. From the
application side, this is meaningful in all the scenarios we
mention: the event is considered significant only if a non-
trivial fraction of the network is partitioned, or has a consen-
sus value for the fire alarm, etc. Just as significantly, the rel-
ative threshold is also necessary mathematically to achieve
a scalable efficient detection scheme: by focusing on ε frac-
tions of the network, we will show a detection scheme whose

efficiency depends only on ε, independent of the network
size! On the other hand, it is easy to see that schemes that
must detect all events affecting an absolute number of nodes
require detection effort that grows linearly with the network
size in the worst-case.

Figure 1. The figure shows that the global connectivity
can change substantially without any significant change
in the local connectivity of the nodes: the loss of just a
few isolated edges can cause major network partitions.

The second key feature is the non-locality of the phenom-
ena: events such as a network partition, a potential wild fire,
a jamming attack etc. are best thought of as a signal that is
smeared over a geographical neighborhood, not always dis-
cernible to individual nodes. For instance, consider the prob-
lem of network partition: individual nodes in the two com-
ponents can be well-connected to their local neighbors, yet
the global connectivity is lost. Figure 1 further illustrates the
non-locality of the partition problem by showing two exam-
ples where the local picture looks essentially the same, yet
one is disconnected while the other is not. This non-locality
is the main technical challenge facing any detection scheme,
and this is where we exploit the physical embedding of the
sensor networks: because sensors are embedded in a geo-
metric space (typically, a two-dimensional plane), geograph-
ical neighborhoods can be captured using simple geometric
shapes. In particular, we use the theory of VC-dimension
to formalize the shape complexity of spatial phenomena and
derive mathematical bounds on the number of sensor nodes
that suffice for our distributed monitoring.

The title Catching Elephants with Mice offers a visual
metaphor for our approach: elephants are the large events
smeared across the network, and mice are the sparse samples
of sensors that allow us to catch these events. Our primary
focus is on the feasibility of such sparse samples (mice) and
characterization of events (elephants) that can be scalably de-
tected. We, therefore, abstract away the low level networking
issues, such as routing, and assume that a reliable communi-
cation protocol exists to send data from individual nodes to
a central processor (the base station), where all the computa-
tion occurs. The communication overhead is quite minimal
in our scheme anyway, because each of the monitoring nodes
(mice) only sends a binary value to the base station. Thus,
the scalability of our scheme can be measured roughly by the
number of mice. With this background, let us now formalize
the problem and summarize our results.



1.2 Problem Formulation and Our Contribu-
tions

Suppose a set S of n sensor nodes is distributed in the two-
dimensional plane. We will model each sensor as a point,
with (xi,yi) as it coordinates. We make no assumption about
the distribution of these points (sensors), so our results hold
for all, even adversarial, sets—what matters is the combi-
natorial nature of the distribution, such as which points are
inside some shape and which are outside, and not its scale
or metric properties. In addition, there is one distinguished
node u that acts as the central processing node, or the base
station, and knows the locations of all the sensors in the net-
work. Throughout, we assume idealized sensing, meaning
that each sensor inside the event detects it perfectly and no
sensor outside the event detects it. In closing remarks, we
briefly discuss some of the ramifications of these assump-
tions along with possible directions for future research.

A simple and abstract way to model an event is as a binary
function over the xy-plane. We imagine that the function has
value 1 over some geographical neighborhood (denoting the
extent of the event) and 0 elsewhere. This model is suffi-
ciently general to include all the applications we mentioned
earlier. For instance, in the wild fire monitoring application,
each node can locally decide its function value, setting it to
1 if it is above some preset temperature threshold, and 0 oth-
erwise. The same holds also for energy level, or packet drop
rates due to congestion etc. In other cases, such as network
partition, a node can learn whether it is connected to the base
station by communicating a test bit. In our scheme, each of
the monitoring nodes (mice) will periodically send a binary
bit to the base station. From these messages, the base station
can also infer which nodes are able to reach it (have value
0), and which one cannot (have value 1). We assume that the
chosen nodes will send their bits to the base station at some
user-defined frequency, which determines the frequency of
epochs at which event-detection algorithm runs. We assume
that there is at most one event in the network at any time.

Let E ⊆ S be the set of nodes with boolean value 1. We
call E a large event or, metaphorically, an elephant if |E| ≥
ε|S|, for a predefined user parameter ε, where 0 < ε < 1. That
is, if at least ε fraction of the nodes are affected by the event,
then we call it an elephant. (Thus, the size of an event is
measured by the number of sensor nodes that fall in it, and
not by the physical size of the area covered by it.) Our goal
is to choose a subset M ⊆ S of sensors as monitors, or mice,
and design an algorithm A such that, given only the boolean
values for the nodes of M, the algorithm A can always decide
whether an event is an elephant or not. (In fact, our scheme
will achieve something stronger: for any event E, it can esti-
mate the size of |E| within the approximation error O(ε|S|);
the scheme also offers a natural and linear tradeoff between
the estimation error and the size of the monitoring set.) Such
a solution will be useful and scalable if the size of the set M
is significantly smaller than the network size |S|.

A moment’s reflection, however, makes it clear that un-
less the elephants are somehow “nicely shaped,” one cannot
hope to catch them all by a sparse, or even linear size, sam-
ple. Indeed, even if we choose half of all the sensors as mice,

the adversary can create an event E that includes all the re-
maining nodes, and the algorithm has no way to detect this
elephantine event. Put another way, if the geometric shape
of the class of events E is allowed to be arbitrarily complex,
then one would need arbitrarily large fraction of the nodes
as mice to catch the events. Our result is a positive result
in the other direction: for class of events whose shapes can
be described in “nice” ways, extremely sparse mice sets suf-
fice. We formalize the nice-ness of event shapes using the
concept of Vapnik-Chervonenkis (VC) dimension from com-
putational geometry and statistics [10, 26]. Most familiar
geometric shapes, such as halfplanes, circles (disks), axis-
parallel rectangles, arbitrarily oriented rectangles, have small
VC-dimension (respectively, 3, 3, 4, and 5).

We show that if the class of events has VC-dimension at
most d, then we can choose a set M of

O
(

d logd
ε

log
d logd

ε

)

sensors (mice) that can estimate the size of any event in our
class within the (additive) approximation error of O(ε|S|). A
significant aspect of this result is that the number of mice
needed to catch any elephant is independent of the network
size, making this a scale-free property. In particular, for the
most natural types of events that can be approximated by
simple geometric shapes of constant VC dimension, such as
circles, ellipses, rectangles and triangles, the size of the sam-
ple is O( 1

ε log 1
ε ).

The theoretical bound presented above is scalable (inde-
pendent of network size, and (almost) linear in 1/ε and d),
computationally efficient, and also the best possible in a gen-
eral setting. Yet, like many worst-case upper bounds, it ap-
pears to be highly pessimistic and unattractive for realistic-
size networks, if applied blindly. We, therefore, propose sev-
eral heuristic improvements to reduce the size of the moni-
toring set, and also perform extensive empirical testing to
measure this “pessimism factor” inherent in the worst-case
analysis. We conclude that the size of the final monitoring set
can be reduced by at least a factor of 30, by the combination
of our redundancy-aware sampling and empirical tuning.

Using a variety of synthetic and real-world data distribu-
tions (random, clustered, contoured, geographic, among oth-
ers) and event geometries (circles, ellipses, rectangles), we
provide a comprehensive simulation study of our proposed
approach. Our simulation results validate the scalability and
practical applicability of our approach. As an example, 50
mice suffice for ε = 0.10, and at most 150 mice are needed
for ε = 0.05, for detecting and estimating circular, elliptical,
or rectangular events (irrespective of the network size).

1.3 Organization
Our paper is organized in six sections. In Section 2, we

briefly review the theory of VC dimension, and the related
concept of ε-nets. In Section 3, we describe our main com-
binatorial result, namely, the bounds on the size of a sparse
sample in terms of the VC dimension of the elephants. In
Section 4, we discuss algorithmic aspects of our scheme,
describe heuristic improvements for the size of monitoring



sets, and present redundancy-aware sampling. In Section 5,
we present our simulation results, in Section 6, we survey
related work, and in Section 7, we present our conclusions.

2 VC-Dimension and Geometric Complexity
In this section, we review the key concept of Vapnik-

Chervonenkis (VC) dimension to express the shape com-
plexity of geometric phenomena (elephants) that we wish to
detect—an interested reader may refer to the excellent book
by Matousek [17] for an in-depth coverage of these concepts.
VC dimension, which arose in statistics [26] and developed
further in computation geometry and learning theory [10, 2],
gives a framework to formalize our informal intuition that
a circle is a simpler shape than an axis-parallel rectangle,
which in turn is simpler than a triangle. The basic idea is
best explained using the abstract language of set systems.

A pair (X ,R ) is called a range space if X is a ground set
and R is a family of subsets of X . The elements of the set
R are often called the ranges. In our setting, X is the set
of sensor nodes S, and R is a collection of subsets that arise
from the events that we wish to detect. For instance, consider
the class of events where, by placing a jamming device, an
attacker can disable all nodes within a circular disk of radius
100. Then, R is the collection of all combinatorially distinct
subsets of S that can be formed by disks of radius 100 whose
centers can be placed anywhere in the plane. (In this ex-
ample, even though there are infinitely many disks, one can
show that the number of distinct subsets possible is at most
O(|S|2).)1

Given a subset A ⊆ X , we say that the set A is shattered
by the set of ranges R if all 2|A| subsets of A can be obtained
by intersecting A with an appropriate member of R . That is,
for every subset B⊆ A, there exists a range R ∈ R , such that
B = A∩R. The VC dimension of the range space (X ,R ) is
the cardinality of the largest set A ⊆ X that is shattered by
R . (Not all sets of size d need to be shattered for the VC
dimension to be d; one shattered set is enough.)

It may help to illustrate this concept with a few simple
examples.

• The range space (X ,R ) where X is the real line (or, a
finite set of points on it) and R is the set of all inter-
vals of that line, has VC dimension 2. No set of three
points {a,b,c} can be shattered since there is no inter-
val whose intersection with the set gives the subset con-
taining just the two extreme points (excluding the mid-
dle). On the other hand, for any two points a,b, we can
form all four subsets { /0,{a},{b},{a,b}} by intersect-
ing with an appropriate interval.

• The range space (X ,R ) where X is a set of points in the
two-dimensional plane, not all on a common line, and
R is the set of all possible disks (with arbitrary radii),
has VC dimension 3. It is easy to see that any subset

1This is seen most easily through a geometric duality: consider
all disks of radii 100 with centers at the points of S. These n disks
partition the plane into O(n2) distinct cells, where each such cell
has the equivalence property that no matter where a disk is centered
in it, it covers the same subset of S.

of X with 3 non-collinear points can be shattered—one
can obtain all 23 subsets by intersecting the set with
an appropriate disk. On the other hand, no set of 4
points can be shattered because if the convex hull of
the four points is a triangle, then it is impossible to ob-
tain the subset containing just the three convex hull ver-
tices without the middle fourth point; otherwise, all four
points are on the convex hull, say, in the cyclic order
a,b,c,d; then we cannot form both the subsets {a,c}
and {b,d}. Thus, the range space of circular disks has
VC dimension 3.

Similar arguments show that the VC dimension of range
spaces using other familiar geometric shapes are also small
constants. For instance, axis-aligned rectangles have dimen-
sion 4, arbitrarily oriented ellipses have dimension 5, arbi-
trary triangles have dimension 7, etc. Lest one should think
that the VC dimension is always finite, it is worth pointing
that the VC dimension of the range space (X ,R ), with X
being the plane and R being all convex polygons is infinite.
Indeed, by considering a set of points on a circle, we notice
that any subset of it can be obtained by using exactly those
points as the vertices of a convex polygon.

Let us now turn to the main problem at hand: what role
does VC dimension play in our problem of catching ele-
phants? The main connection is through the concept of ε-
nets, which are defined as follows; we again refer an inter-
ested reader to [17] for further details.

Given a range space (X ,R ), a subset B⊆X is called an ε-
net for X if, for any range in r∈R , whenever |r∩X | ≥ ε|X |,
we also have that r∩B 6= /0. In other words, a subset B is an
ε-net if it has a non-empty intersection with any range that is
an elephant. The ε-net theorem of Hausler-Welzl [10] shows
that if we draw m independent random draws from X , where

m ≥ max
(

8d
ε

log
8d
ε

,
4
ε

log
2
δ

)
(1)

then this random sample is an ε-net with probability at
least (1− δ). There are deterministic constructions of ε-
net as well [4] of size O( d

ε log d
ε ), however, those algo-

rithms are quite expensive in running time complexity and
complicated to implement, which makes them ill-suited
for the lightweight computing model of sensor networks.
(For instance, the deterministic scheme in [4] runs in time
O(|X |d3d( 1

ε )2d logd( d
ε )).)

At first glance, the ε-nets seem to be just the right tool for
our problem, using the following simple scheme:

If we are interested in elephants of VC dimension at most
d, we compute an ε-net for VC dimension d, and simply
monitor the O( d

ε log d
ε ) nodes (mice) of this net. As soon

as any node s in our ε-net reports signal value σ(s) = 1, we
declare that a large event has occurred.

While clearly simple and scalable, this scheme suffers
from the following two major drawbacks, which make it ill-
suited for our problem.

• False Alarms: The scheme has no guarantee that the
events caught are elephants. This is because the ε-nets



offer only a one-sided guarantee: they only tell us that
whenever a large event occurs, at least one node of the
ε-net will also detect it. But they lack the equivalent
guarantee in the other direction: events that intersect
the ε-net need not be large (indeed, in the worst-case,
the event may include just one node of the network).
A good alarm-raising mechanism, on the other hand,
should come with an “if and only if” guarantee: large
events should, of course, be caught, but any event re-
ported to be an elephant must also have a guarantee
of being sufficiently large. This is especially critical in
applications like remote environmental monitoring and
surveillance, where investigating a false alarm can be
both costly and inconvenient.

• No Size Estimation: The ε-nets attempt only to catch
the ranges whose size is above the εn threshold—they
are not designed to estimate the size of the range. Thus,
even when they catch an elephant, ε-nets offer no guar-
antee on the actual size of the event.

There is a classical strengthening of the ε-net, called ε-
sample (also known as ε-approximation), which remedies
both these problems, but unfortunately requires much larger
sample size [10, 17, 26]. Specifically, if we are willing to
maintain a sample of size

Θ
(

d
ε2 log

d
ε

+
1
ε2 log

1
δ

)

then one can estimate the size of any range within additive
error O(εn). However, since the size of this ε-sample is Θ( 1

ε )
times larger than the ε-net, it does not scale nearly as well.

In the following section, we show that by using the ε-nets
not on the original range space, but instead on their sym-
metric differences, we can remedy both problems mentioned
above without increasing the asymptotic size of the sample
set. We first describe the combinatorial result, then discuss
the algorithmic aspects of the scheme.

3 Catching Elephants with Guarantees
In order to ensure a two-sided guarantee on the size of

the events detected using sparse samples, it turns out that
the key idea is to work with the symmetric differences of the
ranges. For ease of presentation, we will frame our discus-
sion in terms of circular ranges, but it will be self-evident
that the approach is completely general.

3.1 ε-nets with Symmetric Difference
Consider two circular disks D1 and D2 in the plane. Their

symmetric difference, denoted D1⊕D2, is the set (D1∪D2) \
(D1 ∩D2), namely, the set of points that are in one but not
both the disks. We will be mainly interested in situations
when the two disks have a non-empty intersection. Clearly,
the notion of symmetric difference holds for any two sets, not
just disks, and does not require the two sets to be of the same
type (see Figure 2 for an illustration). An important property
of the symmetric difference is that it does not increase the
VC dimension of the underlying range spaces too much. In
particular, we have the following.

D1

D2 D1 ∩ D2

D1 ⊕ D2

D2

D1 ∩ D2

D1 ⊕ D2

D1

Figure 2. The symmetric difference of two disks (on the
left) and a rectangle and an arbitrary convex set (on the
right).

LEMMA 1. Let (X ,R ) be a range space of VC dimension
d. Then, the range space (X ,R ′), where R ′ is the set
of ranges defined by the symmetric differences of pairs of
ranges r1,r2 ∈ R, has VC dimension O(d logd).

The proof of this fact follows from two observations: (1)
the VC dimension of a range space equals the VC dimension
of its complement range space, where each range r in the
original space has a member r′ = X \ r in the complement;
and (2) the range space obtained by taking the unions or the
intersections of two range spaces of VC dimension d have
VC dimension O(d logd). An interested reader may consult
Matousek [17] for more details.

Using the idea of symmetric differences, we now propose
the following scheme for catching elephants, where S is the
set of sensors, d is the maximum VC dimension of the events
we want to catch, and ε is the fraction that defines an elephant
event.

CATCHELEPHANTS (S,d,ε)
1. Let d′ = O(d logd) be the dimension of the symmetric

difference of range spaces derived from dimension d
ranges.

2. Construct an ε
4 -net for S with respect to the symmetric

difference ranges of dimension d′. By the result of [10],
such a net can be constructed with high probability by
taking O( d′

ε log d′
ε ) random samples from S.

3. Let M be the set of nodes chosen as the ε
4 -net, namely,

our monitors or mice. Let T ⊆M be the subset of moni-
tors with boolean value 1—this is the intersection of the
event with our monitoring set.

4. Compute a disk D containing the locations of all the
nodes in T and excluding the locations of all the nodes
in M \ T . (Any arbitrary choice for such a disk will
do, but we could also compute the smallest such disk.)
Since the base station knows the locations of all the sen-
sors, such a disk can be computed locally at the base
station.

5. Compute the size K = |S∩D|, the number of sensors in
the network that lie inside the disk D.



6. If K ≥ 3εn/4, then report the event as an elephant, with
K as its predicted size. Otherwise, the event is not an
elephant.

The following theorem establishes the correctness of this
algorithm, and proves that the algorithm catches all events of
size at least εn (the elephants) and never reports an event of
size less than 1

2 εn (two-sided guarantee). For events whose
size lies in the range (εn/2,εn), the algorithm is free to go ei-
ther way—this is the approximation gray zone. In our proof,
we continue to focus on circular disks, but the result is com-
pletely general, as we will argue following the proof of the
theorem.

THEOREM 1. Let E be an event in the sensor network, and
let K be its size estimated by the algorithm CATCHELE-
PHANTS. Then,

(K− εn
4

) ≤ |E| ≤ (K +
εn
4

).

PROOF. Suppose the true event is induced by the disk D∗,
while our algorithm estimates it with disk D. We first observe
the following fact:

T ⊆ D∩D∗, (2)

where recall that T ⊆ M is the set of monitors with value 1.
This is true because all sensor locations with value 1 must
clearly be inside D∗, and they are included in D by construc-
tion.

Let K∗ = |E| be the true size of the event E. Then, we note
that our estimation error |K∗−K| is bounded by the number
of sensor nodes that lie in the symmetric difference D⊕D∗:
this follows because D∗ \D contains all those sensors that
are in D∗ but not included in D (the undercount), and D\D∗
contains all those sensors that our construction puts in D but
are not in the true event (the overcount).

The key observation is that there is no monitor node in the
symmetric difference, that is, M∩ (D⊕D∗) = /0. This holds
because all monitors with values 1 are in D∩D∗, there are
no monitors with values 0 in D (by construction), and there
are no monitors with values 0 in D∗ by the property of the
event. By the ε-net property, however, this implies that the
number of nodes in the set D⊕D∗ is at most εn

4 . Thus, in the
worst-case, K can undercount or overcount |E| by at most εn

4 ,
which proves the claim.

One can see that this theorem immediately implies the
guarantee associated with CATCHELEPHANTS: every ele-
phant event is caught because its estimated size is never less
than 3εn/4, while no non-elephant event (of size less than
εn/2) can be erroneously caught because its estimated size
is always less than 3εn/4. For events of size in the range
(εn/2,εn), the algorithm can decide either way, depending
on the disk D found in Step (4). But all these decisions are
consistent with our approximation guarantees.

Remark: Technically speaking, the preceding theorem and
its consequences should be written as probabilistic state-
ments because we are using random sampling to compute

an ε-net. For sake of simplicity, we have chosen to omit this
qualifier. All our results, however, remain true even in the
worst-case because deterministic constructions of ε-net are
also possible; we have just opted to use the randomized ver-
sion because in practice this is the construction of choice.

Remark: One step in the above described approach, which
allows us to use the smaller size ε-nets instead of ε-
approximations, is to classify the ranges with respect to how
they intersect the ε-net—in this way we have approximately
classified the ranges with respect to their size. A similar idea
of putting the ranges in equivalence classes with respect to
intersections with an ε-net was also used in [18] in their proof
of Theorem 1.3.

3.2 Universal Guarantees
It is easy to see that the scheme CATCHELEPHANTS

works for any range space of VC dimension d, and not just
disks. The proof of Theorem 1 is purely combinatorial, rely-
ing on the set-theoretical properties of symmetric difference
and ε-nets, and not the specific geometry of disks. In partic-
ular, the only place where we use disk in any significant way
is the Step (4) of CATCHELEPHANTS, where we compute a
disk D separating all monitors with value 1 from those with
value 0. In the general scheme, D can be replaced by any
geometric shape of VC dimension at most d—it need not be
of the same shape as the event! This works because we only
require that the symmetric difference D⊕D∗ has VC dimen-
sion O(d logd), which holds as long as each of D and D∗
have VC dimensions at most d; we are abusing the notation
D and D∗ slightly to denote generic shapes of dimension d.
However, algorithmically we need more specific knowledge
of the event geometry to find a feasible separating shape. We
will discuss these algorithmic aspects in the next section, and
conclude our discussion by stating our combinatorial theo-
rem.

THEOREM 2. Given a set S of n sensors in the plane, a
user-specified parameter ε, where 0 < ε < 1, we can choose
a subset M ⊂ S of size O

(
d logd

ε log d logd
ε

)
that serves as a

universal sample for catching every ε-event (elephant) of VC
dimension at most d, with an approximation error of ± εn

4 .

In the next section, we address some of the algorithmic is-
sues behind CATCHELEPHANTS, and discuss several heuris-
tic improvements that we implemented.

4 Algorithmic Issues, Heuristic Improve-
ments, and Optimizations

There are two main algorithmic issues that arise in the im-
plementation of CATCHELEPHANTS: computing the ε-nets
(Step 2) and determining an appropriate range D separating
the subset of nodes with boolean value 1, namely, T from the
subset with boolean value 0, namely, M \T (Step 4). We be-
gin with the algorithmic details of Step 4, and then describe
our heuristic improvements and optimizations that lead to a
dramatic reduction in the sample size.



4.1 Computing Geometric Separators
Step 4 of CATCHELEPHANTS requires specialized algo-

rithms for computing a member of the event class sepa-
rating the locations of T from those in M \ T . For some
classes, such as axis-parallel rectangles, the algorithm is triv-
ially straightforward and efficient (running in time O(|T |)).
The key observation is that if any rectangle separates T from
M \T , then the minimal (smallest-area) rectangle containing
T also separates them. The minimal rectangle containing T
is determined by the (upto) four points that have the mini-
mum and the maximum x and y coordinates in T , which can
be found in linear time by a single scan of T .

For other shapes, such as circles and ellipses, more so-
phisticated algorithms are called for. In general, the mini-
mality property exploited above for axis-parallel rectangles
also is false for shapes such as circles, ellipses, or triangles.
In other words, one can easily show examples where the min-
imal (by area, perimeter, or any other natural measure) shape
of a class containing T may also contain some members of
M \ T , while there exists another non-minimal shape sepa-
rating T from M \T . As a result, various well-known algo-
rithms from computational geometry for finding minimum
area enclosing shapes (circle, ellipse, triangle etc.) [9, 20, 28]
are not useful in our setting—we require separating geomet-
ric objects, not enclosing ones. However, basic ideas from
those schemes can still be used to frame the problem as a
quadratic or semi-definite programming problem. Below we
briefly describe details of these formulations for separation
by circles and ellipses.

4.1.1 Separating Circles

In order to find a circle that separates the points in T from
those in M\T , we formulate the problem as a special kind of
a quadratic program. The objective function of the formu-
lation is convex quadratic function, the constraints are lin-
ear, and the program involves a constant number of variables
a,b,c:

min (a2/4+b2/4+ c) s.t.

ax+by+(x2 + y2) ≤ c, (x,y) ∈ T

ax+by+(x2 + y2) ≥ c, (x,y) ∈M \T

Intuitively, a circle is determined by 3 unknowns, the co-
ordinates of its center and its radius. In the formulation
above, we solve for the three unknowns a,b,c such that the
circle with center (a/2,b/2) and radius (a2/4+b2/4+c)1/2

contains all the points of T inside it, and all other points out-
side it; this particular form of the expression helps simplify
the algebraic manipulation. Our objective function therefore
seeks to find such a circle with the smallest radius. (The
reader familiar with geometric duality will recognize that
this is an instance of paraboloid transform: circular separa-
bility in two dimensions (R2) is mapped to planar separabil-
ity in three dimensions (R3). Specifically, points of the (x,y)-
plane are mapped onto the paraboloid z = x2 + y2. Thus, the
point (u,v) lifts to the point (u,v,u2 +v2) in 3-space. The key

observation is that the intersection of any non-vertical plane
with the paraboloid projects to a circle on the x–y plane, and
so a plane that has all transformed points of T below and all
transformed points of M \ T above projects to a circle sep-
arating the two sets. As a result, the problem of finding the
minimum radius circle separating T and M\T can be written
as linear separability in three variables, as shown above.)

The key point is that such a constant-dimensional math-
ematical programming problem can be solved in time lin-
ear in the number of constraints using the technique of
Megiddo [20].

4.1.2 Separating Ellipses

The problem of finding an ellipse separating two point
sets can also be formulated and solved using linear program-
ming. The following mathematical program describes the
formulation of the ellipse separability:

min 0 s.t.
p′Ap+B′p+C ≥ −1, p ∈ T
p′Ap+B′p+C ≤ −1, p ∈M \T

A ≤ −I,

where p denotes a point in vector form, and the 2× 2 ma-
trix A, the 1× 2 matrix B, and the scalar C encode the un-
known coefficients representing the ellipse in standard form.
Z′ denotes the transpose of the matrix Z, and I is the identity
matrix.

In addition to circles and ellipses, many other simple sep-
aration problems can be expressed using these techniques as
a linear program. In fact, any shape that has a fixed-degree
polynomial representation can be solved this way.

4.2 Heuristic Improvements to Monitoring
Sets

A straightforward application of Theorem 2 yields highly
pessimistic bounds for the size of monitoring sets. Like
many worst-case theoretical bounds, this is an artifact both
of the difficulty of exact analysis as well as the inherent na-
ture of worst-case analysis, which tends to focus on rare
pathological cases. In this section, we propose two ideas that
dramatically reduce the size of the monitoring sets in prac-
tice. The first idea is simply to use empirical data to estimate
the “degree of pessimism” built into the theoretical bound.
Through extensive simulations using a variety of data and
event geometries, we find that the size of the monitoring set
can be reduced in practice by a factor of fifteen without ever
sacrificing its error guarantees. The second optimization is
to use a redundancy-aware sampling to overcome some of
the ill-effects (clustering) of blind sampling. This further re-
duces the size of the monitoring sets by half. The two heuris-
tics together, therefore, lead to a factor of 30 reduction in the
sample size without compromising the error guarantees of
the scheme. We discuss these two heuristics in some detail
below.



4.2.1 Estimating Theoretical Pessimism

In order to empirically estimate the factor by which The-
orem 2 may overestimate the size of the monitoring sets in
practice, we carried out extensive simulations using several
different data sets of sizes varying from 2000 to 5000 points
in the two-dimensional plane. (These data sets are described
in more detail in the Simulations section, but briefly they
vary from uniform random, to clustered, to contour, to geo-
graphical features in a census data.) For each data set, we ex-
perimented with different event geometries (circles, ellipses,
and rectangles).

For a given data set, a given event geometry, and a given
value of ε, our experiment started with a monitoring set
matching the theoretical bound of Theorem 2, and then we
tried sets of successively smaller sizes, until the maximum
error of event-size estimation exceeded the theoretical guar-
antee of εn. A total of 30,000 event geometries were tested
for a given value of ε, as for each of the 15 dataset-event ge-
ometry pairs, we generated 2000 events randomly in the size
range [0.1n,0.3n]. Thus, a lower value of the monitoring set
was chosen only if all 30,000 random events are estimated
within the guaranteed approximation bound.
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Figure 3. The size of the monitoring set for various val-
ues of the parameter ε. The top curve is the theoreti-
cal bound; the second curve is computed by empirical
data. The third curve shows the improvement given by
Redundancy-Aware sampling, which is described in the
next subsection.

In Figure 3, we show a plot of the monitoring set size ver-
sus the maximum error observed for any event in the simula-
tion. In this experiment, we used only circle events, but the
results are identical for the other two event geometries (el-
lipses and rectangles) as well. There are three curves—the
topmost curve is the size required by Theorem 2; the second
curve (labeled Random Sampling) is the conservative size
observed empirically, which ensures the same error bound;
the third curve (labeled RA Sampling) is the outcome of our
redundancy-aware sampling, which we discuss in the next
subsection. The important conclusion is that the theoretical
estimate is at least 15 times larger than the conservative size
needed in practice. With the addition of Redundancy-Aware
sampling, which we discuss next, the overestimation in size
is by a factor of at least 30!

4.2.2 Redundancy-aware Sampling

Random sampling has the virtue of simplicity, but it also
tends to lead to larger-than-necessary sample sizes. The
well-known coupon collector’s problem is a particularly sim-
ple setting to observe this phenomenon. Suppose we have a
large bin containing multiple (equal number of) copies of
m colored balls, and we want to randomly draw samples
from the bin until we get at least one of each color. Then,
Θ(m logm) random draws on average are necessary (and suf-
ficient), while an “oracle” can clearly produce the outcome
with just m draws, never drawing two balls of the same color.
Similarly, in our application, the simple sampling can result
in redundant points near each other, which leads to more
monitors overall than necessary.

Lake (2500 nodes)

Figure 4. Regular random sampling (left), and
REDUNDANCY-AWARE sampling (right).

In order to further improve the size of the monitoring set,
we therefore employ a simple heuristic optimization: we dis-
card any sample that is “close” to a previously chosen sam-
ple, and resample. The notion of closeness, however, is cho-
sen carefully to reflect the combinatorial nature of the prob-
lem, and is not based on Euclidean distance. (Indeed, we
do want monitors to mimic the distribution of the underlying
sensor set, and therefore expect them to be packed densely in
clustered areas and sparsely in other areas. Thus, a uniform
distance-based resampling strategy will not work.) Our mea-
sure of “combinatorial distance” of two points u and v is the
number of points (sensor locations) that lie inside the circle
defined by uv as diameter.

Our sampling scheme, which we call REDUNDANCY-
AWARE sampling, is implemented in rounds, and in each
round a distance threshold is used to decide whether to add
the next node to our monitoring set or not. The threshold is
initially set to c|M|/(2k), where c is a small constant (set to
10 in our simulations), |M| is the target size of the monitor-
ing set, and k is the round number. In each round, c|M|/2
nodes are picked uniformly at random, and for each node
we perform the following simple test: if the minimum com-
binatorial distance of the new node from the current set of
monitors exceeds the threshold, then we add it to the mon-
itoring set; otherwise, we skip it. The process is continued
until we reach the target count for the monitoring set. Fig-
ure 4 shows an example of REDUNDANCY-AWARE sampling
on the Lake data set: one can readily see that the samples
chosen by REDUNDANCY-AWARE sampling (right) are much
more uniformly distributed than the blind random sampling
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Figure 5. An illustration of our scheme on the n = 5000 point Census dataset, with ε = 0.1. The monitors outside the
event are shown as solid triangles, while those inside the event (dead mice) are shown as solid squares. The dotted lines
show the geometry of the true event, while solid lines show the geometry of the event shape found by CATCHELEPHANTS.
The maximum estimation error in these examples is less than 0.01n, well within the target approximation guarantee of
0.1n. The maximum number of monitors in these examples is 140.

(left), which has the predicted clustering effect in several
places.

5 Simulation Results

In this section, we discuss the empirical performance
of our proposed scheme on a variety of synthetic and real
data using simulation. We begin by describing the general
methodology and parameters of our simulation study.

5.1 Methodology and Parameters
We use a number of different data distributions to cap-

ture aspects of different geographical settings in which large-
scale sensor networks may be deployed. We envision our
scheme to be useful for moderately large-scale sensor net-
works, so all our data sets are in the range n = 1000 to
n = 45000. The different data sets have the following char-
acteristics:

• Census is a portion of GIS data containing locations
of 5000 geographical features in the United States—
this set is suggestive of a large scale deployment around
physical sites in the world.

• Clustered is a synthetically generated set of 5000
points, 90% of which form 15 Gaussian distributed
clusters with random centers, and the remaining 10%
are distributed uniformly—this set is suggestive of a
mixed distribution where most sensors are part of a few
dense clusters, intermixed with a sparse background
uniform distribution.

• Lake data contains 2500 distributed uniformly at ran-
dom inside the boundary of Lake Huron—this set is
suggestive of a deployment inside a geographical area
with a complex boundary.

• Contour data is a portion of a weather isocontour, with
2000 points placed randomly on the boundary. Such a
set is potentially useful in settings when the sensors are
placed along the boundary of some region.

• Random is a synthetically generated set of points dis-
tributed uniformly at random inside a rectangle. We
used this data for various scalability experiments, with
n upto 100,000.

In all our experiments, the monitoring sets are constructed
by using REDUNDANCY-AWARE sampling, and their size is
chosen conservatively according to the empirical plot of Fig-
ure 3.

We use three natural event geometries: circles, ellipses,
and axis-aligned rectangles. Each event was associated with
a target size, which was typically chosen randomly in the
size [0.1n, 0.3n]. To generate a circle event, we choose its
center uniformly at random in the plane, and then grow the
circle until the number of points inside it reaches the target
count. To generate a rectangle event, we also choose a center
at random, and then grow the rectangle, keeping its aspect
ratio (width to height ratio fixed, which we set to two in our
experiments) until the number of points inside the rectangle
reaches the target. Finally, ellipses are generated by choosing
five random points, which define a unique ellipse. If number
of points inside this ellipse is not in the desired target range,
we try again.

Thus, there are 15 dataset-event geometry pairs, and for
each such pair we generated 2000 random events. Thus, each
of our experiment reports the cumulative outcome of these
30,000 tests. We now discuss the results of our simulations.

5.2 Qualitative Impression
We begin with some qualitative (visual) results to con-

vey the overall effectiveness of the scheme in dealing with
different event geometries and data sets. (We will discuss
the quantitative results, estimation errors, and scaling effects
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Figure 6. The figure shows detection of ellipse-shaped events on three different data sets: clustered, Lake, and Tem-
perature. The maximum estimation error in these examples is again less than 0.01n, while the target approximation
guarantee is 0.1n.

later, but these figures are meant to convey a general visual
impression of how well the event shapes computed by our
algorithm matches the true events.) Figure 5 shows the re-
sults of three different event geometries (circle, ellipse, and
axis-parallel rectangle) on the 5000 point Census data set.
Figure 6 is similar in nature, except it shows events of a sin-
gle shape family (ellipse) on three widely different data sets:
clustered, lake, and temperature. In both sets of figures, one
can see that our scheme performs quite well, and returns a
plausible event boundary that is very close to the truth.

Our next two experiments are designed to evaluate the
scalability of the scheme: how does the monitoring set scale
in practice as a function of ε, and the network size n.

5.3 Scaling of the monitoring set with ε
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Figure 7. The maximum error over all datasets versus
varying monitoring set sizes.

We vary the ε parameter from 0.16 down to 0.01, and for
each value of ε, we find the smallest monitoring set that cor-
rectly estimates the size of all 30,000 randomly generated
events (2000 events each of the three types, and for each of
the 5 data sets) within the approximation bound. The small-
est monitoring set is found using the method outlined in Sec-

tion 4.2.1, using the REDUNDANCY-AWARE sampling. Fig-
ure 7 shows the resulting plot of the monitoring set size as
a function of ε. As expected, the size of the monitoring set
grows inversely proportional to ε, but it is reasonably small
(less than 150) for all values of ε greater than 0.05.

Our next experiment verifies the scale-free property of our
scheme, namely, that the size of the monitoring set does not
grow with the network size.

5.4 Size of the monitoring set vs. Network size
In order to empirically demonstrate that our monitoring

set is scale-free, we used the synthetic random and clustered
data sets so we can test over a large range of network size.
For both data sets, we started with n = 1000, and we grew the
network size in increments of 5000, ending with n = 46,000.
Throughout this experiment, we use only two representative
values of the ε parameter, namely, ε = 0.05 and ε = 0.1. (The
results were nearly identical for other values of ε as well, but
we present only these two to keep the figure uncluttered.)

For each value of ε and each network size, we compute
the monitoring set and then test it against the randomly gen-
erated 2000 events each of the 3 types (circles, ellipse, and
rectangles) to ensure that it estimates the size of all events
within the approximation bound.

Figure 8 shows the plot of the monitoring set size versus
the network size. The figure clearly shows that the monitor-
ing set size is essentially constant over the whole network
size range.

Based on plots of Figure 7 and Figure 8, one can con-
clude that while for different data sets and network sizes, the
minimal size of monitoring set may vary a little, one can con-
servatively choose a size close to that predicted by Figure 7
as a safe estimate in practice.

5.5 Universality and Error Performance
In this experiment, we evaluate the error performance and

the universality of our scheme. For each data set, we fix a



Dataset Shape Maximum Error Average Error
0.125 0.050 0.025 0.125 0.050 0.025

Circle 0.0945 0.0471 0.017 0.0528 0.0218 0.0081
Random Rectangle 0.0835 0.0481 0.022 0.0392 0.0171 0.0073

Ellipse 0.0754 0.0310 0.0102 0.0145 0.0067 0.0025
Circle 0.0926 0.0356 0.0154 0.0376 0.0157 0.0060

Census Rectangle 0.1071 0.0463 0.0184 0.0355 0.0154 0.0066
Ellipse 0.0536 0.0254 0.0100 0.0117 0.0056 0.0022
Circle 0.0981 0.0359 0.0138 0.0438 0.0174 0.0066

Clustered Rectangle 0.1024 0.0421 0.0165 0.0351 0.0160 0.0066
Ellipse 0.0482 0.0216 0.0110 0.0120 0.0059 0.0024
Circle 0.0595 0.0315 0.0107 0.0324 0.0126 0.0045

Contour Rectangle 0.0794 0.0357 0.0180 0.0320 0.0159 0.0056
Ellipse 0.0455 0.0155 0.0071 0.0090 0.0040 0.0015
Circle 0.0791 0.0367 0.0140 0.0390 0.0163 0.0058

Lake Rectangle 0.0942 0.0486 0.0240 0.0315 0.0142 0.0054
Ellipse 0.0548 0.0280 0.0092 0.0128 0.0058 0.0023

Figure 9. Comparison between the error produced by using different event shapes on different datasets.
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Figure 8. The monitoring set sizes for ε = 0.05 and 0.10
for different network sizes.

value of the parameter ε, and compute the universal sam-
ple for that ε (assuming a VC dimension commensurate with
our three event geometries). We then use this monitoring
set to approximate the events of all three geometries (circles,
ellipses, and rectangles)—as before, we use 2000 random
events of each class. We measure both the maximum error
and the average error of approximation. This experiments
reveals some more details of the behavior of different data
sets and different geometries that had been aggregated in the
earlier experiments.

We also use three different values of ε, namely,
0.125,0.050, and 0.025. The results are shown in Figure 9.
In all cases, both the maximum and the average error are well
within the target approximation factor ε. We also observe
that, in general, the error is larger for circles and rectangles
than ellipses. This is largely due to the fact that our algo-
rithm computes a minimal separator for circles and rectan-
gles, which tend to bias the results towards the lower bound
in the size estimation. This effect disappears if we also use
any feasible separator for circles and rectangles, instead of a
minimal one; those results are not reported here.

5.6 Estimation without Geometry:
Proportionate Scaling

Our scheme CATCHELEPHANTS requires some knowl-
edge of the event shape class to compute its hypothesis event
D (Step 4). While the scheme is quite robust in the sense that
any shape of the VC-dimension d will serve, still it entails a
certain computational overhead. It may, therefore, be tempt-
ing to try a simpler heuristic: estimate the event to have size
n|T |/|M|. (Since |T |/|M| fraction of the monitors are in the
event, we estimate the same fraction of the whole network
to be in the event.) This scaling-based scheme has no prov-
able theoretical guarantee—indeed, the theory of ε-sample
shows that such a guarantee can only be assured with at least
Ω( d

ε2 log d
ε ) samples—yet it is instructive to see how it per-

forms in practice.
The influence of the extra 1/ε term in the sample size is

prominent only when ε becomes small. Therefore, we fo-
cused on the values of ε between 0.01 and 0.001, and ran ex-
periments on the synthetic random and clustered data sets
of n = 100,000 points. Again, we use all three event geome-
tries, generating 2000 random events for every dataset-event
geometry pair in the range [0.1n,0.3n]. Figure 10 summa-
rizes the results of this experiment, and shows that in general
the estimation error of the scaling-based well exceeds the
target approximation error, approaching 9 times the target
error when ε = 0.001. However, when ε is relatively large
(say, 0.1), even this simplistic method gives acceptable per-
formance, and may be a useful alternative to our geometry-
based counting.

6 Related Work

Detection of events in sensor networks is a very broad
topic and, indeed, a major application domain. It is beyond
the scope of this paper to even attempt a comprehensive sum-
mary of all the research threads related to this rich topic. In-
stead, we briefly touch upon some of the work that is related



Target ε Error of the Ratio
Scaling Scheme

0.01 0.021 2.10
0.008 0.0198 2.47
0.006 0.0185 3.08
0.004 0.0158 3.95
0.002 0.0120 6.0
0.001 0.089 8.9

Figure 10. Relative estimation errors for the scaling-
based counting scheme. Thus, for ε = 0.001, the estimate
of the scaling scheme has roughly 9 times the target error.

to our narrow focus in either by the nature of technical prob-
lems considered or by the technical approach used.

One important thread concerns the extraction of “bound-
ary” in sensor networks, which can abstractly be thought of
as determining the extent of an event embedded in the sen-
sor field [5, 15, 21, 23, 27]. There are also schemes for
representing the boundary of an event or signal landscape
of the sensor network compactly using in-network aggrega-
tion [3, 8, 11, 24]. Then there are contour-based methods for
deciding the type of an event [31]. Our focus is quite dif-
ferent from this thread of research, as we are not interested
in a detailed boundary description of the event, but only in
detecting its onset and, as a result, our methods are also fun-
damentally different.

Another thread of research involves detecting holes and
topological features of a sensor networks [7, 14]. The fo-
cus of this work is to use local connectivity to infer global
features, but they are interested in static features and require
participation of all the nodes in the network. By contrast, we
are interested in external events that appear dynamically, and
our major focus is the very sparse sampling of the network.

In terms of techniques, our work draws inspiration from
Kleinberg et al. [12, 13] and Shrivastava et al. [22]. In [12,
13], the authors consider a network failure problem in a
wired network, where the goal is to detect a network par-
tition under the assumption that an adversary can delete upto
k links or nodes of the network. They also use the VC dimen-
sion framework to show that the dimension of the set-system
for this graph-theoretical problem is polynomially bounded
in k. Shrivastava et al. [22] considered the network partition
problem in the sensor network setting, and focused on geo-
metric cuts defined by straight lines—that is, an adversary
can kill all communication between two sides of a linear cut.

The VC dimension based techniques are a common thread
between our work and these papers, but otherwise there are
significant differences. The work in [12, 13] focuses en-
tirely on graph networks, whereas geometry of events plays
a central role in our research. Another main technical dif-
ference is the two-sided guarantee of approximation—the
results of [12, 13] suffer from the same two drawbacks we
mentioned in Section 2. The methods of [22] are limited to
linear network partition, while our scheme is applicable to a
very broad class of event geometries.

7 Closing Remarks
Sensor networks are an ideal technology for enabling

(cost-effective) large-scale and fine-grained surveillance and
monitoring. A fascinating algorithmic challenge posed by
these distributed, resource-starved systems is to stitch to-
gether a “global” picture from local sensing of individual
nodes. Our work is a contribution in this general quest,
where we show the collaborative power of a small number
of well-chosen nodes in detecting events that affect a non-
trivial portion of the network.

The idea of using a random sample to catch large events
is not particularly novel. Our contribution, however, lies in
quantifying the necessary size of the sample, using a uni-
versal measure of geometric complexity, namely, the VC di-
mension; the VC-dimension bounds are a refinement of the
classical Chernoff-style bounds. Our second contribution is
to bridge the gap between theory and practice: in particu-
lar, while our sampling theorem gives a near-ideal theoretical
bound, that bound proves to be infeasibly large in practice.
Our heuristic improvements and empirical tuning conserva-
tively reduce the sample size by a factor of 30, making the
approach eminently practical.

In order to derive theoretically rigorous results with
worst-case guarantees, we needed to make several simplify-
ing assumptions in the paper. For instance, we assumed that
all sensors are identical and the physical size of the event is
reflected in the number of sensors that lie inside the event.
In practice, however, one may assign different level of im-
portance to different sensors (for instance, to reflect different
sensor density). In this case, our scheme extends easily: we
simply assign weights to sensors, normalize the sum to 1,
and look for events that affect ε fraction of the weight. We
also assumed that sensors have well-defined circular sensing
range, whose radius is small compared to the size of the event
being detected, and the detection is error-free (no false pos-
itives or negatives). These are fairly standard assumptions
in sensornet research, consistent with a threshold-based ap-
proach to sensing. However, it is well-known that the sensing
performance is far from this ideal, and modeling the geom-
etry of realistic sensors is a challenging future direction for
research.

One possible way to relax the constraints of perfect sens-
ing and tightly-defined event geometries is through the use
of a buffer region, as in the quasi-disk model of wireless
transmission. Specifically, we may assume that the event
boundary is defined by two nested circles (or other simple
shapes) such that all sensors inside the inner circle or outside
the outer circle detect the event perfectly (the inner ones re-
port 1 and the outer ones report 0), while the sensors in the
“annulus” between the two circles have unreliable detection.
Our methodology works in this more general setting, except
more sophisticated algorithms are needed for the geometric
separation.
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