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Abstract

Let be a set of points in in general position, i.e., no
points on a common -flat, . A -set

of is a set of points in that can be separated from
by a hyperplane. A -facet of is an oriented -

simplex spanned by points in which has exactly points
from on the positive side of its affine hull.

If is a planar point set and is even, a halving edge
is an undirected edge between two points, such that the con-
necting line has the same number of points on either side.
The number of -sets is twice the number of halving
edges. Inspired by Dey’s recent proof of a new bound on the
number of -sets we show that

where is the number of halving edges incident to point
and is the number of crossing pairs of halving edges.

The identity allows us, among other things, to determine the
maximum number of halving edges in a set of 12 points. An
analogous identity holds for -facets.

For in we show that for the number
of ( )-facets (i.e., -facets with ) is maximized
for sets in convex position, where this number is known to
be

For , is the tight
upper bound for the number of -sets (i.e., -sets with

).
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Finally we discuss the relation between the vector of
numbers of -sets, and the vector of num-
bers of -facets, for a given point set. In
the plane the number of -sets equals the number of -
facets. In the -set vector determines the -facet vector
(and vice versa) by a linear relation. There is no such relation
in for exceeding 3.

These results can be obtained by arguments via continu-
ous motion of one point set to another while observing cer-
tain quantities related to -sets and -facets. For the relation
between -sets and -facets in , we give a more direct
argument via so-called -set polytopes.

1 Introduction and basics

Let be a set of points in in general position, i.e., no
points on a common -flat, .

-Sets. A -set of is a set of points in that can
be strictly separated from by a hyperplane. We de-
note by the number of -sets of , and by the
number of -sets, i.e., . If is
understood, we write and short for and ,
respectively.

In the plane, an upper bound of on was
given in [ELSS] (see also [Lo]), where also sets with

were described (see [EW] for an alternative
construction). After the improvement of the upper bound
to in [PSS] in 1989, Dey recently
provided a further substantial improvement of the bound
to (building upon considerations in [AAS]). In
, the best upper bound is from [AACS], for

general , and from [DE], for (improving on
bounds in [BFL, ACEGSW, Ep, AAS]). In bounds of
the form for some small have
been obtained recently in [AACS] (see [ZV, AAS] for previ-
ous steps).

The situation is much better understood for -
sets, where [CS] provide an asymptotically tight bound of

(this bound is attained by points on the mo-
ment curve), and in the plane there is even a tight upper
bound of for [AG, Pe].



For a more complete account of the history of the prob-
lem, for related notions and applications in computational
geometry, see the survey [AW]. Remarkably, almost all al-
gorithmic applications and also almost all proofs of bounds
proceed actually via a different notion (and its dual) which is
described next.

-Facets. A -facet of is an oriented -simplex
spanned by points in which has exactly points from
on the positive side of its affine hull.

We denote by the number of -facets of , and
by the number of -facets, i.e.,

. If is understood, we write and short
for and , respectively. The term “facet” is jus-
tified by the fact that the -facets of are exactly the facets
of the polytope . There is a relationship between
the maximum number of -sets and the maximum number
of -facets of sets of points, although this relation
has never really been worked out carefully. In addition, the
reader should be aware of ambiguities concerning the notion
of -facets in the literature.

Results. In Section 2, we give an identity for the planar
case concerning the number of crossings between -facets
(which we call -edges in the plane) and the sequence of
numbers of -edges incident to points . In this ex-
tended abstract we restrict the proof to halving edges—these
are the undirected versions of -facets under the as-
sumption that is even; see Theorem 1. The discovery of
the relations was inspired by Dey’s recent proof of the new

bound for planar -sets. In fact, this bound fol-
lows also directly from the identities via a known lemma on
the number of edges of graphs which can be embedded in the
plane with few crossings ([ACNS, Lei]).

Section 3 provides exact upper bounds on the number of
-facets and the number of -sets in , provided

and is not too large (roughly ); see Theorem 2.
Finally, in Section 4 we show that the vectors

and determine each other in by
a linear relation (for this is simple); see Theorem 3. In
fact, this allows us to infer the tight bound on -sets di-
rectly from the bound on -facets, so we have to provide
a proof for the latter only.

Back to -facets. A sequence of linearly
independent points in partitions the space into two open
halfspaces and a hyperplane (the affine hull of ):
Points for which the sign of the determinant of the ma-
trix with rows , , is positive, points
for which the sign is negative, and points for which the sign
is 0. We denote this sign by . So a -
facet can be specified by a sequence of points
in such that for exactly points in
. In fact, we will use the notation for -facets,

meaning all permutations of which can be ob-
tained from that sequence via an even number of transposi-
tions of adjacent elements (since this will not change the sign

of the determinant with a -th point ). An odd number
of transpositions in this sequence will change a -facet into
an -facet.

For our proofs we want to make explicit that the structure
of -facets of is completely determined by
the signs ,
. If we move the points in , then no -facet will change its
index (i.e., the value ), unless one of these signs changes.
If the sign changes for exactly one such tuple , then only
-facets composed of of the points in change their index,
either to or to .

Moving around. In our proofs we consider the changes
in while the point set moves continuously. We will assume
that during the motion the set stays in general position, ex-
cept for a finite number of discrete instances, where the sign
of exactly one -tuple changes.

Of course, this paradigm is not new for the analysis of
configurations in combinatorial geometry. Tverberg’s orig-
inal proof of his famous generalization of Radon’s theorem
is a prominent example [Tv]. Recently, continuous motions
were used also in the context of -sets by Gullikson and Hole
[GH].

2 Planar identities

Let us briefly recapitulate the set-up for this section. We
are given a set of points in the plane, even, such that
no three points lie on a common line. A halving edge is an
undirected edge between two points, such that the connecting
line has the same number of points on either side; sometimes,
when we refer to such an edge we mean the straight line
segment connecting its endpoints. Two halving edges cross,
if their segments intersect in a single point in their relative
interiors.

Theorem 1

(1)

where is the number of halving edges incident to
(this number is always odd), and is the number of pair-
wise crossings of halving edges.

Implications. Before we proceed to the proof, let us ex-
hibit three implications of this identity, most prominently
Tamal Dey’s recent bound on the number of halving edges
(which relates to -sets by the fact that the number of -
sets is twice the number of halving edges).

Corollary 1 ([De]) The number of halving edges of is
bounded by .

This bound is a direct consequence of the inequality
which follows from Identity (1) and the fact that a

graph with vertices embedded in the plane with edge
crossings cannot have more than edges
([ACNS, Lei], see also [PT, PA]).



Figure 1: Point configurations which maximize the number of halving edges.

Corollary 2 If , even, denotes the maximum possible
number of halving edges of points in the plane, then
, , , , , and .

The numbers for were previously known (see
e.g., [Fe], where was determined by a computer-aided
enumeration of all possible combinatorial configurations of
10 points in the plane). Figure 1 displays configurations
which realize the quantities claimed in the corollary. All
upper bounds can be readily derived from the inequality

implied by Identity (1), in con-
junction with the facts—implied by Lemma 1 below—that
every point is incident to an odd number of halving edges,
and that there are at least three points incident to exactly one
halving edge (extreme points must satisfy this condition).
For example for 12, this implies that observing these con-
straints the sum is maximized for the “degree
sequence” .

Corollary 3 ([PS]) allows a perfect cross-matching (a
partition into edges such that any pair of such edges crosses),
iff has exactly halving edges.

First observe that in a perfect cross-matching, every edge is
halving. Identity (1) tells us, that if there are already
crossings among halving edges, then for all
, and thus there cannot bemore halving edges beyond those

in the perfect cross-matching. On the other hand, if there are
halving edges, then for all (since has

to be at least 1 in any case), and thus there must be
crossings. That is, the halving edges pairwise cross and
form a perfect cross-matching.

Next we prepare two ingredients for the proof of Theo-
rem 1.

Lovász’ Lemma. Let be a line through point
which misses all other points in . Then there is a unique
side of which contains the majority of points from .
Call this side the large side of , and the other open halfplane
determined by the small side of .

Lemma 1 ([Lo]) If a line contains a unique point in ,
and there are halving edges incident to emanating into
the small side of , then there are halving edges ema-
nating into the large side of .
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Figure 2: Local changes during mutation.

The lemma can be proven by rotating a line about point
starting in position until it coincides with again. The

halving edges incident to are encountered in alternation on
the large and small side of , starting and ending on the large
side.

In fact, the lemma completely characterizes the graph
of halving edges of a point set. Simple implications of the
lemma which we have mentioned before are that the num-
ber of halving edges incident to a point in is always odd,
and that there is exactly one halving edge incident to each
extreme point of .

Mutations while moving. Recall from the introduction,
that if we start moving the points in , the graph of halv-
ing edges will not change unless a triple of points
becomes collinear and changes its orientation. Even then,
the graph of halving edges will not change except for edges
on . Following the terminology of oriented matroids
(cf. [BLSWZ]), we call such a change of orientation a muta-
tion.

Let us investigate such a mutation on three points
. We assume that this is the only mutation that oc-

curred (i.e., there is no other simultaneous mutation), and
that the points stayed disjoint when they passed though
collinearity. First we consider only the case when is
a halving edge before mutation, and that lies on the seg-
ment connecting and at the moment of collinearity (see
Figure 2). Hence, and are not halving edges
before mutation. After mutation, is not halving, but

and are. That is, the number of halving edges
increased by one, and no degree in the graph of halving edges
changed except for point , whose degree increased by 2.

What happened to crossings of halving edges? If we ig-
nore edges incident to , then nothing changes. Crossings
with the edge are replaced by crossings with or

after mutation. As for the edges incident to , let
be a line through parallel to the segment connecting and
. The halfplane of containing is the large side of
, before and after mutation. If is the number of halving
edges incident to emanating into the large side of before
mutation, then these edges were responsible for crossings
with . These crossings disappear after mutation. No
new crossings appear.

Let and denote the number of halving edges

incident to before and after mutation, respectively. Note
that and . Let and
denote the number of crossings of halving edges before

and after mutation, respectively. We have , and
so

which proves that the validity of Identity (1) is not affected
by the mutation, since no degree other than changes
during mutation.

Now recall that we assumed that was a halving
edge before mutation. However, the mutation described, and
its inverse, are the only types of mutations affecting the graph
of halving edges and its crossings.

Proof of Theorem 1. First observe that for all even
there is a set of points which satisfies Identity (1).
The vertices of a regular -gon, or the vertices of a regu-
lar -gon together with its center are easy examples.
Now it remains to use the fact that any two sets of points in
general position can be continuously transformed into each
other in such a way that the points remain pairwise distinct,
they never have more than one triple of points collinear, and
such a collinearity occurs only finitely often.

Other identities. A simple algebraic manipulation al-
lows us to rewrite Identity (1) as

Let denote the number of -edges1 emanating from
point (which equals the number of incoming -edges). Let
denote the number of crossings of -edges, and for ,

let denote the number of crossings between -edges and
-edges. Then (reading as 0) we have

for , and

for . (The latter identity allows im-
provements of previous bounds in [We] on , for

.) Proofs follow from an analysis of muta-
tions as in the proof given here, and will be given in the full
version of the paper.

1Recall, that we use “ -edges” for -facets in the plane.



3 -facets and -sets in

Theorem 2 Let be a set of points in general position in
. Then

for , and

for . Both bounds are attained for sets in convex
position.

Recall that in the plane a tight bound of and
is known for and ([AG,

Pe]). In , the number of -facets is
for every set of points in convex position ([Lee, CS,

Sh]), and by Theorem 3 below this implies that the number
of -sets is (see also [GH]). The
theorem above quotes the resulting numbers of -facets
and -sets for point sets in convex position. In our proof
we will show that we can always move a point set in
into convex position while the numbers , ,
never decrease. This gives the result claimed for -sets.
Theorem 3 below yields , so
the bound for -sets can be easily obtained, too.

So we consider a set of points in , and ana-
lyze the effect of mutations of on the vectors and .

Amutation is the situation that four points become copla-
nar and change their sign as discussed in the introduc-
tion. More formally, a mutation is a triple ,
where , , and

are ordered point sets, and
in general position, such that: (i) ,

, and . (ii) For
, , we have

(iii) There is a continuous motion from to and from
to with all intermediate stages in general position.
If is a -facet in , then we call the index

of the mutation.

Convex mutation. We call a mutation a convex muta-
tion, if the sequence forms a convex quadrilat-
eral in its plane (referring to the notation as set above); see
Figure 3. This scenario is characterized by the fact that for
all points , is on same side of all oriented facets

, , , and . In fact,
because of (ii) and (iii) above, this is true for all points in

, even if we replace the “0” by “+” in the
superscripts.

It follows that is a -facet that turns into a
-facet , since it “gained” on its pos-

itive side, turns from a - to a -facet,

and and turn from - to -facet.
Hence, vector (and thus ) does not change during a con-
vex mutation.

Mutation through triangle. We call a mutation a mu-
tation through triangle, if is in the convex hull of

; see Figure 4. This is characterized by the
fact that for all points , is on the same side of
all oriented facets , , , and

.
Hence, if is a -facet, then

turns from a -facet to a -facet, while ,
, and turn from -facets to -

facets. That is, the number of -facets increases by two,
while the number of -facets decreases by the same
amount. There is also a mirrored change in the number of

and -facets, which may lead to
interferences if is close to . This is taken care of in the
following lemma.

Lemma 2 For a mutation through triangle with index ,
with the four numbers and
distinct, we have

If , then

If , then

If , then

No other changes than those indicated above occur in and
. In particular, no changes occur if .

REMARK. The lemma can be readily generalized to a
description of changes of the vectors and , and to
dimensions . Note that there is one type of mutations
in the plane and there are two types (“convex” and “through
triangle”) in . In such mutations can be classified by
a parameter , . Details follow in the full
version.

We extract the implication of Lemma 2 relevant for our
purposes.
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Figure 4: Through-triangle-mutation (seen from the positive side of ).

Corollary 4 In a mutation through triangle with index no
entry in the vector decreases.

Proof of Theorem 2. We show now that we can contin-
uously transform every point set into a set in convex posi-
tion such that decreases for no . We know
that it suffices to ensure that the index of each mutation
through triangle satisfies , or equiva-
lently, . For that purpose let us recall that every
point set has a centerpoint (not necessarily in ) with
the property that any open halfspace that misses contains
at most points from (a consequence of Helly’s Theo-
rem, cf. [Ed]). First we observe that if is a point in , then
for , neither is on the positive side of a -facet
nor participates in a -facet (in both cases we can find open
halfspaces disjoint from which contain more than
points). That is, for ,
and we can apply induction to prove the theorem (starting
with a set of 4 points).

Hence, we restrict ourselves to the case that is not in
, and without loss of generality we assume that the origin
is a centerpoint of . For a real number , we define

. Note that for
, , and for ,

lies on a sphere of radius , and thus it is in con-
vex position. The motion of for from to can
be visualized by a sphere initially containing , and then
contracting the sphere while dragging points towards to the
origin as soon as they appear on the sphere. Throughout the
whole process, the origin stays a centerpoint of the moving
point set.

We can always perturb the set (without changing -
facets) in such a way that no two points lie on a common
line with , and during the whole motion the set is either in
general position or there is a unique 4-tuple of points which
is coplanar (and in general position in its plane). As we have
learned, the mutations where the coplanar points are in con-
vex position do not affect . Now consider the case when a
point moves through a triangle determined by three points

. Point is still in the interior of the contracting sphere,
otherwise it could not be be in the convex hull of three other
points. In fact, it is easily seen that is on the same side of
the triangle spanned by as the origin before muta-
tion, and on the opposite side after mutation. Now we have
to recall the definition of a mutation through triangle and its
index . This index was determined by the number of points
on the side of the triangle opposite to the point which is about
to move through the triangle. Hence, the index of our muta-
tion is the number of points on the side of opposite to
before mutation, i.e., opposite to the origin. Consequently,

when becomes coplanar with , there is an open halfs-
pace that misses the origin which contains these points and

. Because of the centerpoint property of the origin,
, or as it was necessary to prove

for the monotonicity of , . This concludes
the proof of the theorem.

4 Relation between -sets and -facets

Theorem 3 For a set of points in we have

Of course, we can also deduce how determines . The
corresponding relation of in the plane can be
easily proved. In , , does not determine (see
full version). For the proof of the theorem, we could simply
observe the changes in and under continuous motion (see
remark after Lemma 2). Such a proof provides some insight
why such a relation does not generalize to , . We
give here an alternative proof.

-Set polytope. We employ the notion of a -set poly-
tope from [EVW]. Given a set of points and

, the -set polytope of is



where denotes the set of all subsets of of cardinality
. The vertices of are in one-to-one correspondence to
the -sets of . We briefly recapitulate the argument. A -
set can be separated from by a hyperplane. That is,
there is a vector and a real number such that
for and for . Clearly, this
implies that exceeds for all with

and so is a vertex of .
On the other hand, if is a vertex of , then there

is a vector such that exceeds for
all with . Set . If
for , then ,

for a point in with ; a contradiction. Hence
for all and can be separated from

by a hyperplane with normal vector .

Proof of Theorem 3. So far we have not referred to the
dimension of . Now let us assume that is a set in gen-
eral position in . The 1-sets of are the vertices of

and the 0-facets of are the facets of . Hence,
follows directly from Euler’s relation, and
and hold.

For we want to show that the set of -
and -facets of are in one-to-one correspondence to
the facets of which will entail the remaining relations.

Let be a -facet of with the set of
points on its positive side. Let be a vector and

be a real number such that ,
for , and for
. It follows that , are

the only sets in which maximize . Con-
sequently, the points are vertices of a triangular
facet of . Similarly, if is a -facet of
with the set of points on its positive side, then

the sets give rise to a facet
of . A reverse argument shows that this mapping from

- and -facets of to facets of is already
a bijection. In particular, all facets of are triangular, and

is implied by Euler’s relation.
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[Lo] László Lovász, On the number of halving lines, Ann
Universitatis Scientarium Budapest, Eötvös, Sectio
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