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For n a positive integer, we consider triangulations of the n x n lattice set
{0,1,2,...,n}?, ie. crossing-free straight line embedded geometric graphs on
this point set—thus with (n+ 1)? vertices, 3n*+2n edges and 2n? triangular
faces.

Figure 1: A triangulation of the 20 x 20 lattice.

Extending a previous argument by Emile Anclin [1], we show that the
number of triangulations of the n x n lattice is at most O(6.86""), improving
on the previous bounds of O(64™") and O(8"") in [4] and [1], respectively. It
compares to a lower bound of (4.15") given in [2].

*Joint work with Jifi Matousek and Pavel Valtr.



The flip-graph has the triangulations as vertices, and it has two triangu-
lations adjacent if one can be obtained from the other by replacing one single
edge (an edge whose incident triangles form a convex quadrilateral, called a
flippable edge). We demonstrate that the flip-graph of the triangulations of
the n x n lattice is an induced subgraph of the (3n% — 2n)-dimensional hyper-
cube (no such embedding in a hypercube of smaller dimension is possible).
We also show that the diameter of the flip-graph is ©(n?), and in a random
triangulation (uniformly from all triangulations), the expected number of
flippable edges is ©(n?) (while there exist triangulations with as few as O(n)
flippable edges).

The main proofs are based on particular binary encodings of lattice tri-
angulations which readily yield the respective results.
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