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38 LINEAR PROGRAMMING

Martin Dyer, Nimrod Megiddo, and Emo Welzl

INTRODUCTION

Linear programming has many important practical applications, and has also given
rise to a wide body of theory. See Section 38.9 for recommended sources. Here
we consider the linear programming problem in the form of maximizing a linear
function of d variables subject to n linear inequalities. We focus on the relationship
of the problem to computational geometry, i.e., we consider the problem in small
dimension. More precisely, we concentrate on the case where d ≪ n, i.e., d =
d(n) is a function that grows very slowly with n. By linear programming duality,
this also includes the case n ≪ d. This has been called fixed-dimensional linear
programming, though our viewpoint here will not treat d as constant. In this case
there are strongly polynomial algorithms, provided the rate of growth of d with n
is small enough.

The plan of the chapter is as follows. In Section 38.2 we consider the simplex
method, in Section 38.3 we review deterministic linear time algorithms, in Sec-
tion 38.4 randomized algorithms, and in Section 38.5 we consider the derandom-
ization of the latter. Section 38.6 discusses combinatorial framework of LP-type
problems which is underlying most current combinatorial algorithms and allows
their application to a host of optimization problems. In Section 38.7 we examine
parallel algorithms, and finally in Section 38.8 we briefly discuss related issues. The
emphasis throughout is on complexity-theoretic bounds for the linear programming
problem in the form 38.1.1.

38.1 THE BASIC PROBLEM

Any linear program (LP) may be expressed in the inequality form

maximize z = c.x

subject to Ax ≤ b ,
(38.1.1)

where c ∈ R
d, b ∈ R

n, and A ∈ R
n×d are the input data and x ∈ R

d the variables.
Without loss of generality, the columns of A are assumed to be linearly independent.
The vector inequality in (38.1.1) is with respect to the componentwise partial order
on R

n. We will write ai for the ith row of A, so the constraint may also be expressed
in the form

ai.x =

d
∑

j=1

aijxj ≤ bi (i = 1, . . . , n). (38.1.2)

GLOSSARY
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Constraint: A condition that must be satisfied by a solution.

Inequality form: The formulation of the linear programming problem where all
the constraints are weak inequalities ai.x ≤ bi.

Feasible set: The set of points that satisfy all the constraints. In the case of
linear programming, it is a convex polyhedron in R

d.

Defining hyperplanes: The hyperplanes described by the equalities ai.x = bi.

Tight constraint: An inequality constraint is tight at a certain point if the
point lies on the corresponding hyperplane.

Infeasible problem: A problem with an empty feasible set.

Unbounded problem: A problem with no finite maximum.

Vertex: A feasible point where at least d linearly independent constraints are
tight.

Nondegenerate problem: A problem where at each vertex precisely d con-
straints are tight.

Strongly polynomial-time algorithm: An algorithm for which the total num-
ber of arithmetic operations and comparisons (on numbers whose size is polyno-
mial in the input length) is bounded by a polynomial in n and d alone.

We observe that (38.1.1) may be infeasible or unbounded, or have multiple
optima. A complete algorithm for linear programming must take account of these
possibilities. In the case of multiple optima, we assume that we have merely to
identify some optimum solution. (The task of identifying all optima is considerably
more complex; see [Dye83, AF92].) An optimum of (38.1.1) will be denoted by x0.
At least one such solution (assuming one exists) is known to lie at a vertex of the
feasible set. There is little loss in assuming nondegeneracy for theoretical purposes,
since we may “infinitesimally perturb” the problem to ensure this using well known
methods [Sch86]. However, a complete algorithm must recognize and deal with this
possibility.

It is well known that linear programs can be solved in time polynomial in
the total length of the input data. However, it is not known in general if there
is a strongly polynomial-time algorithm. This is true even if randomization is
permitted. (Algorithms mentioned below may be assumed deterministic unless
otherwise stated.) The “weakly” polynomial algorithms make crucial use of the
size of the numbers, so seem unlikely to lead to strongly polynomial methods.
However, strong bounds are known in some special cases. For example, if all aij

are bounded by a constant, then É. Tardos [Tar86] has given a strongly polynomial
algorithm.

38.2 THE SIMPLEX METHOD

GLOSSARY
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Simplex method: For a nondegenerate problem in inequality form, this method
seeks an optimal vertex by iteratively moving from one vertex to a better neigh-
boring vertex.

Pivot rule: The rule by which a neighboring vertex is chosen.

Random-Edge simplex algorithm: A randomized variant of the simplex method
where the neighboring vertex is chosen uniformly at random.

Dantzig’s simplex method is probably still the most commonly used method
for solving large linear programs in practice, but (with standard pivot rules) Klee
and Minty showed that Dantzig’s pivot rule may require an exponential number of
iterations in the worst case. For example, it may require 2d − 1 iterations when
n = 2d. Other variants were subsequently shown to have similar behavior. While
it is not known for certain that all suggested variants of the simplex method have
this bad worst case, there seems to be no reason to believe otherwise. In our case
d ≪ n, the simplex method may require Ω(n⌊d/2⌋) iterations [KM72, AZ99], and
thus it is polynomial only for d = O(1). This is asymptotically no better than
enumerating all vertices of the feasible region.

By contrast, Kalai [Kal92] gave a randomized simplex-like algorithm that re-

quires only 2O(
√

d log n ) iterations. (An identical bound was also given by Ma-
tousěk, Sharir, and Welzl [MSW96] for a closely related algorithm; see Section
38.4.) Combined with Clarkson’s methods [Cla95], this results in a bound of

O(d2n) + eO(
√

d log d), cf. [MSW96]. This is the best “strong” bound known, other
than for various special problems, and it is evidently polynomial provided d =
O(log2 n/ log log n). No complete derandomization of these algorithms is known,
and it is possible that randomization may genuinely help here. In this respect,
the complexity of the so-called random-edge simplex method (where the pivot is
chosen uniformly at random) is an open question. See [BDF+95, GHZ98, GST+01]
for some limited information.

38.3 LINEAR-TIME LINEAR PROGRAMMING

The study of linear programming within computational geometry was initiated by
Shamos [Sha78] as an application of an O(n log n) convex hull algorithm for the
intersection of halfplanes. Muller and Preparata [MP78] gave an O(n log n) algo-
rithm for the intersection of halfspaces in R

3. Dyer [Dye84] and Megiddo [Meg83]
found, independently, an O(n) time algorithm for the linear programming problem
in the cases d = 2, 3.

Megiddo [Meg84] generalized the approach of these algorithms to arbitrary

d, arriving at an algorithm of complexity O(22d

n), which is polynomial for d ≤
log log n + O(1). This was subsequently improved by Clarkson [Cla86b] and Dyer

[Dye86] to O(3d2

n), which is polynomial for d = O(
√

log n). Megiddo [Meg84,
Meg89] and Dyer [Dye86, Dye92] showed that Megiddo’s idea could be used for
many related problems: Euclidean one-center, minimum ball containing balls, min-
imum volume ellipsoid, etc.; see also the derandomized methods and LP-type prob-
lems in sections below.
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GLOSSARY

Multidimensional search: Given a set of hyperplanes and an oracle for locating
a point relative to any hyperplane, locate the point relative to all the input
hyperplanes.

MEGIDDO’S ALGORITHMS

The basic idea in these algorithms is as follows. It follows from convexity consider-
ations that either the constraints in a linear program are tight (i.e., satisfied with
equality) at x0, or they are irrelevant. We need identify only d tight constraints to
identify x0. We do this by discarding a fixed proportion of the irrelevant constraints
at each iteration. Determining whether the ith constraint is tight amounts to de-

termining which case holds in ai.x
0 >

= bi. This is embedded in a multidimensional

search problem. Given any hyperplane α.x = β, we can determine which case of

α.x0 >
=
<

β holds by (recursively) solving three linear programs in d − 1 variables.

These are (38.1.1) plus a.x = γ, where γ ∈ {β − ǫ, β, β + ǫ} for “small” ǫ > 0.
(We need not define ǫ explicitly; it can be handled symbolically.) In each of the
three linear programs we eliminate one variable to get d − 1. The largest of the
three objective functions tells us where x0 lies with respect to the hyperplane. We
call this an inquiry about α.x = β. The problem now reduces to locating x0 with
respect to a proportion P (d) of the n hyperplanes using only N(d) inquiries.

The method recursively uses the following observation in R
2. Given two lines

through the origin with slopes of opposite sign, knowing which quadrant a point lies
in allows us to locate it with respect to at least one of the lines (see Figure 38.3.1).

FIGURE 38.3.1

Quadrants 1, 3 locate for l2; quadrants 2, 4 locate for l1.
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We use this on the first two coordinates of the problem in R
d. First rotate

until 1
2n defining hyperplanes have positive and 1

2n negative “slopes” on these
coordinates. This can be done in O(n) time using median-finding. Then arbitrarily
pair a positive with a negative to get 1

2n pairs of the form

ax1 + bx2 + · · · = · · ·
cx1 − dx2 + · · · = · · · ,

where a, b, c, d represent nonnegative numbers, and the · · · represent linear functions
of x3, . . . , xd on the left and arbitrary numbers on the right. Eliminating x2 and x1

in each pair gives two families S1, S2 of 1
2n hyperplanes each in d − 1 dimensions
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of the form
S1 : x1 + · · · = · · ·
S2 : x2 + · · · = · · · .

We recursively locate with respect to 1
2P (d−1)n hyperplanes with N(d−1) inquiries

in S1, and then locate with respect to a P (d−1)-fraction of the corresponding paired
hyperplanes in S2. We have then located 1

2P (d−1)2n pairs with 2N(d−1) inquiries.
Using the observation above, each pair gives us location with respect to at least
one hyperplane in d dimensions, i.e.,

P (d) = 1
2P (d − 1)2, N(d) = 2N(d − 1). (38.3.1)

Since P (1) = 1
2 , N(1) = 1 (by locating with respect to the median in R

1), (38.3.1)
yields

P (d) = 2−(2d−1), N(d) = 2d−1,

giving the following time bound T (n, d) for solving (38.1.1).

T (n, d) ≤ 3 · 2d−1T (n, d − 1) + T ((1 − 2−(2d−1))n, d) + O(nd),

with solution T (n, d) = O(22d

n).

THE CLARKSON-DYER IMPROVEMENT

The Clarkson/Dyer improvement comes from repeatedly locating in S1 and S2 to
increase P (d) at the expense of N(d).

38.4 RANDOMIZED ALGORITHMS

Dyer and Frieze [DF89] showed that, by applying an idea of Clarkson [Cla86a]
to give a randomized solution of the multidimensional search in Megiddo’s al-
gorithm [Meg84], an algorithm of complexity O(d3d+o(d)n) was possible. Clark-
son [Cla88, Cla95] improved this dramatically. We describe this below, but first
outline a simpler algorithm subsequently given by Seidel [Sei91].

Suppose we order the constraints randomly. At stage k, we have solved the
linear program subject to constraints i = 1, . . . , k − 1. We now wish to add con-
straint k. If it is satisfied by the current optimum we finish stage k and move to
k+1. Otherwise, the new constraint is clearly tight at the optimum over constraints
i = 1, . . . , k − 1. Thus, recursively solve the linear program subject to this equality
(i.e., in dimension d−1) to get the optimum over constraints i = 1, . . . , k, and move
on to k + 1. Repeat until k = n.

The analysis hinges on the following observation. When constraint k is added,
the probability it is not satisfied is exactly d/k (assuming, without loss, nondegen-
eracy). This is because only d constraints are tight at the optimum and this is the
probability of writing one of these last in a random ordering of 1, 2, . . . , k. This
leads to an expected time of O(d!n) for (38.1.1). Welzl [Wel91] extended Seidel’s
algorithm to solve other problems such as smallest enclosing ball or ellipsoid, and
described variants that perform favourably in practice.
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Sharir and Welzl [SW92] modified Seidel’s algorithm resulting in an improved
running time of O(d32dn). They put their algorithm in a general framework of solv-
ing “LP-type” problems. Matousěk, Sharir, and Welzl [MSW96] improved the anal-
ysis further, essentially obtaining the same bound as for Kalai’s “primal simplex”
algorithm. The algorithm was extended to LP-type problems by Gärtner [Gär95],
with a similar time bound.

CLARKSON’S ALGORITHM

The basic idea is to choose a random set of r constraints, and solve the linear
program subject to these. The solution will violate “few” constraints among the
remaining n − r, and, moreover, one of these must be tight at x0. We solve a
new linear program subject to the violated constraints and a new random subset of
the remainder. We repeat this procedure (aggregating the old violated constraints)
until there are no new violated constraints, in which case we have found x0. Each
repetition gives an extra tight constraint for x0, so we cannot perform more than
d iterations.

Clarkson [Cla88] gave a different analysis, but using Seidel’s idea we can easily
bound the expected number of violated constraints (see also [GW01] for further
simplifications of the algorithm). Imagine all the constraints ordered randomly,
our sample consisting of the first r. For i > r, let Ii = 1 if constraint i is violated,
Ii = 0 otherwise. Now Pr(Ii = 1) = Pr(Ir+1 = 1) for all i > r by symmetry,
and Pr(Ir+1 = 1) = d/(r + 1) from above. Thus the expected number of violated
constraints is

E (

n
∑

i=r+1

Ii) =

n
∑

i=r+1

Pr(Ii = 1) = (n − r)d/(r + 1) < nd/r.

(In the case of degeneracy, this will be an upper bound by a simple perturbation
argument.)

Thus, if r =
√

n, say, there will be at most d
√

n violated constraints in ex-
pectation. Hence, by Markov’s inequality, with probability 1

2 there will be at most
2d

√
n violated constraints in actuality. We must therefore recursively solve about

2(d + 1) linear programs with at most (2d2 + 1)
√

n constraints. The “small” base
cases can be solved by the simplex method in dO(d) time. This can now be applied
recursively, as in [Cla88], to give a bound for (38.1.1) of

O(d2n) + (log n)log d+2dO(d).

Clarkson [Cla95] subsequently modified his algorithm using a different “itera-
tive reweighting” algorithm to solve the d + 1 small linear programs, obtaining a
better bound on the execution time.

Each constraint receives an initial weight of 1. Random samples of total weight
10d2 (say) are chosen at each iteration, and solved by the simplex method. If W
is the current total weight of all constraints, and W ′ the weight of the unsatisfied
constraints, then W ′ ≤ 2Wd/10d2 = W/5d with probability at least 1

2 by the dis-
cussion above, regarding the weighted constraints as a multiset. We now double
the weights of all violated constraints and repeat until there are no violated con-
straints. This terminates in O(d log n) iterations by the following argument. After
k iterations we have
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W ≤
(

1 +
1

5d

)k

n ≤ nek/5d,

and W ∗, the total weight of the d optimal constraints, satisfies W ∗ ≥ 2k/d, since
at least one is violated at each iteration. Now it is clear that W ∗ < W only while
k < Cd ln n, for some constant C. Applying this to the d +1 small linear programs
gives overall complexity

O(d2n + d4√n log n) + dO(d) log n.

This is almost the best time known for linear programming, except that Kalai’s
algorithm (or [MSW96]) can be used to solve the base cases rather than the simplex
method. Then we get the improved bound (cf. [GW96])

O(d2n) + eO(
√

d log d) .

This is polynomial for d = O(log2 n/ log log n), and is the best bound to date.

38.5 DERANDOMIZED METHODS

Somewhat surprisingly, the randomized methods of Section 38.4 can also lead to the
best deterministic algorithms for (38.1.1). Matoušek and Chazelle [CM96] produced
a derandomized version of Clarkson’s algorithm.

The idea, which has wider application, is based on finding (in linear time)
approximations to the constraint set. If N is a constraint set, then for each x ∈
R

d let V (x, N) be the set of constraints violated at x. A set S ⊆ N is an ǫ-
approximation to N if, for all x,

∣

∣

∣

∣

|V (x, S)|
|S| − |V (x, N)|

|N |

∣

∣

∣

∣

< ǫ.

(See also Sections 31.2 and 34.1.) Since n = |N | hyperplanes partition R
d into

only O(nd) regions, there is essentially only this number of possible cases for x, i.e.,
only this number of different sets V (x, N). It follows from the work of Vapnik and
Chervonenkis that a (d/r)-approximation of size O(r2 log r) always exists, since a
random subset of this size has the property with nonzero probability. If we can find
such an approximation deterministically, then we can use it in Clarkson’s algorithm
in place of random sampling. If we use a (d/r)-approximation, then, if x∗ is the
linear programming optimum for the subset S, |V (x∗, S)| = 0, so that

|V (x∗, N)| < |N |d/r = nd/r,

as occurs in expectation in the randomized version. The implementation involves
a refinement based on two elegant observations about approximations, which both
follow directly from the definition.

(i) An ǫ-approximation of a δ-approximation is an (ǫ + δ)-approximation of the
original set.
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FIGURE 38.5.1

A partition tree of height k, with q = 3. level 0

.
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(ii) If we partition N into q equal sized subsets N1, . . . , Nq and take an (equal
sized) ǫ-approximation Si in each Ni (i = 1, . . . , q), then S1 ∪ . . . ∪ Sq is an
ǫ-approximation of N .

We then recursively partition N into q equal sized subsets, to give a “partition
tree” of height k, say, as in Figure 38.5.1 (cf. Section 31.2). The sets at level
0 in the partition tree are “small.” We calculate an ǫ0-approximation in each.
We now take the union of these approximations at level 1 and calculate an ǫ1-
approximation of this union. This is an (ǫ0 + ǫ1)-approximation of the whole level
1 set, by the above observations. Continuing up the tree, we obtain an overall
(
∑k

i=0 ǫi)-approximation of the entire set. At each stage, the sets on which we have
to find the approximations remain “small” if the ǫi are suitably chosen. Therefore
we can use a relatively inefficient method of finding an approximation. A suitable
method is the method of conditional probabilities due to Raghavan and Spencer. It
is (relatively) straightforward to implement this on a set of size m to run in O(md+1)
time. However, since this has to be applied only to small sets (in comparison with
n), the total work can be bounded by a linear function of n. Chazelle and Matoušek
[CM96] used q = 2, and an ǫi that corresponds to roughly halving the union at each
level i = 1, . . . , k .

The algorithm cannot completely mimic Clarkson’s, however, since we can no
longer use r =

√
n. Such a large approximation cannot be determined in linear

time by the above methods. But much smaller values of r suffice (e.g., r = 10d3)
simply to get linear-time behavior in the recursive version of Clarkson’s algorithm.
Using this observation, Chazelle and Matoušek [CM96] obtained a deterministic
algorithm with time-complexity dO(d)n. This is currently the best time bound
known for solving (38.1.1), and remains polynomial for d = O(log n/ log log n).

38.6 LP-TYPE PROBLEMS

The randomized algorithms above by Clarkson and in [MSW96, Gär95] can
be formulated in an abstract framework called LP-type problems. With an extra
condition (involving VC-dimension of certain set-systems) this extends to the de-
randomization in [CM96]. In this way, the algorithms are applicable to a host
of problems including smallest enclosing ball, polytope distance, smallest enclos-
ing ellipsoid, largest ellipsoid in polytope, smallest ball intersecting a set of con-
vex objects, angle-optimal placement in polygon, rectilinear 3-centers in the plane,
spherical separability, width of thin point sets in the plane, and integer linear pro-
gramming (see [MSW96, GW96] for description of these problems and necessary
reductions). A different abstraction called abstract objective functions is described
by Kalai in [Kal97], and for the even more general setting of abstract optimization

problems see [Gär95].
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For the definitions below, the reader should think of optimization problems
where we are given some set of constraints H and we want to minimize some given
function under those constraints. For every subset G of H , let w(G) denote the
optimum value of this function when all constraints in G are satisfied. The function
w is only given implicitely via some basic operations to be specified below. The
goal is to compute an inclusion-minimal subset BH of H with the same value as H
(from which, in general, the value is easy to determine).

GLOSSARY

LP-type problem: A pair (H, w), where H is a finite set and w : 2H → W for
a linearly ordered set (W ,≤) with a minimal element −∞, so that the Mono-
tonicity and Locality Axioms below are satisfied.

Monotonicity Axiom: For any F, G with F ⊆ G ⊆ H , it holds that w(F ) ≤
w(G).

Locality Axiom: For any F ⊆ G ⊆ H with −∞ 6= w(F ) = w(G) and any
h ∈ H , it holds that w(G) < w(G ∪ {h}) implies w(F ) < w(F ∪ {h}).

Constraints of LP-type problem: Given an LP-type problem (H, w), the
elements of H are called constraints.

Basis: A set B of constraints is called a basis, if w(B′) < w(B) for every proper
subset of B.

Basis of set of constraints: Given a set G of constraints, a subset B ⊆ G is
called a basis of G if it is a basis and w(B) = w(G) (i.e. an inclusion minimal
subset of G with equal w-value).

Combinatorial dimension: The maximum cardinality of any basis in an LP-
type problem (H, w), denoted by δ = δ(H,w).

Basis-regularity: An LP-type problem (H, w) is basis-regular, if for every basis
B with |B| = δ and every constraint h, it holds that all bases of B ∪ {h} have
exactly δ elements.

Violation test: Decides whether or not w(B) < w(B ∪ {h}), for a basis B and
a constraint h.

Basis computation: Delivers a basis of B ∪{h}, for a basis B and a constraint
h.

A simple example of an LP-type problem is the smallest enclosing ball problem
(this problem traces back to J.J. Sylvester [Syl1857]): Let S be a finite set of points
in R

d, and for G ⊆ S, let ρ(G) be the radius of the ball of smallest volume containing
G (with ρ(∅) = −∞). Then (S, ρ) is an LP-type problem with combinatorial
dimension at most d + 1. A violation test amounts to a test deciding whether a
point lies in a given ball, while an efficient implementation of basis computations
is not obvious (cf. [Gär95]).

Many more examples have been indicated above. As the name suggests, linear
programming can be formulated as an LP-type problem, although some care is
needed in the presence of degeneracies. Let us assume that we want to maximize the
objective function −xd in (38.1.1), i.e., we are looking for a point in R

d of smallest
xd-coordinate. In the underlying LP-type problem, the set H of constraints is given
by the halfspaces as defined by (38.1.2). For a subset G of these constraints, let
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v(G) be the backwards lexicographically smallest point satisfying these constraints,
with v(G) := −∞, if G gives rise to an unbounded problem, and v(G) := ∞, in case
of infeasibility. We assume the backwards lexicographical ordering on R

d extended
to R

d∪{−∞,∞} by letting −∞ and ∞ be the minimal and maximal element, resp.
The resulting pair (H, v) is LP-type of combinatorial dimension at most d + 1. In
fact, if the problem is feasible and bounded, then the LP-type problem is basis-
regular of combinatorial dimension d. Violation test and basis computation (this
amounts to a dual pivot step) are easy to implement.

Matoušek, Sharir, and Welzl [MSW96] showed that a basis-regular LP-type
problem (H, w) of combinatorial dimension δ with n constraints can be solved (i.e.,
a basis of H can be determined) with an expected number of at most

min{e2
√

δ ln((n−δ)/
√

δ )+O(
√

δ+ln n), 2δ+2(n − δ)} (38.6.1)

violations tests and basis computations, provided an initial basis B0 with |B0| = δ
is available. (For linear programming one can easily generate such an initial basis
by adding d symbolic constraints in “infinity”.) Then Gärtner [Gär95] was able
to generalize this bound to all LP-type problems. Combining this with Clarkson’s
methods, one gets a bound of (cf. [GW96])

O(δn) + eO(
√

δ log δ ) ,

the best bound known up to now.
Matoušek [Mat94] provided a family of LP-type problems, for which the bound

(38.6.1) is tight for the algorithm provided in [MSW96]. It is an open problem,
though, whether the algorithm performs faster when applied to linear program-
ming instances. In fact, Gärtner [Gär02] showed that the algorithm is quadratic
on the instances in Matousek’s lower bound family which are realizable as linear
programming problems as in (38.1.1).

Amenta [Ame94] considers the following extension of the abstract framework:
Suppose we are given a family of LP-type problems (H, wλ), parameterized by a
real parameter λ; the underlying ordered value set W has a maximum element
∞ representing infeasibility. The goal is to find the smallest λ for which (H, wλ)
is feasible, i.e. wλ(H) < ∞. [Ame94] provides conditions under which such a
problem can be transformed into a single LP-type problem, and she gives bounds
on the resulting combinatorial dimension. This work exhibits interesting relations
between LP-type problems and Helly-type theorems (see also [Ame96]).

38.7 PARALLEL ALGORITHMS

GLOSSARY

PRAM: Parallel Random Access Machine. (See Section 36.1 for more informa-
tion on this and the next two terms.)

EREW: Exclusive Read Exclusive Write.

CRCW: Concurrent Read Concurrent Write.
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P: The class of polynomial time problems.

NC: The class of problems that have poly-logarithmic parallel time algorithms
running a polynomial number of processors.

P-complete problem: A problem in P whose membership in NC implies P = NC.

Expander: A graph in which, for every set of nodes, the set of the neighbors of
the nodes is relatively large.

We will consider only PRAM algorithms. (See also Section 36.2.)
The general linear programming problem has long been known to be P-complete,

so there is little hope of very fast parallel algorithms. However, the situation is dif-
ferent in the case d ≪ n, where the problem is in NC if d grows slowly enough.

First, we note that there is a straightforward parallel implementation of Me-
giddo’s algorithm [Meg83] that runs in O((log n)d) time on an EREW PRAM.
However, this algorithm is rather inefficient in terms of processor utilization, since
at the later stages, when there are few constraints remaining, most processors are
idle. However, Deng [Den90] gave an “optimal” O(n) work implementation in the
plane running in O(log n) time on a CRCW PRAM with O(n/ log n) processors.
Deng’s method does not seem to generalize to higher dimensions.

Alon and Megiddo [AM94] gave a randomized parallel version of Clarkson’s
algorithm which, with high probability, runs in constant time on a CREW PRAM
in fixed dimension. Here the “constant” is a function of dimension only, and the
probability of failure to meet the time bound is small for n ≫ d.

Ajtai and Megiddo [AM96] attempted to improve the processor utilization in
parallelizing Megiddo’s algorithm for general d. They gave an intricate algorithm
based on using an expander graph to select more nondisjoint pairs so as to uti-
lize all the processors and obtain more rapid elimination. The resulting algorithm
for (38.1.1) runs in O((log log n)d) time, but in a nonuniform model of parallel com-
putation based on Valiant’s comparison model. The model, which is stronger than
the CRCW PRAM, requires O(log log n) time median selection from n numbers
using n processors, and employs an O(log log n) time scheme for compacting the
data after deletions, again based on a nonuniform use of expander graphs. A lower
bound of Ω(log n/ log log n) time for median-finding on the CRCW PRAM follows
from results of Beame and Hastad. Thus Ajtai and Megiddo’s algorithm could
not be implemented directly on the CRCW PRAM. Within Ajtai and Megiddo’s
model there is a lower bound Ω(log log n) for the case d = 1 implied by results of
Valiant. This extends to the CRCW PRAM, and is the only lower bound known
for solving (38.1.1) in this model.

Dyer [Dye95] gave a different parallelization of Megiddo’s algorithm, which
avoids the use of expanders. The method is based on forming groups of size r ≥ 2,
rather than simple pairs. As constraints are eliminated, the size of the groups
is gradually increased to utilize the extra processors. Using this, Dyer [Dye95]
establishes an O(log n(log log n)d−1) bound in the EREW model. It is easy to show
that there is an Ω(log n) lower bound for solving (38.1.1) on the EREW PRAM,
even with d = 1. (See [KR90].) Thus improvements on Dyer’s bound for the EREW
model can only be made in the log log n term. However, there was still an open
question in the CRCW model, since exact median-finding and data compaction
cannot be performed in time polynomial in log log n.

Goodrich [Goo93] solved these problems for the CRCW model by giving fast
implementations of derandomization techniques similar to those outlined in Sec-
tion 38.5. However, the randomized algorithm that underlies the method is not
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a parallelization of Clarkson’s algorithm, but is similar to a parallelized version
of that of Dyer and Frieze [DF89]. He achieves a work-optimal (i.e., O(n) work)
algorithm running in O(log log n)d time on the CRCW PRAM. The methods also
imply a work-optimal EREW algorithm, but only with the same time bound as
Dyer’s. Neither Dyer nor Goodrich is explicit about the dependence on d of the
execution time of their algorithms.

Independently of Goodrich’s work, Sen [Sen95] has shown how to directly mod-
ify Dyer’s algorithm to give a work-optimal algorithm with O((log log n)d+1) execu-
tion time in the CRCW model. The “constant” in the running time is shown to be
2O(d2). To achieve this, he uses approximate median-finding and approximate data
compaction operations, both of which can be done in time polynomial in log log n
on the common CRCW PRAM. These additional techniques are, in fact, both ex-
amples of derandomized methods and similar to those Goodrich uses for the same
purpose. Note that this places linear programming in NC provided d = O(

√
log n).

This is the best result known, although Goodrich’s algorithm may give a better
behavior once the “constant” has been explicitly evaluated. We may also observe
that the Goodrich/Sen algorithms improve on Deng’s result in R

2.
There is still room for some improvements in this area, but there now seems to

be a greater need for sharper lower bounds, particularly in the CRCW case.

38.8 RELATED ISSUES

GLOSSARY

Integer programming problem: A linear programming problem with the ad-
ditional constraint that the solution must be integral.

k-Violation linear programming: A problem as in 38.1.1, except that we
want to maximize the linear objective function subject to all but at most k of
the given linear constraints.

Average case analysis: Expected performance of an algorithm for random
input (under certain distributions).

Smoothed analysis: Expected performance of an algorithm under small random
perbutations of the input.

Linear programming is a problem of interest in its own right, but it is also
representative of a class of geometric problems to which similar methods can be
applied. Many of the references given below discuss closely related problems, and
we have mentioned them in passing above.

An important related area is integer programming. Here the size of the numbers
cannot be relegated to a secondary consideration. In general this problem is NP-
hard, but in fixed dimension is polynomial-time solvable. See [Sch86] for further
information. It may be noted that Clarkson’s methods and the LP-type framework
are applicable in this situation; some care with the interpretation of the primitive
operations is in place, though.

We have considered only the solution of a single linear program. However, there
are some situations where one might wish to solve a sequence of closely related linear
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programs. In this case, it may be worth the computational investment of building
a data structure to facilitate fast solution of the linear programs. For results of this
type see, for example, [Epp90, Mat93, Cha96, Cha98].

Finally there has been some work about optimization, where we are asked to
satisfy all but at most k of the given constraints, see e.g. [RW94, ESZ, Mat95b,
DLS+95, Cha99]. In particular, Matoušek [Mat95a] has investigated this question
in the general setting of LP-type problems. Recently, Chan [Cha02] solved this
problem in R

2 with a randomized algorithm in expected time O(n + k2) (see this
paper for the best bounds known for d = 3, 4.)

A direction we had not touched upon here was the average analysis, where we
analyze a deterministic algorithm for random inputs [Bor80, Sma83]. Of course,
the issue here is to what extent the assumed input distribution is justified, even if
the results relate to the measurements made in experiments. More recently, there
has been an interesting new direction, where a simplex method is analyzed for small
random perturbations of the input (smoothed analysis, [ST01]).

38.9 SOURCES AND RELATED MATERIAL

BOOKS AND SURVEYS

A good general introduction to linear programming may be found in Chvátal’s book
[Chv83]. A theoretical treatment is given in Schrijver’s book [Sch86]. The latter is
a very good source of additional references. Karp and Ramachandran [KR90] is a
good source of information on models of parallel computation. See [Mat96] for a
survey of derandomization techniques for computational geometry.

RELATED CHAPTERS

Chapter 13: Basic properties of convex polytopes
Chapter 17: Polytope skeletons and paths
Chapter 27: Computational convexity
Chapter 36: Parallel algorithms in geometry
Chapter 37: Parametric search
Chapter 39: Mathematical programming
Chapter 52: Computational geometry software
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[CM96] B. Chazelle and J. Matoušek. On linear-time deterministic algorithms for optimization

in fixed dimension. J. Algorithms 21:579–597, 1996.

[DLS+95] A. Datta, H.-P. Lenhof, C. Schwarz, and M. Smid. Static and dynamic algorithms for

k-point clustering problems. J. Algorithms, 19:474–503, 1995.

[Den90] X. Deng. An optimal parallel algorithm for linear programming in the plane. Inform.

Process. Lett., 35:213–217, 1990.

[DF89] M.E. Dyer and A.M. Frieze. A randomized algorithm for fixed-dimensional linear

programming. Math. Programming, 44:203–212, 1989.

[Dye83] M.E. Dyer. The complexity of vertex enumeration methods. Math. Oper. Res., 8:381–

402, 1983.

[Dye84] M.E. Dyer. Linear time algorithms for two- and three-variable linear programs. SIAM

J. Comput., 13:31–45, 1984.

[Dye86] M.E. Dyer. On a multidimensional search problem and its application to the Euclidean

one-centre problem. SIAM J. Comput., 15:725–738, 1986.



Linear programming 713

[Dye92] M.E. Dyer. A class of convex programs with applications to computational geometry.

In Proc. 8th Annu. ACM Sympos. Comput. Geom., pages 9–15, 1992.

[Dye95] M.E. Dyer. A parallel algorithm for linear programming in fixed dimension. In Proc.

11th Annu. ACM Sympos. Comput. Geom., pages 345–349, 1995.

[ESZ] A. Efrat, M. Sharir, and A. Ziv. Computing the smallest k-enclosing circle and related

problems. Comput. Geom. Theory Appl., 4:119–136, 1994.

[Epp90] D. Eppstein. Dynamic three-dimensional linear programming. ORSA J. Comput.,

4:360–368, 1990.
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