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The Rank of Sparse Random Matrices over Finite Fields

Johannes Blémer? Richard Karp! Emo Welzl*

Abstract

Let M be a random matrix over GF[g] such that for each entry M;; in M and for
each non-zero field element « the probability Pr[M,; = «] is p/(¢ — 1), where p =
(logn — ¢)/n and ¢ is an arbitrary but fixed positive constant. The probability for a
matrix entry to be zero is 1 — p. Tt is shown that the expected rank of M is n— O(1).
Furthermore, there is a constant A such that the probability that the rank is less
than n — k is less than A/¢". It is also shown that if ¢ grows depending on n and is
unbounded as n goes to infinity then the expected difference between the rank of M
and n is unbounded.

1 Introduction

In this paper we investigate the rank of random matrices over a fixed but arbitrary finite
field GF[¢]. Given some p, 0 < p < 1, we choose the entries in the matrix M independently,
so that 0 is attained with probability 1 — p, and each nonzero element in GF[¢] is attained
with probability p/(¢ —1). We want to get M as sparse as possible (i.e. choose p as small
as possible), while maintaining the expected rank close to the dimension of the matrix. It
turns out that if we want to achieve an expected rank of n — O(1) then p = (logn —c)/n!
is the crucial threshold. We also prove that with high probability the rank of a random
matrix is not much less than its expected rank.

We achieve these results by establishing for an arbitrary matrix M a simple relationship
between the quantity n — rank(M) and the number of linear dependencies of M, that is,
the number of ways in which the all zero vector can be written as a linear combination
of the rows of M. Then the main technical result of this paper shows that the expected
number of linear dependencies is bounded by a constant iff p > (logn — ¢)/n, where ¢ is
some arbitrary positive constant.

It is a well-known fact (see [8]), that a random (n X n)-matrix over GF[q], where each
entry is chosen independently and uniformly at random from the elements of GF[q], is
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nonsingular with at least some constant probability?. Comparing this to the results of
this paper naturally leads to the following question. How small can p be chosen such that
a random (n X n)-matrix over a finite field will be nonsingular with some constant proba-
bility? We show that if p is an arbitrary constant then random matrix is nonsingular with
some constant probability®. However, the techniques and results of this paper do not seem
to be sufficient to determine the exact threshold for p. Or show that p can be nonconstant
while preserving the property that the random matrix based on p is nonsingular with some
constant probability.

Our results are complementary to a recent result of Calkin [3] about linear dependencies
over finite fields GF[¢]. Calkin shows, that for any constant k there is another constant 3y
(depending on ¢) such that if §xn n-dimensional vectors are chosen uniformly at random
from the set of all vectors with k& 1’s, then the probability that these vectors are linearly
dependent goes to 1 as n goes to infinity. Calkin’s result generalizes and supersedes
previous results by Kolchin and Khokhlov [6]. The results of our paper imply the following
result. Assume that ¢(n) is a function that is unbounded as n goes to infinity and assume
that p = (logn — O(1))/n. If n vectors are chosen in (GF[2])" such that each entry in a
vector is 1 with probability p, then the probability that less than n — ¢(n) of these vectors
are linearly independent tends to 0 for n — oco.

If the elements of an r X n random matrix are chosen uniformly at random from some
finite field GF[q] more general statements than the ones obtained in this paper can be
achieved. For these random matrices Kelly and Oxley study the matroid generated by
columns of the matrix. They show for various matroid properties (like connectivity and
existence of circuits of a certain size) that if n is large enough compared to r then it is
very likely for a random matroid to have these properties.

Finally our results should be compared to the following result for (0, 1)-matrices over
the reals. Assume M is a random (0, 1)-matrix, where each entry is 1 with probability
1/2. Then there is a positive constant ¢ such that M is singular with probability less than
(1 — €)™ (see [7]; for a simpler proof that this probability goes to 0 see [2].)

2 The results

In this section we state the main results of this paper.

We use rank (M) to denote the rank of an (n X n)-matrix M, and d(M) to denote n —
rank(M), called the defect of M. The following theorem is the main technical contribution
of this paper.

Theorem 2.1 Let M be a random (n X n)-matriz over a fized finite field GF[q] with
p=(logn —c)/n and n > e, for a fixed ¢ > 0. Then the defect d(M) of M satisfies

Exp[¢™] = 0(1).

Moreover, if Exp[q?(M)] is considered as a function of the probability p, then Exp[q(M)]
decreases monotonically in the range 0 < p < q;—l

2[8] claims that this probability tends to 0 as n goes to infinity. However, it is easily seen that the proof
of this claim is not correct.
#We thank an anonymous referee for pointing this out to us.



The theorem implies that for any (logn — O(1))/n < p < (¢ — 1)/q the expectation
Exp[¢?™)]is upper bounded by some constant. Because of the monotonicity of Exp[gd(M)]
in the sequel we will concentrate on probabilities p that are close to logn/n.

The following lower bounds show that Theorem 2.1 is essentially optimal. Here, as

opposed to the previous theorem, ¢ is not considered fixed!

Theorem 2.2 Let M be a random (n x n)-matriz over the finite field GF[q] with p =
(logn — ¢)/n, for ¢ = ¢(n), 0 < ¢(n) < logn —log(q — 1). Then the defect d(M) of M
satisfies

Exp[qd(M)] =Q (eqél;lec) .
The expected number of zero rows of M is Q(e).
From these theorems we easily derive the following corollaries.

Corollary 2.3 Let ¢(n) be a function with 0 < ¢(n) < logn for all n. Then Exp[d(M)] =
O(1) for random (n X n) matrices with p = (logn — ¢(n))/n, if and only if the function
c(n) is bounded.

Proof: If ¢(n) is bounded then by Theorem 2.1 Exp[¢d™)] is bounded by some constant
A. Jensen’s inequality implies that Exp[d(M)] is bounded by log, A.

If ¢(n) is unbounded Theorem 2.2 shows that the expected number of zero rows is
unbounded. This implies that d(M) is unbounded.

Corollary 2.4 For every ¢ > 0 there exists a constant A. such that a random (n X n)
matriz M, n > e, with p = (logn — ¢)/n satisfies

Prld(0) 2 4] < .
for all positive integers k.
Proof: By Markov’s inequality
PAA(M) > K] = Prlg? ) > ¢ < PRI
The corollary follows from Theorem 2.1.

3 Rank and linear dependencies

In order to prove Theorem 2.1 and Theorem 2.2 we relate the defect of a matrix over GF[q]
to the number of linear dependencies.



Definition 3.1 Let M be a (n x n)-matriz over GF[q]. Denote by My, ..., M, the rows
of M. A vector (ci,...,¢,) € (GF[q])" such that not all ¢; are zero is called a linear
dependency iff

S eiM; = 0. (1)

I(M) denotes the number of linear dependencies of the rows of the matriz M.
Lemma 3.2 Let M be an (n X n)-matriz over GF[q] then
M) — 1 = 1(M).

Proof: Let d = d(M) be the defect of M. Since k = n — d is the rank of M, any max-
imal subset of linearly independent rows of M has size k. Without loss of generality we
may assume that the first £ rows of M are such a maximal subset. This implies that the
subspace generated by the last d rows of M is contained in the subspace generated by the
first k£ rows. Hence any non-zero vector of length d in (GF[q])¢ can be extended to a linear
dependency. This extension is unique. Otherwise there is a linear dependency where the
last d coordinates are zero, which contradicts the linear independence of the first & rows.
Therefore the number of linear dependencies is given by ¢% — 1.

Next we derive an explicit expression for the expected number of linear dependencies.

Theorem 3.3 Let M be a random (n x n)-matriz over GF[q], based on some p, 0 < p < 1.
The expected number of linear dependencies of the rows of M is

" 1 1\ qp )k]n

,; (k)q”"“ (1 q) [1+(q Y (1 q—1
Proof: Fix some non-zero vector ¢ = (cy,...,¢,) € (GF[q])", with exactly &k non-zero
coordinates. Without loss of generality assume that the first k£ coordinates of ¢ are non-
zero. Let Py be the probability that Zle c¢;m; = 0, where each m; is chosen according
to the distribution for the matrix entries M;;. Then the probability that ¢ is a linear
dependency is given by P.".

Since the ¢;’s are fixed the following recursion holds for P.

Po=1and P, =PFPe1(1 —p)+ (1 = Pe_1)p/(g—1). (2)
Set Qp = P, — % It follows from (2) that

Sand Q=i (1--25). (3)

Qo="1= -

Hence

R L R (e
q g—1 q

The number of vectors ¢ with exactly & non-zero coordinates is given by (

- Qo5 G- %)

k=1

L
q
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(Z) qnl_k (1_ %)k l1+(q— 1) (1‘ qq——pl)k]

k=1

Observe that in the expression for the expected number of linear dependencies the terms
(1—1/¢)*/q"* are the probabilities for exactly k successes in a Bernoulli experiment with
success probability 1 —1/¢. This turns out to be very useful in the proof of Theorem 2.1.

4 The lower bound

In this section we prove

Theorem 2.2 Let M be a random (n x n)-matriz over the finite field GF[q] with p =
(logn — ¢)/n, for ¢ = ¢(n), 0 < ¢(n) < logn —log(q — 1). Then the defect d(M) of M
satisfies

Exp[¢d™] = Q (eqél;lec) .

The expected number of zero rows of M is Q(e).
Proof: In order to simplify the notation we set ¥y =1 —1/¢. By Theorem 3.3 the number
of linear dependencies is

n n o "
> (k)v’“(l — )14 (o= 1) (1= p/1)f]
k=1
By the DeMoivre-Laplace Limit Theorem (see [4], p.186) > jcpcqn (1) (1 — y)rEak s
bounded from below by some constant. To prove the first part of the theorem it therefore
suffices to show that for k < yn the expression {1 +(¢g—1)(1- p/'y)k} is bounded from
below by

We may assume that n is large enough so that p/y < 1. Hence {1 +(g—1)(1 - p/'y)k}n

decreases as k increases and it suffices to prove the lower bound on this expression for
k = yn, where, for the time being, we allow k to attain non-integral real values.
Since, for n large enough, p/y < 1/2, and since 1 — 2 > e~ for <z <1/2, we
have . .
(14 (=D = p/H" > [14 (g = Derrt=s?]"

Plugging in the values p = (logn — ¢)/n and k = yn we obtain

_ 1
e PR/ — e,
n

For these values of p and k the term e~P R/ = g=(logn—c)*/(vn) converges to 1 as n goes
to infinity. In particular, for n large enough it is larger than 1/2. Hence

14+ (g — —pk/y—p? > |1+ (¢g—1)e™ /20| .
{ (¢ — 1)e Pk pk/an { ( yec(n) }n



By assumption, ¢(n) < logn — log(q — 1), and therefore (¢ — 1)e®(™) /2n < 1/2. Applying
142> e/? for 0 < 2 < 1/2 shows

a=1 e(n)

q—1)e T2ef
{1—|—( 1)e (”)/Qn} > e

The statement on the number of zero rows is proven similarly.

5 The upper bound

In this section we prove

Theorem 2.1 Let M be a random (n x n)-matriz over the finite field GF[q] with p =
(logn —¢)/n and n > e, for a fixed ¢ > 0. Then the defect d(M) of M satisfies

Explg’™)] = 0(1).
Moreover, if Exp[q?(M)] is considered as a function of the probability p, then Exp[q(M)]
decreases monotonically in the range 0 < p < =L
By Lemma 3.2 it suffices to prove the theorem for the expected number of linear

dependencies. By Theorem 3.3 the expected number of dependencies is given by

3 (Z)v’f(l —) T (=) (=)t

k=1

where we use 4 short for 1 —1/¢. The monotonicity of the expectation follows immediately
from this formula. In order to prove the first and much more difficult part of the theorem
the sum for the number of linear dependencies is split into five parts, which are analyzed
separately in the following five lemmas.

Lemma 5.1

n

2. (Z) YR =)t [1 F(g—1)(1- p/y)k}n < ola=Det
)

k=yn(1-1/logn

Proof: It will be shown that for k = yn(1 —1/logn)
(14 (g = D = p/p)F] " < el

Since {1 +(¢—1)(1— p/'y)k}n decreases as k increases and since Y j_; (})v"(1—v)"7% <1
this will prove the lemma. Using 1+ 2 < e” we get

[+ (=)= /)" < [14 (g = De*N]" < enlame™™ (4)

Plugging in the values p = (logn — ¢)/n and k = yn(1 — 1/logn) yields

en(q_l)e—pk/v < en(q_l)e—log n+c+1 < e(q_l)ec-l-l‘



Lemma 5.2

yn(1—1/logn)

Z (Z)'Yk(l_'Y)n_k {1—|—(q—1) (1—p/7)k}n—>0 as n — oo.

- 2n llog logn
ogn

Proof: Consider

yn(1—1/logn) n\ . i
> (k)v (="

- 277,1105 logn
ogn

By Chernoff bounds (see [1], Theorem A.13.) this is upper-bounded by

__an
e 2log2 n,

Using (4) and the fact that {1 + (1 - p/'y)k}n is monotonically decreasing as a function of

k we obtain
yn(1—1/logn)

> (Z) Y=y 1 (o= 1) (= p/)]

- 2n llog logn
ogn

yn

—2pnlogl 1 __an —2(1—c/1 log 1
pnloglog n/(ylog n) — e 210g2nen(q_1)e (1—c/log n)loglog n/v‘

__an
S e 2log2 n en(q_l)e

For n large enough

e—2(1—c/ logn)loglogn/vy <

log’(n)’
for some § that is strictly larger than 2. Hence
__an n(g—1
e 2log2nelog5(n)
tends to 0 as n tends to infinity and the lemma follows.

Lemma 5.3 Let p be a positive constant satisfying
2
y(1=p)? > .
q
Then

Z (Z)'Yk(l_'Y)n_k {1—|—(q—1) (1—p/7)k}n—>0 as n — oo.

k=5v(log q)n/logn

Proof: Observe that since 2/(¢%y) < 1 a constant u as required by the lemma exists. By
Chernoff bounds ([1], Theorem A.13.) and the assumption for p

Hyn n R _n
> L7 =) e mni < o,

k=5v(log q)n/logn

Using (4) it follows that for k& > 5y(logq)n/logn

(1 (g = D= p)]" < 14 (g = e mneretiosn/ s



beloga/logn goes t0 1 as n goes to infinity, for n large enough the last expression can

3\" o
(“ﬁ) s e

The lemma follows.

Since e

be bounded by

Lemma 5.4

5v(logg)n/logn

Z (Z)'Yk(l_'Y)n_k {1—|—(q—1) (1—p/7)k}n—>0 as n — oo.

k=~n/logn

Proof: Using for k the value yn/logn we get that in the range covered by the lemma

(q _ 1)ec/logn] n

e

[+ - =-p/f < |1+

Since ¢/ logn

(2q/e)".

We may assume that 5y(log¢)n/logn < n/2. Therefore in the range under considera-
tion (}) is upper-bounded by the term for k = 5v(logg)n/logn. Using (}) < (en/k)* we
obtain

goes to 1 as n goes to infinity, for n large enough this expression is less than

n
< Ew(logq)n/logn‘
(wog o/ log n) < (Plogn)

This implies that for yn/logn < k < 5y(logg)n/logn

n ki \n—k _ n i _1\k i _ 5v(logg)n/logn
(k)v (1-7) —(k)qn(q )" < e —1)logn) :

This expression can be bounded by
iean loglogn/logn
q ’

for some positive constant a. Combining this with the previous estimate for [1+ (¢—1)(1—
p/1)HT" shows

(Z) Y= [T (= 1) (= p/)]

< ieanloglogn/ logn 2_(] " _ e—Q(n)
— qn e - .
This proves the lemma.

Lemma 5.5

yn/logn

)» (Z)v’f(l — ) i -0 =) = 00,

k=1



Proof: By the binomial formula

(14 (=D =p/]" < [14 (= 1) (1= pk/y + %2 /(299)]

(i ! 1) (/1) > (’“) v/ @

This condition is equivalent to

()

(k—i+1)/i<k/3 fori>3, and

provided

= =

v n n

> .
p  (1—c¢/logn)logn ~ logn

Since k < yn/logn this shows that (5) is satisfied.
Next

[+ (= 1) (1= /v + %2/ (299)] " = a" [1 = ph+ p*k%/(29)]
1
< qne—pknep2k2n — qne—(l—c/logn)klogne(l—c/logn)2k2log2 n/n < qnﬁeckek2log2 n/n )

Using (}) < n*/k! yields

(Z) Y= 14 =1 (= p/)t] = (Z) qin(q — D14 (g = D -p/)H]

| —

<

'((] _ 1)kek2log2 n/neck — %ek2log2 n/neak7

=

with @ = ¢+ log(q — 1).
It follows that for any constant ; there is a constant C'5 such that for all £ < (4

(Z) qin@ D)1= -/ <G

Therefore the lemma follows if

yn/logn n
> ()t 0t [+ - na-war] = on) o

k=C

for some constant C'.
To prove (6) it will be shown that for n large enough

1

RS )



(7) then implies
yn/logn yn/logn
ny 1 n 1
> —la=D 1+ @-D)A-p/)f] < Y
k=C (k) q { } iz k(k—1)

Since >.72, 1/k? is constant this proves Equation (6) and the lemma.
In order to prove (7), first Stirling’s formula (see [4]) is used to bound (k — 2)! from
below.

(= 2)1> (b — 2)k26(k=2) = o(k=2)log(k=2)=(k=2) 5 o(h=2)(08(k)-2)
(7) follows if there exists a constant C' such that for all & between C' and yn/logn

k—2 a _ log’n
——(log(k) —2) — - > .
o (log(k) = 2) — - > — 8)

Taking the derivative it can be shown that there is a constant C' such that in the range
k > C the left-hand side of (8) is monotonically decreasing. It therefore suffices to prove
Equation (8) for k = yn/logn. For this value of & (8) becomes

log n

2+v%log% n alogn S log?n

[logn — loglogn — 3] > [logn —loglogn — 3] — >
yn n yn n

For n large enough this is correct since the dominating term on the left-hand side is
log?n/yn and 1/v is strictly larger than 1. This finishes the proof of Lemma 5.4.

Theorem 2.1 now follows easily from the five preceding lemmas. If n is large enough
such that 2n(loglogn)/logn is less than pyn then the lemmas cover the whole range of
1<k<n.

6 Generalizations and open problems

The analysis given in the previous section can be generalized to show the next theorem.

Theorem 6.1 Let M be a random (n x n)-matriz over the finite field GF[q] with p =
(logn — ¢(n))/n, where c(n) is some function satisfying 0 < ¢(n) < alogn and 0 < a < 1
is some arbitrary but fized constant. Then the defect d(M) satisfies

Combining this with Jensen’s inequality, Lemma 3.2, and Theorem 2.2 gives the following
corollary.

Corollary 6.2 Let M be a random matriz as in the previous theorem. Then

Exp[d(M)] = e®(mM+1),

10



In other words, the defect of M increases exponentially with ¢(n). We conjecture that this
is true for an arbitrary function ¢ satisfying 0 < ¢(n) < log n. However, the estimates used
in Section 5 don’t seem to be strong enough to prove this conjecture.

It is a well-known result (see for example [8]) that a random (n X n)-matrix over GF[¢],
where each entry is chosen independently and uniformly at random from the elements of
GFJq], is nonsingular with at least some constant probability. For example, over GF[2] the
probability tends to approximately 0.29 (and the probability that the defect exceeds 2 is
always less than 0.06). On the other hand, Corollary 2.4 shows that for p = (logn — ¢)/n
the random matrix M has constant defect with high probability.

This raises the following question. Assume that a random (n x n)-matrix M over GF[2]
is chosen such that each entry M;; is 0 with probability 1 — p and is 1 with probability
p. What is the smallest p such that the probability that M is nonsingular is bounded
from below by some constant ¢? The next theorem shows that if p is an arbitrarily small
constant then M is nonsingular with some constant probability ¢*.

Theorem 6.3 Let 0 < p < 1 and let M be a random (n X n)-matriz over some finite field
GF[q], where each matriz entry is chosen independently at random and 0 is attained with
probability 1 —p and each non-zero field element is attained with probability p/(q—1). Then
M is nonsingular with probability at least []"_, (1 — 7*) , where # = max{p/(¢—1),1 - p}.

Proof: Assume that the first ¢ — 1 rows My,..., M;_; that have been chosen are lin-
early independent. We will bound from below the probability p; that the i** row M; is
independent of the these rows. Then the probability that M is nonsingular is at least
[Tizi pi.

M; is independent from the previous rows iff it is not contained in the (vector-)subspace
spanned by the first ¢ — 1 rows. Consider the matrix formed by the rows My, ..., M;_.
Since these rows are linearly independent, by elementary row operations we can transform
the matrix into a matrix that contains the ¢+ — 1 x ¢ — 1 identity matrix. Without loss of
generality, we may assume that the first ¢ — 1 columns form the identity matrix. The rows
of this matrix generate the same subspace as the rows My, ..., M;_;.

The vectors contained in this subspace can be easily described. The first ¢ — 1 coordi-
nates can be arbitrary, but the remaining n — ¢ + 1 coordinates are uniquely determined
by the first ¢ — 1 coordinates. This implies that the probability that the vector M; is not
contained in the subspace generated by the rows My, ..., M;_y is at least 1 — 77 ~*+1,

Hence M is nonsingular with probability at least

n n

H(l — Tl = H(l — ).

", (1 =7 is bounded from below by [152, (1 — 7). If p < 1 is some constant the last
expression converges to some positive value c¢. This proves the above stated claim that
a random (n X n) matrix based on some constant p is nonsingular with some constant
probability ¢. Hence the simplest (and main) open problem the results of this paper raise
is as follows. Is there a function p(n) that tends to 0 as n goes to infinity and a constant

*We like to thank an anonymous referee for pointing this out to us.
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¢ > 0 such that the following holds: A random (n X n)-matrix over GF[2], where each
matrix entry is 0 with probability 1 — p(n) and 1 with probability p(n), is nonsingular
with probability at least ¢?
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