
The Number of Triangulations

on Planar Point Sets

Emo Welzl

Institute of Theoretical Computer Science
ETH Zurich, Switzerland

Abstract. We give a brief account of results concerning the number of
triangulations on finite point sets in the plane, both for arbitrary sets
and for specific sets such as the n× n integer lattice.

Given a finite point set P in the plane, a geometric graph is a straight line
embedded graph with vertex set P where no segment realizing an edge contains
points from P other than its endpoints. We are interested in crossing-free geo-

metric graphs on a given planar point set, i.e. segments are not allowed to share
points other than common endpoints. A maximal crossing-free geometric graph
on a point set P is called a triangulation of P .

Fig. 1. All triangulations of five points in convex position.

If, as it is the case in Fig. 1, the points are in convex position, i.e. vertices of a
convex polygon, then every triangulation clearly must contain all edges of “its”
convex polygon, and we are left with choosing a triangulation for this polygon.
Euler was the first to consider how many choices there are for a convex n-gon,
but it was proven only later that this number is Cn−2, where Cm := 1

m+1

(

2m
m

)

=

Θ(m−3/24m), known as the Catalan numbers; (see, e.g., also Pólya’s article On

Picture-Writing [14]).
The example of four points already shows that position matters: Four points

in convex position allow two triangulations, while there is only one otherwise.
David Avis was perhaps the first to ask what the maximal possible number of
triangulations of a general n-point set is. An upper bound of nO(n) is easy to
obtain, but in 1982 Ajtai, Chvátal, Newborn, and Szemerédi [3] showed that for
any set of n points the number of all crossing-free geometric graphs is at most
cn for c = 1013. The constant in the bound for triangulations has been succes-
sively improved [18, 6, 17, 16]. The currently best bound of 43n [15] is derived



via considering random triangulations of finite point sets in general position
with triangular convex hull. For a random non-extreme vertex in such a ran-
dom triangulation one can show that it has degree 3 with probability at least
1
43 (“random” refers here always to “uniformly at random”); interestingly, this
yields the claimed bound on the number of triangulations.

Note that every crossing-free geometric graph is contained in some triangu-
lation and a triangulation has at most 3n−6 edges. Therefore, any bound of the
form τn for triangulations yields a bound of 23n−6τn < (8τ)n for all crossing-free
geometric graphs; so this stands at 344n.

The 43n-bound is probably far from optimal. On the other end [2] show that
there are sets of n points with as many as Ω(8.48n) triangulations.

Lattice triangulations. The extremal properties for general point sets are still
wide open, but even for “simple” concrete point sets the number of triangulations
seems hard to analyze. One such example is the n × n integer lattice Ln×n :=
{0, 1, . . . , n}2 (with (n + 1)2 points); see [9] for a brief discussion of problems
where lattice triangulations occur.

Fig. 2. Triangulated 20× 20 lattice.

The number of triangulations of Ln×n was first shown in [13] to be at most

64n2

(this is, in fact, more than the general upper bound known today). Anclin

[4] improved that to 8n2

with the following argument: First, it is easy to show
that in every triangulation each edge contains exactly one of the half-integral
points (1

2{0, 1, . . . , 2n})2\Ln×n as its midpoint, and, conversely, every such half-
integral point lies on one of the edges. Second, he proves that if we choose the
edges through these half-integral points in a row by row and left-to-right fashion,
then at each point there are at most two choices compatible with the edges chosen
so far. Half-integral points on the boundary leave no choice, so there are at most



3n2 − 2n binary choices to be made which readily yields the 8n2

bound. As one
soon realizes, even interior half-integral points often allow only one choice as
we get to them, which indicates that the bound over counts. Indeed, [10] argue

that the bound can be set to O(6.86n2

), the best estimate currently known. The

existence of at least Ω(4.15n2

) triangulations on Ln×n was certified in [9].

Other special point sets. There are a few special types of configurations other
than convex position for which the number of triangulations is known; see Fig. 3
for such sets (we skip formal definitions of the configurations and we ignore
polynomial factors in the counting).

Fig. 3. The double circle (20 points), the double chain (18 points), and the double
zig-zag chain (18 points). Edges shown are those which have to appear in every trian-
gulation of the set

The double circle has
√

12
n
,
√

12 ≈ 3.4641, triangulations [8], which is obvi-
ously significantly less than for convex position and the smallest number known
for n points in general position (no three points on a line). For some time the
double chain considered in [7] with 8n triangulations was the set exhibiting the
most triangulations known, but then [2] analyzed the double zig-zag chain with√

72
n
,
√

72 ≈ 8.4853, triangulations.

Algorithmic aspects. In [5] it is shown that the set of all triangulations of a
point set can be enumerated in time O(t · poly(n)), where t is the number of
triangulations. But when it comes to counting, i.e. computing this number t,
nothing is known at all other than some heuristics [1].

An interesting related question is that of the mixing rate of the random walk
on the flip graph of all triangulations of a given point set. In this graph the
triangulations represent vertices, and two triangulations are adjacent if we can
obtain one from the other by removing one edge and replacing it by another one
(an operation called edge-flip). This graph is connected and has diameter O(n2).
A random walk (with some waiting time for technical reasons) will eventually
produce a random triangulation, but nothing is known about the time it takes
for that to happen—other than the case of points in convex position, where
polynomial time mixing has been demonstrated [11, 12]. Polynomial time mixing
of this random walk would imply polynomial time generation of an approximate



random triangulations, and (with help of the result in [15]) polynomial time
approximate counting of triangulations.
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