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Abstract

Suppose we are given (the edge graph of) an -
dimensional hypercube with its edges oriented so that ev-
ery face has a unique sink. Such an orientation is called
a unique sink orientation, and we are interested in finding
the unique sink of the whole cube, when the orientation is
given implicitly. The basic operation available is the so-
called vertex evaluation, where we can access an arbitrary
vertex of the cube, for which we obtain the orientations of
the incident edges.
Unique sink orientations occur when the edges of a de-

formed geometric -dimensional cube (i.e., a polytope with
the combinatorial structure of a cube) are oriented accord-
ing to some generic linear function. These orientations are
easily seen to be acyclic. The main motivation for study-
ing unique sink orientations are certain linear complemen-
tarity problems, which allow this combinatorial abstraction
(due to Alan Stickney and Layne Watson), where orienta-
tions with cycles can arise. Similarly, some quadratic op-
timization problems, like computing the smallest enclosing
ball of a finite point set, can be formulated as finding a sink
in a unique sink orientation (with cycles possible).
For acyclic unique sink orientations, randomized proce-

dures due to Bernd Gärtner with an expected number of at
most vertex evaluations have been known [3, 4]. For
the general case, a simple randomized procedure ex-
ists (without explicit mention in the literature). We present
new algorithms, a deterministic procedure and
a randomized procedure for
unique sink orientations. An interesting aspect of these al-
gorithms is that they do not proceed on a path to the sink (in
a simplex-like fashion), but they exploit the potential of ran-
dom access (in the sense of arbitrary access) to any vertex
of the cube. We consider this feature the main contribution
of the paper.
We believe that unique sink orientations have a rich
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structure, and there is ample space for improvement on the
bounds given above.

1. Introduction

Basic Notations and Definitions. We like to think of
combinatorial cubes as the Boolean lattice. More specifi-
cally, for sets and let .
Given finite sets , the cube is the edge-
labeled graph with vertex set , edge set

and edge labeling

Here denotes the symmetric difference of two sets. The
set is called the carrier of , denoted by .
The cardinality of is the dimension of , denoted by

. The subgraphs of induced by sets , for
, are cubes. They are called the faces of

, and we use -face short for face of dimension ; -faces
are vertices, -faces are edges, -faces are facets.
-Cube is short for -dimensional cube. Two faces and
induced by vertex sets and , resp., are

called antipodal, if and ;
hence, and .
An orientation of the edges of is called unique sink

orientation of if every face1 has a unique sink w.r.t. this
orientation. A sink is a vertex without outgoing edges. See
Figure 1 for examples of unique sink orientations.

The Problem. Given a unique sink orientation of an -
dimensional cube , we want to find its unique sink. We
assume that the orientation is given implicitly, and we can
learn about the orientation by vertex evaluations, where
we can access an arbitrary vertex of the cube, for which

1Note that the whole cube is a face of itself!



Figure 1. Two unique sink orientations of the
3-cube (the right one with a cycle).

we obtain the orientations of the incident edges. The goal
is to design algorithms that evaluate the sink of the cube
with a small number of vertex evaluations, preferably much
smaller than going through all vertices.
For a reason to become apparent only later, we are al-

ways required to perform an evaluation on the sink, even if
we know already which vertex it is. Let us denote by
the smallest number, such that there is a procedure that eval-
uates the sink of any unique sink orientation of an -cube
with at most vertex evaluations. We have and

, where we recall once more that we have to eval-
uate the sink in any case. In general for

: There are vertices that cover all edges (2-color
the graph, and take one color-class). After evaluation of
such a set of vertices we know the orientations of all
edges, and so we know the sink, which we have to evaluate,
if we haven’t already done so.
We are also interested in randomized algorithms. Let
be the smallest number, such that there is a randomized

procedure that evaluates the sink of any unique sink orienta-
tion of an -cube with an expected number of at most
vertex evaluations. , , and, in general,

is easy to obtain: First choose one
of the two color classes, each with equal probability; then
scan through the vertices in this color class in random order
until the sink is hit; of course, with probability , the sink
is in the other color class, when we have to do one extra
evaluation.
No bounds of the order were known for . For
a bound of is relatively easy to obtain, although

it seems not be mentioned explicitly in the literature (the
procedure ForceOrNot in [9] can be interpreted as such an
algorithm yielding this bound). One observation to make
is that, in general, unique sink orientations are not acyclic
(see Figure 1). Bernd Gärtner [3] has given a randomized

procedure with a bound of for acyclic orientations,
but as for deterministic bounds, nothing is known even for
acyclic orientations.
The goal of this paper is to show that the problem has

sufficient structure to derive nontrivial bounds. In particu-
lar, we show that and .
No lower bounds are known; so even upper bounds polyno-
mial in seem to be possible at this point.
Recently, Volker Kaibel [10] has independently derived

a deterministic algorithm.

Motivation. Unique sink orientations occur when the
edges of a deformed geometric -dimensional cube (i.e.,
a polytope with the combinatorial structure of a cube) are
oriented according to some generic linear function. These
orientations are easily seen to be acyclic. Motivated by the
simplex algorithm, acyclic unique sink orientations have
been studied for general polytopes, where they are called
abstract objective functions [6, 11] or completely unimodal
numberings [17]. Probably the most famous such orienta-
tion of a cube is the one obtained via the Klee-Minty cube.
A randomized simplex variant (random edge) for that spe-
cific orientation has been quite intensively investigated, see
e.g. [5], although even here no complete solution is known.
The main motivation for studying unique sink orienta-

tions are certain linear complementarity problems [1] (those
defined by so-called -matrices), which allow this combi-
natorial abstraction due to Stickney and Watson [16]; here
orientations with cycles do arise.
Similarly, some quadratic optimization problems, like

computing the smallest enclosing ball of a finite point set,
can be formulated as finding a sink in a unique sink orien-
tation (with cycles possible). It is perhaps instructive to see
how such a transformation can be done. Suppose we are
given a set of affinely independent points in -
space2, and we are interested in computing the smallest en-
closing ball of . This ball is unique, and there is a sub-
set of , such that the smallest enclosing ball of is
the smallest ball with on its boundary. Computing the
smallest ball with a given set of affinely indepen-
dent points on its boundary is easy: We compute the unique
such ball in the affine hull of and its center is the center
of the requested ball. So how can we obtain ?
Consider the cube and define an orientation of its

edges as follows (for an illustration of the planar case see
Figure 2): Given , we let the edge between

and be directed towards iff .
This implies that if is a sink in this orientation, then (i)

and (ii) for all . In other

2If there are points, the dimension of the ambient space,
then we embed in -space and perturb. Moreover, the problem is
well understood when is large compared to (see e.g. [8]), while the
situation when is close to seems to be the bottleneck.
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Figure 2. Unique sink orientations from small-
est enclosing balls.

words, satisfies all constraints in , and releasing any
point in from the boundary will lead to a violation of such
a constraint. It can be shown that is a sink of the cube
iff is the smallest enclosing ball of (although that
does not follow from our discussion here). Moreover, it
can be shown that the orientation we defined is a unique
sink orientation. Details, together with the fact that such an
orientation can be cyclic in a sufficiently high dimension,
are described in [7].
How do our findings relate to that problem? In the unit

cost model3 no deterministic bounds other than the trivial
one of poly was known for computing the small-
est ball of points in -space. Since the necessary
vertex evaluations can be performed in polynomial time, we
have obtained an poly algorithm for that prob-
lem. Our randomized bound is not relevant here, since a
randomized procedures of complexity is known [2].
They are relevant in the context of linear complementarity
problems, though: For -matrix problems nothing better
than was known [13].

Findings. To the best of our knowledge all previous algo-
rithms searching for the sink work in a simplex-like fashion.
Start at some vertex, and successively proceed to a neigh-

3As opposed to the bit-model, where polynomial time solutions are
known.

bor along some outgoing edge until a sink is found. Exam-
ples are Murty’s algorithm ([13], cf. [1, 16]), or the random
edge rule (which chooses the next vertex uniformly at ran-
dom among the eligible neighbors). Recently, Morris [12]
has shown that there are unique sink orientations where the
random edge rule leads to an expected number of at least

steps (which exceeds the number of vertices).
In this paper we investigate the structure of unique sink

orientations which leads us to algorithms that exploit the
access to arbitrary vertices in the cube, as already indicated
in the discussion of the simple bounds above. Typically, we
start by evaluating two antipodal vertices of the cube.
Simple properties and a useful characterization of unique

sink orientations are presented in Section 2. In Section 3 we
show the decomposability of the problem, that allows us to
conclude that for all (and
analogously for ). Using simple bounds for small , this
gives already bounds of the form , , for arbi-
trary . An alternative algorithm is described in Section 4
which evaluates the sink of an -cube in a number of steps
that is at most the Fibonacci number . Tailored opti-
mal algorithms for the -cube (randomized) and the -cube
(deterministic) are presented in Sections 5 and 6; they allow
further improvements for -cubes.

2. Properties

Let be an orientation of a cube , and let .
By we denote the orientation obtained from by
switching the directions of all edges labeled by some .
For , we use short for .

Lemma 2.1 If is the unique sink orientation of a cube
and , then is a unique sink orientation.

Proof. It suffices to show that is a unique sink orien-
tation for any . Now consider the two antipodal
facets and of that are connected by edges labeled by
. Let be the sink of and let be the sink of . Exactly
one of the two, say , is the sink of the whole cube and thus
has the incident edge labeled ingoing; therefore, has the
incident edge labeled outgoing. Clearly, reorientation of
all -labeled edges will make the unique sink. The same
argument applies to all faces of (if is not in the carrier
of a face, nothing changes).
An orientation of a cube induces the out-map, ,

of , defined by

is outgoing
edge of w.r.t.

The out-map is just an alternative way of specifying an ori-
entation. is a sink w.r.t. iff .



Lemma 2.2 Let be a unique sink orientation. Then is
injective.

Proof. Suppose , then both and are
sinks in the orientation . Since is a unique sink
orientation, .
Since the out-mapmust be a bijection

for a unique sink orientation. That is, for every
there is unique vertex with . Hence, the unique
sink property implies the analogous unique source property,
etc. Out-maps of unique sink orientations have a simple
characterization, which we state without proof.

Lemma 2.3 A mapping is the out-
map of a unique sink orientation of iff

for all with .

It is perhaps worthwhile to mention that injectivity alone is
not sufficient for an out-map to come from a unique sink
orientation. This is true, though, for acyclic orientations.

3. Inherited Orientations

Consider a cube and let . Re-
moval of all edges with labels from leaves con-
nected components that are exactly the faces of with car-
rier . For every vertex with there is a
unique such face with carrier containing . Now let
be an orientation of such that every face with carrier

has a unique sink. Then we define a mapping

set of labels of edges out-
going of the sink of

which we call the -inherited out-map of . Note that
for , but, a pri-

ori, it is not clear that this is an out-map of any orientation
of .

Lemma 3.1 Let be a unique sink orientation of a cube ,
and let . Then is the out-map of a unique
sink orientation of a -cube.

Proof. This can be derived from the characterization given
in Lemma 2.3.
Figure 3 shows an example of an orientation obtained

through an inherited out-map. There we have partitioned
a 4-cube into 2-faces, and these 2-faces are connected iso-
morphic to a 2-cube, with an inherited orientation. How can
we use that for finding the sink of the 4-cube? We can per-
form a search on the inherited structure, an orientation of a
2-cube: That can be done with at most 3 evaluations. Note
that every such vertex evaluation in the inherited structure
amounts to evaluation the sink of a -face, which takes at
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Figure 3. Orientation of a 4-cube and an in-
herited orientation.

most 3 evaluations each. That makes at most
altogether. For the -cube that is not an improvement over
the bound of for , which we know already. The
general principle is quite useful, though.

Lemma 3.2 Let . Then

and

Proof. (Product Algorithm) Given an orientation of an
-cube , choose a subset of of elements.
Now perform a search for the sink in the cube induced by
the inherited orientation ; this takes at most eval-
uations. Each evaluation, however, amounts to finding (and
evaluating!)4 a sink of an -dimensional face, and
thus takes at most steps.
Analogously for .

Corollary 3.3 Let . Then
and

Recall that we have already derived
which now gives . Similarly,

entails . In the rest of the paper
we will further improve on this bounds.

4. The Fibonacci Seesaw

Let be a unique sink orientation of a cube . The Fi-
bonacci Seesaw procedure maintains the following invari-
ant for , while increasing from to : There are two

4Here our careful definition of pays off.



antipodal -faces and of , with theirs sinks and ,
resp., already evaluated. This invariant can be obtained for

by 2 vertex evaluations. If we have reached ,
then and are antipodal facets and we are done, since ei-
ther or is the sink of the whole cube .
In order to proceed from to , we choose some

, which must exist because of the injectivity
of . Assume that . Then and we
can extend along to an -face of which is the
sink. The face antipodal to in is an -cube,
of which is a facet. We have to search for the sink of
in the facet of antipodal to , that is, we have to search
and evaluate the sink in an -cube which takes at most
evaluations. Summing up, we can extend the invariant from
to with vertex evaluations. This leads to the
recursion

and

for .

Thus , for the Fibonacci numbers
defined by , , and, for ,

.
In particular, . One can further improve the

Fibonacci Seesaw by making use of an improved algo-
rithm for -cubes. The SevenStepsToHeaven Algorithm,
described in Section 6, finds the sink in a -cube with at
most evaluations.

Theorem 4.1 , where is defined by the re-
currence relation , for

, and initial conditions
. The solution to this recurrence relation yields

.

Proof. (ImprovedSeesaw Algorithm) For -cubes,
, we proceed in the same way as the Fibonacci Seesaw. For

, we start out as in the Fibonacci Seesaw, but switch
strategy when two antipodal -faces have their sinks
evaluated. Up to this point the algorithm has performed at
most vertex evaluations, where is the
maximum number of vertex evaluations required by our al-
gorithm on an -cube.
Let and be the two antipodal -faces of which

we have already evaluated the sink. Set
. Now we invoke Algorithm SevenStepsToHeaven on

the inherited orientation induced by . This is an orien-
tation of a -cube, of which we have already evaluated two
antipodal vertices. To conclude our algorithm, we need to
evaluate more appropriately chosen -faces. Hence,

, , , , and, for ,

and thus with statisfying the recurrence
relation given in the assertion of the theorem.
In order to solve the recurrence, observe that for every
,

So satisfies the recursion
for every , with initial conditions

. The
solution of this recurrence relation is of the form

, where the , , are the distinct roots
of the polynomial , and the are
constants [14, Section 5.2]. Thus is dominated by the
term , where is the root of largest absolute value. In our
case this value is .

5. 2-Cube (Randomized)

There are two types of unique sink orientations of -
cubes (see Figure 4): One, where source and sink are con-
nected by two disjoint paths of length 2; we call it an eye.
And one, where source and sink are connected by a path of
length 1 and a path of length 3; we call it a bow.

Figure 4. The two types of unique sink orien-
tations of the 2-cube: Eye and bow.

Recall that , a bound on which we
will improve now.

Lemma 5.1 In a 2-cube the sink of a unique sink orienta-
tion can be evaluated with an expected number of vertex
evaluations.

Proof. We describe three randomized strategies that will
perform either better on an eye or on a bow. The right ran-
domized mixture will lead to the claimed expectation.
We start with the common features of all three strategies.

The analysis for a bow or an eye is given along with the
description.
First, choose a vertex , uniformly at random.

Case 1 Evaluation shows that is the sink. We are done.
The case happens with probability and requires evalua-
tion (both for eye and bow). (Case 1: eye ; bow )



Case 2 Evaluation reveals one incoming and one outgoing
edge of , a case that happens with probability both for
eye and bow. We evaluate the head of the outgoing edge
next.
If we have an eye, then must be the sink. That is, for

an eye, this case entails evaluations.
If we have a bow, then either is the sink, or if it has

an outgoing edge, the sink has to be the head of this
edge. Conditioned on Case 2 occurring, both outcomes hap-
pen with equal probability for a bow. Hence, for a bow,
this case requires an expected number of evaluations.
(Case 2: eye ; bow )
Case 3 We are left with the situation that is the source.
This case has a probability of to occur. Let be the vertex
antipodal to , and let and be the two remaining ver-
tices. Here is where the three strategies discriminate their
further proceeding. Note that in case of an eye, the antipo-
dal vertex is the sink. In case of a bow, one of the two
neighbors or is the object of desire.
Strategy 1 We evaluate the vertex antipodal to . For an
eye, we are done and we used evaluations altogether. For
a bow, one of the two remaining vertices is the sink, but
since we know now the orientations of all edges, we know
the sink and evaluate it. evaluations were necessary.
(Case 3, Strategy 1: eye ; bow )
Therefore, summing up the contributions from all
three cases, we get the following expectations.
(Overall, Strategy 1: eye ; bow )
Strategy 2 For the next vertex to evaluate we sample uni-
formly at random in . If this is not the sink, we
evaluate the other vertex in next. For an eye, of
course, that’s bad news. Neither nor is the sink, and
we end up evaluating vertices. For a bow, either or
is the sink. That is, with equal probability we will succeed
on the first one or we have to proceed to the other one as
well. So for a bow, vertex evaluations had to be per-
formed on the average.

(Case 3, Strategy 2: eye ; bow )
Consequently, expectations can be summarized.

(Overall, Strategy 2: eye ; bow )
Strategy 3 Like before, the next vertex for evaluation is
chosen uniformly at random in . However, if that is
not the sink, we continue with the antipodal vertex . This
causes evaluations for an eye. The bow has and eval-
uations with equal probability, thus also on the average.

(Case 3, Strategy 3: eye ; bow )
We see that this strategy does not improve on Strategy 1
in both configurations, and thus it is excluded from further
consideration.
What we will do, though, is to toss a biased coin and pur-

sue Strategy 1 or 2 depending on the outcome of the experi-
ment. If the coin lets Strategy 1 materialize with probability

, this mixed strategy gives expectations of

eye
bow

The maximum of these two expressions is minimized for
, when it is , the value claimed in the lemma.

A careful inspection of the proof shows that the bound
obtained is optimal for the 2-cube (that is why have included
consideration of Strategy 3 which was later abandoned; de-
tails omitted). With Lemma 3.2, we have obtained a bound
of for the expected number of
vertex evaluations.
Günter Rote [15] has determined the optimal random-

ized algorithm for the 3-cube by solving a linear program.
It amounts to an algorithm with an expected number of

vertex evaluations; with Lemma 3.2, this
gives a bound of .

6. 4-Cube (Deterministic)

Next we improve on the Fibonacci Seesaw for 4-cubes.
Given a cube , a vertex , and , we let
denote the face of with carrier containing .

Lemma 6.1 In a 4-cube the sink of a unique sink orienta-
tion can be evaluated with at most 7 vertex evaluations.

Proof. (SevenStepsToHeaven Algorithm) We start by eval-
uating a pair of antipodal vertices and . Since the out-
map is injective, there exists a label ,
say the incident edge of label is outgoing for , and in-
coming for . If there is another incoming edge (with label

) for (see Figure 5), then we run the Product Algo-
rithm on the orientation induced by . The evaluation

q

p

p

Figure 5.

of the sink of took only one step (as op-
posed to the usual three we have to account for in a -cube).



The evaluation of was not wasted, as it is in the antipo-
dal -face. So we gained two steps compared to the regular

of the Product Algorithm, and finished in at most
steps.

Thus we can assume that (Fig-
ure 6).

p

p

Figure 6.

Let us evaluate vertex next. Since
, has another incoming edge labeled

. If there are at least three incoming edges for
(see Figure 7), we are done: In that case is the sink of
the -face spanned by these incoming edges, where the sink
has been evaluated in steps. The vertex is in the an-

p

p
q q

Figure 7.

tipodal -face, where we can evaluate the sink in at most 4
further steps. Then we have sinks in two antipodal facets of
, one is the sink of the whole cube. We have used at most

evaluations.
Hence, we can assume (Fig-

ure 8).
Let us evaluate vertex next. If

(see Figure 9), then we are done by running the Product Al-
gorithm on the orientation induced by . We evalu-

p

p q
q

Figure 8.

ated the sink of in just two steps5, and the
sink of the antipodal -face in two steps as
well6. Thus at most more evaluations in the appropriate

p

p q
q

Figure 9.

-face will give us the global sink in at most
steps altogether.
We can thus assume (Figure 10). So far

our algorithm went as the Fibonacci Seesaw would go. The
Fibonacci Seesaw now would evaluate the known sink

of the -face . Then it would go on
and evaluate the sink of the appropriate neighboring -face
spanned by edges labeled and . This evaluation of
is not very economical, as it reveals only the orientation of
two new edges, instead of three or four. Here we avoid the
evaluation of by evaluating its neighbors in an appropriate
order.

is the antipodal vertex to in the -face generated
by directions . is the source of this -face,
so must have at least one incoming edge of direction

. Let be the fourth direction, not equal to
(Figure 10).

5A birdie!
6Another birdie!
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Figure 10. The edge has to be di-
rected towards , since otherwise
has no sink.

We evaluate . If the edge labeled is in-
coming to (see Figure 11), then we know that the global
sink of is in the -face . This sink can be
found with at most two more evaluations, which gives us at
most altogether.
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Figure 11.

If the edge labeled is outgoing from (see Figure 12),
then we know that the global sink is either or it is the sink
of the -face .
Let us evaluate , thus revealing the last un-

known incident edge to . After this evaluation we should
know where the global sink is. If the edge of direction is
outgoing from , then the global sink is (Figure 13).
If (see Figure 14), then the global sink is

the sink of . By observing the three known
edges of the -face , we can conclude, that the
edge is directed towards .
This, together with the knowledge of the orientations of the
edges incident to tells us where the sink of
is, which we can evaluate in step .
It can be shown that the bound is tight, i.e. .
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Figure 12.
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Figure 13.
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Figure 14. The edge must
be directed towards , since otherwise

has two sinks.
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M. ZIEGLER. Randomized simplex algorithms on
Klee-Minty cubes, Combinatorica 18 (1998), 349–372.
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