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maximal crossing-free: triangulation



I. (Specific) Counting

The number tr(Gn.2) of triangulations of the
vertices Gn.2 of a convex (n+2)-gon satisfies

'I'r(Gm-Z) — Cn zn 4”

with i, : (2n> = O ; 1"

n+1\n n3/2
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I. (Specific) Counting

The number tr(Gn:2) of triangulations of the
vertices Gni2 of a convex (n+2)-gon satisfies

'I'r(Gm.Z) — Cn zn 4”
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II. Extremal Counting

The number tr(P) of triangulations of a
4-element point set P satisfies

trmin(4) = 1 < tr(P) < 2 = tr(4)




II. Extremal Counting

tr(n) := maxipj=n tr(P)
trmin(n) := minjpj=n tr(P)

trmin(n) <n 4" s‘rm

with P in
general
position



II1. Algorithmic Counting

The number tr(P) of triangulations of an
n-element point set P can be computed in time

O(tr(P) - poly(n))

by enumeration



I. (Specific) Counting
1. Triangulations of
Convex Polygons

Point Sets in Convex Position



In how many ways can we triangulate
a convex n-gon?




Started with a letter in 1751: Euler to Goldbach

Leonhard Euler Christian Goldbach
15.4.1707 Basel 18.3.1690 Konigsberg
18.9.1783 St. Petersburg 20.11.1764 Moscow



Euler computed these numbers
up to 10-gons ...

schehen kénne. Setze ich nun die Anzahl dieser verschiede-
nen Arten ‘=z, s0-habe ich per inductionem gefunden

prennta =3 S iEsy, 6, 7, 8 g ()
Sopsiga=— . O M 10 91308 429, 1430,

.. but he considered his method (whatever it was,
we dont know) too tedious.

die folgende leicht gefunden wird. Die Induction aber, so
ich gebraucht, war ziemlich mithsam, doch zweifle ich nicht,
dass diese Sach nicht sollte weit leichter entwickelt w erden

kénnen. Ueber die Progression der Zahlen 1, 2, 5, 14,



1758 Segner set up the “Catalan Recurrence”
and computed more numbers.

numerus
aterum  refolutionum.
42900
20744490
9694845
35357670
129644799

477638700

1967203190

XXII 6564120420

XXII 24466267020

XXV 01482563640

58786 XXV 343059613650
208012




With these numbers Euler saw a conjecture

confirmed which he mentioned already in his
letter to Goldbach:

“Ita s1 pro polygno n laterum numerus resolutonum sit P
pro polygono sequente n+1 laterum resolutionum erit
In — 6

Pnsl = Pn
1

but he has little hope to prove that

Auctori huius schediasmatis non displicaturum esse speramus



It took 80 years until Gabriel Lame (according
to Gauss the best French mathematician of his
time) proved Eulers conjecture in 1838.

Note sur une E'quation aux différences finies ;

Pir E. CATALAN.

N BRI B Ol 8w ce w ew® -—

M. Lamé a démontré que I'équation

Pll-l-l —_— Pn+Pn—|P3+ P,_.P‘ +o . o.'""' P4P._.+ P;P“_, + P’ , (l)
se raméne a I'équation linéaire trés simple,

1 2n Ao,
Pn e <~ —— 4n—§ .
Tl ( n ) vime ~geekd. (23

Admettant donc la concordance de ces deux formules, je vais cher-
cher a en déduire quelques conséquences.







Multiply-decorate-biject

4n — 6
Pn—|—1: n Pn
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Multiply-decorate-biject
n P,y1= 20 T

- -

decorate boundary edge decorate any edge
not root edge and orient



Multiply-decorate-biject
n P,y1= 20 T




The proof of the recurrence exhibits an elegant
evolution of a uniformly random triangulation:
(choose random edge, orient randomly, expand)*




Why did Euler write to Goldbach
about this problem?

Question may have its
roots in surveying.



Why did Euler write to Goldbach
about this problem?

But here is what he found quite
remarkable “nicht wenig merkwiirdig”

kénnen. Ueber die Progression der Zahlen 1, 2, 5, {4,
42, 132, etc. habe ich auch diese Eigenschaft angemerlket,
dass 1 +2a 4 5a® 41k a® | §2a* 4 1324° R G

wenn a.._—[;, s0 1st

1+4 +42+43 +44+etc — &,

Fuler.



I. (Specific) Counting
2. Lattice Triangulations









Bounds on tr(Lnxn)

O(64”2) [Orevkov'99]

0(8"%) [Anclin‘02]

Q(4.15"°) [Kaibel,Ziegler 02]
0(6.86”2) [Matousek,Valtr,Welzl|'06]

6.86™° “=" F, > 4 (Fibonacci Number)




Open Problem
Regular Triangulations

of the Lattice

Is the number of regular (i.e. liftable)
triangulations of Lnxn exponentially
smaller than tr(Laxn)?

Kaibel,Zieqgler
reqtr{Las) S CIERRAE e 3 gier]

for c«1?



I. (Specific) Counting
3. Two more Examples



W

0(34772) triangU|atiOnS /’Q/\\\}\O

[Hurtado,Noy‘97]

2(8.48™) triangulations
[Aichholzer,Hackl,Krasser
Huemer,Hurtado,VVogtenhuber‘06]




Convex Position is not Extremal

tr(n) := maxipj=n tr(P)

with P iIn | |
general trmin(n) := Minpln tr(P)
position
¢ <n 'I-rmin(n) <n 3.47” x, 4"
° o Ny / n
< tr(Gn) <

8.48" <n 'h"(ﬂ) <n ?



II. Extremal Counting
1. Number of

Triangulations



Upper Bound on tr(n)

An upper bound of n#3m-6) = 20 logn ig eqsy.

Encode a triangulation by listing the at most

3n-6 edges in a sequence of numbers in
i1,2,...,n} of length at most 2(3n-6).



Upper Bound on tr(n)

An upper bound of n#3m-6) = 20 logn ig eqsy.

Late 70s: David Avis raised the question and
conjectured a bound of c"; (see also related question by
Newborn and Moser on crossing-free spanning cycles)

[Ajtai, Chvatal, Newborn, & Szemeredi'82]
proved and employed the Crossing Lemma for

tr(n) < 10000000000000"



Issue Resolved -
Except for the Base Constant

tr(n) < (103"  [Ajtaietal.'82]
173000  [Smith'89]
276.8"  [Denny,Sohler'97]

59"  [Santos,Seidel'03]
43™  [Sharir,Welzl‘'06]

tr(n) < 30" [Sharir, Sheffer, Welz| 09]
tr(n) > 8.48" [Aichholzer et al."06]



II. Extremal Counting

2. Random Triangulations
vertices of degree 3

with link to number of triangulations



Triangular Convex Hull

Fix a set H of vertices of a triangle A.
For point sefs P C A, let P*:= PuH.

trt(n) := maxpl=n, pca tr(P*)

tr(n) < trt(n), since for any set P, let Q be
a scaled translate of P so that QCA. Then

tr(P) = tr(Q) < tr(@*).



Degree 3 Vertices

v3 = v3(T) := number of inner vertices of
degree 3 in friangulation T of P*.

vi2 0

V3 = V3(P) := E[vs]

with expectation over
uniform distribution of
all triangulations of P*.




Degree 3 Vertices

v3 = v3(T) := number of inner vertices of
degree 3 in friangulation T of P*.

v3/n = Prob[random inner
vertex in a random
V3 = V3(P) := E[vs] triangulation has degree 3]

with expectation over
uniform distribution of Can we separate this

all ’rriangulaﬂons of Pt PrObab|[|'|'y away from O
(independently from n)?



unique
triangulation with
one vertex of
degree 3

vi/n=1/n = 0O




Yes!

Lemma: If P* is in general position, then

vz 2 n/30

Lemma: If V5 > O|P| for all P with P* in general
position, then tr(n) < (1/0)" for all n.

= tr+(n) < 30"
= tr(n) < 30"



Edge Flip in Triangulation

"
SR



Edge Flip in Triangulation
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Edge Flip in Triangulation

%
<V

Set of triangulations is connected via edge flips.






Lemma: If P* is in general position, then

vz 2 n/30

Proof uses (dis)charging among vertices as in 4-
color theorem, except that we have to charge
here across all triangulations of P*.

First, every vertex starts with a charge of 1.

Second, we distribute within each triangulation
so that a vertex of degree i has charge <(7-i).

Finally, every vertex uniformly distributes its charge
to all degree 3 vertices it can be flipped down to.

Show: No degree 3 vertex gets charge exceeding 30.






Lemma: If V3 > d|P| for all P with P* in general
position, then tr#(n) < (1/d)" for all n.

Proof.

sm-tr (P) <|o3(P)-tr (P) = S tr(P\{¢})|<n -t (n—-1)
qge P




Open Problem
03 Versus

Number of Triangulations

0" := supremum over all ® such that 95 > d|P| for
all sufficiently large sets P (P* in gen. pos.).

%

c := infimum over all ¢ such that tr*(n) < c"
for all sufficiently large n.

We know that ¢c'< (1/8).

¢ =(1/8) 2



II1. Algorithmic Counting
1. Counting Triangulations

by Enumeration



Counting by Enumeration

The number tr(P) of triangulations of an
n-element point set P can be computed in time

O(tr(P) - poly(n))
by enumerating all of them.

[Avis,Fukuda'96]

.. same for spanning trees
(in time O(st(P) - poly(n)).




Open Problem
Enumerating Crossing-

Free Perfect Matchings

Can we enumerate all crossing-free
perfect matchings of an n-point set in

time O(pm(P) poly(n))?

Is possible for set of

0 X all maximal crossing-

free matchings.



Status of
Algorithmic Counting

No #P results known.

No polynomial counting results known.

(Except for counting
stacked friangulations via
dynamic programming.)



II1. Algorithmic Counting

2. All Crossing-Free Graphs
with Exponential Speed-up

Need: (i) More extremal counting and (ii)
constrained Delaunay triangulations.



Exponential Speed-up

For a set P of n points we can
compute pg(P) in time O(0.36" pg(P)).

[Razen,W. 08]
[Katoh,Tanigawa O8]

I.e. exponentially faster than the
number computed.



All Crossing-Free Graphs
versus Triangulations

obvious estimates:
tr(P) < pg(P) < 2°"° tr(P) < 8" tr(P)

can be improved to: needs general position

g
2.82"tr(P) < pg(P) < 798" tr(P)
[Razen,Snoeyink,W. 08]



Open Problem
All Crossing-Free Graphs

versus Triangulations

Is pg(P)/tr(P) minimized for point
sets in convex position?

Note: pg(P)/tr(P) > 2.82" is known and
pg(Gn)/tr(Gn) =n 2.914..7
i [Flajolet,Noy 99]



Basic Idea

2.82" tr(P) < pg(P)
= tr(P) < 0.36" pg(P)

and

pg(P) can be computed in time
O(tr(P) poly(n)).



Back to Flips




Lawson Flips




Applying Lawson Flips ...

assume general position

Eventually gives the Delaunay Triangulation.

If edges G are constrained as unflippable, eventually
gives Constrained Delaunay Triangulation CD(G)

CD(G) does not
depend on starting
triangulation T2G and

choice of flips!




pg(P) = 2FsEiki)

Consider the map G — CD(G)
Then, for triangulation T, |CDY(T)| = 2m-I(T)I

m ... number of edges

L(T) ... candidates for
Lawson flips

GPTIffFL(T) cGCT



What is the number, pg(P), of all
crossing-free graphs on P?



Consider all triangulations and mark
candidate edges for Lawson flips.




.. and add up these numbers.

Z R =R
7 B B

pg(P) = 21 4210 4 210 4 210 4 59 4 510 — 6656




Open Problem

Always Many Crossing-
Free Spanning Trees?

Is there a constant ¢c>1 such that
st(P) > c" tr(P) for every large enough

n-point sef.

crossing-free

_ Spanning frees

(s’r(P) number of

J

(Would imply counting of crossing-free
spanning frees with exponential speed-up.)



Open Problem
Triangulations with

exponential speed-up

Can we compute tr(P) with

exponential speed-up, i.e. in time
O(c® tr(P)) for a constant c<1?



Open Problem
Flip-Markov Chain

What is the mixing rate of the
Flip-Markov Chain on an arbitrary n-point set?
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Open Problem
Flip-Markov Chain

What is the mixing rate of the
Flip-Markov Chain on an arbitrary n-point set?

and So on




Open Problem
Flip-Markov Chain _ uses

v3/n=0Q(1)

What is the mixing rate of the
Flip-Markov Chain on an arbitrary n-point/set?

Polynomial mixing rate would give polynomial
approximate counting of triangulations.

What is the mixing rate of the
Flip-Markov Chain on the (nXn)-lattice?

(Known to be polynomial for points in convex position.)
[Molley,Reed,Steiger 98] [McShine,Tetali 98]



