12th Homework - Solution

- In this homework, we shall model chemical reactions using reaction rate equations only.
- We shall program the reaction rate equations directly in the equation window and learn to use *Modelica's* matrix notation.

- Hydrogen-Bromine Reaction
- Oxy-hydrogen Gas Reaction

December 13, 2012

© Prof. Dr. François E. Cellier

Hydrogen-Bromine Reaction

- We wish to simulate the *hydrogen-bromine reaction* described during the lectures. We concentrate on mass flows only, i.e., we only model the reaction rate equations.
- We wish to plot the molar masses of the five species as functions of time.
- We shall program the reaction rate equations in the *equation window* of *Dymola*, making use of a *matrix-vector notation*, i.e., the chemical reaction network is described by the corresponding *N-matrix*.

• Although the reactions are occurring under *isothermic conditions*, we still wish to take the *Arrhenius' law* into account, and program the reaction rate constants as functions of temperature:

$$ak_{1} = 1.39 \cdot 10^{8} \cdot \sqrt{T} \cdot \left(\frac{189243.0}{R \cdot T}\right)^{1.97}$$

$$k_{1} = ak_{1} \cdot \exp\left(\frac{-189243.0}{R \cdot T}\right)$$

$$k_{2} = \frac{k_{1}}{K(T)}$$

$$k_{3} = 10^{11.43} \cdot \exp\left(\frac{-82400.0}{R \cdot T}\right)$$

$$k_{5} = 10^{11.97} \cdot \exp\left(\frac{-149800.0}{R \cdot T}\right)$$

$$k_{4} = 0.1 \cdot k_{5}$$

• where **R** is the gas constant ($\mathbf{R} = 8.314 J K^{-1} mole^{-1}$).

• Reaction k_2 contains a temperature dependence K(T) that was experimentally found:

Abs. Temperature T [K]	Equilibrium Const. K [mole m ⁻³]
300.0	7.7446 × 10 ⁻²⁹
400.0	1.9543×10^{-20}
500.0	2.2182×10^{-15}
600.0	5.2844×10^{-12}
700.0	1.3867×10^{-9}
800.0	9.0782×10^{-8}
900.0	2.3768×10^{-6}
1000.0	3.2509×10^{-5}
1100.0	2.7861×10^{-4}
1200.0	1.6788×10^{-3}
1300.0	7.6913×10^{-3}
1400.0	2.8510×10^{-2}
1500.0	8.8716×10^{-2}
1600.0	2.4044×10^{-1}
1700.0	5.8344×10^{-1}
1800.0	1.7947
1900.0	2.6061
2000.0	4.9431

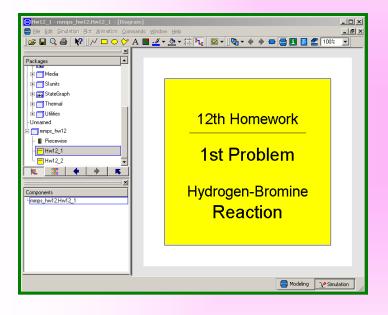
• Program K(T) using a table-lookup function.

- The initial molar masses of Br_2 and H_2 are both equal to 0.0075. The total reaction volume is $V = 0.001 \text{ m}^3$. The temperature is T = 800 K.
- Simulate the system during *5000 seconds*. You need to reduce the tolerance value for the *DASSL integration algorithm* to *10⁻¹⁰*.
- Plot on one graph the molar masses of **Br**₂, **H**₂, and **HBr** during the first *0.1 seconds*.
- Plot on a second graph the molar mass of **H**[•] during the first *0.2 seconds*.
- Plot on a third graph the molar mass of **Br**[•] during the first *0.3 seconds*.

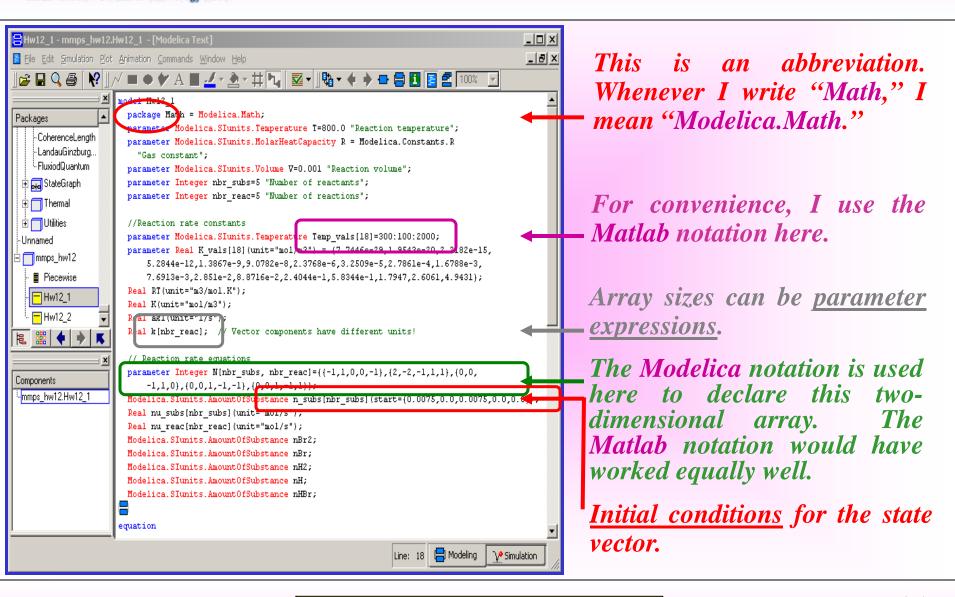
• We shall need a *table look-up function*. We can program it manually.

Precensise - mmps, herit2Precensise - [Dasp Ele Edit Smildion Bot Animation Comman Ele Edit Smi	arm)X & Yodar (b): ■		
Patages Termal In Dates Termal In Collec Termal Nut 2, 2 Nut 2, 1 Nut 2, 2 Nut 2, 1 Nut 2, 2 Nut 2, 1 Nut 2, 2 Nut 2, 2 Nut 2, 1 Nut 2, 1 Nut 2, 1 Nut 2, 2 Nut 2, 1 Nut 2, 1 Nu		<pre> Winder Bio Adding Window Dep A</pre>	_grid[

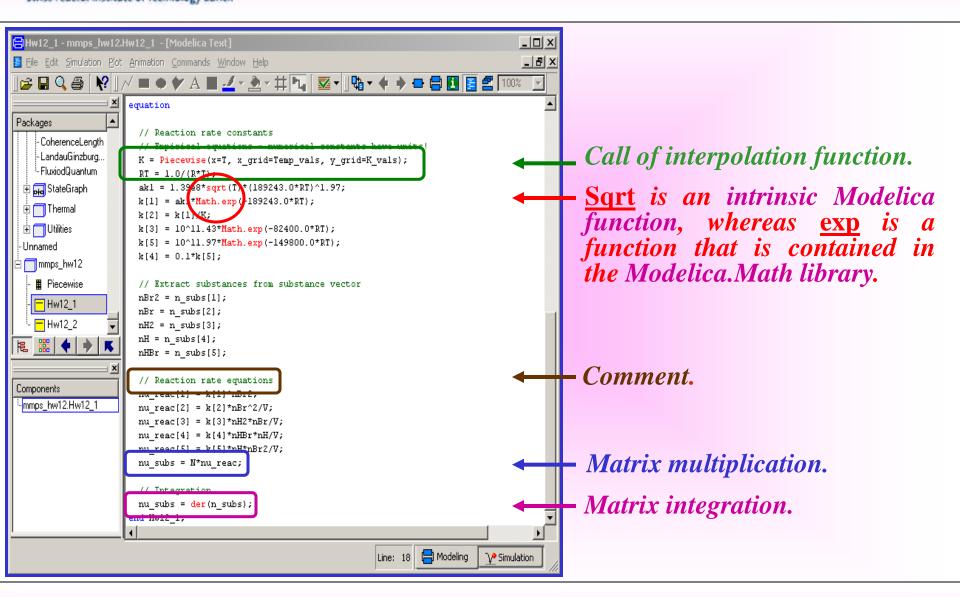
December 13, 2012



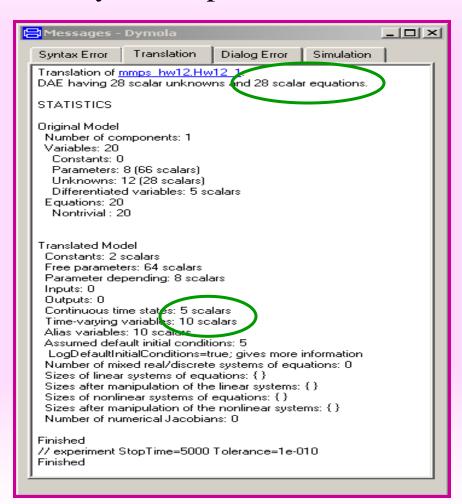
😑 Piecewise - mmps_hw12.Piecewise - [Modelica Text] We use a *function*. _ 8 X 📙 File Edit Simulation Plot Animation Commands Window Help |☞ 🖬 🔍 🚳 「 😢 || // ■ ♦ 🐓 A ■ 🗾 × 🖢 + 井 🍡 「 🔤 - || 🎭 - ♦ 🔶 🖪 🖪 🖪 🖉 100% 💽 The colon here means that the * function Riecewise array will adjust its dimension input Real x "Independent variable"; Packages input Real x gnid[:] Independent variable data points"; upon invocation. 🗄 时 Stateoraph input Real y grid[:] Dependent variable data points"; 🗄 🥅 Thermal outnut Real y "Interpolated result"; **Protected** variables are hidden 🗄 🥅 Utilities protected from the outside. They are inceger n; Unnamed strictly local. 🗄 🥅 mmps_hw12 algorithm Piecewise The algorithm instruction allows assert(size(x grid, 1) == size(y grid, 1), "Size mismatch"); - <mark>-</mark> Hw12 1 users to encode sequential code. assert(x >= x grid[1] and x <= x grid[n], "Out of range");</pre> . <mark>-</mark> Hw12_2 While <u>equations</u> are declarative, for i in lin - 1 loop <u>algorithms</u> are procedural. if x >= x grid[i] and x <= x grid[i + 1] then</pre> 90 y := y grid[i] + (y grid[i + 1] - y grid[i])*((x - x grid[i])/(x grid[Assert is a clean way to ensure i + 1] - x grid[i])); end if: proper usage of the function. If Components end for: mmps_hw12.Piecewise the assert clause is not met, the end Piecewise; simulation dies with the indicated error message. Line: 1 📙 Modeling **∕**, P Simulation



• We can now create the model for the *hydrogen-bromine reaction*.


The problem is modeled entirely in the equation window. The code is a bit long. The declarations and equations shall be explained separately.

December 13, 2012


December 13, 2012

© Prof. Dr. François E. Cellier

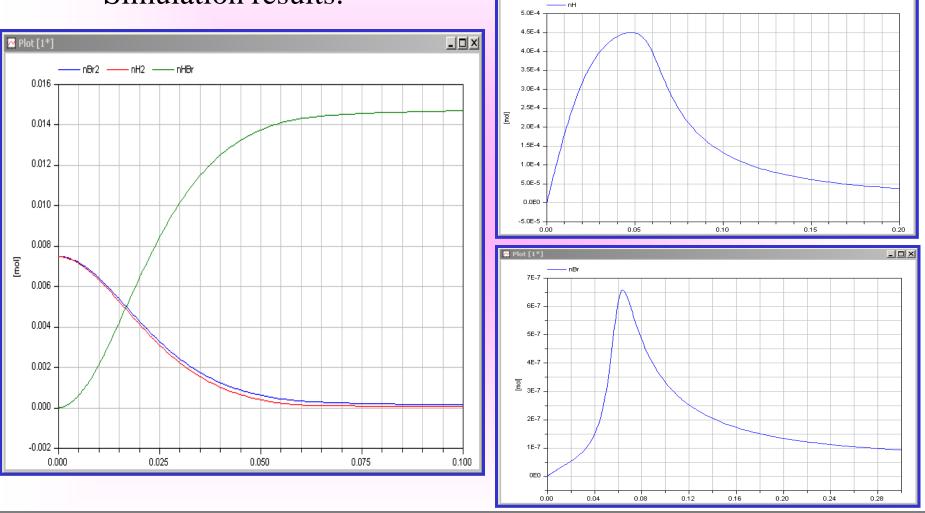
• We are now ready to compile the model.

• We require some simulation control.

😑 Experiment Setup	<u>? ×</u>	Experiment Setup	×
General Iranslation Qutput Debug Compiler Realtime Experiment Name Hw12_1 Simulation interval Start time Start time	? ×	Experiment Setup ? General Iranslation Qutput Debug Compiler Bealtime Format Textual data format Double precision Store State variables Ø Derivatives Input variables Ø Output variables Ø Output variables Protected variables Protected variables Dutput selection Equidistant time grid Ø Store variables at events Output variables	
OK Store in model Can		OK Store in model Cancel	

December 13, 2012

© Prof. Dr. François E. Cellier


• We can now simulate the model.

😑 Messages - Dymola 📃 🔲 🗶
Syntax Error Translation Dialog Error Simulation
Log-file of program ./dymosim (generated: Wed Dec 17 14:07:47 2008)
dymosim started "dsin.txt" loading (dymosim input file) "Hwl2_1.mat" creating (simulation result file)
<pre>Integration started at T = 0 using integration method DASSL (DAE multi-step solver (dass1/dass1rt of Petzold modified by Dynasim)) Integration terminated successfulls at T = 5009 CPU-time for integration : 0.02 seconds CPU-time for one GRID interval: 0.0443 milt1-seconds Number of result points : 452 Number of GRID points : 452 Number of GRID points : 452 Number of (successful) steps : 451 Number of F-evaluations : 1186 Number of Jacobian-evaluations: 51 Number of (model) time events : 0 Number of state events : 0 Minimum integration stepsize : 5.27e-009 Maximum integration order : 5</pre>
Calling terminal section "dsfinal.txt" creating (final states)

• Simulation results:

🕂 Plot [1*]

December 13, 2012

© Prof. Dr. François E. Cellier

Start Presentation

- 🗆 🗵

Oxy-hydrogen Gas Reaction

• When oxygen and hydrogen gases are mixed in similar proportions, a spark can bring the mixture to explosion. The process can be described by the following set of step reactions:

$$H_{2} + O_{2} \xrightarrow{h_{0}} H^{\bullet} + HO_{2}^{\bullet}$$

$$H_{2} + OH^{\bullet} \xrightarrow{h_{1}} H^{\bullet} + H_{2}O$$

$$O_{2} + H^{\bullet} \xrightarrow{h_{3}} OH^{\bullet} + O^{\bullet}$$

$$H_{2} + O^{\bullet} \xrightarrow{h_{3}} H^{\bullet} + OH^{\bullet}$$

$$OH^{\bullet} + W \xrightarrow{a_{3}}$$

$$H^{\bullet} + W \xrightarrow{a_{3}}$$

$$O^{\bullet} + W \xrightarrow{a_{3}}$$

W stands for the wall. At the wall, the unstable atoms H^{\bullet} and O^{\bullet} , as well as the unstable radical OH^{\bullet} can be absorbed. The absorption rates are proportional to the molar masses of the absorbed species:

$$v_{\text{OH}} = -a_1 \cdot n_{\text{OH}}$$

• The reaction rate constants at the given temperature are as follows:

$$k_0 = 60.0$$

$$k_1 = 2.3 \cdot 10^{11}$$

$$k_2 = 4.02 \cdot 10^{9}$$

$$k_3 = 2.82 \cdot 10^{12}$$

$$a_1 = 920.0$$

$$a_2 = 80.0$$

$$a_3 = 920.0$$

Model the system in the *Dymola equation window* using a matrix-vector notation.

Simulate the system during 0.1 seconds. The initial conditions are $n_{\rm H_2} = 10^{-7}$, and $n_{\rm O_2} = 0.5 \cdot 10^{-7}$. The reaction volume is $V = 1.0 \ m^3$.

You need to reduce the tolerance value of the **DASSL integration algorithm** to **10**⁻¹⁷.

• Plot the molar masses of H_2 , O_2 , and H_2O on one plot. Plot the molar masses of the other four species on separate plots.

• Let us find the *N-matrix*:

	_		k_0	<i>k</i> ₁	<i>k</i> ₂	<i>k</i> ₃	<i>a</i> ₁	<i>a</i> ₂	<i>a</i> ₃	
$H_2 + O_2 \xrightarrow{h_0} H^{\bullet} + HO_2^{\bullet}$			-1	-1	0	-1	0	0	0	H ₂
$H_2 + OH^{\bullet} \xrightarrow{h_1} H^{\bullet} + H_2O$			-1	0	-1	0	0	0	0	O ₂
$O_2 + H^{\bullet} \xrightarrow{k_2} OH^{\bullet} + O^{\bullet}$		ЪŢ	0	1	0	0	0	0	0	H ₂ O
$H_2 + O^{\bullet} \xrightarrow{h_3} H^{\bullet} + OH^{\bullet}$		<i>N</i> =	1	1	-1	1	0	-1	0	н•
$OH^{\bullet} + W \xrightarrow{a_1}$			0	0	1	-1	0	0	-1	0•
$H^{\bullet} + W \stackrel{a_3}{\rightarrow}$			0	-1	1	1	-1	0	0	OH•
$O^{\bullet} + W \stackrel{a_3}{\rightarrow}$			_ 1	0	0	0	0	0	0	HO ₂ •

• Let us find the *reaction rates*:

$$H_{2} + O_{2} \xrightarrow{k_{0}} H^{\bullet} + HO_{2}^{\bullet}$$

$$H_{2} + OH^{\bullet} \xrightarrow{k_{1}} H^{\bullet} + H_{2}O$$

$$O_{2} + H^{\bullet} \xrightarrow{k_{2}} OH^{\bullet} + O^{\bullet}$$

$$H_{2} + O^{\bullet} \xrightarrow{k_{3}} H^{\bullet} + OH^{\bullet}$$

$$OH^{\bullet} + W \xrightarrow{a_{1}}$$

$$H^{\bullet} + W \xrightarrow{a_{2}}$$

$$O^{\bullet} + W \xrightarrow{a_{3}}$$

$$v_{1} = k_{0} \cdot n_{H_{2}} \cdot n_{O_{2}} / V$$

$$v_{2} = k_{1} \cdot n_{H_{2}} \cdot n_{OH^{*}} / V$$

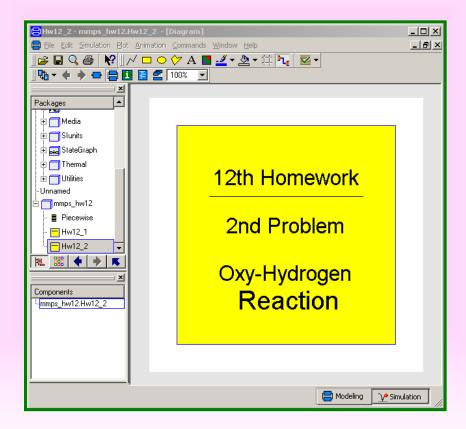
$$v_{3} = k_{2} \cdot n_{O_{2}} \cdot n_{H^{*}} / V$$

$$v_{4} = k_{3} \cdot n_{H_{2}} \cdot n_{O^{*}} / V$$

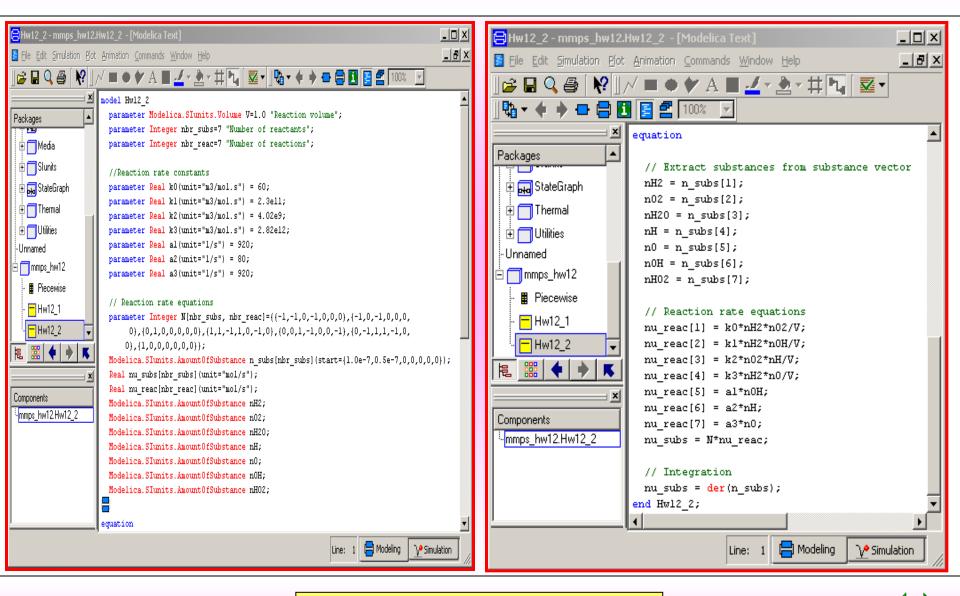
$$v_{5} = a_{1} \cdot n_{OH^{*}}$$

$$v_{6} = a_{2} \cdot n_{H^{*}}$$

$$v_{7} = a_{3} \cdot n_{O^{*}}$$


December 13, 2012

© Prof. Dr. François E. Cellier



• We are now ready to program:

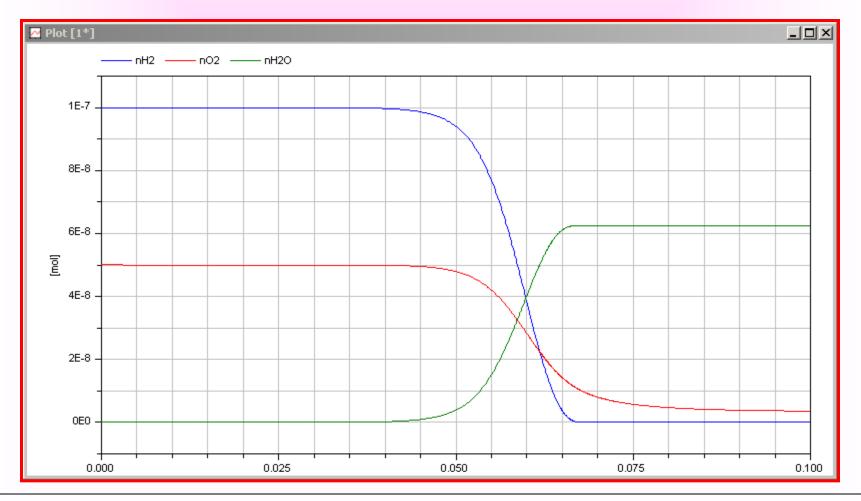
December 13, 2012

December 13, 2012

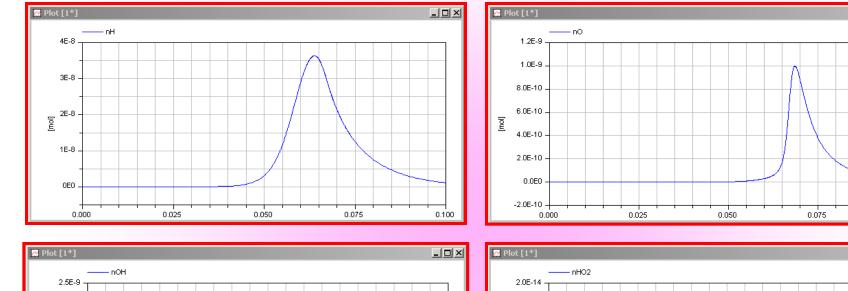
© Prof. Dr. François E. Cellier

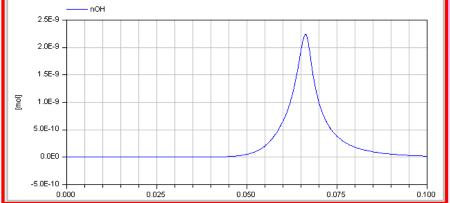
• Translation and simulation control:

😑 Messages - Dymola 📃 🔍 🗙	Experiment Setup
Syntax Error Translation Dialog Error Simulation Translation of mmps hw12,Hw12 2 DAE having 28 scalar unknowns and 28 scalar equations. STATISTICS Original Model Number of components: 1 Variables: 21 Constants: 0 Parameters: 11 (59 scalars) Unknowns: 10 (28 scalars) Differentiated variables: 7 scalars Equations: 16 Nontrivial : 16	General Translation Output Debug Compiler Bealtime Experiment Name Hw12_2 Image: Start time Image: Start tima Image: Start tima Image
Translated Model Constants: 2 scalars Free parameters: 57 scalars Parameter depending: 0 Inputs: 0 Outputs: 0 Continuous time states: 7 scalars Time-varying variables: 14 scalars Alias variables: 14 scalars Alias variables: 14 scalars Assumed default initial bunditions=true; gives more information Number of mixed real/discrete systems of equations: 0 Sizes of linear systems of equations: {} Sizes of innear systems of equations: {} Sizes after manipulation of the linear systems: {} Sizes after manipulation of the nonlinear systems: {} Number of numerical Jacobians: 0 Finished // experiment StopTime=0.1 Tolerance=1e-017 Finished	Integration Algorithm Dassl Tolerance Te-017 Fixed Integrator Step 0 OK Store in model Cancel



• Translation and simulation control:


🖶 Messages - Dymola 📃 🗖 🗙
Syntax Error Translation Dialog Error Simulation
Log-file of program ./dymosim (generated: Wed Dec 17 14:31:40 2008)
dymosim started "dsin.txt" loading (dymosim input file) "Hwl2_2.mat" creating (simulation result file)
<pre>Integration started at T = 0 using integration method DASSL (DAE multi-step solver (dassl/dasslrt of Petzold modified by Dynasim)) Integration terminated successfully at T = 0.1 CPU-time for integration : 0.04 seconds CPU-time for one GRID interval: 0.071 mills seconds Number of result points : 564 Number of GRID points : 564 Number of GRID points : 563 Number of F-evaluations : 1277 Number of Jacobian-evaluations: 18 Number of (model) time events : 0 Number of (U) time events : 0</pre>
Number of (U) time events : 0 Number of state events : 0 Number of step events Minimum integration stepsize Maximum integration order Calling terminal section "dsfinal.txt" creating (final states)



• Simulation results:

December 13, 2012

© Prof. Dr. François E. Cellier

Start Presentation

- D ×

0.100

References

 Tiller, M.M. (2001), Introduction to Physical Modeling with Modelica, Kluwer Academic Publishers, <u>Chapter 6.5</u>: <u>Language Fundamentals</u>.

