

ETTH Endgenössische Technische Hochschule 20 Swiss-Tederal Institude af Technology Zuni	Mathematical Modeling of Physical Systems
Mechanical System III	
• Data:	
Mas Mas Stiff Stiff Dan Dan	s of vehicle $(M) = 1500 \text{ kg}$ s of driver $(m) = 100 \text{ kg}$ ness of safety belt $(k_1) = 10'000 \text{ N/m}$ ness of shock absorber $(k_2) = 300'000 \text{ N/m}$ uping of safety belt $(B_1) = 500 \text{ Ns/m}$ uping of shock absorber $(B_2) = 80'000 \text{ Ns/m}$
 Limit values: Safety belt tested up to (F₁) < 13'340 N Ribs break beyond (F₂) > 6670 N Distance to windshield (d) = 0.5 m 	
November 8, 2012	© Prof. Dr. François E. Cellier Start Presentation

ETH

Eligenössische Technische Hochschule Zünich Swiss Federall Institute of Technology Zunich

November 8, 2012

property.

• Add causality strokes.

obtained earlier.

ETH

Sidgenössische Technische Hochschule Zühich Swiss Federal Institute af Technology Zuhich

before.

Mathematical Modeling of Physical Systems

 $\langle \downarrow \downarrow \rangle$

 $\langle \downarrow \downarrow \rangle$

Mechanical System IV

• Model the car and the driver using two sliding masses of the translational sub-library of the

• Simulate the system across 0.5 sec of simulated time, and answer the questions that were raised

mechanical sub-library of **BondLib**.