

8th Homework - Solution

- In this homework, we shall model and simulate a mechanical system as well as exercise the state selection algorithm.
- We shall first model a car bumping into a wall using the 1D mechanical (translational) wrapped bond graph library.
- We shall then model the same car using a bond graph directly.
- Subsequently, we shall read out the model equations from the bond graph.
- Finally, we shall change one of the state variables using the state selection algorithm.

- Model description
- <u>1D mechanical wrapped bond graph model</u>
- Direct bond graph model
- <u>State selection</u>

Mechanical System

• We wish to analyze the following system:

November 15, 2012

© Prof. Dr. François E. Cellier

Mechanical System II

- Questions of interest:
 - Are the shock absorbers (k_2, B_2) and the safety belts (k_1, B_1) capable of preventing the driver from hitting his head on the front windshield if he drives with a velocity of 40 km/h against a solid wall? What happens when the velocity at impact is 80 km/h?
 - How large is the maximal force that the driver experiences at these velocities?
 - How large is the critical velocity, below which the driver neither hits his head on the windshield, nor breaks his ribs?

Mechanical System III

• Data:

Mass of vehicle (M) = 1500 kgMass of driver (m) = 100 kgStiffness of safety belt $(k_1) = 10'000 \text{ N/m}$ Stiffness of shock absorber $(k_2) = 300'000 \text{ N/m}$ Damping of safety belt $(B_1) = 500 \text{ Ns/m}$ Damping of shock absorber $(B_2) = 80'000 \text{ Ns/m}$

• Limit values:

Safety belt tested up to $(F_1) < 13'340$ N Ribs break beyond $(F_2) > 6670$ N Distance to windshield (d) = 0.5 m

November 15, 2012

Mechanical System IV

- Model the car and the driver using two sliding masses of the translational sub-library of the mechanical sub-library of *BondLib*.
- Simulate the system across 0.5 sec of simulated time, and answer the questions that were raised before.

Mechanical System V

November 15, 2012

© Prof. Dr. François E. Cellier

Mechanical System VI

November 15, 2012

© Prof. Dr. François E. Cellier

Mechanical System VII

At the time of the impact with the windshield, the head of the driver has a velocity of 7 m/s = 25.2 km/h.

November 15, 2012

© Prof. Dr. François E. Cellier

Mechanical System VIII

The results are so depressing that a simulation with an initial velocity of 80 km/h is hardly necessary!

November 15, 2012

© Prof. Dr. François E. Cellier

Mechanical System IX

• The system is linear. Hence we can compute the maximal velocity below which the head won't hit the windshield:

$$v_0 = 40 * 0.5 / 0.81 = 24.7 \ km/h$$

where 0.81 m is the largest distance in the simulation that we just carried out.

• Let us verify the results.

Mechanical System X

November 15, 2012

© Prof. Dr. François E. Cellier

- Draw a bond graph of this system.
- Simplify the bond graph using the diamond property.
- Add causality strokes.

ische Technische Mochschule Zürich

Swiss Federal Institute of Technology Zurich

• Simulate the simplified bond graph model using *BondLib*, and compare the results with those obtained earlier.

Mechanical System XII

The velocity of the car is entered as initial condition to the two inertias.

The bond graph can be simplified somewhat using the diamond property.

November 15, 2012

© Prof. Dr. François E. Cellier

Mechanical System XIII

We can now introduce the causality strokes.

November 15, 2012

© Prof. Dr. François E. Cellier

Mechanical System XIV

November 15, 2012

© Prof. Dr. François E. Cellier

Mechanical System XV

- Read the model equations out of the simplified bond graph.
- What is the model order?
- Which are the natural state variables?
- We now wish to include the relative position and the relative velocity of the spring representing the seat belt among the set of desired state variables.
- Use the state selection algorithm to derive a modified set of equations that make use of the desired state variables.

Mechanical System XVI

$$dv_{M}/dt = f_{M}/M$$

$$f_{M} = -(f_{k2} + f_{b2} + f_{kb})$$

$$df_{k2}/dt = v_{M}/k_{2}$$

$$f_{b2} = b_{2} \cdot v_{M}$$

$$dv_{m}/dt = f_{kb}/m$$

$$v_{Mm} = v_{M} - v_{m}$$

$$f_{kb} = f_{k1} + f_{b1}$$

$$df_{k1}/dt = v_{Mm}/k_{1}$$

$$f_{b1} = b_{1} \cdot v_{Mm}$$

$$dx_{Mm}/dt = v_{Mm}$$

November 15, 2012

© Prof. Dr. François E. Cellier

Mechanical System XVI

November 15, 2012

© Prof. Dr. François E. Cellier

