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The Theoretical Underpinnings of 

the Bond Graph Methodology 

• In this lecture, we shall look more closely at the 

theoretical underpinnings of the bond graph 

methodology: the four base variables, the 

properties of capacitive and inductive storage 

elements, and the duality principle. 

• We shall also introduce the two types of energy 

transducers: the transformers and the gyrators, and 

we shall look at hydraulic bond graphs. 
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The Four Base Variables of the 

Bond Graph Methodology 

• Beside from the two adjugate variables e and f, there are 

two additional physical quantities that play an important 

role in the  bond graph methodology: 

p  =   e · dt Generalized Momentum: 

Generalized Position: q  =   f · dt 
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Relations Between the Base Variables 

e f 

q p 

  

R 

C I 

Resistor: 
 

Capacity: 
 

Inductivity: 

e  =  R( f ) 
 

q  =  C( e ) 
 

p  =  I( f ) 

 
Arbitrarily non-linear functions 

in 1st and 3rd quadrants 

 There cannot exist other storage elements besides  C  and  I. 
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Linear Storage Elements 

General capacitive equation: q  =  C( e ) 

Linear capacitive equation: q  =  C · e 

Linear capacitive equation 

differentiated: 

f  =  C · de 
dt 

“Normal” capacitive equation, as 

hitherto commonly encountered. 
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Effort Flow Generalized 

Momentum 

Generalized Position  

e f p q 

Electrical 

Circuits 

Voltage 

u  (V) 

Current 

i  (A) 

Magnetic Flux 

  (V·sec) 

Charge 

q  (A·sec) 

Translational 

Systems 

Force 

F  (N) 

Velocity 

v  (m / sec) 

Momentum 

M  (N·sec) 

Position 

x  (m) 

Rotational 

Systems 

Torque 

T  (N·m) 

Angular Velocity 

 (rad / sec) 

Torsion 

T  (N·m·sec) 

Angle 

  (rad) 

Hydraulic 

Systems 

Pressure 

p  (N / m2) 

Volume Flow 

q  (m3 / sec) 

Pressure 

Momentum 

Γ  (N·sec / m2) 

Volume 

V  (m3) 

 

Chemical 

Systems 

Chem. Potential 

  (J / mol) 

Molar Flow 

 (mol/sec) 

- Number of Moles 

n  (mol) 

Thermodynamic 
Systems 

Temperature 

T  (K) 

Entropy Flow 

S’ (W / K) 

- Entropy 

S  (J / K ) 
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Hydraulic Bond Graphs I 

• In hydrology, the two adjugate variables are the pressure p  

and the volume flow q.  Here, the pressure is considered 

the potential variable, whereas the volume flow plays the 

role of the flow variable. 

 

 
 

• The capacitive storage describes the compressibility of the 

fluid as a function of the pressure, whereas the inductive 

storage models the inertia of the fluid in motion. 

Phydr  = p · q 
[W] = [N/ m2] · [m3 / s] 

= kg · m -1 · s-2] · [m3 · s-1] 

= [kg · m2 · s-3] 
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Hydraulic Bond Graphs II 

qin 

qout 
p 

dp 

dt = c · ( qin – qout ) 

p 

Dq 
C : 1/c 

Compression: 

q = k · Dp 

= k · ( p1 – p2 ) 
p1 

Laminar Flow: 

q 
p2 

Dp 

q R : 1/k 

Turbulent Flow: 

Dp 

q G : k p2 p1 

q 

q = k · sign(Dp) · |Dp| 

Hydro 
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Energy Conversion 

• Beside from the elements that have been considered so far 

to describe the storage of energy ( C and I ) as well as its 

dissipation (conversion to heat) ( R ), two additional 

elements are needed, which describe the general energy 

conversion, namely the Transformer  and the Gyrator. 

• Whereas resistors describe the irreversible conversion of 

free energy into heat, transformers and gyrators are used to 

model reversible energy conversion phenomena between 

identical or different forms of energy. 
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Transformers 

f 1 

e 1 

f 2 

e 2 
TF 

m 

Transformation: e1 = m · e2 

Energy Conservation: e1 · f1 = e2 · f2  

 (m ·e2 ) · f1 = e2 · f2 

 f2 = m · f1 (4) 

(3) 

(2) 

(1) 

 The transformer may either be described by means of 

equations (1) and (2) or using equations (1) and (4). 
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The Causality of the Transformer 

f 1 

e 1 

f 2 

e 2 
TF 

m 

e1 = m · e2 

f2 = m · f1 

f 1 

e 1 

f 2 

e 2 
TF 

m 

e2 = e1 / m 

f1 = f2 / m 

 As we have exactly one equation for the effort and 

another for the flow, it is mandatory that the 

transformer compute one effort variable and one flow 

variable.  Hence there is one causality stroke at the TF 

element. 
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Examples of Transformers 

Electrical 

Transformer 
(in AC mode) 

Mechanical 

Gear 

Hydraulic Shock 

Absorber 

m = 1/M m = r1 /r2 m = A 
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Gyrators 

f 1 

e 1 

f 2 

e 2 
GY 

r 

Transformation: e1 = r · f2 

Energy Conservation: e1 · f1 = e2 · f2  

 (r ·f2 ) · f1 = e2 · f2 

 e2 = r · f1 (4) 

(3) 

(2) 

(1) 

 The gyrator may either be described by means of 

equations (1) and (2) or using equations (1) and (4). 
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The Causality of the Gyrator 

f 1 

e 1 

f 2 

e 2 
GY 

r 

f 1 

e 1 

f 2 

e 2 
GY 

r 

e1 = r · f2 

e2 = r · f1 

f2 = e1 / r 

f1 = e2 / r 

 As we must compute one equation to the left, the other 

to the right of the gyrator, the equations may either be 

solved for the two effort variables or for the two flow 

variables. 
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Examples of Gyrators 

The DC motor generates a torque tm  proportional to the 

armature current ia , whereas the resulting induced Voltage ui 

is proportional to the angular velocity m. 

r =  
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Example of an Electromechanical System 

ua 

ia 

ia 

ia 

ia 

uRa 

uLa 

ui τ 

ω1 

ω1 

ω1 

ω1 

τB3 

τB1 

τB1 

τB1 

τJ1 

ω2 

ω12 

ω2 

ω2 

ω2 

τk1 

τG FG 

v 

v 

v 
v 

v 

FB2 

Fk2 

Fm -m·g 

Causality conflict (caused 

by the mechanical gear) 

τJ2 
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The Duality Principle 

• It is always possible to “dualize” a bond graph by 

switching the definitions of the effort and flow variables. 

• In the process of dualization, effort sources become flow 

sources, capacities turn into inductors, resistors are 

converted to conductors, and vice-versa. 

• Transformers and gyrators remain the same, but their 

transformation values are inverted in the process. 

• The two junctions exchange their type. 

• The causality strokes move to the other end of each bond. 
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1st Example 

The two bond graphs produce identical simulation results. 

u0 iL i1 

i1 i1 

i0 u0 

u0 

u1 

uC 

uC 

uC i2 

iC 

u0 

i0 

iL 

u0 

u0 

i1 

i1 

i1 

u1 

uC 

uC 

uC 

i2 

iC 
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2nd Example 

ua 

ia 

ia 

ia 

ia 

uRa 

uLa 

ui τ 

ω1 

ω1 

ω1 

ω1 

τB3 

τB1 

τB1 

τB1 

τJ1 

ω2 

ω12 

ω2 

ω2 

ω2 

τk1 

τG FG 

v 

v 

v 
v 

v 

FB2 

Fk2 

Fm -m·g 

τJ2 

ua 

ia 

ia 

ia 

ia ω1 

ω1 

ω1 

ω1 
ω2 

ω2 

ω2 

ω2 

ω12 

v 

v 

v 

v 
v 

ui 

uRa 

uLa 

τB1 

τB1 

τB1 

τB3 

τJ1 

τk1 

τJ2 

τ τG FG 

Fm 

FB2 

Fk2 

-m·g 
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Partial Dualization 

• It is always possible to dualize bond graphs only in parts. 

 It is particularly easy to partially dualize a bond graph at the 

transformers and gyrators.  The two conversion elements thereby 

simply exchange their types. 

For example, it may make sense to only dualize the mechanical 

side of an electromechanical bond graph, whereas the electrical 

side is left unchanged. 

However, it is also possible to dualize the bond graph at any bond. 

Thereby, the “twisted” bond is turned into a gyrator with a 

gyration of r=1. 

Such a gyrator is often referred to as symplectic gyrator in the 

bond graph literature. 



Start Presentation 

Mathematical Modeling of Physical Systems

© Prof. Dr. François E. CellierOctober 11, 2012 

Manipulation of Bond Graphs 

• Any physical system with concentrated parameters 
can be described by a bond graph. 

• However, the bond graph representation is not 
unique, i.e., several different-looking bond graphs 
may represent identical equation systems. 

• One type of ambiguity has already been 
introduced: the dualization. 

• However, there exist other classes of ambiguities 
that cannot be explained by dualization. 
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The Diamond Rule 

m2 
B2 

k12 

B12 

m1 
B1 

F 

SE:F 
F 

v2 

I:m2 

v2 Fm2 

1 

R:B2 

v2 FB2 

0 

v12 

0 

R:B12 

1 

R:B1 

v1 FB1 

I:m1 

v1 Fm1 

C:1/k12 

v1 
FB12 

v2 
Fk12 

FB12 

FB12 

v1 

Fk12 

Fk12 v12 

v2 

 
SE:F 

F 

v2 

I:m2 

v2 Fm2 

1 

R:B2 

v2 FB2 

Fk12 +FB12 

v2 

Fk12 +FB12 

v1 
0 

Fk12 +FB12 v12 

1 

R:B12 

v12 

FB12 

1 

R:B1 

v1 FB1 

I:m1 

v1 Fm1 

C:1/k12 

v12 

Fk12 

Diamond 

Different variables 

More efficient 
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