Modeling of Bipolar Transistors

In this class, we shall deal with an application of mixed electrical and thermal modeling: the *Bipolar Junction Transistor (BJT)*.

We shall start out with a *SPICE*-style model of the BJT, then convert the model to a bond graph.

We shall recognize that the *SPICE*-model of the BJT is problematic.

We shall convert the bond graph to obtain a modified BJT model that makes sense from a thermodynamic point of view.

Table of Contents

- BJT model
- Vertical and lateral npn-transistor
- Non-linear current source
- Junction diode
- BJT bond graph
- Power-flow interpretation
- Modified BJT bond graph

SPICE-style BJT Model

SPICE models the BJT by three junction diodes, one from the base to the collector, the second from the base to the emitter, and the third to the substrate.

The figure to the left shows a *laterally diffused npn-transistor*.

Vertical and Lateral npn-Transistors

- The *pn junction diodes* connect positively doped regions with negatively doped regions.
- In the *laterally diffused BJT*, all three junction diodes have their anodes in the base.

Dopants:
- for *p*-region (acceptors): boron or aluminum
- for *n*-region (donors): phosphorus or arsenic
Non-linear Current Sources

• The model contains two non-linear current sources that inject currents into the circuit:

\[\text{injC} = J_s \left[\exp \left(\frac{V_{BE}}{kT} \right) - 1 \right] = i_{D\text{BE}} \]

\[\text{injE} = J_s \left[\exp \left(\frac{V_{BC}}{kT} \right) - 1 \right] = i_{D\text{BC}} \]

• The current injected into the collector is a function of the base-emitter Voltage, and the current injected into the emitter is a function of the base-collector Voltage.

The Junction Diode Model

• The pn junction diode is modeled as follows:

\[J_d = J_s \left[\exp \left(\frac{V_d}{kT} \right) - 1 \right] \]

The BJT Bond Graph

Where does the power for these current sources come from? The sources are internal to the model. Hence there is no place where these sources could possibly draw power from.
The two current sources are really a power sink, rather than a power source. They can be interpreted as a single non-linear resistor.
References

