The Dymola Bond Graph Library

- In this class, we shall deal with some issues relating to the construction of the *Dymola Bond Graph Library*.
- The design principles are explained, and some further features of the *Dymola* modeling framework are shown.
- We shall introduce the concept of model wrapping as implemented in the bond graph library.
- An example of an electronic circuit simulation completes the presentation.

Table of Contents

- Across and through variables
- <u>Gyro-bonds</u>
- Graphical bond-graph modeling
- Bond-graph connectors
- <u>A-causal and causal bonds</u>
- Junctions
- Element models
- Model wrapping
- Bond-graph electrical library
- Wrapped resistor model
- Bipolar junction transistor
- Inverter Circuit

Across and Through Variables

- *Dymola* offers two types of variables, the *across variables* and the *through variables*.
- In a *Dymola node*, across variables are set equal across all connections to the node, whereas through variables add up to zero.
- Consequently, if we equate *across variables* with *efforts*, and *through variables* with *flows*, *Dymola nodes* correspond exactly to the *0-junctions* of our bond graphs.

Gyro-bonds

- In my modeling book, I exploited this similarity by implementing the *bonds* as *twisted wires* (as *null-modems*).
- By requesting furthermore that:
 - O- and 1-junctions must always toggle. No two junctions of the same gender may be connected by a bond.
 - All elements must always be attached to 0-junctions, never to 1junctions.

both the *0-junctions* and the *1-junctions* can be implemented as *Dymola nodes*.

Gyro-bonds II

October 18, 2012

လွေ

© Prof. Dr. François E. Cellier

Graphical Bond Graph Modeling I

- For graphical bond-graph modeling, these additional rules may, however, be too constraining.
- For example, thermal systems often exhibit 0junctions with many bonds attached. It must be possible to split these 0-junctions into a series of separate 0-junctions connected by bonds, so that the number of bonds attached at any one junction can be kept sufficiently small.

Graphical Bond Graph Modeling II

• For this reason, the graphical bond graph modeling of *Dymola* defines both *efforts* and *flows* as *across variables*.

BondCon - BondLib.Interfa	aces.BondCon - [Modelica Text] Animation Commands Window Help	_ D × _ 8 ×
	´■●♥А■ <u>✓</u> ▼≜▼∰№ <u>⊠</u> ▼ <mark>≣</mark> ¶100% <u>▼</u>	
Packages Interfaces BondCon	<pre>connector BondCon "Bi-directional bondgraphic Real e "Bondgraphic effort variable"; Real f "Bondgraphic flow variable"; Real d "Directional variable"; end BondCon; </pre>	connector"

• Consequently, the *junctions* will have to be programmed explicitly. They can no longer be implemented as *Dymola nodes*.

The Bond Graph Connectors I

Equation window

Icon window

• The directional variable, *d*, is a third across variable made available as part of the *bond-graph connector*, which is depicted as a *grey dot*.

The A-Causal Bond "Model"

• The model of a bond can now be constructed by dragging two of the bond-graph connectors into the diagram window. They are named *BondCon1* and *BondCon2*.

Icon window

Equation window

Place the text "%*name*" in the icon window to get the name of the model displayed upon invocation.

October 18, 2012

© Prof. Dr. François E. Cellier

The Bond Graph Connectors II

- *Dymola* variables are usually a-causal. However, they can be made causal by declaring them explicitly in a causal form.
- Two additional bond-graph connectors have been defined. The *e*-*connector* treats the *effort* as an *input*, and the *flow* as an *output*.

• The *f-connector* treats the *flow* as *input* and the *effort* as *output*.

Using these connectors, causal bond blocks can be defined.

The *f-connector* is used at the side of the causality stroke.

The *e-connector* is used at the other side.

The causal connectors are only used in the context of the bond blocks. Everywhere else, the normal bondgraph connectors are to be used.

The Junctions I

• The junctions can now be programmed. Let us look at a *0-junction with three bond attachments*.

The Element Models

• Let us now look at the bond-graphic element models. The bond graph capacitor may serve as

😑 C - BondLib.Passive.C - [Modelica Text]

an example.

© Prof. Dr. François E. Cellier

- 0 ×

Model Wrapping

- Although it is possible to model physical systems manually down to the bond graph level, this may not always be convenient.
- The bond graph interface is the lowermost graphical interface that is still fully object-oriented.
- The interface is important as it keeps the distance between the lowermost graphical layer and the equation layer as small as possible.
- Higher level graphical layers can be built easily on top of the bond graph layer for enhanced convenience.

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

The Bond Graph Electrical Library

- It is possible to wrap any other object-oriented graphical modeling paradigm around the bond graph methodology.
- This was done with the analog electrical library that forms part of the standard library of Modelica.
- A new analog electrical library was created as part of the bond graph library.
- In this new library, the bottom layer graphical models were wrapped around a yet lower level bond graph layer.

The Wrapped Resistor Model

Icon window

The *wrapper models* convert the connectors between the three domains: electrical, thermal, and bond graph. The Spice-style resistor model has a *thermal port* carrying the heat generated by the resistor.

Diagram window

The Wrapped Resistor Model II

The Wrapped Resistor Model III

The Wrapped Resistor Model IV

Diagram window

October 18, 2012

© Prof. Dr. François E. Cellier

The Wrapped Resistor Model V

October 18, 2012

© Prof. Dr. François E. Cellier

The Bipolar Junction Transistor

Diagram window

October 18, 2012

The Bipolar Junction Transistor II

The Bipolar Junction Transistor III

October 18, 2012

© Prof. Dr. François E. Cellier

The Bipolar Junction Transistor IV

October 18, 2012

© Prof. Dr. François E. Cellier

The Bipolar Junction Transistor V

October 18, 2012

© Prof. Dr. François E. Cellier

The Bipolar Junction Transistor VI

```
model DjS "Spice-style junction diode model for bipolar transistors"
                                                                                    protected
  extends Interfaces.SpiceTwoPort;
                                                                                      parameter Real ExMin = exp(EMin);
  constant Modelica.SIunits.Entropy k=Modelica.Constants.k
                                                                                      parameter Real ExMax = exp(EMax);
    "Boltzmann's constant";
                                                                                      Real RTemp "Temperature quotient";
  constant Modelica. SIunits. ElectricCharge g=1.6021892e-19 "Electron charge";
                                                                                      Real et:
  constant Real GapCl=7.02E-4 "First bandgap correction factor Silicon";
                                                                                    constant Real GapC2=1108.0 "Second bandgap correction factor Silicon";
                                                                                    eguation
  parameter Modelica.SIunits.Current IS=le-16
    "Saturation current at reference temperature";
                                                                                      /* Compute thermal voltage as function of temperature */
  parameter Modelica.SIunits.Voltage EG=1.16
                                                                                      Vt = k*e2/\alpha;
    "Energy gap for temperature effect on saturation current";
                                                                                      et = el/(N*Vt);
  parameter Real N=1 "Current emission coefficient";
  parameter Real XTI=3 "Saturation current temperature exponent";
                                                                                      /* Compute temperature dependence of saturation current */
  parameter Real Area=1 "Relative area occupied by diode";
                                                                                      RTemp = e2/Tnom;
  parameter Integer Level=2
                                                                                      EGval = EG - GapC1*e2*e2/(e2 + GapC2);
    "Transistor modeling level (Kbers-Moll = 1; Gummel-Poon = 2)";
                                                                                      ISval = IS*exp((RTemp - 1)*EGval/Vt + XTI*ln(RTemp));
  parameter Real EMin=-100 "if x < EMin, the exp(x) function is linearized";
  parameter Real EMax=40 "if x > EMax, the exp(x) function is linearized";
                                                                                      /* Compute diode characteristic */
  Modelica.SIunits.Voltage Vt "Thermal voltage";
                                                                                      if Level==2 then
  Modelica.SIunits.Current ISval "Saturation current at device temperature";
                                                                                        /* Gummel-Poon model */
  Modelica.SIunits.Energy EGval "Activation energy at device temperature";
                                                                                        fl = ISval*Area*(if et < EMin then ExMin*(et - EMin + 1) - 1 else
protected
                                                                                                         if et > EMax then ExMax*(et - EMax + 1) - 1 else exp(et) - 1);
  parameter Real ExMin = exp(EMin);
                                                                                      else
  parameter Real ExMax = exp(EMax);
                                                                                        /* Ebers-Moll model */
  Real RTemp "Temperature quotient";
                                                                                        fl = ISval*(if et < EMin then ExMin*(et - EMin + 1) - 1 else
  Real et;
                                                                                                    if et > EMax then ExMax^*(et - EMax + 1) - 1 else exp(et) - 1);
end if:
equation
  /* Compute thermal voltage as function of temperature */
                                                                                      /* Compute heat flow */
  Vt = k \pm e2/q;
                                                                                      f2 = 0;
  et = el/(N*Vt);
                                                                                    end DiS;
```

October 18, 2012

Inverter Circuit

October 18, 2012

© Prof. Dr. François E. Cellier

Inverter Circuit II

🖶 Messages - Dymola 📃 🔲	🛛 😂 Messages - Dymola
Syntax Error Translation Dialog Error Simulation Translation of BondLib.Examples.ModelicaSpice.Hif0perationalAmplifier.Experiment: DAE having 30217 scalar unknowns and 30217 scalar equations Image: Comparison of	Syntax Error Translation Dialog Error Simulation Log-file of program ./dymosim (generated: Thu Oct 25 14:08:31 2007)
Original Model Number of components: 4205 Variables: 33551 Constants: 372 (372 scalars) Parameters: 4672 (4672 scalars) Unknowns: 28507 (30217 scalars) Differentiated variables: 37 scalars Equations: 21789	dymosim started "dsin.txt" loading (dymosim input file) "Experiment.mat" creating (simulation result file) Integration started at T = 0 using integration method DASSL (DAE multi-step solver (dassl/dasslrt of Petzold modified by Dynasim)) Integration terminated successfully at T = 0.0001
Nontrivial : 11996 Translated Model Constants: 10989 scalars Free parameters: 886 scalars Parameter depending: 4208 scalars Inputs: 0 Outputs: 3 scalars	CPU-time for integration : 10.7 seconds CPU-time for one GRID interval: 21.4 milli seconds Number of result points : 626 Number of GRID points : 501 Number of (successful) steps : 2721 Number of F-evaluations : 47708 Number of H-evaluations : 3639 Number of Jacobian-evaluations: 1138
Continuous time states: 3/ scalars Time-varying variables: 1659 scalars Alias variables: 17708 scalars Assumed default initial conditions: 39 LogDefaultInitialConditions=true; gives m Number of mixed real/discrete systems of equations: 0 Sizes of linear systems of equations: {19, 5, 13, 7, 5, 5, 21, 12, 19, 5, 19, 5} Sizes after manipulation of the linear systems: {3, 0, 3, 2, 0, 0, 5, 2, 3, 0,	Number of (model) time events : 9 er of (U) time events : 0 er of state events : 58 er of step events : 0 Minimum integration stepsize : 1.88e-013 Maximum integration stepsize : 6.29e-006 Warinum integration events : 5
4, 0} Sizes of nonlinear systems of equations: { } Sizes after manipulation of the nonlinear systems: { } Number of numerical Jacobians: 0 Finished // experiment StopTime=0.0001 Finished	Calling terminal section "dsfinal.txt" creating (final states)
	Dr. François E. Cellier Start Presentation

Simulation Results

October 18, 2012

© Prof. Dr. François E. Cellier

References

- Cellier, F.E. and R.T. McBride (2003), "Object-oriented modeling of complex physical systems using the Dymola bond-graph library," *Proc. ICBGM'03, Intl. Conf. Bond Graph Modeling and Simulation*, Orlando, FL, pp. 157-162.
- Cellier, F.E. and A. Nebot (2005), "<u>The Modelica Bond</u> <u>Graph Library</u>," *Proc.* 4th Intl. Modelica Conference, Hamburg, Germany, Vol.1, pp. 57-65.
- Cellier, F.E., C. Clauß, and A. Urquía (2007), "<u>Electronic Circuit Modeling and Simulation in Modelica</u>," *Proc. 6th Eurosim Congress*, Ljubljana, Slovenia, Vol.2, pp. 1-10.
- Cellier, F.E. (2007), *<u>The Dymola Bond-Graph Library</u>*, Version 2.3.

October 18, 2012

