Treatment of Discontinuities

- Today, we shall look at the problem of dealing with discontinuities in models.
- Models from engineering often exhibit discontinuities that describe situations such as switching, limiters, dry friction, impulses, or similar phenomena.
- The modeling environment must deal with these problems in special ways, since they influence strongly the numerical behavior of the underlying differential equation solver.

Table of Contents

- Numerical differential equation solvers
- Discontinuities in state equations
- Integration across discontinuities
- <u>State events</u>
- Event handling
- <u>Multi-valued functions</u>
- The electrical switch
- <u>The ideal diode</u>
- Friction

Numerical Differential Equation Solvers

- Most of the *differential equation solvers* that are currently on the market operate on *polynomial extrapolation*.
- The value of a state variable *x* at time *t*+*h*, where *h* is the current *integration step size*, is approximated by fitting a *polynomial of nth order* through known supporting values of *x* and *dx/dt* at the current time *t* as well as at past instances of time.
- The value of the extrapolation polynomial at time *t*+*h* represents the approximated solution of the differential equation.
- In the case of *implicit integration algorithms*, the state derivative at time *t*+*h* is also used as a supporting value.

Examples

Explicit Euler Integration Algorithm of 1st Order:

 $x(t+h) \approx x(t) + h \cdot \dot{x}(t)$

Implicit Euler Integration Algorithm of 1st Order:

 $x(t+h) \approx x(t) + h \cdot \dot{x}(t+h)$

November 1, 2012

Discontinuities in State Equations

- *Polynomials* are always *continuous and continuously differentiable functions*.
- Therefore, when the *state equations* of the system:

 $\dot{x}(t) = f(x(t),t)$

exhibit a discontinuity, the polynomial extrapolation is a very poor approximation of reality.

• Consequently, *integration algorithms* with a fixed step size exhibit a large *integration error*, whereas integration algorithms with a variable step size reduce the step size dramatically in the vicinity of a discontinuity.

Integration Across Discontinuities

- An integration algorithm of variable step size reduces the step size at every discontinuity.
- After passing the discontinuity, the step size is only slowly enlarged again, as the integration algorithm cannot distinguish between a *discontinuity* on one hand and a *point of large local stiffness* (with a large absolute value of the derivative) on the other.

The State Event

• These problems can be avoided by telling the integration algorithm explicitly, when and where discontinuities are contained in the model description.

Example: Limiter Function

November 1, 2012

Event Handling I

November 1, 2012

© Prof. Dr. François E. Cellier

Start Presentation

Event Handling II

Step size as function of time without event handling

Step size as function of time with event handling

November 1, 2012

Representation of Discontinuities

 $f = \text{ if } x < xm \text{ then } fm \text{ else if } x < xp \text{ then } m^*x \text{ else } fp ;$

- In *Modelica*, discontinuities are represented as *if-statements*.
- In the process of translation, these statements are transformed into correct *event descriptions* (sets of *models with switching conditions*).
- The modeler does not need to concern him- or herself with the mechanisms of event descriptions. These are hidden behind the *if-statements*.

Problems

• The modeler needs to take into account that the discontinuous solution is temporarily left during iteration.

$$q = \sqrt{|\Delta p|}$$

$$\Delta p = p_1 - p_2; abs \Delta p = if \Delta p > 0 \text{ then } \Delta p \text{ else } -\Delta p; q = sqrt(abs \Delta p);$$

may be dangerous, since $abs \Delta p$ can become temporarily negative.

$$\Rightarrow \Delta p = p_1 - p_2;$$

$$abs \Delta p = \text{noEvent}(\text{ if } \Delta p > 0 \text{ then } \Delta p \text{ else } -\Delta p);$$

$$q = \operatorname{sqrt}(abs \Delta p);$$

solves this problem.

November 1, 2012

The "noEvent" Construct

 $\Delta p = p_1 - p_2;$ $abs \Delta p = noEvent(if \Delta p > 0 then \Delta p else - \Delta p);$ $q = sqrt(abs \Delta p);$

- The *noEvent construct* has the effect that *if-statements* or *Boolean expressions*, which normally would be translated into simulation code containing correct event handling instructions, are handed over to the integration algorithm untouched.
- Thereby, management of the simulation across these discontinuities is left to the step size control of the numerical Integration algorithm.

Multi-valued Functions I

• The language constructs that have been introduced so far don't suffice to describe *multi-valued functions*, such as the *dry hysteresis function* shown below.

- When *x* becomes greater than x_p , *f* must be switched from f_m to f_p .
- When x *becomes smaller* than x_m , f must be switched from f_p to f_m .

November 1, 2012

Multi-valued Functions III

November 1, 2012

© Prof. Dr. François E. Cellier

Start Presentation

The Electrical Switch I

When the switch is *open*, the current is i=0. When the switch is *closed*, the voltage is u=0.

0 =**if** *open* **then** *i* **else** *u* ;

The *if-statement* in *Modelica* is *a-causal*. It is being sorted together with all other statements.

November 1, 2012

© Prof. Dr. François E. Cellier

Start Presentation

The Electrical Switch II

Possible Implementation:

Switch open: s = 1Switch closed: s = 0

$$\implies 0 = s \cdot i + (1 - s) \cdot u$$

Switch open:

Sf
$$| f = 0$$

Switch closed:

Se
$$e = 0$$

$$\Rightarrow \qquad s \longrightarrow Sw \frac{e}{f}$$

The causality of the switch element is a function of the value of the control signal s.

November 1, 2012

The Ideal Diode I

When u < 0, the switch is open. No current flows through.

When u > 0, the switch is closed. Current may flow. The ideal diode behaves like a short circuit.

open = u < 0; 0 = if open then i else u;

The Ideal Diode II

• Since current flowing through a diode cannot simply be interrupted, it is necessary to slightly modify the diode model.

open = $u \le 0$ and not i > 0; θ = if open then i else u;

• The variable *open* must be declared as *Boolean*. The value to the right of the Boolean expression is assigned to it.

The Friction Characteristic I

- More complex phenomena, such as friction characteristics, must be carefully analyzed case by case.
- The approach is discussed here by means of the friction example.

When $v \neq 0$, the friction force is a function of the velocity.

When v = 0, the friction force is computed such that the velocity remains 0.

The Friction Characteristic II

• We distinguish between five situations:

v = 0 a = 0	<u>Sticking</u> : The friction force compensates the sum of all forces attached, except if $ \Sigma f > R_0$.
v > 0	<u>Moving forward</u> : The friction force is computed as: $f_B = R_v \cdot v + R_m.$
v < 0	<u>Moving backward</u> : The friction force is computed as: $f_B = R_v \cdot v - R_m$.
v = 0 a > 0	Beginning of forward motion:The friction force is computed as: $f_B = R_m$
v = 0 a < 0	Beginning of backward motion:The friction force is computed as: $f_B = -R_m$

The State Transition Diagram

• The set of events can be described by a *state transition diagram*.

November 1, 2012

© Prof. Dr. François E. Cellier

Start Presentation

The Friction Model I

model Friction;
parameter Real R0, Rm, Rv;
parameter Boolean ic=false;
Real fB, fc;
Boolean Sticking (final start = ic);
Boolean Forward (final start = ic), Backward (final start = ic);
Boolean StartFor (final start = ic), StartBack (final start = ic);
fB = if Forward then Rv*v + Rm else
 if Backward then Rv*v - Rm else
 if StartFor then Rm else

if *StartBack* **then** *-Rm* **else** *fc*;

0 = **if** *Sticking* **or initial() then** *a* **else** *fc*;

November 1, 2012

The Friction Model II

```
when Sticking and not initial() then
    reinit(v,0);
end when;
```

<i>Forward</i> =	initial()	and $v > 0$ or
	<pre>pre(StartFor)</pre>	and $v > 0$ or
	pre (Forward)	and not <i>v</i> <= <i>0</i> ;
Backward =	initial()	and $v < 0$ or
	<pre>pre(StartBack)</pre>	and $v < 0$ or
	<pre>pre(Backward)</pre>	and not $v \ge 0$;

November 1, 2012

© Prof. Dr. François E. Cellier

Start Presentation

The Friction Model III

 $\begin{array}{ll} StartFor &= \mathbf{pre}(Sticking) & \text{and } fc > R0 \text{ or} \\ & \mathbf{pre}(StartFor) & \text{and not} \ (v > 0 \text{ or } a <= 0 \text{ and not} \ v > 0); \\ StartBack &= \mathbf{pre}(Sticking) & \text{and } fc < -R0 \text{ or} \\ & \mathbf{pre}(StartBack) \text{ and not} \ (v < 0 \text{ or } a >= 0 \text{ and not} \ v < 0); \\ Sticking &= \mathbf{not} \ (Forward \text{ or } Backward \text{ or } StartFor \text{ or } StartBack); \end{array}$

end Friction;

November 1, 2012

References I

- Cellier, F.E. (1979), <u>Combined Continuous/Discrete</u> <u>System Simulation by Use of Digital Computers:</u> <u>Techniques and Tools</u>, PhD Dissertation, Swiss Federal Institute of Technology, ETH Zürich, Switzerland.
- Elmqvist, H., F.E. Cellier, and M. Otter (1993), "<u>Object-oriented modeling of hybrid systems</u>," *Proc. ESS'93, SCS European Simulation Symposium*, Delft, The Netherlands, pp.xxxi-xli.
- Cellier, F.E., M. Otter, and H. Elmqvist (1995), "Bond graph modeling of variable structure systems," Proc. ICBGM'95, 2nd SCS Intl. Conf. on Bond Graph Modeling and Simulation, Las Vegas, NV, pp. 49-55.

November 1, 2012

References II

- Elmqvist, H., F.E. Cellier, and M. Otter (1994), "<u>Object-oriented modeling of power-electronic circuits using</u> <u>Dymola</u>," *Proc. CISS'94, First Joint Conference of International Simulation Societies*, Zurich, Switzerland, pp. 156-161.
- Glaser, J.S., F.E. Cellier, and A.F. Witulski (1995), "Object-oriented switching power converter modeling using Dymola with event-handling," *Proc. OOS'95, SCS Object-Oriented Simulation Conference*, Las Vegas, NV, pp. 141-146.

