
Start Presentation 

Mathematical Modeling of Physical Systems

© Prof. Dr. François E. CellierNovember 1, 2012 

Treatment of Discontinuities 

• Today, we shall look at the problem of dealing 
with discontinuities in models. 

• Models from engineering often exhibit 
discontinuities that describe situations such as 
switching, limiters, dry friction, impulses, or 
similar phenomena. 

• The modeling environment must deal with these 
problems in special ways, since they influence 
strongly the numerical behavior of the underlying 
differential equation solver. 
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Numerical Differential Equation Solvers 

• Most of the differential equation solvers that are currently 
on the market operate on polynomial extrapolation. 

• The value of a state variable x at time t+h, where h is the 
current integration step size, is approximated by fitting a 
polynomial of nth order through known supporting values 
of x and dx/dt at the current time t as well as at past 
instances of time. 

• The value of the extrapolation polynomial at time t+h 
represents the approximated solution of the differential 
equation. 

• In the case of implicit integration algorithms, the state 
derivative at time t+h is also used as a supporting value. 
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Examples 

Explicit Euler Integration Algorithm of 1st Order: 

x(t+h)  ≈  x(t) + h · x(t) ·  

Implicit Euler Integration Algorithm of 1st Order: 

x(t+h)  ≈  x(t) + h · x(t+h) ·  
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Discontinuities in State Equations 

• Polynomials are always continuous and continuously 
differentiable functions. 

• Therefore, when the state equations of the system: 
 
 

• exhibit a discontinuity, the polynomial extrapolation is a 
very poor approximation of reality. 

• Consequently, integration algorithms with a fixed step 
size exhibit a large integration error, whereas integration 
algorithms with a variable step size reduce the step size 
dramatically in the vicinity of a discontinuity. 

x(t)  =  f(x(t),t) ·  
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Integration Across Discontinuities 
• An integration algorithm of variable step size reduces the 

step size at every discontinuity. 

• After passing the discontinuity, the step size is only slowly 
enlarged again, as the integration algorithm cannot 
distinguish between a discontinuity on one hand and a 
point of large local stiffness (with a large absolute value 
of the derivative) on the other. 

h 

t 

Discontinuities 

The step size is constantly 
too small.  Thus, the 
integration algorithm is at 
least highly inefficient, if 
not even inaccurate. 
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The State Event 
• These problems can be avoided by telling the integration 

algorithm explicitly, when and where discontinuities are 
contained in the model description. 

Example:  Limiter Function 

x 

f(x) 

xp 

fm 

xm 

fp 

α 

m = tg(α) 
1 

f  =  fm 

2 

f  =  m·x 

3 

f  =  fp 

f  =  if x < xm then fm else if x < xp then m*x else fp ; 
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Event Handling I 

x 

f(x) 

xp 

fm 

xm 

fp 

α 

x 
xp 

t 

Threshold 

h 

Iteration 

h 

x 
xp 

t 

Model switching 

h 

h 

t 

Event 

Step size reduction during 
process of iteration 
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Event Handling II 

h 

t 

h 

t 

Step size as function of time 
without event handling 

Step size as function of time 
with event handling 
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Representation of Discontinuities 

• In Modelica, discontinuities are represented as if-statements. 

• In the process of translation, these statements are 
transformed into correct event descriptions (sets of models 
with switching conditions). 

• The modeler does not need to concern him- or herself with 
the mechanisms of event descriptions.  These are hidden 
behind the if-statements. 

f  =  if x < xm then fm else if x < xp then m*x else fp ; 
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Problems 

• The modeler needs to take into account that the 
discontinuous solution is temporarily left during iteration. 
 
 
 

• may be dangerous, since abs∆p  can become temporarily 
negative. 
 
 
 

• solves this problem. 

q = √ | ∆p | ∆p = p1 – p2 ; 

abs∆p = if ∆p > 0 then ∆p else –∆p ; 

q = sqrt(abs∆p) ; 

⇒ ∆p = p1 – p2 ; 

abs∆p = noEvent( if ∆p > 0 then ∆p else –∆p ) ; 

q = sqrt(abs∆p) ; 
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The “noEvent” Construct 

• The noEvent construct has the effect that if-statements or 
Boolean expressions, which normally would be translated 
into simulation code containing correct event handling 
instructions, are handed over to the integration algorithm 
untouched. 

• Thereby, management of the simulation across these 
discontinuities is left to the step size control of the 
numerical Integration algorithm. 

∆p = p1 – p2 ; 

abs∆p = noEvent( if ∆p > 0 then ∆p else –∆p ) ; 

q = sqrt(abs∆p) ; 
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Multi-valued Functions I 
• The language constructs that have been introduced so far 

don’t suffice to describe multi-valued functions, such as 
the dry hysteresis function shown below. 
 
 

 
 

• When x becomes greater than xp, f must be switched from 
fm to fp. 

• When x becomes smaller than xm, f must be switched from 
fp to fm. 

x 

f(x) 

xp xm 

fp 

fm 
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Multi-valued Functions II 

x 

f(x) 

xp xm 

fp 

fm 

when initial() then 
    reinit(f , fp); 
end when; 
when  x > xp  or  x < xm  then 
    f  =  if  x > 0  then  fp  else  fm; 
end when; 

} These statements are only executed, 
when either x becomes larger than 
xp, or when x becomes smaller 
than xm. 

Executed at the beginning of the 
simulation. 

is larger 

becomes larger 
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Multi-valued Functions III 
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The Electrical Switch I 

i 

u 

When the switch is open, the current is i=0. 
When the switch is closed, the voltage is u=0. 

0  =  if open then i else u ; 

The if-statement in Modelica is a-causal.  It is being 
sorted together with all other statements. 
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The Electrical Switch II 

Possible Implementation: Switch open:  s = 1  
Switch closed: s = 0 

⇒ 0  =  s · i  +  ( 1 – s ) · u 

Switch open: 

Sf 

Switch closed: 

Se 

f = 0 

e = 0 

⇒ Sw s e 
f 

The causality of the switch element is a 
function of the value of the control signal s. 
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The Ideal Diode I 

u 

i 

Switch 
closed 

Switch open 

i 

u 

When u < 0, the switch is 
open.  No current flows 
through. 

When u > 0, the switch is 
closed. Current may flow.  
The ideal diode behaves 
like a short circuit. 

open  =  u < 0 ;  
0  =  if open then i else u ; 

D e 
f 
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The Ideal Diode II 

• Since current flowing through a diode cannot 
simply be interrupted, it is necessary to slightly 
modify the diode model. 

 

 

 

• The variable open must be declared as Boolean.  
The value to the right of the Boolean expression is 
assigned to it. 

open  =  u <= 0 and not i > 0 ;  
0  =  if open then i else u ; 
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The Friction Characteristic I 

• More complex phenomena, such as friction characteristics, 
must be carefully analyzed case by case. 

• The approach is discussed here by means of the friction 
example. 

fB 

v 

R0 
Rm 

-Rm 

-R0 

Viscous 
friction 

Dry friction 

When v ≠ 0 , the friction 
force is a function of the 
velocity. 

When v = 0 , the friction 
force is computed such 
that the velocity remains 
0. 
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The Friction Characteristic II 
• We distinguish between five situations: 

Sticking: The friction force compensates the sum of all forces 
attached, except if |Σf | > R0 . 

Moving forward: The friction force is computed as: 
fB = Rv · v + Rm. 

Moving backward: The friction force is computed as: 
fB = Rv · v − Rm. 

Beginning of 
forward motion: 

The friction force is computed as: 
fB = Rm. 

Beginning of 
backward motion: 

The friction force is computed as: 
fB =  −Rm. 

v = 0  
a = 0 

v = 0  
a > 0 

v = 0  
a < 0 

v > 0 

v < 0 
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The State Transition Diagram 

• The set of events can be described by a state transition 
diagram. 

Start 

Backward 
motion      
(v < 0) 

Backward 
acceleration   

(a < 0) 

Sticking 
(a = 0) 

Forward 
acceleration   

(a > 0) 

Forward 
motion    
(v > 0) 

v < 0 v > 0 

v = 0 
Σf  <  −R0 Σf  >  +R0 

a ≥ 0  and not  v < 0 a ≤ 0  and not  v > 0 

v  <  0 v  >  0 

v ≥ 0 v ≤ 0 
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The Friction Model I 
model Friction; 
    parameter Real R0, Rm, Rv; 
    parameter Boolean ic=false; 
    Real fB, fc; 
    Boolean Sticking (final start = ic); 
    Boolean Forward (final start = ic), Backward (final start = ic); 
    Boolean StartFor (final start = ic), StartBack (final start = ic); 
 
    fB = if Forward   then Rv*v + Rm else 
            if Backward then Rv*v - Rm  else 
            if StartFor    then Rm             else 
            if StartBack  then -Rm            else fc; 
    0 = if Sticking or initial() then a else fc; 



Start Presentation 

Mathematical Modeling of Physical Systems

© Prof. Dr. François E. CellierNovember 1, 2012 

The Friction Model II 

    when Sticking and not initial() then 
         reinit(v,0); 
    end when; 
 
    Forward =   initial()              and v > 0 or 
                         pre(StartFor)    and v > 0 or 
                         pre(Forward)    and not v <= 0; 
    Backward = initial()              and v < 0 or 
                         pre(StartBack)  and v < 0 or 
                         pre(Backward)  and not v >= 0; 
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The Friction Model III 

    StartFor   = pre(Sticking)    and fc > R0 or 
                        pre(StartFor)    and not (v > 0 or a <= 0 and not v > 0); 
    StartBack = pre(Sticking)     and fc < -R0 or 
                        pre(StartBack)  and not (v < 0 or a >= 0 and not v < 0); 
    Sticking = not (Forward or Backward or StartFor or StartBack); 
  
end Friction; 
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