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Treatment of Discontinuities II 

• We shall today once more look at the modeling of 
discontinuous systems. 

• First, an additional method to their mathematical 
description shall be discussed.  This method makes use of 
a parameterized description of curves. 

• Subsequently, we shall deal with the problem of variable 
causality. 

• Finally, a method shall be discussed that permits to solve 
causality problems elegantly. 
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Parameterized Curve Descriptions 

• It is always possible to describe discontinuous functions by 
means of parameterized curves.  This technique shall be 
illustrated by means of the diode characteristic. 

u 

i 

blocking co
nd

uc
ti

ng
 

s = 0 −∞ ← s 

s 
→

 ∞
 Domain:       Condition:     Equations: 

blocking:           s < 0     u = s; i = 0 

conducting:      s > 0     u = 0; i = s 

Domain = if  s < 0  then blocking else conducting; 

u = if Domain == blocking then s else 0 ; 

i  = if Domain == blocking then 0 else s ; 
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Switch open:     Division by 0!                 i = 0        
Switch closed:                             u = 0                    Division by 0! 

The Causality of the Switch Equation I 

• Let us consider once more the switch equation in its 
algebraic form: 

 

 

• We can solve this equation either for u or for i : 

0  =  s · i  +  ( 1 – s ) · u 

u  = 
s 

s – 1 · i 

Switch open:  s = 1 
Switch closed: s = 0 

i  = s 
s – 1 · u 
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The Causality of the Switch Equation II 

• Neither of the two causal equations can be used in both 
switch positions.  Either one or the other switch position 
leads to a division by 0. 

• This is exactly what happens in the simulation, when the 
causality of the switch equation is fixed. 

The causality of the switch equation must always be 
free. 

⇒ 

The switch equation must always be placed in an 
algebraic loop. 

⇒ 
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An Example I 
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An Example II 
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Both causalities are possible.  
Hence there is no problem 
with the simulation. 
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An Example III 
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A Second Example 
L 

C 
+ ~ U0 RL 

D 
The causality is fixed.  
Thus, a problem exists 
with the simulation. 
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Not So Ideal Diode I 
• One possibility for circumventing the causality problem 

consists in defining a leakage resistance Ron for the closed 
switch, as well as a leakage conductance Goff for the open 
switch. 
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 Domain:       Condition:     Equations: 

blocking:           s < 0     u = s; i = Goff · s 

conducting:       s > 0     u = Ron · s; i = s 

Domain = if  s < 0  then blocking else conducting; 

u = s*( if Domain == blocking then 1 else Ron ); 

i  = s*( if Domain == blocking then Goff else 1 ); 
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Not So Ideal Diode II 
• This is the solution that was chosen in the standard library 

of Modelica. 

• The same solution is also offered in BondLib in the form 
of a “leaky” diode model. 
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Not So Ideal Diode III 
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Problems I 

• For electrical applications, the solution with the 
leaking diode is frequently acceptable. 

• One problem has to do with the numerics.  When a 
circuit using the ideal diode is plagued by division 
problems, the circuit  with the leaking diode leads 
invariably to a stiff system. 

• Stiff systems can be integrated in Modelica by 
means of the (standard) DASSL integration 
algorithm. 

• However, this is time consuming and may not be 
suitable, at least for real-time applications. 
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Problems II 

• In the case of mechanical applications, the 
method is less suitable, since for example friction 
characteristics must frequently be computed rather 
accurately, and since in mechanical applications, 
the causalities are almost invariably fixed. 

• The masses (and inertias) determine all velocities, 
and the friction as well as spring forces (and 
torques) must therefore be determined by the R- 
and C-elements in a pre-set causality. 

• Consequently, another solution approach should 
be sought for these applications. 
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“Inline” Integration Algorithm 

• When using Inline Integration, the integration algorithm is 
directly substituted into the model equations (or inversely: the 
model equations are being substituted into the integration 
algorithm). 

• Let us consider an inductor integrated by means of the implicit 
Euler algorithm. 

uL = L · diL /dt 

iL(t) = iL(t−h) + h · diL(t) /dt 

iL(t) = iL(t−h) + (h/L) · uL(t) ⇒ 
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The Causality of Inline Integration 

iL(t) = iL(t−h) + (h/L) · uL(t) 

Known, since computed 
in the past. 

This constitutes an algebraic relation between i and u.  
This now looks like a resistor.  Hence the causality is 
now free. 

When using the inline integration algorithm, the causalities of 
the so integrated storage elements are being freed up.  
Consequently, the division by zero problem disappears. 
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Ideal Diode With Inline Integration I 
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Ideal Diode With Inline Integration II 
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