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Convective Mass Flows III 

• In this lecture, we shall concern ourselves once more with 
convective mass and heat flows, as we still have not gained 
a comprehensive understanding of the physics behind such 
phenomena. 

• We shall start by looking once more at the capacitive field. 

• We shall then study the internal energy of matter. 

• Finally, we shall look at general energy transport 
phenomena, which by now include mass flows as an 
integral aspect of general energy flows. 
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Capacitive Fields III 

• Let us briefly consider the following electrical circuit: 
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C3 

i1 i2 i3 

i1-i3 i2+i3 u1 u2 

i1 – i3 = C1 · du1 /dt 

i2 + i3 = C3 · du2 /dt 

i3 = C2 · (du1 /dt – du2 /dt ) 
⇒ i1 = ( C1 + C2 ) · du1 /dt – C2 · du2 /dt 

i2 = – C2 · du1 /dt + ( C2 + C3 ) · du2 /dt  
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Capacitive Fields IV 
i1 = ( C1 + C2 ) · du1 /dt – C2 · du2 /dt 

i2 = – C2 · du1 /dt + ( C2 + C3 ) · du2 /dt  

⇒ i1 

i2 
= 

( C1 + C2 )        – C2  

        – C2            ( C2 + C3 )  
 · 

du1 /dt 

du2 /dt 

⇒ i1 

i2 
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( C2 + C3 )          C2  

          C2            ( C1 + C2 )   · 
du1 /dt 

du2 /dt 
C1 C2  + C1 C3  + C2 C3 
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Volume and Entropy Storage 
• Let us consider once more the situation discussed in the 

previous lecture. 

0 1 0 

C 

I 

C 
Cth 

0 Sf 0 

Cth S/V 

It was no accident that I drew the two 
capacitors so close to each other. In 
reality, the two capacitors together 
form a two-port capacitive field.  After 
all, heat and volume are only two 
different properties of one and the 
same material. 
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The Internal Energy of Matter I 

• As we have already seen, there are three different (though 
inseparable) storages of matter: 

 

 
• These three storage elements represent different storage 

properties of one and the same material. 

• Consequently, we are dealing with a storage field. 

• This storage field is of a capacitive nature. 

• The capacitive field stores the internal energy of matter. 

Mass 
Volume 
Heat 
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The Internal Energy of Matter II 

• Change of the internal energy in a system, i.e. the 
total power flow into or out of the capacitive field, 
can be described as follows : 
 
 
 
 
 

• This is the Gibbs equation. 

U  =  T · S  -  p · V  +  Σ µi · Ni ∀i 
·  ·  ·  ·  

Heat flow Mass flow 

Volume flow 

Flow of  
internal energy 

Chemical potential 

Molar   
mass flow 
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The Internal Energy of Matter III 

• The internal energy is proportional to the the total mass n. 

• By normalizing with n, all extensive variables can be made 
intensive. 

 

 

• Therefore: 

u = U 
n s = S 

n v = V 
n ni = 

Ni 
n 

∀i 
d 

dt 
(n·u) = T ·  d 

dt (n·s) - p · d 
dt 

(n·v) + Σ µi ·  (n· ni ) 
d 

dt 

⇒ ∀i 
d 

dt 
(n·u) - T ·  d 

dt (n·s) + p · d 
dt 

(n·v) - Σ µi ·  (n· ni ) = 0 d 
dt 
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The Internal Energy of Matter IV 

∀i 
d 

dt 
(n·u) - T ·  d 

dt (n·s) + p · d 
dt 

(n·v) - Σ µi ·  (n· ni ) = 0 d 
dt 

⇒ 
∀i 

du 
dt  - T ·  + p · - Σ µi ·  n · [ ds 

dt 
dv 
dt 

dni 
dt ] 

= 0 + 
dn 
dt · [ u - T · s + p · v - Σ µi · ni ∀i ] 

This equation must be valid independently of the amount n, 
therefore: 

= 0 u - T · s + p · v - Σ µi · ni ∀i 

∀i 

du 
dt  - T ·  + p · - Σ µi ·  

ds 
dt 

dv 
dt 

dni 
dt = 0 

Flow of  
internal energy 

Internal energy 

Finally, here is an 
explanation, why it 
was okay to compute 
with funny derivatives. 
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The Internal Energy of Matter V 

U = T · S - p · V + Σ µi ·Ni ∀i 

⇒ U  =  T · S  -  p · V  +  Σ µi · Ni   +  T · S  -  p · V  +  Σ µi · Ni  ∀i 
·  ·  ·  ·  

∀i 
·  ·  ·  

=  T · S  -  p · V  +  Σ µi · Ni ∀i 
·  ·  ·  

⇒ T · S  -  p · V  +  Σ µi · Ni  = 0 ·  ·  ·  

This is the Gibbs-Duhem equation. 
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The Capacitive Field of Matter 
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Simplifications 
• In the case that no chemical reactions take place, it is 

possible to replace the molar mass flows by conventional 
mass flows. 

• In this case, the chemical potential is replaced by the Gibbs 
potential. 

•••

⋅+⋅−⋅= MgVpST
dt

dU
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Bus-Bond and Bus-0-Junction 
• The three outer legs of the CF-element can be grouped 

together. 

0 

0 0 

CF 

C C 

C 

3 Ø CF 
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Once Again Heat Conduction 
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Volume Pressure Exchange 

p 
q q 1 1 p 
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∆ p q 

∆ p 
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2 
q 

2 
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CF 1 
CF 2 

3 3 
PVE 

Pressure is being equilibrated 
just like temperature.  It is 
assumed that the inertia of the 
mass may be neglected 
(relatively small masses and/or 
velocities), and that the 
equilibration occurs without 
friction. 

The model makes sense if the 
exchange occurs locally, and if 
not too large masses get 
moved in the process. 
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General Exchange Element I 

1 

GS 

0 

1 2 1 

GS 

1 1 

0 

mGS 

0 

mGS 

1 2 

1 2 

1 2 

Sw Sw 

The three flows are 
coupled through RS-
elements. 

This is a switching 
element used to encode 
the direction of positive 
flow. 
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General Exchange Element II 

• In the general exchange element, the temperatures, the 
pressures, and the Gibbs potentials of neighboring media 
are being equilibrated. 

• This process can be interpreted as a resistive field. 

Ø Ø 3 
RF 

3 

CF 1 CF 2 

ρ , S 1 1 
ρ , S 2 2 
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Multi-phase Systems 

• We may also wish to study phenomena such as 
evaporation and condensation. 

CF gas 

3 

Ø 
HE, PVE, 

Evaporation, 
Condensation 

3 

CF liq 

3 

Ø 3 
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Evaporation (Boiling) 
• Mass and energy exchange between capacitive storages of 

matter (CF-elements) representing different phases is 
accomplished by means of special resistive fields (RF-
elements). 

• The mass flows are calculated as functions of the pressure 
and the corresponding saturation pressure. 

• The volume flows are computed as the product of the mass 
flows with the saturation volume at the given temperature. 

• The entropy flows are superposed with the enthalpy of 
evaporation (in the process of evaporation, the thermal 
domain loses heat → latent heat). 
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Condensation On Cold Surfaces 
• Here, a boundary layer must be introduced. 
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Thermodynamics of Mixtures 
• When fluids (gases or liquids) are being mixed, additional 

entropy is generated. 

• This mixing entropy must be distributed among the 
participating component fluids. 

• The distribution is a function of the partial masses. 

• Usually, neighboring CF-elements are not supposed to 
know anything about each other.  In the process of mixing, 
this rule cannot be maintained.  The necessary information 
is being exchanged. 

CF 1 CF 2 
MI 

{M1} 

{x1} 

{M2} 

{x2} 
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Entropy of Mixing 
• The mixing entropy is taken out of the Gibbs potential. 
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It was assumed here 
that the fluids to be 
mixed are at the 
same temperature 
and pressure. 
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It is also possible that 
the fluids to be mixed 
are initially at different 
temperature or pressure 
values. 
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Convection in Multi-element Systems 
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Two-element, Two-phase, Two-compartment 
Convective System 
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Concentration Exchange 

• It may happen that neighboring compartments are not 
completely homogeneous.  In that case, also the 
concentrations must be exchanged. 

CFi 

Ø 3 3 HE 
PVE 
CE Ø 

CFi+1 

3 3 ... ... 
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