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Chemical Thermodynamics II 

• In this lecture, we shall continue to analyze our 
chemical thermodynamics bond graphs, making 
use of bond-graphic knowledge that we hadn’t 
exploited so far. 

• This shall lead us to a more general bond-graphic 
description of chemical reaction systems that is 
less dependent on the operating conditions. 

• The RF-element and the CF-element are 
explained in their full complexity. 
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• Let us look once more at the generic chemical reaction 
bond graph: 

A Structural Analysis of the 
Generic Chemical Reaction Bond Graphs 
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Is the RF-element truly 
reactive? 
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Relations Between the Base Variables 

e f 

q p 

∫ ∫ 

R 

C I 

Resistor: 
 

Capacity: 
 

Inductivity: 

e  =  R( f ) 
 

q  =  C( e ) 
 

p  =  I( f ) 

• Let us recall a slide from an early class on bond graphs: 

A reactive element must be describable 
purely by a (possibly non-linear) static 
relationship between efforts and flows. 
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• Let us analyze the three equations that make up the RF-
element: 
 

The RF-Element I 

1. Gibbs equation: p · qi = T · Si + µ · νi 
· 

The Gibbs equation is certainly a static equation relating only efforts 
and flows to each other.  It generalizes the “S” of the RS-element. 

2. Equation of state: p · Vi = ni · R · T 
p, T  are e-variables 
Vi, ni are q-variables. 

The equation of state is a static equation relating efforts with 
generalized positions.  Thus, it clearly belongs to the CF-element! 
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• By differentiating the equation of state: 

 
• we were able to come up with a structurally appropriate 

equation: 
 
 
 

• Yet, the approach is dubious.  The physics behind the 
equation of state points to the CF-field, and this is where it 
should be used. 

The RF-Element II 

p · qi = νi · R · T 

p, T  are e-variables 
qi, νi are f-variables. 
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The RF-Element III 
• This also makes physical sense. 
• The equation of state describes a property of a substance.  

The CF-field should contain a complete description of all 
chemical properties of the substance stored in it. 

• The RF-field, on the other hand, only describes the 
transport of substances.  A pipe really doesn’t care what 
flows through it! 

• The RF-field should be restricted to describing continuity 
equations. 

• The mass continuity is described by the reaction rate 
equations.  The energy continuity is described by the 
Gibbs equation.  What is missing is the volume continuity. 
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The RF-Element IV 
• We know that mass always carries its volume along.  Thus: 

 

 

• Using the volume continuity equation, we obtain exactly 
the same results as using the differentiated equation of 
state, since the equation of state teaches us that: 

 

 

• thus: 

qi  =  (V/M) · M  =  (V/n) · νi 
· 

p · Vi = ni · R · T ⇒ V/n = R · T / p 

qi = νi · 
R · T 

p 

which is exactly the equation 
that we had used before. 
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The RF-Element V 
• What have we gained, if anything? 

• The differentiated equation of state had been derived under the 
assumption of isobaric and isothermal operating conditions. 

• The volume continuity equation does not make any such assumption.  
It is valid not only for all operating conditions, but also for all 
substances, i.e., it does not make the assumption of an ideal gas 
reaction. 

νreac  =  k  .*  n ; 

qreac /V   =  νreac /n ; 

p * qreac  =  T * Sreac + µreac   .* νreac ; 
· 

⇒ are the set of equations 
describing the generic RF-
field, where V is the total 
reaction volume, and n is 
the total reaction mass. 

mass continuity 
volume 
continuity 

energy continuity 
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The RF-Element VI 

3. Reaction rate equations: νreac  =  k  .*  n 

The reaction rate equations relate flows (f-variables) to generalized 
positions (q-variables).  However, the generalized positions are 
themselves statically related to efforts (e-variables) in the CF-element.  
Hence these equations are indeed reactive as they were expected to be. 

Thus, we now have convinced ourselves that we can write all equations 
of the RF-element as: f = g(e).  In the case of the hydrogen-bromine 
reaction, there will be 15 equations in 15 unknowns, 3 equations for the 
three flows of each one of five separate reactions. 
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The Linear Resistive Field 
• We still need to ask ourselves, whether these 15 equations 

are irreversible, i.e., resistive, or reversible, i.e., gyrative. 

• We already know that the C-matrix describing a linear 
capacitive field is always symmetric. 

• Since that matrix describes the network topology, the same 
obviously holds true for the R-matrix (or G-matrix) 
describing a linear resistive field (or linear conductive 
field).  These matrices always have to be symmetric. 
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The Multi-port Gyrator I 

• Let us now look at a multi-port gyrator.  In accordance 
with the regular gyrator, its equations are defined as: 

e 

f 

1 

1 
MGY 

R 

e 2 

f 2 

e1 = R · f2 

e1’ · f1 = e2’ · f2 = f2’ · e2  

⇒ e1’ = f2’ · R’ 

⇒ e1’ · f1 = f2’ · R’ · f1= f2’ · e2  

⇒ e2 = R’ · f1 
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The Multi-port Gyrator II 

• In order to compare this element with the resistive field, it 
is useful to have all bonds point at the element, thus: 

 

 

 

• with the equations: 

e 

f 

1 

1 
MGY 

R e 2 

f 2 

e1 = −R · f2 

e2 = R’ · f1 

or: 
f1 = G’ · e2 

f2 = −G · e1 

where: G = R-1 
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The Multi-port Gyrator III 
• In a matrix-vector form: 

f1    =      0    G’     e1 

f2    =    −G    0      e2 

· 

skew-symmetric matrix 

• Any matrix can be decomposed into a symmetric part and 
a skew-symmetric part: 

M = Ms + Mas where: 
Ms = (M + M’) /2 

Mas = (M − M’) /2 

f1 = G’ · e2 

f2 = −G · e1 

⇒ 
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Symmetric and Skew-symmetric Matrices 
• Example: 

1 2 
3 4 M = ⇒ 1 3 

2 4 M’ = 

⇒ 1   2.5 
2.5 4 Ms = (M + M’) /2 = 

0 -0.5 
0.5 0 Mas = (M − M’) /2 = 

is symmetric:  (Ms = Ms’) is skew-symmetric:  (Mas = −Mas’) 

1 2 
3 4 M =                =                  +                  =  Ms + Mas 

1   2.5 
2.5 4 

0 -0.5 
0.5 0 
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The RF-Element VII 
• Hence given the equations of the RF-element: 

 

 

• these equations can be written as: 

f  =  g(e) 

f  =  G(e) · e 

• Thus: f  = Gs (e) · e + Gas (e) · e 

Conductive part 

Gyrative part 
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The RF-Element VIII 
• Example: 

f1 = e1
2 + 2e2 

f2 = −e1 + e2
2 ⇒ 

f1        e1   2     e1 

f2       −1  e2       e2 
= ·  

 e1    2 

−1   e2 
G(e) = ⇒ 

e1   −1 

2     e2 
G’(e) = 

G(e) =                =                 +                  = Gs(e) + Gas(e) 

 e1    2 

−1   e2 

e1   0.5 

0.5   e2 

 0   1.5 

−1.5  0 

Gyration matrix Conduction matrix 
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The CF-Element I 
• We should also look at the CF-elements.  Of course, these 

elements are substance-specific, yet they can be 
constructed using general principles. 

• We need to come up with equations for the three potentials 
(efforts): T, p, and g.  These are functions of the states 
(generalized positions): S, V, and M. 

• We also need to come up with initial conditions for the 
three state variables: S0, V0, and M0. 
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The CF-Element II 
• The reaction mass is usually given, i.e., we know up front, 

how much reactants of each kind are available.  This 
determines M0 for each of the species, and therefore n0.  It 
also provides the total reaction mass M, and therefore n. 

• In a batch reaction, the reaction mass remains constant, 
whereas in a continuous reaction, new reaction mass is 
constantly added, and an equal amount of product mass is 
constantly removed. 

• Modeling continuous reactions with bond graphs is easy, 
since the chemical reaction bond graph can be naturally 
interfaced with a convective flow bond graph. 
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Isochoric vs. Isobaric Operating Conditions 
• Chemical reactions usually take place either inside a closed 

container, in which case the total reaction volume is constant, 
or in an open container, in which case the reaction pressure is 
constant, namely the pressure of the environment. 

• Hence either volume or pressure can be provided from the 
outside.  We call the case where the volume is kept constant 
the isochoric operating condition, whereas the case where the 
pressure is kept constant, is called the isobaric operating 
condition. 
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The Equation of State 
• The equation of state can be used to compute the other of 

the two volume-related variables, given the reaction mass 
and the temperature: 

Isobaric conditions (p=constant): 

Isochoric conditions (V=constant): 

p · V0 = n0 · R · T0 

p(t) · V = n(t) · R · T(t)  
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Adiabatic vs. Isothermal Operating Conditions 
• We can perform a chemical reaction under conditions of 

thermal insulation, i.e., no heat is either added or subtracted.  
This operating condition is called the adiabatic operating 
condition. 

• Alternatively, we may use a controller to add or subtract just 
the right amount of heat to keep the reaction temperature 
constant.  This operating condition is called the isothermal 
operating condition. 
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• We need an equation that relates temperature and entropy to each 
other.  In general:  T = f(S,V).  To this end, we make use of the so-
called caloric equation of state: 
 
 
 

• where: 

The Caloric Equation of State I 

ds = (cp/T) · dT – (dv/dT)p · dp 

ds = change in specific entropy 
cp = specific heat capacity at constant pressure 
dT = change in temperature 
(dv/dT)p = gradient of specific volume with respect to temperature at constant pressure 
dp = change in pressure 
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• Under isobaric conditions (dp = 0), the caloric equation 
of state simplifies to: 
 
 

• or: 
 
 
 
 

• which corresponds exactly to the heat capacitor used in the 
past. 

The Caloric Equation of State II 

ds = (cp/T) · dT 

ds/dT = cp/T ⇒ ∆s = cp · ln(T/T0 ) 

⇒ ∆S = γ · ln(T/T0 ) 
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• In the general case, the caloric equation of state can also 
be written as: 
 
 

• In the case of an ideal gas reaction: 
 
 
 

• Thus: 

The Caloric Equation of State III 

s = (cp/T) · T – (dv/dT)p · p 
·  ·  ·  

(dv/dT)p = R/p 

s = cp · (T/T) – R · (p/p) ·  ·  ·  

⇒ s − s0  = cp · ln(T/T0 ) – R · ln(p/p0 ) 
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• The initial temperature, T0 , is usually given.  The initial 
entropy, S0 , can be computed as S0 = M0 · s(T0 ,p0 ) using 
a table lookup function. 

• In the case of adiabatic operating conditions, the change 
in entropy flow can be used to determine the new 
temperature value.  To this end, it may be convenient to 
modify the caloric equation of state such that the change 
in pressure is expressed as an equivalent change in volume. 

• In the case of isothermal conditions, the approach is 
essentially the same.  The resulting temperature change, 
∆T, is computed, from which it is then possible to obtain 
the external heat flow, Q = ∆T · S, needed to prevent a 
change in temperature. 

The Caloric Equation of State IV 

· · 
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The Enthalpy of Formation 
• Finally, we need to compute the Gibbs potential, g.  It 

represents the energy stored in the substance, i.e., the 
energy needed in the process of making the substance. 

• In the chemical engineering literature, the enthalpy of 
formation, h, is usually tabulated, in place of the Gibbs 
free energy, g. 

• Once h has been obtained, g can be computed easily: 

g = h(T,p) – T · s 



Start Presentation 

Mathematical Modeling of Physical Systems

December 6, 2012 © Prof. Dr. François E. Cellier

Tabulation of Chemical Data I 
• We can find the chemical data of most substances on the web, 

e.g. at: http://webbook.nist.gov/chemistry/form-ser.html. 
• Searching e.g. for the substance HBr, we find at the address: 

http://webbook.nist.gov/cgi/cbook.cgi?ID=C10035106&Units=SI&Mask=1 

http://webbook.nist.gov/chemistry/form-ser.html�
http://webbook.nist.gov/cgi/cbook.cgi?ID=C10035106&Units=SI&Mask=1�
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Tabulation of Chemical Data II 
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The Heat Capacity of Air I 
We are now able to 
understand the CFAir 
model: 

Equation of state 
Caloric equation of state 

Gibbs energy of formation 
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The Heat Capacity of Air II 
p = T·R·M/V ⇒ p·V = T·R·M 

T = T0·exp((s–s0 − R·(ln(v)−ln(v0 )))/cv) ⇒
 

T/T0 = exp((s–s0 − R·(ln(v/v0 )))/cv) ⇒
 

ln(T/T0 ) = (s–s0 − R·ln(v/v0 ))/cv ⇒
 

cv·ln(T/T0 ) = s–s0 − R·ln(v/v0 ) 
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The Heat Capacity of Air III 

g = T·(cp – s) 

⇒ h = cp·T g = h − T·s 

for ideal gases 
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