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Mathematical Modeling of Physical Systems

Population Dynamics I

• Today we shall look at the problem of modeling• Today, we shall look at the problem of modeling
population dynamics, i.e., determining the sizes of
populations of biological species as functions of
time.

• Such systems are modeled as pure mass flows,
i.e., energy conservation laws are not being
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i.e., energy conservation laws are not being
considered.

• Consequently, bond graphs are not suitable for
describing these types of models.
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Limitations of Bond Graphs I
• Bond graphs have been designed around the conservation principlesg p g p p

of physics (energy conservation, mass conservation), and are therefore
only suitable for the description of physical systems.

• Chemistry was a border-line case. Although it is possible to model
chemical reaction dynamics down to the level of physics, this is not
truly necessary, since the reaction rate equations are decoupled from
the energy balance equations. Hence this is rarely done. We did it,
because the bond-graphic interpretation of chemical reactions offered
additional insight that we could not have gained easily by other means.
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• Yet, as the complexity of molecules grows, especially in organic
chemistry, it becomes more and more difficult to know what the
elementary step reactions are, and at that level, chemistry becomes an
empirical science, the knowledge of which is essentially covered by
interpretations of observations alone.

Mathematical Modeling of Physical Systems

Limitations of Bond Graphs II
• As we proceed to systems of ever increasing complexity, such as inp y g p y

biochemistry, the situation becomes truly hopeless.
• Although we live in a physical universe, and although a majority of

scientists would agree that the laws of nature are ultimately laws of
physics, we lack the detailed understanding necessary to e.g. explain
the processes of mitosis and meiosis (cell division) on the basis of the
underlying physics, or worse, to explain how the genetic code directs
the cells to reproduce a functioning living being from its blueprint.

• With this lecture, we are taking a giant step, bypassing organic
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, g g p, yp g g
chemistry, biochemistry, molecular biology, cell biology, genetics,
etc., jumping right to the level of population dynamics, i.e., taking a
macroscopic look at how populations of species develop in size over
time.
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Exponential Growth I
• The change in population per time unit can obviously be expressed asg p p p y p

the difference between birth rate and death rate.

• It is reasonable to assume that both the birth rate and the death rate are
proportional to the population:

d th f

P = BR - DR·

BR = kBR · P DR = kDR · P
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• and therefore:

P = (kBR  kDR ) · P·

 P(t) = P0 · e(kBR kDR ) · t
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Exponential Growth II
P(t) = P0 · e(kBR kDR ) · t

• Populations of all species grow exponentially over time.
• This is also true for human beings!

P(t)  P0 e

Every species eventually outgrows its resources.

In the ultimate instance, populations are
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, p p
controlled by hunger, rather than brains.

The primary purpose of studying population dynamics
is to learn to deal with this depressing law of nature.
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Limits to Growth
• As food gets scarce, i.e., as soon as all available food is being

consumed by the population, we can determine the food per capita as
the total food divided by the population:

• If not enough food is available, the birth rate will decrease, and the
death rate will increase. This is called the crowding effect.

• The most commonly used assumption is that a one-species ecosystem

Fp.c. = Ftotal / P
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can support a fixed number of animals of the given species:

P = k · (1.0 - ) · PP
Pmax

·
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The Logistic Equation

P = k · (1 0 ) · PP·

• The above equation is called the continuous-time logistic equation.

Saturation

P = k · (1.0 - ) · PPmax
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Pmax = 1000

Exponential growth
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Continuous-time vs. Discrete-time Model
• Applying the forward-Euler integration algorithm:

• to the differential equation describing the population
change:

• we get a difference equation:

P = k · P·

P(t+h) = P(t) + h · P(t)·
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• It may be justified to use this much cruder model, either
because the accuracy of our model is not all that great
anyway, or because a population may reproduce only in
spring (h = 1.0).

P(t+h) = P(t) + h · k · P(t) = (1.0 + h·k) · P(t) 

Mathematical Modeling of Physical Systems

The Chain Letter I
• Population dynamics modeling techniques may also be

applied to macroeconomic modeling. Let us consider the
model of a chain letter.

• The following rules are set to govern this (artificial) model:
 A chain letter is received with two addresses on it, the address of

the sender, and the address of the sender’s sender.
 After receiving the letter, a recipient sends $1 to the sender’s

sender. He or she then sends the letter on to 10 other people,
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again with two addresses, his (or her) own as the new sender, and
the sender’s address as the new sender’s sender.

 The letter is only mailed within the U.S.
 Every recipient answers the letter exactly once. When a recipient

receives the same letter for a second or subsequent time, he (or
she) simply throws it away.
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The Chain Letter II
• Special rules are needed to provide initial conditions.

 The originator sends the letter to 10 people without sending

• Every sender has 100 receiver’s receivers, thus is expected

 The originator sends the letter to 10 people without sending
money to anyone.

 If a recipient receives the letter with only one address (the
sender’s address), he or she sends the letter on to 10 other people
with two addresses (his or her own as the sender, and that of the
originator as the sender’s sender). No money is paid to anyone in
this case.
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to make $100.
• Except for the first 11, who don’t pay anything, every

sender pays exactly $1.
• Hence this is a wonderful (and totally illegal!) way of

making money out of thin air.
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The Chain Letter III
• We can model the chain letter easily as a discrete system.We ca ode t e c a ette eas y as a d sc ete syste .

I = 10 · (1.0 - )P
Pmax

I is the average number of new infections
per recipient.

R = I · pre(R) R, the number of new recipients, can be
computed as the number of new infections per
recipient multiplied by the number of recipients
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p p y p
one step earlier.

P = pre(P) + R P, the number of already infected people, can
be computed as the number of people infected
previously plus the new recruits.
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The Chain Letter IV
• We can easily code this model in Modelica.
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Simulation Results
 Initially, every participant

makes exactly $99 as expected.makes exactly $99 as expected.
 However, already after seven

generations, the entire U.S.
population has been infected.

 Thereafter, everyone who still
participates, loses $1.

The energy conservation laws
are not violated! No money is
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are not violated! No money is
being made out of thin air!
Those who participate early on,
make money at the expense of
the many who jump on the band
wagon too late.
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Simulation Results

Exponential 
growth

Stagnation
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Prosperity Recession
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Interpretation
• As long as exponential growth prevails, i.e., as long as the g p g p , , g

second derivative of the population growth is positive, the 
population is able to borrow money from the future.  They 
effectively eat the bread of their children.

• Once the inflection point has been passed, the debts made 
by previous generations have to be paid back.
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U.S. Census I
• In the U.S., population statistics have been collected once , p p

every 10 years since 1850.
• I used Matlab to fit a logistic model:

• to the available census data.
• I then used Modelica to plot the real census data together 

P = a · P + b · P 2·
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p g
with the curve fit.
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U.S. Census II
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U.S. Census III

Pmax = 402.59 · 106

Inflection point 
= 1971
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The inflection point is fairly sensitive. Yet, however we compute it,
we have already passed it.

 We can no longer rely on an increasing number of
children to pay for our retirement benefits.
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Curve Fitting I
• Let us look how the curve fitting was done Since we onlyLet us look how the curve fitting was done. Since we only

have measurement data for the population itself, not for its
derivative, we first need to approximate the population
gradient.

• To this end, we lay a quadratic polynomial through three
neighboring population data points:
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Pi-1 = c1 + c2 · t i-1 + c3 · t i-1
2

Pi   = c1 + c2 · t i   + c3 · t i 
2

Pi+1 = c1 + c2 · t i+1 + c3 · t i+1
2
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Curve Fitting II
• In a matrix-vector form:In a matrix vector form:

Pi-1 t i-1
0 t i-1

1 t i-1
2             c1

Pi   =    t i 
0 t i 

1 t i 
2         ·   c2

Pi+1             t i+1
0      t i+1

1    t i+1
2           c3}
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V = Vandermonde matrix

p = V · c  c = V -1 · p = V \ p
Matlab notation
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Curve Fitting III
• Now that we have the coefficient vector we canNow, that we have the coefficient vector, we can

approximate the population gradient:

Pi   = c1 + c2 · t i  + c3 · t i 
2

 Pi  c2 + 2c3 · t i
·
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• We could equally well have used other interpolation
polynomials, such as cubic splines, or inverse Hermite
interpolation.
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Curve Fitting IV
• We are now ready to curve-fit the logistic model:We are now ready to curve fit the logistic model:

P1  a · P1 + b · P1
2·

P2  a · P2 + b · P2
2·

Pn  a · Pn + b · Pn
2·

···
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• We have n equations in the two unknowns a and b.

We can solve for a and b only in a least-square sense.
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Curve Fitting V
• In a matrix-vector form:In a matrix vector form:

P1 P1 P1
2          a·

···

P2 P2 P2
2          b·

Pn Pn Pn
2·

···


·
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}

V = Vandermonde matrix
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Curve Fitting VI
• In general:

y

x

V

·

 y

x

V

·VT VT ··
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y

xVT·V ·VT ·
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Curve Fitting VII
• Therefore:

y

xVT·V ·VT ·
VT · y  (VT·V) · x

 x  (VT·V) -1 · VT · y}
Penrose-Moore 
pseudo-inverse

Start PresentationDecember 13, 2012 © Prof. Dr. François E. Cellier

 x  V \ y

Matlab notation
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Predator-Prey Models I
• When multiple species interact with each other the simpleWhen multiple species interact with each other, the simple

logistics model no longer suffices.
• A simple two-species model with one species feeding upon

another was proposed by Lotka and Volterra.

Ppred = -a · Ppred + k · b · Ppred · Pprey

Pprey = c · Pprey  b · Ppred · Pprey

·
·
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• The Lotka-Volterra model makes the assumption that the
predator population without prey would die out by exponential
decay, whereas the prey population would grow beyond all
bounds due to an unlimited supply of its own food.
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Predator-Prey Models II
• When predator meets prey (P d · P ) a certain percentage ofWhen predator meets prey (Ppred Pprey ), a certain percentage of

the “energy” stored in the prey population is transferred to the
predator population.

• The efficiency of the feeding is less than 100%. Thus, some
energy is lost in the process (k < 1.0).

• Lotka-Volterra models lead to cyclic oscillations, as they are
indeed frequently observed in nature
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indeed frequently observed in nature.
• Especially insect populations, such as locust, seem to show up

in large numbers in fixed time intervals, whereas they are
almost extinct in between.
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The Larch Bud Moth I
• The larch bud moth is an insect that lives in the upperThe larch bud moth is an insect that lives in the upper

Engiadina Valley of Southeastern Switzerland, at altitudes
between 1600 – 2000 m.

• Its larvae feed on the needles of the larch trees. The
population has a cycle time of exactly nine years, i.e., once
every nine years, the insect population is larger by several
orders of magnitude, and all the larch trees turn brown because
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orders of magnitude, and all the larch trees turn brown because
of them.

• Hence the larch bud moth population was curve-fitted to the
predator population of a Lotka-Volterra model.
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The Larch Bud Moth II
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• The curve fit is excellent indeed. Does this mean that we now
understand the population dynamics of the larch bud moth?
Unfortunately, the answer to this question is a decided no.

Mathematical Modeling of Physical Systems

The Larch Bud Moth III

Th l h b d h i l l d b i Th if h• The larch bud moth is also plagued by parasites. Thus, if the
insect population is large, the chances of spreading the
parasites among them grows drastically.

• Thus, it may make equally much sense to curve-fit the larch
bud moth population to the prey population of a Lotka-
Volterra model.
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• This was attempted as well.
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The Larch Bud Moth IV
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• The curve fit is equally excellent. Thus, we cannot conclude
from the quality of the curve fit alone that the underlying
model represents correctly the cause-effect relationship of the
biological system.
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The Dangers of Curve Fitting

C fi i l b d f h f i l i• Curve fitting can only be used for the purpose of interpolation
in space and extrapolation in time (as long as the predicted
variables stay within their observed ranges).

• Models obtained inductively by curve-fitting a mathematical
model to a set of observed data should never be used to
explain the internal variables of the model.
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• Such a model has no internal validity.
• A better (internally valid) larch bud moth model shall be

presented later.
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Competition and Cooperation I
• Two species can also interact with each other in otherTwo species can also interact with each other in other

ways.
• They can e.g. compete for the same food source:

x1 = a · x1  b · x1 · x2
·
·x2 = c · x2  d · x1 · x2
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• or they can cooperate, e.g. in a symbiosis:

x1 = -a · x1  b · x1 · x2
·
·x2 = -c · x2  d · x1 · x2
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Competition and Cooperation II
• Animals of a single species can also cooperate e g byAnimals of a single species can also cooperate, e.g. by

protecting each other in a herd (grouping).

• or they can suffer from crowding:

x = -a · x  b · x 2·

x = a · x  b · x 2·
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• Of course, several of these phenomena can take effect
simultaneously.

x  a x b  x
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Conclusions
• We have looked at single-species ecosystems first WeWe have looked at single species ecosystems first. We

found that these populations always exhibit exponential
growth followed by saturation. This behavior can be
modeled using the continuous-time logistic model.

• We have seen that two-species ecosystems often exhibit
oscillatory behavior. This behavior can be modeled using
the Lotka-Volterra model
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the Lotka Volterra model.
• In the next class, we shall look at behavioral patterns

exhibited by multi-species ecosystems.
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