
Mathematical Modeling of Physical Systems

Population Dynamics II

• In this class, we shall analyze behavioral patternsIn this class, we shall analyze behavioral patterns
of ecosystems, in which more than two species
interact with each other.interact with each other.

• Such systems frequently exhibit chaotic behavior.
Ch ti d l h ll b l d d di d• Chaotic models shall be analyzed and discussed.
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Generalization of Ecological Models
• What happens when e.g. three species compete for the

same food source? The previously used model then needssame food source? The previously used model then needs
to be extended as follows:

b b b·x1 = a · x1  b12 · x1 · x2  b13 · x1 · x3  b23 · x2 · x3
x2 = c · x2  d12 · x1 · x2  d13 · x1 · x3  d23 · x2 · x3
·
x3 = e · x3  f12 · x1 · x2  f13 · x1 · x3  f23 · x2 · x3
·

• There never show up terms such as:
k

• as such a term would indicate that e.g. the competition
b d di h di

 k · x1 · x2 · x3
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between x2 and x3 disappears, when x1 dies out.



Mathematical Modeling of Physical Systems

The Gilpin Model I
• Michael Gilpin analyzed the following three-species

ecosystem model:ecosystem model:

x1 = x1  0.001 · x1
2 0.001 · x1 · x2  0.01 · x1 · x3

·
x2 = x2 0.0015 · x1 · x2 0.001 · x2

2 0.001 · x2 · x3
·

• A single predator x feeds on two different species of

x2  x2 0.0015  x1  x2 0.001  x2 0.001  x2  x3
x3 = - x3 + 0.005 · x1 · x3 + 0.0005 · x2 · x3 
·

• A single predator, x3, feeds on two different species of
prey, x1 and x2 , both of which furthermore compete for
the same food source, and suffer from crowding effects., g

• The initial populations for all three species were arbitrarily
set to 100 animals each. We simulate over 5000 time
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The Gilpin Model II
• The model was coded in Modelica:
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The Gilpin Model III
• We use simulation control as follows:
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The Gilpin Model IV
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The Gilpin Model V
• Most of the time, there are plenty of x2 animals around.
• Once in a while the predator (x ) population explodes in a• Once in a while, the predator (x3) population explodes in a

pattern similar to that of the Lotka-Volterra model.
• The predator then heavily decimates the x2 populationThe predator then heavily decimates the x2 population.
• The x1 population is usually hampered by strong competition

from the x2 population for the common food source.from the x2 population for the common food source.
• Thus, when the x2 population is decimated, the x1 population

can thrive for a short while.
• However, the x2 population recovers quickly, depriving again

the x1 population of their food.
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The Gilpin Model VI
• Yet, the behavioral pattern of each cycle is slightly

different from that of the previous one This can be betterdifferent from that of the previous one. This can be better
seen in phase portraits.
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The Gilpin Model VII
• In a limit cycle, the phase portrait would show a single

orbit.
• The observed behavior is called chaotic. Each orbit is

slightly different from the last. If the simulation were to
d i fi it ti i d th bit ldproceed over an infinite time period, the orbits would

cover an entire region of the phase plane.
• Chaotic behavior is caused here because the two preysChaotic behavior is caused here, because the two preys

can coexist at different equilibrium levels, i.e., the predator
can be fed equally well by eating animals of the x1 kind as
f th ki d O b tit t th thof the x2 kind. One prey can substitute the other.

• In continuous-time systems, chaos can only exist in 3rd

and higher order systems
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The Discrete-Time Logistic Equation I
• In the case of discrete-time systems, chaos can already

exist in 1st order systems.
• To study chaos in its purest form, we shall analyze the

behavioral patterns of the discrete-time logistic model:

• a is a parameter that shall be varied as part of the

xk+1 = a · xk · (1.0 – xk )

a is a parameter that shall be varied as part of the
experiment.
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The Discrete-Time Logistic Equation II
We find graphically the intersection(s)
between the two functions:

y1 = x
y2 = a · x · (1.0 – x )

In the range a  [0.0, 1.0], there is
only a single solution: x = 0.0.

As a approaches a value of a = 1.0,
the two curves become more and more

ll l C l i kparallel. Consequently, it takes more
and more iterations, before the steady-
state value is reached.
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The Discrete-Time Logistic Equation III
In the range a  [1.0, 3.0], there are
two intersections between the two
f tifunctions.

However, only one of the two
solutions is stable. There is still only
one steady-state solution.

The iteration converges rapidly for
intermediate values, but as a
approaches either a value of a = 1 0 orapproaches either a value of a 1.0 or
alternatively a value of a = 3.0, the
iteration converges more and more
slowly
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The Discrete-Time Logistic Equation IV
In the range a  [3.0, 3.5], a limit
cycle is observed.

For a = 3.05 and a = 3.3, the discrete
limit cycle has a period of 2.

For a = 3.45 and a = 3.5, the discrete
limit cycle has a period of 4limit cycle has a period of 4.
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The Discrete-Time Logistic Equation V
In the range a  [3.5, 4.0], the
observed behavioral patterns become
increasingly bizarreincreasingly bizarre.

For a = 3.56, a discrete limit cycle
with a period of 8 is being observedwith a period of 8 is being observed.

For a = 3.6, the behavior is chaotic.

For a = 3.84, a discrete limit cycle
with a period of 3 is being observed.

For a = 3.99, the behavior is again
chaotic.

F > 4 0 th t i t bl
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For a > 4.0, the system is unstable.



Mathematical Modeling of Physical Systems

The Discrete-Time Logistic Equation VI
• We can plot the stable steady-state solutions as a function

of the parameter a.

The dark region in the plot to
the left is the chaotic region,
yet, even within the chaotic
region, there are a few non-
chaotic islands, such as in the,
vicinity of a = 3.84.
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Bifurcations I
• How can the bifurcation points of the discrete-time logistic

model be determined?model be determined?
• A simple algorithm is presented below.
• We start ith an ass mption of a fi ed stead state:• We start with an assumption of a fixed steady state:

xk+1 = a · xk · (1.0 – xk )  xk ;     k  ∞

• We know that this assumption applies to the parameter
range a  [1 0 3 0]range a  [1.0, 3.0].

• Thus we shall try to compute these two boundaries.
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Bifurcations II
• The equation has two solutions, x1 = 0.0, and x2 = (a – 1.0)/a.

W k h h d l i i bl• We know that the second solution, x2, is stable.
• We move the stable solution to the origin using the

transformation:transformation:

k = xk – (a – 1.0)/a

• This generates the difference equation:

k+1 = -a · k
2 + (2.0 – a ) · k
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Bifurcations III
• We linearize this difference equation around the origin,

and find:and find:
k+1 = (2.0 – a ) · k

• This difference equation is marginally stable for a = 1.0
and a = 3.0.

• We now proceed assuming a stable limit cycle with a
discrete period of 2, thus:

xk+2 = a · xk+1 · (1.0 – xk+1 )  xk ;     k  ∞
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Bifurcations IV
• We evaluate this equation recursively, until xk+2 has

become a function of x onlybecome a function of xk only.
• This leaves us with a 4th order polynomial in xk.
• The pre io sl fo nd t o sol tions m st also satisf this• The previously found two solutions must also satisfy this

new polynomial, i.e., we can divide by these two solutions,
and again obtain a 2nd order polynomial in xk.and again obtain a 2 order polynomial in xk.

• This new polynomial has again two solutions. One of
them is a = 3.0, the other provides us with the next, p
bifurcation point.
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The Gilpin Model VIII
• Let us now look once more at the Gilpin model. We shall

treat the competition factor k as the parameter to be varied
i th i tin the experiment:

x1 = x1  0.001 · x1
2 k · 0.001 · x1 · x2  0.01 · x1 · x3

·
x2 = x2  k · 0.0015 · x1 · x2  0.001 · x2

2 0.001 · x2 · x3
·
x3 = - x3 + 0.005 · x1 · x3 + 0.0005 · x2 · x3 
·

• The nominal value of k is k = 1.0.
• We shall vary k around its nominal value.y
• We shall display only the x1 population.
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The Gilpin Model IX
For k = 0.98, we observe a limit cycle
with peaks reaching each time the
same level.

For k = 0.99, we observe a limit cycle
where the peaks toggle between two
discrete levels Only looking at thediscrete levels. Only looking at the
peaks, we could say that we have a
limit cycle with a discrete period of
2.

For k = 0.995, we have a limit cycle
with a discrete period of 3.

For k = 1.0, the behavior is chaotic.

Start PresentationDecember 13, 2012 © Prof. Dr. François E. Cellier



Mathematical Modeling of Physical Systems

The Gilpin Model X
For k = 1.0025, k = 1.005, and k =
1.0075, the behavior remains chaotic.

The behavior remains chaotic for
values of k < 1.0089.

For k > 1.0089, such as k = 1.01, the
x1 population quickly dies out.
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True Behavior or Numerical Artifact I?
• In the case of the discrete-time logistic model, we were

able to analyze the observed behavior analytically andable to analyze the observed behavior analytically, and
verify that chaos indeed occurs.

• In the case of the Gilpin model, this is no longer as easy.p , g y
• The question thus needs to be raised, whether what we

have observed is indeed the true behavior of the system, ory
whether we fell prey to a numerical artifact.
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True Behavior or Numerical Artifact II?
• To this end, I propose to apply a logarithmic

transformation on the Gilpin model:transformation on the Gilpin model:

yi = log(xi )

• The modified Gilpin model presents itself as follows:
1 0 0 001 ( ) 0 001 ( ) 0 01 ( )·y1 = 1.0  0.001 · exp(y1 )  0.001 · exp(y2 )  0.01 · exp(y3 )

y2 = 1.0  0.0015 · exp(y1 )  0.001 · exp(y2 )  0.001 · exp(y3 )·
y3 = -1.0 + 0.005 · exp(y1 ) + 0.0005 · exp(y2 )·

• The analytical results of the two models must be identical,
yet their numerical properties are very different
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True Behavior or Numerical Artifact III?
• We can now plot the discrete bifurcation maps of the two

models If they are the same then chaos is indeed for realmodels. If they are the same, then chaos is indeed for real
also in this model.

Original Modified 
Gilpin model Gilpin model
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Structural vs. Behavioral Complexity I
• We have seen that simple deterministic differential

equations can lead to incredibly complex behavioralequations can lead to incredibly complex behavioral
patterns in the solution space.

Th b h i l l i f i ll The behavioral complexity of a system is generally
much greater than its structural complexity.

Structure Behavior

x = a · x·
Structure Behavior

Populationx = -a · x
x(t = 0.0) = x0

x(t) = exp(-a·t) · x0

linear exponential

Gilpin model
Population 
trajectories

deterministic chaotic
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Structural vs. Behavioral Complexity II
• Looking at the Gilpin model, we may reach the conclusion

that chaotic behavior is the exception to the rule, that itp ,
occurs rarely, and is rather fragile.

• Nothing could be farther from the truth.
• As the structural complexity (the order of a differential

equation model) increases, the chaotic regions grow larger
and larger. In fact, they quickly dominate the overall
system behavior.
It i th tt l i i th t i d h• It is thus utterly surprising that no-one recognized chaos
for what it is until the 1960s. Before then, chaotic
behavior was always interpreted as a result of impurity
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Chaos in Mechanical Systems
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Limits to Complexity
• We may thus ask ourselves, what limits complexity in our universe?

How come that trees in unison grow leaves in the spring and shed themHow come that trees in unison grow leaves in the spring and shed them
again in the fall? How come that we can still recognize structure at all
among this maddening complexity that the laws of nature present us
with?with?

• There are three mechanisms that limit complexity:
 Physical constraints: When connecting two subsystems, they g y ,

combined degrees of freedom are usually lower than the sum of
the individual degrees of freedom.

 Control mechanisms: Controllers in a system (abundant in nature) Control mechanisms: Controllers in a system (abundant in nature)
tend to restrict the possible modes of behavior of a system.

 Energy: The laws of thermodynamics state that each system sheds
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The Forces of Creation I
• Chaos provides nature with a great mechanism for

constant innovation.
W d t i i M h ’ l thi• We are used to viewing Murphy’s law as something
negative: what can go wrong, will go wrong. However,
Murphy’s law can also be interpreted as something highlyp y p g g y
positive: what can grow, eventually will grow.

• Chaos is the great innovator. It brings any and every
t t tl t th t t d f di d th t itsystem constantly to the greatest degree of disorder that it

can be in.
• Chaos is built into the very fabric of our universe. At theChaos is built into the very fabric of our universe. At the

molecular level, the molecules move around like the balls
on the pool table, in total chaos. This is what we measure

t E t i b i i i d
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The Forces of Creation II
• Yet, chaos alone would leave us with a universe that is just

an accumulation of random white noise No structurean accumulation of random white noise. No structure
would be retained.

• For structure to be preserved we also need the opposite• For structure to be preserved, we also need the opposite
force, the great organizer, a force that fosters order, that
sifts through the different possibilities, discards the badg p
ones, and only preserves those that look most promising.

• Three such mechanisms were outlined before. The most
powerful among them: Energy is being minimized.
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Conclusions
• In the last two lectures, we have looked at predominantly

inductive techniques for modeling population dynamicsinductive techniques for modeling population dynamics.
• Yet, these techniques have failed to e.g. provide us with a

satisfactory model that could help us understand thesatisfactory model that could help us understand the
mechanisms that lead to the oscillatory behavior of the
larch bud moth (zeiraphera diniana).( p )

• In the next lecture, we shall come up with an improved
methodology to deal with these types of systems.
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