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Efficient Solution of Equation Systems 

• This lecture deals with the efficient mixed 
symbolic/numeric solution of algebraically coupled 
equation systems. 

• Equation systems that describe physical phenomena are 
almost invariably (exception: very small equation systems 
of dimension 2×2 or 3×3) sparsely populated. 

• This fact can be exploited. 

• Two symbolic solution techniques: the tearing of equation 
systems and the relaxation of equation systems, shall be 
presented.  The aim of both techniques is to “squeeze the 
zeros out of the structure incidence matrix.” 
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The  Tearing of Equation Systems I 

• The tearing method had been demonstrated various 
times before.  The method is explained here once 
more in a somewhat more formal fashion, in order 
to compare it to the alternate approach of the 
relaxation method. 

• As mentioned earlier, the systematic determination 
of the minimal number of tearing variables is a 
problem of exponential complexity.  Therefore, a 
set of heuristics have been designed that are 
capable of determining good sub-optimal solutions. 
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Tearing of Equations: An Example I 
1:  u = f(t) 

2:  u – u1 – u2 = 0 

3:  u1 – L1 · di1 /dt = 0 

4:  u2 – L2 · di2 /dt = 0 

5:  i – i1 = 0 

6:  i1 – i2 = 0  Constraint equation 

1:  u = f(t) 

2:  u – u1 – u2 = 0 

3:  u1 – L1 · di1 /dt = 0 

4:  u2 – L2 · di2 /dt = 0 

5:  i – i1 = 0 

6:  i1 – i2 = 0  

7:  di1 /dt - di2 /dt = 0 

1:  u = f(t) 

2:  u – u1 – u2 = 0 

3:  u1 – L1 · di1 = 0 

4:  u2 – L2 · di2 /dt = 0 

5:  i – i1 = 0 

6:  i1 – i2 = 0  

7:  di1 - di2 /dt = 0 

⇒ 

Integrator to be 
eliminated di1 /dt 



Start Presentation 

Mathematical Modeling of Physical Systems

© Prof. Dr. François E. CellierOctober 4, 2012 

Tearing of Equations: An Example II 
1:  u = f(t) 

2:  u – u1 – u2 = 0 

3:  u1 – L1 · di1 = 0 

4:  u2 – L2 · di2 /dt = 0 

5:  i – i1 = 0 

6:  i1 – i2 = 0  

7:  di1 - di2 /dt = 0 

⇒ 

1:  u = f(t) 

2:  u – u1 – u2 = 0 

3:  u1 – L1 · di1 = 0 

4:  u2 – L2 · di2 /dt = 0 

5:  i – i1 = 0 

6:  i1 – i2 = 0  

7:  di1 - di2 /dt = 0 

Algebraically coupled 
equation system in four 
unknowns 

1:  u – u1 – u2 = 0 

2:  u1 – L1 · di1 = 0 

3:  u2 – L2 · di2 /dt = 0 

4:  di1 – di2 /dt = 0 

Choice 

u1 

⇒ 
1:  u – u1 – u2 = 0 

2:  u1 – L1 · di1 = 0 

3:  u2 – L2 · di2 /dt = 0 

4:  di1 – di2 /dt = 0 

⇒ 
1: u1 = u – u2 

2: di1 = u1 / L1 

3:  u2 = L2 · di2 /dt 

4: di2 /dt = di1 
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Tearing of Equations: An Example III 

⇒ 
1: u1 = u – u2 

2: di1 = u1 / L1 

3:  u2 = L2 · di2 /dt 

4: di2 /dt = di1 

u1 = u – u2 

      = u – L2 · di2 /dt 
    = u – L2 · di1  
    = u – (L2 / L1 ) · u1 
 ⇒

 
[ 1 + (L2 / L1 ) ] · u1 = u 

⇒
 

u1 = 
L1 

L1 + L2 
· u ⇒ 

1:  u = f(t) 

 
 

3:  u1 – L1 · di1 = 0 

4:  u2 – L2 · di2 /dt = 0 

5:  i – i1 = 0 

6:  i1 – i2 = 0  

7:  di1 - di2 /dt = 0 

2:  u1 = 
L1 

L1 + L2 
· u 
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Tearing of Equations: An Example IV 

1:  u = f(t) 

 
 

3:  u1 – L1 · di1 = 0 

4:  u2 – L2 · di2 /dt = 0 

5:  i – i1 = 0 

6:  i1 – i2 = 0  

7:  di1 - di2 /dt = 0 

2:  u1 = 
L1 

L1 + L2 
· u 

⇒ 

1:  u = f(t) 

 
 

3:  u1 – L1 · di1 = 0 

4:  u2 – L2 · di2 /dt = 0 

5:  i – i1 = 0 

6:  i1 – i2 = 0  

7:  di1 - di2 /dt = 0 

2:  u1 = 
L1 

L1 + L2 
· u 

⇒ 

⇒ Question: How complex can the symbolic expressions for 
the tearing variables become? 

1:  u = f(t) 

 
 

3:  di1 = u1 / L1 

4:  di2 /dt = di1 

5:  u2 = L2 · di2 /dt 

6:  i1 = i2 

7:  i = i1 

2:  u1 = 
L1 

L1 + L2 
· u 
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The  Tearing of Equation Systems II 

• In the process of tearing an equation system, 
algebraic expressions for the tearing variables are 
being determined.  This corresponds to the 
symbolic application of Cramer’s Rule. 

A·x = b   ⇒   x = A-1·b 

A-1 =  A† 

|A| 
(A† )ij = (-1)(i+j) · |A≠ j,i| ; 
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Tearing of Equations: An Example V 
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The  Tearing of Equation Systems III 

• Cramer’s Rule is of polynomial complexity. However, the 
computational load grows with the fourth power of the size 
of the equation system. 

• For this reason, the symbolic determination of an 
expression for the tearing variables is only meaningful for 
relatively small systems. 

• In the case of bigger equation systems, the tearing method 
is still attractive, but the tearing variables must then be 
numerically determined. 
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The  Relaxation of Equation Systems I 
• The relaxation method is a symbolic version of a Gauss 

elimination without pivoting. 
• The method is only applicable in the case of linear equation 

systems. 
• All diagonal elements of the system matrix must be ≠ 0. 
• The number of non-vanishing matrix elements above the 

diagonal should be minimized. 
• Unfortunately, the problem of minimizing the number of 

non-vanishing elements above the diagonal is again a 
problem of exponential complexity. 

• Therefore, a set of heuristics must be found that allow to 
keep the number of non-vanishing matrix elements above 
the diagonal small, though not necessarily minimal. 
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Relaxing Equations: An Example I 
1:  u – u1 – u2 = 0 

2:  u1 – L1 · di1 = 0 

3:  u2 – L2 · di2 /dt = 0 

4:  di1 – di2 /dt = 0 

⇒ 
u1 + u2 = u 

u1 - L1 · di1 = 0 
di2 /dt - di1 = 0 
u2 - L2 · di2 /dt = 0 

⇒
 

1 

1 

0 

0 

0 

- L1 

1 

0 

0 

0 

-1 

- L2 

1 

0 

0 

1 

. 

u1 

 

u2 

= 

u 

0 

0 

0 

di1  

di2 /dt 

The non-vanishing matrix 
elements above the 
diagonal correspond 
conceptually to the tearing 
variables of the tearing 
method. 
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Relaxing Equations: An Example II 
Gauss elimination technique: 

1 

1 

0 

0 

0 

- L1 

1 

0 

0 

0 

-1 

- L2 

1 

0 

0 

1 

. 

u1 

 

u2 
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di2 /dt 
⇒ 

- L1 

1 

0 
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-1 
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c1 

0 
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di1 

di2 /dt  = 
c2 

0 

0 u2 

c1 = -1 
c2 = -u 
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Relaxing Equations: An Example III 

- L1 

1 

0 

0 

-1 
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. 
di1 

di2 /dt  = 
c2 

0 

0 u2 

⇒ 
-1 

- L2 

c3 

1 
. di2 /dt  

u2 
= 

c4 

0 

c3 = c1 / L1 
c4 = c2 / L1 

-1 

- L2 

c3 

1 
. di2 /dt  

u2 
= 

c4 

0 
⇒ c5 . u2 = c6 

c5 = 1 - L2 · c3  
c6 = - L2 · c4  
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Relaxing Equations: An Example IV 
Gauss elimination technique : 

c5 . u2 = c6 ⇒ u2 = c6  / c5  

-1 

- L2 

c3 

1 
. di2 /dt  

u2 
= 

c4 

0 
⇒ di2 /dt = (c4 – c3·u2 ) / (-1) 

- L1 

1 

0 

0 

-1 

- L2 

c1 

0 

1 

. 
di1 

di2 /dt  = 
c2 

0 

0 u2 

⇒ di1 = (c2 – c1·u2 ) / (-L1) 
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Relaxing Equations: An Example V 
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u1 

 

u2 

= 

u 

0 

0 

0 

di1 

di2 /dt 
⇒ u1 = u – u2 

⇒ By now, all required equations have been found.  
They only need to be assembled. 
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Relaxing Equations: An Example VI 
1:  u – u1 – u2 = 0 

2:  u1 – L1 · di1 = 0 

3:  u2 – L2 · di2 /dt = 0 

4:  di1 – di2 /dt = 0 

⇒ 
c1 = -1 
c2 = -u 
c3 = c1 / L1 
c4 = c2 / L1 

c5 = 1 - L2 · c3  
c6 = - L2 · c4  
u2 = c6  / c5  
di2 /dt = (c4 – c3·u2 ) / (-1) 
di1 = (c2 – c1·u2 ) / (-L1) 
u1 = u – u2 

⇒ 

u = f(t) 
c1 = -1 
c2 = -u 
c3 = c1 / L1 
c4 = c2 / L1 

c5 = 1 - L2 · c3  
c6 = - L2 · c4  
u2 = c6  / c5  
di2 /dt = (c4 – c3·u2 ) / (-1) 
di1 = (c2 – c1·u2 ) / (-L1) 
u1 = u – u2 

i1 = i2  
i = i1 
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The  Relaxation of Equation Systems II 

• The relaxation method can be applied symbolically to 
systems of slightly larger size than the tearing method, 
because the computational load grows more slowly. 

• For some classes of applications, the relaxation method 
generates very elegant solutions. 

• However, the relaxation method can only be applied to 
linear systems, and in connection with the numerical 
Newton iteration, the tearing algorithm is usually 
preferred. 
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