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ABSTRACT 

 

In this thesis, an alternative to SPICE as an electrical circuit modeling and simulation 

tool is explored.  SPICE has been very popular automated circuit analysis tool of industry 

and universities, alike.  A new modeling tool, Dymola, supports object-oriented modeling 

and can generate state-space models for simulation in several different simulation 

languages: ACSL, DESIRE, Simnon, SimuLink, and DSblock.  In Dymola, objects are 

mathematically modeled as implicitly described sets of ordinary differential equations. 

Dymola objects may then be interconnected to form more complex systems. 

 

This thesis develops a library of PNP and NPN bipolar junction transistor models, and 

investigates use of the transistor models as subcomponents to more complex circuits such 

as operational amplifiers.  The simulation results are compared to those obtained from 

two Spice dialects, and are discussed in terms of accuracy, efficiency, flexibility, and 

robustness. 
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1. INTRODUCTION 

 

Today's circuit designers use automated tools to model and simulate electronic circuit 

designs prior to committing a design to a fabrication process.  One of the more popular 

modeling and simulation tools for electronic circuits is SPICE. 

 

A variety of SPICE dialects exist to run on various computers from desktops to 

mainframes.  SPICE uses a topological modeling approach for circuit description.  In this 

approach, all circuit nodes are numbered and the circuit designer assigns circuit element 

terminals to nodes.  Consider the simple logic circuit of Figure 1. 

 

 

Figure 1.  Simple Logic Inverter 
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In SPICE, the following description models this circuit. 

 

Simple Logic Inverter 

  Vin   1  0        0 

  Vs1   0  3        6 

  Vs2   5  0        6 

 

  Q1    4  2  0  5  PROC35.N 

  Rin   1  2        5.6k 

  Rbias 2  3        10.0k 

  Rload 4  5        1.0k 

 

.MODEL PROC35.N NPN 

+ IS=1.1fA BF=100 BR=1 

+ RC=500 RE=15 RB=1000 

+ CJC=.3pF CJE=.5pF CJS=.1pF 

+ VJC=.65 VJE=.77 VJS=.75 

 

Note that the first character of each element name determines type of circuit element 

being used: V - voltage source, R - resistor, Q - transistor.  The element name is followed 

by node assignments for its terminals.  The node assignments are followed by element 

parameter assignments.  In the case of the bipolar junction transistor (BJT) element Q1, 

PROC35.N refers to a .MODEL statement which allows us to group sets of device 

parameters for the BJT element type. 

 

Not all SPICE dialects use the same equations or device models.  In fact, the 

equations and device models used in SPICE software packages are often proprietary and 

the circuit designer using a particular SPICE dialect will not normally have visibility of 

the equations coded into the software.  This limitation constrains the designers 
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understanding of the model he is using and the relationship a particular parameter may 

play in modeling physical characteristics of a device.  This is particularly true for the 

more complex active devices such as BJTs, junction field effect transistors (JFETs), and 

metal oxide semiconductor field effect transistors (MOSFETs).  Furthermore, many 

versions of SPICE do not allow the user access to internal voltages, currents, and other 

circuit element parameters.  These limitations constrain ones ability to analyze and 

interpret simulation results relative to a particular parameter or set of parameters. 

 

Another limitation of SPICE as a modeling and simulation tool is its restriction to 

electrical and electronic components.  SPICE has no facilities to model non-electrical 

systems or interfaces between electronic and non-electronic systems.  SPICE is a well 

proven tool for electrical and electronic circuit engineering.  It provides limited support, 

however, to the systems engineer designing electro-optic, electro-mechanical, electro-

biological, or electro-chemical systems. 

 

A modeling language is needed to (1) allow the designer to directly see how a 

parameter fits in the description of a device, (2) allow the designer to access internal 

operating parameters and values of a device during simulation, (3) support topological 

and/or power and energy flow descriptions of systems and subsystems, (4) support 

hierarchical modeling, and (5) support modeling of various types of physical devices -

electronic, mechanical, biological, chemical - and coupling these devices together into 

systems. 

 

One potential modeling language is Dymola [1] and [2].  Dymola is an object-oriented 

modeling language and preprocessor.  As a modeling language, it allows the modeler to 

hierarchically decompose and describe a system and its subsystem  
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components in a very compact, yet easily readable, syntax.  Furthermore, Dymola allows 

the modeler to separately describe the mode/system and the experiment/stimulus under 

which to simulate the model.  As a model preprocessor, Dymola can determine the 

causalities, reduce the structural singularities, and solve the algebraic loops arising from the 

interconnection of subsystems (submodels) and generate a state-space description of the 

model in a variety of continuous system simulation language (CSSL) -type modeling and 

simulation languages [3]. 

Another possible modeling tool is the System Performance Simulator [4].  In an 

independent effort Martin Vlach researched and developed a modeling and simulation 

tool where the modeling capabilities are similar in approach to Dymola.  Both tools model 

continuous systems using differential algebraic equations to describe the modeled 

elements.  Models developed for one could easily be converted into a form readable by 

the other.  Ironically, Vlach received a U.S. Patent on his work in 1992 despite the fact 

that such a modeling tool had already been developed by Elmqvist in 1978. 

In [5], Cellier proposes using Dymola as an alternative to SPICE:  "If we are able to 

make Dymola powerful enough that it can handle arbitrarily complex circuits containing 

arbitrary algebraic loops and structural singularities, we can automatically generate a 

state-space model that will execute much more efficiently at run-time than the currently 

used SPICE code."  To support his assertion, Cellier began developing a Dymola model 

of a bipolar junction transistor (BJT).  As described in this paper, this model has 

meanwhile been developed further, and its accuracy and validity were verified against 

BBSPICE [6] and PS pice [7].  This paper also discusses outstanding developments 

needed to achieve the full benefits of using Dymola over SPICE as envisioned by Cellier. 
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2. CIRCUIT MODELING USING DYMOLA 

 

2.1. The Basic Electrical Components 

 

Modeling the basic circuit elements in Dymola is a straightforward process.  The 

following model, for example, describes the electrical characteristics of a resistor and its 

interfaces. 

 
model type resistor  

parameter R=1.0 

cut WireA(Va / i) WireB(Vb / -i)  

main path P <WireA - WireB>  

local u 

  u = Va - Vb  

  R*i = u  

end 

 
For added clarity, Dymola keywords have been bolded.  This description defines an 

object class (model type) of type resistor.  The resistive value of the resistor is defined by 

the parameter R, which is set to a default value of 1.0.  The cut statement defines the 

two wires of a resistor used to connect it into a circuit.  The path statement further 

defines this connection as a directed path from the input cut to the output cut.  The local 

variable u is used to compute the voltage drop across the resistor and Ohm's Law is used 

to describe the resistor itself. 

 

Similar object class (model type) descriptions for the resistor and other basic circuit 

elements - inductor, capacitor, diode, voltage source, current source, and common  
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(ground node) - have been developed and consolidated into a Dymola library file of 

electrical components.  This Dymola library file is listed in Appendix A.  A modeler 

using Dymola can simply call this library file and then use these component descriptions 

in the modeling of more complex circuits and systems. 

 

2.2. Modeling Circuits With The Basic Components 

 

After defining and describing the model types to be used in a circuit, the next step is 

to declare (instantiate) each component in the circuit and describe the interconnections.  

For example, the simple passive electrical circuit of Figure 2 is described in the following 

Dymola model. 

 

 
model circuit 

  submodel (voltage) U0 

  submodel (resistor) R1(R=100.0) R2(R=200.0) 

  submodel (capacitor) C(C=1.0E-6) 

  submodel (inductor) L(L=1.5E-3) 

  submodel common 

  input u 

  output y1, y2 

 

  connect common - U0 - R1 - C – common 

  connect U0 - R2 - L - common 

 

  U0.u = u  

  y1 = C.u  

  y2 = L.i  

end 
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Figure 2.  Simple Passive Element Electrical Circuit 

 

The submodel declaration instantiates each model type (object).  The parameter value 

settings for an object are annotated in parentheses and override the default settings found 

in the model type descriptions.  The connect statements allow for a compact description 

of the component interconnections in terms of two directed paths.  Finally, the three 

algebraic equations at the end of the model connect the input and output parameters to the 

appropriate model variables.  In this model, the input and output variables are variables 

found within the voltage source, capacitor, and inductor submodels.  A dot notation of the 

type 'submodel_name.variable_name' is used to identify the respective submodel 

variables. 

 

From this description, Dymola can automatically generate the connecting equations 

based on Kirchhoffs voltage and current laws.  From the connecting equations and the 

component description equations, Dymola can automatically determine the causality  
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assignments, reduce the structural singularities, and solve the algebraic loops that result 

from submodel coupling. 

 

With this background in electrical circuit modeling in Dymola, we now turn to the 

development of a bipolar junction transistor model using Dymola. 



 
 
 
  17 

3. THE BIPOLAR JUNCTION TRANSISTOR 

 

The bipolar junction transistor is built around p-n junctions.  These junctions are 

highly nonlinear in their electrical characteristics.  A diode is a p-n junction with the 

anode equating to the p-side and the cathode equating to the n-side of the junction.  

Forward biasing the junction diode is achieved by placing the p-side at a higher potential 

than the n-side. 

 

3.1. The P-N Junction 

 

.Figure 3 provides three depictions of the p-n junction.  The first depiction is of the 

physical device with a heavy p+ doping concentration for the anode and a lightly doped n- 

silicon base structure for the cathode.  The p-n junction is depicted in the center with 

electrical schematic symbols.  Note that the capacitance of the junction is a non-linear 

function of the charge stored in the junction.  Also, the resistance of the junction accounts 

for the minimum admittance of the junction.  An aggregate junction diode schematic 

symbol is depicted on the right. 

 

 

 
Figure 3.  P-N Junction Models 
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From Figure 3 it is seen that the current through the p-n junction is simply the sum of 

currents resulting from the capacitance, admittance, and ideal diode effects of the junction.  

The relationship of the current through, and the voltage across, the junction is: 

 

i = id + ig + ic 

id = Is*exp(ud/(Vt*Nd)) - Is 

ig = Gmin*ud 

ic = Cd*der(ud) = der(qc) 
 

where Is is the transport saturation current of the diode; Vt is the thermal voltage; Nd is 

the current emission coefficient; Gmin is the minimum admittance of the junction; and qc 

= Cd*ud is the electrical charge stored in the junction capacitance.  The thermal voltage is 

computed from Vt = k*T/q where k is Boltzmann's constant; T is the temperature; and 

q is the electrical charge of an electron. 

 

In [5], Cellier approximates the electrical charge of the junction as a function of 

current and voltage with the equation: 

 

qc = τd*id +Vbi*Cd*(1-(1-ud/Vbi)**(1-md))/(1-md) 
 

where τd is the transit time constant of the capacitance, id is the current through the 

junction diode which is also a function of ud, Vbi is the built-in voltage potential of the 

junction, Cd is the zero-bias depletion capacitance, and md is the exponential grading factor 

of the junction. 
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By handling the first and second terms of qc separately and taking their derivatives 

with respect to the junction voltage ud, the diode diffusion capacitance and the junction 

depletion capacitance respectively are obtained as follows: 

 

Cdif = der(qc-dif) 

= der(τd*id ) /der(ud) 

= τd*der(Is*exp(ud/(Vt*Nd))-Is)/der(ud) 

= τd*Is*exp(ud/(Vt*Nd))/(Vt*Nd))*der(ud)/der(ud) 

= τd*Is*exp(ud/(Vt*Nd))/(Vt*Nd)) 
 

Cdep = der(qc-dep)/der(ud) 

= der(Vbi*Cd*(1-(1-ud/Vbi)**(1-md))/(1-md))/der(ud) 

= (Vbi*Cd*((1-ud/Vbi)**(-md))*der(ud)/Vbi)/der(ud) 

= Cd/(1-ud/Vbi)**md. 

 

This approximation of the depletion capacitance Cdep, however, has a singularity at 

ud = Vbi.  In [8], Van Halen proposed the following approximation equation for Cdep 

to eliminate this singularity: 

 

Cdep = Cd / (1 - (ud - 0.5*Vt*exp((ud-Vbi)/Vt)/Vbi)**md. 

 

From the above equations, the p-n junction can easily be modeled in Dymola with the 

following description. 
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model type jdiode 

  cut Anode(Va / I) Cathode(Vb / -I) 

  main path P <Anode - Cathode> 

  parameter ND=1 IS=1.0E-16 TD=0 CD=0 VD=0.75 MD=0.33 -> 

  AREA=1 GMIN=1.0E-12  

  external DTemp FTemp VT ISfact VDfact  

  terminal Id u 

  local ISv Vbi CDv ISe Ic Cdif Cdep denom  

  { Electrical equations } 

  u = Va - Vb 

  I = Id + Ic 

  Id = ISe - ISv + GMIN*u 

  ISe = ISv*exp(u/(VT*ND)) 

  Ic = der(u) * (Cdif + Cdep) 

  { Junction capacitance equations } 

    Cdif = TD * (ISe/(VT*ND) + GMIN) {Diffusion cap.}  

    Cdep = CDv / denom               {Depletion cap.}  

    denom = (1 - (u - 0.5*VT*exp((u-Vbi)/VT))/Vbi)**MD  

  { Temperature adjustment equations }  

    ISv = IS*AREA*ISfact  

    Vbi = FTemp*VD + VDfact 

    CDv = CD*AREA*(1 + MD*(1 - Vbi/VD + 4.0E-4*DTemp))  

end 

 

This description introduces three more declaration statements available in Dymola:  

external, terminal, and local.  External parameters allow for an implicit data exchange 

between the submodel and the next higher order system, i.e. externals are like global 

parameters.  Calling models must acknowledge the existence of externals by declaring such 

variables as internal.  Terminals and locals are variables in the model that may
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change in value during a simulation run.  Terminals support connections to other devices 

while locals do not.  Terminals are accessed using the dot notation introduced earlier.  

 

The above description also introduces the jdiode temperature adjustment equations.  

The performance of a p-n junction is temperature dependent.  This model compensates for 

temperature effects on the transport saturation current, IS, the built-in junction potential, 

VD, and the zero-bias capacitance, CD.  These temperature equations were found in both 

the HSPICE User's Manual [9] and the BBSPICE [6] source code. 

 

3.2. Modeling The Bipolar Junction Transistor 

 

The bipolar junction transistor consists of multiple p-n junctions.  The two primary 

junctions are the base-collector and the base-emitter junctions.  A third p-n junction 

occurs across the substrate.  BJTs are classified as either NPN or PNP transistors based on 

the doping of the emitter, base, and collector.  BJTs are further classified as being either 

vertically or laterally diffused transistors depending on the physical geometry of the 

device.  Figure 4 shows a vertically diffused and laterally diffused NPN transistor.  For 

the PNP transistor the doping concentration in each region is simply reversed. 

 

 
Figure 4.  Vertical and Lateral NPN BJT 
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From Figure 4 it is seen that the substrate p-n junction is formed with the collector for 

the vertically diffused BJT, and it is formed with the base for the laterally diffused BJT. 

 

For the BJT a standard convention for current flow into the transistor is specified to 

avoid memorization of different convention sets depending on the BJT type.  This standard 

convention is shown in Figure 5. 

 

 
Figure 5.  BJT Current Convention 

 

The following Dymola statements model this BJT interface. 

 
cut C(VC / IC) B(VB / IB) E(VE / - IE) S(VS / ISUB)  

main cut CBES [C B E S] 

path BE<B-E> BC<B-C> BS<B-S> CE<C-E> CS<C-S> ES<E-S>  

path EB<E-B> CB<C-B> SB<S-B> EC<E-C> SC<S-C> SE<S-E> 

 

The directed path flows given in this description allow for a compact specification for any 

combination of directed flows into and out of the transistor. 
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Figure 6 provides a graphic model of the vertically and laterally diffused NPN 

transistor.  In the vertical NPN transistor, the substrate is connected to the collector.  For 

the lateral NPN, the substrate is connected to the base.  The PNP transistor model is the 

same except that the diode polarities are reversed.  This is the same model as given in [5]. 

 

 
Figure 6.  A Vertical And Lateral NPN Transistor Model 

 

Describing these four types of BJTs is straightforward using the concept of inheritance 

as supported by Dymola.  Using inheritance, the internal components of the BJT can be 

described in a generic BJT model which can then be called upon to describe the NPN and 

PNP, vertical and lateral, BJTs specifically.  Using this method, the following model 

describes the laterally diffused NPN BJT. 
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model type (BJT) NPNlateral 

  { Plug the internal circuits together. } 

connect  rbb from    B to IntB 

connect  rcc from    C to IntC 

connect  ree from IntE to E 

connect  dbc from IntB to IntC 

connect  dbe from IntB to IntE 

connect  dbs from IntB to IntS 

connect wire from    S to IntS 

connect cbcx from    B to IntC 

connect ibe0 from IntB to IntE 

connect ice0 from IntC to IntE  

end 

 

Models for the three other BJT types are contained in Appendix B.  The model of the 

interface convention given previously is part of the generic BJT model as it is common 

across all BJT types.  The rest of this generic BJT model is presented next. 

 

3.3. The External Base-Collector Capacitance 

 

The external base-collector capacitance, Cbcx, is used to model the physical 

distribution of the junction charge and current flow across the base. Cbcx is actually part 

of the base-collector junction depletion capacitance.  In [5], Cellier modeled this 

capacitance as a separate capacitor.  The parameter XCJC is used to set the fraction of the 

base-collector capacitance to be found within (internal to) the junction diode model, 

whereas 1-XCJC is used to set the fraction of capacitance in Cbcx, the capacitance 

distributed across (external to) the junction diode.  Rather than compute the base-collector 

capacitance twice and then multiply each result by XCJC and (1-XCJC) in  
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determining the associated capacitance currents, we can compute the total capacitance 

current once and multiply this by XCJC and (1-XCJC) to obtain the associated 

capacitance currents internal to and distributed across the junction.  This approach to 

modeling the external base-collector capacitance also resolves the degenerate system 

problem with the BJT model as described in [5, p 228]. 

 

Using this approach and choosing to compute the base-collector capacitance in the 

junction diode model, the Cbcx capacitance can be modeled as a dependent current source: 

 
model type Csource 

  cut A(. / I) B(. / -I) 

main path P <A - B> 

  terminal I0 

    I = I0  

end 

 

where the terminal I0 statement is used to connect the dependent current to its 

determinants, in this case, the base-collector junction diode where the total capacitance 

current and its distribution across the base are computed. 

 

3.4. The Two Dependent Current Sources 

 

The two dependent current sources IC0 and IB0 represent the DC component of the 

collector current and the base current.  These current sources can be modeled with the 

following set of equations. 
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IC0 = (ibe-ibc)/qb - ibc/BR - icn 

IB0 = ibe/BF + ibc/BR + ien + icn - ibe 

icn = ISC*(exp(vbc/(VT*NC)) - 1) 

ien = ISE*(exp(vbe/(VT*NE)) - 1) 

 

In these equations, ibc and ibe are the base-collector and base-emitter diode currents; 

icn and ien are also diode currents, but they are based on the leakage saturation current 

parameters ISC and ISE and the leakage emission coefficients NC and NE.  VT is the 

thermal voltage.  BF and BR are the ideal maximum forward and reverse beta coefficients 

that represent the DC current gain factors IE/IB and IC/IB.  The term qb is the base 

charge.  SPICE models the base charge with the following set of equations. 

 

q1 = 1/(1 - vbc/VAF - vbe/VAR) 

q2 = ien/IKF + icn/IKR 

qb = 0.5*q1*(1 + (1 + 4*q2)**0.5) 

 

Here, vbc and vbe are the voltages across the base-collector and base-emitter diodes 

respectively; VAF and VAR are the forward and reverse early voltages; and IKF and IKR 

are the forward and reverse high current beta roll-off (degradation) parameters. 

 

Also, as will be discussed later, the derivatives, with respect to vbe, of these base 

charge equations will be needed for the base-emitter diode model. These derivative 

equations are listed here. 

 

dq1 = der(q1) 

    = (der(vbe)/VAR)/(q1*q1)/der(vbe) 

    = I/(VAR*q1*q1) 
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dq2 = der(q2) 

    = der(ien)/IKF/der(vbe) 

    = (ien+ISE)*der(vbe)/(VT*NC*IKF)/der(vbe) 

    = (ien+ISE)/(VT*NC*IKF) 

 

dqb = der(qb) 

    = 0.5*der(q1)(1+sqrt(1+4*q2)) 

      + q1*der(q2)/sqrt(1+4*q2) 

    = qb*der(q1)/q1 + q1*der(q2)/sqrt(1+4*q2) 

 

The above equations are included as part of the top level BJT model.  The computed 

currents IC0 and IB0 are connected to the dependent current source submodels ice0 

and ibe0 respectively.  The current sources ice0 and ibe0 use the same dependent 

current source model as given for the external base-collector model above. 

 

3.5. The Collector And Emitter Resistances 

 

The collector and emitter resistors of the BJT model are modeled as area dependent 

resistors.  The area parameter is a scaling parameter.  These resistors are modeled as: 

 
model type varresistor  

  cut A(Va / I) B(Vb / -I)  

  main path P <A - B>  

  cut Par(Rv)  

  parameter AREA  

  local u 

    u = Va - Vb  

    u = I*Rv/AREA  

end. 
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Note that the same model type can be used to describe both the collector resistor, rcc, 

and the emitter resistor, ree.  In this model, only the AREA is declared as a parameter; the 

resistive value Rv has been declared as a cut.  Typically, transistor circuits are fabricated 

on a single chip.  To minimize the number of fabrication processes, and thus the cost of 

manufacturing a chip, the transistors on a chip will be very similar and have the same 

parameters with the exception of the area occupied by each transistor.   So, declaring all but 

the AREA parameter as cuts in these models will allow all the parameter declarations to be 

consolidated in a separate parameter specification model, BJTpar.   The parameters for 

multiple transistors can be set once in BJTpar and then connected to the individual BJTs 

of the circuit being modeled. 

 

This scheme is very similar to the .MODEL statement of SPICE.  This scheme will 

also allow for consolidation of BJT related constants and temperature compensation 

factors and equations.  One such equation is for the temperature sensitive resistor 

presented below.  This scheme can save CPU cycles at runtime by evaluating a common 

set of equations once for several transistors.  The scheme also saves on the variable name 

space by minimizing the number of unique variables instantiated for multiple transistors. 

 

The elements of an integrated circuit are temperature sensitive. From the HSPICE 

manual and the BBSPICE source code, the resistance found in the collector and emitter is a 

quadratic function of temperature, which is modeled with the equation: 

 

Rv = R*(1 + TR1*DTemp + TR2*DTempSq) 
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where TR1 and TR2 are the first and second order temperature coefficients.  DTemp and 

DTempSq are the difference and the difference squared of the device and room 

temperature.  As stated above, these temperature adjustment equations are consolidated in 

the BJTpar model. 

 

3.6. The Base Resistance 

 

The base resistance is the most important resistance in the BJT model and 

correspondingly has a more complex model than the collector and emitter resistances.  It 

is a variable resistor where the resistance is dependent on the current through the base as 

well as the area associated with the BJT.  The SPICE model for the base resistance is: 

 

rbb = RBM + 3*(RB - RBM)*(tan(z) - z)/(z*tan(z))**2  

with 

z = (-1 + sqrt((1+144*ib)/(IRB*pi**2))) 

    /(24*sqrt(ib/IRB)/pi**2). 

 

RBM is the minimum resistance given a high base current; RB is the maximum resistance 

given a low base current; ib is the base current; pi is the constant 3.14159; and IRB is the 

base current where the base resistance falls halfway between RB and RBM. 

 

The above equation for z fails, however, if the parameter IRB is set to zero.  In that 

case, SPICE automatically switches to the simpler equation: 

 

rbb = RBM + (RB - RBM)/qb 
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where qb is the base charge discussed earlier.  The following Dymola model for rbb 

implements this SPICE model.  This implementation has commented out the base current 

model and uses only the simpler base charge equations. 

 
model type rbb 

  cut A(Va / I) B(Vb / -I) 

  main path P <A - B> 

  cut Par(RBv RBMv IRBv PiSq) 

  parameter AREA 

  external qb 

  local u R {z tz) 

    u = Va - Vb  

  { R = if IRBv > 0.0 -> 

      then (RBMv + 3.0*(RBv-RBMv)*(tz-z)/(z*tz*tz))/AREA -> 

      else (RBMv + (RBv - RBMv)/qb)/AREA 

    z = if IRBv > 0.0 -> 

      then (-1 + sqrt(1 + 144*I/(PiSq*IRBv*AREA))) -> 

        /(24*sqrt(I/(IRBv*AREA))/(PiSq)) ->  

      else 0.0 

      tz = if IRBv > 0.0 then tan(2) else 0.0  

  } 

  R = (RBMv + (RBv - RBMv)/qb)/AREA  

  R*I = u 

end 

 

For this model, PiSq is a global constant that is included in the Par cut along with the 

other model parameters.  Again, this mechanism allows consolidation of these factors in 

BJTpar.  The base resistor is temperature sensitive and uses the same compensation 

equation as ree and rcc for the high and low current resistance temperature adjustment. 
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3.7. The Base-Collector Diode 

 

A model for the p-n junction diode was presented earlier and will form the basis of our 

base-collector diode (dbc) model.  Our deviation from the p-n junction diode model is 

based on the development of the external base-collector capacitance model.  The goal was 

to calculate the base-collector depletion capacitance once and use the internal base-

collector fraction parameter XCJC to distribute the current between the internal and 

external models.  In the following dbc model, Ix is the external capacitance current and 

the terminal declaration of Ix allows it to be connected to the Cbcx model. 

 
model type dbc 

cut Anode(Va / I)  Cathode(Vb / -I) 

main path P <Anode - Cathode> 

cut Par(VTNR ISv TRv CJCv XCJCv VJCv MJCv GMINDCv VT) 

parameter AREA 

terminal Id u Ix 

local ISe Ic Cdif Cdep denom 

{ Electrical equations }  

  u = Va - Vb  

  I = Id + Ic 

  Id = (ISe - ISv)* AREA + GMINDCv*u  

  ISe = ISv*exp(u/(VTNR)) 

  Ic = der(u)*(Cdif+XCJCv*Cdep) {Internal cap current} 

  Ix = der(u)*(1-XCJCv)*Cdep    {External cap current} 

{ Junction capacitance equations } 

  Cdif = TRv * (ISe/(VTNR) + GMINDCv) {Diffusion cap} 

  Cdep = AREA*CJCv/denom              {Depletion cap} 

  denom = (1 - (u - 0.5*VT*exp((u-VJCv)/VT))/VJCv)**MJCv 

end 
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3.8. The Base-Emitter Diode 

 

Again, the p-n junction diode model forms the basis of our base-emitter diode (dbe) 

model.  The base-emitter diffusion capacitance term, however, is a bit more complex as it 

is dependent on the base charge as well as the base-emitter current.  The HSPICE user's 

manual provides the following equation for this capacitance: 

 

Cdif = der(TF*Id/qb)/der(u)  

 

and by expansion, we can get 

 

Cdif = TF*(der(Id)/qb + Id*der(1/qb))/der(u) 

     = TF*((IS*exp(u/(VT*ND))/(VT*ND) + GMIN)/qb 

       - Id*der(qb)/(qb*qb)). 

 

Applying this modification to the p-n junction diode model results in the following dbe 

model. 
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model type dbe 

  cut Anode(Va / I)  Cathode(Vb / -I) 

  main path P <Anode - Cathode>  

  cut Par(VTNF ISv TFv CJEv VJEv MJEv GMINDCv VT) 

  parameter AREA  

  external qb dqb  

  terminal Id u 

  local ISe Ic Cdif Cdep denom  

  { Electrical equations } 

    u = Va - Vb 

    I = Id + Ic 

    Id = (ISe - ISv)*AREA + GMINDCv*u 

    ISe = ISv*exp(u/(VTNF)) 

    Ic = der(u) * (Cdif + Cdep)  

  { Junction capacitance equations } 

    Cdif = TFv*((ISe/(VTNF)+GMINDCV)/qb - Id*dqb)/(qb*qb) 

                                         {Diffusion cap} 

    Cdep = AREA*CJEv/denom               {Depletion cap} 

    denom = (1 - (u - 0.5*VT*exp((u-VJEv)/VT))/VJEv)**MJEv 

end 

 

This implementation of the dbe model declares qb and its derivative dqb as external 

parameters.  Equations for these two globals are defined in the higher level BJT model as 

presented earlier. 
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3.9. The Substrate Diode 

 

For the substrate diode, the generic p-n junction diode model can actually be simplified.  

In the case of the substrate diode, the capacitance due to diffusion becomes negligible and 

this term can be eliminated from the model.  Also, if the substrate diode is always assumed 

to be reverse biased, the singularity problem at Vbi is avoided and the simpler depletion 

capacitance equation can also be used.  With these simplifications, the substrate diode 

model becomes: 

 
model type dbs 

  cut Anode(Va / I)  Cathode(Vb / -I)  

  main path P <Anode - Cathode>  

  cut Par(VTNS ISSv CJSv VJSv MJSv GMINDCv VT)  

  parameter AREA  

  local ISe Ic u Id Cdep  

  { Electrical equations } 

    u = Va - Vb 

    I = Id + Ic 

    Id = (ISe - ISSv)*AREA + GMINDCv*u 

    ISe = ISSv*exp(u/(VTNS)) 

    Ic = der(u)*Cdep  

  { Junction capacitance equations } 

    Cdep = AREA*CJSv/(1-u/VJSv)**MJSv   {Depletion cap} 

 end. 
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3.10. BJT Parameters, Constants, And Temperature Compensation Factors 

 

Many of the parameters in the BJT model are dependent on the device temperature 

and on the relative difference between device and room temperature.  These temperature 

compensation factors and other global constants are included in the BJTpar model.  A 

single instantiation of this model can then be connected to multiple BJTs in a circuit 

where the parameters and temperature factors are the same across the BJTs.  The 

complete Dymola BJT model library is listed in Appendix B. 
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4. VERIFYING THE BJT MODEL 

 

Now that the BJT has been modeled, the validity and usefulness of this model as a 

tool to describe electrical circuits for the purpose of simulation is investigated.  SPICE 

previously served as the basis for developing many of the equations to build this BJT 

model.  Now SPICE will be used as the baseline to test the validity of this model.  All that 

needs to be done is to model simple transistor circuits in SPICE and in Dymola – using 

the same parameters in both – and compare the results from simulating each.  For this 

exercise, the two SPICE dialects BBSPICE [6] and PSpice [7] were used. 

 

In BBSPICE, BJTs contain 54 different model parameters.  In PSpice, BJTs contain 

40 different model parameters.  The Dymola model has implemented 48 of the BBSPICE 

parameters and 34 of the PSpice parameters.  The Dymola model has omitted the same 

six parameters from both BBSPICE and PSpice; of the six remaining, one is a frequency 

multiplier to determine excess phase, to account for flicker noise, and three provide 

additional detail for high base-emitter current modeling.  For verifying the 48 parameters, 

we can simplify the process by setting several of them to zero, one, or infinity.  These 

settings effectively "turn-off these parameters and simplify the overall BJT model from a 

Gummel-Poon type transistor model to an Ebers-Moll type model.  With this approach, 

the number of active parameters can be reduced to sixteen for a very simple BJT model.  

Assuming that the simulation results of the simple BJT in both Dymola and SPICE are a 

reasonably close match, we can then turn on the other parameters one by one and further 

verify the completeness and accuracy of the Dymola BJT model as an equivalent SPICE 

model. 
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4.1. Processing Dymola Models For Simulation 

 

Dymola is not a simulation program; it provides no simulation support.  Dymola is a 

modeling language.  It facilitates object-oriented modeling, allowing the modeler to 

formulate very complex continuous system models.  After composing the model, the 

modeler can use Dymola as a model preprocessor to (1) determine the computational 

causalities, (2) reduce the structural singularities, and (3) solve the algebraic loops arising 

from the interconnection of the subsystems (submodels).  Finally, the modeler can use 

Dymola as a model generator to produce a state-space description of the continuous system 

in a variety of simulation languages for model simulation and analysis.  While each of the 

above concepts are summarized in the following paragraphs, they are more fully addressed 

by Cellier and Elmqvist in [3]. 

 

Most of the continuous system simulation languages (CSSLs) in use today employ 

numerical integration algorithms that are designed to solve state-space models of the type 

 

x_dot = f(x,u,t).  

 

Because the same expression may appear several times in the various state equations 

forming a model, it is often more convenient and efficient to assign these expressions to 

auxiliary variables.  Thus, the CSSLs typically support extended state-space model 

descriptions of the form 

 

x_dot = f(x,z,u,t)  

z = g(x,z,u,t) 

 

where the auxiliary algebraic expressions are assigned to the auxiliary variables, z, and 

these auxiliary variables must be mutually independent.  This mutual independence 

restriction is to ensure that no algebraic loops are formed in the various equations of the
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model.  This is important, as the simulation languages employ an equation sorter to 

establish an executable sequence for the state-space equations, but an equation sorter is 

unable to resolve the execution sequence of mutually dependent equations.  Dymola, as a 

model preprocessor, facilitates the generation of state-space models that can meet these 

requirements. 

 

The computational causality of a model determines how the physical laws, as encoded 

in the model equations, must be interpreted in order to obtain a program that can be 

executed on a sequential machine using existing numerical algorithms.  For example, 

Dymola allows the resistor model to be described by Ohm's Law: U = R*I.  With this 

description, the current through the resistor seems to "cause" a potential drop across the 

resistor.  However, depending on how the resistor is interconnected with the surrounding 

components of a more complex circuit model, the Ohm's Law resistor description may 

require algebraic manipulation to describe the resistor as I = R/U in order to obtain an 

appropriate state-space model description of the circuit for simulation in a CSSL-type 

language. 

 

The partition command in Dymola uses a set of algorithms to symbolically 

manipulate the model equations and solve the causality assignment problem.  Dymola 

assumes by default that the state variables of the model are all variables that appear 

differentiated.  Since the target simulation language is expected to use an explicit 

integration algorithm, Dymola automatically declares all these state variables as known 

variables in accordance with the state-space description format: x_dot = f(x,u,t). 

Based on this set of known variables, Dymola determines the required causality  
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assignments on the state-space and auxiliary equations in order to solve for the remaining 

unknown variables. 

 

Algebraic loops commonly occur when submodels are interconnected.  A simple 

example is a set of two resistors in series that form a voltage divider.  The current through 

each of the resistors is the same based on the series connection.  The current through 

either of the resistors, however, is dependent on the voltage drop across that resistor. But, 

the voltage drop across either of the resistors can only be determined if the current 

through the resistor were already known.  CSSL-type languages cannot solve such 

algebraic loops as the equation sorter cannot determine an executable sequence for 

mutually dependent equations. 

 

In Dymola, the partition command detects algebraic loops when it can no longer 

uniquely solve the causality assignment problem.  At this point, Dymola isolates the 

involved equations, determines the involved variables, and checks whether the algebraic 

loop is a linear or nonlinear problem.  Given a linear algebraic loop, Dymola solves the 

loop through symbolic formula manipulation.  Dymola can also identify common sub-

expressions and will define auxiliary variables and equations for them to further support 

computational efficiencies in the simulation language model.  Depending on the setting of 

Dymola's compiler options, the partition command may further simplify the problem by 

eliminating unnecessary equations and expressions such as "a=0" and any terms multiplied 

by "a" in other equations. 

 

Structurally singular problems occur in systems that contain more energy storing 

elements than eigen modi.  Such systems are also known as degenerate systems.  A  
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structurally singular linear electrical circuit, for example, contains more capacitors and/or 

inductors than is indicated by the order of its transfer function.  In structurally singular 

problems, the additional differentiators are true differentiators – they cannot be eliminated 

from the system or solved as integrators.  As with algebraic loops, structurally singular 

systems often result from the interconnection of subsystems.  Dymola can detect 

structurally singular problems during solution of the causality assignment problem by 

noting any integrators – energy storage elements – that assume differential rather than 

integral causality. 

 

Dymola supports solving structurally singular problems with the differentiate 

command.  The command initiates an algorithm that assumes all state variables – 

variables that appear differentiated – are known.  It then looks for constraints between 

these variables.  For each constraint, it generates new equations that are symbolically 

differentiated versions of the constraint equations.  In the case of a chain of equations 

resulting from auxiliary variables, all equations in the chain are differentiated.  The 

process is repeated to account for second or higher order derivatives that would also be 

considered known.  After executing the differentiate command, Dymola no longer assigns 

any variables to the set of known variables automatically.  It is up to the user to explicitly 

declare which variables are to be used as state variables, i.e. known variables.  In this 

manner, all constraints are retained and the dimension of the state vector is reduced.  The 

state variables that are removed from the state vector by the differentiation process are 

computed from the constraints. 
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4.2. Processing The BJT Circuit Models For Simulation 

 

In verifying the BJT model, three different circuit models were used to test the model: 

an NPN inverter circuit, a PNP circuit, and a twelve transistor Operational Amplifier 

(OPAMP) circuit.  As can be seen in appendices D, G, and J, the Dymola script files to 

process each of these circuits follows the same basic approach.  This approach can be 

described as follows. 

 

First, the differentiate command is executed to ensure structurally singular problems 

are avoided by reducing the dimension of the state vector.  At the end of the 

differentiation process, Dymola does not automatically assume any state variables as 

known variables; the state variables must be explicitly chosen.  Within the BJT model, the 

energy storage elements are the three junction diodes.  In [5], the capacitive junction 

current is defined as Ic = der(Qc).  Using this equation, defining Qc as the state 

variable for each junction diode would seem to be a natural choice.  However, using Qc 

as a state variable leads to a nonlinear algebraic loop, which can only be solved iteratively 

at run time.  Instead, choosing the junction voltage Ud as the state variable solves the 

problem.  After differentiation, a linear set of equations for Ud, Id, and Ic results, which 

can be solved through formula manipulation by the partition command.  The partition 

command is discussed below.  The BJT model described in this paper further avoids this 

problem by eliminating the junction capacitive charge equation for Qc.  Instead, the 

junction diffusion and depletion capacitance equations are defined and used to define the 

capacitive junction current Ic.  Thus, the natural choice for the BJT state variables now 

becomes Ud. 
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After differentiating the model and declaring its state variables, the initial conditions for 

these state variables are set.  In SPICE, the initial conditions may be automatically found 

and set by iterating on a DC operating point.  This solution corresponds to algorithms 

already employed in modem differential algebraic equation (DAE) solvers, which can find 

a consistent set of initial conditions.  While Dymola embraces the DAE notation, ACSL 

does not yet support this feature.  To compensate, the initial conditions automatically 

computed in BBSPICE were copied into the Dymola script file to set the initial conditions 

for ACSL.  In PSpice, the internal voltages of a BJT are unavailable to the modeler.  This 

inhibited further checks for consistencies between the three models on initial conditions. 

 

Next, the partition command is given to determine causality assignments and solve 

algebraic loops in the model equations.  This processing step results in a set of solved 

equations.  This solved set of equations is then used to generate an ACSL program ready 

for simulation. 

 

4.3. Numerical Integration Of Electrical Circuits 

 

During the verification of the BJT models, three different numerical integration 

algorithms – as implemented in ACSL – were tried:  2nd Order Runge-Kutta(ialg=4),   

4th Order Runge-Kutta (ialg=5), and Gear(ialg=2).  Due to the limitations of these 

numerical integration algorithms in solving stiff problems, careful selection of the 

integration step size and certain model parameters – the diode saturation currents IS and 

ISS; the diode depletion capacitances CJC, CJE, and CJS; and the transit times TF and TR 

– was required in order to have a model that is stable and solvable without an  
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excessive number of integration steps.  The most sensitive trade-off is between the 

saturation currents, the depletion capacitances, and the integration step size.  Holding the 

saturation current parameters constant and increasing the capacitance values allows one to 

also increase the integration step size.  However, the increased capacitance also causes the 

response time of the transistor to increase such that the total simulation time must also 

increase to capture a complete simulation of the transient analysis.  Thus, increasing the 

capacitance values relative to the saturation currents can cause the number of integration 

steps required to go up.  Decreasing the capacitance allows one to reduce the total 

simulation time required, but the decrease in capacitance also causes faster transient 

response times in the transistor.  Now the integration step size must be reduced to keep 

numerical integration of the problem stable.  Reducing the integration step size now 

requires additional integration steps to be computed to integrate over the total simulated 

time. 

 

In both cases, the required number of integration steps goes up.  And as the number of 

steps goes up, the CPU clock cycles and the required memory for the execution of the 

simulation goes up.  In the case of the NPN and PNP circuit simulations discussed next, 

the parameter sets used still required 8000 integration steps in ACSL to maintain 

numerical integration stability while simulating over the full transient analysis.  While the 

saturation current and capacitance parameters used may not reflect any real BJT, these 

parameters do allow the NPN and PNP circuits to be simulated and the accuracy of the 

Dymola models verified against the equivalent SPICE models. 

 

Running the simulation on a VAXcluster, a typical simulation time for the NPN 

model was approximately 5 seconds for BBSPICE and 31 seconds for the Dymola  
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generated ACSL model.  For the PNP model, simulation times were approximately 6 

seconds for BBSPICE and 45 seconds for ACSL.  For the OPAMP model, simulation times 

were approximately 15 seconds for BBSPICE and 254 seconds for ACSL.  The PSpice 

models were run on an 80286 based personal computer (no math co-processor) making 

simulation time comparisons less meaningful.  For the record, PSpice simulation times 

were approximately 4, 5, and 15 minutes for the NPN, PNP, and OPAMP models 

respectively. 

 

4.4. The NPN BJT 

 

The simple inverter circuit of Figure 1 is used to verify the NPN BJT model.  The 

simulation is a transient analysis of the circuit with a stepped (pulsed) input signal.  

Appendix D contains the Dymola files used to describe the inverter circuit, the 

experiment file describing the transient analysis, and the command file to process the first 

two files in Dymola and generate a file for an ACSL [10] simulation.  Appendix C 

contains the BBSPICE and PSpice files describing this same inverter circuit and transient 

analysis.  The Dymola, BBSPICE, and PSpice models are all configured with the same 

parameter sets.  For conciseness of these appendices, only these simple (most parameters 

turned off) inverter circuit model descriptions are provided.  The simulation results are 

given in Appendix E and for those simulations with parameters turned on, the parameter 

name and its value are annotated on the simulation plots. 

 

Figure 7 depicts the simulation plots for the simple NPN inverter circuit - most 

parameters turned off.  For the voltage plots, the input voltage at the base and the output 

voltage at the collector are plotted.  The emitter and substrate voltages are not of much 
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Figure 7.  Simple NPN Inverter Simulation Plot 
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interest as they are held constant by the ground (common) and voltage supply terminals 

respectively, see Figure 1.  The current plots IC, IB, IE, and IS correspond to the collector, 

base, emitter, and substrate currents respectively.  As can readily be seen, simulation of the 

Dymola NPN BJT model provides a fairly accurate representation of its SPICE 

counterparts.  In fact, a quick glance through Appendix E reveals that as many of the other 

parameters are turned on the correspondence of this Dymola model to the SPICE models 

improves. 

 

4.5. The PNP BJT 

 

To model and test the Dymola PNP BJT, a circuit very similar to the NPN inverter 

circuit was used.  The PNP test circuit is depicted in Figure 8.  Again, the simulation is a 

transient analysis of the circuit with a stepped (pulsed) input signal.  Appendix F contains 

the BBSPICE and PSpice files describing this circuit and transient analysis.  Appendix G 

contains the Dymola files modeling the circuit, the transient analysis experiment file, and 

the command file to process the other two files to generate the ACSL simulation file.  The 

Dymola, BBSPICE, and PSpice models use the same set of parameters.  The simulation 

results are plotted in Appendix H with parameter values annotated in the title when that 

parameter deviates from the simple sets listed in Appendices F and G.  Some of the plots in 

Appendix H only depict the Dymola and BBSPICE trajectories.  In these plots, PSpice was 

unable to process and simulate the model for that specific parameter set.  In particular, 

PSpice was unable to simulate the model when the two dependent current sources IC0 and 

IB0 were effectively turned off. 
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Figure 8.  PNP Test Circuit 

 

Figure 9 depicts the simulation plots of the PNP circuit with the ideal maximum 

forward BETA coefficient, BF, turned on and most other parameters turned off.  For the 

voltage plots, the input voltage at the base and the output voltage at the emitter are 

plotted.  The collector and substrate voltages are not of much interest as they are held 

constant.  The current plots IC, IB, IE, and IS correspond to the collector, base, emitter, 

and substrate currents respectively.  As is readily seen in Figure 9, simulating the Dymola 

PNP model with BF turned on provides a very accurate representation of its PSpice 

counterpart and a fairly accurate representation of its BBSPICE counterpart.  Looking 

through the additional results plotted in Appendix H it is seen that only when the 

parameters BF, BR, ISE, ISC or IKR are turned on does the Dymola PNP model begin to 

match the BBSPICE and PSpice models. 
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Figure 9.  PNP BF=10.0 Circuit Simulation Plot 



 
 
 
  49 

 

4.6. NPN And PNP Model Discrepancies 

 

The discrepancies in the plotted trajectories could be the result of numerical 

integration errors, differences in the models, or both.  To check for integration errors, the 

simulation programs were executed using different integration algorithms.  In BBSPICE, 

the same plots are obtained when using either GEAR or TRAP as the integration 

algorithm.  In Dymola, the same plots are obtained when using 2nd or 4th Order Runge-

Kutta or Gear.  The student version of PSpice had no options for integration algorithm 

selection.  Thus, numerical integration error can be discounted as the source of 

discrepancies. 

 

The differences in the resulting trajectories are characteristic of the differences in the 

equations used to form the BJT models.  For the Dymola model, the equations were 

developed from Cellier's efforts to develop a BJT model in [5], Meta-Software's equations 

listed in [9], Van Halen's work on an improved junction capacitance equation in [8], and 

the scanning of BBSPICE source code.  While the BBSPICE source code serves as the 

most comprehensive source of information, it is also the most difficult to read and 

interpret.  For this reason, the BBSPICE source code was used primarily to verify the use 

of equations extracted from other sources.  Thus, some of the equations in the Dymola 

BJT model are different from those in BBSPICE and PSpice.  These equation differences 

cause the discrepancies in trajectories resulting from the simulations of all three models:  

Dymola, BBSPICE, and PSpice.  It is these model equation differences that also result in 

PSpice being unable to simulate some of the parameter combinations used in the PNP 

circuit models. 



 
 
 
  50 

 

5.  MORE COMPLEX CIRCUIT MODELING 

 

Now that fairly decent NPN and PNP BJT models have been designed, we can explore 

using these models in more complex circuits.  For this purpose, consider the twelve 

transistor operational amplifier (OPAMP) of Figure 10.  This OPAMP consists of both 

NPN and PNP transistors.  Its Dymola description is in Appendix J. 

 

 
Figure 10.  An Operational Amplifier Model 

 

Now consider using the OPAMP of Figure 10 in a higher level circuit.  Figure 11 

depicts an inverter circuit based on the OPAMP as a sub circuit.  The Dymola description 

of this inverter is also found in Appendix J.  Appendix I contains the BBSPICE and PSpice 

equivalent descriptions. 
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Figure 11.  An OPAMP Inverter Circuit 

 

The OPAMP inverter circuit is simulated over a stepped input signal for a transient 

signal analysis.  The results of this simulation are shown in Figure 12 and in Appendix K.  

From these simulation results, it is seen that the Dymola model provides a fairly accurate 

description of the circuit when compared to the SPICE models. 
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Figure 12.  OPAMP Simulation Plot 
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6.  CONCLUSIONS 

 

Dymola is a very powerful, object-oriented, continuous-system modeling tool.  Its 

automated formula manipulation capabilities allow it to determine causality assignments, 

reduce structural singularities, and solve algebraic loops formed from the coupling of 

subsystems.  From these formula manipulations, Dymola can generate state-space models 

for system simulation and analysis in a variety of different simulation languages.  Dymola 

currently supports ACSL, DESIRE, Simnon, SimuLink, and DSblock. 

 

The Dymola BJT models developed in this study are very readable and quickly 

understandable descriptions of NPN and PNP transistors.  The NPN model is a fairly 

accurate representation of its SPICE equivalents.  The accuracy of the PNP model, 

however, is dependent upon the complexity of the model used.  For the more complex 

PNP model, i.e. the parameters BF, BR, ISE, ISC, IKF, IKR turned on, the model 

provides a very accurate representation of its SPICE equivalents. 

 

The Dymola BJT model can be easily adapted to an improved set of equations that 

better model real devices.  One possible adaptation may be to better account for 

temperature dynamics in a system.  Most SPICE dialects, if not all, assume a static 

temperature environment.  The Dymola BJT could be adapted to model temperature 

dynamics by adding in a set of equations to account for the power dissipated by the 

components and to account for heat flow between components.  Similarly, the BJT could 

be easily adapted for interconnection with other types of subsystems – chemical, 

mechanical, or biological – providing more diversity in the types of systems modeled and 

simulated. 
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Dymola has been proven to support the modeling of complex electrical circuits and is 

capable of preprocessing them into state-space models ready for simulation.  Simulation 

of circuits involving nonlinear devices like BJTs, however, requires numerical integration 

algorithms capable of handling these numerically stiff – very negative eigenvalued –

problems.  The algorithms available in ACSL proved to be poorly suited to deal with the 

numerical stiffness of these BJT circuit models.  Even the Gear algorithm performed 

poorly on these highly nonlinear models.  All algorithms required very small step sizes, 

which then required additional CPU cycles and memory to numerically integrate and save 

the results of the problem.  This was the sole reason for the careful BJT parameter 

selection described in subsection 4.3.  In order to overcome these difficulties, a DAE 

formulation may be more suitable, a formulation that is already supported by Dymola, but 

not yet by ACSL, the simulation language that was available to me, since the process of 

converting the model to an explicit ODE form destroys some of the natural scarcity of the 

model equations, and since the DAE solver is believed to be better suited to suppress 

spurious solutions of the numerical integration. 
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APPENDIX A  

DYMOLA MODEL OF  

ELECTRICAL COMPONENTS 

 

 

{ File: elcomp.dym 

  Library of electrical components. 

  Author: Hilding Elmqvist  

  Date:    Jan, 1992  

  Latest revision: May 20, 1992  

  Version: 1.1  

} 

 

 

 

model type resistor 

  parameter R 

  cut A (Va / i) B (Vb / -i) 

  main cut C [A B] 

  main path AB <A - B> 

  local u 

    u = Va - Vb  

    R*i = u  

end 
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model type capacitor 

  parameter C 

  cut A (Va / i) B (Vb / -i) 

  main cut C [A B] 

  main path AB <A - B> 

  local u 

    u = Va - Vb  

    C*der(u) = i  

end 

 

 

 

model type varcapacitor 

  terminal C 

  cut A (Va / i) B (Vb / -i) 

  main cut C [A B] 

  main path AB <A - B> 

  local u udot Q 

    u = Va - Vb  

    Q = C*u  

    der(Q) = i  

    udot = der(u)  

end 
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model type inductor 

  parameter L 

  cut A (Va / i) B (Vb / -i) 

  main cut C [A B] 

  main path AB <A - B> 

  local u 

    u = Va - Vb  

    L*der(i) = u  

end 

 

 

 

 

model type diode 

  parameter I0 K 

  cut A (Va / i) B (Vb / -i) 

  main cut C [A B] 

  main path AB <A - B> 

  local u 

    u = Va - Vb  

    i = I0*(exp(K*u) - 1) 

end 
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model type voltage 

  cut A (Va / i) B (Vb / -i)  

  main cut C [A B]  

  main path AB <A - B>  

  terminal U0 

    U0 = Vb - Va  

end 

 

 

 

model type current 

  cut A (. / i) B (. / -i)  

  main cut C [A B]  

  main path AB <A - B>  

  terminal I0 

    i = I0 

end 

 

 

 

model type common 

  cut A (V / . ) B (V / . )  

  main cut C [A B]  

  main path AB <A - B> 

    V = 0 

end 
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APPENDIX B 

DYMOLA MODEL OF 

BIPOLAR JUNCTION TRANSISTORS 

 

{ File: BJT.dym 

  Library of bipolar junction transistors. 

  Author:    Francois Cellier, ECE, University of Arizona 

  Date:      1991 

  Version:   2.1 

  Last revision by: Daryl Hild May 1993 

  Reference: Francois Cellier: "Continuous System Modeling" 

             Springer Verlag, 1991 

  Status:    Model works, but poses a very stiff problem. 

             Rewrote diode Ic equations in terms of der(u). 

             Consolidated all but AREA parameter into BJTpar 

             so that parameters for multiple BJTs can be set 

             once with BJTpar. 

} 

 

model type varresistor  

  cut A(Va / I) B(Vb / -I) 

  main path P <A - B>  

  cut Par(Rv)  

  parameter AREA  

  local u 

    u = Va - Vb  

    u = I*Rv/AREA  

end 
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model type rbb 

  cut A(Va / I) B(Vb / -I) 

  main path P <A - B> 

  cut Par(RBv RBMv IRBv PiSq) 

  parameter AREA 

  external qb 

  local u R {z tz} 

    u = Va - Vb  

  { R = if IRBv > 0.0 -> 

      then (RBMv + 3.0*(RBv-RBMv)*(tz-z)/(z*tz*tz))/AREA -> 

      else (RBMv + (RBv - RBMv)/qb)/AREA 

    z = if IRBv > 0.0 -> 

      then (-1 + sqrt(1 + 144*I/(PiSq*IRBv*AREA))) -> 

        /(24*sqrt(I/(IRBv*AREA))/(PiSq)) -> 

      else 0.0 

    tz = if IRBv > 0.0 then tan(z) else 0.0 

  } 

    R = (RBMv + (RBv - RBMv)/qb)/AREA  

    R*I = u  

End 

 

 

model type Csource 

  cut A(. / I) B(. / -I)  

  main path P <A - B> 

  terminal I0  

  I = I0 

end 
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model type wire {Added to set IS direction into BJT} 

  cut A(Va / I)  B(Vb / -I) 

  main path P <A - B> 

    Va = Vb  

end 

 

 

model type dbc 

  cut Anode(Va / I) Cathode(Vb / -I) 

  main path P <Anode - Cathode> 

  cut Par(VTNR ISv TRv CJCv XCJCv VJCv MJCv GMINDCv VT) 

  parameter AREA 

  terminal Id u Ix  

  local ISe Ic Cdif Cdep denom 

  { Electical equations }  

    u = Va - Vb  

    I = Id + Ic 

    Id = (ISe - ISv)*AREA + GMINDCv*u  

    ISe = ISv*exp(u/(VTNR)) 

    Ic = der(u)*(Cdif+XCJCv*Cdep) (Internal cap current} 

    Ix = der(u)*(1-XCJCv)*Cdep    (External cap current) 

  { Junction capacitance equations } 

    Cdif = TRv * (ISe/(VTNR) + GMINDCv)  {Diffusion cap} 

    Cdep = AREA*CJCv/denom               {Depletion cap} 

    denom = (1 - (u - 0.5*VT*exp((u-VJCv)/VT))/VJCv)**MJCv 

end 
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model type dbe 

  cut Anode(Va / I)  Cathode(Vb / -I) 

  main path P <Anode - Cathode> 

  cut Par(VTNF ISv TFv CJEv VJEv MJEv GMINDCv VT) 

  parameter AREA  

  external qb dqb 

  terminal Id u 

  local ISe Ic Cdif Cdep denom 

  { Electrical equations } 

    u = Va - Vb 

    I = Id + Ic 

    Id = (ISe - ISv)*AREA + GMINDCv*u 

    ISe = ISv*exp(u/(VTNF)) 

    Ic = der(u) * (Cdif + Cdep) 

  { Junction capacitance equations } 

    Cdif = TFv*((ISe/(VTNF)+GMINDCv)/qb - Id*dqb)/(qb*qb) 

                                          {Diffusion cap} 

    Cdep = AREA*CJEv/denom                (Depletion cap} 

    denom = (1 - (u - 0.5*VT*exp((u-VJEv)/VT))/VJEv)**MJEv 

end 
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model type dbs 

  cut Anode(Va / I)  Cathode(Vb / -I) 

  main path P <Anode - Cathode> 

  cut Par(VTNS ISSv CJSv VJSv MJSv GMINDCv VT) 

  parameter AREA 

  local ISe Ic u Id Cdep 

  { Electrical equations } 

    u = Va - Vb 

    I = Id + Ic 

    Id = (ISe - ISSv)*AREA + GMINDCv*u 

    ISe = ISSv*exp(u/(VTNS)) 

    Ic = der(u)*Cdep 

  { Junction capacitance equations ) 

    Cdep = AREA*CJSv/(1-u/VJSv)**MJSv   {Depletion cap.) 

end 
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model type BJT 

  submodel (varresistor) rcc(AREA=AREA) ree(AREA=AREA) 

  submodel rbb(AREA=AREA) 

  submodel dbc(AREA=AREA) 

  submodel dbe(AREA=AREA) 

  submodel dbs(AREA=AREA) 

  submodel (Csource) ice0 ibe0 cbcx 

  submodel wire 

 
  parameter AREA=1.0 

 
  cut C(VC / 1C) B(VB / IB) E(VE / - IE) S (VS / ISUB) 

  main cut CBES [C B E S] 

  cut par (BFv BRv ISv ISSv VTNF VTNR VTNS -> 

    CJCv CJEv CJSv XCJCv MJCv MJEv MJSv VJCv VJEv VJSv -> 

    ISCv ISEv VTNC VTNE VAFv VARv IKFv IKRv -> 

    IRBv RBv RBMv RCv REv TFv TRv GMINDCv VT PiSq) 

  path BE<B-E> BC<B-C> BS<B-S> CE<C-E> CS<C-S> ES<E-S> 

  path EB<E-B> CB<C-B> SB<S-B> EC<E-C> SC<S-C> SE<S-E> 

 
  node IntC IntB IntE IntS 

  node rccPar(RCv) 

  node reePar(REv) 

  node rbbPar(RBv RBMv IRBv PiSq) 

  node dbcPar(VTNR ISv TRv CJCv XCJCv VJCv MJCv GMINDCv VT) 

  node dbePar(VTNF ISv TFv CJEv VJEv MJEv GMINDCv VT) 

  node dbsPar(VTNS ISSv CJSv VJSv MJSv GMINDCv VT) 

 
  local vbc vbe ibc ibe icn ien IB0 IC0 q1 q2 dq1 dq2 

  internal qb dqb 
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  { Define parameters and globals for components } 

    connect rccPar at rcc:Par  

    connect reePar at ree:Par  

    connect rbbPar at rbb:Par  

    connect dbcPar at dbc:Par  

    connect dbePar at dbe:Par  

    connect dbsPar at dbs:Par 

  { Define frequently used internal voltages and currents } 

    vbc = dbc.u 

    vbe = dbe.u 

    ibc = dbc.Id  

    ibe = dbe.Id 

    cbcx.I0 = dbc.Ix 

  { Compute the base charge } 

    q1 = 1/(1 - vbc/VAFv - vbe/VARv) 

    q2 = (ibc/IKRv + ibe/IKFv) / AREA 

    qb = q1*0.5*(1 + (1 + 4*q2)**0.5) 

  { Compute derivatives of base charge } 

    dq1 = I/(VARv*q1*q1) 

    dq2 = (ien+ISEv)/(VTNC*IKFv) 

    dqb = qb*dq1/q1 + q1*dq2/(1+4*q2)**0.5 

  ( Compute the nonlinear current sources } 

    icn = AREA*ISCv*(exp(vbc/(VTNC))-1) 

    ien = AREA*ISEv*(exp(vbe/(VTNE))-1) 

    IC0 = (ibe-ibc)/qb - ibc/BRv – icn 

    IB0 = ibe/BFv + ibc/BRv + ien + icn – ibe 

    Ice0.I0 = IC0 

    Ibe0.I0 = IB0 

end 
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model type (BJT) NPNIateral 

    connect  rbb from    B to IntB 

    connect  rcc from    C to IntC 

    connect  ree from IntE to E 

    connect  dbc from IntB to IntC 

    connect  dbe from IntB to IntE 

    connect  dbs from IntB to IntS 

    connect wire from    S to IntS 

    connect cbcx from    B to IntC 

    connect ibe0 from IntB to IntE 

    connect ice0 from IntC to IntE 

end 

 

 

 

model type (BJT) NPNvertical 

    connect  rbb from    B to IntB 

    connect  rcc from    C to IntC 

    connect  ree from IntE to E 

    connect  dbc from IntB to IntC 

    connect  dbe from IntB to IntE 

    connect  dbs from IntS to IntC 

    connect wire from    S to IntS 

    connect cbcx from    B to IntC 

    connect ibe0 from IntB to IntE 

    connect ice0 from IntC to IntE 

end 
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model type (BJT) PNPlateral 

    connect  rbb from    B to IntB 

    connect  rcc from    C to IntC 

    connect  ree from IntE to E 

    connect  dbc from IntC to IntB 

    connect  dbe from IntE to IntB 

    connect  dbs from IntS to IntB 

    connect wire from    S to IntS 

    connect cbcx from    B to IntC 

    connect ibe0 from IntE to IntB 

    connect ice0 from IntE to IntC 

end 

 

 

 

model type (BJT) PNPvertical 

    connect  rbb from    B to IntB 

    connect  rcc from    C to IntC 

    connect  ree from IntE to E 

    connect  dbc from IntC to IntB 

    connect  dbe from IntE to IntB 

    connect  dbs from IntC to IntS 

    connect wire from    S to IntS 

    connect cbcx from    B to IntC 

    connect ibe0 from IntE to IntB 

    connect ice0 from IntE to IntC 

end 
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model type BJTpar 

  parameter -> 

    {DC Model Parameters} -> 

    BF=100.0   BR=1.0   IS=1.0E-16  ISS=0.0           -> 

    NF=1.0     NR=1.0   N3=1.0      GMINDC=1.0E-12    -> 

  {Low Current BETA Degradation Effect Parameters}    -> 

    ISC=0.0    ISE=0.0    NC=2.0    NE=1.5            -> 

  {Base Width Modulation Parameters}                  -> 

    VAF=9E+30  VAR=9E+30                              -> 

  {High Current BETA Degradation Effect Parameters}   -> 

    IKF=9E+30  IKR=9E+30                              -> 

  {Parasitic Resistor Parameters}                     -> 

    IRB=0.0    RB=0.0     RBM=0.0   RC=0.0   RE=0.0   -> 

  {Junction Capacitor Parameters}                     -> 

    CJC=0.0    CJE=0.0    CJS=0.0   XCJC=1.0          -> 

    MJC=0.33   MJE=0.33   MJS=0.33  {0.3<=m<=0.5}     -> 

    VJC=0.75   VJE=0.75   VJS=0.75                    -> 

  {Transit Time Parameters}                           -> 

    TF=0.0      TR=0.0                                -> 

  {Temperature Compensation and Area Parameters}      -> 

    TRB1=0.0    TRM1=0.0    TRC1=0.0  TRE1=0.0        -> 

    TRB2=0.0    TRM2=0.0    TRC2=0.0  TRE2=0.0        -> 

    TNOM=25.0   TEMP=25.0   XTI=3.0   XTB=0.0   EG=1.16 

  main cut Par (BFv BRv ISv ISSv VTNF VTNR VTNS -> 

    CJCv CJEv CJSv XCJCv MJCv MJEv MJSv VJCv VJEv VJSv  -> 

    ISCv ISEv VTNC VTNE VAFv VARv IKFv IKRv -> 

    IRBv RBv RBMv RCv REv TFv TRv GMINDCv VT PiSq) 

  local Tref Tdev DTemp DTempSq RTemp Rxtb EGref EGdev -> 

    facin ISfact VDfact 
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constant Pi = 3.14159  -> 

  Charge=1.6021918E-19  (Electron Charge} -> 

  Boltz=1.3806226E-23   {Boltzmann's constant} -> 

  CtoK=273.15           {Celius to Kelvin conversion} -> 

  GapC1=7.02E-4  {1st bandgap correction factor Silicon} -> 

  GapC2=1108.0   {2nd bandgap correction factor Silicon} 

{ Define temperature globals and constants } 

  PiSq = Pi*Pi 

  Tref = TNOM + CtoK        {Reference (room) temperature} 

  Tdev = TEMP + CtoK        (Device temperature} 

  DTemp   = Tdev - Tref     (Temp Delta} 

  DTempSq = DTemp*DTemp     (Temp Delta Squared} 

  RTemp   = Tdev/Tref       (Temp Ratio} 

  Rxtb    = RTemp**XTB      {Temp Ratio exponentiated} 

  VT = Boltz*Tdev/Charge    {Thermal Voltage} 

{ Electron Gap of Silicon at Tref and Tdev } 

  EGref = EG - GapC1*Tref*Tref/(Tref + GapC2) 

  EGdev = EG - GapC1*Tdev*Tdev/(Tdev + GapC2) 

{ Temperature compensation factors } 

  facln  = (RTemp-1)*EGdev/VT + XTI*ln(RTemp) 

  ISfact = exp(facln) 

  VDfact = EGdev - EGref*RTemp - 3*VT*ln(RTemp) 

{ Define temperature adjusted resistors } 

  RCv  =  RC*(1 + TRC1*DTemp + TRC2*DTempSq) 

  REv  =  RE*(1 + TRE1*DTemp + TRE2*DTempSq) 

  RBv  =  RB*(1 + TRB1*DTemp + TRB2*DTempSq) 

  RBMv = RBM*(1 + TRM1*DTemp + TRM2*DTempSq) 

  IRBv = IRB 
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{ Define temperature adjusted diode parameters } 

  VTNF = VT*NF 

  VTNR = VT*NR 

  VTNS = VT*NS 

  ISv  = IS*ISfact 

  ISSv = ISS*ISfact 

  VJCv = VJC*RTemp + VDfact 

  VJEv = VJE*RTemp + VDfact 

  VJSv = VJS*RTemp + VDfact 

  CJCv = CJC*(1 + MJC*(1 - VJCv/VJC + 4.0E-4*DTemp)) 

  CJEv = CJE*(1 + MJE*(1 - VJEv/VJE + 4.0E-4*DTemp)) 

  CJSv = CJS*(1 + MJS*(1 - VJSv/VJS + 4.0E-4*DTemp)) 

  MJCv = MJC . MJEv = MJE 

  MJSv = MJS 

  XCJCv = XCJC 

  GMINDCv = GMINDC 

  TFv = TF 

  TRv = TR 

{ Define nonlinear current source parameters } 

  VTNC = VT*NC 

  VTNE = VT*NE 

  BFv = BF*Rxtb 

  BRv = BR*Rxtb 

  ISCv = ISC*exp(facln/NC)/Rxtb 

  ISEv = ISE*exp(facin/NE)/Rxtb 

  VAFv = VAF 

  VARv = VAR 

  IKFv = IKF 

  IKRv = IKR 

end 
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APPENDIX C  

SPICE MODELS OF THE  

NPN INVERTER CIRCUIT 

 

This appendix contains the BBSPICE and pSpice models of the NPN SIMPLE Inverter 

Circuit. The BBSPICE model is as follows. 
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The pSpice model is as follows. 
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APPENDIX D 

DYMOLA FILES MODELING THE 

NPN INVERTER CIRCUIT 

 

{ File: npn.txt) 

 

NPN Inverter Circuit 

 

This problem contains the following files: 

 

  npn.txt    : This file of explanations 

  eicomp.dym : Dymola library file of electrical components 

  bjt.dym    : Dymola library file of BJT transistors 

  hpn.dym    : The NPN inverter circuit model description 

  npn.ctl    : Dymola experiment description (ACSL) 

  npn.dcm    : Dymola command file for this problem 

 

During execution of the dymola command file "npn.dcm" the 

following files are generated: 

 

  npn.sol : A history file of the dymola execution 

             to include a listing of the solved equations 

  npn.csl : The dymola generated ACSL program to simulate 

             the inverter model 
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{ File:  npn.dym 

 

  Logical inverter with NPNlateral transistor. 

  Author:  Daryl Hild  

  Date:    May 1993  

  Version: 1.2  

} 

model inverter 

 

  submodel (NPNlateral) Q1(AREA=1.0) 

  submodel (BJTpar) Q1par  ->  

 (ISC=0.0      ISE=0.0      -> 

  NC=1.0       NE=1.0       -> 

  BF=1.0E+30   BR=1.0E+30   -> 

  VAF=1.0E+30  VAR=1.0E+30  -> 

  IKR=1.0E+30  IKF=1.0E+30  -> 

  NR=1.0 IS=0.11E-9 TR=1E-12 VJC=0.64 CJC=3.6E-12  MJC=0.5 -> 

  NF=1.0            TF=1E-12 VJE=0.77 CJE=5.7E-12  MJE=0.5 -> 

  NS=1.0 ISS=0.11E-9         VJS=0.75 CJS=11.0E-12 MJS=0.5 -> 

  XCJC=1.0                                   -> 

  RB=1000.0 TRB1=0.005  TRB2=0.0005          -> 

  RBM=500.0 TRM1=0.005  TRM2=0.0005 IRB=0.0  -> 

  RC=750.0  TRC1=0.005  TRC2=0.0005          -> 

  RE=13.3   TRE1=0.005  TRE2=0.0005          -> 

  XTI=3.0 XTB=0.0 GMINDC=1.0E-12  TNOM=25.0  TEMP=25.0) 

  submodel (voltage) Ein Es1 Es2 

  submodel (resistor) Rin(R=5.6E+3) Rbias(R=10E+3) -> 

    Rload(R=1E+3)  

  submodel common 
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  input A Us1 Us2  

  output Y IC IB IE IS 

 

  { Set Q1 parameters } 

    connect Q1par at Q1:par 

 

  { Connect up circuit } 

    connect common - Ein - Rin -   -> 

      ( (Rbias - Es1) //  Q1..BE ) – common 

    connect common - Es2 - Rload - Q1..CE 

    connect Q1..BS – Rload 

 

  { Set inputs and outputs } 

    Es1.U0 = Us1 

    Es2.U0 = Us2 

    Ein.U0 = A 

    Y = Rload.Vb 

    IC = Q1.IC 

    IB = Q1.IB 

    IE = Q1.IE 

    IS = Q1.ISUB 

end 



 
 
 
  77 

{  File:  npn.ctl } 

 

cmodel 

 

  maxtime tmax=400.0E-9 

  cinterval cint=0.5E-10 

  input 3, A(depend,Ain), Us1(depend,Us1in), Us2(depend,Us2in) 

 

  INITIAL 

    algorithm ialg=5 

    nsteps nstp=1000 

    CONSTANT thigh=20.0E-9, tlow=200.0E-9 

    Ain=0.0 

    Us1in=6.0 

    Us2in=6.0 

    schedule high .at. thigh 

    schedule low .at. tlow 

  END 

 

  DISCRETE high 

    Ain=6.0  

  END 

  DISCRETE low 

    Ain=0.0 

  END 

 

end 



 
 
 
  78 

{ File: npn.dcm } 

set 

set LogCommands on 

outfile npn.sol 

 

{ DEFINE THE MODEL } 

enter model 

@elcomp.dym  

@bjt.dym 

@npn.dym 

 

{ PROCESS THE MODEL } 

differentiate 

variable state Q1::dbc.u 

variable state Q1::dbe.u 

variable state Q1::dbs.u 

variable value Q1::dbc.u=-8.1538 

variable value Q1::dbe.u=-2.1538 

variable value Q1::dbs.u=-8.1538 

partition 

set Statistics on 

output solved equations 

 

{ GENERATE AN ACSL MODEL FOR SIMULATION } 

set LogCommands off 

set ACSLold on 

language acsl 

enter experiment 

@npn.ctl 

outfile npn.csl 

output program 

outfile 
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APPENDIX E 

SIMULATION PLOTS OF THE 

NPN INVERTER CIRCUIT 

 

This appendix contains the simulation plots of the NPN Inverter Circuit.  The first set 

of plots, NPN SIMPLE, are based on the parameters given in the BBSpice and pSpice 

models found in Appendix C and the Dymola model of Appendix D.  For convenience, 

these parameter settings – for the NPN SIMPLE plot – are repeated below.  The remaining 

plots use the same parameters with deviations being noted in the plot title. 

 

The basic parameter settings are as follows. 
 

NPN 

AREA=1.0 

ISC=0.0       ISE=0.0 

NC=1.0        NE=1.0 

BF=1.0E+30    BR=1.0E+30 

VAF=1.0E+30   VAR=1.0E+30 

IKR=1.0E+30   IKF=1.0E+30 

NR=1.0   IS=0.11E-9   TR=1E-12 VJC=0.64 CJC=3.6E-12   MJC=0.5 

NF=1.0                TF=1E-12 VJE=0.77 CJE=5.7E-12   MJE=0.5 

NS=1.0   ISS=0.11E-9           VJS=0.75 CJS=11.0E-12  MJS=0.5 

XCJC=1.0 

RB=1000.0 TRB1=0.005   TRB2=0.0005 

RBM=500.0 TRM1=0.005   TRM2=0.0005 IRB=0.0 

RC=750.0  TRC1=0.005   TRC2=0.0005 

RE=13.3   TRE1=0.005   TRE2=0.0005 

XTI=3.0   XTB=0.0      GMINDC=1.0E-12  TNOM=25.0  TEMP=25.0 
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APPENDIX F 

SPICE MODELS OF THE PNP CIRCUIT 

 

This appendix contains the BBSPICE and pSpice models of the PNP SIMPLE Circuit. 

The BBSPICE model is as follows. 
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The pSpice model is as follows. 
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APPENDIX G  

DYMOLA FILES MODELING THE PNP CIRCUIT 

 

{ File: pnp.txt} 

PNP Circuit 

This problem contains the following files: 

 

  pnp.txt    : This file of explanations 

  elcomp.dym : Dymola library file of electrical components 

  bjt.dym    : Dymola library file of BJT transistors 

  pnp.dym    : The PNP circuit model description 

  pnp.ctl    : Dymola experiment description (ACSL) 

  pnp.dcm    : Dymola command file for this problem 

 

During execution of the dymola command file “pnp.dcm” the 

following files are generated: 

 

  pnp.sol : A history file of the dymola execution 

              to include a listing of the solved equations 

  pnp.csl : The dymola generated ACSL program to simulate 

              the circuit model 
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{ File: pnp.dym 

 

  Circuit with PNPvertical transistor. 

  Author:  Daryl Hild  

  Date:    May 1993 

  Version: 1.2 

} 

 

model circuit 

  submodel (PNPvertical) Q1(AREA=1.0)  

  submodel (BJTpar) Q1par -> 

 (ISC=0.0      ISE=0.0      -> 

  NC=1.0       NE=1.0       -> 

  BF=1.0E+30   BR=1.0E+30   -> 

  VAF=1.0E+30  VAR=1.0E+30  -> 

  IKR=1.0E+30  IKF=1.0E+30  -> 

  NR=1.0 IS=0.11E-9 TR=1E-12 VJC=0.64 CJC=3.6E-12  MJC=0.5 -> 

  NF=1.0            TF=1E-12 VJE=0.77 CJE=5.7E-12  MJE=0.5 -> 

  NS=1.0 ISS=0.11E-9         VJS=0.75 CJS=11.0E-12 MJS=0.5 -> 

  XCJC=1.0                                    -> 

  RB=1000.0  TRB1=0.005  TRB2=0.0005          -> 

  RBM=60.0   TRM1=0.005  TRM2=0.0005 IRB=0.0  -> 

  RC=450.0   TRC1=0.005  TRC2=0.0005          -> 

  RE=23.3    TRE1=0.005  TRE2=0.0005          -> 

  XTI=3.0 XTB=0.0 GMINDC=1.0E-12 TNOM=25.0 TEMP=25.0) 

 

  submodel (voltage) Ein Es1 Es2 

  submodel (resistor) Rin(R=5.6E+3)  Rbias(R=10E+3)  -> 

    Rload(R=4E+3) 

  submodel common 
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  input A Us1 Us2  

  output Y IC IB IE IS 

 

  { Set Q1 parameters } 

    connect Q1par at Q1:par  

  { Connect up the circuit } 

    connect common - Ein - Rin -   -> 

      ( (Rbias - Es1) // Q1..BC ) – common 

    connect common - Es2 - Rload - Q1..EC 

    connect Es2 - Q1..SB 

  { Set up inputs and outputs } 

    Es1.U0 = Us1 

    Es2.U0 = Us2 

    Ein.U0 = A 

    Y = Rload.Vb 

    IC = Q1.IC 

    IB = Q1.IB 

    IE = Q1.IE 

    IS = Q1.ISUB 

end  
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{  File:  pnp.ctl } 

 

cmodel 

 

  maxtime tmax=400.0E-9 

  cinterval cint=5.0E-11 

  input 3, A(depend,Ain), Us1(depend,Us1in), Us2(depend,Us2in) 

 

  INITIAL 

    algorithm ialg=5 

    nsteps nstp=1000 

    CONSTANT thigh=20.0E-9, tlow=200.0E-9 

    Ain=0.0 

    Us1in=6.0 

    Us2in=6.0 

    schedule high .at. thigh 

    schedule low .at. tlow 

  END 

 

  DISCRETE high 

    Ain=6.0 

  END 

  DISCRETE low 

    Ain=0.0 

  END 

end 
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{ File: pnp.dcm } 

set 

set LogCommands on 

outfile pnp.sol 

 

{ DEFINE THE MODEL } 

enter model 

@elcomp.dym  

@bjt.dym 

@pnp.dym 

 

{ PROCESS THE MODEL } 

differentiate 

variable state Q1::dbc.u 

variable state Q1::dbe.u 

variable state Q1::dbs.u 

variable value Q1::dbc.u=0.39 

variable value Q1::dbe.u=0.39 

variable value Q1::dbs.u=-5.65 

partition 

set Statistics on  

output solved equations 

 

{ GENERATE AN ACSL MODEL FOR SIMULATION } 

set LogCommands off 

set ACSLold on 

language acsl 

enter experiment 

@pnp.ctl 

outfile pnp.csl 

output program 

outfile 
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APPENDIX H 

SIMULATION PLOTS OF THE 

PNP CIRCUIT 

 

This appendix contains the simulation plots of the PNP Circuit.  The first set of plots, 

PNP SIMPLE, are based on the parameters given in the BBSpice and pSpice models 

found in Appendix F and the Dymola model of Appendix G.  For convenience, these 

parameter settings – for the PNP SIMPLE plot – are repeated below.  The remaining plots 

use the same parameters with deviations being noted in the plot title.  Note that in some 

of these plots only the Dymola and BBSPICE trajectories are depicted.  In these cases, 

pSPice was unable to process and simulate the model for that specific parameter set.  In 

particular, one can note that pSpice was unable to simulate the model when the two 

dependent current sources IC0 and IB0 were effectively turned off. 

The basic parameter settings are as follows. 
PNP 

AREA=1.0 

ISC=0.0      ISE=0.0 

NC=1.0       NE=1.0 

BF=1.0E+30   BR=1.0E+30 

VAF=1.0E+30  VAR=1.0E+30 

IKR=1.0E+30  IKF=1.0E+30 

NR=1.0   IS=0.11E-9 TR=1E-12 VJC=0.64 CJC=3.6E-12  MJC=0.5 

NF=1.0              TF=1E-12 VJE=0.77 CJE=5.7E-12  MJE=0.5 

NS-1.0   ISS=0.11E-9         VJS=0.75 CJS=11.0E-12 MJS=0.5 

XCJC=1.0 

RB=1000.0  TRB1=0.005 TRB2=0.0005 

RBM=60.0   TRM1=0.005 TRM2=0.0005 IRB=0.0 

RC=450.0   TRC1=0.005 TRC2=0.0005 

RE=23.3    TRE1=0.005 TRE2=0.0005 

XTI=3.0 XTB=0.0 GMINDC=1.0E-12 TNOM=25.0 TEMP=25.0 
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APPENDIX I 

SPICE MODELS OF THE 

OPAMP CIRCUIT 

 

This appendix contains the BBSPICE and pSpice models of the OPAMP Circuit.   

The BBSPICE model is as follows. 
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The pSpice model is as follows. 
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APPENDIX J 

DYMOLA FILES MODELING THE 

OPAMP CIRCUIT 

 

{ File: opamp.txt} 

 

OpAmp Circuit 

 

This problem contains the following files: 

 

  opamp.txt  : This file of explanations  

  elcomp.dym : Dymola library file of electrical components  

  bjt.dym    : Dymola library file of BJT transistors  

  opamp.dym  : The OpAmp circuit model description  

  opamp.ctl  : Dymola experiment description (ACSL) 

  opamp.dcm  : Dymola command file for this problem 

 

 

During execution of the dymola command file "opamp.dcm" the 

following files are generated: 

 

  opamp.sol : A history file of the dymola execution 

                to include a listing of the solved equations 

  opamp.csl : The dymola generated ACSL program to simulate 

                the OpAmp circuit model 
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{ File:  OpAmp.dym 

 

  Operational Amplifier 

  Author:    Daryl R. Hild  

  Date:      May 1993 Version:   1.0 

  Reference:  Francois Cellier:  "Continuous System Modeling" 

              Springer Verlag, 1991  } 

 

model type opamp 

  submodel (PNPvertical) Q1(AREA=2.0) Q2 Q3(AREA=4.0) -> 

    Q6 Q7 Q9 

  submodel (NPNvertical) Q4 Q5 Q8 Q10(AREA=2.0) Q11 Q12 

  submodel (BJTpar) -> 

    PNPpar(ISE=1.0E-9 IS=0.11E-9 ISS=0.11E-9 TR=1E-12 -> 

      TF=1E-12 CJC=3.6E-12 CJE=5.7E-12 CJS=11.0E-12 -> 

      RC=750.0 RE=123.3 RB=200.0 RBM=100.0 BR=0.1) -> 

    NPNpar(ISC=0.1E-6 IS=0.11E-9 ISS=0.11E-9 TR=1E-12 -> 

      TF=1E-12 CJC=3.6E-12 CJE=5.7E-12 CJS=11.0E-12 -> 

      RC=750.0 RE=123.3 RB=200.0 RBM=100.0 BR=0.1) 

  submodel (resistor) R1(R=350.0) 

  submodel (capacitor) C1(C=5.0E-12)  -> 

    C2(C=1.0E-12) C3(C=1.0E-12) C4(C=1.0E-12) 

 

  cut VIplus (Vviplus/Iviplus) 

  cut VIminus (Vviminus/Iviminus) 

  cut Vout (Vvout/-Ivout) 

  cut VCC (Vvcc/Ivcc) 

  cut VEE (Vvee/Ivee) 

  path Power <VCC - VEE> 

  path PlusInOut <VIplus - Vout> 

  path MinusInOut <VIminus - Vout> 

  node n1 n2 n3 n4 n5 n6 n7 n8 n9 n10 n11 n12 
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  { Set PNP and NPN parameters } 

    connect PNPpar at Q1:par at Q2:par at Q3:par -> 

      at Q6:par at Q7:par at Q9:par 

    connect NPNpar at Q4:par at Q5:par at Q8:par -> 

      at Q10:par at Q11:par at Q12:par 

  { Connect OpAmp circuit together } 

    connect -> 

      Q12 at ( n1,   n2,   n3,   n3) -> 

       Q5 at ( n4,   n4,   n5,   n3) -> 

       Q3 at ( n4,   n6,   n7,   n7) -> 

       Q1 at ( n6,   n6,   n7,   n7) -> 

       Q2 at ( n8,   n6,   n7,   n7) -> 

       Q4 at ( n7,   n4,   n9,   n3) -> 

       Q6 at ( n2,  n10,   n8,   n7) -> 

       Q7 at ( n1,  n11,   n8,   n7) -> 

       Q8 at ( n5,   n5,  n12,   n3) -> 

       Q9 at ( n3,  n12,   n9,   n7) -> 

      Q10 at (n12,   n1,   n3,   n3) -> 

      Q11 at ( n2,   n2,   n3,   n3) -> 

       C1 at ( n1,  n12) ->  

       R1 at ( n3,   n6) -> 

       C2 at ( n7,   n6) -> 

       C3 at ( n1,   n3) -> 

       C4 at ( n7,   n4) -> 

      VCC at n7  -> 

      VEE at n3  -> 

  VIminus at n10 –> 

   VIplus at n11 -> 

     Vout at n9 

end 
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model OpampCircuit 

  submodel opamp 

  submodel (voltage) Uin Vcc Vee  

  submodel (resistor) Rf(R=150.0E3) 

  submodel common 

 

  input A Us1 Us2  

  output n1 n2 n4 n5 n6 n8 n9 n12 

 

  connect common - Vcc - opamp..Power - Vee – common 

  connect common - opamp..PlusInOut 

  connect common - Uin - opamp..MinusInOut - Rf -   -> 

    opamp..MinusInOut 

 

  Vcc.U0 = Us1 

  Vee.U0 = Us2 

  Uin.U0 = A 

  n1 = opamp::Q7.VC 

  n2 = opamp::Q6.VC 

  n4 = opamp::Q3.VC 

  n5 = opamp::Q8.VC 

  n6 = opamp::Q1.VC 

  n8 = opamp::Q2.VC 

  n9 = opamp.Vvout 

  n12= opamp::Q9.VB 

end 
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{  File:  opamp.ctl } 

 

cmodel 

 

  maxtime tmax=400.0E-9 

  cinterval cint=5.0E-11 

  input 3, A(depend,Ain),      -> 

           Us1(depend,Us1in),  -> 

           Us2(depend, Us2in) 

 

  INITIAL 

    algorithm ialg=5 

    nsteps nstp=1000 

    CONSTANT thigh=270.0E-9, tlow=20.0E-9 

    Ain=2.0 

    Us1in=5.0 

    Us2in=5.0 

    schedule high .at. thigh 

    schedule low .at. tlow 

  END 

 

  DISCRETE high 

    Ain=2.0 

  END 

  DISCRETE low 

    Ain=-2.0 

  END 

 

end 
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{ File: opamp.dcm } 

set 

set LogCommands on 

outfile opamp.sol 

{ MODEL DEFINITION } 

enter model 

@elcomp.dym 

@bjt.dym 

@opamp.dym 

{ PROCESS THE MODEL } 

differentiate 

variable state opamp::C1.u 

variable state opamp::C2.u 

variable state opamp::C3.u 

variable state opamp::C4.u 

variable state opamp::Q1::dbc.u 

variable state opamp::Q1::dbe.u 

variable state opamp::Q1::dbs.u 

variable state opamp::Q2::dbc.u 

variable state opamp::Q2::dbe.u 

variable state opamp::Q2::dbs.u 

variable state opamp::Q3::dbc.u 

variable state opamp::Q3::dbe.u 

variable state opamp::Q3::dbs.u 

variable state opamp::Q4::dbc.u 

variable state opamp::Q4::dbe.u 

variable state opamp::Q4::dbs.u 

variable state opamp::Q5::dbc.u 

variable state opamp::Q5::dbe.u 

variable state opamp::Q5::dbs.u 

variable state opamp::Q6::dbc.u 

variable state opamp::Q6::dbe.u 

variable state opamp::Q6::dbs.u 

variable state opamp::Q7::dbc.u 
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variable state opamp::Q7::dbe.u 

variable state opamp::Q7::dbs.u 

variable state opamp::Q8::dbc.u 

variable state opamp::Q8::dbe.u 

variable state opamp::Q8::dbs.u 

variable state opamp::Q9::dbe.u 

variable state opamp::Q9::dbe.u 

variable state opamp::Q9::dbs.u 

variable state opamp::Q10::dbe.u 

variable state opamp::Q10::dbe.u 

variable state opamp::Q10::dbs.u 

variable state opamp::Q11::dbe.u 

variable state opamp::Q11::dbe.u 

variable state opamp::Q11::dbs.u 

variable state opamp::Q12::dbe.u 

variable state opamp::Q12::dbe.u 

variable state opamp::Q12::dbs.u 

variable value opamp::C1.u=-2.09338 

variable value opamp::C2.u=1.70094 

variable value opamp::C3.u=1.57716 

variable value opamp::C4.u=2.40042 

variable value opamp::Q1::dbc.u=0.379591 

variable value opamp::Q1::dbe.u=0.452165 

variable value opamp::Q1::dbs.u=-0.655184 

variable value opamp::Q2::dbc.u=0.368327 

variable value opamp::Q2::dbe.u=0.459308 

variable value opamp::Q2::dbs.u=-0.882448 

variable value opamp::Q3::dbc.u=0.376657 

variable value opamp::Q3::dbe.u=0.454543 

variable value opamp::Q3::dbs.u=-0.723755 

variable value opamp::Q4::dbc.u=0.378742 

variable value opamp::Q4::dbe.u=0.465322 

variable value opamp::Q4::dbs.u=-6.56189 

variable value opamp::Q5::dbc.u=0.384462 
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variable value opamp::Q5::dbe.u=0.457409 

variable value opamp::Q5::dbs.u=-6.40434 

variable value opamp::Q6::dbc.u=-6.82695 

variable value opamp::Q6::dbe.u=-1.00862 

variable value opamp::Q6::dbs.u=-9.82695 

variable value opamp::Q7::dbc.u=-0.439423 

variable value opamp::Q7::dbe.u=0.447386 

variable value opamp::Q7::dbs.u=-5.40937 

variable value opamp::Q8::dbc.u=0.384462 

variable value opamp::Q8::dbe.u=0.457409 

variable value opamp::Q8::dbs.u=-4.43982 

variable value opamp::Q9::dbc.u=0.364157 

variable value opamp::Q9::dbe.u=0.464419 

variable value opamp::Q9::dbs.u=-5.56911 

variable value opamp::Q10::dbc.u=0.36553 

variable value opamp::Q10::dbe.u=0.457387 

variable value opamp::Q10::dbs.u=-0.80985 

variable value opamp::Q11::dbc.u=6.9984E-5 

variable value opamp::Q11::dbe.u=0.173034 

variable value opamp::Q11::dbs.u=-0.172976 

variable value opamp::Q12::dbc.u=-1.40395 

variable value opamp::Q12::dbe.u=0.173054 

variable value opamp::Q12::dbs.u=-1.57701 

partition 

output solved equations 

{ GENERATE AN ACSL MODEL FOR SIMULATION } 

set LogCommands off 

set ACSLold on 

language acsl 

enter experiment 

@opamp.ctl 

outfile opamp.csl 

output program 

outfile 
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APPENDIX K  

SIMULATION PLOTS OF THE  

OPAMP CIRCUIT 

 

This appendix contains the simulation plots of the OPAMP Circuit.  The parameter 

settings for the NPN and PNP BJTs arc as follows. 
 

PNP   BF=100.0    BR=1.0      IS=0.11E-9   ISS=0.11E-9 

      NF=1.0      NR=1.0      NS=1.0       GMINDC=1.0E-12 

      ISC=0.0     ISE=1.0E-9  NC=2.0       NE=1.5 

      VAF=9E+30   VAR=9E+30   IKF=9E+30    IKR=9E+30 

      RB=200.0    RBM=100.0   RC=750.0     RE=123.3 

      CJC=3.6E-12 CJE=5.7E-12 CJS=11.0E-12 

      MJC=0.33    MJE=0.33    MJS=0.33 

      VJC=0.75    VJE=0.75    VJS=0.75 

      TF=1E-12    TR=1E-12    IRB=0.0      XCJC=1.0 

      TRB1=0.0    TRM1=0.0    TRC1=0.0     TRE1=0.0 

      TRB2=0.0    TRM2=0.0    TRC2=0.0     TRE2=0.0 

      TNOM=25.0   TEMP=25.0   XTI=3.0      XTB=0.0   EG=1.16 

 

NPN   BF=100.0    BR=1.0      IS=0.11E-9   ISS=0.11E-9 

      NF=1.0      NR=1.0      NS=1.0       GMINDC=1.0E-12 

      ISC=0.1E-6  ISE=0.0     NC=2.0       NE=1.5 

      VAF=9E+30   VAR=9E+30   IKF=9E+30    IKR=9E+30 

      RB=200.0    RBM=100.0   RC=750.0     RE=123.3 

      CJC=3.6E-12 CJE=5.7E-12 CJS=11.0E-12 

      MJC=0.33    MJE=0.33    MJS=0.33 

      VJC=0.75    VJE=0.75    VJS=0.75 

      TF=1E-12    TR=1E-12    IRB=0.0      XCJC=1.0 

      TRB1=0.0    TRM1=0.0    TRC1=0.0     TRE1=0.0 

      TRB2=0.0    TRM2=0.0    TRC2=0.0     TRE2=0.0 

      TNOM=25.0   TEMP=25.0   XTI=3.0      XTB=0.0   EG=1 
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