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ABSTRACT

An electrical circuit containing switch elements represents a variable structure

system� Ideal switch element can be described by a switch equation using a discrete

variable to specify the switch position� The causality of an ideal switch element can�

not be �xed� However non�ideal switches used to prevent the causality problem often

cause arti�cial sti�ness in the resulting di�erential equation model�

The idea for resolving the causality assignment problem was to modify Pantelides�

index reduction algorithm to a form suitable for conditional index changes� However�

a fairly simple counterexample shows that pure modi�cations of switch equations

cannot solve the causality problem�

However� the previous analysis resulted in a new idea� the use of implicit di�erence

formulae that are widely used in commercial DAE solvers� The new approach solves

the problems associated with index changes� Yet� the concept still has remaining

problems caused by the ideal nature of switches�
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PREFACE

The topic of this thesis is to �nd an algorithm� probably graph�theoretical� that

recognizes conditional index changes in a model and performs the necessary formulae

manipulations in extension of the Pantelides algorithm� The �rst part of this thesis is

concerned with graphical methods that were used� The second part uses these graphi�

cal methods to �nd restrictions for the parameter set used to describe the modi�cation

problem� These restrictions result in contradictions for two identi�ed possibilities of

seemingly promising solutions in a simple example� The analysis proves that there

cannot exist any solution to the problem using an extended Pantelides algorithm�

The idea for a di�erent approach was then borne� and the subsequent part of the

thesis shows how the problem can indeed be solved by using Di�erence Formulae�

Then follows the description of the complete solution for the simple example� as well

as a more complicated example containing six switches that is characterized by ��

possible switch combinations� This second example exhibits some cases where the

simulation still does not work� In the sequel these cases are examined to unveil the

reasons that explain the singularities�
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CHAPTER �

Introduction

��� The Problem Statement

Find an algorithm� probably graph�theoretical� that recognizes conditional index

changes in a model and performs the necessary formulae manipulation in extension

to the Pantelides ��� algorithm� Attacking this problem will start with a simple

example that cannot be solved by the usual Pantelides algorithm� Then� one can

�nd the modi�ed equations for the example shown in Fig� ���� and derive from

these equations underlying basic rules� Working with these basic rules� they can be

embodied in an extended algorithm for arbitrarily complex circuits�

��� Basic Concepts

This section describes brie�y basic concepts that are important to understand

the subsequent work� Model descriptions� equation systems� di�erential algebraic

equation systems� and switch equations are the four parts that are explained in

detail� The �rst part on model descriptions elaborates on the two most frequently

used model descriptions� the di�erential algebraic equation system and the ordinary
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di�erential equation system� Subsequently� general equation system concepts that

are necessary to understand algebraic loops are introduced� Di�erential algebraic

equation systems are the focus of the third part that includes the de�nition of the

DAE index� the explanation of the higher index problem� and the description of

the Pantelides algorithm� In the �nal part� switch equations are introduced and

explained� Finally� the conditional index changes resulting from switch equations are

introduced by means of an example�
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����� Model Descriptions

������� Di�erential Algebraic Equation Systems 
DAE�

In general� modeling of physical systems leads naturally to models described by

sets of di�erential algebraic equations� A Di�erential Algebraic Equation system

�DAE� is of the following general form	

� � h�x�
�x

�t
� y� p� t� � x�t�� � x� �����

where x is the vector of unknown variables that truly appear in di�erentiated form�

whereas y is the vector of purely algebraic unknown variables� p is a vector of

parameters contained in the model description� and t denotes time� Note that the

number of equations equals the sum of the unknown variables� i�e� dim�h� � dim�x��

dim�y��

If Equation ����� can be explicitly solved for y and y is independent of any derivative�

we can use the more specialized form	

� � f�x�
�x

�t
� p� t� � x�t�� � x� �����

y � g�x� p� t� �����

This form is characterized by a set of implicit purely di�erential equations and a

set of explicit purely algebraic equations� Note that this form is contained in the
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previous general form� and

h �

�
����
f�x� �x

�t
� p� t�

y � g�x� p� t�

�
���� �����

������� Ordinary Di�erential Equation Systems 
ODE�

Another frequently used model description is the state�space model� represented

by a set of ordinary di�erential equations� and a set of algebraic output equations� A

state�space model is described by an Ordinary Di�erential Equation System �ODE�	

�x � f�x� p� t� � x�t�� � x� �����

supplemented by the set of algebraic output equations	

y � g�x� p� t� �����

where x is the vector of state variables� y is the vector of output variables� p is a

vector of parameters contained in the model description� and t denotes time� Note

that both parts� the ODE system and the algebraic output system� are contained in

the state�space model� This frequently used model description is even more speci�c

than the specialized DAE description� The state�space description assumes that the

state variables are known� and calculates the derivatives using the set of assignments

given by f � The knowledge of the state variables makes the solution of the algebraic

output system trivial� as this results in a mere function evaluation� Thus� the output
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equation system is frequently neglected�

The number of equations in the ODE system equals the sum of unknown variables�

however this time� the derivatives of the state variables and not the state variables

themselves are considered to be unknown�

����� Equation System Concepts

������� Structure Incidence Matrix

The structure incidence matrix is used to describe the properties of an equation

system� The following example equation system	

f��x�� x�� � � �����

f��x�� � � ����

f��x�� x�� x�� � � �����

can be characterized by the structure incidence matrix	

S �

�
BBBBBBBB�

x� x� x�

f� � � �

f� � � �

f� � � �

	
CCCCCCCCA

������



��

Thereby an element in the ith row and kth column is either one� if the kth variable

forms part of the ith equation� or zero� if the kth variable does not show up in the ith

equation�

������� Algebraic Loop

The structure of an equation system is preserved if the order of the equations or

the order of the variables is changed� Multiplying the structure incidence matrix S

with a permutation matrix P from the left corresponds to rearranging the equation

sequence� whereas multiplying the structure incidence matrix S with a permutation

matrix Q from the right corresponds to rearranging the variable sequence�

�S � P � S �Q ������

The equivalent structure incidence matrix �S has the same properties as the original

structure incidence matrix S� The permutation matrices� P and Q� are determined

in such a way that they transform the matrix S into a lower block�triangular matrix

�S� This lower block�triangular form represents the easiest way to solve the equation

system� For the above example

P �

�
BBBBBBBB�

� � �

� � �

� � �

	
CCCCCCCCA

and Q �

�
BBBBBBBB�

� � �

� � �

� � �

	
CCCCCCCCA
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result in the lower triangular matrix

�S �

�
BBBBBBBB�

� � �

� � �

� � �

	
CCCCCCCCA

������

In this matrix �S the diagonal entries are blocks of size one� However� if the entries in

the matrix �S require diagonal block sizes greater than one� then the equation system

contains one or more algebraic loops� The number of algebraic loops is equivalent to

the number of diagonal blocks with a dimension greater than one�

For example	

f��x�� x�� x�� � � ������

f��x�� x�� x�� � � ������

f��x�� x�� x�� � � ������

is a completely coupled algebraic system that can be characterized by the structure

incidence matrix	

S �

�
BBBBBBBB�

x� x� x�

f� � � �

f� � � �

f� � � �

	
CCCCCCCCA

������

This structure incidence matrix is already in a lower block triangular form� and

permutation matrices cannot change the form of the structure incidence matrix� In
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Table ���	 Index of a DAE System
DAE index incidence matrix

S
linear nonlinear

� lower triangular can be converted into
ODE form

solvable by successive
Newton Iterations for
single variables

� block lower
triangular

contains algebraic
loops

solvable by successive
Newton Iterations for
several �indicated by
diagonal block size�
variables together

� or higher is singular contains one or more
depending storage
elements

contains one or more
depending storage
elements

this example� we have the extreme case of a single block that can be considered as

a diagonal block of dimension three� Consequently� the equation system has one

algebraic loop containing all three equations and all three variables�

����� Di�erential Algebraic Equation System Concepts

������� DAE Index

The index of a DAE system is a measure of the solvability of a DAE system

description by certain DAE solvers� and describes the di�culties involved in solving

the DAE system ����� The index of a DAE system is described concisely in the Table

����

In the linear case� an index � DAE system can be converted into ODE form� whereas
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in the nonlinear case� successive Newton Iterations for one variable result in values

for the derivatives that are then the input of an ODE solving integration algorithm�

The index � DAE system is in the linear case nothing more than a matrix equation

that can be solved in many ways� e�g� using Cramer�s rule for the inversion of the

matrix� A nonlinear index � DAE can be solved by successive Newton Iterations over

several simultaneous variables� Thus� the main di�erence to the index � DAE system

is the need for Newton Iterations over a vector of simultaneous variables� instead of

successive Newton Iterations over a single variable� A DAE system with an index of

two or higher is called a higher index problem� and is described by an example in the

next section�

������� Higher Index Problem

Fig� ��� represents a simple example of a higher index problem� The two capacitors

in parallel are two dependent storage elements� The voltage across the two capacitors

is always the same� and thus the amount of energy stored in the electric �eld is

characterized by a single variable� In such a simple example� one would probably

replace the two capacitors with one resulting capacitance� however in more complex

circuits� detecting dependent storage elements is a di�cult and error�prone task� Let

us take a look at the DAE description to get a feeling for the peculiarities that occur	

U� � �U� � cos��t� � f� � �
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Figure ���	 Higher Index Problem

UR �R � IR � f� � �

I� � C� �
�U�

�t
� f� � �

I� � C� �
�U�

�t
� f� � �

U� � UR � U� � f� � �

U� � U� � f� � �

IR � I� � I� � f� � �

Let us try to transform the set of equations to a set of explicit equations for an ODE

solver� In this case U� and U� are assumed known� and the structure incidence matrix



��

is thus	

S �

�
BBBBBBBBBBBBBBBBBBBBBBBBBBB�

U� UR IR I� I�
�U�
�t

�U�
�t

f� � � � � � � �

f� � � � � � � �

f� � � � � � � �

f� � � � � � � �

f� � � � � � � �

f� � � � � � � �

f� � � � � � � �

	
CCCCCCCCCCCCCCCCCCCCCCCCCCCA

������

Equation f� does not contain any unknowns� and thus the structure incidence matrix

S contains a zero row� This clearly indicates a singular structure incidence matrix and

points to the higher index problem� The structure incidence matrix indicates that

we have seven equations for seven unknowns� yet equation f� is completely useless�

Let us take a closer look at equation f�	

U� � U� � f� � � �����

f� is a function of time� and is equal to zero for all times� and therefore� also the

derivative �f�
�t

must be equal to zero for all times�

�U�

�t
�
�U�

�t
�

�f�

�t
� �f� � � ������
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If we substitute this modi�ed equation �f� for the previously used equation f�� we

obtain the structure incidence matrix	

�S �

�
BBBBBBBBBBBBBBBBBBBBBBBBBBB�

U� UR IR I� I�
�U�
�t

�U�
�t

f� � � � � � � �

f� � � � � � � �

f� � � � � � � �

f� � � � � � � �

f� � � � � � � �

�f� � � � � � � �

f� � � � � � � �

	
CCCCCCCCCCCCCCCCCCCCCCCCCCCA

������

The structure incidence matrix �S is non�singular� and the problem can now be con�

verted into ODE form�

In ODE simulation� the outputs of integrators are chosen as �state variables � This

notation is already used in the DAE description that should be converted into ODE

form� Whenever state variables appear in an algebraic equation� the model contains

dependent storage elements that result in a higher index problem� The Pantelides

Algorithm is used to determine� which equations need to be di�erentiated in order to

reduce the DAE index before the DAE system can be converted to an ODE descrip�

tion�
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������� The Pantelides Algorithm

The Pantelides Algorithm determines the equations that need to be di�erentiated

in order to remove algebraic couplings between �state variables� The algorithm does

the index reduction in steps� Each step reduces the index by one� and if after a step

there are still further algebraic couplings between state variables� another step is

necessary� However� the Pantelides algorithm does not work if the DAE description

itself can change the index depending on a discrete variable� Such model descriptions

are called Conditional Index Models� and this thesis is particularly concerned with

Conditional Index Changes caused by electrical switch elements�

��� Switch Elements

An electric switch element is a two�pin element� just like all of the traditional linear

passive circuit elements� Yet whereas resistors� capacitors� inductors� voltage sources�

and current sources are all modeled using a single equation� the switch element is

usually described by two separate equations� one for each of the two possible switch

positions� However it is possible to combine these two equations in a single conditional

statement� and consequently� the switch element can be represented by the equation

� � if OpenSwitch then I else U ������



��

OpenSwitch in this statement is a boolean variable with the two possible values true

and false� These values correspond to the opened and closed position� respectively�

For the purpose of an equation solver� this equation can be rewritten in a more useful

form	

� � OpenSwitch � I � ���OpenSwitch� � U ������

Here� OpenSwitch is a discrete variable with two possible values � and �� The value

� corresponds to the opened switch� and the value � represents the closed switch�

Thus� an electric switch element can be characterized by a single equation� contain�

ing the voltage u and the current i� just like all other linear passive circuit elements�

However� and contrary to the equations governing other circuit elements� the equa�

tion contains an additional discrete switch variable that describes the position of the

switch�

The equation is only of use if we can solve practical problems with it� Let us look

at an introductory example� as shown in Fig����� In this example circuit� the switch

element is placed in series with an inductor� The current through the inductor is a

natural state variable� thus the current I is known� and the switch equation must be

solved for U �

U �
OpenSwitch

�OpenSwitch� ��
� I ������
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Figure ���	 Switch�Inductor example circuit

Unfortunately� equation ������ is only valid as long as the switch is closed� As soon

as the switch opens� the expression in the denominator becomes zero� and the simu�

lation ends with a division by zero� Thus� one may ask oneself how useful the switch

equation ������ is� In this example� the result is understandable as the circuit be�

haves in a di�erent manner in reality than in the model description� The current

through an inductor cannot jump� and as a result� a light arc will be drawn� This

light arc represents a growing resistance until the arc breaks with a resulting in�nite

resistance value� This example illustrates a property that any switch element used

in a simulation model must adhere to� It can be concisely stated as follows	



��

The causality of a switch element must not be dictated by the surrounding

circuit� but must be merely a function of the independent discrete variable

OpenSwitch�

The meaning of the causality principle will be further explained in the second chapter�

This characteristic property of an independent switch element leads to the conclu�

sion that switch elements must always be contained in algebraic loops� and thus� the

discrete switch variable can assume either value regardless of the switch environment�

���

At this point it was not known� how this concept could be extended to more than

one switch element� However� it was clear that at least one algebraic loop is needed�

in which the switch equations are contained� to prevent the switch equations from

being solved for either variable� Rather� the whole system of equations constituting

the algebraic loop will be solved together�

The next example circuit� shown in Fig����� satis�es this requirement� This ex�

ample contains a diode� a speci�c switch element� The relationship between a switch

and a diode can be modeled in the object�oriented modeling language Dymola ��� as

follows	
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model class TwoPin

cut WireA�Va�I�� WireB�Vb��I�

main cut Wires �WireA�WireB�

main path P �WireA�WireB	

local U

U 
 Va � Vb

end



��

model class �TwoPin� Switch

terminal OpenSwitch

� 
 OpenSwitch � I  �� � OpenSwitch� � U

end

model class �Switch� Diode

new�OpenSwitch� 
 if ��not U	�� and �not I	��� then � else �

end

The �rst part of the code is the basic declaration of a TwoPin element� derived

from this class is a new class Switch� which in turn is the superclass of another derived

speci�c switch class Diode� In the same fashion� classes for voltage sources� current

sources� capacitors� inductors� and resistors can be derived from the TwoPin class

by inheritance� Similarly� classes for thyristors� samplers� and other speci�c switches

can inherit the properties of the Switch class� which itself inherits properties from the

TwoPin class�

This de�nition of an ideal diode is characterized by the diagram shown in Fig�����

The model for the circuit shown in Fig���� contains the following equations	

�U� � UC � UD � UR� � � ������



��

� U

�
I

�

OpenSwitch��

� OpenSwitch��

Figure ���	 Ideal Diode Characteristics

ID � IC � IR� � � ������

UR� � R� � ID � � ������

UC � R� � IR� � � ������

IC � C �
�UC

�t
� � �����

OpenSwitch � ID � ��� OpenSwitch� � UD � � ������

accompanied by the equations	

New�OpenSwitch�� If not�UD � �� and not�ID � �� then � else � � � ������

U� � �U� � sin��t� ������

���� � ���� describe a system of six equations for the six unknowns UD�
�UC
�t

� UR� �

ID� IC � and IR� with the parameters R�� R�� and C� The voltage UC across the



��

capacitor is a state variable� Its value is known from a simulation step� whereas the

derivative �UC
�t

is one of the unknowns� Equation ���� contains the information on

how to determine the new value of the discrete switch variable OpenSwitch after a

simulation step� whereas ���� determines how to calculate a new value for the input

voltage using additional parameters �U�� and �� The Di�erential Algebraic Equation

�DAE� system of six unknowns can be rewritten in matrix form	

�
BBBBBBBBBBBBBBBBBBBBBBB�

� � � � � �

� � � � �� ��

� � � �R� � �

� � � � R� �

� �C � � � �

��� OS� � � OS � �

	
CCCCCCCCCCCCCCCCCCCCCCCA


 �z �
A�

�

�
BBBBBBBBBBBBBBBBBBBBBBB�

UD

�UC
�t

UR�

ID

IR�

IC

	
CCCCCCCCCCCCCCCCCCCCCCCA

�

�
BBBBBBBBBBBBBBBBBBBBBBB�

U� � UC

�

�

UC

�

�

	
CCCCCCCCCCCCCCCCCCCCCCCA

������
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where OS has been introduced as an abbreviation for the hitherto used nameOpenSwitch

for the bene�t of a more compact notation�

detA� �



� � � � � �

� � � � �� ��

� � � �R� � �

� � � � R� �

� �C � � � �

���OS� � � OS � �



� ���OS� � CR�R�
 �z �
k�

�OS � CR�
 �z �
k�

������

Equation ���� veri�es that the DAE system is indeed non�singular for both OS �

OpenSwitch � � and OS � OpenSwitch � �� because the determinant assumes the

values k� and k�� respectively� in the two cases� Thus� we have an algebraic loop that

is always solvable� and the simulation of this sample circuit will work without any

problems�

However� in this example we missed one important aspect	 the conditional index

change� A conditional index change is characterized by a change in the index of the

DAE system� If one would describe the example circuit ��� by two separate models�

one for each of the two possible switch positions� the indices of the two DAE systems



��

would be � in both cases�

Let us look at a di�erent example in which the aspect of the conditional index

change comes to bear� Fig���� contains a diode to assure the proper modeling of the

circuit at switch instants� Contrary to Fig����� the switch in this model opens only if

the current passes through zero� Thus� the characteristic of the ideal diode prevents

the light arc� However� just as in the earlier example� the current through the inductor

is a natural state variable� and thus� the causality of the switch is predetermined by

the inductor� In reality� if the switch opens� there is no longer any inductor present�

because the inductor is no longer contained in any mesh� Yet� the model contains a

�rst order di�erential equation for the inductor� even if the inductor no longer plays

any part in determining the behavior of the circuit� Therefore� in this example� the in�

dex jumps from � to � when the discrete switch variable changes its value from � to ��

For the model of the circuit shown in Fig����� the necessary algebraic loop for the

switch element can be achieved quite easily by modifying the switch equation to

� � OpenSwitch �
�I

�t
� ��� OpenSwitch� � U ������

This equation uses the knowledge that� if a variable is zero for all times� the higher

derivatives of that variable must also be zero for all times� If all lower derivatives
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Figure ���	 Inductive load circuit

of the variable are properly initialized to zero� the modi�ed equation expresses the

same condition as the original switch equation� Another view of this modi�cation

is that the di�erentiation introduces auxiliary state variables in the switch element

that equalize the DAE Index of the modeled system for all switch positions�

The model for the circuit shown in Fig���� contains the following equations	

U� � URi � UD � UL � � ������

URi �Ri � IL � � ������

OpenSwitch �
�iL

�t
� ���OpenSwitch� � UD � � ������
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UL � L �
�iL

�t
� � �����

accompanied by the equations	

New�OpenSwitch�� If not�UD � �� and not�IL � �� then � else � � � ������

U� � �U� � sin��t� ������

The identity iRi � iD � IL was used to substitute iRi � and iD� The Di�erential

Algebraic Equation �DAE� system of four unknowns can be rewritten in matrix form	

�
BBBBBBBBBBBBB�

� � � �

� � � �

� ��� OS� � OS

� � � �L

	
CCCCCCCCCCCCCA


 �z �
A�

�

�
BBBBBBBBBBBBB�

URi

UD

UL

�iL
�t

	
CCCCCCCCCCCCCA

�

�
BBBBBBBBBBBBB�

U�

Ri � iL

�

�

	
CCCCCCCCCCCCCA

������

where OS is again the abbreviation for the previously used name OpenSwitch for the

bene�t of a more compact notation�

detA� �



� � � �

� � � �

� ��� OS� � OS

� � � �L



� ���OS� � �L
�z�
k�

�OS � ����
 �z �
k�

������

Equation ���� veri�es that the conditional index system with the modi�ed switch

equation is indeed non�singular for bothOS � OpenSwitch � � andOS � OpenSwitch �



�

�� because the determinant assumes the values k� and k�� respectively� in the two

cases� Thus the modi�cation of the switch equation created an algebraic loop that is

always solvable� and the simulation of this circuit will proceed correctly without any

problems�

In this simple circuit� the necessary modi�cation was easy to �nd� and in the dual

case of a capacitor in parallel with a diode� the modi�cation can be found just as

easily� That is� the voltage term U is replaced by its �rst�order derivative and the

current term I stays the same as in the original switch equation�

This leads to the basic task to be performed	

Replace the general switch equation ������ by the modi�ed switch equa	

tion ���
��� and determine especially the constants n� and n� specifying

the number of di�erentiations needed for each of the branches of the if

statement� Add the necessary equations for the proper initialization�

� � OpenSwitch �
�n�I

�tn�
� ���OpenSwitch� �

�n�U

�tn�
������



��

The modi�ed switch equation is accompanied by n� � n� initial conditions to assure

the same behavior as the original switch equation� In Dymola� the initialization pro�

cess at switch time points is expressed in the following code that is only executed

when the expression in the when statement becomes true�

when OpenSwitch then

init�I�

init�Id�

init�Id��

� � �

init�Id�n�����

endwhen

when �� � OpenSwitch� then

init�U�

init�Ud�

init�Ud��

� � �

init�Ud�n�����
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endwhen

To �nd an algorithm to perform such modi�cations for each switch element in an

arbitrarily complex circuit in a deterministic way was the task that should be tackled

in this thesis�

Note that we want to use ideal switch elements� Our conditional index problem

could be solved by non�ideal switch elements� In non�ideal switch elements� the

switch is replaced by a small but non�vanishing resistance in the closed case and

by a small yet non�zero conductance in the open case� Using such switch elements

allows to simulate conditional index systems� However� the simulation with non�ideal

switch elements has a signi�cant disadvantage� Whenever the ideal switch equation

would result in a zero denominator� the non�ideal switch equation will have a very

small denominator� leading to arti�cial sti� system behavior� This behavior causes

increasing simulation times and thus increased simulation cost�



��

CHAPTER �

Graphical Tools and Representations Used Throughout This

Thesis

In this chapter� the graphical methods that are being used in later chapters are

described and explained by means of simple examples� The meanings of important

concepts related to this thesis are brie�y described� For further details� the reader is

referred to the quoted references�

The chapter consists of two parts� bond graphs and dependence graphs� The �rst

part introduces bond graphs and continues with the bond graph causality concept�

The bond graph methodology o�ers an excellent tool for visualizing the problems

associated with conditional index changes� The second part is concerned with depen�

dence graphs and introduces several modi�cations that are useful in the subsequent

work� The modi�ed dependence graphs are used to �nd requirements for algebraic

loops� The algebraic loops should contain the switch equations and thus prevent the

problem of singular denominators�
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Figure ���	 A bond

��� Graphical Modeling Tools

����� Bond Graphs

������� Bond Graph Modeling

This is a short introduction to the technique of Bond Graph Modeling� For a

complete understanding� the corresponding literature should be reviewed� A more

detailed description of the technique can be found in ����

A bond� represented by a harpoon� is a graphical way of representing equations�

Two variables are associated with each bond� an across variable� in bond graph ter�

minology usually referred to as the e�ort e� and a through variable� called the ow f�

A bond is shown in Fig�����
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A bond graph� contrary to many other graphical representations� does not sep�

arate the two types of variables from each other� Hence a bond graph preserves

the topological structure of the model ���� A further advantage of bond graphs is

their ability of being used for di�erent application domains� such as electric circuits�

translational kinetics� rotational kinetics� hydraulic systems� chemical kinetics� and

thermodynamics ���� Bonds connect either to model elements or to other bonds in a

junction� There are two di�erent junction types� shown in Fig�����
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For linear circuit theory� the ��junction represents a node� and the ��junction

represents a mesh� In a ��junction� all e�ort variables are set equal whereas all �ow

variables add up to zero� corresponding to Kirchho��s current law� In a ��junction�

all e�ort variables add up to zero whereas all �ow variables are set equal� re�ect�

ing Kirchho��s voltage law� At least three bonds are needed to form a true junction�

since two�bond junctions can be eliminated by amalgamating the two bonds into one�

This follows from the fact� that in the case of only two bonds� the junction equations

result in two identities� Neighboring junctions of the same gender can be combined

into a single junction� Hence a bond connects either two junctions of di�erent gender

or a junction with a model element�

The two�pin elements of the previous chapter are� in bond graph terminology�

called oneport elements� The bondgraphic oneport elements are shown in Fig�����

Of course� in the case of electrical circuits� the e�ort variable corresponds to the

voltage across the two�pin element whereas the �ow variable maps into the current

�owing through the two pins� The switch element is a general switch element that

can be modi�ed to become a special switch� e�g� an ideal diode� by specializing the

functionality that de�nes the discrete terminal variable OS��
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Figure ���	 Bond Elements for Circuit Theory
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Figure ���	 Bond Graph Inductive Load

The bond graph representation for the last example of the introduction� ���� is

shown in Fig�����

������� Bond Graph Causality

The computational structure behind a bond graph can be easily represented using

causality strokes� Each bond is involved in two equations� one to determine its e�ort

variable e� the other to determine its �ow variable f� The causality can be indicated

by a short stroke perpendicular to the bond� The stroke is placed at one side of the
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Figure ���	 Resistor Causalities

bond� There it marks the side of the bond� at which the �ow variable is determined ����

For a resistor R� both causalities are meaningful since the element equation

er � R � fr can be solved for either the e�ort variable er or the �ow variable fr�

In Fig�����a�� the �ow variable is determined at the resistor element� and the resistor

equation is solved for fr� In contrast� in Fig�����b�� the e�ort variable is determined

at the resistor� and the equation is solved for er� The second variable� er in Fig�����a�

and fr in Fig�����b�� is determined at the node to which the element is connected�

However for both types of source elements� the capacitor element� and the inductor

element the causality is �xed� In the case of sources� the causality is physically

determined through the source type� For the capacitor and inductor� the causality
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is given by a computational requirement� In these two elements� one of the variables

is a state variable� and to determine the value of a state variable in a simulation�

the derivative of that state variable needs to be calculated� The mandated causality

strokes for these element types are shown in Fig�����

Also junctions have requirements since only one �ow variable can be determined

at any ��junction whereas only one e�ort variable can be determined at any ��

junction� Thus at a ��junction� only one causality stroke can be present� whereas at
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a ��junction� only one missing stroke is allowed� These requirements are shown in

Fig�����

The process of assigning causality strokes results in the conclusions shown in Table

����

As already mentioned in the introduction� an algebraic loop is necessary for an

independent switch element� It must be possible to open and close the switch in�

dependently from the circuit in which it is embedded� Therefore� a switch element
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Table ���	 Conclusions Causality Strokes Assignment
causality requirements system is called causes and implications

can be satis�ed causal computational structure uniquely
determined

cannot be satis�ed non�causal if not satis�ed at a source �e�g�
two parallel voltage sources with
di�erent voltages�

degenerate if not satis�ed at an I or C
element� structural singularity�
higher index DAE

are insu�cient having an alge�
braic loop

there is a free choice in the com�
putational structure

cannot have a �xed requirement for its causality stroke� Its causality must be deter�

mined by the process of opening or closing the switch� as re�ected in the value of the

discrete variable OpenSwitch� Whenever a switch is forced to assume a �xed causal�

ity� this will invariably result in a crash of the simulation as soon as the OpenSwitch

variable changes its value� This led to the conclusion that a switch element can only

operate properly if contained in an algebraic loop�

Now we have another interpretation� from the point of view of the bond graph

causality� of what goes wrong with the inductive load circuit shown in Fig����� In

this example circuit� the diode is used as a specialized switch element� To satisfy

the causality requirement of a ��junction� the causality of the switch element is

predetermined� and therefore� the switch can only be simulated in the externally
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Figure ��	 Bond Graph with Causality

enforced position� The bond graph containing the causality strokes for the inductive

load circuit is shown in Fig����

��� Graphical Methods to Represent Algebraic Structures

So far we have seen that we need an algebraic structure to include a properly

working switch element� In this subsection� several possibilities for visualizing alge�

braic structures are described� The modi�ed dependence graphs are extensively used

throughout the later chapters�
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����� Bipartite Graphs

Bipartite Graphs ��� are a good way to visualize the dependences between a set

of variables and a set of equations� First� it must be noted that only the dependence

and not the functional relationship is shown in such a graph� It is thus a good tool for

general equations� but does not include any speci�cations about the functions� The

dependence among variables in a generic equation such as f�x�� x�� x�� � � can be

visualized in a bipartite graph� and the equation can be regenerated from that graph�

The dependence of variables in a speci�c equation such as sin�x�� � log�x�� � x�

can also be represented in a bipartite graph� but the equation can no longer be re�

generated from that graph� Hence the graph is only useful for showing dependences

among variables in equations� and not quantitatively speci�ed functionalities� as e�g�

in a signal �ow graph�

Let us look at an example	

f��x�� x�� x�� � � �����

f��x�� x�� � � �����

f��x�� x�� � � �����

The system ��������� can be visualized through a bipartite graph� On the left side�

the set of equations is being listed as leaves� whereas on the right side� the union set
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Figure ���	 Bipartite Graph

of all variables is listed element by element as leaves� Branches connect the two sets

of vertices to visualize the dependences among the variables in the equations� The

bipartite graph is shown in Fig�����

While this visualization is reversible� it is di�cult to see the algebraic loop behind

this bipartite graph� Indeed� the variable x� can be determined from equation �����

or ������ but only with knowledge of x� and x�� or x� respectively� The variable x�

itself can be determined from either of the three equations� but only with knowledge

of x� and x�� x�� or x� depending on the equation used� Finally� x� can be calculated

from either equation ����� or ����� with knowledge of x� and x�� or x�� Thus� none

of the variables can be calculated independently without knowing already at least

one of the others� which clearly indicates an algebraic loop� The awkwardness of this
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graph for more complex systems leads to the need for an alternative representation�

as provided in the dependence graphs� These are described in the next section�

����� Dependence Graphs

A dependence graph has only one set of elements as leaves� and is therefore less

complex than a bipartite graph� However there is no unique way of determining a

dependence graph from any set of equations� A computational order has to be de�

termined that is shown in the dependence graph in the form of arrows� In Fig� �����

square brackets are used to denote the computational structure� Each equation is

solved for the variable marked by square brackets� Hence each equation must contain

exactly one set of square brackets� and each loop variable must be marked in exactly

one equation� The computational structure indicated in the functions of Fig� ����
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shows that x� is evaluated from equation f�� x� is determined using equation f�� and

x� is calculated using equation f�� The variables x� and x� are needed to evaluate

x� from equation f�� and these dependences are indicated by two arrows pointing

from the leaves representing the variables x� and x� to the leaf showing variable x��

An arrow from x� to x� indicates that knowledge of x� is necessary to determine x�

using equation f�� In the same way� an arrow from x� to x� indicates that knowledge

of x� is needed to compute x� through use of equation f�� Algebraic structures are

recognizable as loops formed by the arrows�

As there exists freedom in the assignment of the computational structure in an

algebraically coupled equation system� the dependence graph is not unique� and even

the resulting algebraic structures are not invariant to the selection of the computa�

tional order� However� once the computational order has been chosen� the resulting

algebraic loops can be seen easily from the dependence graph�

����� Modied Dependence Graphs

For the purpose of this thesis� the need to predetermine the computational struc�

ture of an algebraically coupled equation system is not optimal� A slight modi��

cation makes it possible to abstract the dependence graph a little further� It is



��

��
��
x� ��

��
x� ��

��
x�

��
��
x� ��

��
x�

��
��
x� ��

��
x�

f�	

f�	

f�	

�������������
������������

��

��
��
x�

��� ���

��
��
x�

���

��� ��
��
x�
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always possible to eliminate the arrows� making the connections between the vari�

ables bi�directional� if the equation number is added to each connection� The so

modi�ed dependence graph contains less information than the original one� because

the chosen computational structure can no longer be reconstructed from it� However�

the modi�ed dependence graph is also more general� because it is possible to draw

modi�ed dependence graphs that do not correspond to any possible computational

structure� i�e�� there exists even more freedom in drawing the modi�ed dependence

graph� Yet� the modi�ed dependence graph is better suited for the task at hand�

Fig����� shows one possible version of a modi�ed dependence graph for the same

example� On the left side� the equations are depicted together with the variables that
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they contain� The right side provides the same information in a more compact form�

There is no need to draw a connection between variables x� and x�� because these

two variables are already connected indirectly through variable x� by means of two

connections carrying the same equation number�

����� Modied Dependence Graphs for Time Derivatives

However� we still need one more abstraction level� Since we are dealing with DAE

systems and the Pantelides algorithm� we encounter many equations in di�erentiated

form� It may even happen that the same equation needs to be di�erentiated sev�

eral times� As an example� we may consider that it was necessary to di�erentiate

equation f� three times� It would be possible to represent the di�erentiated equation

f� as shown in Fig������a� using the previously introduced notation� However� this

would lead to overloaded �gures that are hard to decipher� Therefore� an alternative

representation was chosen as shown in Fig������b�� This for derivatives once more

modi�ed dependence graph concentrates the information contained in the graph� and

thus simpli�es it�

This �nal notation may seem quite cryptic and abstract at �rst� but it increases

the readability of the graphs used later� It is therefore the preferred representation

chosen in subsequent chapters of this thesis�
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CHAPTER �

First Unsuccessful Attempts at Solving the Problem

��� The Example Circuit

The example circuit was introduced in the introduction and is shown once more

in Fig� ��� with the variable names used in the sequel� The circuit� which consists of

two diodes� one inductor� one capacitor� and one resistor� contains a structure that

makes the modi�cations of the switch equations di�cult� While the modi�cations

necessary to deal with an inductor in series with a diode or a capacitor in parallel

with a diode were found quite easily� it is not at all trivial to �nd the modi�cations

necessary to deal with this sample circuit� Somehow the diode D� causes problems

that defy attempts at �nding a successful modi�cation for the switch equation� If

the diode was to the left of the node� as shown in Fig� ���� the known modi�cations

would work� In the con�guration of Fig� ���� the switch equation for diode D� is

modi�ed to Equ� ��� whereas the switch equation for diode D� is modi�ed to Equ�

���� These two modi�cations create the necessary algebraic loops as desired� In both

switches� the diode characteristic is needed to assure proper modeling� The second
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switch should only be opened if the current is �� whereas the �rst switch should only

be closed if the voltage is ��
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Figure ���	 Detailed example circuit

However� in the case of the example circuit shown in Fig� ���� the required modi�

�cations don�t follow such a simple pattern� Let us take di�erent views of the model

structure to gain a better understanding of the peculiarities of this example�
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����� Bond Graph Causalities for the Example Circuit

There are two possibilities for assigning causality strokes to the bond graph for

this example circuit� The two possibilities are shown in Fig� ��� and Fig� ���� The

presence of more than one possibility for assigning the causality strokes leads to the

conclusion that there must exist an algebraic loop� Yet� if we feed the model to

a simulator� the simulation won�t work� The explanation is simple� The algebraic

loop contains both switches� Once the position of one switch is speci�ed� the second

switch position is dictated by the �rst one� Another aspect is that we have only two

possibilities of assigning causality strokes� yet we have four possible switch positions�



��

����u��t�SE

��

R 	 R�

��

��
I 	 L�

�

��

Sw 	 D�

�� �

��

Sw 	 D�

�� C 	 C�

Figure ���	 Bond Graph Causality �a� for Example �

In the physical circuit� this can be described as follows�

Let us consider two separate models that represent either switch D� closed� rep�

resented in the model by a short circuit� or switch D� opened� represented in the

model by removing the switch element� In the �rst case� the second switch D� must

be opened� as otherwise� the voltage across the parallel capacitor would be forced to

zero at once irrespective of its former value� In the second case� the second switch

D� must be closed� as otherwise� the current through the inductor would be forced

to zero at once irrespective of its former value�
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����� DAE Indices for the Example Circuit

Table ��� describes the four di�erent combinations of possible switch positions and

their associated DAE indices� The equation order in all four cases is two� because the

system of equations contains two �rst order derivatives representing the two storage

Table ���	 DAE Indices for Example Circuit
case OS� OS� Order�Equ� Order�Phy� DAE index
� � � � � �
� � � � � �
� � � � � �
� � � � � �
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elements� the inductor and the capacitor� The physical order describes how many

storage elements are currently in use� depending on the switch positions� Only in

case �� when switch � is open and switch � is closed� is the physical order also two� In

case � the two closed switches short out the capacitor� and thus the capacitor is taken

out of the circuit� In case �� where switch � is closed and switch � is opened� the

capacitor is not properly connected� In case �� both switches are open� no current

�ows at all� and the physical order of the system is thus zero� These di�erences

between the equation order and the physical order results in a higher index problem�

In the third case� no algebraic loop is present� and the index is zero�

��� The Task to be Accomplished

The example circuit contains two diodes� and thus the model has two switch

equations� The task that needs to be addressed is the following� Determine the four

integer parameters n�� n�� n�� and n� in the switch equations� ����� and ������

� � OS� �
�n�I

�tn�
� ���OS�� �

�n�U

�tn�
�����

� � OS� �
�n�I

�tn�
� ���OS�� �

�n�U

�tn�
�����
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such that the two modi�ed switch equations show up in two separate� independent

algebraic loops� Unfortunately for the example circuit at hand� these parameters

cannot be determined in an easy way� So far� no rules have been derived that would

allow us to determine the smallest possible values for the four unknown parameters�

��� An Inductive Approach

Since the example model description contains only two switch equations and the

DAE index changes in the range from zero to two depending on the four possible

switch positions� the �rst approach was an inductive trial and error method� In each

step� values were chosen for the four parameters n� to n�� and the equations were

modi�ed accordingly� Then the corresponding determinant of the resulting equation

system was determined using Dymola� It was subsequently inspected for singularities�

From the knowledge of the singular cases for the given parameter values� a new set of

hopefully better suited parameter values was chosen� and the process was repeated�

Unfortunately� no progress was made in this manner� Each chosen parameter set

resulted in a singularity in at least one of the four cases�

��� The Permutation Approach

As the solution could not be found through trial and error� a more structured

approach was called for� The process of selecting the parameter vector was made
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more systematic� First� all permutations up to order one� which result in n�� n�� n��

n� � f�� �g� i�e�� �� � �� possibilities� were examined� Thereafter all permutations

up to order two� resulting in n�� n�� n�� n� � f�� �� �g� i�e�� �
� � � possibilities� were

investigated� Of course� these � possibilities include only �� new possibilities as well

as the �� previously investigated possibilities� Unfortunately� this approach did not

improve the result at all� The simulation would still only work in a maximum of three

out of the four cases� However� through examining the dependence graphs associated

with these possibilities� an important �rst result was achieved� If the two switches

showed up in a single algebraic loop� the description always contained a singularity in

two cases� If only one switch equation was contained in an algebraic loop� there was

only a singularity in one case� This led to the following extension of the requirements

for the switch equation	

Choosing the position of a switch must not determine variables that are

part of the algebraic system in which another switch equation is contained�

This concludes that a system of equations containing n switches needs at least n

independent algebraic loops� each containing a single switch equation� These loops

can only be interconnected in such a manner that the connecting leaves cannot be

determined prior to the calculation of the loop variables using the matrix solver�
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This concept is physically intuitive� as replacing a switch in a model with either an

open or a short circuit� should not in�uence the remaining circuit at all� Replacing

a switch corresponds to �xing the value of one discrete switch variable� which should

not determine any other switch variables� The switch variables are expected to be

independent of each other�

��� The Direct Approach

After all the trials of the permutation approach� including some really promising

ones� had failed� a search was initiated to �nd a method to examine what was going

wrong in all the previous attempts at modifying the switch equations� In this search

for the right tool to examine the modi�cation problem� the dependence graphs ap�

peared to be the most useful tool� Several dependence graphs were examined in full

detail� This was quite cumbersome� since it involved several sets of the equations�

These sets included the equations from zeroth up to the highest di�erential order

included in a modi�cation of the switch equation� For example in the case of n� � ��

n� � �� n� � �� and n� � �� which was thought to be close to the solution� Five sets

of equations were involved including the zeroth� �rst� second� third� and fourth order

derivatives� and thus� already � � � � � � �� equations� This case was thought to be

promising� because it should create one loop containing the diode D� and the induc�

tor L�� and a second loop containing the diode D� together with the capacitor C��
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However� neither this nor any other parameter sets created the necessary algebraic

loops to guarantee the independence of the discrete switch variables� Yet� examining

this case in full detail resulted in a starting point for formulating necessary conditions

for the four unknowns n�� n�� n�� and n�� The two expected loops were not created

because of two facts	

� Variables of one proposed loop� or lower order derivatives of variables contained

in the proposed loop� had connections to variables forming the second proposed

loop� Thus� solving the �rst algebraic loop resulted in the knowledge of elements

of the second loop through the connecting equations� thereby destroying the

second algebraic loop�

� Loops were not even created� because a used equation contained a surplus

undetermined variable that was not part of the algebraic loop� Hence� the

algebraic system was not completely determined�

The conditions were developed to prevent exactly these two ways of destroying the

algebraic loops for each switch element using the modi�ed dependence graph� The

necessary dependence graphs were constructed using the bond graph notation� As a

reminder� the detailed bond graph for the example circuit is shown in Fig� ����

From this bond graph� we can easily determine the following set of equations�

where the same variables as in Fig� ��� show up� The only additional variable is the
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potential U� of the node connecting the two diodes and the inductor� The identity

iR� � iL� is already used to replace iR� in the set of equations� The identities in

equations f� and f�� were kept in that form� because they contain variables also

contained in the switch equations� OS� and OS� in equations f� and f	 are the

abbreviated discrete switch variables that determine the positions of the switches�

These positions are determined through equations f� and f�� using the result of an

earlier integration step or an initial condition� The operator� New
��� expresses the

di�erence in time instants� and the complete equations f� and f�� are representing

the diode characteristic� This equation system is shown in the modi�ed dependence
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graph notation in Fig� ���

U� � u��t� � f� � �

UR� �R� � iL� � f� � �

�UL� � L� �
�iL�
�t

� f� � �

U� � UR� � U� � UL� � f� � �

U� � US� � f� � �

OS� �
�n� iS�
�tn�

� ��� OS�� �
�n�US�

�tn�
� f� � �

if �not�US� � �� and not �iS� � ��� then � else ��New�OS�� � f� � �

iL� � iS� � iC� � f
 � �

OS� �
�n� iS�
�tn�

� ��� OS�� �
�n�US�

�tn�
� f	 � �

if �not�US� � �� and not �iS� � ��� then � else ��New�OS�� � f�� � �

�iC� � C� �
�UC�

�t
� f�� � �

iC� � iS� � f�� � �

U� � US� � UC� � f�� � �

Fig� ��� is composed of three parts� a switch part at the bottom� a switch part at

the top� and a general equations part in the middle section� Both the bottom and

top parts consist of a switch equation and an equation to express the diode charac�

teristic� The dashed line crossing the arrow represents the extraordinary character
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of the equations f� and f��� These equations determine values for the discrete switch

variable� But these resulting values for OS� and OS� are time delayed by theNew
��

operator� In a simulation run� the values of the switch variables for the current sim�

ulation step are calculated from previous simulation results� or an initial value� The

two switch equations� f� and f	� contain the unknown parameters n�� n�� n�� and

n�� and have thus the needed degrees of freedom to solve the equation modi�cation

problem�

The middle part contains all equations except for the two switch equations and the

two diode equations� This part forms the equation set of di�erentiable equations� The

equations in this set may be di�erentiated as needed in order to create the desired in�

dependent algebraic loops� Only the highest derivatives of the di�erentiated variables

are algebraic variables� All lower derivatives of these variables� as well as the origi�

nal undi�erentiated variables are added state variables that are created through the

equation modi�cation process� and that therefore need to be appropriately initialized�

The Pantelides algorithm deals with the equations in a special way� Whenever a

variable is di�erentiated in an equation and lower derivatives of this same variable

are contained in other equations� all of these equations are di�erentiated as well� until

the occurrences of this variable in all equations are of the same derivative order� This
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process of di�erentiating equations is iterative� as any new di�erentiation can gen�

erate yet higher derivatives that themselves cause other equations to be once more

di�erentiated�

In the modi�cation task� the only requirement for the four parameters� n�� n��

n�� and n�� is to form two separate loops� each containing a single switch element�

The only variables of the middle part of the dependence graph in Fig� ��� that are

present in more than one di�erential order� and that are therefore potentially ca�

pable of creating new connections in the dependence graph as a consequence of the

di�erentiation process� are UC and iL� Both of these variables are contained literally�

i�e�� in zeroth derivative order� and as �rst order derivatives� These variables are the

only possibilities whereby additional branches can be generated in the dependence

graph� These branches of the highest orders of the switch equation are needed to

form di�erent algebraic loops�

Fig� ��� displays the behavior that had previously been examined in the bond

graph causality notation� With zero order derivatives� equivalent to n� � n� � n� �

n� � �� the switch equations in the bottom and top part of the dependence graph

have been connected to the middle part� In this graph� we see indeed an algebraic

loop� as we concluded earlier� but instead of forming two independent loops� one for



��

	

��
New
�OS��

	

��
US� 	


��
OS� 	


��
iS�

	

��

t 	

��
UC� 	


��
dUC�
dt

	

��
U� 	


��
U� 	


��
UR� 	


��
iL� 	


��
iC�

	

��
UL� 	


��
diL�
dt

	

��
US� 	


��
OS� 	


��
iS�

	

��
New
�OS��

��	� ��	�

��� ���

�

���

	
	
	
	
	
	
	
	
	
	
	
	
	
	

����

�
�
�
�
�
�
�

����

��� ���

A
A
A
A
A
A
A

���

C
C
C
C
C
C
C
C
C
C
C
C
C
C

�
�

���

���

C
C
C
C
C
C
C
C
C
C
C
C
C
C

����

A
A
A
A
A
A
A

����

���

	
	
	
	
	
	
	
	
	
	
	
	
	
	

���

��� ���

�

��� ���

Figure ���	 Dependence Graph for n� � n� � n� � n� � �



��

each switch element� both switch equations are contained in a single loop in the shape

of the number eight� This leads us to the same result� namely that� in the case of the

unmodi�ed switch equations� only one discrete switch variable can assume a value

independently�

����� The Two Basic Possibilities

As stated in the previous section� new branches and loops can only be formed

through the variables UC and iL� Each so�formed loop should contain one of the

important equations� f�� and f�� together with either the capacitor or the inductor

equation�

Possibility A	

� The diode D� is contained in one algebraic loop together with the capacitor C��

Equations f� and f�� are contained in the same algebraic structure�

� The diode D� is contained in the other algebraic loop together with the induc�

tor L�� Equations f	 and f� are contained in that algebraic structure�

Possibility B	
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� The diode D� is contained in one algebraic loop together with the inductor L��

Equations f� and f� are contained in the same algebraic structure�

� The diode D� is contained in the other algebraic loop together with the capac�

itor C�� Equations f	 and f�� are contained in that algebraic structure�

����� General Considerations About Loops in the Modied Dependence

Graph Notation

So far� we have examined the possibilities of forming the necessary loops� but we

have not found yet a method to systematically determine values for the four parame�

ters� n�� n�� n�� and n�� In order to derive such a technique� we need to take another

general look at the modi�ed dependence graphs�

Consider the simple example shown in Fig� ��� This example describes an in�

terconnected algebraic structure with �ve equations and �ve variables� The three

equations f�� f�� and f� form an algebraic loop containing the three variables x�� x��

and x� if the following requirements are satis�ed	



��

� Variable e� is known in equation f�� i�e�� equation f� is used to compute x��

otherwise the algebraic loop is underdetermined� because the loop then contains

the four unknowns x�� x�� x�� and x� within only three equations f�� f�� and

f��

� Variable e� is unknown in equation f�� i�e�� equation f� is used to compute

e�� otherwise x� would be determined from equation f�� x� and x� could then

be determined using equations f� and f� respectively� and �nally x� could be

determined from equation f��

Whenever we have n � � leaves connected through branches of the same equation

in a ring structure� we need exactly n � � exterior branches to determine exactly

n� � of the variables� A su�cient number of variables in the exterior leaves must be

known in order to determine these n� � variables�

Wherever an equation is represented by a single branch� the connecting equations

must have at least one unknown variable� so that the variables inside the ring cannot

be determined from them�

However� these requirements are only easy to �nd for ring structures as the one

shown in Fig� ��� This ring structure indicates a sparsely populated matrix of the

associated structure incidence matrix of the DAE system�
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In the case of a densely populated matrix or an interconnected structure� such as

the one shown in Fig����� the requirements must be derived from the set of equa�

tions� In this modi�ed example� additional interconnections are present inside the

ring structure� In this case� the equations f�� f�� and f� form an algebraic structure

with the variables x�� x�� x�� and x�� This structure is underdetermined as the three

equations contain four unknowns� If either e� or e� are known� f� or f� can be used

to compute x� or x�� thereby reducing the algebraic structure to a system of three

equations in three unknowns� However� if e� and e� are both known� the algebraic

structure is destroyed�

Luckily in the search of the requirements for the example circuit problem� we are

dealing with a simple ring structure� and thus� the requirements for the necessary

loops can be determined from the dependence graph directly�

����� Examples for Requirements in Ring Structures

Let us examine some simple graphs to see how� using the previously introduced

concepts� a complete set of requirements can be derived�

Fig� ���� contains a ring structure containing equations f� to f� and eight unknowns

x� to x
� The external variable e� must be known in order to determine variable x


from equation f
� Both variables e� and e� must be known also� otherwise the equa�

tion system is underdetermined� as f� then contains at least one surplus unknown
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external variable� If this requirement� i�e�� e� and e� and e� are known� is satis�ed�

then there results an algebraic structure with the seven unknowns x� to x� described

by the seven equations f� to f��

Fig� ���� contains a similar ring structure� However this time around� the ring struc�

ture contains eight unknowns and eight variables� In this example� e� must be known

in order to have a fully determined algebraic structure� whereas e� and e� must be

unknown� In this example� knowledge of either e�� or e� would allow to calculate

all variables of the ring structure� Knowledge of both e� and e� would result in a

con�ict� The di�erence to the former example is that here� the external variables are
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connected to a ring leaf that has a single branch connection� whereas in the previous

example� two branches for equation f� are contained in the ring�

In Fig� ����� either e� or e� must be unknown� and e� must be unknown� If either

e� is known or both e� and e� are known� the leaf x
 can be calculated using ei�

ther equation f	 or f��� and subsequently� all variables of the ring structure could be

determined� If all three variables� e�� e�� and e� are unknown� the equation system

is underdetermined� Finally� if all three variables� e�� e�� and e� are known� there

results a con�ict�

Note that the requirements are and connected if several external variables are

contained in an equation that forms part of the ring structure� If several external

variables are connected through the same equation to a leaf of the ring structure and

the equation is not used in the ring structure� the requirements are or connected�

Finally� if a single external variable is connected to a ring leaf through an equation

that does not belong to the ring structure� it must be added in an and connection

to the other requirements�

Remember that algebraic loops are preventing the problem of a singular denom�

inator� A switch equation contained in an algebraic loop is solved together with all

other equations of the algebraic loop� The determinant of the corresponding matrix

system can be non�singular in all switch cases� Thus it is our goal to �nd algebraic
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loops containing switch equations� Afterwards we have to assure that the determinant

of the matrix system description is indeed unequal zero� If algebraic loops are de�

stroyed� switch equations are solved after either of the two contained variables� This

results in solving a single switch equation that causes a singularity in one switch po�

sition� Thus the previous requirements provide us with a new means of determining

conditions for the existence of algebraic loops�



�

CHAPTER �

Conditions for the Example Circuit and Conclusions

This chapter will determine the requirements for the example circuit to form sep�

arate algebraic loops each containing one of the switch elements� As stated in the

previous chapter� there exist two possibilities for forming separate algebraic loops�

These two possibilities are examined separately in the following sections in order to

�nd the requirements and the resulting conditions� The graphs are presented in the

time derivatives modi�ed form of the dependence graphs� as redrawn in Fig� ����

The two forms of requirements� that is� a variable must be of known type or it must

be of unknown type� are indicated in the notation shown in Fig� ����

	

��
d�m�x
dt�m� �� x m

Figure ���	 Modi�ed Dependence Graph Notation
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Figure ���	 Variable Convention in Modi�ed Dependence Graph

As a reminder� the example circuit is described by the following equation set	

U� � u��t� � f� � �

UR� �R� � iL� � f� � �

�UL� � L� �
�iL�
�t

� f� � �

U� � UR� � U� � UL� � f� � �

U� � US� � f� � �

OS� �
�n� iS�
�tn�

� ��� OS�� �
�n�US�

�tn�
� f� � �

if �not�US� � �� and not �iS� � ��� then � else ��New�OS�� � f� � �

iL� � iS� � iC� � f
 � �





OS� �
�n� iS�
�tn�

� ��� OS�� �
�n�US�

�tn�
� f	 � �

if �not�US� � �� and not �iS� � ��� then � else ��New�OS�� � f�� � �

�iC� � C� �
�UC�

�t
� f�� � �

iC� � iS� � f�� � �

U� � US� � UC� � f�� � �

which was shown in Fig� ���

The modi�ed dependence graphs consist only of the highest derivatives of each

variable� as well as� all the connections that form either kind of the requirements� As

the modi�cations of the switch equations result in an introduction of n��n��n��n�

new state variables� a detailed full graph should depict all these state variables as well�

However� since state variables are always of known type� they do not contribute in

any way to the loop structure� Therefore� for the examination of the requirements of

how loops are formed and preserved� we only need to consider the loop�forming vari�

ables� as well as� all connections that form a requirement for the existence of the loops�

For each possibility� two graphs are used� one containing the �rst switch element

diodeD�� the other containing the second switch element diodeD�� The loop�forming

variables are of di�erential order n� or n� for the �rst loop� and of n� or n� for the
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second loop� The basis of a graph for the second loop is the second switch equation

f	� whereas the basis of a graph for the �rst loop is the �rst switch equation f�� The

equations f�� and f�� that describe the diode characteristics are not contained in the

graphs� because they only represent a switch characteristic and do not in�uence the

structure of the algebraic system in any way�

The basic equation for the �rst loop contains the leaves US� and iS� � which are

of orders n� and n�� respectively� as well as the leaf OS�� These leaves and the two

branches representing equation f� form the bottom part of Fig� ���� The loop for the

�rst switch element is built connecting a set of equations of di�erential order n� to

the US� leaf� and a set of equations of di�erential order n� to the iS� leaf� These two

equation sets are the n� and n� times di�erentiated middle part of Fig� ���� The left

and right parts of each graph are connected at the UC� leaf in possibility A� and at

the IL� leaf in possibility B�

The basic equation for the second loop contains the leaves US� and iS� that are

of orders n� and n�� respectively� as well as the leaf OS�� These leaves and the two

branches representing equation f	 form the top part of Fig� ���� The loop for the

second switch element is built connecting a set of equations of di�erential order n�

to the US� leaf� and a set of equations of di�erential order n� to the iS� leaf� These



��

two equation sets are the n� and n� times di�erentiated middle part of Fig� ���� The

left and right parts of each graph are connected at the IL� leaf in possibility A� and

at the UC� leaf in possibility B�

Equations f� and f�� form the links between variables of di�erent di�erential or�

ders� They impose constraints on the values that the parameters n�� n�� n�� and n�

can assume�

In order to keep the graphs reasonably simple� the graphs show only the loop�

forming variables� i�e�� the variables that are coupled together in an algebraic system

as well as the variables that in�uence the existence of the loops� These non�loop�

forming variables� contained as side connections to the ring structure� are either

additional variables contained in one of the loop�forming equations or variables con�

tained in a non�loop�forming equation that depends on a loop�forming variable� The

union of all loop�forming variables of the �rst and second loop contains all end leaves

of side connections� Of course� these end leaves are of di�erent di�erential order than

that of the loop�forming variables� The comparison of these di�erent di�erential or�

ders results in the set of mathematical conditions to be derived�
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The graphs show the highest di�erential order of switch voltages and switch cur�

rents only� The graphs show that US� is of order n�� iS� is of order n�� US� is of order

n� � and iS� is of order n�� All lower derivatives of these four variables are intro�

duced state variables� As with the original state variables� these are considered to

be known from a previous simulation step or from initial conditions� The introduced

state variables can be used to calculate variables using the di�erentiated equation

sets of lower orders than n�� n�� n�� and n�� Starting from �
�n���US�
�tn���

� � � ��
��US�
�t�

�
��US�
�t�

�

US��� �
�n���iS�
�tn���

� � � ��
��iS�
�t�

�
��iS�
�t�

� iS��� �
�n���US�
�tn���

� � � ��
��US�
�t�

�
��US�
�t�

� US��� and �
�n���iS�
�tn���

�

� � ��
��iS�
�t�

�
��iS�
�t�

� iS�� all variables of lower di�erential orders than n�� n�� n�� and n�

can be calculated� This leads to a set of known variables that contains all lower

derivatives of loop�forming variables� The set of all lower derivatives of loop�forming

variables forms the base set for the conditions� This base set and the graphs together

result in a set of requirements for each of the two possibilities� A requirement is that

a connected variable must be either known or unknown to form the loop in the

described fashion� The conversion from the graphical requirement to a mathematical

condition results in inequalities that are formed in two di�erent ways� depending on

the type of the requirement�

For the unknown type� the order of the requirement variable must be greater

than the corresponding order of the same variable contained in one of the loops�
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Hence this variable is unknown� because it is not a state variable and cannot be

determined by solving one of the loops�

For the known type� the order of the requirement variable must be smaller than

the corresponding order of the same variable contained in one of the loops� Hence

this variable is known as a state variable� An exemption represents the presence

of derivatives of the variable U�� because these derivatives can always be computed

using the �rst equation f�� In the multicondition cases� this variable shows up in

and connections in the known type� and in or connections in the unknown type�

thus it causes no condition at all� However� the leaves for this variable are included

in the graphs for completeness�

In Table ���� Table ���� Table ���� and Table ���� the inequalities � and � must be

used� if the two loops are to be truly decoupled ring structures� The equal signs allow

for couplings between the two loops and!or multiply connected algebraic structures

within each of the loops�

��� Conditions for Possibility A

The graph for the second loop containing the switch element D� and the inductor

L� is shown in Fig� ���� while the graph for the �rst loop containing the switch
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element D� and the capacitor C� is shown in Fig� ����

����� Requirements for Loop � in Possibility A

Fig� ��� shows the following requirements	

� a and b and c and d must be known

� e and f and 
g� or g� or g�� must be unknown

� n� � � � n� because of the inductor equation
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Table ���	 Conditions for Loop � in Possibility A
restriction type condition
a known n� � n�

b known n� � n�

c known no condition as U� � f�t�
d known n� � n�

e unknown n� � � � n�

f unknown n� � n�

g� or g� or g� unknown g� 	 no condition as U� � f�t��
��n� � n�� 	 �n� � n��� 
 �n� � n��

f� inductor n� � � � n�

����� Conditions for Loop � in Possibility A

����� Requirements for Loop � in Possibility A

Fig� ��� shows the following requirements	

� h and i must be known

� 
j� or j� or j�� and k must be unknown

� n� � n� � � because of the capacitor equation

����� Conditions for Loop � in Possibility A

����� Result of Combined Conditions for Possibility A

It is impossible to �nd a solution for n�S� n�S� n�S � and n�S that satis�es all the

conditions a to k� From conditions h and k� it can be concluded that n� � n�� From
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conditions b and f� it must be concluded that n� � n�� However� these two conditions

are in con�ict with the inductor and capacitor constraints� Let us assume that

n� � �� From the inductor constraint� we conclude that n� � n� � � � �� However�

n� � n� � �� Hence� from the capacitor constraint� we �nd that n� � n� � � � ��

Yet� n� � n� � �� which is in contradiction with the original assumption�

��� Conditions for Possibility B

The graph for the second loop containing the switch element D� and the
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Table ���	 Conditions for Loop � in Possibility A
restriction type condition
h known n� � n�

i known n� � n�

j� orj� or j� unknown j� 	 no condition as U� � f�t��
�n� � n�� 
 �n� � n��

k unknown n� � n�

f�� capacitor n� � n� � �

capacitor C� is shown in Fig� ���� while the graph for the �rst loop containing the

switch element D� and the inductor L� is shown in Fig� ����

����� Requirements for Loop � in Possibility B

Fig� ��� shows the following requirements

� a or 
b� and b� and b�� must be known

� 
c� or c�� must be unknown

� n� � n� � � because of the capacitor equation

����� Conditions for Loop � in Possibility B

����� Requirements for Loop � in Possibility B

Fig� ��� shows the following requirements	
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Table ���	 Conditions for Loop � in Possibility B
restriction type condition
a or �b� and b� and b�� known b� 	 no condition as U� � f�t��

��n� � n��	�n� � n���
 �n� � n��
�c� or c�� unknown �n� � n�� 
 �n� � n��
f�� capacitor n� � n� � �

� d and e and 
f� or f�� must be known

� 
g� or g�� and 
i� or i� or i�� must be unknown

� n� � � � n� because of the inductor equation
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Table ���	 Conditions for Loop � in Possibility B
restriction type condition
d known n� � n�

e known no condition as U� � f�t�
f� or f� known �n� � n�� 
 �n� � � � n��
g� or g� unknown �n� � n�� 
 �n� � n��
i� or i� or i� unknown i� 	 no condition as U� � f�t��

��n� � n�� 	 �n� � n��� 
 �n� � n��
f� inductor n� � � � n�

����� Conditions for Loop � in Possibility B

����� Result of Combined Conditions for Possibility B

It is impossible to �nd a solution for n�S� n�S� n�S � and n�S that satis�es all the

conditions a to i� From conditions g� d� and c� we can conclude that n� � n� � n� �

n�� The inductor constraint n� � n� � �� allows us to make the above magnitude

relationship even more stringent	 n� � n� � n� � n�� Thus� n� � n�� However� the

capacitor constraint requires that n� � n� � � � n�� which is in contradiction with

the above�

��� Verication of the Method

The second� slightly modi�ed� example has almost the same equation structure as

the �rst example� The detailed circuit is shown in Fig� ���� The detailed bond graph

is shown in Fig� ��� This second example is used to verify that the previously derived
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method for �nding conditions results in the right solution� As stated earlier� the

necessary modi�cations for this example circuit are already known� The modi�cations

result in the parameters n�S � �� n�S � �� n�S � �� and n�S � �� Let us verify that

the previously introduced method results in the same set of parameter values�

First� we need the set of equations that can easily be formulated using the bond

graph technique�

U� � u��t� � f� � �

UR� �R� � iL� � f� � �

�UL� � L� �
�iL�
�t

� f� � �
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U� � UR� � US� � US� � UL� � f� � �

UC� � US� � f� � �

OS� �
�n� iS�
�tn�

� ��� OS�� �
�n�US�

�tn�
� f� � �

if �not�US� � �� and not �iS� � ��� then � else ��New�OS�� � f� � �

iL� � iS� � iC� � f
 � �

OS� �
�n� iS�
�tn�

� ��� OS�� �
�n�US�

�tn�
� f	 � �

if �not�US� � �� and not �iS� � ��� then � else ��New�OS�� � f�� � �

�iC� � C� �
�UC�

�t
� f�� � �

iL� � iS� � f�� � �
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A dependence graph representing this equation system is shown in Fig� ����

The dependence graph is very similar to the dependence graph for the �rst exam�

ple� To build the necessary algebraic loops� we are once again faced with the same

two basic possibilities�

Possibility A	

� The diode D� is contained in one algebraic loop together with the capacitor C��

Equations f� and f�� are contained in the same algebraic structure�

� The diode D� is contained in the other algebraic loop together with the induc�

tor L�� Equations f� and f	 are contained in that algebraic structure�

Possibility B	

� The diode D� is contained in one algebraic loop together with the inductor L��

Equations f� and f� are contained in the same algebraic structure�

� The diode D� is contained in the other algebraic loop together with the capac�

itor C�� Equations f	 and f�� are contained in that algebraic structure�

����� Requirements for Both Loops in Possibility A

Fig� ���� shows the following requirements	
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� 
a� and a� and a�� must be known

� 
b� or b�� and 
c� or c� or c� or c�� must be unknown

� n� � � � n� because of the inductor equation

Fig� ���� shows the following requirements	

� d must be known

� 
e� or e� or e� or e�� must be unknown

� n� � n� � � because of the capacitor equation
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����� Conditions for Both Loops in Possibility A

The restrictions can be simpli�ed with the two equations n� � � � n� and n� �

n� � �	

� a � �n� � n� � �� 	 �n� � n�� � n� � n�

� b � n� � n�

� c � �n� � � � n�� 
 �n� � � � n�� 
 �n� � � � n�� � always ful�lled

� d � n� � n�



���

Table ���	 Conditions for Both Loops in Possibility A
restriction type condition
a� and a� and a� known a� 	 no condition as U� � f�t��

�n� � n�� 	 �n� � n��
b� or b� unknown �n� � n�� 
 �n� � n��
c� or c� or c� or c� unknown c� 	 no condition as U� � f�t��

�n� � n�� 
 �n� � n�� 
 �n� � n��
f� inductor n� � � � n�

d known n� � n�

e� or e� or e� or e� unknown e� 	 no condition as U� � f�t��
�n� � n�� 
 �n� � n�� 
 �n� � n��

f�� capacitor n� � n� � �

� e � �n� � n�� 
 �n� � n�� 
 �n� � n� � �� � n� � n�

All restrictions can be summarized into n� � n� and n� � n� together with

n� � n� � � and n� � n� � �� Let us try the simplest case� where n� � n� � ��

Consequently� n� � n� � �� which satis�es the two inequalities as well� Hence we

have found a valid solution satisfying all equations and restrictions	 n�S � �� n�S � ��

n�S � �� and n�S � �� This solution is exactly the solution that had been found ear�

lier using a heuristic approach� Of course� each of the parameters could be increased

by any positive integer� which would generate other� yet more complicated solutions�

Yet� we are only interested in the simplest solution� as all other solutions can be

derived from it�
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Until now� we have only examined possibility A� let us examine possibility B as

well to ensure that this possibility does not create further solutions�

����� Requirements for Both Loops in Possibility B

Fig� ���� shows the following requirements	

� a and 
b� and b� and b�� must be known

� c and d and 
e� or e� or e� or e�� must be unknown

� n� � n� � � because of the capacitor equation

Fig� ���� shows the following requirements	
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� f and 
g� and g� and g�� must be known

� h and i and 
j� or j� or j� or j�� must be unknown

� n� � � � n� because of the inductor equation

����� Conditions for Both Loops in Possibility B

Note that these graphs add a further stage of complexity to the restrictions� as

the variables UL� and UC� are part of both loops and are contained in both sets of

restricting leaves�

These restrictions cannot be ful�lled� For example� condition d is in contradiction

with the capacitor constraint� n� � � � n� can be rewritten as	 n� � n� � �� yet we

know that n� � n� � �� which contradicts the above�

��� Conclusions

In the �rst part of this chapter� a systematic method for determining necessary

conditions for the parameters n�� n�� n�� and n� from the dependence graphs was

introduced� The conditions resulted in no solutions for the example circuit� The

veri�cation part then showed that the method indeed results in the correct solution

for a slightly modi�ed circuit� The example circuit proves that there exist even fairly



���

Table ���	 Conditions for Both Loops in Possibility B
restriction type condition
a known n� � n�

b� and b� and b� known b� 	 no condition as U� � f�t��
��n� � n�� 
 �n� � n���
	��n� � � � n�� 
 �n� � � � n���

c unknown n� � n�

d unknown �n� � � � n�� 	 �n� � � � n��
e� or e� or e� or e� unknown e� 	 no condition as U� � f�t��

��n� � n�� 	 �n� � n���

�n� � n�� 
 ��n� � n�� 	 �n� � n���

f�� capacitor n� � n� � �
f known n� � n�

g� and g� and g� known g� 	 no condition as U� � f�t��
�n� � n�� 	 ��n� � n�� 
 �n� � n���

h unknown n� � � � n�

i unknown n� � n�

j� or j� or j� or j� unknown j� 	 no condition as U� � f�t��

�n� � n�� 
 ��n� � n�� 	 �n� � n���

��n� � n�� 	 �n� � n���

f� inductor n� � � � n�

simple switching circuits that do not lend themselves to an automated index reduc�

tion approach using a modi�ed Pantelides algorithm� Hence� it can be concluded

that merely modifying the switch equations does not bring us any closer to the de�

sired goal� the formulation of a single model of an ideal switching circuit involving

conditional index changes that can be simulated in all switch positions�
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Yet� the previous e�ort was not useless� because the work resulted in the idea

for a new concept� In this chapter� we determined the conditions for the example

circuit� but could not �nd a solution that would satisfy all restrictions� If we could

relax some of the restrictions� maybe it would be possible to �nd a solution� We

could provide the derivative variables of the capacitor and inductor equations using

implicit di�erence formulae� which are in fact used in Di�erential Algebraic Equation

Solvers� This would relax the capacitor and inductor constraints that caused many

of the problems faced in this chapter�

The next chapter explores the possibility of using di�erence formulae to relax

the set of necessary conditions that would give the switch equations the necessary

freedom to assume both causalities independent of the environment in which they

are used� It shall be shown that the use of implicit di�erence formulae� such as

the Backward Di�erence Formulae that are widely used in commercial DAE solvers�

makes the modi�cations of the switch equations unnecessary� The di�erence formulae

used to substitute the original derivatives in the inductor and capacitor equations by

themselves create the necessary loops that free up the former restrictions on the

causality assignments for the switch equations�
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CHAPTER �

The Concept of Using Di�erence Formulae

��� Di�erence Formulae

The previous chapter showed that no general solution exists for the equation mod�

i�cation problem� Sets of necessary conditions were derived by comparing needed

orders of di�erentiated variables that should be unknown with loop�forming vari�

ables� During this work� the idea was created that it might be possible to relax some

of the restrictions through the use of implicit di�erence formulae� ���

x � h � �x� old�x� �����

�x �
x� old�x�

h
�����

Equ� ��� describes the structure of the discretization for a large class of implicit

integration algorithms� The known scalar h depends on the step size and on method�

speci�c constants� whereas old�x� is a function of known values of x at previous time

instants� The Backward Di�erence Formulae �BDF� of di�erent orders described by
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Equ� ��� are widely used to solve sti� systems� The �rst order BDF algorithm is also

known under the name backward Euler method� It is used throughout this chapter to

keep the concept as simple as possible� To improve the accuracy� higher order BDF

algorithms could be used instead� The concept remains the same�

Equ� ��� and Equ� ��� describe the simpli�ed formulae used by the backward Euler

algorithm� Here� h represents the step size directly�

Of course by using implicit di�erence formulae� we sacri�ce the separation between

the model equations and the numerical solver equations in order to achieve the mod�

eling of a conditional index system using a single model�

x � h � �x � xold �����

�x �
x� xold

h
�����

��� Using Di�erence Formulae in Inductor and Capacitor Equations

Let us apply the di�erence formulae to replace the �rst order derivatives that

show up in the capacitor and inductor equations� By using the di�erence formulae�

we relax the constraint equations that had previously been imposed by the capacitor

and inductor equations� In the dependence graphs� the �rst order derivatives of the

state variables get replaced by the state variables themselves� and there is no longer
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a need for a di�erence between the orders of n� and n� on the one hand� and between

n� and n� on the other�

The set of equations for the modi�ed example circuit making use of the backward

Euler formulae directly� Equ� ���� contains the step size h explicitly�

����� The Equation System

U� � u��t� � f� � �

UR� �R� � iL� � f� � �

�UL� � L� �
iL� � iL�old

h
� f� � �

U� � UR� � U� � UL� � f� � �

U� � US� � f� � �

OS� � iS� � ��� OS�� � US� � f� � �

if �not�US� � �� and not �iS� � ��� then � else ��New�OS�� � f� � �

iL� � iS� � iC� � f
 � �

OS� � iS� � ��� OS�� � US� � f	 � �

if �not�US� � �� and not �iS� � ��� then � else ��New�OS�� � f�� � �

�iC� � C� �
UC� � UC�old

h
� f�� � �

iC� � iS� � f�� � �
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U� � US� � UC� � f�� � �

����� Dependence Graph Considerations

The dependence graph for this set of equations is shown in Fig� ���� The former

state derivatives have been merged with the state variables themselves� which now

show a dependence on old values of themselves as well as the simulation time step

h� The old values of UC� and iL� are known from one or more previous simulation

steps� The use of the di�erence formulae creates two new branches in the dependence

graph that can form parts of algebraic loops containing the switch equations� The

dependence graph can be interpreted in two di�erent ways�

First� it can be viewed as consisting of two algebraic loops that are connected at U�

and iC� � The two separate loop structures are shown in Fig���� and in Fig� ���� The

second loop consists of the four equations f	� f��� f��� and f�� in the �ve unknowns

US� � iS� � iC� � UC� � and U�� Similarly� the �rst loop consists of the six equations f��

f�� f�� f�� f�� and f
 in the seven unknowns US� � iS� � iC� � iL� � UL� � UR� � and U�� Note

that U� is considered known from the time dependence� and UC�old and iL�old are

known from earlier simulation steps�

The two dependence graphs are interconnected at U� and at IC� in such a way that
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Figure ���	 Dependence Graph for Example � with BDF
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Figure ���	 Loop � for Example � with BDF
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neither of the loops can be solved separately� The two algebraic structures are rep�

resented by the two structure incidence matrices	

S� �

�
BBBBBBBBBBBBB�

US� iS� UC� iC� U�

f	 � � � � �

f�� � � � � �

f�� � � � � �

f�� � � � � �

	
CCCCCCCCCCCCCA

�����

S� �

�
BBBBBBBBBBBBBBBBBBBBBBB�

iC� U� US� iS� UL� iL� UR�

f� � � � � � � �

f
 � � � � � � �

f� � � � � � � �

f� � � � � � � �

f� � � � � � � �

f� � � � � � � �

	
CCCCCCCCCCCCCCCCCCCCCCCA

�����

Second� the dependence graph can be viewed as a single algebraic structure con�

sisting of the ten equations f�� f�� f�� f�� f�� f
� f	� f��� f��� and f�� in the ten

unknowns US�� iS� � US� � iS� � UC� � iC� � UL� � iL� � UR� � and U�� The complete algebraic

structure can be represented by the complete structure incidence matrix	
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SC �

�
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB�

US� iS� UC� iC� U� US� iS� UL� iL� UR�

f	 � � � � � � � � � �

f�� � � � � � � � � � �

f�� � � � � � � � � � �

f�� � � � � � � � � � �

f� � � � � � � � � � �

f
 � � � � � � � � � �

f� � � � � � � � � � �

f� � � � � � � � � � �

f� � � � � � � � � � �

f� � � � � � � � � � �

	
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCA

�����

that shows that two interconnected algebraic structures are present� The inter�

connection structure is such that knowledge of one of the switch variables does not

break the algebraic structure for the other� i�e�� either of the switch variables OS� or

OS� can be given� and yet� there still remains an algebraic loop embedding the other

switch equation�
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����� Determinant and Singular Step Sizes

The equation set written in matrix form contains now the parameter h explicitly�

The parameter h represents the step size directly in the case of the backward Euler

algorithm� In the case of higher order BDF techniques� it is a constant times the step

size� As a result� the determinant of the matrix A depends on the parameter h� and

thus on the step size� Let us examine the value of the determinant to ensure that it

is unequal to zero for the step size used�

�
BBBBBBBBBBBBBBBBBBBBBBBBB�

� � � � � � � � � �R�

� � � �� � � � � � L�
h

� � � � � � � � � �

�� � � � � � � � � �

���OS�� � � � � � OS� � � �

� � � � � � �� � �� �

� ���OS�� � � � � � OS� � �

� � C�
h

� � � � � �� �

� � � � � � � �� � �

� �� �� � � � � � � �

	
CCCCCCCCCCCCCCCCCCCCCCCCCA


 �z �
A

�

�
BBBBBBBBBBBBBBBBBBBBBBBBB�

US�

US�

UC�

UL�

UR�

U�

iS�

iS�

iC�

iL�

	
CCCCCCCCCCCCCCCCCCCCCCCCCA

�

�
BBBBBBBBBBBBBBBBBBBBBBBBB�

�

L��iL�old

h

U	

�

�

�

�

C��UC�old

h

�

�

	
CCCCCCCCCCCCCCCCCCCCCCCCCA

where
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detA �



� � � � � � � � � �R�

� � � �� � � � � � L�
h

� � � � � � � � � �

�� � � � � � � � � �

��� OS�� � � � � � OS� � � �

� � � � � � �� � �� �

� ���OS�� � � � � � OS� � �

� � C�
h

� � � � � �� �

� � � � � � � �� � �

� �� �� � � � � � � �



� ��� OS�� � ��� OS�� � ��
L�

h
� R��


 �z �
k�

� ��� OS�� �OS� � �
R�C�

h
�
L�C�

h�
�


 �z �
k�

�OS� � ��� OS�� � �� �
R�C�

h
�
L�C�

h�
�


 �z �
k�



���

�OS� �OS� �
�C�

h
 �z �
k�

The determinant equals one of the four values k�� k�� k�� or k� depending on the

values of the two discrete switch variables� Setting one of these four expressions equal

to zero leads to one of four equations� Each of these equations� when set equal to

zero� can be used to identify a value of the parameter h that causes a singularity� In

our special case� the parameter h is equivalent to the step size�

��
L�

h
�R�� � � ����

�
R�C�

h
�
L�C�

h�
� � � �����

�� �
R�C�

h
�
L�C�

h�
� � � ������

�C�

h
� � ������

The �rst two equations result in the singular value h� � �L�
R�

� the third equation is

quadratic in h and leads to the two singular values h��� � �C�L�
�

� ���
q
�� ��L�

R�
����

and the fourth equation has no solution� All singular values are negative� and thus

we need not worry about the step size for the case of the example circuit�

However for a general model and a higher order di�erence formulae� the correspond�

ing values of the determinant should always be examined for singular values� The

dependence between the parameter h and the step size should be used to calculate

the singular step sizes accordingly�
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����� Using the Equation System in a Simulation

In a simulation� the equation system must be solved at every simulation step�

There are two possible ways to invert the matrix of the equation system for every

simulation step�

The �rst way is to invert the system matrix with a symbolic formulae manipulation

program� such as Dymola ��� or Mathematica ��� The result will be an analytic

scheme of equations resulting in values of all variables at each simulation time point�

The second way is to invert the system matrix numerically� after all values for the

current simulation time have been plugged in� This method requires only a numerical

matrix solver instead of a symbolic one� This method requires more execution time

during a simulation run by saving compilation time prior to executing the simulation

run�

A numerical method should use the slightly modi�ed equation system	
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�
BBBBBBBBBBBBBBBBBBBBBBBBB�

� � � � � � � � � �R�

� � � �h � � � � � L�

� � � � � � � � � �

�� � � � � � � � � �

���OS�� � � � � � OS� � � �

� � � � � � �� � �� �

� ���OS�� � � � � � OS� � �

� � C� � � � � � �h �

� � � � � � � �� � �

� �� �� � � � � � � �

	
CCCCCCCCCCCCCCCCCCCCCCCCCA


 �z �
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BBBBBBBBBBBBBBBBBBBBBBBBB�

US�

US�
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UL�

UR�
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CCCCCCCCCCCCCCCCCCCCCCCCCA

�

�
BBBBBBBBBBBBBBBBBBBBBBBBB�

�

L� � iL�old

U	

�

�

�

�

C� � UC�old

�

�

	
CCCCCCCCCCCCCCCCCCCCCCCCCA

This equation system di�ers from the previous one only in that the two rows that

contain the di�erence formulae were modi�ed by multiplying the equations with the

step size h� The step size h is usually a small number that is converging to zero during

event iterations� The modi�ed system matrix contains� in addition to the small step

size h� the parameters L�� C�� and R�� the discrete switch variables OS� and OS��

as well as � and � elements� This is numerically far better than having to deal with

very big numbers that are caused by dividing through h on the left and right side

of the equations� Numerical problems� such as currents that toggle between small

positive and negative values instead of assuming the analytically correct zero value�

vanish with this alternative formulation of the problem�
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The reader may wonder why the system matrix has to be inverted in a simulation

run at every simulation step� as the matrix only depends on �xed parameters� the

switch variables� and the step size� Two reasons can be mentioned that may call for

a changing step size� First� the detection and exact calculation of an event may tem�

porarily reduce the step size� and second� accuracy requirements can force a decrease

of the step size� The switch variables can change with each detected and calculated

event� each time leading to a di�erent numerical matrix�

The necessary steps in a simulation will be discussed in more detail in a later

section�

��� Elimination of Restrictions on Bond Graph Causalities for Inductor

and Capacitor Elements

The use of backward di�erence formulae eliminates the causality requirements for

the inductor and the capacitor� eL � L� �
fL�fLold

h
� the discretized inductor equation�

can be solved for either the �ow variable fL or the e�ort variable eL� Thus both

causalities are meaningful for the new discretized inductor element� The two di�erent

causalities for the modi�ed inductor element are shown in Fig� ��� �a� and �b��
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Figure ���	 Inductor Causalities with BDF

The same considerations apply to the capacitor element� fC � C�
eC�eCold

h
� the

essential discretized capacitor equation� can be solved for either the �ow variable fC

or the e�ort variable eC � Thus both causalities are meaningful for the new discretized

capacitor element� The two di�erent causalities for the modi�ed capacitor element

are shown in Fig� ��� �a� and �b��

The use of the di�erence formulae eliminates the causality requirement for induc�

tor and capacitor elements by eliminating the need to compute the derivatives� The

inductor and capacitor elements have now properties similar to the resistor element�

Note that there is no need anymore for detecting higher index problems� as they will

be solved automatically using this concept� In this description� no di�erence exists

any longer between determining the relationship between current and voltage in a
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Figure ���	 Capacitor Causalities with BDF

resistor� an inductor� or a capacitor� All these relationships are algebraic in current

and voltage�

����� New Possibilities for Assigning Bond Graph Causalities for the

Example Circuit

The relaxation of the causality requirements for capacitor and inductor elements

makes all four possible causality assignments for the two switch elements feasible in

a con�ict�free manner� Fig� ���� Fig� ���� Fig� ���� and Fig� ��� show the four basic

possibilities� These four possibilities correspond to the four cases	 �OS� � �� OS� �

��� �OS� � �� OS� � ��� �OS� � �� OS� � ��� and �OS� � �� OS� � ��� Therefore�

we have at least one con�ict�free causality assignment for each of the four switch po�

sitions� In reality� there are even more possibilities in assigning causality strokes� In
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Fig� ���� Fig� ���� and Fig� ���� the causality assignment for the corresponding case

is not even unique� i�e�� even if both switch positions are �xed� there still remains an

algebraic loop in the set of equations� This observation can be explained by the new

behavior of inductor and capacitor elements� Using the di�erence formulae method�

inductor and capacitor elements exhibit essentially the same behavior as a resistors�

Thus the example circuit� in which an inductor is placed in series with a resistor�

displays the same behavior as a circuit with two resistors placed in series that could

be replaced by a single resistor� In such circuits� algebraic couplings between resistors

are present� and these algebraic structures result in free choices for assigning causality

strokes�

����� Remaining Causality Requirements

With the new concept� inductor and capacitor elements have no �xed causality

requirements� but we still are left with the causality requirements for both types of

junctions and sources� These requirements can still be the cause of singular deter�

minants of the resulting equation system� However� such cases are not physically

meaningful� For example� two parallel switch elements cannot assume independent

causalities as a result of the requirement at a ��junction� In this example� it would

be impossible to calculate the current distribution between the two switches if both
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switches were closed simultaneously� Similarly� two switches in series cannot assume

independent causalities because of the requirement at a ��junction� This time� if

both switches were simultaneously open� we could no longer compute the potential

of the node between them� because it would be �oating relative to the rest of the

circuit� For similar reasons� switches cannot be placed in series with current sources�

or in parallel with voltage sources�

The next chapter� showing the example of an SCR circuit for train speed control� will

explain these remaining problems�

��� Necessary Simulation Steps

A DAE system simulation using the concept of di�erence formulae consists of a

loop in which the new variables are calculated from old variable values� previous time

values� and the current time� The DAE system is converted to a purely algebraic

equation system by the use of the di�erence formulae� This equation system� if it is

linear� can be described by	

A�p�
�

h
� t� � x � b�xold� p�

�

h
� t� ������

which is the algebraic structure that we have encountered several times already� p

is a vector containing model parameters� x is the vector of simulation variables that

are of concern� xold are previous values of the variable vector� t denotes time� and h
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depends on the step size� The values for xold are either provided by previous steps or

initial conditions�

A�OS� p�
�

h
� t� � x � b�xold� p�

�

h
� t� ������

In the case of variable structure models that are described by switch equations�

the matrix depends additionally on the vector OS that contains the discrete switch

variables� The central element of a linear DAE simulation of a variable structure

model is the inversion of the matrix A� This matrix can be inverted either symboli�

cally or numerically� As stated in a previous section� the numerical inversion is better

conditioned in the alternative form	

A�OS� p� h� t� � x � b�xold� p� h� t� ������

Additional elements needed by the simulation of a variable structure model are	

� Event Detection

� Event Calculation

� Evaluating Results of Events

These steps are shown in more detail in Fig� �� and are further explained in the

following subsections�
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����� Event Detection

Event handling is based on indicator functions that indicate the event time� In�

dicator functions depend on both the variable vector and the simulation time� and

describe the event time indirectly by means of a zero crossing of the indicator func�

tion� The event conditions can be further specialized by only detecting positive to

negative or negative to positive crossings� For example� the simulation language

ACSL ��� allows the code to specify these types of zero crossings�

In our example circuit the indicator functions are described by equations f� and f���

These equations that specify the diode characteristics are	

New�OS�� � if �not�US� � �� and not �iS� � ��� then � else �

New�OS�� � if �not�US� � �� and not �iS� � ��� then � else �

Thus for the example circuit� we have the following four indicator functions	

F� � US�

F� � iS�

F� � US�

F� � iS�
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Usually an event is detected whenever one or more of these indicator functions

crosses through zero� However a delta� vicinity around zero is used to avoid prob�

lems that would otherwise occur if the function were to assume a value of zero at a

particular point in time� then stay at that value for some time� and only then assume

a value di�erent from zero again� either with the same or with the opposite sign from

before the zero crossing� � is usually a very small constant in the range of the machine

resolution ��

For these reasons� it is common to use eight indicator functions instead of the previ�

ously proposed four to avoid problems with such special functions	

F� � US� � �

F� � US� � �

F� � iS� � �

F� � iS� � �

F� � US� � �

F� � US� � �

F� � iS� � �

F
 � iS� � �
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Whenever one of these eight functions crosses through zero� the event calculation

is triggered� It consists of an iterative loop that adjusts the step size in order to hit

the event accurately� i�e�� force the value of the triggering indicator function to zero�

After the event calculation� the mode of the indicator function is determined 	

modei �

����������
���������

� � Fi � ��

� � �� � Fi � ��

�� � Fi � ��

������

The problems associated with constant zero values vanish with the discretization

into a positive area� a zero area� and a negative area� For more details see ����

A mode evaluation takes place after the event calculation� It may happen that a

changing mode triggers another mode change� and thus� this process is iterative�

until either a consistent mode con�guration is found or an iteration counter stops the

simulation�

����� Event Calculation

The event calculation is started after an event has been detected� Commonly�

the Regula Falsi algorithm is used to calculate event times� However� our diode

characteristics are described by functions that are not truly zero�crossing functions�

The diode current is always either greater or equal to zero� whereas the diode voltage
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is always either less or equal to zero� The aforementioned algorithm exhibits poor

convergence behavior in the case of such indicator functions� Therefore� a bi�section

algorithm was used instead� Thereby� the arithmetic mean of the beginning of the

search time interval tk�� and the end tk is used as the next evaluation time ttest� If an

event detection occurs between tk�� and ttest� the right border of the search interval

is updated to ttest� otherwise the left border of the search interval is updated to ttest�

The iteration ends when jttest � tk��j � teps� where teps is a constant that determines

the accuracy of the event calculation� The event calculation algorithm is shown in

Fig� ���

����� Evaluating Results of Events

The new mode values are evaluated after the event time has been determined�

After the previously described mode iteration has converged� the switch variables are

updated using the modes of the indicator functions� Note that the diode character�

istics can only be simulated using the ��vicinity concept�

��� Results for the Example Circuit

The example circuit was simulated as a Fortran executable� Fortran was cho�

sen� because the circuit was modeled using Dymola� and Dymola was instructed to

generate code for the simulation language ACSL� However� ACSL was developed to
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simulate ODE problems� and an ACSL simulation without state variables did not

work� As ACSL is Fortran�based� the code was then manually modi�ed to be used

by a DAE solver developed as part of the project�

The example circuit has no real use� It had been chosen because of its structural

properties� not because of the physical system that it represents� The source voltage

is sinusoidal with a frequency of �� Hz and an amplitude of �� V� If the capacitor

is initially positively charged� and the two diodes are assumed to be non�conducting

at the beginning of the simulation� the capacitor keeps the charge and the diode D�

remains non�conducting during the entire simulation run� However� if the capacitor

is initially negatively charged� the diode D� switches at once to conducting mode�

and the capacitor discharges itself immediately by means of the two diodes D� and

D�� Thereafter� it never gets an opportunity to recharge itself� The circuit basically

behaves in the same way as the inductive load circuit shown in the introduction�

because the diode D� remains in its non�conducting mode almost throughout the

entire simulation�

The example circuit was simulated with initial conditions UC�	 � � V � iL�	 � � A�

OS�� � �� and OS�� � � �both diodes are initially in their non�conducting mode��

Fig� ��� shows the results for UL� � UR� � and iL� � These variables show the same

behavior as an inductive load circuit mentioned in the introduction� but this time

with a real inductor with a resistance in series�



��

Fig� ���� shows the results for UC� and iC� � The initial discharging of the capacitor

can only be seen in an extreme zoom� Ideally the initial current should be in�nite�

However in the simulation� the current is restricted by the step size h� as the dis�

charging time cannot be shorter than one step�

Fig� ���� shows the results for OS� and OS�� The second diode D� becomes con�

ducting for just a short instant at the beginning of the simulation� i�e�� while the

capacitor is being discharged� The �rst diode D� toggles between its two modes with

the frequency of the source voltage�

Fig� ���� shows the results for US� and US� � The voltage across the �rst diode equals

that of the second diode� as the second diode is non�conducting for all times after the

�rst time instant� and the capacitor remains discharged after the same time instant�

Note the small peaks of US� in the plot at the switch times� These are caused by the

choice of the accuracy of the event calculation� The event calculation always results

in a time ttest that is essentially too large� This behavior is intended to prevent an

endless loop detecting the same event forever� always resulting in a time earlier than

the real event time� The inaccuracy in calculating the exact event time causes a small

positive voltage across the diode that does not correspond to true diode behavior�

The small positive voltage vanishes already in the next step when the changed switch

position results in a zero voltage�

Finally Fig� ���� shows the results for iS� and iS� � These curves are only given for



���

completeness� as the inductor current is identical to the diode current through the

�rst switch after the �rst time instant� and the current through the second switch is

always identical to the capacitor current�
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CHAPTER �

The SCR Circuit for Train Speed Control

��� Ordinary Two Quadrant Rectier

The SCR circuit contains a two quadrant recti�er and a thyristor diode pair that

achieves the desired behavior� Let us �rst take a look at the problems caused by a

two quadrant recti�er before we discuss the SCR circuit in detail� The circuit shown

in Fig� ��� is described by the following set of equations	

�
�
A
AD�

�
�
A
AD�

��
��
�
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�
�
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Figure ���	 Two Quadrant Recti�er Circuit
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iS� � iS� � i� � f� � �

�iS� � iS� � iR� � f� � �

iS� � iS� � iR� � f� � �

U� � US� � US� � f� � �

�U� � US� � US� � f� � �

�UR� � US� � US� � f� � �

UR� � R� � iR� � f� � �

OS� � iS� � ���OS�� � US� � f
 � �

if �not�US� � �� and not �iS� � ��� then � else ��New�OS�� � f
a � �

OS� � iS� � ���OS�� � US� � f	 � �

if �not�US� � �� and not �iS� � ��� then � else ��New�OS�� � f	a � �

OS� � iS� � ��� OS�� � US� � f�� � �

if �not�US� � �� and not �iS� � ��� then � else ��New�OS�� � f��a � �

OS� � iS� � ��� OS�� � US� � f�� � �

if �not�US� � �� and not �iS� � ��� then � else ��New�OS�� � f��a � �
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�UL� � L� �
iL� � iL�old

h
� �f� � �

�iC� � C� �
UC� � UC�old

h
� "f� � �

If either the inductor L� or the capacitor C� replaces the resistor R� in Fig�����

the equation f� is replaced by either �f� or "f�� and UR� and iR� are replaced by either

UL� and iL� or UC� and iC� � However� the behavior of the DAE matrix system does

not change at all if we use the di�erence formulae concept�
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Only the seventh row in this matrix equation system changes if the resistor is

replaced by an inductor or a capacitor � The elements A��� �� and A��� ��� would

either change to L� and �h in the case of an inductor� or to �h and C� in the case of

a capacitor� The vector on the right side would change in the seventh row to either



��

Table ���	 Values for System Determinant
switch position R� case L� case C� case reason for

OS� OS� OS� OS� det�A� det�A� det�A� singularity
� � � � � � � R�� L� or C� �oating
� � � � �� h �C� �
� � � � �� h �C� �
� � � � � � � i� cannot be determined
� � � � �� �h ��C� �
� � � � �� �R� h� L� h� C� �
� � � � R� �L� h �
� � � � � � � i� cannot be determined
� � � � �� �h ��C� �
� � � � �� �R� h� L� h� C� �
� � � � R� �L� h �
� � � � � � � i� cannot be determined
� � � � � � � i� cannot be determined
� � � � � � � i� cannot be determined
� � � � � � � i� cannot be determined
� � � � � � � i� cannot be determined

� parallel closed switches

L� � iL�old or C� � UC�old � Yet� this change would not in�uence the solvability of the

matrix equation in any way� Table ��� describes the values of the determinant of A

for all possible sixteen switch positions� The three columns represent the three cases

of elements connected to the recti�er�

Table ��� shows that singularities occur in the same eight switch cases indepen�

dently of the connected element� The last chapter showed that the di�erence formulae
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concept equalizes the behaviors of resistors� capacitors� and inductors� Hence the in�

dependence of the singularities from the connected element is not surprising�

Let us now take a look at the bond graph for the resistive load to explain the

singularities that occur in these eight cases� Fig� ��� shows the bond graph for the

circuit containing the causality requirements mandated by the voltage source�

If we allow either �D� and D�� or �D� and D�� to be conducting simultaneously

�OS� � OS� � � or OS� � OS� � ��� the causality requirements for the corre�

sponding �� and ��junctions require that the bond connecting them be left without

a causality stroke� This behavior is shown in Fig� ��� simultaneously for both cases�

From another perspective� �xing the causality stroke of the D� �or D�� diode to

its conducting position at the associated ��junction and propagating the resulting

causality strokes through the circuit� it becomes evident that the causality of the

corresponding D� �D�� diode is already �xed to its non�conducting position� Con�

sequently� if the D� �D�� diode is said to be conducting� the causality of the corre�

sponding D� �D�� diode cannot be chosen independently� This explains the observed

singular determinant in seven of the eight cases�

The last case is illustrated in Fig� ���� If both diodes D� and D� are �xed in their

non�conducting position� the position of either diode D� or diode D� can still be cho�

sen freely� However� the last diode�s position is predetermined� If all four diodes are
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forced into their non�conducting positions� as shown in Fig� ���� the ��junction at

the load is left with a single stroke� which is in violation of the causality requirements

for ��junctions�

From a physical perspective� the �rst seven cases lead to situations� whereby the

voltage source is shortcircuited� The eighth case leads to a �oating load� If all four

diodes are non�conducting� the load is decoupled from the ground� and its potential

can no longer be known�

Six of the seven shortcircuit situations can be solved by placing an impedance in

series with the voltage source� as done in the subsequent example of the SCR circuit�

However� the seventh case �all four diodes are conducting� still leads to a singular

determinant� because it exhibits two parallel wires� In this case� it is impossible to

compute the current �owing through each of these two wires� Only the sum of cur�

rents can be known�

��� The SCR Circuit

Reference ���� describes the use of the circuitry shown in Fig� ��� to control the

motion of a train� The train engine is represented by a negative current source that
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drains current out of the net� The gate control logic is also shown in Fig� ���� The

line current iL� is controlled in such a way that it always remains in the vicinity of	

Iref �
�� � ���

�U�

sin�t �����

The width of the tolerance band around Iref is BT � ��� A� The circuit basically

operates in one of four modes that are described in the Table ����

Hereby the statement that iL� is �negative and increasing means that iL� is

getting closer to zero� Table ��� contains only two of the four possible cases for

the two switch variables OS� and OS�� The circuit model is not really accurate
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Table ���	 Circuit Operation Modes
OP # Iref OS� OS� iL� resulting from iL� is

� � � � � iL� � Iref iL� � Iref �BT positive� increasing
� � � � � iL� � Iref iL� � Iref �BT positive� decreasing
� � � � � iL� � Iref iL� � Iref �BT negative� increasing
� � � � � iL� � Iref iL� � Iref �BT negative� decreasing

in modeling this behavior� First� the thyristor does not open as soon as the input

AZ becomes zero� but it opens only if the voltage is negative� Yet� the thyristor Th

should change its operational mode based on the input AZ alone� Second� the diode

D� should close simultaneously with the opening of the thyristor Th� Otherwise the

inductor current iL� would jump to zero� and this cannot happen in a physical system�

However� if we change the switch characteristics of the thyristor Th and diode D� to

an ideal toggle switch� we resolve the above problems� The ideal toggle switch allows

only one of the two discrete switch variables OS� and OS� to be �� while the second is

�� This restriction can mathematically be represented by OS��OS� � �� The toggle

switch depends only on AZ � and thus also resolves the �rst problem� Consequently�

equations f��a and f��a were corrected to	

if �AZ � �� then � else ��New�OS�� � f��a � �

if �not�AZ � ��� then � else ��New�OS�� � f��a � �
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for the simulation part� These equations represent the behavior of the ideal toggle

switch controlled by AZ �

��� The Equation System

The following set of equations describes the circuit� The current and voltage

variables are all shown in Fig� ���� The switch characteristics still contain the

uncorrected behavior�

iS� � iS� � iL� � f� � �
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�iS� � iS� � iL� � f� � �

�iS
 � iS� � iL� � f� � �

iS
 � iL� � iC� � iLoad � f� � �

�iS� � iS� � iS� � iL� � iC� � iLoad � f� � �

US� � US� � UL� � UL� � U� � f� � �

US� � US� � UL� � UL� � U� � f� � �

US� � US� � US� � UL� � f
 � �

US
 � US� � UL� � UC� � f	 � �

�UL� � UC� � UC� � f�� � �

�UL� � h � L� � �iL� � iL�old� � f�� � �

�UL� � h � L� � �iL� � iL�old� � f�� � �

�UL� � h � L� � �iL� � iL�old� � f�� � �

�UL� � h � L� � �iL� � iL�old� � f�� � �

�iL� � h � C� � �UC� � UC�old� � f�� � �

�iC� � h � C� � �UC� � UC�old� � f�� � �

OS� � iS� � ��� OS�� � US� � f�� � �

if �not�US� � �� and not �iS� � ��� then � else ��New�OS�� � f��a � �

OS� � iS� � ��� OS�� � US� � f�
 � �



��

if �not�US� � �� and not �iS� � ��� then � else ��New�OS�� � f�
a � �

OS� � iS� � ��� OS�� � US� � f�	 � �

if �not�US� � �� and not �iS� � ��� then � else ��New�OS�� � f�	a � �

OS� � iS� � ��� OS�� � US� � f�� � �

if �not�US� � �� and not �iS� � ��� then � else ��New�OS�� � f��a � �

OS� � iS
 � ��� OS�� � US
 � f�� � �

if �not�US
 � �� and not �iS
 � ��� then � else ��New�OS�� � f��a � �

OS� � iS� � ��� OS�� � US� � f�� � �

if �not��US� � �� and �AZ � ��� and not ��iS� � �� and not �OS� � ����

then � else ��New�OS�� � f��a � �

This system can be written in matrix form� The matrix equation is not included

because of its size� In this example� we deal with �� unknowns in �� equations� as well

as six additional equations that describe the switch characteristics� The determinant

of this circuit was examined for all �� � �� possible switch cases� The determinant

was singular in �� of these �� cases� and the next section contains the explanation

for these �� singular cases�
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Table ���	 Singular Cases SCR Circuit
case switch position

number OS� OS� OS� OS� OS� OS� reason for singularity
� � � � � � � D�� D�� D�� and D� are closed
� � � � � � � iL� cannot be distributed
� � � � � � � between D��D��branch and
� � � � � � � D��D��branch� see Fig� ���
� � � � � � � D�� D�� D�� andD� are opened
� � � � � � � L�� C�� C�� and ILoad are
� � � � � � � �oating� see Fig� ��
�� � � � � � �
 � � � � � � D�� D�� D�� andD� are opened
� � � � � � � L� is �oating� see Fig� ���
�� � � � � � �
�� � � � � � �
�� � � � � � � D�� D�� D�� andD� are opened
�� � � � � � � D�� Th� L��L�� C�� C�� and
�� � � � � � � ILoad are �oating�
�� � � � � � � see Fig� ����

����� The Cases Causing Singularities

Table ��� lists the singular cases� Case �� is contained three times� because this

switch combination is contained in three blocks� The cases are organized into blocks

that exhibit a common reason for their singularity� For case ��� that is contained in

three blocks� all reasons apply simultaneously�

If the thyristor Th and the diode D� are replaced by a toggle switch� as shown in

Fig� ����� the second and third blocks are eliminated� Thus� we have only two blocks

with singular determinants left corresponding to the �rst and last singular cases of
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the previous two quadrant recti�er example�

The cases where OS� is equal to OS� were also eliminated� and thus we are left

with two singular cases for each of these blocks� Ideally� the circuit should never

reach either of these four switch cases� However at the end of the �rst positive

half�wave of the source voltage U�� the diodes D� and D� are conducting before D�

and D� are non�conducting� The corresponding case in which all four diodes are

non�conducting occurs at the end of the negative half�wave of the source voltage U��

Hence� our simulation would end in these cases if we don�t modify the simulation

program� The four possible singular cases were prevented in the simulation by a

surplus switch logic� Connecting all �oating elements with a high resistor value to

ground and adding a small resistor value in series wherever a current cannot be

determined would be another way to prevent singular cases� Thus� the simulation of

ideal switch elements makes it necessary to either modify the switch logic� or to add

shunt resistors in order to prevent singular cases�

��� Simulation Results

Fig� ���� shows the plot of iL� and iref over time� The inductor current remains

indeed in the vicinity of the reference current� The inductor current needs some

time at the beginning of each positive and negative half�wave to follow the reference

current�
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Fig� ���� shows the �lter voltage UF � U� � UL� � UF is the potential di�erence

between the node to which the inductor elements L� and L� are connected and the

ground node� The switching caused by the nonlinear control element is quite obvious

in this �gure� The peak at the onset of the negative half�wave is caused by the

inexact determination of the event time� Remember� that the simulation after Fig�

�� determines the event time only with the precision of the accuracy constant teps�

Fig� ���� shows the voltage UZ � UC� � This plot shows the voltage across the

current source� The current source models the train engine� and thus� this plot

determines the amount of power transferred from the power net to the train engine�
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CHAPTER �

Discussion

In this thesis� the requirements for a modi�ed Pantelides algorithm were inves�

tigated� The search for modi�ed switch equations for a relatively simple example

showed that this approach does not bring us closer to the desired goal� to determine

a single simulation model for an arbitrary complex conditional index system�

However the use of Di�erence Formulae allowed us to solve the example circuit

in a totally di�erent way� By replacing the di�erential equations governing the be�

havior of capacitors and inductors by di�erence formulae� the resulting bond graph

causality constraints for storage elements vanish� The storage elements now behave

exactly like resistance elements� The use of di�erence formulae eliminates causality

constraints for storage elements and thereby resolves the higher index problem�

A more complicated example� a SCR controller for train speed control� showed

that there are problems remaining� These problems can all be characterized by the

nature of ideal switch simulation� The remaining problems in the linear circuit theory

are caused by either �oating elements or parallel shortings� The potentials and thus
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the voltages across two pins cannot be calculated in the case of one or more �oating

elements� The current cannot be distributed between two branches with exactly zero

resistance in the case of parallel shortings�

A simulation using the di�erence formulae will not work in singular cases caused

by either of these ideal switch problems� Hence these cases must be prevented�

There are several possibilities for preventing singular cases� First� �oating ele�

ments can be reconnected by introducing a small conductance to ground� whereas

the distribution of current in parallel shortened branches is made possible by intro�

ducing two small resistances into the two previously shortened parallel paths� Second�

the switch logic can be altered by superimposing a switch logic on the circuit that

prevents the singular cases on from ever happening� A third possibility is the use

of separate models for the singular cases� In this approach� we must replace the

non�functional ideal switch model with a non�ideal model� All three approaches

somehow modify the properties of ideal switches in order to avoid switch positions

that are impossible to simulate with ideal switch elements�
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	�� Comparison with PSpice

One of the most widely used commercial simulation programs for electrical cir�

cuits� PSpice� uses di�erence formulae for the simulation of DAE models� However�

this simulation package does not allow the user to simulate ideal switch elements� In�

stead non�ideal switch elements that result in arti�cial sti�ness and time�consuming

simulation runs are used� The important di�erence between ideal and non�ideal

switch element simulations were already explained at the end of chapter ��

Yet� the di�erence formulae method is also suited for simulating ideal switches� and

by doing so avoids the high simulation time and cost disadvantage� The di�erence for�

mulae resolve the causality assignment problem for storage elements that was caused

by the computational need of the ODE simulation� The use of di�erence formulae� of

course� cannot resolve structural problems that are caused by ideal switch elements�

that is the parallel shorting and the �oating element problem�

	�� Issues for Further Research

The simulation programs of the examples were written in Fortran and in Matlab�

Implementing the di�erence formulae concept together with event handling in the

object�oriented Dymola!Dymosim environment should be the main issue for further

research� An automatic code generation can replace the di�cult task of producing
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correct simulation code manually� as was done in this research e�ort for implementing

the introduced concepts� This research should result in the possibility of modeling a

conditional index system in a truly object�oriented fashion� The simulation user can

then concentrate his or her e�orts on the modeling task�

A comparison of the e�ciency of the newly suggested concepts with commercial

simulation approaches� such as those embraced by PSpice is another research task that

directly results from the previous one� The e�ciency should increase as the arti�cial

sti�ness problem vanishes with the use of di�erence formulae for derivatives� However

the problems of the ideal switches still cause singularities that must be prevented by

either a switch logic if these cases are not signi�cant or use of a non�ideal switch in

cases where they are signi�cant� The simulation time should decrease� because the

cases with the need for a non�ideal switch element should only make up for a small

fraction of the cases that previously caused arti�cial sti�ness�

Further research should be concentrated on resolving problems caused by the nature

of ideal switches� Most likely� ideal switches should only be replaced by non�ideal

switch elements in singular cases� and thus� the simulation time and cost can be kept

as small as possible� However� an automated algorithm for determining these cases

and to �nd the best substitution with non�ideal switch elements is needed�
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