
AN INTELLIGENT FAULT DIAGNOSER

FOR DISTRIBUTED PROCESSING

IN TELESCIENCE APPLICATIONS

by

Pamela Marie Kury

A Thesis Submitted to The Faculty of the

DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING

In Partial Fulfillment of the Requirements

For the Degree of

MASTER OF SCIENCE

WITH A MAJOR IN ELECTRICAL ENGINEERING

In the Graduate College

THE UNIVERSITY OF ARIZONA

1990

STATEMENT BY AUTHOR

This thesis has been submitted in partial fulfillment of requirements for an
advanced degree at the University of Arizona and is deposited in the University Library
to be made available to borrowers under rules of the Library.

Brief quotations from this thesis are allowable without special permission,
provided that accurate acknowledgment of source is made. Requests for permission for
extended quotation from or reproduction of this manuscript in whole or in part may be
granted by the head of the major department or the Dean of the Graduate College when
in his or her judgment the proposed use of the material is in the interests of scholarship.
In all other instances, however, permission must be obtained from the author.

APPROVAL BY TIIESIS DIRECTOR

This thesis has been approved on the date shown below:

"'~A~~'~

F. E. Cellier
Professor of Electrical Engineering

3

ACKNOWLEDGEMENTS

I would like to extend my thanks to all the people who have supported me
throughout my education. I cannot thank my parents enough for all the support and
encouragement they've given me. To all my friends, I'd also like to extend my gratitude.
They often had faith in me when I had lost it. Many times they helped me to put "my
world" back in perspective.

I also owe Dr. Cellier a heartfelt thank you for all the time and effort he put into
this project. His support throughout my education was most helpful. Hopefully,
someday, I will become the writer he tried to make me.

I would also like to thank my committee, Dr. Schooley and Dr. Zeigler, for their
evaluations and helpful suggestions on my thesis.

4

TABLE OF CONTENTS

Page

LIST OF FIGURES .. 6

ABSTRACT... 7

CHAPTER 1 - INTRODUCTION 8

CHAPTER 2 - TELESCOPE DESCRIPTION. .. 11

2.1 The THAW Telescope 11

2.1.1 The Observatory 11

2.1.2 The Telescope. .. 12

2.1.3 The Measurement Instrument 15

2.2 Operation Constraints 17

2.3 The Simulated Telescope 18

2.3.1 Command Receiver .. 20

2.3.2 Command Processor 20

2.3.3 Data Transmission .. 21

CHAPTER 3 - HARDWARE ERROR SIMULATION............... 23

3.1 Theory 23

3.2 Implementation 24

3.2.1 Added Commands .. 25

3.2.2 Hardware Error Simulation .. 27

5

3.2.3 Selected Errors 28

3.3 Future Expansion .. 32

CHAPTER 4 - FAULT DIAGNOSER 34

4.1 Theory 34

4.2 Implementation '................... 41

4.2.1 Self Test 48

4.2.2 Fault Array. .. 49

4.2.3 Clear Faults 51

4.2.4 Observatory Test .. 52

4.2.5 Measurement Instrument Test .. 55

4.2.6 Telescope Test 58

4.3 Operation Example. .. 63

CHAPTER 5 - RESULTS AND CONCLUSIONS. .. 64

APPENDIX A - DIAGNOSER EXAMPLE 69

REFERENCES. .. 71

LIST OF FIGURES

Figure

1.1 - Proposed Self Maintenance Scheme

2.1 - Program Organization

3.1 - List of Added Commands .

3.2 - Listing of Simulated Hardware Failures .

4.1 - Methods of Fault Diagnosis .

4.2 - Cause and Effect Example .

4.3 - THAW Diagnosers .

4.4 - Cause and Effect Table for the Observatory .

4.5 - Cause and Effect Table for the Telescope .

4.6 - Cause and Effect Table for the Measurement Instrument .

4.7 - Cause and Effect Mapping Matrix .

4.8 - Fault Array Sections .

6

Page

9

19

25

29

35

41

42

42

45

45

47

62

7

ABSTRACT

A system of self maintenance for fault detection and correction in a highly

automated system is presented in this thesis. The self maintenance scheme consists of

three parts: a watchdog monitor for fault detection, a diagnoser to pinpoint the exact

component failure, and a method of repair. The second part of the scheme, the diagnoser,

is developed in detail and applied to the teleoperated THAW telescope. The THAW

telescope is an Earth-bound prerunner of the Astrometric Telescope Facility (ATF), an

approved payload of the forthcoming International Space Station Freedom (SSF). The

simulation of the ATF is modified to produce permanent hardware failures. A diagnoser

is created using shallow reasoning and a rule base which pinpoints the most likely

failure(s) with reasonable success. Implementation of the watchdog monitor and the

repair system is left for future work.

8

CHAPTER 1

INTRODUCTION

Recently, a variety of systems have been developed for use in space. Trends

indicate space technologies will continue to be needed in the future. The cost of space

systems is always a major factor in deciding their feasibility. If the system requires

humans on site for maintenance and guidance, the cost increases considerably. Therefore,

automated processes are the most desirable. Unfortunately, components still tend to break

in an automated system and then need repair. To truly make an automated system cost

effective, it should include some self maintenance functions.

The scheme for such maintenance basically includes three parts. The first part

needs to detect that an error condition exists. The second part needs to determine exactly

what system component has failed. Finally, some means of repairing the system is

necessary. Figure 1.1 illustrates the proposed self maintenance scheme.

9

I Equipment

l
watchdog Symptom Fault Failures Repair

> >
Monitor Diagnoser System

I
I

i

B
Figure 1.1 - Proposed Self Maintenance Scheme

One possible method of accomplishing the first part of self maintenance, error

detection, is a watchdog monitor. The watchdog monitor is an intelligent agent that

would supervise the operation of the system and 'reason' about its integrity. The

operation of such a monitor could be switched on and off without interfering with the

operation of the original process. The monitor would only enhance the existing system.

If the monitor found an unexpected result in the system operation, it would only have the

power to notify the user or other intelligent agents for further action.

The second logical step in a self maintenance scheme, after detecting something

amiss, is to actually pinpoint the fault. Some form of a rule base could be used to

diagnose the exact cause of the error condition. The operation of this 'diagnoser' would

interact with the original process and might even have the power to issue new commands

10

to the process for testing. After testing, the diagnoser would then notify the human user

or another process of the exact cause of the fault at which point repairs could be initiated

or postponed to a more appropriate time.

Finally, some type of automated repair system is needed for a truly autonomous

and independent system. Perhaps simple redundancy of components that are likely to fail

would be sufficient. Ideally, automated 'repairmen' would be available to correct the

error condition or replace faulty components. After repairs were made, the diagnoser test

could be run once more to ensure that the fault was fixed and that nothing else was

damaged in the process.

This thesis is but one step in creating a high autonomy system for space

applications with a focus on the second step of the scheme described above. A method

of pinpointing a specific error, given that a defect in the system exists, is presented.

Many different methods of fault diagnosis exist. Discussion of these methods is

postponed to section 4.1 where all the relevant terms are defined. The diagnoser in this

thesis uses shallow reasoning and cause and effect tables (as defined in section 4.1) to

determine the exact component malfunction. The diagnoser interacts with the original

process and tests a variety of its functions depending upon the probable location of the

fault. The watchdog monitor, not developed presently, is assumed to give the location

information. Repair of the actual error is also left up to further research. The diagnoser

scheme is then applied to an actual system with promising results.

11

CHAPTER 2

TELESCOPE DESCRIPTION

The concept of self maintenance can be applied to many systems. However, an

actual system is needed to test the theory. The error diagnoser part of the self

maintenance scheme is applied to a simulation of the THAW telescope at the Allegheny

Observatory. Teleoperation of the THAW telescope has been studied as a first step in

developing a controller for the Astrometric Telescope Facility (ATF), an approved

payload of the forthcoming International Space Station Freedom (SSF). A simulation of

the THAW telescope currently exists on a Micro Vax at the University of Arizona. [6] It

was developed as part of the Telescience Testbed Pilot Program supported by NASA. [1]

2.1 The THAW Telescope

The THAW telescope is located at the Allegheny Observatory in Pittsburgh, PA.

The telescope can be considered as consisting of three parts: the observatory, the

telescope itself and the measurement instrument which is attached to the telescope. Each

of these parts have distinct components and specific operation requirements.

2.1.1 The Observatory

The observatory is defined as the telescope's operating environment, consisting of

the dome, the shutter and the observatory room. All of these components should be

12

operated remotely which will be mandatory in space operations.P' Of course, the space

telescope won't have a "dome" and an "observatory room". These will be replaced by

equivalent boundary conditions imposed by the SSF to which the ATF telescope will be

attached.

The dome can be rotated 360 degrees for viewing any portion of the sky which

is located higher than 30 degrees above the horizon. The dome must have its power and

its motor on for rotation. The dome has a predefined starting position. An open position

is also predefined and the dome must be in this position to open or close the shutter. The

shutter motor must also be on when opening or closing the shutter.

The observatory floor can also move. The floor motor must be on and the

telescope must be horizontal for the floor to be raised or lowered. The floor must be in

the down position before the telescope is moved or any observations are attempted.

The observatory is also equipped with two room cameras and a set of flood lights.

Obviously the flood lights must be on for the room cameras to return any useful

information. The flood lights must be off during observations to avoid burning out the

photon multipliers on the measurement instrument.

2.1.2 The Telescope

The THAW telescope must be completely automated for teleoperation.

Declination and hour angle (or right ascension) measurements define the telescope

position. A variety of motors exist for positioning the telescope. Focus and tracking are

13

also mechanized. Cameras mounted on the telescope itself and on a guider scope are

used to select the desired star field.

Declination is defined as the distance from the primary axis ranging from -90.0

degrees to +90.0 degrees. The celestial North Pole corresponds to +90.0 degrees and the

celestial equator corresponds to 0 degrees.

The hour angle is the telescope's distance in degrees from the Meridian, a line

connecting the celestial North Pole with the Zenith. The hour angle is defined between

plus and minus 180 degrees, increasing in the counterclockwise direction. The hour angle

is fixed to the location of the observer and changes proportionally to the sidereal time

when the telescope is operated in a star tracking mode.

The right ascension uses a coordinate system that is fixed in the sky rather than

to the observer as in the case of the hour angle.

<hour angle> = <sidereal time> - <right ascension>

Right ascension increases in the clockwise direction. The telescope's position can be

defined by the declination and either the hour angle or the right ascension. The hour

angle is more practical when computing the position of the telescope relative to the

observatory, while the right ascension is more useful when computing the position of the

telescope relative to a celestial object.

The slew motors, step motors and guide motors position the telescope. The slew

motors, one for declination and one for hour angle, make the largest adjustments. Then,

the step motors are used to make a finer adjustment. Finally, the guide motors are used

14

to position the scope on the exact star field.

The finder scope is a mirror attached to the telescope to show the telescope's field

of view. The finder camera looks through the finder scope to report the same information

as the measurement instrument. Thus, there is no need for removing the measurement

instrument and no risk of damaging the photon multipliers with hazardous sightings when

positioning the scope for a specific observation.

The guider scope and its associated camera enable higher magnification readings

with lower precision. The guider system only views one star. It is useful in finding the

apparent radius of a star, and to determine current viewing conditions. Centering a

desired star in the cross hairs of the guider scope camera also supports accurate tracking

of the target star.

The scope is equipped with a tracking system. The tracking motor changes the

hour angle as needed to follow an object through the sky as time passes. Unfortunately,

this system is not sufficiently accurate, so the guiding system is also needed for keeping

the viewing field constant.

The focusing system should also be automated. Once the focus is set, the focus

motor automatically adjusts the focus for changes in temperature.

measurements should always be properly focused.

Notice that automation and control of the THAW simulator reflect the

Thus, the

conceptualized system equipped with a teleoperation capability, whereas the simulation

of the actual plant reflects current reality. Several of the sensors and controls necessary

15

for teleoperation of the instrument are currently implemented in the simulator only, and

do not reflect actual sensors and controls mounted on the real instrument. The real

telescope is not currently equipped for complete teleoperation without a local operator

(e.g., the guider system is currently implemented as a screw that must be manually

adjusted (no motor) and the same holds true for the focus system).

2.1.3 The Measurement Instrument

The measurement instrument used by the THAW telescope is called the map.

The instrument consist of twelve fiber optic probes, so-called photon multipliers. Each

probe will be held by a robot arm that can position and orient the probe. The map robot

is called "medusa". Currently, the real telescope is not equipped with a medusa system,

and the probes must thus be adjusted manually. One probe is used to observe the target

star and the others monitor eleven reference stars in the field of view. The multi-arm

robot which holds the probes moves the probes into their appropriate configuration for

each observation. Each photon multiplier must be brought to a thermal equilibrium

before any accurate observations can be taken. Full power is applied only when there

exists no risk of overload.

The main purpose of the ATF is to determine if planetary masses exist around

selected neighboring stars. The horizontal and vertical positions of a target star from the

centroid of the reference star positions in that field of view are determined. The centroid

is assumed to be stationary since the reference stars are all much farther away from Sol.

16

Also, small aberrations of the positions of individual reference stars are further reduced

in the process of computing the centroid. By observing the movement of the target star

with respect to the centroid over a period of several years, the presence of planetary

masses can be determined since the gravitational forces exerted from the planets on their

sun will lead to a sinusoidal modulation of the interstellar path of the target star through

the galaxy (for further explanation see [1] and [2]).

A device consisting of 1000 alternating transparent and non-transparent lines called

a ruler is the only piece of equipment, in addition to the probes themselves, needed for

these observations. The ruler is moved slowly across the field of view in both the

horizontal and vertical direction for each measurement. Again the ruling process is

completely automated for remote operation. Each line has approximately the thickness

of a star disk. Thus, when a non-transparent line covers a star no light is registered by

the photon multiplier which is positioned on that star. However, when a transparent line

covers the star, the full star light is registered by the photon multiplier. Thus, during an

observation, each photon multiplier goes through periods of high light intensity followed

by periods of minimal light intensity. Due to the linear motion of the ruler, the light

intensity follows a sine wave pattern over time. The relative position of the target star

can then be extracted from the differences between the phases of the measured sine

waves.

17

2.2 Operation Constraints

The operation of the TIIA W telescope simulator is completely automated and can

be done from a remote site. Many operation constraints exist that are too numerous to

mention in this paper (for further information see [1D. Some constraints have already

been discussed such as needing the dome in the open position to open or close the shutter

or needing the floor to be down before moving the telescope.

If a command is given to the telescope and an unsafe or inappropriate operating

conditions exist, then the command is rejected. For example, if the dome is not in the

open position and the user sends an open shutter command, then an error message will

be returned and the shutter will remain closed. Commands must be within the allowed

"transaction envelope" in order to be executed. The user must follow the proper

procedures to satisfy these constraints if he expects the telescope to operate properly.

The error diagnoser must also follow these guidelines. In chapter four, the

discussion of the diagnoser shows how these constraints are both a help and a hindrance

in pinpointing a specific fault. In some cases, the initial conditions for a specific

operation cannot be satisfied. When this happens, the integrity of certain components

can't be checked. Yet these same operating constraints help to eliminate unnecessary

testing and pinpoint the exact fault much faster.

18

2.3 The Simulated Telescope

The THAW telescope is currently simulated on a Micro Vax digital computer. The

simulator, which has been coded in Ada, was developed as part of the NASA Telescience

Testbed program at the University of Arizona.P' A commanding MicroVax using

OASIS[9) as its command, control, and communication protocol sends instructions to the

simulated telescope. Developing this simulation was part of another master's thesis. [6)

Consequently, only a brief overview of the simulation will be provided here.

Communication with the telescope simulation can be decomposed into three major

tasks. Each task will run simultaneously using the multitasking capabilities of Ada.

These tasks are the Command_Receiver, the Command Processor and a

Data Transmission task. These tasks can be further broken down into subtasks and

procedures. Figure 2.1 shows the basic structure of the telescope simulation.

19

COMMAND RECEIVER

.ver ~ > I Depacketizer ~ > >II JI
ecel I =rt

I
I Mailboxes I

I
COMMAND PROCESSOR-

~ > IRetriever ~ > IScanner ~ > IParser ~ > I Interpreter ~ > l
I

I Simulation I
I
I

DATA TRANSMITTER-

Scientific
f---> Data ->

Handler

- > I Packetizer ~ > I Transmi tter ~ ->-

Telemetry
~ > Data f-->

Handler

Figure 2.1 - Program Organization

20

2.3.1 Command Receiver

The Command_Receiver continuously monitors the OASIS communication line.

An instruction is sent from the remote controlling computer to the telescope simulator by

OASIS. After detecting the command, the Depacketizer part of the Command_Receiver

'unpacks' the instruction and puts it in a form that the Command_Processor understands.

The unpacked command is then placed into an appropriate mailbox to await service of

the Command_Processor. Selection of mailboxes depends on the type of instruction.

There are three types of commands: priority commands, real-time commands, and time-

tagged commands.

2.3.2 Command Processor

The Command_Processor takes a command out of a non-empty mailbox. Mailbox

selection starts with the priority command mailbox, followed by the time-tagged mailbox

and finally the real-time mailbox. The instruction is then scanned for validity. If the

command is invalid, an error message is returned to the user, otherwise the command is

passed to the parser. The parser recodes the commands to match those in the

Command_Code package and passes the new version of the command to the interpreter.

The interpreter determines what action needs to be performed and accesses the

Tele_Simulation procedure. The Tele_Simulation procedure actually 'does' the operation

by modifying the appropriate telescope parameters.

Another part of the Command Processor is a failure simulator. The failure

21

simulator simulates transient errors. These errors can be of three types. The first type

simulates the local controlling computer detecting a hardware error in the telescope. An

error message is returned to the user. The second type of simulated error represents

communication errors between the two computers. In this case, the next command is just

removed from the mailbox and the Command Processor continues. The third and final

error represents a sensor error when a show status command is issued. All of these errors

are transient, meaning they only exist for execution of that command. These errors occur

randomly with a frequency depending upon a threshold set by the user. The threshold can

be set such that no random errors occur on execution of any command or such that they

occur for every attempted command.

2.3.3 Data Transmission

Data Transmission consists of four main parts: the Status_Data_Handler, the

Scientific_Data_Handler, the Packetizer, and the Transmitter. The Status Data Handler

sends telemetry packets back to the commanding computer through the Packetizer and

Transmitter. The four different types of telemetry packets are observatory telemetry,

telescope telemetry, MAP telemetry, and clock telemetry. A general telemetry report

would include all of these packets. The Scientific_Data_Handler reports camera and

measurement instrument information. Both data handlers use the Packetizer and

Transmitter to return information to the commanding computer. The Packetizer performs

the opposite function of the Depacketizer in the Command_Receiver. The Transmitter

22
then sends the packet through an Ethernet link to the commanding computer where it is

received and processed by the OASIS software.

23

CHAPTER 3

HARDWARE ERROR SIMULATION

The self maintenance scheme is designed to detect, pinpoint and repair faults in

a highly automated system. The error diagnoser section of the self maintenance scheme,

which is the main focus of this thesis, identifies faulty system components. In order to

test the error diagnoser, the system must have hardware errors to detect. The telescope

simulation developed by LeW[6] only implemented transient random errors. The purpose

of the newly developed error diagnoser is to detect permanent failures of hardware

components in the telescope. Therefore, hardware error simulations must be added to the

THAW simulation.

3.1 Theory

Theoretically, each part of the telescope, observatory, and measurement instrument

could be disabled by a hardware error. The failure of any component would have a

number of noticeable effects on the telescope's operation. The scope of a failure could

be confined to its own specific area of the telescope or it could propagate to affect other

sections as well.

For example, if the declination sensor failed, all commands that requested the

declination position or tried to move the telescope to a new declination would be affected.

On the other hand, commands involving the measurement instrument, the observatory or

24
other parts of the telescope would not be affected at all. However, if the telescope's

power supply failed, then all of the telescope functions would be affected and the

measurement instrument would be disabled as well.

For the actual telescope, it is not critical to know the exact nature of the hardware

error. The effects will become apparent in due course while operating the telescope.

However, when simulating the telescope and the hardware errors, it is very important to

know the exact effects of an error. If the error is not simulated correctly, then it is

unlikely that the error diagnoser will perform correctly on both the simulation and on the

actual telescope. Therefore, accurate modeling of the hardware errors is essential.

3.2 Implementation

To actually implement a simulation of selected hardware errors, additional

commands and program components were needed. Commands were created to allow

selection of the errors randomly, or as chosen by the user. Commands to clear the

existing error and to display the current error at the local controlling computer were also

added. Various parts of the original simulator had to be modified accordingly. Fifteen

hardware errors were selected and simulated. Other errors could be added in the future,

but for testing the error diagnoser, these fifteen faults seemed sufficient.

25

3.2.1 Added Commands

Adding commands to the THAW simulator requires modifying a variety of

procedures and packages. A complete explanation of the procedure is found in Lew[61.

A brief explanation of the modifications is presented here. The necessary new commands

and their functions are shown in the figure below.

Set error Set a randomly selected hardware

error.

Set herror = #

Show error

Clear error

Set a specific (#) hardware error.

Show the current hardware error.

Erase the current hardware error.

Figure 3.1 - List of Added Commands

The words Herror and Clear are added to the Word_Code package. Each new command

requires the addition of a new value in the Command_Code package. New variables were

also added to the global variable package. A new variable type Hard_type has values

ranging from HO to H15. Hard_error is a variable of Hard fype and HO is the default

value indicating that all hardware components are working perfectly. When Hard error

has any other value, a hardware error is present. Different values of Hard_error indicate

different component failures. Three flags are also added to simulate broken cameras.

26
They are: Fi_blank, for a broken finder camera, G_blank, for a broken guider camera, and

Rc _blank, for broken room cameras. If a flag is true and a bitmap is requested nothing

will be returned, simulating a blank viewing field and a broken camera. For each

command record, a boolean value, Disabled, is included. The default value of Disabled

is false and the commands will operate as planned. If Disabled is set to true in the

Hard_Error_Simulator, the command is not executed and the simulator continues with the

next command. Finally, instructions for handling these new commands are added in the

Interpreter.

To set a hardware error, the user enters one of the two 'set' commands. If the "set

error" command is issued, the interpreter performs a rendezvous with the Create_Herror

task at the Herror_Selection point. The task calls the error selection procedure,

Herror Sel, and the error execution procedure, Herror Exec. The user can also select a- -

specific hardware error by issuing the "set herror = # "command. In this case, the

interpreter performs a rendezvous with the Create_Herror task at the Herror_Execution

point. The task takes the user's value for the error and then runs the Herror Exec

procedure.

The Herror_Sel procedure randomly selects a value for Hard_error. A random

number is generated with a seed value and the external VAX-VMS function. The random

number is then scaled into fifteen regions and the corresponding Hard_Error is set.

Execution of the hardware error is done in the Herror_Exec procedure. Some of

the existing hardware errors simulate component failure. In the simulation, the variables

27

representing the broken component are set to the 'off' value, even if the user had

previously turned that part 'on'. For other errors, nothing happens in the execution

routine.

A "show error" command displays the value of Hard jerror on the screen of the

local controlling computer. When testing the diagnoser, it is often necessary to be able

to verify its results. After receiving the "show error" command, the interpreter executes

the Put_Hard_Error procedure.

The "clear error" command simulates fixing the hardware error. Clearing an

existing hardware error is a separate procedure called by the interpreter. The procedure

resets the value of Hard_error to HO. It also enables any bitmap reports from a formerly

broken camera by resetting Blank to false.

3.2.2 Hardware Error Simulation

The Hard_Error_Simulator is a task that runs continuously during the telescope

simulation (see figure 3.1 for a full listing). Before a command is executed, the execution

task, either Tele _Simulation, the Scientific_Data _Handler, or the Status_Data _Handler,

performs a rendezvous with Hard Error Simulator at Disable Check.

Hard Error Simulator checks the current value of Hard error. If Hard error assumes

a value other than HO, then the task proceeds to check the current command code against

those that are disabled by that error. When the current command code matches one that

is disabled by the hardware error, the Disabled flag is set to 'true'. The calling task,

28
either Tele_Simulation, the Scientific_Data_Handler, or the Status_Data_Handler, checks

Disabled and executes the command if the flag is false.

For example, if the command is "set dome = open" to move the dome to the open

position, the command code is 220160200. Assuming the error is H1, indicating that the

dome is frozen in place (see section 3.2.3 for a full explanation of the errors), and the

dome is not in the open position, the simulator will try to perform the command. The

interpreter performs a rendezvous with the Tele_Simulation task at Do_Dome, which in

turn rendezvous at Disable Check with the Hard Error Simulator. The

Hard_Error_Simulator checks the current command against those disabled by the error

HI. The command code falls within the parameters of the disabled commands and the

Disabled flag is set to true. Program control is then returned to the Tele_Simulation

procedure, which checks for the appropriate initial states. If one of the states is incorrect

for moving the dome to the open position, then Unsafe is set to true and the command

is ignored. Assuming the initial conditions are met, Disabled is also checked and the

command is ignored since Disabled is true. Finally, the simulator executes the next

command or waits for further instruction.

3.2.3 Selected Errors

Fifteen errors are simulated, representing a variety of possible hardware failures.

For purposes of testing the error diagnoser, it is assumed fifteen errors are sufficient.

Figure 3.2 provides a concise list of the error codes and what they simulate.

29
Error Code

HI
H2
H3
H4
HS
H6
H7
H8
H9
HIO
HII
HI2
H13
HI4
HIS

Simulated Failure
Dome and Shutter Frozen in Place
Telescope Power Off - fuse blown
Observatory Flood Lights Burned Out
Slew Motor Broken
Guide Motor Broken
Step Motor Broken
Ruling Translational Motor Broken
Tracking Motor Broken
Finder Sensor/Camera Broken
Cover Motors Broken
Declination Sensor Broken
Hour Angle Sensor Broken
Guide Clamp Unable to Disengage
Hour Angle Sensor Not Calibrated
Declination Sensor Not Calibrated

Figure 3.2 - Listing of Simulated Hardware Failures

The first error (HI) simulates the dome of the telescope and the shutter being

frozen in place. The Herror_Exec procedure sets the outside temperature to a very low

value. The following commands are disabled by the Hard_Error_Simulation task: "set

dome = open", "set dome = start", "set dome = (angle)", "set shutter = open", and "set

shutter = close". Obviously, the dome can't be moved if it is frozen in place. The

shutter commands are affected too since ice or snow tends to affect all moving parts

exposed to it.

Hard jerror (H2) has many effects since it simulates the fuse being blown on the

telescope's power supply or some other malfunction that has turned off the supply. The

telescope power, ruling power, guide power and motor, focus power and motor, and

30

tracking power and motor are all turned off by Herror_Exec. Any command that sets

these values on again is disabled by the Hard_Error_Simulator. All commands that

attempt to slew or step the telescope are also disabled.

The third error (H3) simulates the flood lights in the observatory burning out. The

light sensor parameter is set to off and Rc _blank is set true by Herror _Exec. The flood

lights themselves still appear to be on if they were on previous to setting the hardware

error. When a bitmap report from either room camera is requested, a blank value is

returned since the room cameras would have nothing to report without lighting.

The next five commands (H4 - H8) all simulate various motors breaking. The

slew motor is broken if the Hard error equals H4. All slewing functions are disabled.

Calibration functions are also disabled since these functions use slewing. The fifth error

(HS) simulates the guide motor breaking. The guide motor is set off in Herror_Exec. All

guiding commands are disabled. When Hard error equals H6, the step motor is burned

out. All stepping functions are disabled. The seventh hardware error (H7) simulates a

broken translational motor for the ruling apparatus. Commands to move the ruler in the

away or toward direction are both disabled. The tracking motor is broken when

Hard _error equals H8. The tracking motor is set to the off state and the command to

turn it on is disabled. The tracking control is also turned off so the telescope ceases to

track the object and update the hour angle.

The ninth error (H9) simulates the finder camera breaking. The camera state is

turned off and Fi blank is set to true. Thus the finder camera will report no information

31

whenever a "display finder on" command is issued.

The motors that automate removal of the telescope's covers are broken when

Hard error is HlO. None of the commands to remove or replace the covers will

function.

The next two errors (Hll and H12) have far reaching effects. When Hard error

is Hll, the declination sensor is assumed to be broken. Any command to move the

declination is disabled (i.e. slewing, stepping, guiding and calibrating the declination).

In addition, the command to report the declination to the user is also disabled. Similarly,

hardware error H12 indicates a broken hour angle sensor. All commands to move the

hour angle or to report it's value are disabled. It should be mentioned that the hour angle

and right ascension are found separately. One value is a mathematical function of the

other. However, the hour angle could be correct while the right ascension is incorrect if

the clock used to compute the right ascension is broken. In this case, since the hour

angle sensor is broken, both the right ascension and the hour angle will be incorrect.

The next error (H13) simulates the guide clamp being stuck in the "on" position.

All guiding functions are disabled.

The last two errors (H14 and HIS) don't simulate a component failing totally, but

rather that the part no longer functions as expected. H14 and HIS represent respectively

the right ascension and the declination sensors being out of calibration. Whenever a

command is sent to change the position, an offset error value is included in the new final

position. Calibration functions are also disabled. The Hard Error Simulator also checks

32

that the requested move with the offset is still in the acceptable range. If the command

would exceed the boundaries, then an error message is returned to the user. The user

could become quite frustrated when these hardware errors are present if he sends a

command that should work and receives a message indicating that the parameters are out

of range.

3.3 Future Expansion

Fifteen hardware errors seem sufficient to verify the operation of the error

diagnoser, but more errors can be added at any time. The procedures Herror_Sel, and

Herror_Exec, the package GlobalVariable and the task Hard_Error_Simulator would all

need to be modified accordingly.

Presently, only one hardware error can exist at a time. Obviously, in a real

system, many faults can occur at once. To simulate more than one error, the variable

Hard_error could be made into an array instead of a single value. The task

Hard Error Simulator would also have to be modified to check the current command

against those disabled by each of the errors. The procedures Clear_Herror and

Put_Hard_Error would also have to be changed. Commands for showing or clearing the

whole error array as opposed to a single value could also be added. While the addition

of an error array better simulates reality, it is unnecessary for testing the fault diagnoser.

In an actual system, the user never knows when an error will occur. The

simulator, however, must be told to create an error. The simulation could be changed to

33

allow the creation of a hardware error at some random time. Yet, for purposes of testing

the error diagnoser, there seems to be no need for randomly occurring errors. It is much

easier for the user to set an error and test the diagnoser with the assurance that a fault

actually exists.

34

CHAPTER 4

FAULT DIAGNOSER

The fault diagnoser is the second part of the self maintenance scheme. Once an

error condition has been detected by the watchdog monitor, the diagnoser is activated to

pinpoint the exact fault. The methods used in creating the diagnoser can be applied to

a variety of systems. The Atmospheric Telescope Facility (ATF) is the system used to

demonstrate the feasibility of such an approach. The ATF is easily decomposed into three

subsystems, the observatory, the telescope and the measurement instrument. A diagnoser

or self test is created for each one. At the end of a self test, a listing of the possible error

conditions is returned to the user with the most likely one having the greatest weight.

The next step in the self maintenance scheme would be the repair of the most likely error.

The self test could then be redone to diagnose any further errors, or the user could

continue operation of the system under the assumption that the problem had been fixed.

4.1 Theory

The need for accurate automated fault diagnosers is becoming more apparent as

systems grow in complexity and become more automated. The reasons for automating

a system also justify the creation of automated maintenance systems as well. Many

different approaches have been applied with varying degrees of success. The following

taxonomy outlines the main techniques presently available.

35
Fault Diagnosers

Inductive
(Pattern Based)

Diagnosers

Deductive
(Knowledge Based)

Diagnosers

Neural
Networks

Inductive
Reasoners

Deep
Reasoners

Shallow
Reasoners

Figure 4.1 - Methods of Fault Diagnosis

All of these methods have been applied to a variety of automated systems.

Inductive diagnostic systems seem to be better suited to systems for which

parameter values or even the structure are partially unknown than deductive methods.

Inductive diagnosers easily adapt themselves, and they can learn new situations during

operation. This capability may be important in the context of long-term fault diagnosis

of space-based systems which alter their "correct" behavior over time due to effects of

aging and due to technology-related system reconfigurations. A detailed or complete

understanding of the system is unnecessary. The inductive method also possesses some

drawbacks. A priori knowledge may be difficult to incorporate into the system. The

success of these methods is not always guaranteed and the responses of the diagnoser may

be difficult to interpret and assess.

36

A neural network is one method for implementing an inductive diagnoser. Neural

networks are able to learn and adapt to dynamic systems which is difficult for the

knowledge based deductive system. Neural networks are composed of many layers of

interconnected nodes. Paths lead through the network from the input nodes to the output

nodes. The paths are established and weighted appropriately during a training phase in

which known input and output combinations are presented to the network. The network

is trained by comparing its own outputs to the correct output values. The weights are

adjusted using an optimization scheme until the discrepancy between the outputs produced

by the neural network and the known (correct) outputs is minimized. After the training

period has been completed, the network is u~ed to predict outputs even for input

combinations not previously encountered. Neural networks will soon be implemented on

parallel computer architectures, and they execute rapidly after the learning and testing

phases. Neural network fault diagnosis has been applied to an F-16 flight line diagnosis

with promising results. [8] Another application of neural networks is fault diagnosis of the

fluidized catalytic cracking process in an oil refinery. The methodology worked quite

well for single faults, and it still performed respectably when encountering multiple

failures.F" Neural networks do have drawbacks. The learning and testing phases are

often painfully slow, and there is no guarantee that the optimization will converge, i.e.,

it cannot be guaranteed that the neural network is able to learn a particular fault, or that

it will still remember a previously learned fault after it was taught another fault.

Inductive reasoners have also been applied to inductive fault diagnosis. The

----- - ---------_. - -----------------------

37

inductive reasoner will always converge, and the speed of learning can be assessed ahead

of time. Inductive reasoning has been applied to classification of faults and switching

events in a power system.P' It has also been applied to the detection of faults in the high

altitude horizontal flight of a B747 aircraft.[14l Unfortunately, the inductive reasoner

doesn't work well for complex systems with many signals since the time of computation

grows exponentially with the number of signals. Also, currently available inductive

reasoners don't take advantage of parallel processor architectures.

The deductive reasoner, which is knowledge based, works well for completely

defined systems. A priori knowledge can be easily incorporated into this type of

diagnoser. Also, deductive diagnosers can be refined in an iterative process. A first

crude version of the diagnoser can be built on a few data values only. As more

knowledge is gathered about the system, this knowledge can be gradually incorporated

into the diagnoser. The results of deductive reasoners are also easy to assess. However,

the deductive reasoners cannot easily adapt as a system changes. Complete knowledge

of the system is necessary for the deductive reasoner to work correctly.

Many definitions exist for the terms 'deep reasoning' and 'shallow reasoning'.

The following definitions are used in this paper. A shallow reasoning system operates

on current knowledge only. Alternatively, the deep reasoning system acts on stored as

well as on current knowledge. For example, suppose a system is required to forecast

tomorrow's high temperature. The shallow reasoner would base its prediction on today's

high temperature and possibly on a reading of the current temperature rate of change with

38

time. If it knew the temperature today was 100 degrees and the gradient was zero, the

shallow reasoner would predict the high for tomorrow to be 100 degrees. The deep

reasoner would have the high temperature for today, along with readings for many

previous days. The deep reasoner would also have a model of weather patterns for

comparison when making its prediction. The facts that a stationary high pressure system

is over the area and the effects of such a system are also used by the deep reasoner.

Again the predicted high temperature for tomorrow is 100 degrees. Both reasoners may

reach the same conclusion, but from different information. However, the deep reasoner

has more information available, and therefore, it will generally produce more accurate

predictions than the shallow reasoner.

A shallow reasoning system is the easiest form of a deductive reasoner to produce.

For example, a relatively simple implementation of shallow reasoning can be done using

a series of hierarchically grouped if-then-else commands. However, as the size of the

system grows, this method can become increasingly cumbersome and redundant. Many

statements are needed for tracking down each possible result. Whole program segments

may have to be repeated many times, since they occur in various branches of the decision

tree. This makes it difficult to maintain such a shallow reasoner. It is difficult to

guarantee the integrity and coherence of such a reasoner since a single modification of

an if-then-else clause may call for many modifications in various branches of the shallow

reasoner. For a more complex system, shallow reasoning can be obtained using a rule

base. A rule base is an unstructured linear list of if-then-else clauses which are visited

39

by the system repetitively and non-sequentially. Rule based systems are more difficult

to build, since digital computers are inherently sequential machines, but they are easier

to maintain than hierarchically structured if-then-else decision trees, and the size of the

rule base grows less rapidly with the complexity of the analyzed situation. Shallow

reasoning has been applied to numerous systems. An expert system for fault detection

in a CO2 removal system designed for the forthcoming Space Station Freedom uses this

approach.?' Shallow reasoning is also used in a diagnoser for the loading of liquid

oxygen into the Space Shuttle.F' Unfortunately, shallow reasoning doesn't always provide

a good resolution in the case of multiple errors. Even with the rule based approach, the

size of a shallow reasoning system grows exponentially with the number of simultaneous

faults to be considered. This is a distinct disadvantage of the shallow reasoning approach.

Deep reasoners usually contain a model that runs in parallel with the given system.

With the current information, the stored information and the model, the deep reasoner

compares its results to the actual system and then reasons about any discrepancies. The

size of the deep reasoner grows linearly with the complexity of the system (including

simultaneous faults), which gives it a distinct advantage over the shallow reasoning

approach. However, deep reasoners are more difficult to build and maintain than shallow

reasoners. Also, the deep reasoner may require a longer period of time than the shallow

reasoner from the moment when the fault is detected until a decision about its nature will

be reached. However, it will report the cause of the fault with a higher accuracy and with

40
less ambiguity. A qualitative model and a variety of state variables have been used by

a deep reasoner applied to a jet-engine oil system. [12] Deep reasoners have also been

applied to fault diagnosis in combinatorial and sequential circuits.l'P'

Some deductive knowledge based systems have been created that use a

combination of deep and shallow reasoning. By incorporating the two methods, the

authors have overcome limitations inherent in each. The integrated diagnostic model

(IDM) integrates the shallow and deep reasoning methods for fault diagnosis of a simple

mechanical system.P' The Westinghouse Expert Diagnostic System also integrates a

variety of knowledge into one conceptual system.l" In another conceptual study, a

shallow reasoner and a deep reasoner were combined to diagnose faults in a Space based

robot controlled fluid handling system. In this study, a shallow reasoner is employed to

determine quickly and cheaply the general domain of a fault. A deep reasoner,

specialized for the suspected domain, then takes over to determine the detailed cause of

the fault within the suspected domain.P"

The shallow reasoning method has been chosen for implementing a fault diagnoser

for the Atmospheric Telescope Facility (ATF). The system was fully defined and unlikely

to change except by a component failure which the diagnoser is designed to detect.

Therefore, inductive approaches were not necessary. The system was not extremely

complex, so a deep reasoner was not required. A rule base of error causes and their

effects was created for the system. Given the observed effects, the diagnoser should

pinpoint the most likely cause. An example is shown in figure 4.2.

41

Cause

A

B

A

C

Effect

X

X

Y

Y

Figure 4.2 - Cause and Effect Example

If the effects X and Yare discovered, then the possible causes are A, B, or C. However,

cause A is more plausible in this case since it is more likely that one error cause, A, has

occurred than two, Band C. The diagnoser should return cause A as the most likely

error.

4.2 Implementation

The first step in creating an error diagnoser for the Atmospheric Telescope Facility

is the creation of the rule base. As mentioned previously, the ATF is decomposed into

three sections, therefore three diagnosers are created.

42

ITHAW Telescope System I

Diagnosers

II
Measurement
Instrument

IObservatory I ITelescope I

Figure 4.3 - THAW Diagnosers

All of the possible error causes are listed, and the effects of these faults are

determined. The observatory cause and effect table is shown below in figure 4.4.

Cause
Dome power off
Dome motor broken
Dome frozen in place
Shutter power off
Shutter motor broken
Shutter position frozen
Dome not in 'open' position
Floor power off
Floor motor broken
Light switch broken
Light bulbs burned out
Lights are off
Light bulbs burned out
Finder camera is on
Guider camera is on
Room camera 1 broken
Room camera 2 broken

Effect
Dome fails to move

II

II

Shutter fails to open/close
II

II

II

Floor fails to move
II

Lights don't turn on/off
Lights don't turn on
Room cameras report blank

II

Room cameras don't report
II

Room camera 1 reports blank
Room camera 2 reports blank

Figure 4.4 - Cause and Effect Table for the Observatory

43

The telescope rule base is somewhat longer but still basically has the same format as seen

in figure 4.5.

Cause
Floor position not 0
Voltages >= 750
Telescope power off
RA clamp off
Tracking motor on
Declination < 30
Slew motor broken
RA sensor broken
RA sensor not calibrated
RA sensor broken
Meridian sensor broken
Telescope power off
Tracking motor on
Step motor broken
RA sensor broken
Telescope power off
Guide clamps off
Guide power off
Guide motor off
Guide motor broken
RA sensor broken
Floor position not 0
Voltages >= 750
Telescope power off
DEe clamp off
Tracking motor on
Slew motor broken
DEe sensor broken
DEe sensor not calibrated
DEe sensor broken
Pole sensor broken
Telescope power off
Tracking motor on
Step motor broken
DEe sensor broken

Effect
Fail to slew RA

"
"
"
"
"
"

RA doesn't seem to slew
Slew RA incorrectly
Calibrate RA fails

"
Fail to step RA

"
"

RA doesn't seem to step
Fail to guide RA

"
"
"
"

RA doesn't seem to guide
Fail to slew DEe

"
"
"
"
"

DEe doesn't seem to slew
Slew DEe incorrectly
Calibrate DEe fails

"
Fail to step DEe

"
"

DEe doesn't seem to slew

44
Telescope power off Fail to guide DEe
Guide clamps off "
Guide power off "
Guide motor off "
Guide motor broken "
DEe sensor broken "
Floor position not 0 DEe doesn't guide
Voltages >= 750 Fail to slew HA
Telescope power off "
RA clamp off "
Tracking motor on "
Declination < 30 "
Slew motor broken "
HA sensor broken HA doesn't seem to slew
HA sensor not calibrated Slew HA incorrectly
Telescope power off Fail to step HA
Tracking motor on "
Step motor broken "
HA sensor broken HA doesn't seem to step
Telescope power off Fail to guide HA
Guide clamps off "
Guide power off "
Guide motor off "
Guide motor broken "
HA sensor broken HA doesn't seem to guide
Cover (1-8) stuck Cover (1-8) fails on/off
Cover motor broken "
Focus power off Display not focused
Focus motor off "
Focus motor broken "
Focus motor on Unable to set focus value
Tracking power off Tracking failure
Tracking motor off "
Tracking motor broken "
Telescope power off "
Declination = 0 "
Finder camera off Finder information blank
Finder camera broken "
Guider info. displayed Finder info. not reported
Light on "
Telemetry on "

45

Guide camera off
Guide camera broken
Finder info. displayed
Light on
Telemetry on
Telescope power broken
() sensor broken
DEC clamp stuck
RA clamp stuck
Guide clamp stuck
Clutch stuck

Guider information blank
"

Guider info. not reported
"
"

Telescope power fails on
Show () gives wrong info.
DEC clamp fails on/off
RA clamp fails on/off
Guide clamp fails on/off
Clutch fails on/off

Figure 4.5 - Cause and Effect Table for the Telescope

The cause and effect table for the measurement instrument is shown in figure 4.6.

Cause
Medusa power off
MAP power off
Medusa position sensors broken
Translational motor broken
Rotational motor broken
Ruling power off
MAP power off
Tracking motor on
Probes not at full power
Probes' power off
Medusa broken
Probe sensor broken
Probes broken
Supplies broken
Supplies broken
Supplies off
Supplies broken
Supplies off
Light on

Effect
Medusa fails to move

"
"

Ruler fails away/home
Ruler fails move x/y
Ruler fails to move

"
"

Display ruling blank
"

Probes fail to move
Probe fails to orient

Probes fail to report
Supplies fail to turn on
Supplies fail to idle

"
Can't set supplies to max

"
"

Figure 4.6 - Cause and Effect Table for the Measurement Instrument

46

As the tables above show, some causes can have more than one effect and some

effects can have more than one cause. For example, in the observatory rule base (see

figure 4.4), the dome failing to move has a number of causes. The dome power could

be off, the dome motor could be broken or the dome could be frozen in place.

The job of the diagnoser is to pinpoint as closely as possible the most likely cause

given the observed effects. The diagnoser, or self test, sends a variety of commands

directly to the specified subsystem of the simulated ATF and observes the results. Each

subsystem (the observatory, the telescope and the measurement instrument) has a variety

of functions associated with it. When possible, these functions are separated into non-

interacting groups. Each time an effect is detected, the weight of all its possible causes

is incremented. If an error condition arises while testing a specific group, the most

plausible cause (the one with the highest weight) for the error in that group is stored. The

test continues in a similar manner for every group in the selected subsystem. At the end

of the self test, the errors from each group are presented to the user. The error with the

greatest weight at the end of the test is diagnosed as the most likely cause.

Figure 4.7 illustrates the basic diagnoser approach. Each cause has certain effects

and correspondingly each effect can have more than one cause. The asterisks indicate the

relationships between the causes and effects. The underlines show the ones encountered

in the following example. If effects 1, 2, 4, and 7 were observed, then cause A would

have the weight of 2 and cause C would have weight 4. Therefore, the most likely cause

is reported as cause C after taking the one with the maximum weight for the tested group

47

of functions. The other causes with lower weights are not reported to the user.

Effects

1 2 3 4 5 6 7

C

* * * I--
- -

* I-- Max Weight

* * * * "--- - - -

* * * I--

>

A

Causes B

D

Figure 4.7 - Cause and Effect Mapping Matrix

A new variable record type Cause is created for recording the causes of the error

conditions. The record has four parameters associated with it. MAP t, Observ t, and- -

Tele _t are all positive integer variables, initialized to zero. Name is a character string

with a maximum length of 50 specifying a description of the error's cause. Arrays of the

Cause records are then created. The array Observ _error is composed of 20 causes for

error conditions determined by the observatory test. Tele_error is an array of 50 Causes

as specified in the telescope test. MAP _error is also of length 50 and consists of the

causes for errors found in the instrument (MAP) test. Finally the array Faults, length 150

contains Causes from all of the tests. Causes 1-30 in the Fault array are reserved for

error causes discovered by the observatory test. Similarly, Causes 31-90 are filled by the

48

telescope test, and 91-150 by the MAP test. The extra length of the Fault array is needed

for shared faults and duplications as explained in the description of the Fault_array

procedure.

To be as nonintrusive as possible, the tests have few initial condition requirements.

The initial states of the observatory, telescope, or measurement instrument components

are saved during testing. At the end of a test, the components' states are restored, barring

any debilitating error conditions. Thus, the fault diagnoser interferes as little as possible

with the operation of the ATF from the user's perspective.

4.2.1 Self Test

A task called Self_test runs in parallel with the telescope simulation. The task

calls the procedures for the diagnoser. Three commands exist for fault diagnosis. "Test

observatory" commands the Interpreter to perform a rendezvous with Self_test and start

the Test_observ procedure. "Test telescope", operating in a similar manner, performs a

test of the telescope functions using the Test_tele procedure. "Test map" calls Self_test,

initiating a test of the measurement instrument with the Test_MAP procedure. The Name

strings in the Cause records of the arrays Observ _error, Tele_error and MAP _error are

all defined in the Self test task. Presently, only part of the arrays are filled, allowing new

causes to be added easily.

49
4.2.2 Fault Array

Fault_array is a procedure called by all of the diagnostic procedures. After the

functions of a specific group have been tested, the Fault_array procedure sorts out the

most likely cause(s) for that group, storing it (them) in the Fault array. The procedure

stores only the Cause with the highest integer value for the specified test

(Observ _t,Tele _t, or MAP _t). If more than one Cause has the same weight and no Cause

has a greater one, then all of these Causes are included in the Fault array. If no Cause

has a value greater than zero, nothing is added to the Fault array since no recognized

error has occurred.

The following example illustrates the Fault_array procedure. Assume that the user

is testing the observatory for faults. The Test_ observ procedure would be started by the

Self_test task. The first group of functions tested by the observatory test are the flood

lights and the room cameras. Fault_array is called with the following Ada commands:

Last_blank := 1;
First_error := 11;
Last_error := 16;
Numb := 1;
Fault_array(Last_blank, First_error, Lasr error, Numb, T_name,
Error_name);

The Causes for any errors in the group one operations are numbered 11-16 in the

Observ _error array, as initialized by the Self_test task. Therefore, First_error is defined

as 11 and Last_error is 16. Last_blank specifies the first location to fill in the Fault

array. For the observatory test, the first location is number one. Numb indicates the

50

group number of the functions just tested, in this case number one. T name refers to the

diagnoser test name, Observ. Error _name, also Observ, selects the array, Observ _error

in this case, of the possible error causes.

The Fault_array procedure then checks the value of Observ _t in each Cause record

in the Observ _error array. If room camera one is broken, then Observ _error(l3).observ_t

has the value one. This Cause record is stored in the Fault array and presented to the

user as the best possible cause for error in group one. The value of Last _blank is also

incremented accordingly to point at the next open location in the Fault array for the given

test.

The Fault_array procedure is called again in this example before the observatory

test begins testing the next group of functions. The test of group one turns the flood

lights on and off. If the flood lights are still "on", after a command attempted to turn

them off, the Observ _t parameter of the Cause named "Flood Lights Not Off' in the

MAP _error array is incremented. The Cause is included in the MAP _error array because

it is most often used in the MAP test. For the example, First_error and Last_error are

both set to 37, the number of the specific Cause. Error_name is changed to T_map to

indicate that the Cause is found in the MAP _error array. The Fault_array procedure

functions in the same manner as before. After the procedure call, Test_ observ resets the

value of Error _name to Observ for future use. The example shows that some Causes are

shared by more than one test, instead of repeating the record in each test's array. These

shared Causes are one reason for the extra length in the Fault array sections.

51
Another reason for the extra length is that the Fault_array procedure could store

the same Cause in the Fault array more than once. For example, in the telescope test,

a broken declination sensor would be detected by every group testing declination motions.

In each case, the Cause would be stored in the Fault array with its appropriate weight.

At the end of any test, the Causes stored in the Fault array by that test are sorted.

If the same Cause occurs more than once, only the one with the highest weight is saved

in the array. The other instances are dropped. Finally, all the Causes determined by the

test and stored in the Fault array are presented to the user.

4.2.3 Clear Faults

The Clear_faults procedure clears the specified locations in the Fault array and the

parameter of the Observ _error, Tele_error, and MAP _error arrays indicated by the

calling procedure. Whenever a diagnoser test is run, the appropriate variables in the

Cause records must first be reset to zero. An example illustrates the operation of the

procedure. If the user is testing the observatory, the Test_observ procedure first

reinitializes the appropriate Causes by calling Clear_faults. The Ada commands are:

First_error := 1;
Last_error := 30;
Clear _faults(First_ error, Last_Error, T_name);

First _error and Last _error are the beginning and ending values of the section of the Fault

array assigned to the selected test. For the observatory test, the values are 1 and 30

52

respectively. The values for the telescope test are 31 and 90, and those for the MAP test

are 91 and 150. In this example, T_name is Observ. Clear_faults sets all of the Observ]

values of the Cause records in the first 30 locations of the Fault array to zero.

Clearfaults also sets the Observ _t values to zero in the Observ _error, Tele _error and

MAP _error arrays. Now, no previously diagnosed causes can affect the determination of

the exact error cause using the observatory test.

4.2.4 Observatory Test

The user command "test observatory" starts the Ada procedure Test_observ. All

functions associated with the observatory are tested by this procedure. The most plausible

causes for any detected error conditions are returned to the user. The test is divided into

five groups. The first two groups test the room cameras and the flood lights. The third

group tests the floor movement. The fourth group tests the observatory dome and shutter.

The fifth group checks the operation of the thermometers. The one initial condition for

running the error diagnoser on the observatory is that the telescope should be completely

horizontal, declination zero. If the declination is not zero, then the testing of the floor

motions will be skipped. After the test, the observatory is returned to its pretest state,

barring any error conditions that interfere with achieving that state. Warning messages

inform the user of any deviations in the final state.

After clearing the old faults as discussed in 4.2.3, the observatory test begins to

diagnose any causes for component failure in groups one and two. The flood lights are

53

turned "on" and their status is checked. Room camera one and two are tested. During

the test of these cameras, the finder camera and guider camera systems are disabled.

After testing, the finder camera, guider camera and flood light states are restored.

The floor positioning system composes group three. As stated previously, the

telescope must be horizontal to test this group, otherwise these tests will be skipped. The

floor is moved to position two, if the initial position is not two. If the initial position of

the floor is two, the floor is moved to the down, zero, position. Finally, the floor is

returned to its original state. Obviously, moving the floor does not make much sense in

fully automated remote operation of the equipment. Yet, this test has been included to

ensure that the floor is out of the way when the telescope is moved, and to be able to use

the self test also as a general test for the correct operation of all system components.

The testing of group four, the dome and the shutter, is much more detailed. The

current states of the dome power, dome position, shutter power and shutter position are

stored. The dome power is turned on, and the dome position is checked. If the dome is

in the "open" position, 20.0, then the dome is moved to 25.0, to verify that the dome can

be moved. Next, the dome is moved to the "open" position so the shutter functions can

be tested. The shutter is opened and closed. If the dome doesn't seem to be in the

"open" position, the observatory test still attempts to open and close the shutter. Of

course, the shutter must never be opened during rainfall or dust storms. However, the

current simulator does not contain these qualities, and thus, this condition was ignored in

54

the testbed. This could be added at a later date. If successful in moving the shutter, a

error in the dome position sensor is pinpointed. If the dome fails to move from its initial

open position and the shutter also fails to move, there is a strong indication that the dome

and shutter are frozen in place, especially if the outside temperature supports this

assumption. A statement checking the outside temperature verifies the diagnosis of frozen

components. Additionally, frozen components are a more likely causes for error than the

assumption that both motors have failed simultaneously.

Group five consists of the indoor and outdoor thermometers. No possibility of

checking their operation presents itself presently without the use of redundant systems.

Redundant systems are not specified for the ATF simulator at this time.

This is a general problem with using the ATF simulator for fault diagnosis.

Whenever a fault is reported, two possibilities should be considered: either the equipment

has failed or the sensor is broken. For example, if someone calls for an elevator and the

indicator light doesn't come on, either the elevator is switched off or the light bulb has

burned out. It is impossible to distinguish between these two alternatives except by

waiting to see whether the elevator arrives within a prescribed time period.F" Thus, a

deep reasoner may be able to resolve this ambiguity, whereas a shallow reasoner cannot,

except through the use of backup sensors. The ATF simulator does not contain provisions

for backup sensors. Therefore, component failure and sensor failure can be differentiated

only in the case of causes with multiple effects. If all expected effects of a suspected

cause are observed, it is more likely that the equipment has failed than all reporting

55

sensors failing simultaneously. However, in the case of single causes showing single

effects measured by a single sensor, it is not currently feasible to distinguish between a

malfunction of the component and a malfunction of the sensor.

The observatory test concludes by sending to the user all the Causes stored by this

test in the Fault array. Duplicate occurrences of a Cause are dropped, saving only the

one with the greatest weight. The Name and the value of Observ _t are both presented.

When more than one Cause for error is presented, the Cause with the highest weight,

Observ _t value, is the most likely one. More than one Cause, or component failure,

could be realistic in some instances. For example, if "Floor motor broken" is given as

one possible Cause and "Dome motor broken" is given as another, both could be true

since their effects are mutually exclusive. The next step in the self maintenance scheme

is to repair the component failures. The observatory test could then be used once more

to verify correct repairs.

The observatory test detected the following hardware failures accurately (see figure

3.2 for descriptions) : HI and H3.

4.2.5 Measurement Instrument Test

To diagnose error causes in the Measurement instrument, the user issues the

command "test MAP". The Test_MAP procedure is invoked and testing begins. The test

is divided into nine groups. There are no necessary initial conditions for the MAP test,

but certain conditions, mentioned in the discussion of the relevant group, speed the test's

56

execution. At the end of the MAP test, all components are restored to their original

states, except the probe orientation and the Medusa position. The probes are oriented in

the "northeast" direction and the Medusa is in the "home" position at the test's

conclusion. Assuming no malfunction in the ruling apparatus, the ruler's final position

will be (0,0). Warning messages inform the user of any deviations in the final states.

It isn't meaningful to reset the MAP to its original values since an interrupted observation

would be ruined anyway.

The measurement instrument error diagnoser begins in the same way as the

observatory test. All of the old Causes in the designated section of the Fault array are

cleared, and the T_map parameter in all other Cause arrays is set to zero. Testing begins

by switching the MAP power and Medusa power "on". Group one Causes result from

any failures detected while doing this. If the MAP power cannot be turned "on", the

ruling tests in group five will not be executed.

Group two consists of testing the twelve probes. The probes are oriented first to

"southwest" and then to "northeast". Mer an orientation, the position of each probe is

verified, and the appropriate Cause is incremented in case of an error.

As the MAP test continues, each of the four voltage supplies is turned "on". The

original states of the supplies and their voltage levels are stored for later use. The voltage

levels for the probes associated with each supply are then set to "idle", 700 volts. Any

discovered faults increment Causes in group three.

The initial states of the guider motor, tracking motor, tracking power, and

57

telescope power are all stored for future use. Group four establishes the necessary initial

conditions for testing the ruling apparatus. If any of the initial conditions are not met,

the ruling motions cannot be checked. First, the telescope power is turned "on". The

declination angle of the telescope is checked. Ideally, the declination would be greater

than or equal to 30 degrees at the start of the measurement instrument test. If the

declination is inappropriate, the test attempts to slew the value to thirty degrees. With

the declination thirty degrees or greater, the tracking power and motor are turned "on".

Group five consists of the error Causes for the ruling apparatus. An explanation

of the ruler operation is provided in section 2.1.3. The ruling power is turned "on".

Initial conditions for the position of the ruler are not mandatory, but the test proceeds

much more quickly if the ruler starts out in the (0,0) position. When the ruler position

is not (0,0), the test first attempts to place the ruler there. If the test cannot start the ruler

at (0,0) due to a component malfunction, the final ruler position cannot be guaranteed to

be (0,0). The ruling motion is first tested in the "X" and "away" directions. Thereafter,

it is switched to "Y" and "towards". Finally, the "X" motion is performed again to return

the ruler to the (0,0) position.

Testing for groups six and seven does not depend on the ruling functions. The

voltage supplies for the fiber optic probes are tested by these groups. The flood lights

are turned "off' to avoid damaging the fiber optic probes. The voltage supplies for the

probes are set to their "power" state, 1700 volts. Error Causes are incremented whenever

a malfunction is detected. Group seven contains the Causes for setting the voltage levels

58

back to zero and turning off the supplies.

Finally, group eight establishes the final telescope conditions at the end of the

measurement instrument test. The ruler remains at the (0,0) position, assuming no

malfunctions. All other components are reset to their states prior to testing. If the

declination angle was moved, it is restored to its original position. As in the observatory

test, the Causes from the appropriate Fault array section are reported to the user.

The measurement instrument test detected the following hardware failures

accurately (see figure 3.2 for descriptions) : H2, H6, H7, H8, and Hl1.

4.2.6 Telescope Test

To test functions directly related to the telescope, the user issues the "test

telescope" command. The Ada procedure Test_tele tests these functions in eleven groups.

The only necessary initial condition for the telescope test is that the floor must be in the

"down", 0.0, position. If the declination is greater than 30.0 degrees, testing proceeds

more quickly. Assuming no malfunctions, the telescope will have the same final states

as those preceding the test.

Like the previous tests, the telescope test clears its section of the Fault array and

the Tele _t parameter in the Observ _error, MAP _error and Tele _error arrays. The first

group tests the initial floor condition and sets an error flag accordingly. If the floor is

not in the down position, the telescope cannot be moved. The second group sets the level

of the voltage supplies to idle, 700 volts, if their value was greater than that initially. If

59

the voltage levels cannot be lowered the Bad ycond flag is set and the slewing motions

of the telescope are not tested. Error causes for group two are sorted and stored in the

Fault array.

The cover functions are the third group tested. The covers are removed or

replaced depending on their previous position. If a cover cannot be returned to its

original state, a warning message is sent to the user and the appropriate Cause is

incremented. Error causes for group three are then sorted, and the most likely ones are

stored in the Fault array and are reported to the user.

Group four tests the function of the finder and guider cameras. The flood lights

are turned "off' for these tests. If the lights fail to turn off, the cameras are not tested.

The guider camera is tested first. The states of both cameras are restored at the end of

this group's test.

The next group, number five, sets initial conditions necessary for further tests.

The tracking motor and tracking power are turned off. The guider motor and guider

power are also turned off. If any of these functions fail, the appropriate Cause parameter

is incremented, and a flag is set. The flags are used by further tests to pinpoint errors.

For example, if the guide motor is "on", the boolean variable Bad gcond is set to true.

The slewing function does not operate if the guide motor is "on". When Bad jgcond is

true and the slewing function fails to operate correctly, the cause of the error is not in the

slewing apparatus. The fault lies with the guiding equipment. Therefore, before testing

the slewing, Bad ~cond must be false. Similar flags apply to the tracking motor and

60
power.

The telescope power is turned "on" for the remaining tests. Group six tests the

focus system. The focus power and motor are turned "on". The focus is set to one and

then set to zero. The focus motor and power are then returned to their original states.

The next four testing groups all involve moving the telescope. As mentioned

previously, the floor must be in the "down" position and the voltage supplies must be less

than 750 volts. Guiding functions are tested in group seven, and tracking errors are

pinpointed in group eight. The causes for stepping malfunctions are found in group nine.

Group ten compiles the Causes for errors in the slewing functions.

The declination and right ascension clamps are engaged at the start of the

movement tests. The flag Bad_cond is set if the clamps cannot be engaged. The slewing

functions are not tested if Bad_cond is true, since the clamps are necessary for slewing.

If it is less than 30 initially, the declination angle is slewed to the start position of 30

degrees. The Bad_dcond flag prevents testing the hour angle movement when the

declination is less than 30 degrees. At this point in the telescope test, the declination

should be 30 degrees or greater, assuming no errors have occurred. Group seven tests the

guiding motions. The guide clamp must be "off' to guide the position of the telescope.

The direction of motion is positive unless the screw position limits are exceeded. The

same procedure is also executed for guiding the hour angle. The guide clamp and motor

are also tested. The tracking system is tested next, by activating it and checking that the

hour angle changes. The tracking is then disabled, and tracking errors are stored in group

61

eight. The right ascension should change when the tracking system is off, and this is

tested. The stepping functions are tested in group nine. Stepping is only possible if the

tracking motor and guider motor are off, indicated by a false value of the Bad _trcond and

Badgcond flags. The declination is stepped first. The step value is one if the limits of

the position screw will not be exceeded. Otherwise, the value is negative one. The hour

angle is stepped in the same way. The hour angle and the declination are now slewed to

the home, 0.0, positions in group ten and then returned to their original positions. The

user is notified should any of slewing functions fail.

The errors for groups seven through eleven are compiled only if the flag F_cond

is true. The flag indicates that an error has occurred in the testing of that group's

functions. In the observatory test and the measurement instrument test, the segments of

the Observ _error or MAP _error arrays for each group didn't overlap. So each Cause

could only be incremented by one group. Some Causes in Test_tele are incremented by

more than one group as figure 4.8 illustrates.

62

Group Functions Cause Array Causes
Section Actually Used

1 Floor 13 13
2 Volts 29-32 (T_map) 29-32 (T_map)
3 Covers 41-48 41-48
4 Cameras 34-40 34-40
5 Init. Condo 5-25 5,6,8,25
6 Focus 31-33 31-33
7 Guide 9-30 9,21-30
8 Tracking 8-11 8-11
9 Step 20-24 20-24
10 Slew 8-24 all except 14,20
11 Final Cond. 1-26 1-7,10,11,26

Figure 4.8 - Fault Array Sections

For the first six groups, the sections of the Cause array do not overlap, making F_cond

unnecessary. However, group seven contains Cause number 25 which could have been

incremented in group five. While compiling the faults for group seven, Cause 25 should

only be stored in the Fault array if it was incremented by the tests of group seven. The

F_cond flag makes this possible. F_cond is set to true when an error is detected, while

testing a specific group. Causes are added to the Fault array only if F_cond is true. The

F_cond flag is used in the same manner for all of the following groups.

The last section of the telescope test, group eleven, involves resetting all the

components to their initial pretest positions. If error conditions prevent the restoration

of the telescope states, a warning message is returned to the user. Finally, the most

plausible causes for errors, detected in the telescope test, are presented to the user.

63

The telescope test accurately pinpointed the following hardware failures (see figure

3.2 for a description) : H2, H4, HS, H6, H8, H9, HlO, Hll, H12, H13, H14, and H1S.

4.3 Operation Example

To actually run the fault diagnoser, the user must first activate the telescope

simulation with a "run simu'' command. The initial state of the telescope is all systems

off, and all components positioned at zero. Next a hardware error should be set. This

can be done in two ways as mentioned in section 3.2.1. In the example shown in

Appendix A, the hardware error was specified by issuing the command "set herrore l".

The dome and shutter are now frozen in place. The observatory fault diagnoser will be

run. The initial condition for the test, the declination being zero is met. The user starts

the diagnoser with the "test observatory" command. The test begins and messages inform

the user of test's progress. All commands issued by the user are shown in boldface type

in Appendix A. All messages from the telescope simulation are in capital letters.

Messages from the diagnoser are mostly in lower case letters with only occasional use of

capitalization. When the test reaches group five, a message is returned to the user stating

that the dome may not be in the open position, but the diagnoser is trying to open the

shutter anyway. This test helps to distinguish dome sensor error from actual position

errors. At the end of the test, the error "Dome position frozen in place" with the weight

of three is returned as the most likely fault. The user can then clear the error, to simulate

repairs, with the "clear error" command, or continue operations.

64
CHAPTER 5

RESULTS AND CONCLUSIONS

In order to guarantee high reliability (mean time between unrecoverable failures)

in a highly automated system, it is essential to automatically detect and repair most faults

in that system. This feature becomes even more critical when the access time for manual

repair or replacement of a faulty component is large, such as in the case of a space

mission. The cost of space systems is always a major factor in deciding their feasibility,

and on site human supervision adds considerably to the cost. Therefore, to be practical

and reliable, an automated system must have some way of maintaining itself.

Theoretically, the scheme for such self maintenance should include three parts.

The first part needs to detect that an error condition exists. The second part needs to

determine exactly what system component has failed. Finally, the third part implements

means of repairing the system if necessary.

A watchdog monitor, the first part of the self maintenance scheme, detects

erroneous system conditions by comparing its model to the actual system and by

reasoning about any discrepancies. The watchdog monitor is not part of the original

system, and the monitor's operation has no effect on that system. Upon detecting a fault,

the monitor notifies the user of the condition. The user has the option of proceeding with

fault diagnosis or continuing operations.

The fault diagnoser is activated by the user. The diagnoser sends commands to

65

the system and, based on the results, provides the user with a list of the most likely

component failures. The list consists of the Causes in each test group with the highest

weight. The user can issue commands to initiate repair, or proceed with operations while

aware of the possible difficulties. After repair, the diagnoser could be run again to verify

the repair.

In this thesis, the three part self maintenance scheme is applied to the simulation

of the Atmospheric Telescope Facility (ATF). The implementation of the watchdog

monitor and repair functions are left for future work. The fault diagnoser is developed

and applied with success to the system. Simulated component failures were added to the

ATF simulation for testing the diagnoser.

The ATF can be decomposed into three parts: the observatory, the telescope and

the measurement instrument. Three diagnostic programs were created to pinpoint the

most plausible cause(s) for failure in each section. The watchdog monitor would provide

information to indicate which diagnoser to run.

Many methods of fault diagnosis exist. Since the system is completely defined,

inductive diagnostic methods were not needed. The shallow reasoning approach was

chosen from the deductive methods based on the relative simplicity of the system and the

ease of implementation. The diagnoser in this thesis uses a rule based system in the form

of cause and effect lists to perform shallow reasoning. Whenever an effect is

encountered, its corresponding cause(s) is(are) incremented accordingly. Basically, this

method worked well, but in some cases changes were necessary. Since some causes were

66
so wide ranging, their weight could become too high, overshadowing the actual cause.

Therefore, the weights of certain causes were increased by two in order to balance the

effect of the wide ranging causes. The decision for additional weighting is design specific

and cannot be easily automated.

Consistency checks could be added to make the system even more robust.

Presently, only the causes are incremented when effects are detected. If the occurrences

of effects were also noted, then the consistency of the diagnosis could be verified. When

a cause is reported as the most likely, a check could verify that all of its associated

effects were detected as well. A matrix representation as in figure 4.7 would be useful

for this. As shown in this example, diagnosis cause A is not consistent with the observed

effects, since effect 3 was not encountered.

The proper operation of each diagnoser was verified through exhaustive testing.

Each of the fifteen hardware errors were set, and the appropriate diagnosers were run to

pinpoint the exact fault. Detection of appropriate initial conditions was also tested by

setting faulty conditions and running the test. The test returns messages to the user

indicating the faulty initial condition. Preservation of the systems original state was

verified in a similar manner. The diagnosers were able to pinpoint the correct fault when

the failure occurred within the scope of the test.

Operation constraints of the THAW telescope were quite helpful in pinpointing

the exact fault. Operations were ordered within each test to take full advantage of these

constraints. The constraints also helped to speed testing by eliminating the need for

67

testing of certain components.

The time required for running one diagnoser procedure varied depending on the

initial state of the system and the nature of the component failure. Certain initial system

states enable the diagnoser to perform more quickly as mentioned in chapter four. Also,

some failures with wide ranging effects prevent testing of other components and speed

the diagnoser. However, the main factor in determining the time required for testing is

the system itself. The simulated telescope contains delays which represent the actual time

needed by the real system. The diagnoser spends much of its operation time waiting for

the simulation.

The use of Ada presented some difficulties as well as some advantages. Ada is

considerably different from most programming languages, and becoming familiar with all

of its features takes some time. While the number of features was a bit overwhelming,

they proved quite useful for the project. The multitasking capabilities of Ada made the

entire project possible. The modular format simplified programming and debugging.

Ada's exception handling was another useful feature. The ability to define variable types

was extremely useful for error simulation and for recording faults.

The proposed self maintenance scheme proved feasible and operates reliably for

the investigated high autonomy system. Future work could develop a watchdog monitor

system for use with the ATF. Future expansions to the diagnoser itself are also possible.

Currently, the diagnoser works correctly for single component failures only. Multiple

simultaneous failures could be simulated, and the diagnoser's operation could be tested.

68

The diagnoser might require slight modification to differentiate these failures. As

automation of systems continues, self maintenance methods and especially fault

diagnosers will become more sophisticated. This thesis is one step along the path to

make high autonomy systems a reality.

APPENDIX A

DIAGNOSER EXAMPLE

run simu
Enter your command
set herrore l
scanner command is set herrore l
The hardware error is
Hl

The telescope is free to accept intrusive commands
Enter your command
test observatory
scanner command is test observatory
Beginning Observatory Test
setting initial conditions
Testing Light
LIGHT IS ON
Testing Rcameral
Testing Rcamera 2
LIGHT IS OFF
no error causes in Group 2
no error causes in Group 3
Testing Floor
FLOOR POWER IS ON
FLOOR IS POSITIONED AT 0.00
FLOOR POWER IS ON
FLOOR IS POSITIONED AT 1.00
FLOOR POWER IS ON
FLOOR IS POSmONED AT 2.00
FLOOR POWER IS ON
FLOOR IS POSITIONED AT 1.00
FLOOR POWER IS ON
FLOOR IS POSITIONED AT 0.00
FLOOR POWER IS OFF
FLOOR IS POSITIONED AT 0.00
no error causes in Group 4
Testing Dome
DOME IS POSITIONED AT 300.00
DOME POWER IS ON
Checking Dome Power

69

70

Trying Move Dome to Open Position
Testing Shutter
SHU1TER-POWER IS ON
Dome may NOT be in Open Position
Trying to Move Shutter Anyway
SHUTIER-POWER IS OFF
DOME IS POSITIONED AT 300.00
DOME POWER IS OFF
best possible cause(s) group 5
Dome Frozen In Place 3
no error causes in Group 6
Creating Fault Array
Best Possible Cause(s) is/are
Dome Frozen In Place 3
End Observatory Test
Enter your command

71

REFERENCES

1. Cellier, F. E. (December 1987), "Teleoperation of the Thaw Telescope at the
Allegheny Observatory: A Case Study", Telescience Technical Report TSL-004/87,
University of Arizona.

2. Delaune, C. 1., Searl, E. A. and Jamieson, J. R. (June 1985), "A Monitor and
Diagnosis Program for the Shuttle Liquid Oxygen Loading Operation", Robotics
and Expert Systems: Proceedings of the ROBEXS 1st Annual Workshop on
Robotics, FL. pp. 167-75.

3. Fink, P. K., Lusth, 1. C. and Duran, J. W. (1985), "A General Expert System
Design for Diagnostic Problem Solving", IEEE Transactions on Pattern Analysis
and Machine Intelligence, vol. PAMI-7, no. 5, pp. 553-60.

4. Havlicsek, B. L. (November 1989), "Integrating Diagnostic Knowledge", IEEE
Aerospace Electronic System Magazine, vol. 4, no. 11, pp. 54-9.

5. Kim, C. J. and Russell, B. D. (July 1989), "Classification of Faults and Switching
Events by Inductive Reasoning and Expert System Methodology", IEEE
Transactions on Power Delivery, vol. 4, no. 3, pp. 1631-7.

6. Lew, A. K. (1988), "Astrometric Telescope Simulator for the Design and
Development of Telescope Teleoperation", MS Thesis, University of Arizona.

7. Malin, J. T., Lance, N. (June, 1985), "An Expert System for Fault Management
and Automatic Shutdown Avoidance in a Regenerative Life Support System",
Robotics and Expert Systems: Proceedings of the ROBEXS 1st Annual Workshop
on Robotics, FL, pp. 185-93.

8.' McDuff, R. J., Simpson, P. K. and Gunning, D. (1989), "An Investigation of
Neural Networks for F-16 Fault Diagnosis", AUTOTESTCON '89 Conference
Record: 'The Systems Readiness Technology Conference. Automatic Testing in
the Next Decade and the 21st Century', Philadelphia, PA, pp. 351-7.

9. "OASIS CSTOL Reference Manual" (February 1988), LASP, University of
Colorado at Bolder.

10. Rogel-Favila, B. and Cheung, P. Y. K. (1989), "Combinational and Sequential

72
Circuit Fault Diagnosis Using AI Techniques", International Test Conference 1989
Proceedings, p. 950.

11. Sarjoughian, H. S. (1989), "Intelligent Agents and Hierarchical Constraint Driven
Diagnostic Units for a Teleoperated Fluid Handling Laboratory", MS Thesis,
University of Arizona.

12. Sykes, D. J. and Cochran, J. K. (February 1988), "Development of Diagnostic
Expert Systems Using Qualitative Simulation", Artificial Intelligence and
Simulation: Proceedings of the SCS Multiconference on Artificial Intelligence and
Simulation: The Diversity of Applications, pp. 32-8.

13. Venkatasubramanian, V. and Chan, K. (December 1989), "A Neural Network
Methodology for Process Fault Diagnosis", AIChE Journal, vol. 35, no. 12, pp.
1993-2002.

14. Vesantera, P. 1. and Cellier, F. E. (1989), "Building Intelligence into an Autopilot
- Using Qualitative Simulation to Support Global Decision Making", Simulation,
vol. 52, no. 3, pp. 111-21.

15. Wang, Q. (1989), "Management of Continuous System Models in DEVS-Scheme:
Time Windows for Event-Based Control", MS Thesis, University of Arizona.

