
1

QUALITATIVE SIMULATION:

A Tool for Global Decision Making

by

Pentti Juhani Vesantera

A Thesis Submitted to the Faculty of the

DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING

In Partial Fulfillment of the Requirements

For the Degree of

MASTER OF SCIENCE

WITH A MAJOR. IN ELECTRICAL ENGINEERING

In the Graduate College

THE UNIVERSITY OF ARIZONA

1988

2

STATEMENT BY AUTHOR

This thesis has been submitted in partial fulfillment of requirements for an
advanced degree at The University of Arizona and is deposited in the University
Library to be made available to borrowers under rules of the Library.

Brief quotations from this thesis are allowable without special permission,
provided that accurate ackowledgement of source is made. Requests for permission
for extended quotation from or reproduction of this manuscript in whole or in
part may be granted by the head of the major department or the Dean of the
Graduate College when in his or her judgement the proposed use of the material is
in the interests of scholarship. In all other instances, however, permission must be
obtained from the author.

SIGNED:

APPROVAL BY THESIS DIRECTOR
This thesis has been approved on the date shown below:

~~~£.~
F. E. Cellier

Associate Professor of
Electrical and Computer Engineering

~~~~),q~~
Date

3

ACKNOWLEDGEMENTS

I wish to express my gratitude to my parents, Mrs. Armi Vesantera and Mr.

Pekka Vesantera for their continual encouragement and support of my educational

advances.

I also wish to gratefully acknowledge the most valuable guidance of Dr.

Francois E. Cellier, my major advisor and thesis director, whose patience and un-

limited support enabled the completion of this thesis. Acknowledged should also

be the interest and presence of the committee members: Dr. Hal S. Tharp and

Dr. Jerzy W. Rozenblit, and the kind help of Dr. Edwin K. Parks, professor emer-

itus at the Aeronautical and Mechanical Engineering with the parameters for the

mathematical model.

Finally I would like to thank my dearest friend Hessam Sarjoughian for the

most helpful discussions, comments, and friendship throughout these back-to-school

years.

4

TABLE OF CONTENTS

LIST OF ILLUSTRATIONS 6

ABSTRACT 7

1. INTRODUCTION 8

2. MODEL DESCRIPTION 14

2.1 Basic Physical Laws 14

2.2 The Mathematical Model 23

2.3 Model Implementation 27

3. GENERAL SYSTEMS THEORY 32

3.1 Conceptual Framework 32

3.2 Epistemological Hierarchy 33

3.3 Concept of Mask 36

3.4 Optimal Mask Analysis 38

4. QUALITATIVE ANALySIS 46

4.1 General Description 46

4.2 The Source Model 47

4.3 The Data Model 47

4.4 The Generative Model 63

4.5 Forecasting 75

5

Table of Contents-(Continued,

5. THE ONLINE MONITORING SYSTEM 90

5.1 The Experimental Setup 90

5.2 Normalized Qualitative Data 93

5.3 A New Source Model 94

5.4 The Broken Model B747 97

5.5 The Mask Library 103

5.6 Detection of the Accident 113

5.7 Recognition of the Type of Accident 126

6. CONCLUSION 150

APPENDIX: ACSL MODEL LISTING 152

REFERENCES 159

6

LIST OF ILLUSTRATIONS

1.1 Block diagram of the experimental setup 12

2.1 The reference angles 18

2.2 Forces and moment acting on the airplane 19

2.3 Step response to elevator 30

2.4 Step response to thrust 31

4.1 Step response of the data model 53

4.2 Shaken variables 58

4.3 Recoding of the output variables 62

4.4 Recoding of the second data model 71

5.1 Accident related transients 99

5.2 Step response of the B747 model 101

5.3 Step response of the B5 model 105

5.4 Step response of the B13 model 108

5.5 Step response of the B14 model 111

5'.6 Output variables in the neighborhood of the accident 115

5.7 Raw and recoded variables in the neighborhoodof the accident 123

5.8 On-line monitoring system's alarm signal 0 ••••••••••••• 126

7

ABSTRACT

As a decision making aid for the human operator of a highly automated,

complex system, qualitative modeling is presented as a tool to mimic the human

global assessment process by learning from the system behavior. Such a qualitative

model is applied to reason about the behavior of a quantitatively simulated aircraft

model, to determine on-line when a malfunction occurs in the quantitative model, to

hypothesize about the nature of this malfunction, and to suggest a global strategy

that would allow to operate (control) the quantitative aircraft model under the

modified flying conditions. Such an algorithm could be utilized as an addition

to a conventional autopilot which would allow it to remain operational after a

malfunction has taken place.

8

CHAPTER 1

INTRODUCTION

With the continuous advances of technology in the area of automatic

control, automation has become increasingly popular allowing us today to build

highly complex control systems e.g. for modern jet cruisers, nuclear power plants,

space stations, etc. Modern control technology allows systems analysis and control

through a variety of techniques in the time- or frequency-domain. Lead-lag com-

pensators, and state- and output-feedback designed by means of techniques such

as pole-placement or parameter optimization by solving a matrix Riccati equation

represent some of the methodologies presently available. These are all well under-

stood and widely in use. Decision making in clearly predefined situations has also

been successfully implemented with decentralized control systems, expert systems

and rule-based control systems.

Even though all these techniques work perfectly well under normal, well de-

fined conditions, they will drastically fail when facing anew, unforeseen (possibly

emergency) situation such as a sudden, unexpected structural change in the system.

Handling such a situation is a task that still has to be performed by a human oper-

ator with his/her inventiveness and capability of reasoning. The human mind has

the skill of learning from the system behavior in the emergency, and the inventive-

ness of finding a new control strategy for the new situation. No automatic control

technique presently available is able to adapt to unpredicted structural changes in

the system.

9

Man-in-the-loop systems have been the answer to this problem until now.

However when the degree of system complexity increases even further, human op-

erators are being overloaded by the amount of information they are provided with.

The human mind is incapable of taking many decisions instantaneously and simul-

taneously when these decisions are to be based on information arriving in huge

bundles all at once. The amount of data to be processed is much too large for a

human operator to act reliably and efficiently. Among other reasons, this is due to

the fact that he loses his notion of temporal precedence of the arriving data items

in the fast flowing sea of information that is formed. This disables the operator

from distinguishing between causes and effects as the emergency progresses, which

is critical for his decision making process, and an erroneous decision becomes likely.

Concerned with the problem of overloading the human operator in a fast

moving scenario and highly dynamic environment, different approaches have been

taken to try to build decision making aids for the human operator.

For example, to allow adaptability to new situations, an expert system for

control system design as described in (Trankle and Markosian, 1984; Trankle et al.,

1986) would be a very useful tool to handle sudden structural changes in the system.

"The expert planner incorporates the knowledge of a control system designer in

selecting and applying mathematical algorithms from several branches of control

theory such as Kalman filter design, proportional/integral/derivative control, and

optimal state feedback." The functionality of the method has been demonstrated

at hand of a command tracking control system for an aircraft.

A fault monitoring and diagnosis expert system is described in (Ali and

Sharnhorst, 1985; Ali et al., 1986) to assist pilots in handling in-flight faults. The

Flight Expert System (FLES) distinguishes between two different types of faults:

10

maladjustments and malfunctions, and handles them separately. The knowledge

representation is frame-based.

In (Cross, 1984), the author emphasizes the need of developing expert sys-

tems performing qualitative reasoning in the flight domain. An intelligent pilot aid

would have the tasks of reducing excessive workload, reducing errors, improving

performance, and adding new capabilities.

Structural models of human pilots performing tracking tasks have been

discussed, for example in (Hess, 1984) and (Mooij, 1985). The models consider the

interaction between the human central nervous system, the neuromuscular system,

and the airplane, allowing in this way the modeling of the human reaction to, e.g.,

a deviation from a desired flight path.

A research study carried out at Perceptronics, Inc. is described in (Chu

et al., 1980) concerning modeling goal-directed, recurrent decisions in an overly

information-rich environment. This study defines an information value function

based on an earlier study performed at Perceptronics as well, which developed a

methodology for adaptive estimation of information value parameters, modeling

techniques, and information selection behavior aiding techniques. The described

information value function is a weighted synthesis of all decision related factors and

can be directly used for management of information.

Another very interesting approach to solving the problem of overloading the

human operator is discussed in (Riley, 1985). It consists of the implementation of

a monitoring system for the human operator's performance to inform his electronic

teammate about the states of the human operator so that it would be able to decide

when and how to aid the operator and what information he or she needs at that

moment. The main goals in "monitoring the monitor" (the human operator), are

"to optimize operator workload and dynamically allocate tasks appropriately; keep

11

the operator aware of the state of the world and the system; and facilitate fast

appropriate or optimal response to system and environment changes" .

Human decision making models have been developed for specific tasks as

e.g. described in (Kleinman et al., 1983) for use in emergency state power distribu-

tion systems. An analytic model of a human decision making process is presented

in (Morgan, 1983; 1985) where the author examines also the means of interaction

of the model with other decision makers.

We propose to address the stated problem by building an on-line mon-

itoring system that mimics the human global assessment process, that identifies

the emergency, learns the system behavior, and comes up inductively with a new

control strategy for the structurally modified system. This on-line monitoring sys-

tem will be an automatic device that merges the best of both worlds: the human

inventiveness and the automatic controller's speed and systematism.

General Systems Problem Solver (GSPS) (Klir, 1985) is a methodological

framework arising from General Systems Theory that allows the user to define

and analyze types of systems problems. In this methodology, systems are defined

through a hierarchically arranged set of epistemological subsystems. Forecasting

and reconstruction analysis capabilities are two examples of the capabilities of the

GSPS methodological tools. An on-line monitoring system can be implemented

in the GSPS framework by using its inductive inference capability to imitate the

human learning process. SAPS-II (Cellier and Yandell, 1987) is a software coded at

the University of Arizona that performs the basic concepts of the GSPS framework.

SAPS-II has been implemented as an application function library to the control

systems design software Ctrl-C (Systems Control Technology, 1986). In common

A.1. terminology, it can be said that SAPS-II employs Ctrl-C as an A.1. shell.

12

Our stratagem was successfully implemented in SAPS-II for a longitudinal

model of an aircraft in cruise flight. An inielliqent autopilot was implemented

using the GSPS framework. It is able to successfully identify structural changes

in the monitored system, and to learn enough about the new (unknown, modified,

broken) system to come up with a forecasting model that satisfactorily predicts

future behavior of this system.

The approach taken is depicted in Figure 1.1. below:

CTRL-C

Qualitative Model ;l
(SAPS-II) \J

~

1\ Quantitative Model
-V

(ACSL).

Figure 1.1 Block Diagram of the experimental setup

A quantitative model of the longitudinal behavior of the airplane was coded

in the continuous system simulation language ACSL (Mitchell and Gauthier, 1986).

The model can be exerted from within Ctrl-C through an interface between the

two softwares (Systems Control Technology, 1986) which allows full use of an ACSL

13

simulation. "Accidents" which alter the behavior of the flight are built into the

aircraft model and the data extracted from the quantitative ACSL simulations are

used as "measurement data" for the qualitative analysis of the system behavior

using SAPS-II. SAPS-II functions are used to qualitatively and inductively reason

about the measurement generated by the ACSL simulation run, determine that an

accident has happened, find out when it occurred, hypothesize about the nature of

the accident, and decide upon an appropriate corrective action to be taken.

14

CHAPTER 2

MODEL DESCRIPTION

2.1 Basic Physical Laws

Among all vehicles available for transportion today, aircrafts belong to a

class that requires an essentially more complex form of control. Controlling mo-

tion in a three-dimensional space is certainly more complicated than the control

of surface-bound or line-bound vehicles. Furthermore, modern aircrafts require

increasingly sophisticated controls to fulfil the requirements of today's air trans-

portation trend.

Flight stability can basically be studied through two independent models:

longitudinal and lateral. Longitudinal motions can be modeled independently from

the lateral ones if the following simplifying assumptions are valid:

1. The airplane is perfectly symmetrical with respect to its median longitu-

dinal plane.

2. There are no gyroscopic effects of spinning masses (engine rotors, airscrews,

etc) acting on the aircraft.

This text will adopt the assumptions above and will consider the longitu-

dinal model of an airplane in cruise flight at high altitude. A longitudinal flight

is characterized by the absence of forces and moments that would cause its lat-

eral motion. Furthermore, the aeroelastic nature of the airplane's structure will be

neglected as well, so that the rigid body equations of motion would apply to the

model.

15

The mathematical model described in the following sections models an es-

senti ally longitudinal flight restricted to longitudinal deviations from a trimmed

reference flight condition. This reference flight is characterized by the requirement

that the resultant force and moment acting on the aircraft's center of mass are zero.

It is not the scope of this text to provide full details about the stability

study of flight. To follow the reasoning process here presented, one may consult

specialized literature from that area (Etkin, 1972; 1982; Hacker, 1970; Irving, 1966)

Motion of a rigid body

The forces and moments acting on the center of mass of a moving rigid

body can be equated through the Newton's second law of motion, along with it's

rotational analog presented by Euler. The equations below describe translational

and rotational motions expressed in a space-fixed coordinate system.

d
F = dt(mv)

M= :t(IO)

(2.1a)

(2.1b)

F is the resultant of the forces acting on the center of gravity (CG) of

the body. The mass m of the body is assumed to be independent of time and

concentrated in the center of gravity, and v is the linear velocity vector of the CG.

M is the resultant torque moment acting on the CG, I is the inertial' tensor of the

body, and 0 is its angular velocity vector.

When transforming these equations into a body-fixed coordinate system,

we have to consider the contribution of the rotation of this new reference frame

with respect to the previous one.

16

d
F = dt (mv) + 0 x (mv)

d
M = dt (10) + 0 x (10)

(2.2a)

(2.2b)

When considering an essentially longitudinal flight, the resultant force F

can be decomposed into its tangential component Ft and its normal component Fn.

The only acting moment will be the one about the axis that is perpendicular to

the longitudinal symmetry plane (call it y-axis), and the generalized equations of

motion (2.2) can be written in the simpler form:

F = F; + E;
dO

My = IYdj

(2.3a)

(2.3b)

The reference flight condition

We will define a reference flight condition as being characterized by a steady

longitudinal and horizontal flight where the resultant force and moment acting on

the plane are zero. The headwind is assumed to be constant and perfectly horizontal.

The stability axes

The theory presented in this text will be developed with respect to a set of

body-fixed axes named stability axes. The origin of this coordinate system is the

center of gravity of the airplane: the x-axis points in the direction of the motion

of the airplane in the reference flight condition, the z-axis points 'downward,' and

y-axis runs spanwise and points to the right.

17

The reference angles

Three angles are defined to describe the relative position of the velocity

vector of the center of gravity of the airplane with respect to an earth-fixed reference

frame and a fuselage-fixed reference frame.

0: is the angle of attack (or incidence) of the airplane which describes

the inclination of the resultant velocity vector v to the x axis of the body-fixed

coordinate system. The usual notation of the velocity components in the stability

axes is u for the x-axis component and w for the z-axis component. Hence

(2.4)

I is the flight path angle of the aircraft, representing the inclination of

the velocity vector to the horizontal, i.e., to the x-component of the earth-fixed

reference frame.

n is the pitch angle, being the one that is best sensed by a human pilot,

for it represents the relative position between the two reference frames. It is defined

in terms of the previous angles as follows:

(2.5)

18

/

IverticaJ

I

Figure 2.1 The reference angles

Forces and Moments

Finally, the tangential and normal components of the resultant force and

the moment about the center of gravity of the airplane considered as a rigid body

whose mass is constant over time, can be written in terms of the reference angles I

and 8 as:

(2.6a)

(2.6b)

(2.6c)

The quantities affecting the airplane in flight are its weight W, the thrust

T developed by the engines, the aerodynamic forces, Lift L and Drag D, and the

aerodynamic pitching moment M.

19

The weight of the aircraft will be considered constant (thus the weight of

the fuel consumed during the flight is neglected).

The thrust developed by the propulsive system will be considered as being

a function of the flight velocity and of its own control variable OT, the throttle

opening. For reasons of simplicity, the thrust line will be assumed to coincide with

the x-axis of the stability axes. The center of gravity, by definition, is in this axis

and therefore the thrust does not affect the moment directly.

The aerodynamic forces Land D compose the force response of the aircraft

to the motion. They act in the mean aerodynamic center of the wing, causing the

aerodynamic moment M about the center of gravity, which is defined to be positive

for a nose up effect. The Lift is defined as being the normal component of the

aerodynamic force with respect to the flight path, and the Drag is its tangential

component.

Ivertical
I

Figure 2.2 Forces and Moment acting on the airplane

20

The aerodynamic reactions L, D and M

The standard way of expressing the aerodynamic forces Land D and the

longitudinal aerodynamic moment M is through their nondimensional aerodynamic

coefficients CL, CD and eM:

(2.7a)

(2.7b)

(2.7c)

which shows their direct dependence on the local air density p, the square of the

cruising speed v and the size of the aerodynamic surface S of the airplane.

Parameter ~ in the expression for the moment stands for the characteristic

length (for the nondimensional coefficients), taken as half of the mean aerodynamic

chord c of the wing.

The nondimensional coefficients CL, CD, and eM

These three nondimensional coefficients express the aerodynamic response

of the airplane to variations in the following aerodynamic variables:

1. a , the angle of attack

2. be , the elevator deflexion

3. a , the angle of attack rate

4. q , the pitch rate

Equations (2.8a), (2.8b) and (2.8c) below describe the nondimensional aero-

dynamic coefficients expressed by a Taylor series expansion around an initial value

(subscript 0) for which a, be, a and q are zero:

21

(2.8a)

(2.8b)

(2.8c)

The stability derivatives

The aerodynamic reactions of the airplane can be represented approxi-

mately by means of stability derivatives, i.e., the coefficients of the Taylor series

expansion above.

Note that as GD is strongly influenced by the angle of attack, all other

influences can be neglected.

The a derivatives GLa, GDa, and GMa describe how changes in the angle

of attack a affect the aerodynamic forces and moments. An increase in the angle

of attack generally induces an increase in the Lift, an increase in the Drag and a

negative pitching moment.

The be derivatives G LOe and GMoe describe the effect that a deflexion

of the elevator has on the Lift and on the Pitching Moment. A positive elevator

deflexion is defined as being elevator down, which causes an increase in the Lift and

a negative pitching moment increment.

The a derivatives GLa and GMa basically represent the adjustment of the

pressure distribution on the aerodynamic surfaces to sudden changes in the angle

of attack, as, for example, when sudden changes in the incidence of the headwind

occur.

22

The q derivatives CL'I and CMq represent the aerodynamic effects induced

by a rotation of the airplane about its spanwise axis when the angle of attack is

kept constant, e.g., keeping the fuselage tangential to an arbitrarily varying flight

path.

These two rotational effects can be visualized considering a flight along an

arbitrary flight path: first with the fuselage of the plane always tangent to the flight

path (angle of attack kept zero) and second, with the fuselage always horizontal

(pitch angle kept zero).

The nondimensional aerodynamic coefficients are expressed in terms of the

stability derivatives in the set of equations (2.9):

(2.9a)

(2.9b)

(2.9c)

CD = CDo + CD"a

-/2
CM = CMo + CMaa + CM'!;ebe + C V [CM" a + CM'lq]

Note that the rotational derivatives CL", CLq, CM" and CMq are multiplied

by ~. This is due to the fact that these derivatives are, in fact, taken with respect

to the quantity ci/~/2 (or qCp) where c is the mean aerodynamic chord of the wing

and v is the cruising velocity.

For example, consider CL,,:

therefore,

BCL

- ~Ba
BCL _ c/2CBa - v L"

23

Longitudinal Flight Control

Longitudinal flight control basically means control of the velocity vector v

acting on the center of gravity of the airplane. The two available control elements

are be for the elevator deflexion and bT for the throttle control of the Thrust.

The immediate response of the aircraft to a !::::.be at constant throttle is a

brusque rotation in pitch and a consequent change in both angle of attack and Lift,

followed by a curvature 7 of the flight path. After this first fast transient, the new

steady state flight is characterized by the new values of ISS and USS. The steady-

state speed USS is fixed by the value of CL•• , which, in turn, is determined by be

(see Etkin, 1982, sections 2.5 and 9.1).

The immediate effect of a positive !::::.bT with fixed be is essentially a change

in the velocity, followed by a change in the flight path angle I. But as a given be

fixes a constant steady state velocity, the final effect of opening the throttle will be

a change in the flight path angle without changing the speed.

2.2 The Mathematical Model

Equations of motion

Referring to figure 2.2, we can write the final equations of motion from the

equations 2.6. This will not be done in the stability axes, but in the tangent and

normal axes with respect to the flight path, because this simplifies somewhat the

equations:

rnii = Tcosa - D - Wsinl

mv'1 = T'sirux + L - W cOS1

Iyq=M

(2.1Oa)

(2.1Ob)

(2.1Oc)

24

O=q (2.lOd)

Relation (2.5) gives the relationship between the reference angles:

0=, + a. (2.5)

and the position of the airplane with respect to the ground is given by the equations

(2.11):

x = v COS,

(2.11a)

(2.11b)

h = v sin,

Aerodynamic equations

Equations (2.7) give the aerodynamic quantities L, D, and M:

(2.7a)

(2.7b)

(2.7c)

and the nondimensional coefficients CL , CD and CM are given by the equations

(2.9):

(2.9a)

(2.9b)

(2.9c)

CD = CDo + CD", a

CM = CMo + CM a + CM< Oe + c/2 [CM' a + CM q]a ve V a q

25

Closed loop equations

The two control laws implemented in the model are standard procedure in

stability and control of flight. Feedback of pitch angle deviation from its trimmed

value (for which the airplane is in steady horizontal reference flight) into the elevator

deflexion suppresses efficiently the phugoid mode of the airplane which is slow and

very lightly damped. The second control loop was similarly implemented feeding

back velocity into Thrust.

T = Ttrim + Ku(u - Utrim)

(2.12a)

(2.12b)

The subscript trim refers to the trimmed value of the variable, and U is the

x-component of the velocity in the stability axes, or

U = v coset. (2.13)

Model Parameters

Listed below are all the values used for the flight related constants. The

airplane related physical data was taken for a large commercial/cargo jet plane as

a Boeing 747 in cruise flight, at 20000 ft and Mach Number .5 (~ 500 ft/s). The

aerodynamic coefficients were adapted for a trimmed reference flight with a given set

of initial conditions which is characterized by a horizontal steady flight at 500 ft/s,

altitude 20,000 ft, zero angle of attack, elevator deflexion of 1.6 degrees (.0279 rad)

and constant thrust of 33,000 pounds. These initial conditions were then trimmed

such that the flight would start perfectly trimmed, since approximation errors in

26

the aerodynamic constants had still to be corrected. The model is theoretical but

effort was made in building it in the most realistic fashion.

Airplane Constants

Iy = 27,000,000.0 [slug ft2]

W = 500,000.0 [lb]

c = 27.3 [ft]

S = 6,000.0 [Jt2]

Physical Constants

g

p

= 32.2

= 0.0012

[lb/ ft2]

[slug / ft3], at 20,000 ft

Aerodynamic Constants

CLo = 0.5455 []

CLa = 5.2 [1/rad]

CL6. = 0.36 [1/rad]

CLa = 2.0 [1/ r~d]

CLq = 5.5 [1/ r~d]

CDo = 0.036667 []

CD •• = 0.26 [1/rad]

CMo = 0.039 []

CM o = -0.74 [1/rad]

CM6. = -1.4 [1/rad]

CMa = -8.0 [1/ r~d]

CMq = -22.0 [1/ r~d]

27

Feedback Gains

Ke = 0.25 []

K1l. = 40.0 []

Initial Conditions

Vo = 500.1375 [itls]

ho = 20,000.0 [it]

Xo = 0.0 [it]

qo = 0.0 [radls]

ao = -0.000055 [rad]

80 = -0.000055 [rad]

"10 = 0.0 [rad]

lie0 = 0.027886 [rad]

To = 33,005.5 [lb]

2.3 Model Implementation

The mathematical model of the longitudinal flight was implemented in

ACSL (Advanced Continuous Simulation Language) which has been designed for

modeling and evaluating the performance of continuous systems described by time

dependent, non-linear differential equations (Mitchell and Gauthier, 1986; Systems

Control Technology, 1986).

The model used is similar to the sample program listed in the ACSL User

Guide/ Reference Guide (Mitchell and Gauthier, 1986 page A.51) entitled "Longi-

tudinal Study" which was used in the Ctrl-C IACSL Interface Description (Systems

Control Technology, 1986, page 8) as well, however with some modifications.

28

In the present text, the model is still basically the same, but many aerody-

namic parameters have been changed to make the model more realistically represent

the longitudinal flight of a large commercial/cargo jet plane cruising at high alti-

tude. The initial conditions were also set to values such that the flight would start

perfectly trimmed, so that the initial trimming phase of the original models is not

really needed here, even though it is still included in the program for situations

when the initial conditions are changed.

The initial trimming phase adjusts non-trimmed guesses of initial conditions

such that the flight would start as a smooth cruise flight since that is what the model

represents. After being started, the model can be perturbed, and the control loops

will stabilize it normally, but it is desired that all simulation runs start trimmed.

The initial values of the flight path angle, pitch angle, and elevator deflexion are

iteratively adjusted such that a weighted mean square error of the derivatives of the

linear velocity, pitch rate, and flight path angle would be minimized (acceptable if

less than 0.1) before the model is started.

Two control loops were implemented into the model, one in each of the con-

trol elements. The first of them was used in the Ctrl-C / ACSL Interface Description

as well, and is common usage for the phugoid (long period) mode supression in aero-

dynamic stability design: feedback of deviations of the pitch angle from its trimmed

value into the elevator deflexion.

A second control loop was implemented in the driving force of the aircraft,

allowing the user to change the intensity of thrust developed by the engines. This

was done simply by changing the value of Ttrim, considering, in this way, the throttle

opening directly proportional to the thrust. A feedback loop was also implemented

into this control element to automatically compensate for changes in the velocity.

29

Figures 2.3 and 2.4 show the response of the system to step changes in the

reference values of the two control elements of the model.

A switch INPT was implemented in the code to change the driving functions

that will perturb the model from a trimmed reference flight. TMX specifies the

length of the simulation in seconds, CINT the communication interval, and SEED

the seed to be used in the generation of random numbers. The listing of the ACSL

model code can be found in the Appendix at the end of this thesis and should be

consulted for further details about the model.

30

a:: ::::0
•

:
• •

;
•

; I

a
f-

<
>
W
-l
w .0265

0.0 20. 40. 60. 80. 100. 120. 140. 160. 180. 20(.

Time [see]

~::::F;;; . ; ; : ; ; I
> 496.L..------"----'

0.0 20. 40. 60. 80. 100. 120. 140. 160. 180. 200.
Time [see]

!:o:~~1CS;: : . : : : I
~ 0.0 20. 40. 60. 80. 100. 120. 140. 160. 180. 200.

Time [see]

!:o:~~1t;i?: :: : : . . I
t-4 0.0 20. 40. 60. 80.. 100. 120. 140. 160. 180. 200.

Time [see]

!:::J Z :::·:·I
0.0 20. 40. 60. 80. 100. 120. 140. 160. 180. 200.

TiITle [see]

Figure 2.3 Closed loop response to a step change of -.001 rad in Detrim'

31

~~~~~~D: : : : : : : : : I
0.0 20. 40. 60. 80. 100. 120. 140. 160. 180. 200.

Tim.e [see]

~ 505'1 2:: : : : : - : I
> 500 . ====:~_---'--_-'--------J'----'-_---'-_-'--------J'------'-_

0.0 20. 40. 60. 80. 100.120.140.160.180.200.

Tim.e [see]

i ::::1 /" : : : : : : I
-l 0.0
u, 0.0 20. 40. 60. 80. 100. 120. 140. 160. 180. 200.

Tim.e [see]

LO:~~I~ " " : : : : I
0.0 20. 40. 60. 80. 100. 120. 140. 160. 180. 200.

Tim.e [see]

~::::::I" ~
< 20000.· . .

0.0 20. 40. 60. 80. 100. 120. 140. 160. 180. 200.

Tim.e [see]

Figure 2.4 Closed loop response to a step change of 3000 lb in Ttrim.



32

CHAPTER 3

GENERAL SYSTEMS THEORY

3.1 Conceptual Framework

Systems problem solving or analysis through General Systems Theory starts

by defining a region in the universe where the system and the observer coexist and

interact.

A system in this context can be interpreted as a set of relations between

some objects that belong to that region of the universe and in which the observer

is interested.

Therefore, the first step to the problem solving, or analysis, is the definition

of the system: what is it, that is of interest to us concerning the problem under

study? A set of variables to represent the system has to be chosen, and this set is

to be classified into input variables and output variables, which is a natural classifi-

cation of the variables: input variables depend on the environment and control the

output variables.

"Let a conceptual framework through which types of systems problems are

defined together with methodological tools for solving problems of these types be

called a general systems problem solver {or GSPS, in abbreviation)." (Klir, 1985

page 10)



33

3.2 Epistemological Hierarchy

The GSPS framework is a hierarchically arranged set of epistemological

subsystems. Starting at level one, the amount of knowledge in the systems increase

as we climb the epistemological ladder.

The four first epistemological subsystems are:

level one : Source System

level two Data System

level three : Behavior System

level four : Structure System

The lower level subsystems are contained in the ones that are at higher

epistemological levels.

Source System

At the lowest epistemological level, we find the Source System which rep-

resents the system as it is recognized by the observer. The amount of information

present at this level represents the basic description of the problem in which the

observer is interested: which are the variables that are relevant to the problem,

what causal relationships are present among them (which are inputs and which are

outputs to the system), and which are the states these variables can possibly as-

sume along their time-history (this study will only consider systems where the only

support variable is time).

To illustrate the definition, let us consider the first flying lesson of a future

pilot in a B747 flight simulator. Let us assume that the simulation starts off from

a stabilized (trimmed) longitudinal flight at high altitude. So, he starts by playing

around with all the controls that he has available, very cautiously in the beginning.

At one time, he detects a control that makes the nose of the aircraft go up and



34

down with respect to the horizon: he "senses" the pitch angle. Then he gets curious

about the velocity and checks out the speedometer: the speed is around "500". The

number does not mean much to him, since he does not even know the units it is

coded in. But it is a reference value because the plane is flying all right; so that

must be a good value for the air speed. He tries the controls again and observes

the variation of the speed until he is able to code the reading of the instrument

to something like: "somewhere near 500", "above 500" and "below 500". Then

he moves to the other variables that he can identify, and within his capabilities of

observation, analyses them and codes them in the way he understands and feels

them. When he gets enough confidence in his understanding of the way things

work in the cockpit, he starts to experiment more aggressively. Things like "What

happens if" start crossing his mind, and he starts restricting his attention to certain

aspects of the flight, defining in this wayan area of interest in that sea of instruments

and different sensations he is experiencing for the first time. The knowledge that

our aspiring pilot has now acquired - a set of variables of interest and a set of

states these variables can potentially assume - is defined as a Source System in

GSPS.

The reason(s) for the observer to have chosen the system as such is not ar-

bitrary and can be interpreted as the link between this system and its environment.

The number of states, or levels that each variable can potentially assume

is essentially problem dependent. It should be kept as low as possible without

unacceptable loss of information. Consider again the speedometer with its needle

at 500. Let us assume that that is the standard cruise velocity for the airplane and

therefore, in that region, the scale is larger and with more subdivisions. In his first

experiments, the "pilot" was doing fine interpreting the velocity as "about 500",

"high" and "low", but now he may want to be a little more accurate because he



35

wants to try flying faster and slower, and he may decide that five levels are more

appropriate for this new task.

Data System

The next epistemological level in the hierarchy is represented by the Data

System. It includes the Source System and, additionally, the recoded time history

of all its variables. Data may be supplied by a quantitative simulation of a system

model or by observation in system analysis problems, or may be imposed as desired

states in system design problems.

A Data Model in the GSPS framework is an nrec x nvar matrix where nrec

is the number of recordings (data points) collected in the time span covered by the

Data Model and nvar is the number of variables present in the model. This is a

matrix representation of the time-history of the system, where the input variables

are conventionally located in the leftmost columns and time increases from top to

bottom of the matrix.

Note that data, in the Data System, refers to recoded data, i.e., they must

be represented in terms of the levels that meaningfully represent the states each

variable asssumes along its time history, and which were chosen in the Source Sys-

tem.

Behavior System

One epistemological level higher, we find the Behavior System which holds,

in addition to the knowledge inherent to both, Source and Data Systems, a set of

time-invariant relationships existent among these variables, for a given set of initial

or boundary conditions. Behavior Systems can be considered basic cells for higher

epistemological level systems, so called Structure Systems. The time-invariant re-

lationships among the variables are translation rules mapping these variables into



36

their common spaces. They can be used to generate new states of the variables

within the time span defined in the Data Model, allowing in this wayan inductive

system modelinq feature in the methodology. It is based on this feature that a mon-

itoring device for the system can be built to detect structural changes in it. Due to

this characteristic, Behavior Systems are also called Generative Systems.

3.3 The Concept of Mask

A mask is the matrix representation of a time-invariant translation rule

relative to a given Data Model, hence, it is the matrix representation of the Behavior

Model of the system. The dimensions of a mask are (d + 1) x nvar, where d is the

depth of the mask and represents the number of sampling intervals it covers.

Elements of a mask are negative, zero, or positive. The non-zero elements

represent the "sampling variables" of the mask and the zero elements are neutral

entries.

Sampling variables are the variables that form the translation rule which

the mask represents. They are the state variables themselves, with a temporal tag

attached to them. For example, consider the identities

81 = x(t - ~t)

82 = x(t)

where the sampling variable 81 is defined as being the state variable x considered

one time interval ~t back in time, and the sampling variable 82 is defined as being

the same state variable x, but considered at the present time t defining therefore a

distinct sampling variable (82).



37

Sampling variables, as previously stated, can be negative or positive entries

in the mask, which is how input (or generating) sampling variables (negative en-

tries) are distinguished from the output (or generated) sampling variables (positive

entries). These variables are numbered separately, input sampling variables from

-1 down and output sampling variables from +1 up. Among the sampling vari-

ables of the same type (inputs vs outputs), the numbering sequence is arbitrary. In

this text, we adopted the following convention: sampling variables are numbered

consecutively from the left to the right and from the top to the bottom (like one

does when writing in English).

For example, consider the following mask which has been designed for a

Data Model composed of two input state variables (VI and V2) and three output

state variables (V3' V4, and V5):

t - tlt

t

t + tlt

o 0-1

-2 0 0
o -4 0

o 0

-3 0
o +1

The shown mask corresponds to the translation rule :

where vi(r) represents the state assumed by the variable Vi at time t = r .

Note that the mask's only output sampling variable (entry "+1") is located

at its bottom row which has the most advanced time tag associated with it (con-

veniently specified as t + tlt), which gives the mask generative qualities, i.e., the

state of the state variable vs at a future time t + tlt can be generated based. on the



38

states of the input sampling variables, once a behavioral pattern for the output in

question (V5) has been extracted from the Data Model.

Sampling interval

Note that the translation rule (and the respective mask) in the previous

example uses samples of the Data Model taken at every i:lt seconds to predict the

state of V5. Hence, i:lt is the sampling interval t, of the collected data set. There

is not a precise way of determining the most efficient sampling interval to be used,

but a good rule of thumb to be used is that the mask should cover the dynamics

of the slowest mode in the model (Cellier, 1987). In the case of the given example,

the mask has depth 2 and the sampling interval i:lt should then be about half of

the slowest time constant of the model.

3.4 Optimal Mask Analysis

Given a Data Model, any mask associated with it is "valid" smce it is

the representation of a relationship among the sampling variables it contains. The

question now is "How good is the mask?", "How valid is the translation rule it

represents?". There are innumerous possible masks that can be written for one set of

variables, and our discussion now focuses on the determination of the mask that will

have the least uncertainty in its generating capability. To describe the methodology

used to compare different potential mask candidates, let us first describe some of

the tools available in our GSPS software package, SAPS-II.



39

Behavior Model Analysis

A behavior analysis can be performed on a given Data Model by slidinq

the mask associated with it over the Data Model in the positive time direction,

and writing down the states assumed by the sampling variables at every sampling

interval. Note that the resulting Behavior Model will have d (mask depth) less data

sets than the Data Model, and the size of the data sets read at every sampling

interval, is the number of sampling variables present in the mask used.

To visualize the process of building a behavior model out of a Data Model

using a certain mask, picture the mask as being, physically, a piece of cardboard

with the same physical dimensions as the Data Model in the horizontal direction

and both matrices having the same spacing between rows. Now picture the non-

zero entries of the mask as holes in the cardboard such that when the mask is slid

over the Data Model, one can read the (recoded) states of the state variables in the

positions determined by the sampling variables (the holes in the mask) and write

each row of the behavior model from these readings at every sampling interval. It

is the convention to write first, from left to right, the inputs (negative entries in the

mask: -1, -2, ...) and then the outputs (positive entries: +1, +2, ...).

Listed below are a generative mask, the ten first lines of a Data Model

for which the mask has been created and the associated Behavior Model which is

obtained by applying the mask on the Data Model as described above:

mask = ( -~

o -1
o 0

-4 0



40
Time Data Model Behavior Model

t=O 1 3 3 2 2
I:::.t 1 2 2 2 2

21:::.t 2 3 3 1 1 3 1 2 3 1
31:::.t 1 1 1 2 3 2 2 1 1 3

3 2 2 3 3 3 1 2 2 3
2 2 3 1 1 1 3 3 2 1
1 1 2 3 2 2 2 1 1 2
3 2 3 2 1 3 1 3 2 1
1 1 3 2 2 2 3 2 1 2
2 3 2 2 3 3 1 2 3 3

A simplified representation of the Behavior Model is obtained by performing

a basic behavior analysis on it, which consists of a sorted listing of all possible

combinations of the states of the Behavior Model associated with their frequency

of occurrence in the Behavior Model. This is where SAPS-II starts extracting

information from the Data Model in a more comprehensive way.

State Transition Analysis

State transition analysis is a more complete behavior analysis, which out-

puts conditional probabilities as well, relating the probability with which certain

inputs occur to the occurrence of certain outputs. It is assumed that the Data

Model under study is large enough to allow our interpreting of the frequencies of

occurrence as probabilities of occurrence.

The State Transition Model generated by SAPS-II gives the frequencies

(or probabilities) of occurrence of sets of inputs, sets of outputs, and mixed in-

put/output occurrence frequencies (conditional probabilities of a certain output to

occur, given the occurrence of a set of inputs).



41

The Concept of an Optimal Mask

An OPTIMAL MASK is a mask that represents the translation rule that

has the least uncertainty associated with its capability of generating future states

of a certain set of outputs. In this thesis, we will only consider single output masks

and generation of different output variables will be done with separate masks.

SAPS-II allows the user to search for an optimal mask relative to a certain

set of inputs, where the "goodness-of-fit" of different masks is based on a quality

factor q which is evaluated for each mask using Shannon Entropy (e.g., Levine and

Tribus, 1978) as a measure of uncertainty associated with the proposed generative

properties of the mask.

MASK CANDIDATES are masks with the same dimensions as the desired

optimal mask and whose non-zero elements are either "-I" or "+1".Such masks

allow the user of SAPS-II to specify all possible input sampling variables (-1 en-

tries) that may possibly affect the output sampling variables that he also specifies

in the same mask candidate (+1 entries). Zero elements are neutral.

For example, the mask:

tl t2 01 02 03

t - Llt -1 -1 -1 -1 -1
t -1 -1 -1 -1 -1
t + Llt -1 -1 0 0 +1

is a mask candidate built for a Data Model composed of two input state variables (i 1

and i2) and three output state variables (01,02, and 03). In building such a mask

candidate, the user has specified almost every element of the mask as a possible

influencing element (input sampling variable) in the generation of a future state

of the state variable 03 one sampling interval (Llt) ahead in time. The sampling



42

variables in a mask candidate do not need numbering since their function is solely to

point out which are the possible input sampling variables that may (possibly) affect

the behavior of the output variables that are also specified in the mask candidate.

Similar mask candidates will be used for the other two output variables.

Note that the only two zero entries in the mask candidates are relative to the other

two output state variables at time t + D..t. By not permitting a direct interaction

among the three outputs ate same time, we prevent the forecating (behavior genera-

tion) algorithm from entering algebraic loops, since otherwise it could, e.g., happen

that
03(t + D..t) = h(oI(t + D..t))

odt + D..t) = fI(03(t + D..t))

which is perfectly logical since future outputs should not influence the behavior of

the generated output.

Based on a mask candidate and a Data Model, SAPS-II is able to perform

an exhaustive search through all mask complexity levels (number of non-zero entries

in the mask) to find the mask that has the least uncertainty associated with its

capability of generating future states of a certain set of output sampling variables.

For example, with the previous sample mask candidate, the search starts

at mask complexity 2. At this complexity level each input sampling variable is

considered individually as being the only element affecting the state assumed by

the one output sampling variable present in the mask: V5(t + D..t). A quality fac-

tor relative to each considered mask is computed based on the behavior pattern

observed throughout the Behavior Model that was obtained applying the mask on

the Data Model under consideration. Once the best mask at this level has been

found, SAPS-II goes through all possible combinations of pairs of inputs (at mask

complexity 3 there are three non-zero elements in a mask, i.e., as we are considering



43

only one output sampling variable, there must be two input sampling variables) and

computes the quality factors associated with each of these masks, finding in this

way the best mask at complexity level 3. In this same fashion, all possible masks at

all levels (up to a maximum complexity level specified by the user) will have their

quality factors evaluated and the mask with the highest quality factor found in the

search is the optimal mask that we are looking for. In the mask history, SAPS-II

preserves the knowledge of the best masks found for each complexity level.

The Quality Factor of a Mask

Shannon Entropy measure is used to determine the uncertainty associated

with the assumption that the proposed translation rule is true, i.e., that a certain

output occurs when a given set of states occur in the input sampling variables. The

entropy relative to one input is calculated from the equation:

Hi = - L p(o I i) log2p(O I i)
'<10

(3.1)

where p( 0 I i) is the conditional probability of a certain output occurring, given

that the input occurred.

The overall entropy of a mask is calculated as the sum:

(3.2)

where Pi is the probability of that input occurring. Maximum entropy is measured

when all the probabilities are equal, and zero entropy occurs when the relationship

is deterministic.

A normalized overall entropy reduction is defined for the masks as H; by:

Hm
Hr=l- --

Hmax
(3.3)



44

where Hmax is the maximum possible entropy of the mask. H; will be such that

In order to find the optimal mask that best represents the relationship

existent among the set of sampling variables under consideration, SAPS-II goes

through an extensive search that is carried out in levels. It first computes the

quality of the simplest masks (with the smallest number of non-zero elements in

them), chooses the best at that level and steps to the next level. In order to

compare masks at different levels, a mask complexity weight Cm is defined as:

C _ ntlar dact ncomp/
m-. dmax

(3.4)

where:

ntlar is the number of variables in the source model,

dact is the actual depth of the mask plus one,

ncomp/ is the number of non-zero entries in the mask, and

dmax is the maximum possible depth the mask could have (the depth of the chosen

mask candidate) plus one.

For example, the complexity weight of the following mask

(-~
-3

o 0
o -2
o 0

can be evaluated to

Cm = 4 x 2 x 4 = 10.667
3



45

Finally, the quality measure Q is defined as

(3.5)

Once an optimal mask has been found, SAPS-II allows the user to forecast

future behavior of the system, based on the knowledge inherent to the generative

model represented by the mask, and in the behavioral knowledge held within the

Data Model. The probabilities associated with the forecast states are outputted as

well, and the forecasting can be aborted at a minimum probability, if desired.



46

CHAPTER 4

A QUALITATIVE AIRCRAFT MODEL

4.1 General Description

This chapter focuses on the ability of generative systems to perform induc-

tive reasoning based on past behavior of the system under analysis. We will use

our longitudinal flight model to demonstrate how a system failure detector can be

implemented in the GSPS framework forecasting the future behavior of the system

and comparing this forecast with the actual measured data. As the forecast is based

purely on past behavior of the system, it is adaptive to slow changes in it (such as

aging of its components), but a sudden structural change is immediately detected

since the behavior of the system cannot be forecast any more with the optimal

masks that have been evaluated for the system under observation.

A set of five variables will compose the source system of our qualitative

model, and data will be generated first to extract information from the system and

load it into the GSPS framework to generate the optimal masks relative to the

outputs. Then, data relative to a cruise flight will be analysed and monitored with

the aid of the forecasting tool of SAPS-II using the optimal masks. An unforeseen

system failure in the system is simulated by a structural change in the model, and

the change is immediately noticed by the online monitoring system.



47

4.2 The Source Model

The Source Model chosen to run the experiments has two input variables

and three output variables. The input variables are step perturbations affecting the

reference values of the two control variables of our model, Detrirn and Ttrim. The

trimmed values of these variables are preset, such that the model starts out in a

perfectly stable horizontal flight. A change in any of these variables will perturb

the model forcing it to a new steady state, with a new cruise velocity and/or flight

path angle. The set of outputs that we will analyse are the two components of the

aerodynamic force, lift L and drag D, and the flight path angle /.

4.3 The Data Model

The Data Model to be used for the optimal mask analysis must be very

rich in information about the dynamics of the system. To concentrate as much

information as possible in this Data Model, a theoretical "shaken" flight phase

where the controls are exerted frequently and in different ways was implemented

into the model as describes the ACSL-code below:

program
initial

constant tpulse = 0.0, dde = 0.001, dtr = 3000.0, ...
sint = 6.0, delta1 = 0.9, delta2 = 1.1

end $"of initial"
dynamic

if(inpt .eq. 2) go to c2 $"shaken flight phase"

c2..continue
if(t .ge. tpulse) go to pl



48

go to e1

pl..continue

tpulse = tpulse + sint-uniff delta1, delta2)
pde = int(unif(l, 3.9999))
ptr = int(unif(l, 3.9999))
detrim = dez + (pde - 2)=dde
trtrim = trz + (ptr - 2) «dtr
go to e1

el..continue

termt(t .ge. trnx) $"stopping criterion"
end $"of dynamic"
end $"of program"

In the shaken flight phase, the trim values of the control variables are

changed in steps at time intervals randomly determined between 0.9 and 1.1Xsint,

the sampling interval of the model under study. The steps are randomly positive,

negative, or null and their magnitude has a default magnitude of tl8etrim = .001 rad

and tlTtrim = 3000 lb. Giving so small steps in the elevator, and so large ones in

the thrust (10%) may not be realistic, but these values were chosen since the model

is very sensitive to changes in the elevator deflexion. The use of more realistic

values like .087 rad (~ 5 degrees) for tl8etrim and 1500 lb for tlTtrim outputs a

behavior that is almost not dependent at all of the changes in thrust. The effects

of both inputs are desired to be of comparable magnitude since we know that both

variables do affect the system, and therefore they are both of interest. A solution

to this problem would be the use of more recoding levels for the output variables,

which was not possible because of the data amount this would require. The reason

for this will be explained in due course.



49

The communication interval cint is set to match the sampling interval

which, in turn was taken as half of the slowest time constant of the output vari-

ables, a reasonable procedure for masks of depth 2, as discussed in the previous

chapter. The following Ctrl-C code shows how the Ctrl-C/ ACSL interface allows

us to compute the eigenvalues and the time constants of the linearized model.

i> acsl(,set trnx = 0')
l> freeze(,x, h')
[> start
[> a = jacobian

(

-0.6034
0.5538

a = 0.0000
-17.1213

0.0236
-0.7408

1.0000
0.0000

0.6137
-0.8705

0.0000
-15.0787

0.0003 )
0.0001
0.0000

-0.0059

[> lambda = eig( a)

(

-0.0850 + 0.0056i)
-0.0850 - 0.0056i

lambda = -0.5901 + 0.8722i
-0.5901 - 0.8722i

[> tau = [-l/real(lambda(l)); -1/real(1ambda(3))]

(
11.7648 )

tau = 1.6948

[> tsample = roundjtau/e]

tsample = (~:)

As shows the code above, the Ctrl-C / ACSL interface offers the user the

capability to evaluate the state transition matrix of a nonlinear system's linearized



50

model about the current point in the state space. This is done by numerical per-

turbation through the "a = jacobian" command. For the output of the command

to be valid, the model has to be trimmed at the point of evaluation (all derivatives

equal zero) and outputs of open loop integrators have to be eliminated from the

state vector. Both displacement variables (horizontal displacement x and vertical

displacement h) are outputs of open-loop integrators (see Appendix for the ACSL

program listing) and can be eliminated from the state vector with the command

freeze('x, h'). Trimming the model is not needed since we compute the Jacobian

at time zero when our model is perfectly trimmed due to the carefully chosen initial

conditions. The start command starts the simulation run, but as tmx (maximum

simulation time, used as stopping criterion in the model) is set to zero, all that

happens is the computation of the start values for all variables based on the given

initial conditions. Therefore, the state transition matrix, the eigenvalues and the

time constants calculated refer to a linear model that matches the trimmed refer-

ence flight of our aircraft. The only use of the "A-matrix" is to give an idea of

the sampling interval to be used, but all data needed for the qualitative analysis

of the model will be collected from simulation runs of the nonlinear ACSL-model

describing the longitudinal flight.

The slowest time constant of the linearized model is 12 seconds, a time span

which should be fully covered by the mask that we want to use on the data model.

We will assume that, for global decision making purposes, only the slowest mode of

the observed system is of interest. Therefore, when using masks of depth 2 on the

data model (assuming that two samples within every interval of one time constant

will yield enough information about the dynamics of the system), we are setting the

sampling interval of the data model to 6 seconds.



51

Had we wanted to include the faster mode (72 = 2 sec) in our analysis, the

dimensions of the Behavior Model would have grown beyond the current capabilities

of SAPS-II if no information about the relationships among the sampling variables

is available. The following mask is an example of a very general mask candidate

that would cover both time constants, sampling each of them twice:

-1 -1 -1 -1 -1
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

-1 -1 -1 -1 -1
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

-1 -1 -1 -1 -1
-1 -1 -1 -1 -1
-1 -1 1 0 0

Another solution to this problem whould be to perform two separate opti-

mal mask analyses, one for each mode, and use the information about the causal

relationships gotten from these analyses to build less complex mask candidates and

so, iteratively find the optimal masks for each output.

The following two sets of Ctrl-C / ACSL code were used to retrieve the step

input response of the system shown in figures 4.1 . First the system is started

trimmed at time zero, perturbed with a negative step of magnitude - .001rad in

the reference value of the elevator deflexion scheduled at time t = 10seconds:

[> acsl(,set tmx = 200,cint = 0.1')
[> acsl('set inpt = 1, dtrl = 0')
[> [t, de, detrim, 1, d, gal = start;
[> save >temp



52

The time history of the perturbation step betrim' and its effect on the ele-

vator deflexion, lift, drag and flight path angle, and the independent variable itself

are saved temporarily. The next code describes the simulation of the model with a

perturbation step of magnitude bT = 3000 lb in the thrust also scheduled at time

t = 10 seconds.

[> acsl('set trnx = 200, cint = 0.1')
[> acsl('set inpt = 1, dde1 = 0, ttr1 = 10')
[> [tr, trtrim, 1, d, gal = start;
l> ltr = 1; dtr = d; gatr = ga;
l> clear 1 d ga
[> load <temp
[> term = '4100'; hard = 'tekf';
[> window('211'), plot(t, [de, detrim])
l> xlabel('time [sec]', , III III '), ylabel(,de,detrim')
[> window('212'), plot(t, [tr, trtrim])
[> xlabel('time [sec]', , III III '), ylabel('tr,trtrim')
i> replot
l> erase, window('211'), plot(t, [1, Itr])
[> xlabel('time [sec]', , III III '), ylabel('lift [lb]', , III 11')
[> window('212'), plot(t, [a, dtr])
l> xlabel('time [sec]', , III III '), ylabel('drag [lb]', , III 11')
l> replot
[> erase, window('211'), plot(t, [ga, gatr])
l> xlabel('time [sec]', , III III '), ylabel('g [rad]', 'g lll')
l> replot
l> quit

$ rename ctrlc.tekf flgure-Ll

The outputs. of this second ACSL simulation are the perturbation step

input, and its effects on the thrust, lift, drag and flight path angle. The last three

variables are renamed so that we can load back the time histories of these same

variables affected by the step in the elevator.



53

.0280r---~----~--~----T---~----~--~----~--~--~
I-- !

I

1~--------11:: .0275
0::
t-
Wo• .0270
Wo -------

.0265~--~----~--~----~--~----~--~----~--~--~
0.0 20. 40. 60. 80. 100. 120. 140. 160. 180. 20C.

Time [see]

37000.r---~----~--~----T---~----~--~----~--~--~

:L 36000.

0::
fo- 35000.0::
fo-.
0:: 34000.t-

----------------

33000.~~~----~--~~--~--~----~--~--~--~-~
0.0 20. 40. 60. 80. 100. 120. 140. 160. 180. 20C.

Time [see]

Figure 4.1a Effect of the perturbations on the controls

Figure 4.1a above shows the plots of each perturbation superposed with

its effect on the respective control variable, and figure 4.1b shows the response of

the three output variables of our source system to each of the perturbations. The

plots in solid line represent the response of the system to a step change in the

elevator deflexion, at fixed throttle opening and the plots in dashed line represent

the response at fixed elevator deflexion and a step change in the thrust. Both

perturbations are given from the trimmed reference flight characterized by the initial

conditions.



54

506000.r---~----~---T----~----~--~----~--~----~--~

~::::::\::: - .:.::J 1 _

500000.~ _-__--=-~~~~~=-~==~~~~---=~~--
498000.~--~----~--~----~----~--~----~--~----~--~

0.0 20. 40. 60. 80. 100. 120. 140. 160. 180. 2'JC.
Time [see]

33300.r---~----~--~----~----~--~----~--~----~--~

,,--- ------- ----------

33200.

':0.=. 33100. I
lOll I
~ I
Q 33000.....--J

32900.L---~~~====~==~~==~========~========~===J
0.0 20. 40. 60. 80. 100. 120. 140. 160. 180. 200.

Time [see]

0.008

0.006

~
0.004

.,
"- 0.002
~

0.00

-.002
0.0

- -- - - - - - - - - - -- - ~

20. 40. 60. 80. 100. 120. 140. 160. 180. 20C.
Time [see]

Figure 4.1h System response to the perturbations

Collecting Data

One last parameter has still to be decided upon, before we run the model

m its shaken phase: data size. The necessary length of the simulation is closely



55

related to the number of recoding levels that we want to use to recode our raw

data. Even though the number of recoding levels is a parameter that theoretically

should already have been decided upon in the source system, here we will have

to work the other way around due to restricted data handling capabilities of the

computational tools available. The Ctrl-C environment workspace currently allows

the use of 200,000 elements which is sometimes restrictive, as, for example in the

Ctrl-C/SAPS-II user-defined data recoding function rekode (which will explained

in detail a few sections ahead, in this same chapter), the data size cannot be larger

than 5000 data points for five variables.

The SAPS-II function optmask, the standard SAPS-II function for opti-

mal mask evaluation, currently restricts the data size to 2500 data points, which

starts being a problem if we need to have more than three recoding levels and five

variables.

The minimum number of recordings that a Data Model should contain can

be calculated as being five times the total number of possible combinations of the

states assumed by the sampling variables that form the Behavior Model matrix of

the system. The factor five is widely used in statistical and classification analyses

(Law and Kelton, 1982).

According to this assumption, the minimum number of recordings necessary

to have enough events of every possible type happening, is given by

ncompl

nrec = 5 II nlevi
i=l

(4.1)

where nrec is the suggested number of recordings for the Data Model, ncompl is the

maximum mask complexity of all masks that will be used on the Data Model, and



56

nZeVi is the number of recoding levels of the ith sampling variable of the Behavior

Model.

The number of columns in the Behavior Model matrix of a system is dic-

tated by the complexity of the mask used to build it. In this thesis all optimal

mask analyses will be carried on up to complexity level five. This limitation in

the methodology is mainly imposed by the computational tools, but is perfectly

acceptable since we will only consider single output masks in this work, allowing in

this way up to four input sampling variables to influence one output.

Assuming that all optimal masks evaluated are of complexity five, the min-

imum number of recordings for a set of five variables, all recoded into three levels,

is 1215, and our tools are more than capable of handling that. The two input vari-

ables are discrete variables with three states each, so there is no doubt about their

recoding: they are already naturally recoded into three levels. Now, considering the

outputs, we could recode them all into four levels which would require a Data Model

size of 2880. This number is acceptably close to the maximum allowable number of

data points (2500), but in the case of our problem, we want to recode the outputs

into an odd number of levels, for the reason that a central level is desired where

one state of the variable can be considered "normal". Using five levels for all three

output variables would require a Data Model with 5625 recordings which is not

currently possible to handle with the available tools. Recoding two of the outputs

into five levels and one into three requires 3375 samples and two of them into three

levels and one into five, requires 2025 data points.

We will first use 2500 data points from the shaken flight model, recode all

variables into three states each, and then use the recoded data model to calculate

the optimal masks.



57

Shaking the Airplane

The following Ctrl-C / ACSL interface code sets the simulation time to

15,000 seconds and the input selection switch inpt to 2, to choose the shaken flight

phase.

[> acsl(,set trnx = 15000, inpt = 2')
[> [pde, ptr, 1, d, gal = start;

The communication interval cint (equivalent to the sampling interval in

this model) has a default value of 6 seconds yielding in this way a total of 2501

data points for all variables. The default values for the magnitude of the steps is

b..8et. = 0.001 rad and b..Ttrim = 3000 lb.
rtm

The start command starts the simulation and the variables to be outputted

are defined inside square brackets, on the left hand side of the command. Figure

4.2 shows plots of the shaken behavior of the output variables obtained through the

Ctrl-C/ ACSL interface code below:

l> t = 0: 6: 15000j
l> term = '4100';
[> hard = 'tekf";
l> window('211'), plot(t, 1)
[> xlabel('time [sec]',' III III '), ylabel('lift [lb]',' III II')
l> window('212'), plot(t, d)
l> xlabel('time [sec]',' III III '), ylabel('drag [lb]',' III II ')
[> replot
[> erase, window('211'), plot(t, ga)
l> xlabel('time [sec],,' III III '), ylabel('g [rad]','g III ')
[> replot
[> quit
$ rename ctrlc.tekf figure-t.z

where the first line of the code creates the support variable t since it had not been

specified as an output for the ACSL simulation and it was needed for the plots.



58

S10008.r---------------~--------------~--------------~

sosooc.

~ooooc .-:3
495000.

490000.~--------------~--------------~--------------~0.000 5000. 10000.
Time [see]

ls00C.

':0'.=.. 33000.
I>Il

'"•..
Q

32s00.~--------------~--------------~--------------~0.000 5000. 10000.
Time [see]

15000.

0.010r---------------~------------___T--~----------~

-.010~~----------~~~------------~--------------~0.000 5000. 10000. 15000.
Time [see]

Figure 4.2 Shaken variables

Recoding

The inputs of the source model are the perturbations f::l.6etrim and f::l.Ttrim

affecting the model through step changes in the trimmed reference value of the ele-

vator deflexion and of the thrust developed by the engines. The shaken flight phase

has been implemented in the model such that these step changes occur at every



59

communication interval being randomly negative, null, or positive, and, therefore,

each of these variables can assume three different states. The state they will assume

is dictated by pde and ptr which are the integer part of the numbers between 1.0000

and 3.9999 generated by two distinct (uniformly distributed) random number gen-

erators. Perturbations pde and ptr are already coded to {I 2 3} and are ready

to be used, needing no recoding.

The first 20 randomly chosen states of the input variables are listed below:

[> inrec = [pde, ptr];
[» clear pde ptr
l> in20 = inrec(1:20, :)

in20 1
1
2
3
3
2
3
1
1
1
2
1
3
3
2
1
1
1
3
3

2
2
3
3
2
2
3
3
1
1
2
3
2
1
3
3
3
2
1
1

The output variables {L D "I} do require recoding since they are not

discrete variables as the inputs. The number of recoding levels to be used for each

variable has, intuitively, to be odd, if we want to have a 'normal' range of operation



60

and variations about it. Let us try the analysis first with just 3 levels for each

variable, and then decide if that gives meaningful enough results, or whether we

should try a more complex data system with one or two of the output variables

recoded into 5 levels (as mentioned in the previous section, we already know that

recoding all three output variables into five levels would require a data model too

large for the current version of SAPS-II).

User-defined recoding function rekode

The function rekode is based on a code written by Dr. Francois Cellier in

September 1987, which he then called nlrec. His function calculates the number of

levels to be used, based on the data size using expression (4.1) and applies the same

number of levels to all variables. This feature is not used in rekode, which assumes

the number of recoding levels to be three, but otherwise the code is the same. Both

functions choose the limits of the recoding levels such that each of them contains

the same amount of data points. This is done by sorting each variable completely,

dividing the sorted vector into three equal parts, and choosing the limits as the

first and last elements of each of these parts. These limits yield the from-matrix

for each variable while the to-vector is the same for all: to = [1 2 3]. Then

the standard SAPS-II function recode is used to recode each variable with the

'domain' option and the respective from- and to- matrices. The following code lists

the Ctrl-C /SAPS-II commands used by the function:

/ /[recdata, from] = rekode(rawdata)
[> [nr, nv] = size(rawdata);
[> from = zrow(l, 3);
[> recdata = zrow(nr, 1);
[> for i = 1: nv, ...
[> [tag, d l] = sort(rawdata(:,i)); ...
[> fr(l, 1) = d1(1); ...



61

[> fr(2, 1) = O.5*(d1(round(nr/3)) + d1(round(nr/3)+1)); ...
[> fr(l, 2) = fr(2,1); ...
[> fr(2, 2) = O.5*(d1(round(2*nr/3)) + d1(round(2*nr/3)+1)); ...
[> fr(l, 3) = fr(2,2); .
[> fr (2, 3) = d1(nr ); .
[> r = recode(rawdata(:,i), 'domain', fr, 1:3); ...
[> recdata = [recdata, r]; ...
[> from = [from; fr]; ...
[> end
[> recdata = recdata(:, 2:nv+1);
[> from = from(2:2*nv+1, :);
[> return

The following Ctrl-C/SAPS-II code loads the SAPS-function library into

the Ctrl-C workspace, loads the user-defined Ctrl-C/SAPS-II function rekode

which will be used to recode the variables, and carries out the recoding of the three

outputs:

[> do saps:saps
[> deff rekode
[> xraw = [I, d, gal;
[> clear I d ga
[> [xrec, from] = rekode(xraw);

The outputs of the rekode recoding function are xrec, the recoded data

model and from, a matrix formed by concatenating from below all three from-

matrices: the first two rows compose fl (from-matrix for lift), third and fourth

rows represent f d (from-matrix for drag), and the fifth and sixth rows compose the

from-matrix for " fga.

[> fl=from(1:2,:)j
[> fd=from(3:4,:)j
[> fga=from(5:6,:);



62

Il = ( 4.9352 4.9885 5.0110) 10+05
4.9885 5.0110 5.0710 x

Id = (3.2589 3.2936 3.3073 ) 10+04
3.2936 3.3073 3.3425 x

( -0.0078 -0.0013 0.0013 )
I ga = -0.0013 0.0013 0.0078

To illustrate the recoding of the raw data model, the first twenty elements

of each output variable are plotted below in their raw and recoded forms:

ACTUAL BEHAVIOR~'OOOO.~
§ooooo.
-'-~ .

490000.
0.0 20. 40. 60. 80.100.120.

Time [see]

RECOOEO BEHAVIOR!O~
0.0 20. 40. 60. 80.100.120.

Time [see]

33500.ES:]~33000.
~ 32500 .•..
c

32000.
0.0 20.40. 60. 80.100.120.

Time [see]

I~ ;o~
0.0 20. 40. 60. 80.100.120.

Time [see]

~;0;~~1=~
0.0 20. 40. 60. 80. 100.120.

Time [see]

I~ 1}2v-g
0.0 20. 40. 60. 80.100.120.

Time [see]

Figure 4.3 Recoding of the output variables



63

4.4 The Generative Model

Now, with the recoded data model at hand, we are ready to proceed with

our task of building a qualitative model for the system through the evaluation of the

optimal masks for it. The only information we have about the causal relationship

among the variables stems from the source model where the basic variables were

defined as inputs and outputs. Very little, however, is known about the 15 possible

sampling variables available in a five variable mask of depth 2 that we are going to

use. The difference here is that the sampling variables hold causal behavior knowl-

edge not only about the variables, but about the variables at one, two, up to the

depth of the mask sampling intervals behind in time. Therefore, there is not much

help we can give to SAPS-II in terms of hinting which are the most probable causes

to the effects observed in each of the outputs, or even which sampling variables

definitively have no effect. The solution is to simply fill the mask candidate with

-Is, meaning that any sampling variable is a possible input to the I/O Model the

mask will generate. This will make the search for an optimal mask quite extensive

but the optimal mask will certainly be found.

Intuitively, separate masks for each output variable give better results, since

the magnitude of the effect of one influencing sampling variable may vary from one

output to another, and, in this way, its influence on one of the outputs could easily be

discarded, even if this were the most influencing sampling variable to that particular

output.

Also, as we are interested in generating a tool with inductive capabilities,

we are interested in how past behavior relates to future behavior, and therefore, our

output sampling variables should be located in the mask candidates such that they

are ahead in time from the possible inputs. As the convention adopted for the data



64

model is that time increases when we move down in the data matrix, our outputs

should be located in the bottom row of the masks.

We will also assume that present states of the outputs do not affect each

other, but present states of the input variables may affect any of the outputs. The

following set of mask candidates was used for the optimal mask evaluation:

C1 -1 -1 -1 -1)mean, = -1 -1 -1 -1 -1
-1 -1 +1 0 0

( -1 -1 -1 -1 -1)meand = -1 -1 -1 -1 -1
-1 -1 0 +1 0

( -1 -1 -1 -1 -1)mean,,! = -1 -1 -1 -1 -1
-1 -1 0 0 +1

The following Ctrl-C jSAPS-II code loads the user-defined function omhis

and evaluates the optimal masks using it:

l> deft" omhis
[> [msk, hm, hr, q, mhis] = omhis([inrec, xrec], 5, 0);

Omhis is a user-defined Ctrl-CjSAPS-II function that uses the standard

SAPS-II optimal mask analysis function optmask and was created specially for

this problem. Its main purpose is to generate the mask candidates meanl, meand

and mean,,! and run optimal mask analyses for each of the three mask candidates.

Listed below is the code used:

j j[msk, hm, hr, q, mhis] = omhis(rawrec, n, r)
mcan1 = [-ones(3, 2), [-ones(2, 3); zrow(l, 3)]];
mcan2 = mcan1;



65

mcan3 = mcan1;
mcan1(3, 3) = 1;
mcan2(3, 4) = 1;
mcan3(3, 5) = 1;
repo = r;
[msk1, hm1, hr1, q1, mhis l] = optmask(rawrec, mcan1, n);
[msk2, hm2, hr2, q2, mhis2] = optmask(rawrec, mcan2, n);
[msk3, hm3, hr3, q3, mhis3] = optmask(rawrec, mcan3, n);
msk = [msk1; msk2; msk3];
hm = [hm1; hm2; hm3];
hr = [hr1; hr2; hr3];
q = [ql; q2; q3];
mhis = [mhisl; mhis2; mhis3];
return

The user must specify the maximum level of mask complexity (defined as

the number of non-zero elements present in a mask) up to which the search is to

be carried out, and she/he is also given the option of requesting a detailed listing

of the analysis. In the current version of the software, a data model containing five

variables recoded into three levels must not have more than 2500 rows. The inputs

required by this funtion are: a recoded data matrix rawrec, an integer value n, and

another integer value r.

The integer n specifies the maximum complexity level up to which the

optimal mask evaluation should be carried out. In this analysis, we chose not to

go beyond 5 because the higher complexity analyses generate too large Behavior

Systems that are restrictive for the presently available tools. As has already been

discussed in the fifteen-element, single output masks that we are using in this thesis,

the relationships should reliably representable through not more than four input

sampling variables.

The user may request a detailed report file which lists all intermediary

results of the optimal mask evaluation at every complexity level. This is done by



66

entering "1" in the function's input parameter r. Due to the sheer volume of this

listing, it is recommended that r (or SAPS-II global variable repo) is normally set

to "0".

The outputs of the function are five: msk, hm, hr, q, and mhis, giving in

this way a summary of the search at different levels of mask complexity. A more

complete listing, as mentioned above, is available by setting r to 1.

Output msk is a matrix containing the three optimal masks, concatenated

to each other vertically from below. Vector hm is the entropy vector, containing the

Shannon entropy relative to each of the optimal masks found at every complexity

level, hr represents the normalized entropy reduction of the same masks, and q

their quality factor. These three vectors can be divided into three equal parts, each

of which refers to one of the masks in the same order as they appear in the msk

matrix. The elements of each part refer to complexity levels 2, 3, 4, and 5 for each

mask.

Matrix mhis is the optimal mask history matrix containing all the sub-

optimal masks found at all complexity levels considered; they are concatenated

vertically from below for masks with different outputs, and horizontally from the

right for increasing mask complexities.

Listed below are all the results outputted by the optimal mask analysis.

The results were edited and renamed to improve readability and to allow possible

future reference to the different parts of each output:

msk = [ml; md; m"tl

(

-1.
mi = -3.

O.

o. O.
-4. O.

O. +1.

o.
O.
O.

-2.)o.
O.



67

Cl. o. o. o.
0
0
)md= -2. -3. o. -4. o.

o. o. o. +1. o.

( 00
o. o. o.

0
0
)mi = -1. o. o. o. -2

o. o. o. o. +1.

The Shannon entropy vector hm, the normalized entropy reduction vector

hr , and the quality vector q will be concatenated ot each other from the right and

will be displayed in one single matrix for each optimal mask. We called them hqi,

hr hm q

(°0
1828

1.2953 000548 )
hq; = 0.4584 0.8583 0.0917

0.6517 0.5520 0.0978
0.8326 0.2653 0.0999

(001520 1.3441
00M56)

hqd = 0.3187 1.0799 0.0637
0.5604 0.6967 0.0841
0.7737 0.3587 0.0928

(°0
2289

1.2221
000687)0.4404 0.8870 0.0881

hq.; = 0.5201 0.7606 0.0780
0.6245 0.5951 0.0749

The last output of the function is the optimal mask history matrix mhis

which will be displayed here mask by mask instead of as one large matrix containing

all the matrices, as is the output given by SAPS-II. Masks marked with an asterisk

* are the optimal masks throughout all complexity levels:



68

( m12 mZ3 mZ4
m" )mhis = md2 md3 md4 md5

m"12 m"13 m"14 m"15

(-~

0 0 0 nmZ2 = 0 0 0
0 +1 0

( -I 0 0 0 nml3 = -~ 0 0 0
0 +1 0

( -I
0 0 0 ~)ml4 = -~ -3 0 0
0 +1 0

( -I 0 0 0 -2)ml5 = -~ -4 0 0 o *
0 +1 0 0

( -I 0 0 0 nmd2 = ~ 0 0 0
0 0 +1

(-~
0 0 0 nmd3 = -2 0 0
0 0 +1

( -I 0 0 0 nmd4 = -~ -3 0 0
0 0 +1

CI
0 0 0

n*md5 = -~ -3 0 -4
0 0 +1

m,2 ~ ( -~
0 0 0 J)0 0 0
0 0 0



69

(-~

0 0 0

-~) *m"(3 = 0 0 0
0 0 0 +1

(-~

0 0 0
-~)m"(4 = 0 0 -3

0 0 0 +1

Cl 0 0 0 -~)m"(5 = -~ 0 0 -3
0 0 0 +1

Finally, the from-matrices used for the recoding of the Data Model used

in the optimal mask analysis are saved along with the optimal masks in the file

fmasks.dat for future use. The second best masks (with second highest quality

factor) are saved in a separate file amasks.dat for a future study of their effective-

ness as forecasting tools.

[> m1 = msk(1:3, :);
[> m2 = msk(4:6, :);
[> m3 = msk(7:9, :);
[> m1a = mhis(1:3, 11:15);
[> m2a = mhis(4:6, 11:15);
[> m3a = mhis(7:9, 11:15);
[> save fl. fd fga m1 m2 m3 >fmasks
[> save m1a m2a m3a >amasks

Analysing the Optimal Masks

One way of checking if the masks really represent the system behavior is to

recalculate them with another random input stream.

The ACSL simulation software allows the user to change the seed of the

random number generator by setting the variable seed to the any desired value. It

has a default value of 555 in the program, and the ACSL User's Manual (Mitchell

and Gauthier, 1986, page 4-23) suggests that seed be set to an odd interger value in



70

order to obtain a maximal length sequence, and the value should be large to avoid

high correlation among the the first five to ten elements of the stream.

We ran the model once more, now with a different seed, as shown in the

code below:

l> acsl(,set tmx=15000, inpt=2, seed=1177')
[> [pde, ptr, 1, d, gal = start;

The recoding is done in exactly the same manner as in the previous section

as shows the followingCtrl-C/SAPS-II code:

[> inrec = [pde, ptr];
[> clear pde ptr
[> xraw = [1, d, gal;
[> clear 1 d ga
l> deff rekode
[> [xrec, from] = rekode([xraw]);

The resulting from-matrices are very similar to the preVIOUSones, such

that all the level boundaries are more or less at the same points as before. Small

differences are expected since the random stream has changed, but the states the

input variables assume are still random, uniformly distributed as Is, 2s or 3s, and

the magnitude of the steps is still the same.

Il = ( 4.9314 4.9891 5.0107) 10+05

4.9891 5.0107 5.0659 x

f d = (3.2590 3.2937 3.3072) 10+04

3.2937 3.3072 3.3392 x

I = (-0.0076 -0.0012 0.0012 )
I -0.0012 0.0012 0.0081



71

Figure 4.4 below shows graphically the first 20 data points of the two inputs

pde and ptr and also depicts the actually measured values of the three outputs l, d

and I compared to their recodings.

RECODED

!Jd9Q
0.0 20. 40. 60. 80.100.120.

Time [see]

ACTUAL BEHAVIOR~,oooo.~
§ooooo.--::3

490000.
0.0 20. 40. 60. 80. 100.120.

Time [see]

':Q 34000'[;~
.:. 33000.
ee
'"..Q

32000. ---
0.0 20. 40. 60. 80.100.120.

Time [see]

:]rv:el
0.0 20. 40. 60. 80.100.120.

Time [see]

INPUT DATA

!o~
0.0 20. 40. 60. 80.100.12C.

Time [see]

RECOOEO BEHAVIOR

!of05N
0.0 20. 40. 60. 80.100.12C.

Time [see]

I~ !o~
0.020.40.60.80.100.120.

Time [see]

t>D

'"..Q

I~ iorv;t4
0.0 20. 40. 60. 80.100.120.

Time [see]

Figure 4.4 Recoding of the second data model

The second optimal mask analysis is run in the same manner as before,

yielding very similar results, confirming the results of the first optimal mask anal-

ysis:



72

l> deff omhis
[> [msk, hm, hr, q, mhis] = omhis([inrec, xrec], 5, 0);

The optimal masks are exactly the same:

(-1. O. O. o. -20)
m/= -3. -4. O. O. O.

o. o. +1. o. o.

( -1. O. O. O. 00)
md= -2. -3. O. -4. O.

O. o. O. +1. O.

( 00 O. O. O. 00 )m"( = -1. O. O. O. -2
O. O. O. o. +1.

The normalized entropy reductions, Shannon entropies and the quality fac-

tors relative to the best masks at complexity levels 2 through 5 changed a little,

since the Data Model has changed, but as its behavior has not changed, these factors

are still about the same:

hr hm q

(°01997 1.2685 000599)
hq, =

0.4539 0.8656 0.0908
0.6534 0.5494 0.0980
0.8230 0.2806 0.0988

(001497 1.3477 000449)
hqd = 0.3065 1.0991 0.0613

0.5565 0.7029 0.0835
0.7796 0.3493 0.0936

(002004 1.2674 000001 )
0.4060 0.9414 0.0812

hq; = 0.4960 0.7989 0.0774
0.5990 0.6355 0.0719



73

And the best masks found at complexity levels 2 through 5 are (again "*"

stands for optimal mask throughout all complexity levels):

( m12
mZ3 mZ4 m" )mhis = md2 md3 md4 md5

m"12 m"13 m"14 m"15

(-~

0 0 0 nm/2 = 0 0 0
0 +1 0

( -1
0 0 0 nm/3 = -2 0 0 0

0 0 +1 0

( -1
0 0 0 nm/4= -2 -3 0 0

0 0 +1 0

( -1
0 0 0 -nm/5 = -3 -4 0 0

0 0 +1 0

(-~
0 0 0 nmd2 = 0 0 0
0 0 +1

( -1
0 0 0 nmd3 = -2 0 0 0

0 0 0 +1
( -1

0 0 0 nmd4 = -~ -3 0 0
0 0 +1

( -1
0 0 0 D·md5 = -2 -3 0 -4

0 0 0 +1

m,2 = ( -~

0 0 0

+D0 0 0
0 ·0 0



74

(~~

0 0 0
~~) *m')'3 = 0 0 0

0 0 0 +1

( ~~

0 0 0
~~ )

m')'4 = 0 0 -3
0 0 0 +1

( ~1 0 0 0 ~~)m')'5 = -~ 0 0 -3
0 0 0 +1

Note that the second best mask generating the fourth state variable d is

slightly different: the second input sampling variable is the sixth element of the

mask (numbering the elements of the mask from left to right, starting at the top

left corner), instead of #7 as in the first analysis. Analysing the whole mask history

(setting the omhis function's input parameter r (or the global variable repo) to 1,

it is found that mask

(
-1 0 0 0 0)
-1 ° 0 ° 0

o 0 0 +1 0

was the second best mask at complexity level 3 , with quality factor .603, while

mask

o 0 0 O~)-1 0 0
o 0 +1

was the best mask at that level, with a quality factor of .637 (~ 6% larger). There-

fore it is perfectly understandable and acceptable that the mask histories are not

exactly the same, since the differing masks have comparable quality factors.



75

4.5 Forecasting

Now let us apply the generative systems represented by the optimal masks

just calculated, to see how well they are able to forecast future behavior of the same

system.

To do so, we will use a less shaken data model to represent a normal flight

in a more substantial way. A more realistic flight, but still a dynamic one, can be

represented by the model being driven by harmonic functions of fairly long periods,

which was implemented by sinusoidal functions affecting the same trim values betrim

and Ttrim. The amplitude of the functions is the same as the magnitude of the

respective steps in the shaken flight: i::l.be = .001 rad and i::l.T = 3000 lb. In this

flight phase the angular velocity of the driving functions pde and ptr can be reset

with the parameters wde for the elevator deflexion and wtr for the thrust. However

their default values: wde = 0.1 rad/sec and wtr = 0.05 radj'sec, yielding periods of

about 63 and 126 sec. respectively, were used in the following run. The length of

the flight will be 15,600 seconds, generating, at a sampling interval of 6 sec., a data

model with 2601 recordings. The driving inputs pde and ptr are calculated as:

pde = sin( wde * t)
ptr = sin( wtr * t)

The following Ctrl-C / ACSL code sets the flight phase switch inpt to 3

(harmonic perturbations) and the maximum simulation time tmx to 15,600.

[> acsl(,set trnx = 15600, inpt = 3');
l> [pde, ptr, 1, d, gal = start;

Recoding of the data model was done again into three levels for all variables.

The input variables now need recoding as well, since their states are no longer



76

discrete values. However, as both inputs are harmonic, their recoding can be done

evenly in their range of angular variation:

levell : [0, 27r/3) rad

[27r/3, 47r/3) rad

[47r/3, 27r== 0) rad

level2 :

level3 :

which is equivalent to the recoding performed with the Ctrl-C /SAPS-II user defined

function rekode already discussed in the previous section.

The following Ctrl-C /SAPS-II code loads the user-defined recoding func-

tion rekode and recodes the inputs into three levels such that each level holds the

same amount of data points. The from-matrices used to recode the input variables

are represented by fin which is built such that

f. = (IPde)
m fptr

and the recoded input matrix is inrec, the first column of which holds the recoded

data points of pde while the second column holds those of ptr.

l> deff rekode
[> [inrec, fin] = rekode([pde, ptr]);

(

-1.0000

f. - -0.4987
m - -1.0000

-0.4987

-0.4987
0.5011

-0.4987
0.5002

0.5011)
1.0000
0.5002
1.0000

Recoding the output variables requires a little more insight. The inner

limits of the recoding levels that were used to recode the shaken output data in the

optimal mask analysis should be used here as well, since we are going to use those

masks. As the driving step perturbations are longer now, the amplitudes of the



77

responses must have incresed and therefore the outer limits of the from-matrices

should be adjusted to the new data so that every measured data point would be

within the limits of one level. This is very important, since the recoding function

will not recognize values outside the limits specified in the from-matrices.

In the following experiment, we will recode the outputs of the generated

(harmonic driven) data model with the from-matrices obtained for recoding the

shaken data model, and apply the forecasting capabilities of SAPS-II to see how

well the generative system can draw inferences about the system behavior.

The from-matrices used in the optimal mask analysis (J I, Id, and Iga)

can be recalled into the Ctrl-C workspace with the Ctrl-C load command. The

following listing adjusts the outer limits of the optimal masks to the data model

they will now be used for:

l> load fl fd fga <fmasks
[> fl(l, 1) = min([l; fl(l, 1)]);
l> fl(2, 3) = max([l; fl(2, 3)]);
l> fd(l, 1) = min([d; fd(l, 1)]);
l> fd(2, 3) = max([d; fd(2, 3)]);
l> fgaf l , 1) = min([ga; fga(l, 1)]);
l> fga(2, 3) = max([ga; fga(2, 3)]);

II = (4.9685 4.9885 5.0110) x 10+05
4.9885 5.0110 5.0349

Id = (3.2838 3.2936 3.3073) 10+04
3.2936 3.3073 3.3298 x

( -0.0052 -0.0013 0.0013)
I ga = -0.0013 0.0013 0.0087



78

Matrix xrec below is the recoded outputs' matrix obtained recoding the

raw output variables with the standard SAPS-II recode function with its "domain'

option.

[> lrec = recode(l, 'domain', fl.,1:3);
[> drec = recode(d, 'domain', fd, 1:3);
[> garec = recode(ga 'domain', fga, 1:3);
l> xrec = [lrec, drec, garec];
[> clear lrec drec garec

Now with the data model composed of the recoded data matricesinree and

xree just evaluated and the system's optimal masks, we can use GSPS's inductive

reasoning feature (SAPS-II forecast function) to see how well it guesses which

states the output variables will assume in the ten following sampling intervals,

given a certain set of inputs for those data points.

We will use the user defined Ctrl-C /SAPS-II function frc in the repeated

forecasting procedure. This function was especially coded for this problem by Dr.

Cellier in September 1987, and its first version was first published in (Cellier, 1987).

It uses the standard SAPS-II forecast function three times for every time instant,

once with each optimal mask, to forecast the state assumed by each output variable.

at that time instant. Forecasting will only be terminated when states for all three

outputs have been forecast for all requested time instants. The minimum acceptable

probability associated with the forecasting is set to zero, and a state is invented if

its probability of occurrence is zero, i.e., if the state has never occurred before in

the available data model.

The function requires 6 inputs: past, inpt, ml, m2, m3 and nl and has one

output frest. Matrix past contains the recoded data model of the system under

consideration up to the time instant from which we want to start forecasting future

behavior. Matrix inpt is a matrix containing the states of the inputs at the time



79

instants we want the forecasting to take place and the number of rows of this matrix

specifies how many time intervals ahead we want to forecast. Inputs ml, m2, and

m3 are the optimal masks relative to the first, second and third output variables

(1, d, and i), respectively, and nl is an integer value which specifies the number of

recoding levels the outputs were recoded into.

This last datum, nl, is needed for situations where forecasting is not possible

and it is needed to invent a state (generate the state randomly). Such situations

occur when, due to high optimal mask complexity and/or a too small data model,

a mask reads a state that has never occurred before in the data model represented

by the past matrix; the probability of this event to occur is zero and the repeated

forecasting process cannot be continued. To avoid the abortion of the forecasting

process, the new state is invented with the aid of a random number generator,

and the forecasting will continue until all requested states have been computed

as specified by the size of the inpt matrix. Listed below are both functions: the

continuous forecasting function frc and its state-inventing function manicure (also

written by Dr. Cellier, in September 1987).

/ /[frcst, p] = frc(r, inp, ml, m2, m3, nl)
//
/ /Forecast behavior of linear four variable system
//
pmin = 0;
p = zrow(I,3);
deff manicure
[n, m] = size(inp);
for i = 1: n, ...

[row, col] = size(r); .... . (. )In = mp 1, : ; ...
fc = [in, zrow(I,3)]; ...
fee = [r; fc]; ...
[tn, p l] = forecast(fcc, ml, row, pmin); ...
[ff'L, p l] = manicure(ffl, r, 3, nl, p l}; ...



80

[ff2, p2] = forecast(fcc, m2, row, pmin); ...
[ff2, p2] = manicure(ff2, r, 4, nl, p2); ...
[ff3, p3] = forecast(fcc, m3, row, pmin); ...
[ff3, p3] = manicure(ff3, r, 5, nl, p3); ...
ff = [in, ff1(row+1, 3), ff2(row+1, 4), ff3(row+1, 5)]; ...
r = [r; ff]; ...
p = [p;[p1(row+1),p2(row+1),p3(row+1)]]; ...
end

[mr, nr] = size(r);
frcst = r(mr-n+1: mr, :)j
p = p(2:n+1,:);
return

I I [f2, p] = manicure(fl, raw, nbr, nl, pp)
II
I I If no forecast was possible invent one.
II
[nf, mf] = size(fl);
[nr, mr] = sizefraw};
if nf=nr-l-L, f2 = f'l ; p = pp; ...

else ...
display('Warning, no forecast was possible'), ...
location = [nr+l, nbr], ...
invent = round((nl-.0002)*rand(1)+.50001)j ...
f2 = zrow(nr+1, mr); ...
f2(1: nr, :) = raw; ...
f2(nr+1, nbr) = invent; ...
P=[PPj pp(nr)/nl]; ...
end

return

We will use a data model with 2601 elements in each of the five variables out

of which the first 2500 will represent the past behavior required by the forecasting

procedure, which is close to the maximum number of samples that the frc function

currently can handle. For the data model at hand, the number of samples is perfectly

acceptable since the maximum number of distinct states of the system is n = 35 =

243 and therefore, in cases when the uncertainty is maximum (the probability of



81

occurrence of all states is the same), we could have at least ten recordings of each

state in a data model with 2601 sets of samples.

The Ctrl-C/SAPS-II code below loads the recoding function frc into the

workspace, defines the past matrix as being composed of the first 2500 states of

the recoded data matrix just evaluated. The inpt matrix is formed by the next ten

states of the inputs, meaning that we want to forecast the states of the outputs

ten sampling intervals ahead. Matrix future contains the actually measured states

of the outputs relative to those time instants and will be of use in evaluating the

quality of the forecasting, comparing measured and forecast values.

l> deff frc
[> load ml m2 m3 <fmasks
l> past = [inrec, xrec];
[> past = past(I:2500, :);
[> inpt = inrec(2501:2510, :);
[> future = xrec(2501:251O, :);
[> frcst = frc(past, inpt, ml, m2, m3, 3);
[> error = frcst(:, 3:5)-future;
l> infut = [inpt, future];

The optimal masks of the system ml, m2 and m3 were recalled to the

workspace with the Ctrl-C load command and the Data Model was divided into

past behavior and future behavior, data sample 2500 being the limit.

The output of function frc, frest, has ten rows (relative to the ten forecast

time instants) and five columns: the two first ones represent the input state vari-

ables (identical to inpt) and the next three columns represent the forecast outputs.

Elements marked with an asterisk refer to states that had to be invented with the

manicure function.



infut =

frcst =

82

1. 3. 3. 3. 3.
1. 3. 2. 3. 3.
2. 2. 2. 2. 3.
2. 2. 1. 1. 3.
3. 2. 1. 1. 3.
3. 1. 1. 1. 2.
3. 1. 1. 1. 1.
3. 1. 2. 1. 1.
2. 1. 2. 2. 1.
1. 1. 2. 2. 1.

1. 3. 3. 3. 3.
1. 3. 2. 3. 3.
2. 2. 2. 3. 3.
2. 2. 1. 1. 3.
3. 2. 1. 1. 3.
3. 1. 1. 1. 2.
3. 1. 1. 1. 1.
3. 1. 2. 1. 1.
2. 1. 2. I. I.
1. 1. 2. 3. 1.

o. o. o.
o. o. o.
o. 1. o.
o. 0.* o.
o. o. o.

error = o. o. o.
o. o. o.
o. o. o.
o. -1. o.
o. 1.* o.

Note that, even with a data model more than ten times larger than the

maximum possible number of combinations of the states, the forecasting mechanism

failed twice to forecast the state of the fourth state variable, Drag. The states of the

samples (2504, 4) and of (2510, 4) had to be guessed, and therefore, the meaning of

the non-zero element in the error matrix (2510, 4) is different from the other two

at (2503, 4) and (2409, 4), which are bad forecasts.



83

The unability of a mask to forecast a state is strongly related to the com-

plexity of the mask used: the higher the mask complexity, the more likely will the

mask read a set of states that has never occurred before in the recorded time history,

and if one wants to continue the forecasting process, this state has to be guessed by

some other means. Our program picks an arbitrary value within the allowed range

using the routine manicure.

But this is not the reason why the forecasting mechanism could twice not

forecast future states for the fourth state variable. Note that right before the un-

ability to forecast, one time instant behind, in both of the cases there had occurred

a bad forecasting (non-zero elements (2503, 4) and (2509, 4) in the error matrix).

The fourth generative sampling variable of m2 is exactly the state of the fourth

state variable (of the data matrix) one time instant behind of the forecasting time.

So, what happens here is that the past bad forecasting affects the next forecasting

in such a way that a totally unknown set of states appears in the behavior model,

forcing the forecasting mechanism to guess, out of the blue sky, the next state of

the fourth state variable.

Another forecasting was evaluated using the same data matrix, now fifty.

time instants ahead, from the 255lth data points up to the 2560th. This time

the forecasting of the last two elements of the third state variable (Lift) was not

possible, very likely, due to, previous poor forecastings of state variable 5 b).

[> past = [inrec, xrec];
[> past = past(l:2550, :)j
t> inpt = inrec(255l:2560, :);
[> future = xrec(255l:2560, :);
[> frcst = frc(past, inpt, ml, m2, m3, 3);
[> error = frcst(:, 3:5)-future;
[> infut = [inpt, future];



84

2. 1. 2. 2. 1.
1. 1. 2. 2. 1.
1. 1. 2. 2. 2.
1. 1. 2. 1. 2.

infut =
1. 2. 2. 1. 2.
2. 2. 2. 1. 1.
2. 2. 2. 1. 1.
3. 3. 2. 1. 1.
3. 3. 2. 2. 1.
3. 3. 3. 3. 1.
2. 1. 2. 2. 1.
1. 1. 2. 2. 1.
1. 1. 2. 2. 2.
1. 1. 2. 1. 2.

frcst =
1. 2. 2. 1. 2.
2. 2. 2. 1. 2.
2. 2. 2. 1. 3.
3. 3. 2. 1. 3.
3. 3. 1. 2. 2.
3. 3. 1. 3. 1.

o. o. o.
o. o. o.
o. o. o.
o. o. o.
o. o. o.

error = o. o. 1.
o. o. 2.o. o . 2.

.,1.* o. 1.
-2.* o. o.

A new forecasting was evaluated, now with the sub-optimal mask m3a

related to the fifth state variable. Even having the optimal mask m3 been evaluated

as the best generative mask to forecast the next state of "I, its efficiency is being

questioned based on the poor forecasting results. In reality, the mask looks a little

too simple, being of complexity 3, and not having much interaction between the

variables: m3 suggests that the next future state of the fifth state variable depends



85

only on the state of the first state variable (pde, the perturbation caused by a change

in the trimmed value of the elevator deflexion) in the present time and on the state

of the fifth state variable itself (I) in the present time instant as well. The sub-

optimal mask m3a looks more complete since it includes the influence of Drag (state

variable 4), and we know that changes in the Drag do affect the flight path angle

(changes in Thrust affect Drag, and Drag affects flight path angle). The results of

the forecasting using m3a reinforces our belief that m3a is a better forecasting tool

for I than m3, even though it has a lower quality factor associated with it.

[> load m3a <amasks
[> frcst = frc(past, inpt, ml, m2, m3a, 3);
[> error = frcst(:, 3:5) - future;

( O.
O. O. O. -1.)

m3a = -2. O. O. -3. O.
O. O. O. o. +l.

O. O. O.
O. O. O.
O. O. O.
O. O. O.
O. O. -l.

error = O. O. O.
0.* O. O.
O. O. O.
O. O. O.
O. O. O.

Again it so happened that one state of the third state variable could not

be forecast, but the reason most likely is that the state of the sample (2555, 5) was

a bad forecast of the fifth state variable, making it impossible for ml to predict

(2557, 3). In the error matrix, (2557, 3) is a zero element, but it is still a guessed

element and has 66% of chance of not matching the actual measured state of that

variable.



86

The same experiments were made for a different data-model which was

created by driving the model with still harmonic functions, but now with different

frequencies: wde = 0.15 and wtr = 0.10, i.e., periods of 42 sec. for pde and of 63

sec. for ptr.

l> acsl(,set inpt=B, tmx=15600, wde=0.15, wtr=O.I')
[> [pde,ptr,l,d,ga] = start;
[> defY rekode
[> [inrec, fin] = rekode([pde, ptr]);
l> load fI.fd fga <fmasks
[> au. 1) = min([l, fI.(l, 1)]);
l> fI.(2,3) = max([l, fI.(2,3)]);
l> fd(l, 1) = min([d, fd(l, 1)]);
[> fd(2, 3) = maxj]d, fd(2, 3)]);
l> fga(l, 1) = min([ga, fga(l, 1)]);
l> fga(2,3) = max([ga, fga(2, 3)]);
[> lrec = recode(l, 'domain', fl., 1:3);
l> drec = recode(d, 'domain', fd, 1:3);
[> garec = recode(ga, 'domain', fga, 1:3);
[> xree = [lrec, dree, garec];
[> defY frc
[> load <fmasks
l> load <amasks
[> past = [inrec, xree];
[> past = past(1:2500, :);
[> inpt = inree(2501:251O, :);
[> future = xree(2501:2510, :);
[> infut = [inpt, future];

3. 1. 1. 1. 3.
3. 1. 1. l. 2.
3. 2. l. l. l.
2. 2. 2. 2. 1.

infut = 1. 3. 3. 3. l.
1. 3. 3. 3. 2.
2. 3. 3. 3. 3.
3. 3. 2. 2. 3.
3. 2. l. 2. 2.
3. 1. l. 2. 2.



87

The use of the optimal masks again leads to the same problem: bad fore-

castings of the fifth state variable at a certain time instant influence the forecasting

of the third state variable two time instants ahead. ')'(2503) through ')'(2506) are

all incorrect forecastings and jeopardize the forecasting of I (2505) through [(2508),

and it even so happened that the states of [(2505) and l(2506) had to be invented

since forecasting was impossible.

[> frcst = frc(past, inpt, ml, m2, m3, 3);
[> error = frcst(:, 3:5) - future;

3. 1. 1. 1. 3.
3. 1. 1. 1. 2.
3. 2. 1. 1. 2.
2. 2. 2. 2. 2.

frcst = 1. 3. 1. 3. 2.
1. 3. 3. 3. 3.
2. 3. 2. 3. 3.
3. 3. 2. 2. 3.
3. 2~ 1. 2. 2.
3. 1. 2. 2. 2.

O. O. O.
o. O. O.
o. O. 1.
O. O. 1.

-2.* O. 1.
error = 0.* O. 1.

-1. O. O.
o. o. o.
o. o. O.
1. O. O.

The use of m3a instead of m3 again improves the forecasting enough to

ensure that it is the better forecasting tool, despite of its quality coefficient.

[> frcst = frc(past, inpt, ml, m2, m3a, 3);
[> error =frcst(:, 3:5) - future



88

3. 1. 1. 1. 3.
3. 1. 1. 1. 1.
3. 2. 1. 1. 1.
2. 2. 2. 2. 1.

frcst = 1. 3. 3. 3. 1.
1. 3. 3. 3. 3.
2. 3. 3. 3. 3.
3. 3. 2. 2. 3.
3. 2. 1. 2. 2.
3. 1. 2. 2. 2.

O. O. o.
O. O. -1.
O. O. O.
O. O. O.
o. o. O.error = O. O. 1.
O. O. o.
O. o. o.
o. o. O.
1. O. O.

The experiment was run once more using the same data model, but now

forecasting the states the outputs would assume at the time instants 2491 through

2500, given the inputs.

[> past = past(1:2490, :);
[> inpt = inrec(2491:2500, :);
[> future = xrec(2491:2500, :);
[> infut = [inpt, future];
[> frcst = frc(past, inpt, m1, m2, m3a, 3);
[> error = frcst(:, 3:5) - future;



89

I. I. 2. 2. 2.
I. I. 2. 2. 3.
2. 2. 2. I. 3.
3. 2. I. I. 2.

infut = 3. 3. I. I. I.
3. 3. 2. 2. I.
2. 3. 3. 3. I.
I. 2. 3. 3. 3.
I. 2. 3. 3. 3.
2. I. 2. 2. 3.
I. I. 2. 2. 2.
I. I. 2. 2. 3.
2. 2. 2. I. 3.
3. 2. I. I. 2.

frest = 3. 3. I. I. I.
3. 3. 2. 2. I.
2. 3. 3. 3. I.
I. 2. 3. 3. 2.
I. 2. 3. 3. 3.
2. I. 2. 2. 3.

O. O. O.
O. O. O.
o. o. o.
o. O. O.
O. o. O.error = O. O. O.
O. O. O.
O. O. -I.
O. O. O.
o. o. O.

Similar results were observed setting inpt = 4 to drive the model with

random steps (negative, zero or positive) with a random duration between 2 and 4

time intervals (of 6 seconds). When using these driving functions, there were times

when the use of the sub-optimal mask m3a in place of m3 worsened the forecasting,

but as this situation was fairly rare and the forecasting would turn out to be good



90

again some time intervals later, we chose the set ml, m2, m3a to represent the

generative system of our model.



91

CHAPTER 5

THE ONLINE MONITORING SYSTEM

5.1 The Experimental Setup

This chapter describes how the generative models represented by the opti-

mal masks can be used as an on-line monitoring tool for the overall system. The

approach taken is based on the forecasting capability of the GSPS methodology

to first determine that an accident has occurred and then hypothesize about the

nature of the accident.

An on-line monitoring system was built using the generative models to fore-

cast the future behavior of the source system and compare the inductively expected

states of the variables with the actually measured ones (e.g. those stemming from

sensors). Small errors in the forecasting process are expected when the system faces

a situation that had no precedents in the available time history ( e.g. the system

is suddenly excited in a different way than it had ever been before). Most of these

small errors will be swallowed by the recoding process. From time to time, an error

may come through. However, such errors will soon disappear as the new situation

goes by. A true accident, however, will quickly be sensed since the forecasting error

will be sensibly higher and will tend to stay so if the original system has undergone

a structural change.

After a high frequency transient phase that the system will certainly go

through following the accident, given that the new system is still stable, a new data

model will start being built to gather information about the new system. Once



92

enough information has been collected, a new generative model should take charge

and the on-line monitoring process is continued.

Originally we had planned to make our methodology come up, on-line,

with a new generative model for the damaged aircraft. This idea proved to be

unrealistic due to the amount of data required for the optimal mask analysis. As

discussed previously in chapter 3, the number of recordings necessary to perform a

meaningful optimal masks analysis in a system depends on the number of variables

present in the Behavior Model matrix and the number of levels these variables are

recoded into. Assuming that both of these quantities are known, the time required

to collect this data still depends on the sampling rate to be used which, in turn, is

related to the (structurally determined) eigenvalues of the linearized system. For

the original cruise flight model, it was shown that a minimum of 1215 recordings

were necessary for the optimal mask analysis. The sampling interval for that model

was calculated to be 6 seconds, which means that we·would have had to "shake"

the broken airplane for a little over two hours. After the accident, depending on

the sampling rate required for the new system, this time may increase even more.

Therefore, the current study is limited to distinguishing between different

types of prerecorded "accidents". A set of generative models, each representing one

type of accident, can be stored in a "mask library" for future use. These accidents

do not necessarily have to be catastrophes: they may as well be models of different

flight phases of the aircraft, or other expected structural changes in the original

model. A rule-base could easily manage the library, issuing, for example, priority

lists as to which masks to tryout first. In the library, each generative model should

be stored with instructions for recoding the data (number of levels and the inner

limits of these levels - the outer limits are data dependent) and the sampling

interval to be used in the data.



93

With all this information at hand, given that an accident has occurred, all

we need after the stabilization of the system is some data describing the behavior

of the after-the-accident model.

The on-line monitoring system has the main function of detecting a struc-

tural change in the monitored system. It works exactly in the same manner as

the forecasting capability of GSPS was used in the previous chapter to check the

validity of the set of optimal masks. The methodology now presented differs from

the previous one mainly in how the data is pre-treated before it can be qualita-

tively analysed. This data "massaging" was needed to extend the applicability of

the analysis to practically all possible changes in the behavior of the variables.

5.2 Normalized Qualitative Data

The GSPS methodology is sensitive to the levels of magnitude that each

variable under observation assumes throughout its time history. The range enclosed

within each level is entirely problem dependent, and should be defined by the ob-

server according to her/his interest in the variables. This is a critical phase in the

qualitative modeling process, and special attention should be given to choosing the

number of levels necessary and to the definition of their limits. A thorough knowl-

edge about the system and its variables is needed in order to define the recoding

levels in a meaningful way; experts' opinions are a good source for the information

needed in this phase.

The use of the recoding function rekode which defines the limits of the

inner level (assuming that three levels are enough to recode the data), such that

each level contains the same number of recordings is meaningful when it is applied

to data generated by a system that is exerted equally in every possible way. Setting



94

inpt = 2 in our model forces the perturbations in the control variables to change

at every communication interval with a randomly negative, zero, or positive step.

In a sufficiently long "shaken" flight, the system is exerted such that the generated

data model is as rich in information as it could possibly be, and as there are about

the same amount of negative, zero, and positive perturbations throughout the time

history under observation, the response of each output should be oscillating around

its steady state tendency (see figure 4.2).

The steady state tendency of most variables is a constant except for, e.g.,

outputs of open integrators, as are the horizontal displacement x and the altitude

h in our model. A flight with constant climb (or descent) rate is easily achieved

by simply changing the thrust from its Teference value that characterizes the (lev-

elled) reference flight condition, and, obviously, the horizontal displacement cannot

stabilize at a constant value.

It is also desirable to allow changes in the steady state values of the vari-

ables, so that different reference flight conditions can be monitored and analysed

with a same set of generative models. In order to allow a more general use of the

from-matrices, the steady state value of the variables should be nullified, since it

holds no useful information for the analysis. If, however, the observer does have

interest in it, then it should be included as a separate variable in the data model

and analysed accordingly.

5.3 A New Source Model

The source model used until now

Sold: {pde ptr 1 d ,}



95

was first believed to fully describe the system behavior, based on the fact that the

aerodynamic force response of the aircraft and the flight path angle should fully

describe the trajectory of our model. That is perfectly true, but it is not just in the

trajectory that we are interested but in as much behavioral information as we can

possibly get from just three variables. As the lift and the drag are highly positively

correlated as can be easily seen in figures 4.3 and 4.4, the behavioral information

they provide to the generative system is mostly redundant, and therefore, for the

qualitative analyses performed in this chapter, we will substitute the drag d by the

amplitude of the longitudinal velocity vector, v. Hence,

Snew: {pde ptr 1 v ,}

is the new source model whose generative model was evaluated using the code below:

[> acsl('set tmx = 15000, inpt = 2')
[> [pde, ptr, 1, v, gaj = start;
[> inrec = [pde, ptr];
l> xraw = [1, v, gal;
[> mean = average(xraw, 2501);
[> xdev = xraw - onesfxrawj edlag'[mean};
l> clear xraw pde ptr I d ga
l> deft' rekode
l> [xrec, fj = rekode(xdev);
l> deff omhis
[> [mb4, hm, hr, q, mhis] = omhis([inrec, xrec], 5, 0);
l> save f mb4 >temp

The optimal mask analysis was performed on a data model with 2500 el-

ements in each variable, sampled at every 6 seconds. The communication interval

(ACSL parameter cint) was not reset in this run since we wanted to use its default

value cint = 6 automatically set by our program. Note that the recoded data model

is obtained applying the function rekode to the deviations of the output variables



96

from their mean values. The from-matrices I that were used for the optimal mask

analysis must still have their external limits extended a little beyond the maximum

and minimum values reached by the variables in a not so shaken flight so that all

data generated by the models B4 in all its flight phases can be recoded by the same

from matrices. To do' so, we saved the current from-matrices I and the optimal

masks mb4 temporarily in the file temp.dat and will now rerun the model with

the fligh phase switch inpt set to 4.

[> acsl(,set(,trnx = 15000, inpt=4'}
[> [1, v, gal = start;
[> mean = average([l, v, ga]);
[> xdev = [1, v, ga]- ones(2501, 3}*diag(mean}j
[> rnx = rnaxfxdev};
[> mn = min(xdev};
l> load <temp
[> fb4 = f;
[> for i = 1:3, fb4(2*(i-1}+1, 1} = mnfi]: ...
[> fb4(2*i, 3} = rnx(i};...
l> end
[> sintb4 = 6j
[> save sintb4 fb4 mb4 >fmb4

The from-matrices and the optimal masks that represent the new generative

model B4 are shown below:

1M = ( -1.1000 -0.1101 0.1059 ) x 104
1 -0.1101 0.1059 1.1000

1M = ( -7.5000 -0.7844 0.7376 )
tI -0.7844 0.7376 7.5000

( -0.0120 -0.0013 0.0013 )
IM'"f = -0.0013 0.0013 0.0120



97

(-1 O. O. O. -2. )
mb4z = -3. -4. O. O. O.

O. o. +1. O. O.

Cl. O. O. O. 0.)mb4v = O. -2. O. -3. O.
O. O. o. +1. O.

( o. o. O. O. 0.)mbs.; = -1. O. O. -2. -3
O. O. O. O. +1.

Mask mb4v is, in reality, the second best mask according to its quality

factor but proved to give better forecasting results in different sets of data. The

sampling interval, which is the third quantity that specifies the generative model

FMB4, has not changed from the previous source model to the present one: sintb4

is still 6 seconds.

5.4 The Broken Model B747

An unpredicted structural change in the longitudinal flight model was sim-

ulated changing the original airplane parameters to the ones relative to a power.

approach configuration of a B747. The emergency is just theoretical but the new

model fits very well our purposes since it is structurally different from the original

one.

The values for the parameters are listed below and are based on the ones

listed in "Aircraft Handling Qualities Data" page 217 (Heffley, 1972). From now

on, we shall refer to this model as B747:

w = 564,000.0

= 278

[lb]

[It I see]Va



98

Iy = 30,500,000.0 [slug It2]

S = 5,500.0 [/t2]

p = 0.0024 [slug/lt3]

ao = 0.0995 [rad]

beo = -0.0366 [rad]

CLo = 1.11 [ ]

CDo = 0.102 [ ]

CL., = 5.7 [l/rad]

CD", = 0.66 [l/rad]

CMOI. = -1.26 [l/rad]

CLa = -6.7 [1/ r~d]

CMa = -3.2 [1/ r~dl

CLq = 5.4 [1/ r~d]

CMq = -20.8 [1/ r~d]

CL6e = 0.338 [l/rad]

CM6e = -1.34 [l/rad]

The sampling interval for the B747 model above was evaluated based on

the slowest time constant of its linearized model whose eigenvalues were calculated

as being -0.0461 ± 0.1596i and -0.4600 ± 0.6876i. The two time constants of this

system are 71 = 22 seconds and 72 = 2 seconds and the suggested sampling interval

has, therefore, almost doubled for this model: tSB747 = 11.

A graphical view of the accident occurring in a steady cruise flight of the

original model (B4) is given by figures 5.1 . Figure 5.1a below depicts the transients

of the control variables be and Tr (in solid line) and their reference values betrim

and Trtrim (in dashed lines).



99

0.0 10.20. 30. 40. 50. 60. 70. 80. 90.100.110.120.130.140.150.

Time [see]

i:~~~~ts2-~---:---:-~-'---:-J
0.0 10. 20. 30. 40. 50. 60. 70. 80. 90.100.110.120.130.140.150.

Time [see]

Figure 5.la Control variables and their reference values in the accident

Note that as the reference value of the elevator deflexion is changed from

Dea =0.027886 in the B4 model to Dea = -0.0366, the variable follows this change

and stabilizes at the new reference value. The thrust, on the other hand, drops to

about ~ of its original value due to a steep decrease in the velocity (characteristic

of the B747 model) while its reference value remains unchanged.

Next, figure S.lb shows the effect of the accident on the output variables

when they all go through transients of extremely large amplitudes stabilizing after.

about 100 seconds at their new steady states. Lift and drag are both affected,

whereby the drag is increased considerably (not shown in the figure). The velocity

drops to about half of its original value and the flight path angle stabilizes at a

slightly negative value. All these new settings describe an airplane decelerating and

descending.



100

~20~~
~ 1.8

30.00000
0.0 10. 20. 30. 40. 50.

: : : : :: :: I
60. 70. BO. 90. 100.110.120.130.140.15C.

Time [see]

~5]SC':' :' ::' :I
~ 0.0 10. 20. 30. 40. 50. 60. 70. BO. 90.100.110.120.130.140.15(..

Time [see]

_~:F5;;;;;, : : : : : : I
0.0 10. 20. 30. 40. 50. 60. 70. BO. 90.100.110.120.130.140.150.

Time [see]

Figure S.lh Output variables' transients in the accident

The simulation is continued beyond the stabilization of all variables to

perform a step response analysis on the system. The simulation is run twice with

the same settings for the same phase, only to change the step perturbation. The

results are depicted in figure 5.2 below:



101

:""000
1

:,' \ ~ / ,- - :-; : : : 1

~60000.----~----~----~--~----~----~--~----~----
180. 200. 220. 240. 260. 280. 300. 320. 340. 360.

Time [see]

"'I245.

244.180. 200. 220. 240. 260. 280. 300. 320. 340. 360.
Time [see]

!:::::I-!c=:--~--~--:--~--~-I
180. 200. 220. 240. 260. 280. 300. 320. 340. 360.

Time [see]

Figure 5.2: Step response of the B747 model. The trajectories dis-
played in solid lines represent the response of the system to a step
change of -.001 radians in the elevator deflexion at fixed throttle. The
trajectoris in dashed lines refer to the opposite situation: a step
change of 3000 lb. in the reference value of the thrust at fixed el-
evator deflexion.

The qualitative model FMB747 was evaluated in an analogous manner as

the FMB4 with the difference that the flight is started with the original model

(B4) and changed to the B747 model in the tenth communication interval. This

procedure is necessary because every flight has to be started trimmed to avoid

the initial iterative trimming phase of the model which would change the initial

conditions differently for every case. As all parameters and initial conditions were

carefully chosen for the B4 model so that it would start perfectly trimmed, for the

sake of uniformity and easier comparison of different flights, we shall start all flights



102

with it, and simulate an accident right after the tenth communication interval and

then discard the first one hundred data points where most of the transients lay. The

following code was used in place of the seven first lines of code that was used for

the evaluation of FMB4:

l> cint = 11j
[> tbreak = lO*cintj
[> trnx = 2600*cintj
[> c2alist('trnx, cint, tbreak')
[> acsl(,set inpt = 2')
[> do B747
l> [pde, ptr, 1, v, gal = start:
[> inrec = [pde, ptr];
[> inrec = inrec(l01 : 2601, :)j
[> xraw = [1, v, ga];
[> xraw = xraw(101 : 2601, .};

The Ctrl-C do-procedure file b147.ctr sets all the new values for the

parameters that are to be changed in a B4/B747 accident scheduled at time

tbreak = lO*cint = lOx 11 = 110 seconds. The from-matrices and optimal masks

relative to the generative model B747 evaluated in this way are listed below:

fb747 = ( -1.6029 -0.2137 0.2113) 104
1 -0.2137 0.2113 1.3981 x

fb747 = ( -5.9153 -1.0733 1.0150)
v -1.0733 1.0150 6.1723

fb747 = ( -0.0278 -0.0050 0.0050 )
"f -0.0050 0.0050 0.0290



103

( o. o. o. o. o. )mb747z = -l. O. O. -2. -3.
O. O. +l. O. O.

( O.
O. O. O.

O. )mb747v = -1. -2. O. O. -3.
O. O. o. +1. O.

( -J. o. O. O. 0.)
mb747'1 = -2. -3. -4. O. O.

O. o. o. o. +1.

5.5 The Mask Library

Three other sets of optimal masks representing different structural changes

of the original B4 model were evaluated and saved for future use. The files contain-

ing the generative models were named fmmodel-name and carry the .dat default

file extension attributed by Ctrl-C to its data files. Each of these files contains

at least three elements: the sampling interval, the set of optimal masks, and the

from-matrices relative to a data set that describes the behavior of the model.

The set of optimal masks may include second best masks which were used in

place of the optimal masks (rated based on the quality factor) when their forecasting

capability proved to be superior. The set of from-matrices was computed with the

function rekode applied to each model's shaken (inpt = 2) data, and then adjusted

to normal data (inpt = 4) since less shaken data tend to have larger magnitudes.

Model B5

We will call B5 the flight model with the following changes in the parameters

of the original model (B4):

CD.. 0.5 [1/rad]



104

CL" 4.0 [l/rad]

CMu = -1.0 [l/rad]

Ke 0.12 [ ]

which completely modify the influence that the angle of attack has on the aerody-

namic response of the aircraft. Its effect on the lift coefficient is increased by almost

100%, its effect on the drag coefficient is decreased by about 25%, while its effect on

the pitching moment coefficient is increased by about 25%. The feedback gain Ke

is dropped to about half of its original value so that the B5 system would stabilize

satisfactorily.

The eigenvalues of the equivalent linearized model (calculated about the

B5 model's stabilized steady state condition) were calculated to be:

(

-0.0262 + 0.0696~)
>. _ -0.0262 - 0.0696z

B5 - -0.5284 + 0.9631i
-0.5284 - 0.963li

having time constants (rounded to the nearest integer) of 38 and 2 seconds. The

step response of the system to the same step perturbations that were used for

models B4 and B747 previously (.6.betrim= -.001 and .6.Trtrim = 3000, is depicted

in figures 5.3 . Figure 5.3a shows the effect of the individually applied perturbations

on their respective control variables.



lOS

•..
o...•
'">Q.>

W
:::Ef --i-------:----- ~.026--------------~~------------~---------------1000. 1050. 1100. 115>

Time [see]

] :::::.p - - - - - - :-- - - - - - -:- - - - - - - J
e- 30000.

1000. 1050. 1100. 1150.

Time [see]

Figure 5.3a: Effect of individually applied step perturbations
(dashed lines) on their respective control variable (solid lines) in the
model BS.

Figure S.3b shows the step response of the model BS to the individually

applied step perturbations. The system is visibly slower and more damped than

the previous B4 and B747 models.



106

504000.~

;::::: --/-/-/----_ .....--=.....:::<,:::.......•••.._ ••••_-----=-==-=---=--:-:=. ===::~~~-~
498000. - .:=j

1000. 1050. 1100.
Time [see]

1150.

555.[ J
550·:_/C:- - - - - - - -:- - - --

545.
1000. 1050. 1100.

Time [see]

:::~ - - - - - -:- - - - - - - ~

.000 -------~-------~-------~-1000. 1050.
Time [see]

1100. 1150.

Figure 5.3b: Step response of the B5 model. The curves in solid
lines represent the response of the system to a step change of - .001
radians in the elevator deflexion at fixed throttle, and the ones in
dashed lines refer to the opposite situation: a step change of 3000 lb.
in the reference value of the thrust at fixed elevator deflexion.

The same procedure described for the FMB747 model was again followed

to evaluate the qualitative model FMB5 which is represented by the from-matrices

fb5, the optimal masks mb5 and the sampling interval sintb5 = 19.

fb5 = ( -1.4733 -0.1603 0.1487) 104
I -0.1603 0.1487 1.3025 x

( -7.9056 -1.5244 1.4346)
f b511 = -1.5244 1.4346 8.1471



107

fb5 = (-0.0183
"( -0.0029

-0.0029 0.0027)
0.0027 0.0196

( o. o. o. o. 0, )
mbb; = O. -1. O. O. -2.

O. O. +1. O. O.

(~1. O. O. -2. 0,)
mb5v = -3. -4. O. O. O.

O. O. o. +1. O.

( 0, O. O. o. 0,)
mbb.; = -1. -2. O. -3. O.

O. O. O. o. +1.

Model B13

This model is characterized by a much more damped step response to the

same step inputs. The amplitude of the oscillations is considerably higher as can

be seen in figure 5.4.

The effect of the angle of attack on the lift coefficient has been slightly

increased, as compared to the original model B4. A most significant change was

made in the effect of the angle of attack on the drag coefficient which has now almost

tripp led from its original value, and a considerable change occurred, as well, in the

effect of the elevator deflexion on the pitching moment coefficient, which makes this

model now more sensitive to this control variable. Again satisfactory stability was

achieved with a new value for the feedback gain Ko. The changed parameters are:

CD", - 0.7 [l/rad]

CL.• - 6.0 [l/rad]

CMSe = -2.0 [l/rad]

Ko - 0.1 [ ]



108

The eigenvalues of the equivalent linearized model (calculated about the

B13 model's stabilized steady state condition) were calculated to be:

(

-0.0322 + O.OOOOi)
-0.0937 - O.OOOOi

..\B13 = -0.6994 + 0.9452i
-0.6994 - 0.9452i

Note that the system has only one oscillatory mode now, the fastest one.

The phugoid mode has split into two exponential decays, out of which the slowest

one has a time constant of about 31 seconds.

Figures 5.4 below depict the effect of the perturbations on the control vari-

ables and the step response of the system to the individually applied perturbations.

j :~;Jt--== ------ -:--- -- - - j
1000. 1050. 1100. 11S~.

Time [see]

f~~~~~:b------:--------:-------~
1000. 1050. 1100. 115:.

Time [see]

Figure 5.4a: Effect of individually applied step perturbations
(dashed lines) on their respective control variable (solid lines) in the
B13 model.



520000'~
.-s10000.

~,ooooo,----=---= ~~~~~=-~~~~=-~-------------
490000.------------------~------------~---------------

1000. 1050. 1100.
Time [see]

, 1 L:;. ~__ -,l...

650'1640.
---c::::..

630.

620.
1000. 1050. 1100.

Time [see]
i i sc .

:=s-------:--h---j
:::~- - - -;- - - - - - - J
.02------- ------- ..•..

1000. 1050. 1100. 1150_

Time [see]

Figure 5.4b: Step response of the B13 model. The curves in solid
lines represent the response of the system to a step change of - .001
radians in the elevator deflexion at fixed throttle, and the ones in
dashed lines refer to the opposite situation: a step change of 3000 lb.
in the reference value of the thrust at fixed elevator deflexion.

The generative model FMB13 is represented by:

Ib13 = ( -2.5914 -0.1058 0.0961) 104
I -0.1058 0.0961 2.4755 x

Ib13 = ( -18.0545 -2.6505 2.5067 )
v -2.6505 2.5067 18.1259

Ib13 = ( -0.0227 -0.0036 0.0036)
"1 -0.0036 0.0036 0.0216

109



110

( o. o. o. o. o. )mb13t = O. -l. O. O. -2.
O. O. +l. O. O.

( 0 o. o. o. O. )mb13v = -l. -2. O. -3. O.
O. O. O. +l. O.

( o. o. o. O. 0.)
mb13-y = -l. O. O. -2. O.

O. o. o. o. +1.

Model B14

This model was created with the intention of lessening as much as possible

the influence of the elevator deflexion on the pitching moment coefficient. The

model is characterized by the following changed parameters:

CMOe = -0.5 [l/radJ

Ke = 0.4 [ 1

The eigenvalues of the equivalent linearized model (calculated about the

B14 model's stabilized steady state condition) were calculated to be:

(

-0.0406 + 0.0740i)
-0.0406 - 0.0740i

AB14 = -0.5109 + 0.7413i
-0.5109 - 0.7413i

and the slowest time constant present in the system is about 25 seconds.

Figures 5.5 below depict the effect of the perturbations on the control vari-

ables in this model and its step response to the individually applied perturbations



----------

111

which is very similar to the response of the model B5, with the difference that the

model B14 is slightly more damped and somewhat slower.

:::[ -- - - - '- - -- -- - ., -- -- - J
.025

1000. 1050. 1100. ll: ..

Time [see]

£::::::0 -- -- - - - -~
i"ooo~ J
t: 32000. ------- ..•••--------'-----------:-

1000. 1050. 1100. :l~~.

Time [see]

. Figure 5.5a: Effect of individually applied step perturbations
(dashed lines) on their respective control variable (solid lines) in the
B14 model.



112

502000'~

~OOOOO_ ~', ,===_::.-_-_--::-:-=-=-~-------J
498000.- - ]

1000. 1050. 1100.
Time [see]

:::-Ir-----:--(c--'--------,-------J
488.

1000. 1050. 1100.
Time [see]::::b;///=-: --- --,-------]

0.0
1000. 1050. 1100. 115~.

Time [see]

Figure 5.5b: Step response of the B14 model. The curves in solid
lines represent the response of the system to a step change of - .001
radians in the elevator deflexion at fixed throttle, and the ones in
dashed lines refer to the opposite situation: a step change of 3000 lb.
in the reference value of the thrust at fixed elevator deflexion.

The model's from-matrices and optimal masks are:

fb14 = ( -0.6079 -0.1082 0.0988) 104
I -0.1082 0.0988 0.6602 x

( -4.9056 -0.97329 0.9774)
fb14u = -0.9732 0.9774 4.6891

fb14 = ( -0.0112 -0.0018 0.0017)
'1 -0.0018 0.0017 0.0107



113

( o. o. o. o. 0o)mb14z = O. -1. O. O. -2.
o. O. +1. o. O.

( O. O. O. O. 00)mb14v = o. -1. O. O. O.
O. O. O. +1. O.

( O. o. o. o. 00)mb14-y = O. -1. o. -2. O.
O. O. O. O. +1.

5.6 Detection of the Accident

The following quantitative simulation describes a flight in which an accident

is scheduled to happen in the first sampling instant after time t = 6000 seconds.

The simulation was carried out with the flight phase switch inpt set to 4, which

drives the model with randomly changing perturbations in the control variables of

the aircraft. The perturbation steps are randomly negative, zero or positive and

change at random time intervals uniformly distributed between 15 and 25 seconds

(default values). The Ctrl-C/ACSL code used to run the ACSL model and generate

the quantitative data is:

l> cint = 1;
[> load fb4 mb4 sint b4 <fmb4
[> tbreak = 1000*sintb4j
[> trnx = 1000*sintb4 + 600 + 19*500;
l> c2alist('trnx, cint, tbreak')
l> acsl(,set inpt=4')
l> do B747
[> [pde, ptr, 1, v, gal = start;

The generative model relative to the original airplane is represented by

FMB4: {mb4, sintb4, 1b4}



114

where mb4 is composed of the three best masks relative to the behavior of that

system, sintb4 represents the sampling interval the masks mb4 expect the data to

have been sampled with, and fb4 defines the recoding levels the masks are able to

recognize. Matrix fM is composed of the three from-matrices that were used to

recode the standardized errors of the raw data in the optimal mask analysis that

yielded mb4.

The ACSL simulation's communication interval cint had to be set to one

in this run because that is the greatest common divisor of all sampling intervals of

the models presented in the previous section (6, 11, 19, 15, and 12 seconds) and the

data model generated by this simulation run should fit every model.

The total simulation time required is such that the outputted time history

yields 1000 data points prior to the accident (6000 seconds), 600 seconds for stabi-

lization after the accident, and 500 data points even for the slowest broken model

in the mask library (sintb5 = 19 seconds); which adds up to 16,100 seconds.

The Ctrl-C/ ACSL interface command c2alist(,trnx, cint, tbreak') makes

all these three variables common to both Ctrl-C and ACSL workspaces. B747 in the

second line from the bottom of the code above is defined as a Ctrl-C do-procedure

which executes the Ctrl-C commands contained in the file B747.ctr that sets the

new values for the parameters that are to be changed when the accident takes place.

These values were listed along with the description of the model B747 in a previous

section of this chapter.

Figure 5.6 below shows the behavior of the output variables in the neigh-

borhood of the accident. Note the high amplitude transients caused by the accident

and, later in time, the large difference in the mean value of the variables before and

after the accident.



115

700000 .r-----~---___, 700.r----------------~

600.

.n

600000. 500.

400 ..-5500000.
.?;-
.~ 300.
Q

;:! 200.

400000.'----- .•.•.•..------'
5600. 5800. 6000. 6200. 6400.

Time [see]

100.'----------------~
5600. 5800. 6000. 6200. 6400.

Time [see]

0.2r-----~----___,

0.1

-.1

-.2'-------.II.-- --J
5600. 5800. 6000. 620·0. 6400.

Time [see]

Figure 5.6: Output variables in their raw configuration in the neigh-
borhood of the accident

The quantitative data obtained from this simulation was transformed into

qualitative data as required by the online monitoring system. The whole time

history can be separated into three separate phases, namely:

1. from t = 0 to t = 6001, normal flight

2. from t = 6001 to t = 6600, accident transients and stabilization

3. from t = 6601 to t = 16100, after-the-accident flight

Due to the size of the data model generated, in this first phase of the

analysis we will discard all data posterior to time t = 6120 seconds to save room in



116

the working space. The whole time history is automatically saved in a file named

RRR.dat by the Ctrl-C / ACSL interface after each start command. If the ACSL

simulation is not rerun with different settings, the raw data model can be loaded

back into the Ctrl-C workspace any time with the Ctrl-C load command with its

-a option switch.

The following code starts creating the data model necessary for the qualita-

tive analysis. Matrix inrec contains the input variables pde and ptr sampled every

six seconds and already (naturally) recoded. Matrix xraw contains the output vari-

ables l, v, and ga sampled correspondingly but still in their raw form. The raw data

model so formed ([inrec, xraw]) is 1030 elements long and represents the first 6174

seconds of flight.

[> sample = sintb4/cint;
[> inrec = [pde, ptr];
[> inrec = inrecf Itsample.Iuduesample.i};
[> xraw = [1, v, gal;
[> xraw = xrawj Lrsample.Hlduesample.r};
[> clear pde ptr 1 v ga

Now the output variables of the data model still have to have their mean

value subtracted and then be recoded into three levels with the fb4 from-matrices

adjusted to the available data. This task is carried out by the following code:

[> / /calculate the mean value of the data model
l> / /prior to the accident
[> mean = average(xraw(l: 1000, :), 1000);
l> xdev = xraw - onesfxrawj ediagfmean]:
l> clear mean xraw
l> / /adjust the from-matrices to the current data (xdev)
[> deff fadjust
[> f = fadjust(fb4, xdev);
[> for i=1:3, xrec(:,i) = recode(xdev(:,i),'domain', f(2*(i-1)+1 : 2*i, :), 0:4);
l> clear xdev
[> / /the final recoded data model is [inrec, xrec]



117

The recoding process of the output variables includes a preprocessing phase

where the mean values of these variables were subtracted in order to extend the

applicability of the from-matrices to different sets of data. Variations of the mean

value, if of interest to the observer, should be represented by an additional variable

if the number of recoding levels is to be kept as small as possible (3).

Note that the mean value used to compute xdev in the previous code is a

global mean relative to the whole data sample available before the accident (1000

data points). This procedure is valid for this data model because all its mean values

are constant in time, but had the variables had a mean value changing in time, a

moving average based on data samples as large as possible should have been used.

The deviations of the variables from their global mean value are then re-

coded into three levels which are defined by the same from-matrices that were used

in the optimal mask evaluation. These from-matrices can be applicable to any data

model that represents the deviations of the raw data from their mean values if they

are first adjusted to this data model.

By adjusting the from-matrices to the data model, we mean creating two

additional levels, namely levels 0 and 4, that will represent the data points that

are out of the boundaries specified by the original from-matrices: below level 1

or adove level 3. These additional levels are needed now for the detection of the

accident and also later, when we will try match the masks existent in the library

with the after-the-accident data. The existence of data in these two new levels

strongly hints to the existence of problems in the qualitative analysis and should

trigger a warning so that, if the occurrence of such recoded data persists, the alarm

should be triggered. The adjusting of the from-matrices is carried out by the Ctrl-C

user-defined function fadjust listed below:



118

/ /[f2] = fadjust(fl, x)
f2 = [zrow(6, 1), fl, zrow(6, 1)];
xx = [x; [fl(l, 1), rus, 1), fl(5, 1)]; [fl(2, 3), fl(4, 3), fl(6, 3)]];
for i = 1:3, ...

f2(2*(i-1)+1, 1) = min(xx(:, i)); ...
f2(2*i, 1) = fl(2*(i-1)+1, 1) + eps; ...
f2(2*(i-1)+1,5) = max(xx(:, i)); ...
f2(2*i, 5) = fl(2*(i-1)+1, 3) + eps; ...

end
return

A continuous forecasting process was performed on the qualitative data

in the neighborhood of the point where the accident took place: from the 991-st

data point (t = 5940 seconds) through the 1030-th data point (t = 6174 seconds).

The past behavior information required by the forecasting process is given by the

time history matrix past. The states of the input variables concatenated from the

right by the (actually measured) states of the output variables relative to the time

instants to be forecast form the future matrix.

The following code performs the forecasting of the three output variables

in the neighborhood of the accident, compares the results of the forecasting to their

actually recorded states, and runs the results of this comparison through an error

filter that will trigger an alarm if the mean value of the error is too high.

l> past = [inrec(l: 990, :), xrec(l: 990, :)];
[> future = [inrec(991: 1030, :); xrec(991: 1030, :)]i
[> deff ennustus
l> [error, bounds] = ennustus(past, future, mb4, 3);
l> deff filter
l> alarm = filter( error , bounds);

The user-defined function ennustus (the Finnish word for forecasting) per-

forms the forecasting in a similar manner as did the function fre used in the previous



119

chapter. The forecasting process was improved with the inclusion of actually mea-

sured data to the past behavior matrix during the continuous forecasting process.

Erroneously forecast and guessed states, when manicure had to be called, would

both contribute to future bad forecastings and guessings since exactly those data

points are the ones that the masks use as basic information to generate the states

in the next time instant. Ennustus simply forecasts the triple of outputs and uses

them to build its first output matrix: the forecasting error matrix. The forecast

triple is not concatenated to the top of the past behavior matrix where the actually

measured states relative to that time instant are now placed.

Ennustus also builds a second output matrix bounds which has the same

dimensions as error and shows if the actually measured states of the output variables

being forecast have been recoded into the saturation levels or not. The elements

of bounds assume one of the three values: "-I" for negative saturation, "0" for

variables within normal recoding levels, and "1" for positive saturation.

The output error of the function is the error matrix associated with the

forecasting, i.e., the difference between the (recoded) actually measured states and

their forecast equivalents.

The third input mask required by the function refers to a matrix which

contains all three optimal masks concatenated to each other from below as one

single input. In the present forecasting problem, the requied input is:

mask = mb4 = [mb4/; mb4v; mb4"Yl

The second input future required by the function contains all five variables

of the data model relative to the time period to be forecast: the states assumed by



120

the input variables and the respective actually measured states of all three output

variables.

As in fre, the input past refers to the past behavior matrix up to the present

(the time instant from when on forecasting is started), and the last input nl is an

integer representing the number of levels present in the data matrix (it is assumed

that all output variables have been recoded into the same number of levels). Both

functions use this last input to be able to realistically guess (randomly) a future

state if the behavior read by the mask has no precedents, having therefore zero

probability of occurring. In such cases, the system invents randomly a state and

gives it I/ni probability of occurrence. In the current analysis nl is set to 3 since

that is the actual number of recoding levels in the model - levels 0 and 4 should

not be included in the list of possible guessings. The sequence of Ctrl-C/SAPS-II

commands that form the ennustus function is listed below:

I> Illerror, bounds] = ennustus(past, future, mask, nl)
[> deff manicure
I> Inn, mm] = size(future);
I> prob = zrow(l, 3);
I> frcst = zrow(l, 3);
[> pmin = 0
[> for i = 1: nn, ...
I> [row, coil = size(past); ...
I> fee = [past: [future(i, 1:2), zrow(l, 3)]]; ...
[> [ffl, p l] = foreeast(fcc, mask(l: 3, :), row, pmin); ...
[> [ff'l, p l] = manicure(ffl, past, 3, nl, p l}; ...
I> Iff2, p2] = foreeast(fcc, mask(4: 6, :), row, pmin); ...
I> Iff2, p2] = manieure(ff2, past, 4, nl, p2); ...
l> Iff3, p3] = foreeast(fcc, mask(7: 9, :), row, pmin); ...
I> Iff3, p3] = manicure(ff3, past, 5, nl, p3); ...
[> past = [past; future(i, :)]; ...
[> frcst = [frcst; [ffl(row+l, 3), ff2(row+l, 4),ff3(row+l, 5)]]; ...
[> prob = [prob; Ipl(row+l), p2(row+l), p3(row+l)]]; ...
I> end
[> prob = prob(2: nn+l, :);



121

[> frcst = frcst(2: nn+1, :);
[> error = frcst - future(:, 3:5);
[> bounds = round(0.49*(future(:, 3:5) -2*ones(frcst)))
[> return

The following listing shows the results of the forecasting mechanism in the

neighborhood of the accident: the forecasting error matrix error (columns 3, 4, and

5) and the alarm function (column 6). Column 1 represents the sampling points,

and column 2 represents the support variable t. Superscripts * denote guessed

states. All data after time 6006 seconds (exclusive) are saturated.

[> step = [991: 1030]';
[> t = [6*990: 6: 6*1029]';
[> results = [step, t, error, alarm]

RESULTS

991. 5940. o. o. o. o.
992. 5946. o. o. o. o.
993. 5952. -1. O. o. o.
994. 5958. o. o. O. o.
995. 5964. O. o. 1. o.
996. 5970. o. o. o. O.
997. 5976. O. o. O. o.
998. 5982. o. o. O. o.
999. 5988. o. o. o. o.
1000. 5994. o. o. O. o.
1001. 6000. o. o. -1. o.
1002. 6006. o. o. O. o.
1003. 6012. -2. 3. -1. 1.

1004. 6018. -3. 1.* -1.* 1.

1005. 6024. 1.* o. o. 1.

1006. 6030. o. O. O. 1.

1007. 6036. o. O. 4. 1.



122

1008. 6042. -3.* 2.* 2.* 1.

1009. 6048. -1.* 3.* O. 1.

1010. 6054. O. O. O. 1.

1011. 6060. -1.* O. -2.* 1.

1012. 6066. -2.* 2.* 3.* 1.

1013. 6072. -2. O. 3. 1.

1014. 6078. -3.* 2.* O. 1.

1015. 6084. O. O. O. 1.

1016. 6090. O. O. O. 1.

1017. 6096. O. O. O. 1.

1018. 6102. -3.* 1. O. 1.

1019. 6108. O. O. O. 1.

1020. 6114. O. O. O. 1.

1021. 6120. -3,* O. O. 1.

1022. 6126. -1.* -2.* O. 1.

1023. 6132. 0." O. O. 1.

1024. 6138. O. O. O. 1.

1025. 6144. -3.* O. 3.* 1.

1026. 6150. -3.* O. O. 1.

1027. 6156. O. O. O. 1.

1028. 6162. -3.* O. O. 1.

1029. 6168. O. O. O. 1.

1030. 6174. O. O. O. 1.

The intentionally long forecasting error history above shows not only the

successful detection of the accident right when its effects reach the output variables,

but also the inherent learning capability of the methodology. The forecasting errors

grow immediately at the detection of the accident related transients, but after the

stabilization of the output variables outside of the normal recoding level boundaries,

the online monitoring device sees constant (saturated) trajectories which it will be

pefectly able to forecast correctly.



123

Figures 5.7 show all five qualitative data vectors in the neighborhood of the

accident compared with their quantitative equivalents.

5900. 5950. 6000. 6050. 6100.
Time [see]

6150. 6200.

~ JI : : : S :1 I
5900. 5950. 6000. 6050. 6100. 6150. 6200.

Time [see]

Figure 5.1a: Random perturbation inputs in the neighborhood of
the accident.

!::::::ol_:~l\J-~--I
-50000.L.------~------~----~~~------~------~-------5900. 5950. 6000. 6050. 6100. 6150. 6200.

Time [see]

~
I.........-;:s JI 5;J 1.

5900. 5950. 6000. 6050. 6100.
Time [see]

6150. 6200.

Figure 5.1h: Lift deviation and recoded lift in the neighborhood of
the accident.



124

i:@I=:=:=e=:=:=> 5900. 5950. 6000. 6050. 6100.
Time [see]

6150. 6200.

JI-:----1--\ :--5900. 5950. 6000. 6050. 6100.
Time [see]

6150. 6200.

Figure 5.1c: Velocity deviation and recoded velocity in the neigh-
borhood of the accident.

0:0

:0:1 : :
1\7, ;'"..=.

l'--

5900. 5950. 6000. 6050. 6100. 6150. 6200.
Time [see]

JI = <J: :
I Al'--

5900. 5950. 6000. 6050. 6100. 6150. 6200.
Time [see]

Figure 5.1d: Flight path angle deviation and recoded flight path
angle in the neighborhood of the accident.

The inductive reasoning of our monitoring system gets tricked quite fast in

the present situation because the behavior read by the masks first has no precedents,.



125

and all there is to do is guess that state and add the new information to its memory.

With the recoding process saturated, the three output variables will not change their

states, and, as the forecasting process is continued, it does not take long, before

SAPS-II learns that the behavior of the outputs is not changing. After a short

while, the masks that are less dependent on the input variables start being forecast

perfectly right: variable v is always 0 and variable I is always 4, no matter what

values the inputs assume. Mask mb4z is not so easily influenced by the problem,

but will certainly also learn that the output 1 will not change from the value 4.

The occurrence of saturated variables is detected by the filter function

through the bounds matrix as explained below. In this way, even for a clean,

almost zero forecasting error matrix, the alarm is triggered as soon as the presence

of saturated variables is detected.

The error filter function filter was implemented through the code listed

below. It calculates first the moving average based on samples of 3 elements of the

sum of the absolute values of the errors at every time instant. This moving average

is reconstructed to the size of the original forecast data by simply making its two

first elements equal to the first element of the actual moving average vector. Next,

the resulting vector is normalized with the value 4, which is the maximum value of

the sum of the absolute values of the errors in three consecutive rows of the error

matrix for which the alarm function is still not triggered. Finally, the alarm is made

more sensitive with the factor 1.49 and rounded to the nearest integer (0 or 1). It is

compared with the vector satrec which initially is a zero vector of the size of alarm

and assumes the value "I" when more than two states at that time instant, or in

the two previous ones are out of bounds, i.e., have been recoded into levels 0 or 4.



126

[> / /[alarm] = filter(error, bounds)
[> abserr = abs(error);
l> sum = abserr sonesf S, 1);
[> smoothed = average(sum, 3);
l> smoothed = [smoothedf Ijeonestz, 1); smoothed];
[> normed = smoothed/4;
[> alarm = round(1.49*normed);
[> [m, n] = size(alarm);
[> for i = 1:3, if alarm(i) > 1, alarm(i) = 1;
[> absbou = abs(bounds);
[> alarm = max([alarm, absbou]')';
[> return

Figure 5.8 below depicts the output alarm of the error filter which is trig-

gered three time instants after the forecasting process starts failing in its inferences

about the future behavior of the system.

2.

l.
E•...
'":< o.

-l.
5900. 5950.

I
6000. 6050. 6100.

Time [see]
6150. 6200.

Figure 5.8 Output alarm of the on-line monitoring system

5. '1 Recognition of the Type of Accident

After the accident related transients have stabilized, a new data model

starts being collected so that different generative models that have been previously

stored in the mask library can be tried out on this data, trying to identify the type

of accident as soon as possible.



127

The data model describing the whole flight is still stored in the rrr.dat

which can be reloaded into the Ctrl-C workspace with the load command using its

-a option (load from an ACSL-output file). The loaded variable is a matrix whose

columns are formed by the outputs requested from the last ACSL simulation run in

the same order, from left to right, as they were written inside the square brackets

in the last start command.

The following code first loads the time history of the whole flight, discards

all data previous to the stabilization of the variables after the accident, and separates

the already recoded inputs (inrec) from the raw outputs (xraw). Matrix xdev is

then created by subtracting the mean values of the variables of xraw from them

as has previously been discussed. Finally, as this same data will be used for all

generative models separately, inrec and xdev are saved into the file temp.dat for

future reference.

[> load data <rrr -a
[> data = data(7001: 16101, :};
[> inrec = data(:, 1:2);
[> xraw = data(:, 3:5);
l> clear data
[> [m, n] = size(xraw);
[> mean = average(xraw, m);
[> xdev = xraw - onesfxrawj edlag'[mean};
[> clear m n mean xraw
[> save inrec xdev >temp

The generative models (sampling interval, from matrices and optimal

masks) have been saved in the files fmb4.dat, fmb141.dat, fmb5.dat, fmb13.dat

and fmb14.dat and form the mask library. Each generative model can be called

back into the workspace with the Ctrl-C load command.

Now we want to apply every generative model to the after-the-accident

data model and based on their forecasting efficiency on that data, we can decide



128

which qualitative model fits best the type of malfunction the original model has

experienced. Each set of optimal masks requires its own sampling interval and

recoding levels for the recoding of the data model. After the data model has been

recoded for the generative model, the forecasting efficiency of the masks is tested

with a continuous forecasting process over 10 steps. The forecasting error matrix

error is passed through the filter function explained in the previous section of this

same chapter which, if triggered, rejects the generative system.

Let us first tryout the generative model of the original flight model fmb4.

The following code loads the generative model, samples the data with its sampling

interval (sintb4 = 6 seconds) and recodes the still non-receded outputs using the

adjusted from-matrices represented by f. From practical experience, we learned

that a minimum data model size (past behavior information) of 200 elements is

required for the methodology to yield meaningful results for this problem, and that

is the number we used in all the followingforecastings in addition to the 10 future

states that are to be forecast.

[> load sintb4 fb4 mb4 <fmb4
l> load inrec xdev <temp
[> xdev = xdev(l: sintb4: sintb4*21O, :);
[> inrec = inrec(l: sintb4: sintb4*21O, :);
[> deft' fadjust
[> f = fadjust(fb4, xdev);
[> for i=1:3, xrec(:,i) = recode(xdev(:,i), 'domain', f(2*(i-1)+1: 2*i, :),0:4);

Prior to recoding the quantitative data xdev, the code above adjusts the

from matrices of the generative system fmp4 to the data. In this analysis as we

try to apply any mask to any data to try to recognize the type of accident that

occurred, the two additional external recoding levels (levels 0 and 4) created by the

function fadjust are very important. Occurrence of recoded data in these levels



129

must be detected externally and used as an additional information to reject the

generative model. Displayed below are the adjusted from-matrices that compose

the matrix f such that

/= ( J~ )
f = (-1.7772

I -1.1000
-1.1000
-0.1101

-0.1101 0.1059
0.1059 1.1000

1.1000) 104
1.5610 x

f = (-7.5000
v -7.5000

-7.5000
-0.7844

-0.7844 0.7376 7.5000)
0.7376 7.5000 7.5000

f = (-0.0233
"f -0.0120

-0.0120
-0.0013

-0.0013 0.0013 0.0120)
0.0013 0.0120 0.0207

where the leftmost and the rightmost columns of each matrix represent the two new

levels created for the out-of-bounds data.

Data matrices past and future are built with the recoded data model, and

the forecasting is performed with the already discussed ennustus function using

the mb4 optimal masks.

[> past = [inrec, xrec];
[> past = past(l: 200, :);
[> future = [inrec, xrec];
l> future = future(201: 210, :);
l> deff ennustus
[> errorb4 = ennustus(past, future, mb4, 3)
l> deff filter
[> alarmb4 = filter(error)



130

Analysing the recoded data matrix, we found a very high incidence (about

50%) of Os and 4s in the third output variable "[rec s about 15% in the first vari-

able lree and about 5% in Vree. This fact by itself already practically discards the

generative model B4 as a possible candidate to characterize the after-the-accident

process over 10 data points:

model, a decision which is strengthened by the results of the continuous forecasting

errorb4 =

O.
O.

-2.*
l.
l.t
0.*

-2.
O.
0.*
2.

O.
-1.
-2.
-1.

O.
-1.
-2.*

O.
O.
1.

1.t
-1.

O.
o.t
O.
1.t
o.t

-1.
-1.t
-2.*t

where the superscript * means that the forecasting error in question is relative to

a guessed state, when no forecasting was possible, and the superscript t denotes

forecasting errors relative to out-of-bounds states, recoded to level 0 or 4. Note

that the best forecast variable is actually, which contains the most out-of-bounds

recoded states, and all but one of the successfully forecast states of , are actually

saturated values. This fact only reinforces the need for the monitoring of saturating

recoded variables and the influence their occurrence should have on the acceptance

or rejection of a certain generative system as the right match for the behavior

model:

described by the data. Below, our alarm function definitely rejects the generative



131

alarnii.; =

1.
1.
1.
1.
1.
1.
1.
1.
1.
1.

As a next try, the generative model fmb5 seems to be a good pick. The

code used is basically the same as the previous one, but is repeated below for the

sake of clarity:

[> load sint b5 fb5 mb5 <fmb5
[> load inrec xdev <temp
l> xdev = xdev(l: sintb5: sintb5*21O, :);
[> inrec = inrec(l: sintb5: sintb5*210, :);
l> f = fadjust(fb5, xdev);
[> for i=1:3, xrec(:,i) = recode(xdev(:,i), 'domain', f(2*(i-1)+1: 2*i, :),0:4);
[> past = [inrec, xrec];
[> past = past(l: 200, :);
[> future = [inrec, xrec];
t> future = future(201: 210, :);
[> errorb5 = ennustus(past, future, mb5, 3)
[> alarmb5 = filter(error)

The adjusted from-matrices were extended to slightly different values now

since the sampled data model changed with the new sampling interval sintb5 = 19

seconds. The three from-matrices are displayed below:

f = (-1.5489
1 -1.4733

-1.4733
-0.1603

-0.1603 0.1487
0.1487 1.3025

1.3025) 104
1.3025 x



132

f = (-7.9056
v -7.9056

-7.9056
-1.5244

-1.5244
1.4346

1.4346
8.1471

8.1471)
8.1471

f = (-0.0227
"f -0.0183

-0.0183
-0.0029

-0.0029 0.0027
0.0027 0.0196

0.0196)
0.0253

The recoded data xrec does not reach the saturation regions of the from-

matrix so often this time. This is understandable and expected, since by comparing

fmb5 and fmb747 from-matrices we see that there is not a very large difference in

their original external limits.

Two states had to be guessed in the forecasting process and they are marked

with the superscript * in the errorb5 matrix below. The elements with the super-

script t refer to elements that had been recoded into the saturation levels.

o. o. o.
o. -2.* o.
2. -1. 1.
o. o. -lot
1. -1. o.

errorb5 = -2. -2.* o.
o. o. o.
2. 1. o.
o. o. o.
lot o. o.

Note the excellent forecasting of the third output variable. One explanation

for this behavior is the fact that the sampling interval used by the B5 model is almost

double of sintb747, i.e., both masks "see"almost the same dynamics, sintb5 being

able to read every other data point as compared to mb747. The strongest generating



133

sampling variable of the mask mb74 7"( (the one that appears throughout its mask

history) is pde(t - sintb747) to generate ,(t + sintb747), sintb747 = 11 seconds. In

the mb5 mask, the generating sampling variable pde(t) also influences v(t + sintb5),

sintbS = 19 seconds, and even in the mbb.; mask history, this variable appears

in every single suboptimal mask except for the mask of complexity two which has

the lowest quality factor. As sintb5 ~ 2 x sintb747, there is a good possibility

that mask mb5 is actually fitting the data, at least up to some quality. Analogous

forecastings in different sections of the data model do not yield so low error matrices,

but this particular case is a very good illustration of how the methodology can lead

to precipitated erroneous conclusions.

The alarms« vector below rejects the generative model, but it is influenced

also by the two guessed states, each causing an error with an absolute value of 2.

Had both guesses been correct, yielding zero forecasting error, the vector would not

have been so clearly triggered. However, due to the occasional saturation of the

variables in the recoding process, the generative system should not be accepted.

alarmb5 =

1.
1.
1.
1.
1.
1.
1.
1.

O.
1.

The next qualitative model to be tried on the data represents the model

B13. The adjusted from-matrices required by the model are:



134

fb13 = (-2.5914
I -2.5914

-2.5914.0
-0.1058.2

-0.1058
0.0961

0.0961
2.4755

2.4755) 104
2.4755 X

fb13 = (-18.0545
u -18.0545

-18.0545
-2.6505

-2.6505
2.5067

2.5067
18.3080

18.3080)
18.3080

fb13 = (-0.0240
"t -0.0227

-0.0227
-0.0036

-0.0036 0.0036 0.0222)
0.0036 0.0222 0.0222

The resulting recoded data model has a very peculiar and interesting char-

acteristic: the second output variable is about 80% of the times recoded into the

level 2. This happens due to the recoding levels imposed by fb13u whose inner

level's limits are almost the double of fb747 u 's which situates them at about half

of the maximum variation of Vb747. This is an excelent example of how non-varying

states can fool this methodology. The longer a variable remains in one level, the

higher will the methodology set its probability of so remaining, and even worse:

the successful forecasting of saturated variables or variables with overdimensioned

recoding levels is independent of the mask used (with time, basically any mask will

give clean zero forecasting errors). Therefore, monitoring the recoded data model

for the occurrence of saturated states is not enough: the monitoring has to be

extended to non-varying states as well.

As expected, the second variable was forecast 100%right but even so, due to

the the very poor forecasting of the two other variables, the alarm is again triggered

without any need for the information about the non-variance of vrec•



errorb13 =

alarmb13 =

O.
-2.

O.
-1.

1.
1.

O.
1.

O.
O.

O. -1.
O. 1.
O. 1.
O. 1.
O. 2.
O. 2.
O. 2.
O. O.
O. 2.
O. 1.

1.
1.
1.
1.
1.
1.
1.
1.
1.

O.

135

The next qualitative model to be tested on the data is B14. As can be seen

from its adjusted from-matrices displayed below, all variations of the variables rela-

with fb747) .

tive to this model are smaller than the dynamics of the data under study (compare.

. fb14 = (-1.7772 -0.6079 -0.1082 0.0988 0.6602) 104
I -0.6079 -0.1082 0.0988 0.6602 1.1746 x

fb14 = (-5.4727 -4.9056 -0.9732 0.9774 4.6891)
v -4.9056 -0.9732 0.9774 4.6891 4.6891



(
-0.0240

fb14"f = -0.0112
-0.0112
-0.0018

-0.0018
0.0017

0.0017
0.0107

136

0.0107 )
0.0253

The recoded data model, as expected saturates from time to time. Variables

lree and free have an incidence of saturation of about 25%, while Vree shows only

about 5% saturation. However, this will not account for the decision of rejecting

the qualitative model since the alarm is triggered by the visibly poor forecasts of all

variables. Again superscripts t identify the forecasting errors relative to saturated

data points.

errorb14 =

-2. -2.
-1. -1.

O. O.
1. O.
O. l.
1. 1.

O. 2.
lot 1.

-lot -2.
-lot -1.

1.
1.
l.
l.
1.
1.
1.
1.
1.
1.

alarmb14 =

-lot
O.
2.

-l.
-1.
-1.
-1.

O.
lot

-lot

And finally, the last generative model (B747) should now recognize the data

matching first the from-matrices such that no, or practically no data is recoded into

the saturation levels 0 and 4, and then with low forecasting errors.



137

The adjusted from-matrices are:

fb747 = (-1.6029 -1.6029 -0.2137 0.2113
I -1.6029 -0.2137 0.2113 1.3981

1.3981) 104
1.3981 x

fb747 = (-5.9153 -5.9153 -1.0733 1.0150 6.1723)
v -5.9153 -1.0733 1.0150 6.1723 6.1723

fb747 = (-0.0278 -0.0278 -0.0050 0.0050 0.0290)
"I -0.0278 -0.0050 0.0050 0.0290 0.0290

There is no occurrence of saturated states in the recoded data model and

the forecasting process presents one guessed state due to the still small data size

(200points), taking into account that the mask that could not forecast the guessed

state is of complexity five (mb7 47"1)' The complexity of the two other masks of the

system is four which also makes it more difficult to forecast having a past behavior

matrix of only 200elements.

errorb747 =

O. -1. O.
O. O. -2.*
O. O. -1.

-1. O. -1.
1. O. O.
o. o. O.
1. O. -1.
O. -1. O.

-1. O. -1.
O. O. O.



138

alarmb747 =

o.
O.
O.
l.

O.
O.
O.
O.
l.

O.

Recognition of a B4/B13 accident

Considering now the occurrence of a B4/B13 accident (the original B4

model turns into the model B13 after the accident) the recognition of the type of

accident will follow the same steps as in the previous section. The two models

present fairly similar behaviors, with the major difference that the broken model is

very much slower and all variables have much higher amplitude transients.

The data model is created in a similar way only that now, as we are not

interested in the detection of the accident, tbreak is set to one second, to create

only data relative to the after-the-accident behavior of the aircraft. The code below

is basically the same as what was used in the previous simulation to create the

B4/B747 accident's data model:

[> acsl('set trnx = 6000, cint=1, tbreak=1, inpt=4')
l> do B13
[> [pde, ptr, 1, v, gal = start;
[> inrec = [pde(1001: 6000), ptr(1001: 6000)];
l> xraw = [1(1001: 6000), v(1001: 6000), ga(1001:6000)];
[> [m, n] = size(xraw);
[> mean = average(xraw, m);
l> xdev = xraw - onesfxrawj sdlagfrnean]:
[> clear m n mean xraw
l> save inrec xdev >temp



139

The same procedure was followed to try to match qualitative and quantita-

tive models. Model fmb13 clearly recognizes the data with a fairly clean forecasting

error matrix, and without a single non-zero element in the alarm vector.

errorb13 =

o. o. o.
o. O. 1.
O. O. 1.
O. O. O.

-1. O. 1.
O. O. o.
O. -1. O.

-2. O. O.
O. 0.-1.
O. O. O.

O.
O.
O.
O.
O.
O.
O.
O.
O.
O.

alarmb13 =

All other qualitative models require recoding levels that saturate (some

more, some less) with the higher amplitude responses of the B13 model. Most of

them have visibly poor forecasting capabilities on the data and are immediately

rejected by the alarm signal.

Model B5 is the only model that has a very good forecasting error matrix

which would not have triggered the alarm when passed through the filter function.

The signal alarmb5 is triggered by the saturated states of v and the generative

model fmb5 is rejected. The good forecasting capability of mp5 on this B13 data

may be explained, in addition to the presence of saturated recoded data points, by



140

the fact that both systems have fairly comparable sampling intervals (19 and 16

seconds) and their optimal masks are similar as well. More recoding levels or even

a larger source model may be necessary to better distinguish between these two

of recoded data in the saturated levels.

models. In the present case, the problem is taken care of by the constant presence

errorb5 =

O.
O.

-1.
1.

-1.
O.
O.
o.
O.

-1.

alarmb5 =

o.t O.
o.t O.
o.t O.
o.t O.
0.* 0.*

-1.* O.
O. -1.
1. O.
I.t -1.
I.t O.
1.
1.
1.
1.

O.
O.
O.
O.
1.
1.

Recognition of a B4/B5 accident

Model B5 is characterized by the most oscillatory response to step inputs

among all five models presented as can be seen from the figures 5.3. It is also the

seconds.

slowest model, with its linearized model's slowest time constant being around 19

We performed a new mask library consultation to try to recognize a B5

data model obtained and processed in the same way as in the previous experiment.



141

The data is satisfactorily recognized by the fmb5 generative model which requires

the recoding levels represented by the fb5 from-matrices, extension of which to the

maximum and minimum recorded states in the present data model is represented

by the f matrices below:

f = (-1.4733
I -1.4733

-1.4733
-0.1603

-0.1603
0.1487

0.1487
1.3025

1.3025) 104
1.3025 x

f = (-7.9056
v -7.9056

-7.9056
-1.5244

-1.5244
1.4346

1.4346
8.1471

8.1471)
8.1471

f = (-0.0183
,., -0.0183

-0.0183
-0.0029

-0.0029 0.0027
0.0027 0.0196

0.0196)
0.0196

Note that as the matrices have been adjusted to a data model generated

by the B5 model itself, the external recoding levels (0 and 4) are widthless, i.e., the

maximum and minimum recorded values of each variable are smaller or equal to.

the external limits of their respective fb5 from-matrix, and therefore there will be

no elements of xrec recoded into the saturated levels 0 and 4.

The qualitative model f mb5 cannot be promptly validated by the method-

ology since the alarm signal is triggered for one time instant. The forecasting is

not perfect (around 60% of right forecasts in all variables, but each miss is just

a forecast to the adjacent level (all non-zero errors have absolute value 1). The

forecasting error matrix errorb5 and the alarm signal alarmb5 are displayed below:



142

errorb5 =

-1. 1. O.
O. 0.-1.
O. O. O.
o. O. O.
O. O. 1.
O. O. O.
1. O. 1.
O. -1. -1.
O. -1. O.

-1. O. O.

alarmb5 =

O.
O.
O.
O.
O.
O.
O.
O.
1.
O.

Applying the qualitative model fmb747 to the B5 data model yields very

good forecasting results for the variable "[r ec which was successfully forecast 80%

of the times. There are two plausible reasons for mb74 7'"f being able to do such a

good job. The first one is that, analysing the inner recoding levels for "I of these

two systems, we note that by the use of fb747"f on "I created by a B5 model, we

are extending this recoding level from ~ ±0.0028 to ±0.0050, which increases the

occurrence of 2's in "[r ec- This fact added to the difference in the time constants

associated with both models (B5 is almost twice as slow as B747) helps the gener-

ation of a data model with longer strings of data recoded into the same level, and

that is what happened with "Iree in the future matrix: the eight first elements of

the last column of future are 2's.



future =

3. 3.
3. 1.
3. 1.
3. 2.
3. 1.
3. 1.
1. 1.
1. 1.
3. 1.
2. 3.

3. 3.
2. 3.
1. 2.
2. 3.
2. 3.
2. 2.
3. 2.
2. 1.
1. 1.
2. 1.

143

2.
2.
2.
2.
2.
2.
2.
2.
1.
1.

The second reason is related to the masks mbb.; and mb74 7rt : Masks mb5

have its windows 19 seconds apart whereas mb747 masks' windows are 11 seconds

apart, meaning that through every second window of mb747, an observer is able to

see a similar behavior as he can see through adjacent windows of mb5. Element (-1)

in fmb747"f must be seeing about the same behavior as element (-1) in fmb5"f' and

if its influence is strong in both translational rules, both masks will forecast well in

data generated by any of the two models.

Distinguishing one model from the other may require longer and/or several

forecasting analyses. In this case, the alarm signal is triggered, and the model

fmb747 is rejected considering the sporadic saturation of Vrec and slight overdi-

mensioning of the level 2 of f b747"f'

o. o. O.
1. O. O.
1. -1. -1.

-1. -2. O.
O. O. O.

errorb747 = O. -1. O.
-2. -1. O.

O. O. O.
O. O. 1.
1. 1. O.



144

alarmb747 =

o.
o.
O.
I.
I.
I.

O.
O.
o.
o.

The generative model fmb13 turns out to be a problem when used in this

data: its forecasting is very good due to the fact that its sampling interval sintb13

is comparable with sintb5 (16 and 19) and both models have very similar optimal

masks. Longer forecasting data is needed to distinguish between the two qualitative

models when using B5 or B13 data. Here the ten-step forecasting error matrix is

very convincingly showing that the accident is of B13-type. It may even be that

more recoding levels are required to distinguish B5 data from B13 data. The one

fact that gives a hint which may lead to the rejection of the model is that the central

recoding limit of v is apparently overdimensioned (more than 50% of the data was

recoded into level 2 with the same first random perturbation driving the model).

o. o. o.
o. o. o.
o. O. -1.
O. O. O.
1. O. O.

errorb13 = O. -1. 1.
O. -1. O.
O. o. O.
-I. O. O.
o. o. o.



alarmb13 =

o.
O.
O.
O.
O.
O.
O.
O.
O.
O.

145

The generative model fmb14 recodes 10 - 15% of the data into the satu-

decision to reject the model.

ration levels. Its forecasting results are bad enough to leave no doubt about the

errorb14 =

-1.

O.
0,

-lot

O.
lot

O.
O.
o.
o.

alarmb14 =

1. -1.
1. -1.
O. 1.
O. 1.
O. O.
2. O.
O. O.
1. O.
1. -1.

O. O.

1.
1.
1.
1.

o.
1.

o.
O.
O.
O.



Recognition of the B4/B14 accident

146

Generative model fmb14, as expected, forecasts very well on the data cre-

alarm of the filter applied to it are displayed below:

ated by the quantitative model B14. The forecasting error matrix and the output

errorb14 =

-1. o.
o. o.
o. o.
-1. -1.

o. o.
o. 1.
o. o.
1. o.
1. o.
o. o.

alarmb14 =

o.
o.
o.
o.
o.
o.
o.
o.
o.
o.

o.
o.
o.
o.
o.
o.
o.
o.
o.
o.

The use of the generative model fmb747 on the data relative to the model

B14 creates a problem in the recoding process of the variables I and ,. The limits

of the inner recoding level of these two variables are much higher in the f b747 from-

matrix than in the fb14. The limits relative to the variable I are twice as large in

the fb747 from-matrix than in the fb14 matrix, and the limits relative to , are

three times as large. The overdimensioning of the inner level of these two variables



147

causes the recoding of a large number of elements into the level 2, which makes it

"easy" for any mask to forecast that the next state of these variables will be 2.

Even with the forecasting being acceptable enough since the alarm signal

is only triggered for two consecutive time instants, the generative model is rejected

due to the excessive occurrence of 2's in lree (62%) and free (68%). The elements

marked with a + in the error matrix below refer to forecasting errors of elements

that had been recoded into the level 2. Superscript * denotes a guessed element.

errorb747 =

-1. o.
0.+ o.
o. -1.
0.+ -1.
0.+ o.
0.+ -1.
0.+ 1.
0.+ o.
1. o.
o. o.

alarmb747 =

0'+
0'+

-1.+
0.+
0.+
-1.+
-1.+
-1.*+

1.

o.

o.
o.
o.
o.
o.
o.
o.
1.
1.

o.

Generative model fmb5 applied to the data yields fairly good results,

mainly on variable 1. There is no saturation or visible overdimensioning of the

inner recoding level. The alarm signal is triggered for three time instants and the



148

model is not accepted since f mb13 has given better results. The model should

consultation to the library.

not be totally rejected, but put aside and given high priority to be tried in a new

errorb5 =

alarmis, =

o. o. o.
o. -1. o.
o. o. o.
o. o. o.
o. o. 1.
o. -2. -1.
1. 1. 1.
o. -1. -1.
o. o. o.
o. o. o.

o.
o.
o.
o.
o.
o.
1.
1.
1.

o.

Generative model B13 is rejected based on the visible overdimensioning of

the inner recoding level of the variable v (77% of the elements of Vrec are 2s) and not

so badly, but of the variable "I as well (49%). The forecasting error matrix errorb13

and its associated alarm signal are displayed below, where elements marked with a *
refer to foreasting errors associated with elements recoded into the overdimensioned

levels, and elements marked with * refer to guessed states.



O.
-1.

2.
O.
-1.

errorb13 = o.
-1.
1.
o.
O.

alarmb13 =

o.t
o.t
0)
O.
-1.*t
o.t
0)
o.t
O.t
O.

O.
O.
O.
O.
1.
O.
O.
o.
o.
O.

o.t
o.t
-1.

O.t
O.
o.t
0)
o.t
0)
-1.

149



150

CHAPTER 6

CONCLUSION

The main concern of this work has been to utilize the inductive reasoning

capabilities inherent to the presented methodology to include learning capabilities

to the decision making process of highly automated systems.

This thesis shows how qualitative simulation can be successfully applied

for on-line monitoring of systems. The methodology described is able to create

a very accurate inductive reasoning device that is able to forecast with extremely

low uncertainty the near future behavior of the monitored system. Such a device,

having learned the system behavior, is able to recognize this behavior in a given

Data Model and, as shown in the experiments described in chapter 5 of this work,

a structural failure in the mother-system is easily detected with it.

Still making use of the inductive reasoning capabilities inherent to the

methodology, it is shown how it is possible to recognize the behavioral pattern of a

certain Data Model with different prerecorded Generative Models. Once the behav-

ioral pattern of the system outputs is recognized, it should be perfectly feasible to

build a new control stategy regarding the new, structurally changed mother-system.

This may be done using predefined control laws or building the control stategy on-

line, once the most difficult part, the recognition of the behavioral pattern of the

system after the unpredicted structural failure, has been accomplished.

The speed of the inductive reasoning process is system dependent since

all non-prerecorded knowledge has to be learned from the actual behavior of the



151

monitored system. In emergency situations, this learning process may be too slow

for the urgent global decisions that have to be taken since the response of the

system to many different sets of inputs has to be analysed and repeated several

times to extract the behavioral information. In this thesis, a preliminary study has

demosntated the feasibility of structure recognition. The implemented recognizer

is able to correctly distinguish between several prerecorded Generative Systems,

representing, for example, the most likely types of accidents that may happen.

Of crucial importance in the methodology is the qualitative modeling. First,

it is essential to choose a meaningful source model such that the problem to be

analysed is well represented. Then the number of recoding levels to be used for

the variables must be selected, and limits for each level must be determined. More

research is needed to develop tools to support the user in selecting these parameters

in an optimal manner.

Data manipulation prior to the recoding process is another point to be

carefully considered. E.g., standardized deviations of the data from their mean

values could be used in the raw Data Model such that the Generative Models could

be used in a more general way, applicable to any Data Model.



152

APPENDIX

ACSL PROGRAM LISTING

PROGRAM AIRCRAFT LONGITUDINAL STABILITY STUDY
INITIAL

"-------ACSL
CONSTANT

CONSTANTS----------------------------------"
TMX 12000.0
CINT 6.0
SEED 555.0
TBREAK - 30000.0

"-------INITIALIZE RANDOM NUMBER GENERATOR SEED---------"
UNIFI(SEED)
"-------AIRPLANE CONSTANTS------------------------------"
CONSTANT IY = 27000000.0

CBAR 27.3
WT 500000.0
G 32.2
S 6000.0.
RO 0.0012 $"ALTITUDE 20000 FT"

"-------NEED MASS FROM WEIGHT IN LBS--------------------"
MASS - WT/G
"-------AERODYNAMIC CONSTANTS---------------------------"
CONSTANT CMZ

CLZ
CDZ
CMAL -
CLAL -CDAL sa

CMDE -
CLDE -CDDE ••
CMAD -
CLAD -
CMQ
CLQ

0.039
0.5455
0.036667

-0.74
5.2
0.26

-1.4
0.36
0.0

-8.0
2.0

-22.0
5.5

CONSTANT
"-------INITIAL CONDITIONS------------------------------"

VZ
HZ
XZ
QZ
THZ -
GAZ
ALZ -

500.1375
20000.0

0.0
0.0

-0.000055
0.0

-0.000055



153

DEZ =- 0.027886
TRZ = 33005.5

"-------FEEDBACK GAINS---------------------------------"
CONSTANT KTH 0.25

KU 40.0
"-------CONSTANTS FOR
CONSTANT ERMX

K1
K2
K3
KEVD
KEQD
KEGAD
DETRIM
THTRIM =
TRTRIM =
UTRIM

THE TRIMMING PHASE---------------"
0.1
0.02

-1. 0
3.0
1.0

10.0
100.0

0.027886
-0.000055

33005.5
500.1375

LOGICAL START
START = .FALSE.

"-------SET DEFAULT FLIGHT PHASE = UNDRIVEN CASE-------"
CONSTANT INPT = 0.0
"-------INPT ••1 DEFAULT
CONSTANT DDE1 =-

DDE2 =-
DDE3
TDE1
TDE2
TDE3
DTR1 =
DTR2
DTR3 ,.
TTRl
TTR2 =
TTR3

PARAMETERS--------------------"
-0.001
0.001
0.0

10.0
250.0

0.0
3000.0

0.0
0.0

500.0
0.0
0.0

"-------INPT =- 2 AND INPT =- 4 DEFAULT PARAMETERS-----"
CONSTANT TPULSE =- 0.0

DDE 0.001
DTR = 3000.0
SINT 6.0
DELTA 20.0
DELTA1.. 0.9
DELTA2 =- 1.1

"-------INPT = 3 DEFAULT
CONSTANT WDE

WTR
CLZNEW =
CLALNW ,.

PARAMETERS-----------------"
0.10
0.05
0.5455
5.2



CLDENW
CLADNW
CLQNEW
CMZNEW
CMALNW
CMDENW
CMADNW
CMQNEW
CDZNEW
CDALNW
CDDENW
ALZNEW
THZNEW '"
GAZNEW ~
DEZNEW '"
TRZNEW ~
VZNEW
IYNEW
SNEW
WTNEW
CBARNW
KTHNEW
KUNEW
DDENEW
DTRNEW '"
SINTNW '"

Il ..CONTINUE
END S"OF INITIAL"

DYNAMIC
DERIVATIVE

154

0.36
2.0
6.6
0.039

-0.74
-1.4
-8.0

-22.0
0.036667
0.26
0.0

-0.000066
-0.000066
0.0
0.027886

33005.5
500.1375

27000000.0
6000.0

·500000.0
27.3
0.26

40.0
0.001

3000.0
6.0

"-------ELEVATOR CONTROL-----------------------------"
DE - DETRIM + KTH*(TH - THTRIM)
"-------THRUST CONTROL-------------------------------"
TR '"TRTRIM + KU*(U - UTRIM)
"-------TANGENTIAL VELOCITY--------------------------"
U '"V*COS(AL)
"-------ANGLE OF ATTACK -----------------------------"
AL - TH - GA
"-------DRAG COEFFICIENT ----------------------------"CD - CDZ + CDAL*AL + CDDE*DE
"-------LIFT COEFFICIENT-----------------------------"
CL '"CLZ + CLAL*AL + CLDE*DE + ...

(CBAR/(2*V))*(CLAD*(Q - GAD) + CLQ*Q)



155

"-------PITCH MOMENT COEFFICIENT---------------------"
CM - CMZ + CMAL*AL + CMDE*DE + ...

(CBAR/(2*V))*(CMAD*(Q - GAD) + CMQ*Q)
"-------DYNAMIC PRESSURE-----------------------------"
QP = O.5*RO*(V**2)
"-------DRAG AND LIFT--------------------------------"
D = QP*S*CD
L = QP*S*CL
"-------PITCHING MOMENT------------------------------"
M = QP*S*CBAR*CM
"-------FLIGHT PATH RATE-----------------------------"
GAD - (QP*S*(CLZ + AL*CLAL + DE*CLDE + ...

(CBAR/(2*V))*(CLAD + CLQ)*Q) - WT*COS(GA) + ...
TR*SIN(AL))/(MASS*V + O.25*RO*S*V*CBAR*CLAD)

"-------LONGITUTINAL ACCELERATION--------------------"
VD - (TR*COS(AL) - D - WT*SIN(GA))/MASS
"-------PITCH RATE DERIVATIVE------------------------"
QD =0 M/IY
"-------VERTICAL VELOCITY----------------------------"
HD - V*SIN(GA)
"-------HORIZONTAL VELOCITY--------------------------"
XD - V*COS(GA)
"--------PITCH RATE----------------------------------"
Q - INTVC(QD. QZ)
"--------PITCH ANGLE---------------------------------"
TH - INTEG(Q. THZ)
"--------LONGITUDINAL VELOCITY--------------------~--"
V - INTVC(VD. VZ)
"--------FLIGHT PATH ANGLE---------------------------"
GA - INTVC(GAD. GAZ)
"--------ALTITUDE------------------------------------"H _ INTVC(HD. HZ)
"--------HORIZONTAL DISTANCE TRAVELLED---------------"
X - INTEG(XD. XZ)

END $"OF DERIVATIVE"



156

u=======================INITIAL TRIM PHASE===========u
u--------ONCE FLYING, SKIP ITERATION-----------------u

IF(START .EQ.. TRUE.) GO TO Dl
u--------COMPUTE WEIGHTED ERROR FROM TRIM------------u
ERROR = (KEVD*VD)**2 + (KEQD*QD)**2 + (KEGAD*GAD)**2
u--------IF WITHIN TOLERANCE, START FLIGHT-----------u
START = E~ROR .LE. ERMX
IF(START .EQ.. TRUE.) GO TO Dl
u--------COMPUTE NEW TRIAL VALUES--------------------u
GAZ GAZ + Kl*VD
THZ - THZ + K2*GAD
DEZ ""DEZ + K3*QD
u--------SAVE TRIM VALUES FOR FDBK-------------------u
THTRIM ..•THZ
UTRIM = U
u--------DISPLAY ITERATION INFORMATION---------------u
LINES(l)
PRINT 97, VD, QD, GAD

97 ..FORMAT(4H VD ,ElO.4,4H QD ,ElO.4,5H GAD ,EI0.4)
LINES(l)
PRINT 98, GAZ, THZ, DEZ, ERROR

98 ..FORMAT(5H GAZ ,E12.4,5H THZ ,E12.4,5H DE ,E12.4)
LINES(l) .
PRINT 99, TRZ, ERROR

99 ..FORMAT(5H TRZ ,E12.4,5H ERR ,FlO.l)
u--------RETURN TO RESTART ITERATION ----------------
GO TO II

Dl ..CONTINUE

"-------=FIVE DIFFERENT DRIVING FUNCTIONS-----=======u
"INPT - 0
"INPT ""1
"INPT - 2
"INPT = 3
"INPT - 4

UNDRIVEN FLIGHT (DEFAULT)"
STEP RESPONSE ANALYSIS"
SHAKEN FLIGHT, RANDOM STEP PERTURBATIONSU

NORMAL FLIGHT, HARMONIC PERTURBATIONS"
NORMAL FLIGHT, RANDOM STEP PERTURBATIONS"

IF(INPT .EQ. 0.0) GO TO CO
IF(INPT .EQ. 1.0) GO TO Cl
IF(INPT .EQ. 2.0) GO TO C2
IF(INPT .EQ. 3.0) GO TO C3
IF(INPT .EQ. 4.0) GO TO C4

CO ..CONTINUE



157

"-------UNDRIVEN FLIGHT : UNDISTURBED CRUISE FLIGHT---"
DETRIM = DEZ
TRTRIM = TRZ
IF(T .GE. TBREAK) GO TO BI
GO TO EI

CI ..CONTINUE
"-------STEP RESPONSE ANALYSIS WITH THREE STEPS-------"
DETRIM DEZ + DDEI*STEP(TDEI) + ...

DDE2*STEP(TDE2) + DDE3*STEP(TDE3)
TRTRIM = TRZ + DTRI*STEP(TTRI) + ...

DTR2*STEP(TTR2) + DTR3*STEP(TTR3)
IF(T .GE. TBREAK) GO TO BI
GO TO EI

C2 ..CONTINUE
"-------SHAKEN FLIGHT---------------------------------"
"-------PERTURBATIONS ARE CHANGED WHEN T - TPULSE----"
IF(T .GE. TPULSE) GO TO PI
GO TO EI

Pl ..CONTINUE
"-------NEXT PERTURBATION IS SCHEDULED AND-----------"
"-------THE MAGNITUD~ OF THE PRESENT-----------------"
"-------PERTURBATION IS CHOSED RANDOMLY--------------"
TPULSE = TPULSE + SINT*UNIF(DELTAI, DELTA2)
PDE = INT(UNIF(I,3.9999))
PTR = INT(UNIF(I,3.9999))
DETRIM = DEZ + (PDE - 2)*DDE
TRTRIM - TRZ + (PTR - 2)*DTR
IF(T .GE. TBREAK) GO TO Bl
GO TO EI

C3 ..CONTINUE
"-------NORMAL FLIGHT: HARMONIC PERTURBATIONS--------"
PDE = SIN(WDE*T)
DETRIM - DEZ + PDE*DDE
PTR - SIN(WTR*T)
TRTRIM - TRZ + PTR*DTR
IF(T .GE. TBREAK) GO TO BI
GO TO El

C4 ..CONTINUE
"-------NORMAL FLIGHT: STEP PERTURBATIONS------------"
"-------PERTURBATIONS ARE CHANGED WHEN T - TPULSE----"
IF(T .GE. TPULSE) GO TO P2
GO TO El

P2 ..CONTINUE
"-------NEXT PERTURBATION IS SCHEDULED AND-----------"
"-------THE MAGNITUDE OF THE PRESENT-----------------"
"-------PERTURBATION IS CHOSED RANDOMLY--------------"
TPULSE - TPULSE + DELTA*UNIF(DELTAI, DELTA2)
PDE - INT(UNIF(I,3.9999))
PTR = INT(UNIF(I,3.9999))
DETRIM - DEZ + (PDE - 2)*DDE



158

TRTRIM = TRZ + (PTR - 2)*DTR
IF(T .GE. TBREAK) GO TO Bl
GO TO El
"-------START USING BROKEN MODEL PARAMETERS----------"

B1..CONTINUE
CLZ CLZNEW
CLAL CLALNW
CLDE CLDENW
CLAD CLADNW
CLQ '"CLQNEW
CMZ CMZNEW
CMAL = CMALNW
CMDE - CMDENW
CMAD ""CMADNW
CMQ ""CMQNEW
CDZ = CDZNEW
CDAL ••CDALNW
CDDE CDDENW
ALZ ALZNEW
THZ ••THZNEW
GAZ GAZNEW
DEZ ""DEZNEW
TRZ TRZNEW
VZ ••VZNEW
IY ••IYNEW
S - SNEW
WT ••WTNEW
CBAR CBARNW
KTH :a KTHNEW
KU KUNEW
DDE DDENEW
DTR DTRNEW
SINT SINTNW
GO TO El

E1..CONTINUE
"-------STOPPING CRITERION: MAX SIMULATION TIME------"
TERMT(T .GE. TMX)

END $"OF DYNAMIC"
END $"OF PROGRAM"



159

REFERENCES

Ali, M. and Scharnhorst, D. A. (1985). "Sensor-Based Fault Diagnosis in a
Flight Expert System", IEEE 1985 Conference on Artificial Intelligence Applica-
tions, Miami, FL, USA, pp 49-54.

Ali, M. et al. (1986). "A Flight Expert System (FLES) for On-Board Fault
Monitoring and Diagnosis", Proc. SPIE Int. Soc. Opt. Eng. (USA), 635, pp
58-61 (1986). (Applications of Artificial Intelligence III, Orlando, FL, USA, 1-3
April 1986.

Cellier, F. E. and Yandell, D. W. (1987). "SAPS-II: A New Implementation
of the Systems Approach Problem Solver", International J. of General Systems,
13(4), pp 307-22.

Cellier, F .E. (1987). "Qualitative Simulation of Technical Systems Using the
General System Problem Solving Framework" , International J. of General Systems,
13( 4), pp 333-44.

Chu, Y. et al (1980). "Modeling Operator Information Handling Tasks in Su-
pervisory Control of Multiple-Process Systems", Proceedings of the International
Conference on Cybernetics and Society, Boston, MA, USA, 8-10 Oct. 1980 (New
York, USA: IEEE 1980), pp 391-5.

Cross, S. E. (1984). "Towards an Expert System Architecture for Flight Domain
Applications", Proceedings of the IEEE 1984 National Aerospace and Electronics
Conference. NAECON 1984. (IEEE Cat. No. 84CH2029-7), Dayton, OH, USA,
21-25 May 1984 (New York, USA: IEEE 1984) 2 pp 784-8.

Etkin, B. (1972). Dynamics of Atmopheric Flight, John Wiley & Sons, Inc.

Etkin, B. (1982). Dynamics of Flight, John Wiley & Sons, Inc.

Etkin, B. and Zhu, S. (1982). Control Logic for Landing-Abort Autopilot Mode
- UTIAS Report No. 258, Institute for Aerospace Studies, University of Toronto,
Canada.

Hacker, T. (1970). Flight Stability and Control, American Elsevier Publishing
Company, Inc.

Heffley, R. K. et al. (1972). Aircraft Handling Qualities Data - Report NASA-
CR-2144, Systems Technology, Inc.



160

Hess, R. A. (1984). "Unifying Approach to Human Pilot Modelling", Proceedings
of the Ninth Triennial World Congress of IFAC, Budapest, Hungary, 2-6 July 1984,
5 pp 2609-13.

Irving, F. G. (1966). An Introduction to the Longitudinal Static Flight of Low-
Speed Aircraft, Pergamon Press, London, England.

Kleinman, D. L. et al. (1983). "Modeling Human Decisionmaking in Emergency
State Power Distribution", IEEE 1983 Mediterranean Electrotechnical Conference
2 Dl.lO .

Klir, G. J. (1985). Architecture of Systems Problem Solving, Plenum Press, New
York.

Law, A. M. and Kelton, W. D. (1982). Simulation Modeling and Analysis,
McGraw Hill, New York.

Levine, R. D. and Tribus, M. (1978). The Maximum Entropy Formalism, The
MIT Press, Cambridge, MA.

Mitchell, E. E. L. and Gauthier, J. S. (1986). ACSL: Advanced Continuous
Simulation Language - User/Guide Reference Manual, Mitchell & Gauthier, Assoc.,
Concord, MA.

Mooij, H. A. (1985). Criteria for Low-Speed Longitudinal Handling Qualities of
Transport Aircraft with Closed-Loop Flight Control Systems, Martins Nijhoff Pub-
lishers for The National Aerospace Laboratory NLR, Dordrecht, The Netherlands.

Morgan, P. D. (1983). "Command Decision Makers and their Modes of Interac-
tion" , NASA Report AD P002882, USA.

Morgan, P. D. (1985). "Modelling the Decision Maker Within a Command Sys-
tem" , International Conference on Advances in Command, Control and Communi-
cation Systems: Theory and Applications (Conf. Publ. No. 247), Bournemouth,
England, 16-18 April 1985 (London, England: lEE 1985) pp 65-9.

Riley, V. (1985). "Monitoring the Monitor: Some Possible Effects of Embedding
Human Models in Highly Automated Manned Systems", IEEE 1985 Proceedings of
the International Conference on Cybernetics and Society (Cat. No. 85CH2253-3)
Tucson, AZ, USA, 12-15 Nov. 1985 (New York, USA: IEEE 1985) pp 6-9.

Systems Control Technology (1986). CTRL-C, A Language for the Computer-
Aided Design of Multivariable Control Systems, User's Guide, Systems Control
Technology, Palo Alto, CA.

Trankle, T. L. and Markosian, L. Z. (1984). "Expert System for Control
System Design", International Conference - Control 85 (Conf. Pub. No. 252),
Cambridge, England, 9--11 July 1985 (London, England: lEE 1985), 2 pp 495-9.



161

Trankle, T. L. et al. (1986). "Expert System Architecture for Control Sys-
tem Design", Proceedings of the 1986 American Control Conference (Cat. No.
86CH2336-6), Seattle, WA, USA, 18-20 June 1986 (New York, USA: IEEE 1986)
2 pp 1163-9.

Vesantera, P. J. and Cellier, F. E. (1989). "Building Intelligence into an
Autopilot - Using Qualitative Simulation to Support Global Decision Making",
Simulation, Jan 1989.


