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Summary of the Doctoral Thesis

Research in the 
eld of automated plant supervision� fault detection� and
fault diagnosis of industrial processes has experienced a spectacular growth
during the past �� years� In the beginning� only analytical techniques were
used for such purposes� but in the sequel� qualitative approaches have begun
to play an ever more important role in all of these activities� partly employing
techniques of qualitative modeling and simulation� spin�o�s of astounding
advances made in the 
elds of Arti
cial Intelligence� Qualitative Reasoning�
Fuzzy Logic� and the like�

One serious problem that has haunted control engineers and arti
cial
intelligence researchers alike from the early days on is the problem of
information overload� Human plant controllers are easily overwhelmed by the
sheer mass of information available to them for decision making in any real�
time situation� but the same is true for automated agents operating under
real�time constraints�

Large�scale systems present particular di�culties both with respect to
simulation and control� and special di�culties arise when the plant to be
controlled undergoes structural changes�

This thesis deals with various aspects of mixed quantitative and qualitative
information processing� and tackles in particular problems related to fault
monitoring� detection� characterization� isolation� and identi
cation in large�
scale systems� It addresses a number of the aforementioned di�culties� and
contributes to advance the state�of�the�art in their treatment�

Problems of information overload on human operators of complex large�
scale systems have been studied during the past few years mainly due
to major accidents of aircrafts and in chemical� electrical� and industrial
plants� Quite often� pilots�operators of such plants have had to work under
immense psychological stress in situations where the onslaught of masses of
unstructured information mixed with a multitude of alarms that all seemed
to go o� simultaneously� made an assessment of the situation under real�
time constraints impossible� thereby preventing them from taking appropriate
action� and yet� the consequences of a misjudgment were� at least potentially�
catastrophic�

Does automatic feedback control provide us with a panacea for solving the
�human overload	 problem� Indeed� automatic controllers are not known to



be subject to psychological stress phenomena� Yet� the same generic di�culty
presents itself in automatic feedback control in a di�erent form� Any decision�
making �or control� which is the same thing� activity invariably involves solving
an optimization problem� The more input variables this optimization problem
contains� the higher is the dimensionality of the search space� in which the
optimal solution must be found� Human plant operators are kept aware of
real�time constraints� reaching a decision always in time� yet possibly making
a decision that may turn out to be inappropriate since the operator didn�t have
enough time to explore the entire search space� thereby overlooking both better
solutions and undesired side e�ects of the one 
nally selected� Automatic
controllers are usually unaware of the passing of time� Hence they can be
made to always reach the optimal solution� however� the process may take
too long for this solution to be of any practical use� On the other hand� if a
controller is being equipped with a sense of time passing� it also must limit its
search� and will then begin to make the same mistakes that human operators
are bound to make� Such controllers will su�er from �stress syndromes�	 just
like any human operator would� After all� �awareness of time running out	 is
one of the important human �stressors�	

Thus� human operators and automatic controllers need to be advised by
�intelligent supervision� and�or control� and�or decision�support systems�	
These intelligent systems are the topic of this dissertation� They are proposed
to serve as tools that may help improve the decision�making process of
human operators and�or automatic controllers alike� Their basic task must
be to prevent the �human or automated� decision makers from committing
errors and�or from misjudging the current situation� by providing them with
additional quantitative and qualitative information that can be used in the
decision�making process� for detecting and discriminating faults at an as early
time as possible� and for dealing with developing emergencies in an informed
fashion� In particular� qualitative information has proven to be very useful
in large�scale systems for discerning what is really going on� for deciding the
state in which the system is at any point in time� and for assessing what would
be the consequences of taking or not taking a proposed emergency action�

Following the natural order of the research� this thesis is divided in three
main sections� a� Introduction� b� Methodology� and c� Applications� Each
section is composed of several chapters�

The introductory section is composed of Chapters � and �� This is where
the problem under study and its main characteristics are de
ned� the use of
qualitative methodologies for tackling it is justi
ed� the application domains
are delineated� and a comparison of the di�erent qualitative modeling and
simulation techniques is performed including those used in the dissertation�



In the 
rst chapter� some important concepts were introduced� such as
Large�Scale System� Variable Structure System� Intelligent Supervision and
Control System� and the paradox of human vs� automatic control� with the
intention of establishing the problem of information overload in large�scale
systems� which has been at the origin of this research e�ort� The true causes
of this problem and its possible solutions were stated from both the human
and automatic control perspectives� with emphasis on the combination of
quantitative and qualitative methodologies to solve it� The contributions of
this thesis to tackling this important problem were also stated in this chapter�

Chapter � presents a state�of�the�art survey of fault detection and
troubleshooting of dynamic systems mentioning both the quantitative and
qualitative approaches� This survey provides an insight into the di�erent
methodologies �from pure diagnosis to residual generation methods in the
quantitative case� and from expert systems to model�based deep reasoners
in the qualitative case� used for designing Fault Monitoring Systems� and
a comparison of their advantages and disadvantages when applied to non�
trivial dynamic systems� In this way� the adequacy of employing qualitative
methodologies to fault detection and troubleshooting is substantiated� This
concludes the state�of�the�art survey of the status quo ante� All subsequent
sections describe new results obtained in this research e�ort�

The methodological section is comprised of Chapters � and �� describing
Fuzzy Inductive Reasoning and Reconstruction Analysis respectively� the two
methodological tools used in this thesis� Fuzzy Inductive Reasoning alone
su�ces to deal with problems of fault detection and troubleshooting in small�
and medium�sized systems� but is incapable of tackling the information
overload problem indigenous to large�scale systems� Reconstruction Analysis
will be needed as an additional tool when dealing with fault detection and
troubleshooting in large�scale systems� precisely for addressing the information
overload problem� It seemed more appealing to keep in this thesis the
same order as it was followed chronologically during the research� that is�
to demonstrate the utilization of Fuzzy Inductive Reasoning in qualitative
modeling and simulation as well as fault detection and troubleshooting
in small� and medium�sized systems prior to introducing the additional
methodological tool of the Reconstruction Analysis� This is why the two
methodological chapters are not consecutive�

Chapter � focuses on Fuzzy Inductive Reasoning �FIR�� providing full details
of the development and implementation of this methodological tool� To this
end� the chapter starts out with the foundations of the methodology that
are rooted in General Systems Theory� It is shown how FIR can be used for
qualitatively modeling and simulating continuous�time systems by means of an
example �a third order linear system� that will be carried through all the phases



of FIR modeling� In this chapter� the basis for a combined quantitative and
qualitative modeling and simulation methodology using FIR is also provided�
The chapter ends with an example of an application to mixed quantitative and
qualitative modeling and simulation of a dynamic system �a hydraulic motor
with a four�way servo valve�� The applicability of the proposed approach to
mixed quantitative and qualitative modeling and simulation is demonstrated
by comparing the results of the mixed simulation with those of a purely
quantitative simulation of the same system�

Chapter � focuses on Reconstruction Analysis �RA�� As in Chapter �� the
technique is explained in full� starting out from its methodological roots in
General Systems Theory� An example is carried on through the chapter in
order to show the capabilities of RA to perform a causal and temporal analysis
on a set of behavior variables� In the second part of this chapter� the three
re
nement algorithms of the Optimal Structure Analysis are applied to the
same example �in the crisp and fuzzy cases�� and their results are compared�

The applications section is focused on the development of a qualitative
Fault Monitoring System and its application to real�world continuous�time
large�scale engineering processes� This section is composed of Chapters �� ��
and ��

In Chapter �� entitled �Qualitative Fault Monitoring�	 the necessary
mechanisms used for designing a Fault Monitoring Systems are presented�
The processes of causal grouping of variables� the generation of hierarchies of
inductive subsystems� as well as the concepts of fault detection� identi
cation�
characterization� isolation� and diagnosis� are explained in full� Three di�erent
operating modes for the Fault Monitoring System are proposed� including one
that can also be used for Variable Structure Systems� The operating modes
are� Back to Training Mode� Qualitative Models Library� and Forecasting
All Possible Structures� In the second part of this chapter� the Qualitative
Models Library operating mode is applied to a Boeing ��� aircraft model to
demonstrate its capabilities� This example also demonstrates the enhanced
discriminatory power and improved forecasting capability of a fuzzy inductive
reasoner over a crisp inductive reasoner� In the third part of this chapter� the
Forecasting All Possible Structures operating mode is applied to the problem of
structure identi
cation in Variable Structure Systems� Two examples� a fairly
simple two�water�tank system and a rather involved electric circuit example
are included to demonstrate the detection� discrimination� and identi
cation
of structural changes�

Chapter � is focused on the selection and causal grouping of variables
problem� To this end� heuristic recipes used to deal with the large number
of subsystems that result from the application of the Optimal Structure



Analysis technique to a large�scale system are presented� The second part
of this chapter presents a comparison� from the point of view of their
forecasting capabilities� between the Optimal Mask Analysis used by the
Fuzzy Inductive Reasoning methodology to obtain qualitative models� and the
Optimal Structure Analysis used by the Reconstruction Analysis methodology
to obtain subsets of related variables that can be treated as subsystems� This
comparison is made by applying both techniques to the generic third�order
linear system model shown in Chapter � and to the Boeing ��� aircraft model
that had been introduced earlier in Chapter ��

Chapter � builds upon what has been developed in previous chapters� i�e��
the Fuzzy Inductive Reasoning methodology �Chapter ��� the development
of a Fault Monitoring System �Chapter ��� the Reconstruction Analysis
methodology �Chapter ��� and the heuristic recipes for the selection and causal
grouping of variables �Chapter ��� In the 
rst part of this chapter� a combined
Fuzzy Inductive Reasoning�Reconstruction Analysis �FIR�RA� methodology
is proposed� and its advantages for fault detection and troubleshooting in large�
scale systems are explained� In the second part of the chapter� this combined
FIR�RA Fault Monitoring System is applied to a sophisticated large�scale
system model� namely� a boiling water nuclear reactor model�

Finally� Chapter � provides a summary of the obtained results� and presents
a list of open problems and possible future research e�orts extending the work
presented in this thesis�



























Chapter �

Introduction

Over the past few decades� our high�technology society has developed
technological processes of ever increasing complexity� The complexity of a

process can be measured either in terms of the number of its components� or
in terms of the number of interactions between these components� Using either
of these two measures� the average complexity of equipment in use has grown
consistently over timewith a faster than proportional rate� Safety requirements

as well as the high value of many of the processes in use have called for
increasingly elaborate tools for automated plant monitoring� maintenance� and
testing for improving reliability and robustness� and for reducing the periods
during which the equipment is unavailable due to failure� Such tools have

become even more important as the risk of failure grows at least quadratically
with the complexity of a process �Motaabbed� ������

For the above reasons� research in the 	eld of automated plant supervision�
fault detection� and fault diagnosis of industrial processes has experienced
a spectacular growth during the past �
 years� In the beginning� only
analytical techniques were used for such purposes� but in the sequel� qualitative

approaches have begun to play an ever more important role in all of these
activities� partly employing techniques of qualitative modeling and simulation�
spin�o�s of astounding advances made in the 	elds of Arti	cial Intelligence�

Qualitative Reasoning� Fuzzy Logic� and the like�

�
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The use of techniques derived from Arti	cial Intelligence and other 	elds

of symbolic knowledge processing in control� supervision� and diagnosis of
complex large�scale systems has in�uenced in major ways the development
of areas such as Intelligent Control� Intelligent Supervision� Intelligent

Troubleshooting� High�Autonomy Systems� Fault�Tolerant Control� Self�
Aware Control� Cognizant Control� Qualitative Modeling and Simulation�
Computer�Assisted Decision Making� etc� �Cellier et al�� ����a�� A
fundamental concept uniting all these research 	elds is their use of

a combination of quantitative and qualitative reasoning mechanisms for
capturing and mimicking human assessment processes when dealing with tasks
of control� supervision� and diagnosis of complex dynamic processes�

One serious problem that has haunted control engineers and arti	cial
intelligence researchers alike from the early days on is the problem of
information overload� Human plant controllers are easily overwhelmed by

the sheer mass of information available to them for decision making in any
real�time situation� but the same is true for automated agents mimicking the
human decision making processes� Is there a preference of one over the other
There seems to exist a paradox relating to the assessment of the relative merits

of human vs� automatic controllers� Large�scale systems present particular
di�culties both with respect to simulation and control� and special di�culties
arise when the plant to be controlled undergoes structural changes�

This thesis deals with various aspects of mixed quantitative and qualitative
information processing� and tackles in particular problems related to fault
monitoring� detection� characterization� isolation� and identi	cation in large�

scale systems� It addresses a number of the aforementioned di�culties�
and contributes to advance the state�of�the�art in their treatment� This
introductory chapter properly de	nes the aforementioned problems� and

intends to provide the reader with a clear idea of the motivations� scope� and
objectives of this dissertation�

��� Information Overload in Large�Scale

Systems

Large�Scale Systems can be de	ned as systems with a high degree of
complexity in the spatial and temporal relations between the subsystems that
they are composed of� which� in turn� can be treated as independent systems

�Kuipers� ����b�� A consequence of this de	nition is that a large�scale system
needs to be divided into its subsystems in order to be represented� modeled�
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simulated� or controlled �Puccia and Levins� ���
�� Frequently� several of these

subsystems are characterized by highly non�linear behavior� Typical examples
of large�scale systems can be found in both the �hard� and �soft� sciences�
An electric power plant� a chemical plant� a modern aircraft� a spacecraft�

and any complex industrial� defense� or transportation system are examples of
large�scale systems in �hard� sciences� Biomedical systems� the evolution of
economics� and social system components� such as capital investment� national
debt� the development of the gross national product� the welfare system�

the educational system� immigration patterns� etc� are all examples of large�
scale systems in the �soft� sciences� The latter are beyond the scope of this
dissertation�

Operators of complex large�scale systems are confronted with an
overwhelming amount of information during normal and abnormal situations�
Batteries of operator consoles� �ashing lights� buzzers� page�long lists of log

values ejected by line printers� and a variety of other signals have to be
simultaneously assimilated and reacted to� It is impossible for a human
operator to maintain a complete picture of all events and actions that may
in�uence the situation at hand� The human task to be performed is extremely

di�cult and stressful� The higher the complexity of the plant� the larger will
be the volume of incoming sensory data� and consequently� the more will the
operator be stressed� Even people who are well trained to perform this line

of work are destined to make mistakes under the described conditions� The
more crucial it is that their decisions are indeed correct� i�e�� if human lives
are at stake� such as in the case of an air tra�c controller or in the case of an
operator of a nuclear power plant� the more will the operator be under stress�

and the more likely will it be that he or she eventually makes a fatal mistake�

Problems of information overload on human operators of complex large�

scale systems� generally known as �human overload�� have been studied
during the past few years mainly due to major accidents of aircrafts and in
chemical� electrical� and industrial plants �Puccia and Levins� ���
�� Quite
often� pilots�operators of such plants have had to work under immense

psychological stress in situations where the available information was not
enough to provide even minimal control� and where the consequences of a
mistake were catastrophic� For example� the cockpit of a commercial aircraft
contains more than ���� di�erent sensors and controls� Similarly� the operating

room of a nuclear power plant is equipped with thousands of plant status
indicators �sensors�� and the operators can in�uence the behavior of the plant
by means of hundreds of di�erent plant set point selectors �actuators�� It is
not reasonable to assume that� in an emergency situation� a small number of

human pilots�operators would be capable of reliably monitoring all of these
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sensors and manually operating all of these controls properly and adequately

without any additional help �Dvorak and Kuipers� ������

Psychological tests have revealed that the average human� after being

presented with a number of facts such as given in a news broadcast� can
recall approximately �� of these facts from short�term memory when asked
to remember what had been said� While there exists a noticeable variation in

individual human capabilities� psychologists tend to agree that most humans
cannot reliably and safely tend to more than �� di�erent items at a time
before they begin to misjudge some of the circumstances and make serious
mistakes� Consequently� it makes little sense to provide the operator of a

complex plant with hundreds of status indicators simultaneously� and expect
him or her to monitor them reliably and react to them adequately� In the
case of a major emergency� it is very likely that many subsystems will signal
problems almost instantaneously� and it will be very di�cult for the human

operators to discern the true causes from their consequences� i�e�� to know
which subsystem experienced problems 	rst �Pan� ������

Of course� complex large�scale systems are not controlled only by human
operators� They usually also include automatic controllers to take care of
activities that human operators are not capable of handling� or that must be
automated to relieve them of routine tasks� letting them concentrate on the

more important problems such as the analysis of abnormal plant behavior� It
is a well�known fact that human operators are much more capable than any of
today�s automatic controllers to deal reliably and e�ciently with unanticipated
problems and unforeseen emergencies in complex large�scale systems� but at

the same time� human operators constitute the least predictable and therefore
the least reliable element of the overall control system �Cacciabue et al�� ������
Since human operators are normally responsible for safety and emergency

procedures� any help that can be provided by any means that will improve
the decision�making processes of the human operators and�or automatic
controllers must be welcomed� particularly in the context of fault detection
and troubleshooting�

����� Human Control vs� Automatic Control Paradox

What role have symbolic and�or qualitative reasoning tools to play in control
applications that call for the maximum precision that the controller can
possible achieve Before answering this question� it is useful to state and

discuss the human vs� automatic control paradox� Automatic controllers are
well suited for carrying out complex routine operations� but have di�culties
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when confronted with abnormal behavior and�or unforeseen situations� In

contrast� human controllers have a high probability of eventually committing a
mistake when asked to perform repeated routine tasks� but they are excellently
equipped for dealing with emergencies and�or unforeseen events� In some

sense� it can be said that human controllers are needed to prevent possible
failures of automatic controllers� yet that automatic controllers are needed to
prevent human controllers from making mistakes� Most human operators of
large�scale systems believe that their most important task is to fend against

controller error� yet at the same time� one of the most important considerations
to be taken into account by designers of automatic controllers is the prevention
of human mistakes� The goal is then to provide the human controller with tools
that will improve his or her decision making processes� while providing the

automatic controllers with some of the human reasoning capabilities� in order
to enable them to recognize human mistakes as they are made� and in order to
enable them to communicate with the human plant operators in terms that are
understandable to them� Hence it is an extremely useful and important facet

of modern large�scale system control software to be able to pair quantitative
with qualitative modes of reasoning� to combine precision with vagueness� to
react to available quantitative information with swiftness and certainty yet

being able to also reach decisions under uncertainty�

Since human controllers are incapable of solving sets of di�erential equations

in their heads� i�e�� cannot perform quantitative reasoning to a meaningful
extent� why then should automatic controllers be able to perform such tasks
The objective of attempting to formulate decision tools with the type of
precision usually associated with classical control techniques could be neither

attainable nor necessary� By permitting a certain amount of imprecision in the
reasoning processes� robustness is provided that allows to control and supervise
complex situations that might not otherwise be controllable� and also a means
is o�ered that allows to account for the vagueness inherent in human control

input re�ecting the way in which humans conceptualize the world�

The role of human operators inside the overall control strategy depends on

the safety decisions taken� The plant management must select between two
basic approaches to large�scale system control�

a� Human operators are in charge of almost every action� Automatic

controllers are used to take care of �i� routine tasks that are not safety
critical� �ii� emergency procedures that call for an extremely fast initial
reaction� �iii� standard supervision and monitoring functions� and �most

importantly of all� �iv� providing the human operators with quantitative
and qualitative information to support their decision�making�
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b� Automatic controllers perform the real control of the system while

providing human operators with high�level qualitative and quantitative
information� Human operators are needed �i� for global plant
supervision� �ii� to select the set points of the automated controllers�

�iii� to take care of unforeseen situations� and �iv� to decide on ultimate
safety and emergency procedures�

Neither is approach �a� better than approach �b�� nor is �b� better than �a��

Approach �a� is widely used in the United States and its in�uence area� whereas
approach �b� is mostly used in Europe �Cacciabue et al�� ������ The decision�
which of these two approaches to adopt in any given situation� is usually based
more on political and�or psychological considerations than substantiated by

technical insight�

For example� the U�S� space program is clearly following approach �a� to an

extreme extent� Consequently� the Space Shuttle is equipped with more than

��� sensory readout functions� and every single actuator is equipped with
a manual override capability� which� on technical grounds� makes fairly little
sense since� in an emergency situation� the crew of 	ve or seven astronauts is

ill equipped to operate the spacecraft safely and reliably� On the other hand�
the Russian space program is an extreme example of approach �b�� Russian
manned space missions were always carried out in spacecrafts that were fully

automated with hardly any manual override capabilities� The cosmonauts are
merely passengers of their craft until they reach orbit� Again� this makes
little sense on technical grounds since� indeed� cosmonauts become helpless
victims if anything should ever go wrong� The example shows that the two

approaches �a� and �b� outlined above are not really two alternatives� but
only the two extremes in a continuous spectrum of intermediate options� It is
hoped that� in the future� technical insight may play a more prominent role in
large�scale system design� and that more organically interwoven overall system

architectures can be found that support a well�integrated cooperation between
human plant operators and automated plant controllers�

Does automatic feedback control provide us with a panacea for solving the
�human overload� problem Indeed� automatic controllers are not known to
be subject to psychological stress phenomena� Yet� the same generic di�culty
presents itself in automatic feedback control in a di�erent form� Any decision�

making �or control� which is the same thing� activity invariably involves solving
an optimization problem� The more input variables this optimization problem
contains� the higher is the dimensionality of the search space� in which the

optimal solution must be found� Human plant operators are kept aware of
real�time constraints� reaching a decision always in time� yet possibly making
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a decision that may turn out to be inappropriate since the operator didn�t have

enough time to explore the entire search space� thereby overlooking both better
solutions and undesired side e�ects of the one 	nally selected� Automatic
controllers are usually unaware of the passing of time� Hence they can be

made to always reach the optimal solution� however� the process may take
too long for this solution to be of any practical use� On the other hand� if a
controller is being equipped with a sense of time passing� it also must limit its
search� and will then begin to make the same mistakes that human operators

are bound to make� Such controllers will su�er from �stress syndromes�� just
like any human operator would� After all� �awareness of time running out� is
one of the important human �stressors��

Thus� either of the two options presented above requires human operators
and�or automatic controllers to be advised by �intelligent supervision� and�or
control� and�or decision�support systems�� These intelligent systems are

the topic of this dissertation� They are proposed to serve as tools that
may help improve the decision�making process of human operators and�or
automatic controllers alike� Their basic task must be to prevent the �human
or automated� decision makers from committing errors and�or frommisjudging

the current situation� by providing them with additional quantitative and
qualitative information that can be used in the decision�making process� for
detecting and discriminating faults at an as early time as possible� and for

dealing with developing emergencies in an informed fashion� In particular�
qualitative information has proven to be very useful in large�scale systems for
discerning what is really going on� for deciding the state in which the system
is at any point in time� and for assessing what would be the consequences of

taking or not taking a proposed emergency action�

����� Di�culties with Large�Scale Systems

The main problems encountered when dealing with large�scale systems from

a simulation and supervision perspective are �Berkan et al�� ������

� The great number of variables and subsystems� This fact makes the
identi	cation of a minimum set of meaningful variables to work with a
di�cult task and consequently� impedes the modeling� simulation� and
control processes�

� The number of causal and temporal relations among the variables and
subsystems� Causal and temporal analyses must be performed in order
to obtain behavior patterns and structure of the analyzed system�
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� The overwhelming amount of information received by the human

operators and�or automatic controllers�

� The highly non�linear characteristics of most of these systems� This non�
linearity becomes an insuperable obstacle for the quantitative modeling

and simulation of these systems� making the application of traditional
control and troubleshooting techniques impossible�

� The physical limitations in exciting the system under study �and often
even a quantitative model thereof� for proper characterization of all of

its possible modes of behavior�

� The modeling and simulation of these systems under a given real�time
constraint�

� The variable structure of some subsystems due to faults or transients
taking place� Most numerical models are not capable at all of dealing
with systems in which a fault produces a change in the system�s structure�

Many of these di�culties will be revisited along this thesis� but particularly the
variable structure problem will easily turn out to be one of the most important

and di�cult problems to be solved on the way of designing a qualitative
supervision and decision�support system� since any fault can be viewed as
a structural change�

����� Variable Structure Systems

Variable structure systems and controllers associated with them have originally
been mostly studied by Soviet researchers �Emelyanov� ����� Utkin� �����

Utkin� ������ but lately� an interest in these systems has also been expressed
by researchers in the West �Slotine� ����� Sira� ����� Hung et al�� ������� In
this dissertation� a somewhat speci	c de	nition of Variable Structure Systems
�VSSs� will be used� A VSS is a system in which the computational causality

of one or several laws governing the behavior of that system changes as a
consequence of a change in the value of a boolean variable in the model
�Elmqvist et al�� ������ Such systems present serious di�culties to both

simulation and control�

From the point of view of simulation� di�culties are caused precisely by

the changing computational causalities� In the past� di�erent programs were
usually written� one for each of the structures of the VSS� and a mechanism
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was encoded to switch at run�time from one model to another� An alternative

solution was recently proposed by �Elmqvist et al�� ����� that allows to encode
a single simulation program that encompasses and is valid for all di�erent
structures within the VSS� Another possibility� that will be discussed later in

this dissertation� is to write di�erent programs� one for each of the structures
of the VSS� and simulate with all of them in parallel �de Albornoz et al�� ������

From the point of view of control� di�culties are caused by the abrupt
change in the system structure� Even if the controller is switched at the same
time as the plant� the control system nevertheless experiences a shock that
may lead to undesirable transient behavior� Such shocks need to be dampened

out either by means of quite complex and costly non�linear compensation
algorithms� or by means of a geometrical approach that considers each
transition from one structure to another as a 	nite surface along which the
system is to slide� This approach is known as Sliding Motion Control �Sira�

������

In a VSS� the most important events and consequently the most important

things to know are� on the one hand� when a transition from one structural
mode to another takes place and� on the other hand� to which other mode �or
structure� the system changes at this point in time� These questions are not
always easily decidable� since the switching condition may itself be internal

to the system or to its model� or can be produced by a malfunction or a
transient� In this dissertation� two kinds of VSSs will be treated� the ones in
which structural changes occur normally and regularly� and the ones in which
a structural change can be considered a fault or abnormal event�

��� Motivation� Aims� and Scope

Arti	cial Intelligence has the purpose of reproducing facets of human mental
reasoning processes to build �intelligent� and autonomous systems �Charniak
and McDermott� ������ The research in this area has proceeded along

multiple lines� Some of these e�orts are considered �pure�� such as the
design of knowledge representation schemes� most of the work in machine
learning� the development of new search strategies� automated reasoning
techniques� problem�solving tools� etc� �Newell and Simon� ������ some others

are considered �applied�� such as the design of knowledge�based �expert�
systems and connectionist approaches to inductive modeling �Firebaugh�
������ Whereas pure Arti	cial Intelligence research ponders in a general and

necessarily somewhat vague fashion about what �intelligence� really entails�
applied Arti	cial Intelligence research must face real�world problems� and
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therefore takes a much more modest approach when looking at the problem of

intelligence� restricting its view to important facets of the speci	c application
at hand� What counts is the ability to build an automated reasoning system
that is capable of reproducing convincingly the fashion in which a human would

approach and reason about the facts he or she is being presented with� and
not a deeper understanding of the mechanisms of intelligence per se�

This dissertation clearly belongs to the area of applied Arti	cial Intelligence�
It tackles real�world engineering problems and provides some answers as to
how they can successfully be dealt with� The scope of the dissertation

is limited to the intersection between applied Arti�cial Intelligence

and the problem of troubleshooting complex engineering systems�

It was mentioned that a human operator is capable of controlling a complex

system in a much better way than any of today�s automatic controllers�
In the decision�making process� human operators use a combination of
quantitative and qualitative information to perform a basically qualitative
and suboptimal reasoning process about the behavior of the system without

solving any kind of algebraic or di�erential equations� and� in some cases�
even without knowing the system�s internal structure� Their whole reasoning
process is based predominantly on input�output behavioral patterns� prior
experience� and common sense �Carbonell and Minton� ���
�� The primary

purpose of combining Arti	cial Intelligence with engineering approaches to
troubleshooting is to provide automated supervision and control systems
with the necessary capabilities to replicate the aforementioned processes of
qualitative reasoning based precisely on input�output behavioral patterns�

prior experience� and common sense�

�Intelligent systems�� such as the aforementioned ones� necessarily operate

in a discrete and suboptimal way using a symbolic knowledge representation�
that is� as qualitative systems� Normally� intelligent systems must interact
with the real physical world that is based on continuous time and space in the

same way that human operators do� or cooperate with lower�level controllers
that are realized by means of more classical quantitative signal and system
representations� The interaction between these two types of systems calls for
a mixed quantitative and qualitative modeling and simulation paradigm that

is able to compensate for the shortcomings inherent in each of the two types
of knowledge representation schemes� and may help to solve problems that are
beyond the capabilities of either of these two methodologies alone� The �rst
objective of this research e�ort is the development of a combined

quantitative�qualitativemodeling and simulation methodology to be

applied to continuous�time dynamic processes�
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A combined Arti	cial Intelligence and numerical technique may be able to

tackle problems integrating discrete and qualitative symbolic problem�solving
with continuous and quantitative perception and actuation� Furthermore� the
application of Arti	cial Intelligence tools such as knowledge�based systems

and arti	cial neural networks� implementing Arti	cial Intelligence techniques
such as genetic algorithms� inductive learning� and qualitative simulation� to
real�world engineering problems� such as fault detection and troubleshooting
in large�scale systems� helps to exhibit their grade of maturity and assess their

real capabilities�

The motivation of this thesis is to help bridge the gap

between the two worlds of quantitative computation and qualitative

reasoning� The second �and most important� objective is then

the development and application of qualitative methodologies to

solve information overload problems during normal and abnormal

operation of quantitative complex large�scale systems� Components
of these methodologies stem from the worlds of Arti�cial Intelligence
�Qualitative Simulation and Model�Based Reasoning�� of General System
Theory �Reconstruction Analysis and Fuzzy Inductive Reasoning�� and

of Fault Diagnosis Theory �Fault Detection and Troubleshooting�� The
resultant methodology can best be understood as a tool for qualitative
modeling and simulation of continuous�time processes capable to help in the

detection� isolation� characterization� identi	cation� analysis� and possibly even
prevention of faults�

To this end� the qualitative model will be trained to determine when a

malfunction occurs in the quantitative model� it will hypothesize about the
nature of this malfunction� and 	nally� it will suggest a global control strategy
that would allow to safely operate the quantitative model under the modi	ed

structural conditions� The third objective is thus the development of

a Fault Monitoring System based on the aforementioned combined

quantitative and qualitative methodology�

��� Structure of this Thesis

Following the natural order of the research� this thesis is divided in three main

sections� a� Introduction� b� Methodology� and c� Applications� Each section
is composed of several chapters�

The introductory section is composed of Chapters � and �� This is where
the problem under study and its main characteristics are de	ned� the use of
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qualitative methodologies for tackling it is justi	ed� the application domains

are delineated� and a comparison of the di�erent qualitative modeling and
simulation techniques is performed including those used in the dissertation�

In the 	rst chapter� some important concepts were introduced� such as
Large�Scale System� Variable Structure System� Intelligent Supervision and
Control System� and the paradox of human vs� automatic control� with the

intention of establishing the problem of information overload in large�scale
systems� which has been at the origin of this research e�ort� The true causes
of this problem and its possible solutions were stated from both the human
and automatic control perspectives� with emphasis on the combination of

quantitative and qualitative methodologies to solve it� The contributions of
this thesis to tackling this important problem were also stated in this chapter�

Chapter � presents a state�of�the�art survey of fault detection and
troubleshooting of dynamic systems mentioning both the quantitative and
qualitative approaches� This survey provides an insight into the di�erent
methodologies �from pure diagnosis to residual generation methods in the

quantitative case� and from expert systems to model�based deep reasoners
in the qualitative case� used for designing Fault Monitoring Systems� and
a comparison of their advantages and disadvantages when applied to non�
trivial dynamic systems� In this way� the adequacy of employing qualitative

methodologies to fault detection and troubleshooting is substantiated� This
concludes the state�of�the�art survey of the status quo ante� All subsequent
sections describe new results obtained in this research e�ort�

Themethodological section is comprised of Chapters � and 
� describing
Fuzzy Inductive Reasoning and Reconstruction Analysis respectively� the two
methodological tools used in this thesis� Fuzzy Inductive Reasoning alone

su�ces to deal with problems of fault detection and troubleshooting in small�
and medium�sized systems� but is incapable of tackling the information
overload problem indigenous to large�scale systems� Reconstruction Analysis

will be needed as an additional tool when dealing with fault detection and
troubleshooting in large�scale systems� precisely for addressing the information
overload problem� It seemed more appealing to keep in this thesis the
same order as it was followed chronologically during the research� that is�

to demonstrate the utilization of Fuzzy Inductive Reasoning in qualitative
modeling and simulation as well as fault detection and troubleshooting
in small� and medium�sized systems prior to introducing the additional
methodological tool of the Reconstruction Analysis� This is why the two

methodological chapters are not consecutive�

Chapter � focuses on Fuzzy Inductive Reasoning �FIR�� providing full details
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of the development and implementation of this methodological tool�� To this

end� the chapter starts out with the foundations of the methodology that
are rooted in General Systems Theory� It is shown how FIR can be used for
qualitatively modeling and simulating continuous�time systems by means of an

example �a third order linear system� that will be carried through all the phases
of FIR modeling� In this chapter� the basis for a combined quantitative and
qualitative modeling and simulation methodology using FIR is also provided�
The chapter ends with an example of an application to mixed quantitative and

qualitative modeling and simulation of a dynamic system �a hydraulic motor
with a four�way servo valve�� The applicability of the proposed approach to
mixed quantitative and qualitative modeling and simulation is demonstrated
by comparing the results of the mixed simulation with those of a purely

quantitative simulation of the same system �Cellier et al�� ����� ����a��

Chapter 
 focuses on Reconstruction Analysis �RA�� As in Chapter �� the

technique is explained in full� starting out from its methodological roots in
General Systems Theory �Cellier et al�� ����b�� An example is carried on
through the chapter in order to show the capabilities of RA to perform a
causal and temporal analysis on a set of behavior variables� In the second

part of this chapter� the three re	nement algorithms of the Optimal Structure
Analysis are applied to the same example �in the crisp and fuzzy cases�� and
their results are compared�

The applications section is focused on the development of a qualitative
Fault Monitoring System and its application to real�world continuous�time
large�scale engineering processes� This section is composed of Chapters �� ��

and ��

In Chapter �� entitled �Qualitative Fault Monitoring�� the necessary

mechanisms used for designing a Fault Monitoring Systems are presented�
The processes of causal grouping of variables� the generation of hierarchies of
inductive subsystems� as well as the concepts of fault detection� identi	cation�

characterization� isolation� and diagnosis� are explained in full� Three di�erent
operating modes for the Fault Monitoring System are proposed� including one
that can also be used for Variable Structure Systems� The operating modes
are� Back to Training Mode� Qualitative Models Library� and Forecasting

All Possible Structures� In the second part of this chapter� the Qualitative
Models Library operating mode is applied to a Boeing ��� aircraft model to
demonstrate its capabilities� This example also demonstrates the enhanced

�The research on Fuzzy Inductive Reasoning and the development of a combined
quantitative�qualitative modeling and simulation tool were carried out by the author of
this dissertation and two more Ph�D� students whose names� and complete references� are
given in the Introduction section of Chapter ��
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discriminatory power and improved forecasting capability of a fuzzy inductive

reasoner �de Albornoz and Cellier� ����a� ������ over a crisp inductive reasoner
�Vesanter�a� ����� Vesanter�a and Cellier� ������ In the third part of this
chapter� the Forecasting All Possible Structures operating mode is applied

to the problem of structure identi	cation in Variable Structure Systems� Two
examples� a fairly simple two�water�tank system and a rather involved electric
circuit example are included to demonstrate the detection� discrimination� and
identi	cation of structural changes �de Albornoz et al�� ����� ������

Chapter � is focused on the selection and causal grouping of variables
problem� To this end� heuristic recipes used to deal with the large number

of subsystems that result from the application of the Optimal Structure
Analysis technique to a large�scale system are presented� The second part
of this chapter presents a comparison� from the point of view of their
forecasting capabilities� between the Optimal Mask Analysis used by the

Fuzzy Inductive Reasoning methodology to obtain qualitative models� and the
Optimal Structure Analysis used by the Reconstruction Analysis methodology
to obtain subsets of related variables that can be treated as subsystems� This
comparison is made by applying both techniques to the generic third�order

linear system model shown in Chapter � and to the Boeing ��� aircraft model
that had been introduced earlier in Chapter � �de Albornoz and Cellier� ������

Chapter � builds upon what has been developed in previous chapters� i�e��
the Fuzzy Inductive Reasoning methodology �Chapter ��� the development
of a Fault Monitoring System �Chapter ��� the Reconstruction Analysis
methodology �Chapter 
�� and the heuristic recipes for the selection and causal

grouping of variables �Chapter ��� In the 	rst part of this chapter� a combined
Fuzzy Inductive Reasoning�Reconstruction Analysis �FIR�RA� methodology
is proposed� and its advantages for fault detection and troubleshooting in large�

scale systems are explained� In the second part of the chapter� this combined
FIR�RA Fault Monitoring System is applied to a sophisticated large�scale
system model� namely� a boiling water nuclear reactor model �de Albornoz
and Cellier� ����b� de Albornoz et al�� ����b��

Finally� Chapter � provides a summary of the obtained results� and presents
a list of open problems and possible future research e�orts extending the work

presented in this thesis�

This thesis ends with an extensive bibliography of references used in this

research e�ort� The publications that were derived from this thesis are
concentrated in a separate section placed at the beginning of the bibliography�
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Fault Detection and

Troubleshooting� A

Comparative Study

��� Introduction

Automatic and human controlled systems are becoming more and more
complex and their control algorithms more and more sophisticated� Since
the probability of faults in a system grows at least quadratically with

its complexity� the average time between faults gets shorter and shorter�
Consequently� there is a growing demand for fault tolerance� which can be
achieved by means of the use of Fault Monitoring Systems �FMS�� The basic
functions of a FMS have always been to register an alarm when an abnormal

condition develops in the monitored system� as well as to identify the faulty
component� However� the demands put on FMS schemes have also grown
over time� Modern FMSs are supposed to be capable of detecting� isolating�

identifying� diagnosing� and analyzing anomalous behavior�

Over the past two decades� research on fault detection and troubleshooting

of dynamic systems has gained increasing consideration� This development
has been stimulated by three major factors�

�
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�� The trend of automation towards increased complexity� together with

the demand that these more complex systems be equally reliable� i�e��
equally safe� secure� and available� where�

� safety relates to system behavior under internal faults� i�e�� if and
when an irrecoverable fault occurs inside the system� the FMS

should perform a graceful shutdown of the system� preventing the
system from su�ering any permanent damage� and ensuring that the
system does not cause any hazard to the operating crew or other
humans in its environment�

� security relates to system behavior under external faults� i�e�� if the
system operator misjudges the situation and issues a potentially
harmful command� the FMS should prevent the system from

reacting to that command in hazardous ways� and

� availability relates to the percentage of time that the system is down
for maintenance or repair� This factor is evidently closely related
to the average time between failures�

�� The powerful control techniques introduced by Modern Control Theory

make the task of fault monitoring increasingly di�cult� The problem is
the following� Beside from the controller�s main duties of ensuring the
plant�s stability and accuracy� it is an important task of any controller
to desensitize the system�s behavior to uncontrollable external factors

�disturbance suppression� as well as uncontrollable internal factors
�parameter variability and aging�� Evidently� the controller has no way
of distinguishing between these factors and minor anomalies that the

FMS should know about� Thus� the control system has a tendency to
reduce the measurable e�ects of minor faults� thereby counteracting the
e�orts of the FMS for fault detection� The better the controller works�
the more di�cult will be the early detection of faults� unless they are of

the catastrophic kind�

�� Techniques derived from Arti	cial Intelligence such as knowledge�
based systems� connectionist systems� and qualitative model�based deep
reasoners have provided system engineers with an entire palette of new

and powerful tools that may sharpen the FMS�s sensitivity and resolution
power� hence o�ering means to provide better and more reliable fault
monitoring of ever more complex plants� compensating for the above�
mentioned di�culties that were caused by improved control technology�

Fault detection in dynamic systems has traditionally been performed using
limit�value detectors and hardware redundancy �Pau� ������ In the 	rst case�
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measurable variables are directly checked for upper or lower transgression of

	xed limit or setpoint values� As long as all of the monitored measuring
variables are within their assigned ranges� the system is assumed sane� As
soon as one of the variables leaves its range� an alarm is set o� indicating

the occurrence of an anomaly in the system� In the second case� the most
central components of the system� i�e�� those parts the failure of which would
be most catastrophic� such as the central controlling computer� as well as the
most vulnerable components� i�e�� those parts that are most likely to fail� are

duplicated or even triplicated� Duplication allows to set o� an alarm whenever
the two devices placed in parallel disagree on their outputs� triplication allows
to continue in a safe way after breakdown of a component by employing a voting
scheme� If two of the three devices agree on their outputs� it is assumed that

they are right� whereas the third device is assumed faulty and will henceforth
be ignored� The human operators are then alerted to the fact and are asked
to replace the faulty component� after which time the system will resume its
former voting scheme� These approaches to fault monitoring are quite simple

and in many situations reasonably straightforward to apply� and are thus
widely used� They are essential in the control of aircrafts� spacecrafts� electric
power plants� nuclear reactors� and generally� in all safety�critical processes

with a su�ciently high degree of complexity�

Recently� new quantitative and qualitative approaches to fault monitoring

have emerged based on the idea that several dissimilar sensors measuring
di�erent variables and therefore producing entirely di�erent signals� can be
used in a comparison scheme more sophisticated than simple limit�value or
majority�vote logic to detect and isolate a fault �Frank� ������ The basis for

this idea is that even though the sensors are dissimilar� they are all driven by
the same dynamic state of the system and are thus functionally related� This
implies that the inherent redundancy contained in the static and dynamic
relationships among the system inputs and outputs can be used for fault

detection purposes� These new schemes for fault detection and troubleshooting
have been termed Analytical Redundancy� if only quantitative relationships
are considered �Patton et al�� ������ and Functional Redundancy� if qualitative
relationships are also considered �Tzafestas� ������

Functionally�redundant FMS techniques are basically signal processing
methodologies employing mathematical modeling and simulation� state

estimation� parameter identi	cation� adaptive 	ltering� variable threshold
logic� statistical decision theory� pattern recognition� fuzzy logic� knowledge�

�The term Functional Redundancy is used as synonymous to Analytical Redundancy
by researchers in the �eld of quantitative fault detection� whereas it is used as a term that
encompasses Analytical Redundancy by researchers in the �eld of qualitative fault detection�
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based reasoning� qualitative simulation� and various combinatorial and logical

operations� Thus functional redundancy is a methodological approach that
provides a set of tools for quantitative and qualitative fault detection and
troubleshooting of dynamic engineering processes �Clark� ������ Functional

redundancy encompasses some of the earlier used analytical methods for
fault detection such as model�based methods� estimation methods� 	ltering
methods� generation�of�residuals methods� and observers methods�

The combination of quantitative and qualitative fault monitoring approaches
opens up a new dimension in fault diagnosis of complex large scale systems
with incomplete or di�cult to discriminate knowledge� by allowing the evalua�

tion of all available information and knowledge �quantitative and qualitative�
of the system for fault monitoring purposes�

��� Fault Monitoring of Dynamic Systems

To determine why something has ceased to work or why it is no longer
working as it used to� it is useful to know how it was supposed to work in
the 	rst place� The fundamental issue of diagnosis and troubleshooting can
best be understood as the interaction of observation and prediction �Davis

and Hamscher� ������ Observation indicates what the system is actually
doing� whereas prediction indicates what it is supposed to do� A continued
comparison between observation and prediction guarantees that any di�erence
or discrepancy will be detected at the earliest possible moment�

Detection is the 	rst step of automated fault monitoring� Fault Monitoring
Systems use a combination of knowledge�based and pattern�based approaches

to achieve their goal� Automated fault monitoring can be decomposed into six
stages �Basseville and Nikiforov� ����� de Kleer and Williams� ������

a� Fault detection� During this stage� the fault monitoring system detects

that the plant behavior is abnormal�

b� Fault isolation� In this phase� the fault is localized to a particular

physical subsystem and�or a functional aspect of operation�

c� Fault characterization� At this point� the abnormality is classi	ed in

order to simplify the hypothesis formulation process of the diagnosis�

d� Fault diagnosis� During this stage� the fault monitoring system traces

observed symptoms back to hypothesized failures that might have caused
them� This stage is composed of�
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� Hypothesis Generation�

� Hypothesis Testing�

� Hypothesis Discrimination�

e� Fault analysis� At this point� the system reasons about possible
remedies for the previously diagnosed fault�

f� Fault reporting� During this stage� the fault monitoring system
reports its 	ndings back to the control system or to the human operators�

or both�

Stage �a� is naturally pattern�based� It can consist of simple threshold

detectors� or time�window detectors �Wang and Cellier� ������ or more involved
demonized routines called �watchdog monitors� �Cellier et al�� ����b��

Stages �b�� �c�� and �d� can be purely pattern�based� e�g� using analytical
or statistical techniques� or purely knowledge�based� e�g� using a rule�based
�expert� diagnostic engine� or a mixture of both� e�g� using a model�based
deep reasoner �Davis and Hamscher� ������

Stage �e� is in all likelihood predominantly knowledge�based� An automated
knowledge acquisition system can be used to generate a data base that relates

symptoms and failures back to previously successful repair activities �Wang�
����� Motaabbed� ������ Finally� stage �f� is usually straightforward� More
re	ned systemsmay carry a model of the person they are reporting to� adapting

themselves to the perceived know�how of the human operator with respect to
the amount of detail presented to him or her in fault reporting �Cacciabue et
al�� ����� Wang� ������

����� Performance of a Fault Monitoring System

To test the performance of a FMS� a fault can be induced� and the reaction
of the detection system can be observed� If the imposed fault induces no
response from the detection system� this constitutes a missed detection� On
the other hand� if the FMS reacts when no fault is induced� this constitutes a

false alarm� Not all faults occur suddenly or persist after they once occurred�
Slowly developing or small faults� often known as incipient faults� such as bias
or drift in an instrument� or intermittent faults� such as a bad contact in an

electronic circuit� must be assessed in a di�erent way� Some of the foremost
criteria for assessing the performance of a FMS are �Clark� ������
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i� Missed fault detections�

ii� Promptness of detection�

iii� Sensitivity to incipient faults�

iv� False alarm rate�

v� Incorrect fault identi	cation�

vi� Robustness�

Missed fault detection� A fault has occurred� but the FMS does not detect
anything� A missed detection may be acceptable for inconsequential faults� as
for example� a small bias on the signal from a relatively unimportant sensor� or
unacceptable if the fault has a serious impact on the operation of the monitored

system� The sensitivity of the FMS should be adjusted to detect as many small
faults as early as possibly while avoiding a high false alarm rate�

Promptness of detection� Assuming that a fault is detected successfully�
the issue of promptness may be of vital importance� In some aerospace and
electric power applications�� a fault that persists for a few seconds without
detection� identi	cation� and correction� can destroy the faulty component� if

not the whole system itself� In other applications it may be more desirable
to have reliable detection of minor faults at the sacri	ce of speed in detection
time or promptness�

Sensitivity to incipient faults� In some systems� it is desirable to detect
small or slowly developing faults� This is important if the FMS is intended
for enhancing maintenance operations in plants by early detection of faulty

equipment� in which case promptness of detection may be of secondary
importance to sensitivity� In other systems� sensitivity and promptness may
both be required� This leads to more complex detection schemes� possibly

requiring both hardware and analytical redundancy� for example by using
fault�tolerant computer techniques �Gomm et al�� ������

False alarm rate� False alarms are generally indicative of poor performance
in a FMS� Even a small false alarm rate during normal operation of the
monitored system can be awkward and possibly dangerous because it quickly
leads to unacceptably large down times of the system� and� possibly even more

�In the introductory section of Chapter �� the example of an electrical power grid with
several interconnected power plants� with one of them su�ering a short circuit� is used to
demonstrate how fast the FMS should react to avoid an entire region black�out� i�e�� it
demonstrates the concept of promptness of detection�
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critical� to a lack of con	dence in the detection system� Chances are that� when

a true emergency occurs� the human operators will ignore the alarm because
they had been alerted in vain all too often before� A plant operator will simply
switch o� the monitoring system or at least its audible alarm component if

the device goes o� and blurts into his or her ears once every �� seconds�
A detection system that has an acceptable false alarm rate during normal
operation might still register false alarms while the monitored plant undergoes
a real emergency� This might be acceptable in some applications� in which

it is preferable to con	rm the fault before reacting to it� and unacceptable in
other applications� in which even small faults may be so cumbersome that it
is preferable to react to false alarms than to su�er deteriorated performance
from an undetected� though small� fault� The compromises to be made in the

design of a FMS related to false alarm rate� sensitivity to incipient faults� and
promptness of detection� are di�cult to describe in general or algorithmize�
because they require detailed knowledge of the working environment� and
an explicit understanding of the vital performance criteria of the monitored

system�

There are several ways to reduce the false alarm rate by design� For example�

in �Clark� ����� an approach is described to have adaptive fault detection
thresholds in a fault monitoring scheme� The adaptation takes into account
large or rapid changes in the input signals �either control signals or measured

disturbance signals� of the monitored system� together with the associated
transient behavior� By adapting the thresholds� the false alarm rate� at least as
far as it is due to deterministic signals� can be minimized� Another approach
is described in �Walker� ������ It consists on the use of Markov models for

threshold determination� which can be a valuable technique when probabilistic
information from sensors and system processes can be gathered together�

Incorrect fault identi�cation� In the case of an incorrect identi	cation� the
detection system correctly registers that a fault has occurred� but incorrectly
identi	es the subsystem that has failed� If a recon	guration system exists�
it will then proceed to compensate for the wrong fault� an action that could

produce consequences as serious as those of a missed detection�

In assessing the performance of a given FMS scheme� or in comparing two

di�erent schemes� it is necessary to understand the working environment of the
monitored system and to have measures of the aforementioned 	ve criteria� It
is further necessary to establish a fault base of the monitored system� i�e�� a
comprehensive set of faults of which it is believed that they may occur in the

system� and which are to be detected by the FMS scheme when they occur�
This is a di�cult task that is closely related to the robustness issue to be
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discussed in the sequel�

����� Robustness

The robustness of a FMS is the degree to which its performance is una�ected
by unforeseen conditions in the monitored system� Evidently� since it is the

very purpose of the FMS to report errors� robustness is essential to its mission�
Robustness can be discussed with respect to the following characteristics of the
monitored system as �Basseville and Nikiforov� ����� Clark� ������

i� Parameter uncertainties�

ii� Unmodeled non�linearities or uncertain dynamics�

iii� Disturbances and noise�

iv� Fault types�

Parameter uncertainties� A major problem in the 	eld of robustness in
redundant FMS schemes is caused by uncertainties in the physical variables
of the monitored system� In these schemes� variables that are not directly

measured are reconstructed by means of state estimation techniques from the
signals that are measured� These state estimators are essentially mathematical
models of the monitored system� For that reason� they critically depend on
a correct knowledge of the values of the many physical characteristics and

parameters of the plant� If these are all known with precision� the state
estimates will be accurate� and the FMS scheme will be remarkably sensitive
to incipient faults and immune to false alarms� However� in most processes�
even if they are structurally modeled correctly� some physical parameters

are only approximately known� Consequently� the state estimators must be
designed using only nominal values for the uncertain parameters or using some
accommodating mechanism to compensate for the uncertainty� The result is
that the state estimates are always in error� the severity of which depends upon

the maneuvers of the monitored plant in ways that are not easily determined�
Inaccurate state estimation of non�measured signals often leads to false alarms�
or� if the FMS is protected against false alarms� may lead to missed detections�

Uncertain dynamics� All dynamic plants are essentially non�linear�
However� many plants can be linearized around an operating point or an

operating trajectory� Many FMS schemes are based on such linearized models�
which may be quite satisfactory as long as the plant doesn�t deviate too far
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from its nominal operating point or trajectory� However outside this range� the

non�linearities of the plant produce signals that are not modeled accurately
by the FMS scheme� and this may then lead to either false alarms or missed
fault detections�

Disturbances and noise� Dynamic plants are always subjected to inputs
other than those intended by the system designer� These inputs� called

disturbances� are usually random functions originating in the environment�
Furthermore� the sensors usually have superimposed noise on their signals�
This noise is also random� but it originates from a di�erent source� and is
normally uncorrelated with the disturbances� Most signal processing tools used

by designers to account for random �uctuations of this sort� are based on the
assumption that those �uctuations are stationary Gaussian processes having
known characteristics� If the actual disturbances and noise are non�stationary�
non�Gaussian� or even correlated in some way� then the FMS scheme will

perform below its expected level�

Fault types� A given system can malfunction in many ways� For example�

a sensor can break down or su�er a change of scale factor� a bias may not
remain constant� a part may change its characteristics due to wear or friction�
a moving part can get stuck in a 	xed position� there can be excessive noise
in the signals� etc� A majority of FMS schemes are designed to detect and

discriminate between a set of prespeci	ed fault types� and even this becomes
cumbersome as the number of fault types is increased� Clearly� if a malfunction
should occur that is not in the knowledge base of the FMS� then the FMS
scheme may still detect that something strange has occurred� but it wouldn�t

be able to recognize the fault� Many FMS schemes will then go ahead and
propose the closest match as the hypothesized fault� rather than declaring the
fault as being of unknown origin� In order to recognize a fault as unknown� the

FMS needs an assessment of the sanity of its own reasoning processes� i�e�� an
estimate of the error contained in its predictions� Many methodologies used
in FMS schemes do not o�er any self�assessment capabilities� which can be a
severe shortcoming of these tools�

A FMS that is robust to at least some fault types must include both a
hypothesis generation process and a hypothesis testing process� Hypothesis

generation can be performed using either a quantitative model�based approach
based on state or parameter estimation� or through the use of qualitative
techniques such as knowledge�based� connectionist� or model�based systems��

The robustness of a FMS scheme is directly related to the quality of its

hypothesis generation engine� Human operators� through their experience

�Model�based FMS schemes can use either quantitative or qualitative models�
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and knowledge of a speci	c system or process� will generate hypotheses based

on a mixture of quantitative and qualitative information� The ingenuity of
a human operator cannot currently be matched by any automated FMS� In
order to advance the state of the art of automated FMS schemes� it could thus

be argued that the hypothesis generation engine of a powerful FMS scheme
should be based on both quantitative and qualitative reasoning�

��� Quantitative Fault Detection

The 	eld of fault detection and troubleshooting can be divided into two main
research areas� quantitative and qualitative fault detection� In spite of the
fact that both research directions started approximately at the same time�

the research on quantitative approaches to fault detection has produced much
more quickly generally applicable results than its qualitative counterpart� and
consequently� these approaches are more widely used today� However� in

the past decade� qualitative fault detection techniques have 	nally caught up
with their quantitative cousins� and have become an attractive alternative
to the formerly used quantitative methods due to their accuracy� robustness�
simplicity� and low computational cost�

Quantitative fault detection is primarily based on statistical techniques� 	rst
order logic� control theory� mathematical modeling� and computer simulation�

Among these techniques� the most widely used are those that make use
of measurable variables� such as the Limit and Trend Checking Techniques
and Automated Statistical Diagnosis� and those that also work with non�
measurable state variables and process parameters� such as the Control

Derived Techniques� Two very good general summaries of fault detection
and troubleshooting of dynamic systems have been presented by �Himmelblau�
����� and �Isermann� ����� that include lots of examples� Good summaries of
the statistical approaches to fault detection and troubleshooting can be found

in the books by �Pau� ������ �Basseville and Benveniste� ���
�� and �Basseville
and Nikiforov� ������ and the paper by �Willsky� ������ Control theory derived
approaches became fashionable in the late eighties� They form part of the
Analytical Redundancy methods� Good summaries are provided in the papers

by �Isermann� ������ and �Frank� ������ and the book by �Patton et al�� ������
There are a series of authors that combine statistical and control approaches
to fault detection and troubleshooting� Summaries of this work can be found

in �Basseville and Nikiforov� ����� Chow and Willsky� ����� Kumamaru et al��
����� Kumamaru et al�� ������
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����� Limit and Trend Checking Techniques

In the early days� supervision of technical processes was restricted to directly
checking measurable variables for upper or lower transgression of 	xed or
adjustable limit or setpoint values� This technique was automated by using

simple limit�value monitors in an approach known as Limit and Trend
Checking� This is the classical quantitative fault detection technique� which is
widely used in combination with other quantitative and qualitative methods�

It works by directly checking a measurable variable y�t�� A signal to an alarm
or an actuator is released as soon as a maximum value ymax is passed in the
positive direction� or a minimumvalue ymin is passed in the negative direction�
The normal state is�

ymin � y�t� � ymax �����

The limits are usually set such that� on the one hand� a large enough distance
to the occurrence of damage is retained� and on the other hand� unnecessary

fault alarms are avoided� i�e�� the false alarm rate is kept as low as possible�
This is referred to as absolute value check�

The limit check can also be applied to the trend �y�t� of the variable y�t��

If the limit values are set small enough� the fault alarm can take place earlier
than in the former case since the trend permits a prediction of the variable
progression� The normal state is�

�ymin � �y�t� � �ymax �����

A combination of absolute value and trend checking is shown in �Isermann�
������ If only limit checking is applied� the limits are usually set on the safe
side to allow su�cient time for counteractions� However� this can lead to false

alarms if the variable returns to the normal state without external action�
This disadvantage can be avoided if a generalized threshold is established that
measures the amount of time that the variable y�t� remains outside the limits

ymin or ymax within a given time window� An alarm is set o� whenever the
so 	ltered signal passes a given threshold value� Unfortunately� methods that
avoid false alarms always increase the rate of missed faults�

Almost every FMS contains one or more limit value monitors� Consequently�
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there have been reported many application examples� Among them� some

representative papers are� �Shapiro and Decarli� ����� for fault monitoring of
a Lockheed L����� Tristar aircraft� �Brown and Rao� ���
� for fault monitoring
in a F���� non�linear aircraft simulator� �Walker� ����� for fault monitoring

of the space shuttle inertial measurements units� and �Berkan and Upadhyaya�
����� for fault monitoring of noise in control systems of nuclear plants�

����� Automated Statistical Diagnosis

Automated Statistical Diagnosis is derived directly from pattern recognition in
medical diagnosis� and is de	ned as the recognition of possible failure causes
from observed symptoms and previous operating history� Since sometimes
medical diagnosis is based exclusively on the analysis of the answers given

by patients to certain questionnaires without the clinical examination of a
physician� it can be envisaged in a similar way for engineering applications that
failure diagnosis can be based on statistical analysis of available information

about the system operation and environment prior to the time of failure�
This statistical analysis could be automated with or without dismantlement of
the analyzed system component� i�e�� with or without the intervention of the
physician�

The simplest example of Automated Statistical Diagnosis is classi�cation
by association of observed symptoms with a suspected failure cause using

a symptom�failure matrix� however� since failure causes may be internal or
external� or may not have been seen before� direct classi	cation proves normally
inadequate� If the symptoms are represented by a measurement vector� this
vector constitutes a pattern in the terminology of pattern recognition� In

this case� an automated diagnosis is the automatic recognition of a symptom
pattern from the set of all observable patterns divided into failure modes or
cause classes�

Recognition always assumes previous learning� This learning is made by
discovering similarities or patterns among the available data� Thus the basic
idea of Automated Statistical Diagnosis is that of performing a high�order

classi	cation of patterns or sets of similarities to generate a symptom�failure
table� The main steps of this technique are �Pau� ������

i� Recognition of similarities� This is the learning step� Training data
generally consist of large numbers of similar patterns� Two scenarios are

possible� a� the training data have previously been assigned to classes� or
b� they have not previously been classi	ed� In the former case� learning
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can be limited to selecting representatives of each class� whereas in the

latter case� clustering methods must be used to group or cluster similar
patterns for constructing a set of natural classes� after which a type �b�
problem becomes a type �a� problem� Clustering methods are based

on similarity functions and require the determination of the maximum
number of natural classes� Common techniques to carry out the learning
phase are�

� Correlation analysis�

� Correspondence analysis�

� Principal component analysis�

� Discriminant analysis�

� Canonical analysis�

ii� Classi�cation of similarities into classes� The classi	cation is per�
formed combining the estimation of the class conditional probabilities
with a certain decision rule� The objective is the discrimination of sim�

ilarities belonging to di�erent classes while preserving the maximum of
the discriminatory information� Commonly used methods are�

� Neighbors distance measures �nearest� farthest� and average
neighbor metrics��

� Geometric distance measures �Minkowsky� Chebychev� and quadratic
metrics��

� Separation measures �Shannon entropy� Bayesian distance� and

Kullbach divergence metrics��

� Generalized likelihood ratio�

� Generalized Jensen di�erences�

iii� Diagnosis� The diagnosis is performed by means of comparing the

previously classi	ed patterns of the training data with those of the testing
data� i�e�� the currently observed patterns�

It is important to understand that the goal of Automated Statistical Diagnosis

in medical or engineering applications is not the localization of the damaged
elements� but rather� the determination of the most probable failure causes
�or modes� given the observations� This technique is particularly well suited

for complex failure situations involving wear and multiple failures� and also
when direct measurements and logical tests prove inadequate� but it requires
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numerous preliminary tests to obtain training data about all possible operating

conditions including failures�

Numerous applications of this approach are described in the literature�

Among them� �Wilbers and Speyer� ����� used a Bayesian hypothesis testing
metric as the classi	cation method for automated statistical diagnosis of
aircraft sensors� �Weiss et al�� ���
� used a sequential probability ratio test

for fault detection in a F���� linear aircraft simulator� The same application
is presented in �Emami�Naeini et al�� ����� with a Bayesian decision metric
for hypothesis testing� �Pau� ����� showed a fault detection scheme based on
the nearest neighbor classi	cation rule for quality control in a discrete parts

manufacturing line� �Basseville and Nikiforov� ����� and �Kumamaru et al��
����� used the generalized likelihood ratio� the Kullback discrimination metric�
and the Jensen di�erence measure as classi	cation techniques for automated
statistical diagnosis of black box systems�

����� Control�Derived Methodologies

The control�derived methodologies�� currently summarized in the term

Analytical Redundancy� normally predict some output variables� or internal
variables� or model parameters� or model structure to compare them
against those obtained from the real monitored system� Thus� control�
derived methodologies are based on mathematical or behavioral models of

the monitored systems� i�e�� they are all model�based� These techniques
are particularly useful when process faults are indicated by internal� non�
measurable process state variables or by internal� non�measurable physical
process coe�cients� or even when the internal structure of the system is

unknown �black box systems�� In the 	rst case� attempts can be made to
reconstruct or estimate these state variables from the measurable variables
by using a known process model� In the second case� attempts can be made
to determine the changes of the process coe�cients via the changes in the

process model parameters� In the third case� attempts can be made to identify
the possible structure of the system by analyzing the input�output data� In
all three cases� the di�erence that arises from a comparison between the real

monitored system and the modeled system is known as the residual� and it
serves as the fault indicator�

From a model�based perspective� the control�derived approaches to fault

�With the term Control�Derived Methodologies� we denote what other authors call
Quantitative Model�Based Approaches
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detection and troubleshooting that have been reported in the literature during

the last years can be traced back to a few basic historical concepts� Among
them� the most important ones from the point of view of the construction of
a FMS are� the Detection Filter �Beard� ����� Jones� ������ the Residuals

Generation by means of a single Kalman Filter �Mehra and Peshon� �����
or banks of Kalman Filters or Luenberger Observers �Clark et al�� ���
�
Montgomery and Caglayan� ������ the Parity Space approach �Deckert et
al�� ������ the Parameter Estimation technique �Kitamura� ����� Zhu and

Backx� ������ the structure identi	cation algorithms �Isermann� ������ and
the methodological set of tools known as Analytical Redundancy �Isermann�
����� Frank� ������

The procedure of evaluating the redundancy contained in the mathematical
model of the system can be roughly divided into the following two steps�

i� Generation of the so�called residuals� i�e�� functions that are accentuated

by a fault vector f �

ii� Detection� isolation� and diagnosis of the faults �time� location� etc���

In essence� there are two di�erent ways of generating fault�accentuated
signals �residuals� using Analytical Redundancy� a� by parity checks� observer
schemes� and detection 	lters on the one side� all of which use state estimation

techniques� and b� by parameter estimation on the other side� The resulting
signals are employed to form decision functions as� for example� norms or
likelihood functions�

A detailed structural diagram of the overall procedure is depicted in
Figure ����� Notice that three kinds of models are required for the residual
generation� namely� one for the nominal system� one for the observed system�

and one more for the faulty system� In order to achieve a high performance
of fault detection with a low false alarm rate� the nominal model should be
tracked and updated by the observation model�

The analytical redundancy approach requires that the residual generator
performs some kind of validation of the nominal relationships of the system�
using the actual input u� and the measured output y� The redundancy relations

to be evaluated can simply be interpreted as input�output relations of the
dynamics of the system� If a fault occurs� the redundancy relations are no
longer satis	ed� and a residual r � � results� The residual is then used to form

�This �gure has been taken from 	Frank� 
���� and originally came from 	Isermann�

����
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Figure ���� General scheme of a FMS using Analytical Redundancy�

appropriate decision functions that are evaluated in the fault decision logic in
order to monitor both the time of occurrence and the location of the fault�

The basis for a decision on the occurrence of a fault is the fault signature�
i�e�� a signal that is obtained from some kind of faulty system model de	ning

the e�ects associated with a fault �Isermann� ������ In most applications the
process is completed when the fault location and fault time are identi	ed�
However� it may be desirable to get a deeper insight into the situation by
knowing the fault type� size� and cause which can be acquired by subsequent

fault diagnosis� To this end� deeper knowledge about the nature of the process�
such as the degree of aging� the operational environment� the history of
operation and maintenance� the fault statistics� etc� is required� This task

is therefore commonly tackled with the aid of qualitative techniques such as
expert systems� neural networks� model�based deep reasoners� and the like�
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Since the most important approaches are based on the aforementioned

techniques� they shall be explained here in some detail�

��	�	�
 Parity Space Approach

The central idea of the Parity Space approach� also calledDedicated Dead�Beat
Observer approach� is to check the parity �consistency� of the mathematical

equations of the system �relationships in analytical redundancy terms� by using
the actual measurements� A fault is detected once preassigned error bounds
are exceeded� There are basically two forms of analytical redundancy relations�

i� Direct redundancy	 Relations among instantaneous redundant sensor

outputs �algebraic relations��

ii� Temporal redundancy	 Dynamic relationships between sensor outputs
and actuator inputs �di�erential or di�erence equations��

To outline the basic idea of this approach� the simpli	ed case of redundant
measurements that can be obtained directly or from analytical sources will be

considered� These redundant measurements can be modeled by the algebraic
measurement equation�

y  Cx!"y �����

where

y  �q � �� measurement vector�
C  �q � n� measurement matrix of rank n�
x  �n� �� true measurement value�
"y  �q � �� error vector�

"y � bi de	nes a faulty operation indicated by the ith measured variable� For

detection of "y� the vector y can be combined to a set of linearly independent
parity equations given by

p  V y �����
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where p is a �q�n��dimensional parity vector� and V is the �q�n��q projection
matrix� A parity equation is simply an input�output model for a part of the
dynamics of the system� In other words� instead of checking the consistency
of the overall mathematical model� the approach allows to check individual

relations that are part of the model� which permits the selection of the most
reliable relations and thus the creation of a robust fault monitoring strategy�

The parity equations contain only the errors due to the faults� independently
of x which is not directly measured� Moreover� in the parity space� the columns
of V de	ne q distinct fault directions associated with each measurement� This
ensures that a fault in measurement i implies a growth of p in the ith direction�

The q�dimensional residual vector is thus�

r  y � C#x ���
�

where #x is the least squares estimate of x� In these terms� the fault detection
and isolation problem can be formulated as follows� given q redundant
measurements y�� � � � � yq of a process variable� and symmetric error bounds

b�� � � � � bq characterizing the faulty behavior�

�� Find an estimate #x of the process variable from the most consistent subset
of measurements�

�� Identify the faulty measurement by parity checks� To detect a single

fault among p components� at least p � � parity relations are required�

The generalization of this approach for the case of using the temporal relations
of the dynamic system can be found in �Basseville and Nikiforov� ����� Chow
and Willsky� ����� Lou et al�� ������ Applications of this approach to SISO�

engineering systems are presented in �Desay and Ray� ����� Massoumnia� ������
and to MIMO� engineering systems in �Frank and W�unnenberg� ������

��	�	�� Dedicated Observer Approach

Some authors have approached the fault detection problem by directly starting

with banks of Luenberger observers or Kalman 	lters� The basic idea of the

�Single input single output system
�Multiple input multiple output system
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observer approach is to reconstruct the true output of the system from the

available perturbed measurements� or subsets thereof� with the aid of observers
or Kalman 	lters using the estimation error or innovation� respectively� as a
residual for the detection and isolation of faults� It is known from observer

theory that� for state or output estimation� linear or non�linear� full� or
reduced�order state observers can be used in the deterministic case� or Kalman
	lters in the stochastic case when noise has to be considered�

The fundamental con	guration of a linear full�order state estimator simply
consists of a parallel model of the process with a feedback of the output
estimation error e  y � #y� The feedback is important for several reasons�

� To compensate for di�erences in the initial conditions�

� To in�uence the stability properties of the observer or 	lter model� i�e��
make the observer �or 	lter� su�ciently fast�

� To provide the 	lter design with additional free design parameters� e�g�
for decoupling the e�ects of faults to be detected from those of other
faults or disturbances�

For illustration purposes� the case of a linear process shall be considered� in
which all the faults are contained in the fault vector f � whereas all the other
e�ects that obscure the fault detection are contained in the disturbance vector

d� The system can be described by the state�space model�

�x  Ax�t� !Bu�t� ! Ed�t� !Kf�t� �����

y�t�  Cx�t� ! Fd�t� !Gf�t� �����

where

x  state vector�
u  known input vector�
y  measured output vector�
A�B�C�E�F�G�K  known matrices of appropriate dimensions�

The state x� and the output #y of a full�order observer are governed by�
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�#x  �A�HC�#x!Bu!Hy �����

#y  C#x �����

where H denotes the feedback gain matrix that has to be chosen properly to
achieve the desired observer performance� With equations ���� ���� ���� and
���� the relations for the state estimation error �  x � #x� and the output

estimation error e  y � #y become

��  �A�HC��! Ed !Kf �HFd�HGf ������

e  C�! Fd!Gf ������

As can be seen� the output estimator error e is a function of f and d� but
not of u� Hence� e can be used as the residual r� for the purpose of detection
and isolation of the fault� When no fault occurs� i�e�� f  �� then r will be only
in�uenced by the unknown input d� whereas� if there is a fault� i�e�� f � �� r
will be increased� Thus a fault can be detected by checking the increment of r
caused by f � In the simplest case� this can be done by a threshold logic �Clark�
����a�b�� In a similar way� residuals can be generated using reduced�order or
non�linear estimators �Frank� ����a�b��

The main task associated with the design of state estimators for fault
detection and isolation is their optimization by a proper choice of the feedback

gain matrix H� The most simple con	guration is composed of a single
estimator �observer or Kalman 	lter�� where a single full� or reduced�order
estimator is driven by only one �the most reliable� sensor output� and the full
output is reconstructed �Clark� ����a�� The comparison of the actual output y

with the estimated output #y using a threshold logic allows a unique detection
and isolation of a single fault�

In �Mehra and Peshon� ������ the use of a single Kalman 	lter driven by
a full output vector is demonstrated� The occurrence of a fault is monitored
by statistical innovation tests of mean and covariance� The fault isolation is

carried out on the basis of di�erent fault hypotheses� The Multiple Hypothesis
Testing can be carried out using Bayesian Decision Theory �Willsky� ������
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More �exibility in the isolation of a fault can be achieved by using an estimator

scheme� i�e�� a bank of estimators driven by the actual output vector y� In this
case� each of the estimators is designed for a di�erent fault hypothesis� These
hypotheses are then tested in terms of likelihood functions using Bayesian

Decision Theory �Wilbers and Speyer� ������ Approaches to hypothesis testing
can be found in �Montgomery and Williams� ����� Gorton and Gray� ������
These authors show how Kalman 	lters based on multiple dynamic models can
be used for hypothesis testing by processing the generated residuals� In the case

of the former of these papers� this process is carried out by means of sequential
probability ratio testing� whereas in the case of the latter publication� the
process is based on multiple model hypothesis testing using a bank of Kalman
	lters�

A variation of the Observer approach can be obtained by assigning a
dedicated estimator to each of the sensors� In this Multiple Observer

Scheme �Clark� ������ each estimator is driven by a di�erent single sensor
output� and the complete output vector y is estimated� With this scheme�
multiple simultaneous faults can be detected and isolated by checking properly
structured sets of estimation errors� for example� with the aid of a threshold

logic� If a certain sensor fails� the related output estimate reconstructed by
the corresponding estimator will be erroneous� which can be identi	ed by the
logic�

An alternative version� the so�called Generalized Observer Scheme �Frank�
����a�b� provides that an estimator dedicated to a certain sensor be driven
by all outputs except that of the respective sensor� This scheme allows the

detection and isolation of a single fault in any of the sensors� however� with
increased robustness with respect to the unknown inputs�

For robust FMSs based on observers or state estimators� the computation
of parameter and dynamics uncertainties can be combined� In �Frank and
W�unnenberg� ������ it is shown how the unmodeled or uncertain dynamics

of a system can be contained in an uncertain disturbance distribution matrix�
turning the robust fault detection problem into one of disturbance decoupling by
design� If an observer or state estimator is used� modeling errors and dynamic
uncertainty can be shown to act like a disturbance on a linear system� If the

observer is a linear system also� then the approach is known as the Unknown
Input Observer Scheme� The same approach can be found in �Patton and
Kangethe� ������ however� they based the uncertain disturbance distribution
matrix on eigenstructure assignment�

Another option closely related to those mentioned above is one that
combines software and hardware redundancy� The most common practice
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of a duplex sensor system uses two identical sets of instruments� each set

being supervised by a FMS scheme of one of the above mentioned types
�Deckert et al�� ����� Onken and Stuckenberg� ������ Once a fault in one
of the sensors has occurred� it is detected with the aid of an observer scheme�

and the system is then switched to the healthy sensor� The motivation for
using two identical sensors is to detect the occurrence of a fault by hardware
redundancy and only perform the isolation task by Analytical Redundancy�
This saves computational burden� increases the reliability� and allows the

Analytical Redundancy tests to be triggered� This concept has already gained
some practical importance for FMSs in aircrafts �Labarr$ere� ������ Statistical
and geometric representations of this approach are explained in �Basseville and
Nikiforov� ������

The Observer or Kalman Filter approach is the most widely used technique
in Analytical Redundancy� Examples of the application of this fault monitoring

technique to real engineering problems are� inertial navigation systems using
one Kalman 	lter for each instrument �Kerr� ������ detection of instrument
and component faults in a nuclear reactor �Niccoli et al�� ���
�� and non�linear
aircraft modeling using Eigenstructure assignment of observers �Patton and

Kangethe� ������

��	�	�	 Fault Detection Filter

The fault detection 	lter or fault sensitive 	lter is a full�order state estimator
with a special choice of H� so that the residual r due to a particular fault fi
is constrained to a single direction or plane in the residual space� independent
of the mode �size or time history� of fi� To describe the underlying idea� let
us start with the system state equations in the form�

�x  Ax�t� !Bu�t� !Kifi�t� ������

y�t�  Cx�t� ! %Kj
%fj�t� ������

where Ki and %Kj are distribution vectors� and fi and %fj are scalar functions
of time with the following meaning�
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Ki  n� � design fault direction with i  �� �� � � � � r�
r  the number of fault directions�
%Kj  q � � unit vector associated with %fj�t��
fi�t�  actuator or component fault mode�
%fj�t�  sensor fault mode�

To reconstruct the states of the state vector x�t� from measurable input and
output signals� a full�order observer like that of Equations ��� and ��� can be
used� A p � � residual vector is generated from the di�erence between the

actual and the estimated measurements having the form�

r  We  W �y�t�� #y�t�� ������

where W is a p � m weighted matrix� and e is the output estimation error
e  y � #y�
The feedback gain matrix H of the observer can be chosen in such a way

that the residual vector r has certain directional properties at the occurrence
of a certain fault� If� for example� an actuator or component fault occurs� then

the error model for the state estimation error �  x� #x becomes�

��  �A�HC��! hifi ����
�

r  WC� ������

but� if a sensor fault occurs� then

��j  �A�HC��j ! hj %fj ������

r  WC�j ! %Kj
%fj ������

where hj is the jth column of the detection 	lter gain matrix�

As can be seen� the actuator or component fault residual of the detection

	lter comes to lie in the direction of WCKi� but the sensor fault residual can
only be made to lie in a plane� In conclusion� the important information for
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the fault detection is in the direction or plane of the residual� rather than in

its time function� i�e�� no knowledge is required about the fault mode fi�

It is a very appealing feature of the Fault Detection Filter approach that

the residual direction of the fault is not a�ected by the fault mode� However�
if unknown inputs� including parameter variations� have to be considered�
then the observer should be designed in such a way that its residuals become

decoupled with respect to disturbances� The di�culty to distinguish the e�ects
of faults from the e�ects of disturbances acting on the system can be seen just
looking at Equation ����� Therefore� in a robust fault detection 	lter scheme�
the remaining problem is how to choose the matrices H and W in such a way

that the entries in the transfer function matrix between the residual and the
disturbance are zeroed�

Applications of this approach can be found in �Frank� ����� Isermann�
����� Meserole� ����� Patton et al�� ����� Patton et al�� ������ An approach
that takes into account the e�ects of disturbances �parameter variations or
measurement noise� by means of precise modeling can be found in �Wilbers

and Speyer� ������

��	�	�� Parameter Estimation Approach

It may sometimes happen that a mathematical model cannot be obtained
due to the lack of knowledge about the structure of the system or due to its
nonlinear behavior� In such a case� Parameter Estimation algorithms can be

used to obtain an approximation of the model�s structure� This parameter
estimation approach is an alternative to the above described methods that are
based on state estimation� This technique makes use of the fact that faults
in a dynamic system are re�ected in its physical parameters as� for example�

mass� resistance� inductance� etc� The idea behind this approach is to detect
the faults via estimation of the parameters of the model that should change
once a fault has occurred �Isermann� ������ Thus� a parametric model of
the system structure must be proposed� This model is represented by means

of mathematical functions� the parameters of which� originally unknown� are
estimated through optimization algorithms� The whole process works as
follows�

i� A parametric model of the system must be proposed� and the

relationships between those parameters and the physical parameters
must be determined� There exist some methods for such a proposition



���� Quantitative Fault Detection ��

and its validation� the most widely used are �Ljung� ����� Zhu and Backx�

������

� ARX� Auto Regressive External Input� It is the simplest model
and uses the linear regressive method� the parameters of which are

adjusted by means of the least squares technique� The relationship
between the error function and the estimated parameters must be
linear�

� Output error� The function to optimize is not the equation
error as in the least squares method� but the output error function
that is normally minimized by means of a numerical method�

The relationship between the error function and the estimated
parameters can be non�linear�

� Instrumental Variables� This approach is based on correlation

analysis� An instrumental vector is proposed in such a way that
it is uncorrelated with the error vector� and correlated with the
undisturbed components of the input�output data vector� This
constitutes the convergence criteria for the minimization of the error

function by means of the least squares method�

� ARMAX� Auto Regressive Moving Average External Input� Two
models are identi	ed with this method� one for the system�s

dynamics and another for the perturbations by using the linear
regressive method� the parameters of which are adjusted by a
moving average technique applied to an extended least squares
method�

� NARMAX� The same as the ARMAX model� however� with non�
linear capabilities�

� Box�Jenkins� This approach is especially useful in closed�loop
situations� As in the ARMAX approach� two models are identi	ed�
one for the internal structure and one for the disturbances� The

error function can be non�linear and is normally minimized by a
numerical method�

ii� Identi	cation of the model parameter vector using the inputs and outputs

of the original system and a given criterion of 	t�

iii� Determination of the physical parameter vector�

iv� Computation of the deviations vector by comparing the currently
obtained parameters against those taken from the original model�
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v� Decision on a fault by exploiting the relationships between faults and

changes in the physical parameters�

This approach has primarily been used for detection of incipient faults in

SISO and MISO systems� A detailed description can be found in �Isermann�
����� Patton et al�� ����� Frank� ����� Zhu and Backx� ������ Examples of the
application of this fault detection and troubleshooting approach are� the fault
diagnosis of a DC�motor centrifugal pump and of a tubular heat exchanger�

both in �Isermann� ������ fault diagnosis of a nuclear reactor �Kitamura� ������
and early warning on a glass tube process and on a single�stand rolling mill
�Zhu and Backx� ������

��	�	�� Limitations of Control�Derived Methodologies

All of the aforementioned control�derivedmethodologies for fault detection and
isolation� and in general all quantitative model�based methodologies� su�er
from a fundamental practical limitation� since the system model on which
the redundancy is based is never known exactly� the actual system output y

will never match the model output #y� even when there are no faults present
in the system� The consequence is that the residual r  y � #y will be non�
zero in general� forcing the use of thresholds and moving averages to prevent

false alarms from occurring and to distinguish between di�erent fault types�
The problem with thresholds is that they not only reduce the sensitivity to
faults� but also� that the appropriate threshold level varies with the input
signal of the actual system and the magnitude and nature of the system

disturbances� Choosing the threshold too small increases the false alarm rate�
whereas choosing it too large reduces the net e�ect of fault detection� There is
therefore a strong motivation for reducing the sensitivity of the residuals with
respect to the modeling errors�

This robustness problem had been recognized early on� and several
approaches to increase the robustness of fault detection and isolation

schemes have been suggested with more or less success� �Zhu and Backx�
����� give a detailed description of the available techniques for robust
parameter estimation� while �Frank� ����� summarizes the developed state
estimator design techniques for robust residual generation� Other signi	cant

contributions to the robust observer design can be found in �Watanabe and
Himmelblau� ����� Massoumnia� ����� Patton et al�� ����� ����� Ge and Fang�
����� Wilbers and Speyer� ������ A systematic solution using the Unknown

Input Observer scheme was provided by �W�unnenberg and Frank� ����� Ge
and Fang� ������
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Other authors tackle this robustness problem from the parity space point

of view� From this perspective� the residual of an estimator can be viewed as
the most general parity function containing the complete set of redundancy
relations� The underlying idea of robustness generation is that of using only

those redundancy relations that are most reliable� This approach can be found
in �Chow and Willsky� ����� Lou et al�� ����� Weiss et al�� ���
��

On the other hand� there are several approaches to increase the robustness
by an optimal choice of the threshold �Emami�Naeini et al�� ������ or by making
the threshold adaptive to the inputs �Clark� ������

��� Qualitative Fault Detection

In the previous sections� modern quantitative techniques for fault detection and

troubleshooting have been examined� and their advantages and disadvantages
have been stated� Their main drawback is that all of them operate on a
quantitative and precisely formulated plant model� and even though many
of these techniques operate on linearized parametric models� the parameters

of these models must be accurately known� Not only is this quantitative
information often hard to come by� it may in fact be irrelevant� If human
plant operators are asked what information they use to manually troubleshoot
their plant� it turns out that they often rely on heuristic knowledge that may

not be possible to capture in terms of crisp mathematical equations� In the
aforementioned quantitative plant monitoring and troubleshooting schemes� it
is very di�cult� if not impossible� to incorporate into the models the a priori
expertise� and the behavioral� uncertain� and heuristic knowledge� i�e�� the

volume of qualitative information about how the system is supposed to work
that human plant operators possess and bring to bear when diagnosing their
plant�

In complex real�life engineering problems� a lot of these types of knowledge
will be needed in the model� since the monitored system could be highly non�
linear or partly unknown� If this is the case� it may be preferable to use

alternate troubleshooting techniques that o�er the opportunity of including
the available qualitative plant knowledge in their reasoning processes� and
that will not break down when confronted with incomplete knowledge�

Evidently� this does not imply that precise quantitative information about
some aspects of system behavior should be thrown away� A powerful FMS

strategy should be able to exploit all of the available knowledge� both
quantitative and qualitative� in an optimal fashion� without breaking down
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when some pieces of information are not available� Techniques that can only

operate on qualitative knowledge are at least as limited in their applicability
as the previously discussed purely quantitative schemes� and� in fact� may
even be more limited� because they frequently lead to ambiguous conclusions

that cannot be further discriminated on the basis of the qualitative knowledge
alone�

Hence it shall be the foremost aim of this thesis to present a fault monitoring
and analysis methodology with adaptive granularity� a technique that is able
to exploit all the information presented to it in an optimal fashion� In the
presence of complete information� the scheme will be competitive in terms

of fault discrimination power �though not necessarily execution e�ciency�
with the best among the purely quantitative non�linear fault monitoring
schemes� In the case of incomplete information� the performance of the scheme
will gradually deteriorate without ever breaking down completely� If only

qualitative information is provided� the methodology will be competitive in
terms of fault discrimination power with the best among the purely qualitative
fault monitoring techniques�

In this section� qualitative fault monitoring and analysis techniques are
being discussed� However� the reader should bear in mind� that it has not
ever been our intention to advocate purely qualitative techniques as a viable

alternative to the proven quantitative methods discussed earlier in this chapter�

One of the major problems in automated fault monitoring system design is

the possibility of the occurrence of unforeseen faults in a system� A fail�safe
system must be able to cope with incomplete knowledge� and with redundant�
or di�cult to discriminate� or even inconsistent information �Davis� �����
������ Various approaches to qualitative fault detection and troubleshooting

have been proposed that o�er di�erent solutions to these di�cult problems�
Among them� the more widely used� from a large�scale system perspective�
are �Puccia and Levins� ���
��

� Knowledge�based systems�
� Connectionist systems�
� Model�based systems�
� Qualitative simulation�

A fairly large volume of literature is available that describes the application
of these qualitative methodologies �especially Expert Systems and Arti	cial
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Neural Networks� to fault detection and troubleshooting� Some general surveys

can be found in the books by �Boullart et al�� ����� and �Krijgsman� ������
Summaries of general�purpose Expert Systems can be found in �Cuena� �����
Giarratano and Riley� ����� Waterman� ������ A description of Real�time

Expert systems can be found in �Crespo� ������ Fuzzy Expert Systems are
explained in detail in �Kandel� ������ The application of knowledge�based
methodologies to fault detection and diagnosis is discussed in �Tzafestas et
al�� ����� Tzafestas� ����� ������ The Connectionist approach �also known

as subsymbolic approach�� mostly represented through Neural Networks� is
elaborated on in �Hop	eld� ����� Khanna� ����� Kohonen� ����� Kosko� �����
Lippman� ������ The application of Neural Networks to control and diagnosis
is well summarized in the book by �Miller et al�� ������ Fault diagnosis using

Decision Trees and Model�Based Reasoners is fully explained in �Davis and
Hamscher� ����� as well as �Hassberger et al�� ������ Finally� the di�erent
approaches to Qualitative Simulation are elaborated in �de Kleer and Brown�
����� ����� de Kleer and Williams� ����� ����� Forbus� ����� ����� ���
�

Forbus and de Kleer� ����� Hayes� ����� ���
a� ���
b� Kuipers� ����� �����
����� ����a� ����b�� Some good summaries of these Qualitative Simulation
approaches can be found in �Bobrow� ����� Fishwick� ����� ����� Hobbs and

Moore� ���
� Weld and de Kleer� ������

Two main characteristics distinguishing the qualitative methods used for

fault detection and troubleshooting are�

a� their management of uncertainty� and

b� their diagnostic reasoning approach� i�e�� whether they employ shallow
or deep diagnostic reasoning�

The management of uncertainty constitutes one of the most prominent
features of qualitative methodologies and is responsible for the growing interest
in their applications�

����� Management of Uncertainty

The management of the uncertainty introduced by all these methodologies
has evolved from systems based on 	rst order logic� Boolean algebra� and
Bayesian conditional probabilities to systems based on Bayesian subjective

inference� certainty factors� theories of evidence �credibility and plausibility��
and possibilistic measures �fuzzy logic�� For a good summary on uncertainty
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measures look at �L&opez de M&antaras� ������ and for advances in fuzzy logic

look at �Klir and Yuan� ���
� L&opez de M&antaras and God&o� ������ In the
sequel� the major exponents of these theories are being outlined�

Certainty Factors� This approach was introduced in the MYCIN Expert
System �Buchanan and Shortli�e� ������ Certainty factors are values between
�� �false� and !� �true�� or any other symmetric combination of values� These
factors are used to deduce the certainty of dependent knowledge� The AND
operator is de	ned as the minimum operator� and the OR operator is de	ned
as the maximum operator� For example� if the certainty of a fact A is given as
��� whereas the certainty of a fact B is ���� and the rule to be applied to deduce

fact C is IF A AND B THEN C� then the certainty of fact C is calculated as�

CF �C�  min����� ����  ��� ������

If more rules support the same result R� the resulting certainty factor is
calculated as�

CR  

� CR� ! CR� � CR�CR� if CR�� CR� are both positive
CR� ! CR� ! CR�CR� if CR�� CR� are both negative

CR��CR�

��min	jCR�j�jCR�j

otherwise

������

This theory has no real mathematical foundations� but has proven quite
useful in MYCIN and some other systems�

Theory of Evidence� This approach considers a set of propositions and
assigns to each of them an interval

�Belief� P lausibility�

in which the degree of belief must lie� Belief measures the strength of the
evidence in favor of a set of propositions� i�e�� provides a measure of belief in
some hypothesis given some evidence� It ranges from �� indicating no evidence�

to �� denoting certainty� Plausibility also ranges from � to � and measures the
extent to which evidence in favor of NOT p leaves room for belief in p�

A weight m�p� is assigned to a subset p of the set P of hypotheses� and
measures its amount of belief� The subset p is known as the subset of focal
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propositions �Dempster� ����� Shafer� ������ The focal propositions are a

representation of the available knowledge� Each focal proposition F is de	ned
as F  fp � P j m�p� � �g� To evaluate the truth of a proposition p given
the proposition q� F and m�p�� two subsets of focal propositions should be

considered� the subset of focal propositions that are not incompatible with p�

Pos�p�  fq � F j p AND q � �g ������

and the subset of focal propositions that imply the truth of p�

Nec�p�  fq � F j q� p  �g ������

These two subsets are used to de	ne the two new measures of certainty� belief
and plausibility in the following fashion�

Bl�p�  
X fm�q� j p AND q � Nec�p�g ������

P l�p�  
X fm�q� � F j p � Pos�p�g ������

The AND and OR operators are de	ned in the following way�

Bl�p OR q� � Bl�p� !Bl�q��Bl�p AND q� ����
�

P l�p AND q� 	 P l�p� ! P l�q�� P l�p OR q� ������

The following relations hold between the belief in and the plausibility of a

proposition p�

Bl�p� 	 P l�p� � P l�p�  ��Bl�NOT p� ������
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The computational complexity of the belief and plausibility equations is
exponential in the number of propositions� Hence this approach must be used
cautiously� and the high computational demands of this approach may prevent

it from being used in large engineering applications�

Fuzzy Logic� This approach was introduced as an extension to conventional

set theory �Zadeh� ������ While traditional set theory de	nes set membership
as a boolean predicate� fuzzy set theory allows the representation of set
memberships as possibility distributions� Once the set membership has been
rede	ned in this way� it is possible to de	ne a reasoning system based on logics

for combining possibility distributions� Thus� the degree of membership to a
speci	c set is de	ned by a membership function �� Such a function has values
in the range ��� ��� de	ned in such a way that a value u�

��u�  

� � if u is at the maximum value of �
� if u is not in �
a value in ��� �� otherwise

������

Every value of a variable is coupled to a fuzzy value via that membership
function� Normally� membership functions are triangularly shaped� but
trapezoidally and Gaussian�shaped membership functions can also be found�
In Chapter �� it will be shown how this fuzzy approach can be implemented

using Gaussian�shaped membership functions�

Fuzzy reasoning for the operators AND and OR can be implemented in many

ways� Following �Klir and Yuan� ���
�� the AND operator for two di�erent facts
or observations p and q� is de	ned as the minimum operator min�p� q�� and
the OR operator is de	ned as the maximum operator max�p� q�� Following the

�probabilistic� approach� the AND operator is de	ned as p � q� and the OR
operator is de	ned as �p! q�� �p � q�� A third implementation of the AND and
OR operators� known as the Lukasiewicz approach� de	nes the AND operator
as max�p! q � �� ��� and the OR operator as min�p! q� ���

One of the advantages of the fuzzy logic approach is its theoretical
foundation� Normal �non�fuzzy� sets can be consider as a special case of the

fuzzy approach� Fuzzy logic has been applied in control and diagnosis systems
for devices as diverse as aircrafts� trains� nuclear power plants� and washing
machines�

The Arti	cial Intelligence community has not reached any consensus on
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which of the aforementioned methods is the best for expressing uncertainty

in the knowledge used for reasoning� However� the present trend is towards
the use of fuzzy logic� Many engineering applications have been developed�
in which fuzzy logic has been successfully employed to express and handle

uncertainty of knowledge�

����� Reasoning Approaches

������
 Shallow Diagnostic Reasoning

Shallow diagnostic reasoning techniques are appropriate for evidence�driven
systems as they are typically found in medical diagnosis� Shallow reasoning is
based on shallow knowledge that consists of inference rules that can be 	red on
the basis of a set of pre�speci	ed symptoms� establishing a static relationship

between fault symptoms and system malfunctions� This means that shallow
diagnostic reasoning can only be applied successfully� if a direct relationship
between system behavior irregularities and system faults can be established�
The production rules try to mimic the deductive process of the expert� linking

symptoms to faults� but they normally do not explore why a certain anomaly
might have occurred� and how future occurrences of the same fault might be
prevented� This is what often happens in medicine� where the underlying
mechanisms can rarely be described� and even where they can� they are in

all likelihood uncontrollable anyway� Very often these rules are shortcuts of a
deeper understanding of the problem domain� and loosely model the decision
making process of how a human expert would model the domain �Tzafestas�

������ The classical example of a shallow expert system is MYCIN�

The main characteristics of the shallow reasoning approach are�

� Di�cult knowledge acquisition�
� Unstructured knowledge requirements�
� Excessive number of rules�
� Knowledge base highly specialized to the individual process�
� Diagnosis success not guaranteed�

These disadvantages can be partly overcome by decomposing the problem

into smaller problems� either in a hierarchical manner or according to unit
operations�
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Two very common ways of carrying out the fault diagnosis following a

shallow diagnostic reasoning approach are�

i� Fault Dictionaries� They consist of a list of causes and e�ects�
Diagnosis is performed by looking up the e�ects in a cause�e�ect lookup
table to determine the most likely cause given the observed e�ects �Less�
������

ii� Diagnostic Trees� Also known as fault trees� they provide a simple and

yet e�ective way for writing down the sequence of tests and conclusions
needed to guide a diagnosis� while restricting the search to proceed
along di�erent diagnosis paths� Diagnostic trees are widely used o��

line in chemical industries and nuclear power plants to discover possible
combinations of small faults that may lead to an emergency �Hassberger
et al�� ������

Since both methods use lookup tables� and since all potential faults have to be
observed and characterized in advance� the resulting lookup table will almost
always have a large number of entries� Thus the diagnosis procedure becomes

di�cult and time consuming for large�scale systems� and out of the question
for on�line real�time applications�

Many of these disadvantages of the shallow reasoning approach are avoided
in the deep reasoning approach� which makes use of deep models and is
particularly suitable for diagnosing technological systems�

������� Deep Diagnostic Reasoning

The deep reasoning approach is based predominantly on a structural model of
the problem domain� the so�called deep model� Deep models are models that
can derive their own behavior for a given set of parameters and excitations�
and predict what should be the e�ects of changes in them� Methodologies that

are based on deep knowledge attempt to compute the underlying governing
principles of the process �or domain� explicitly� and the need to predict
every possible fault scenario or to use precomputed rules is eliminated� This

approach leads to qualitative tools that are able to handle a wider range of
problem types and larger problem domains�

Three of the more widely used deep diagnostic reasoning techniques� from
the point of view of fault detection and troubleshooting� are outlined below�
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i� Causal search and hypothesis testing technique� It is used to trace

process malfunctions to their source� Causality is usually represented by
signed directed graphs �so�called digraphs�� the nodes of which represent
state variables� alarm conditions� or fault origins� whereas the branches

represent the in�uence between nodes� With digraphs� the intensity of
the fault� the time delays� and the probabilities of fault propagation
along the branches can be represented� All the information contained in
a digraph can then be expressed in the form of rules� The causal search

method is known as hypothesis testing� since it follows the usual human
diagnosis path� i�e�� a cause for a system malfunction is postulated�
the symptoms of the postulated fault are determined� and the result
is compared with the system observations� Digraph�based qualitative

diagnostic techniques have become popular� because little information is
required to construct the digraph and carry on the diagnosis� however�
qualitative simulation of the hypothesized behavior is required �Shiozaki
et al�� ���
��

ii� Constraint violation technique� This technique belongs to the

approaches of diagnostic reasoning from behavior to structure or� more
accurately� from misbehavior to structural defect �Davis and Shrobe�
������ The constraints play the role of rules of behavior� Qualitative
simulation is required to predict the values of the constraints that

will then be compared against the observed values� The advantages
of this approach are� a� it allows the system to deal with a wide
range of faults� since it de	nes malfunction as anything that does not

match the expected behavior� b� it allows a natural use of hierarchical
descriptions� and c� it allows the system to yield symptom information
about malfunctions� The main disadvantage is that� in a multicomponent
system� the approach has been shown to be incapable of locating the

fault�

iii� Governing equations technique� This approach is directly related to

the previously explained constraint violation approach� It was originally
developed for the purpose of locating faults in chemical processes� but it
has successfully been applied to various situations where associations of

each quantitative constraint equation of the system with a set of faults
that su�ce to cause violation of the constraint can be found �Kramer�
������ It requires a translation from quantitative constraint equations to
qualitative cause�e�ect relationships� i�e�� behavior rules�

Expert Systems and almost all qualitative fault detection techniques are based
on shallow or deep reasoning approaches� Let us explain how these fault
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detection techniques work�

����� Knowledge�Based Systems

Knowledge�based systems for fault detection and troubleshooting are built by
accumulating the experience of expert troubleshooters in the form of empirical

or directed associations� rules that associate symptoms with underlying faults
based on the experience with the system under study� Expert systems have
been widely used to perform symptoms�guided diagnosis� and recently they are
being used to perform supervisory and control tasks in real�time engineering

systems� Such Expert Systems are composed of�

a� Knowledge Base� It may include facts� assumptions� and heuristic
rules used to relate each condition�action pair with the facts and

assumptions about a problem situation� constituting a single piece of
problem�solving knowledge�

b� Inference Engine� It carries out the whole inference process� It

normally includes the inference strategy �data driven or goal driven��
the search strategy� and an uncertainty management strategy�

c� Explanation Module� It is used to translate the solution path that
was followed by the inference engine to an explanation of why this path

was followed� i�e�� it explains why a solution is what it is�

d� User Interface� It serves to communicate with the user providing him
or her with the results of the inference process� the explanation of how
those results were obtained� and the con	dence associated with them�

e� Process Interface� It serves to communicate with the process in a
supervisory or control role� taking care of data handling� and interfaces
to other programs for necessary calculations�

Diagnostic expert systems were 	rst used in the medical domain� and were
designed following the shallow reasoning approach� since the mechanisms that
lead to a disease are usually di�cult to describe and may even be completely

unknown �Pople� ������ One of the earliest medical expert systems for the
diagnosis of bacterial infections in blood is MYCIN� which uses production
rules and backward chained inference� It has a modest�sized knowledge base

containing ��� rules �Short	le� ������ NEOMYCIN� as the name indicates�
is a new version of MYCIN implemented using a distributed problem�solving
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methodology �Clansey and Letsinger� ������ EMYCIN standing for �Essential

MYCIN�� is the expert system shell �core� resulting from MYCIN when
removing the knowledge base �Van Melle et al�� ������ to be applied in
other domains� Presently� there exist many expert systems for medical

diagnostic applications� only some of which follow the shallow reasoning
approach� whereas others make use of deep reasoning� such as AI�RHEUM for
rheumatology� ANNA for heart arrythmias� CASNET for glaucoma diseases�
CENTAUR for pulmonary function test interpretation� the EEG Analysis

System for electro�encephalogram analysis �Tzafestas� ������

Expert Systems have advanced from providing symptom�guided diagnosis

to performing supervisory and�or control functions� In this context� some
of the most representative among the available Expert Systems shells for
diagnosing faults in technological devices� systems� and processes �without
real�time characteristics� are�

DART� Diagnostic Assistance Reference Tool� is a device�independent
diagnostic system that works directly from design descriptions rather than

symptom�directed fault rules �Genesereth� ������ This expert system is
intended for use in conjunction with a tester that can manipulate and observe
a malfunctioning device� The diagnostic engine receives from the tester a
description of an observed malfunction� prescribes tests� and accepts the

results� and 	nally locates the faulty components responsible for the fault�
The DART system does not follow a shallow reasoning approach associating
symptoms with possible diseases� i�e�� MYCIN�like rules� Instead� it operates
on deep information about the intended structure �the device subsystems

and their interconnections� and the expected behavior �equations� rules� and
procedures relating inputs and outputs of the device at hand�� DART has
been applied to electronic circuit troubleshooting and also in non�electronic

devices such as the cooling system of a nuclear reactor�

FOREST� �Finin et al�� ����� This system supplements the fault detection

and isolation capabilities of current automatic test equipment diagnostic
software� It makes use of experimental rules of thumb provided by experts�
deep knowledge about circuit diagrams� and general troubleshooting principles�
FOREST is encoded in PROLOG with rules using certainty factors� and o�ers

a user�friendly explanation facility�

LES� Lockheed Expert System� is fully described in �Perkins and La�ey� �����

La�ey et al�� ������ It is a shell similar to EMYCIN� but more powerful because
it uses a deep�structural description of the device in its troubleshooting� and
allows the operator to explicitly control the reasoning process� LES has been
successfully applied to a large signal switching network�
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FIS� Fault Isolation System �Pipitone� ����� ������ It is written in LISP� and

was designed primarily to diagnose analog systems� isolating faults at the level
of ampli	ers� power supplies� and other large components� The diagnosis is
based on the computation of the fault probabilities of the individual modules

after each test� FIS can be applied to fault diagnosis and isolation in systems
containing mechanical� hydraulic� optical� and other types of large components�

RELSHELL� It is an expert system shell for fault diagnosis of multiparamet�
ric� gradually deteriorating technological systems� It uses a hybrid rule�frame
based representation of knowledge� fuzzy arithmetic� and logical operations
�Gazdik� ����� Gazdik et al�� ������

Recently� Expert Systems are being used to supervise and�or control
systems in which real�time considerations are involved� To this end�

the expertise of process operators and control system designers has to be
integrated with the time�varying information obtained from the process
through measurements� When knowledge is evaluated� for example a rule� the
consequent part is set true if the antecedent part was satis	ed� The consequent

part will be stored as a fact or new knowledge in the data base� and will
remain there until it is explicitly removed� However� in supervision and�or
control of complex engineering processes� the Expert System is dealing with
time�dependent information� i�e�� previously acquired and asserted knowledge

can lose its validity at some point in time� after which itself as well as all
the conclusions that were drawn on the basis of this knowledge should be
deactivated �La�ey et al�� ������ Thus� a Truth Maintenance System is needed
to keep track of the temporal information and of every inference step in

the reasoning process� in order to preserve the consistency of the data base
�Sarjoughian� ���
��

The use of temporal logic is an important issue in real�time Expert Systems�
Time and its properties must be represented explicitly� either based on time
points �Perkins and Austin� ����� or on time intervals �Allen� ������ The

reasoning processes associated with temporal knowledge are considerably more
involved than those that only deal with static knowledge� This has led to
a rethinking of the role and utility of Expert System technology in fault
diagnosis� and has further advanced the use of deep knowledge in Expert

System reasoning� Considerations about the real�time requirements of Expert
Systems can be found in �La�ey et al�� ����� Krijgsman� ������ Recent real�
time Expert Systems shells architectures for fault detection are�

DICE� Direct Intelligent Control Expert System �Krijgsman� ������ for control
of highly nonlinear systems with unknown parameters� This shell is based on
the RETE algorithm �Forgy� ������ and permits fuzzy rules� direct feedback�
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model following� set point control� and adaptation�

REAKT� This object oriented shell �REAKT� ����� is intended for
multipurpose applications� Its main feature is that it is based on a

temporal and concurrent blackboard architecture �Hayes�Roth� ����� where
classes� objects and knowledge bases are managed� This permits parallel
communication between otherwise independent objects in the databases�

G�� G� �Gensym� ����� is one of the most common commercial shells for fault
detection now available� It is an object�oriented shell with a very enhanced
user interface that permits access to every variable and object of the system�

The Expert System is used in combination with any continuous simulation
technique in such a way that� when a malfunction occurs� the simulation
triggers the Expert System� and a session is started to reason about the

detected fault without stopping the simulation process�

Besides from Expert systems shells� there are lots of speci	c application

fault detection real�time Expert Systems� Examples of them are� an Expert
System with embedded Analytical Redundancy components and Automated
Statistical Diagnosis� methods for fault detection and isolation in process
plants �Fathi et al�� ������ a combination between an Expert System and

a Neural Network for pressure early warning functions in dangerous liquids
closed tanks �Rengaswamy and Venkatasubramanian� ������ an Expert System
using Qualitative Process Theory for on�line reasoning about the time pro	les
�derivatives� of electric power plant variables �Konstantinov and Yoshida�

������ DMP� Diagnostic Model Procesor� an Expert System based methodology
for thermal fault analysis of PWR nuclear reactors �Surgenor and Jofriet� ������
FDD� Fuzzy� Deep Knowledge�Based Fault Diagnosis System� for application
to continuous stirred tank reactors �Terpstra et al�� ������ MFM� Multilevel

Flow Modeling� an Expert System based on the G� real�time shell that uses a
description of topological and means�end relations between objects expressed
in a graphical language� and intended for fault diagnosis of �owing liquid

processes �Larsson� ������

In spite of being the most widely used qualitative fault detection technique�
Expert Systems still present serious drawbacks� Among them� their domain

dependence and sheer size are two of the most important ones� The general�
purpose domain�independent Expert System shells do not contain the domain
knowledge� in reality� gathering and encoding the domain�speci	c knowledge is

usually much more formidable a task than writing a general�purpose inference
engine� Moreover� Expert Systems for complex applications are usually

�Both techniques� Analytical Redundancy and Automated Statistical Diagnosis were
explained in the Quantitative Fault Detection section of this same chapter�
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designed from scratch� not even making use of one of the available shells for

reasons of e�ciency� Expert Systems su�er also from the often frightening
size of their knowledge bases� and usually have problems when dealing with
missing or inconsistent information�

����� Connectionist Systems

In contrast to Expert Systems� in which knowledge is expressed explicitly

in a knowledge base and where this knowledge base is separated from the
inference strategy� the connectionist approach presents a full integration of
the knowledge and the knowledge processing technique� Arti	cial Neural
Networks� are learning systems based on unstructured knowledge� usually

operating within a numerical framework �Wells� ������ They are much
simpli	ed models of biological neurons trying to mimic their behavior�

The soma of an arti	cial neuron is often represented by a weighted sum
of the input signals� followed by an appropriate non�linear function� This
function is called the activation function and determines the output of the
neuron� The activation function is usually related to a hard limiter or sigmoidal

function� An arti	cial neuron of this kind having a binary threshold as output
function is known as Perceptron �Minsky and Papert� ������ a basic element
of many Neural Network applications reported in the literature�

The combination of the input signal weights and the activation function
is referred to as a node� A Neural Network can be de	ned as a set of

interconnected nodes� The complete network is speci	ed by three features
�Krijgsman� ������

i� Network topology� A Neural Network consists of a number of
interconnected nodes and is usually organized into layers� Such networks
can be characterized as either single�layer networks or multi�layer
networks� A typical Neural Network has an input layer� an output

layer� and an optimal number of hidden layers in between� These hidden
layers are used for storing information� and their number is strongly
application dependent� The connections of the nodes can be such that
the information �ows in one direction only �from input to output�� or in

both directions introducing feedback�

ii� Control algorithm� Determines the way in which the network is

executed� and also dictates the communication between the network and

	Neural Networks from now on�
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its environment� For the case of feedback networks with intermediate

layers� a convergence is normally involved� The sequence of layers is
executed until the convergence criteria are met�

iii� Learning strategy� The weights on the interconnections in the network

are being modi	ed in accordance with a pre�speci	ed learning rule� unless
they are known in advance �so�called network synthesis�� Learning laws
determine how the network adjusts its weights by using error functions

of several kinds� According to �Wells� ������ there are basically three
learning strategies used in Neural Networks� They are�

� Supervised Learning� which occurs when the network is
supplied with the correct input and output values� and the weight

adjustments performed by the network are based on the error
between the desired and the calculated output values� using one
among a set of known error minimization algorithms� such as� for
example� backpropagation� or the Delta rule�

� Unsupervised Learning� which occurs when the network is
only provided with the input values� and the weight adjustments
are based only on the input values and the current network
output values following some correlation rule between the involved

neurons� This type of learning is typical of associative memory and
competitive architectures�

� Reinforced Learning� which occurs when the network is only

provided with the input values� and the weight adjustments are
based only on the input values and the current network output value
following a global performance measure that is being fed back to
the network� The weights are adjusted following this reinforcement

signal� This strategy is somewhere in the middle between supervised
and unsupervised learning�

The use of Neural Networks can be divided into two main phases� the learning

phase and the operating phase� In the learning phase� which normally occurs
while the network is o��line� the user provides the network with a number
of input patterns and possibly some output patterns also� and the network
adjusts its weights until convergence� During the operating phase� the network

computes an output given any input pattern� If feedback is present� the
network can adjust its weights during operation also� The time domain in
which the network operates can be either continuous or discrete� depending

on the network architecture and the application� Three of the most commonly
used network architectures in fault detection and troubleshooting are�
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� Multilayer Feedforward Networks� They have two or more layers

linked by strictly feedforward connections� i�e�� connections which pass
signals forward through successive layers but never back to preceeding
ones� Two early models with just two layers were the Perceptron

and Adaline networks� that proved capable of performing simple linear
classi	cation tasks� Usually this kind of networks makes use of supervised
learning algorithms� in particular backpropagation� which extends the
original network capabilities to more complex non�linear problems�

The success achieved with multilayer backpropagation networks in
many application areas has made this the most widely used network
architecture �Wells� ������

� Recurrent Networks� This networks permit feedback loops that
circulate information back through the same or previous layers�

Consequently� when input information is presented to the network� a
circular process of neural activity resonance is caused wherein the same
layers of neurons are activated repeatedly� Since each neuron is fully
interconnected with all other neurons� the input signals to each neuron

can be input signals to the network� or feedback signals from other
neurons� This network allows continuous modi	cation of the weights�
characterizing it as an adaptive network� Examples of such architectures
are� the single�layered Hop	eld network �Hop	eld� ����� with functions

of autoassociative memory� the two�layered ART and BAM networks�
and the multi�layered Jordan and Elman networks �Kr�ose and Van der
Smagt� ������

� Kohonen Network� Its structure is very similar to that of the Hop	eld
network� It is composed of a single layer with fully interconnected

neurons� Its main characteristic is that it has two di�erent sets of weights�
The 	rst one is used to control the interconnections between neurons
�feedback information�� whereas the second� which can be continuously
modi	ed� is used to process the input information� Usually� this kind of

network uses unsupervised learning algorithms �Kohonen� ������

Neural Networks have been successfully applied to various application domains�
such as� function approximation� identi	cation of dynamic systems� and
several control strategies including predictive� adaptive� supervisory� and fuzzy

control� Recently� Neural Networks have also been applied to fault monitoring
and troubleshooting of large�scale systems� for example� in nuclear power
plants �Bartlett� ����� Cordes� ����� Jouse� ����� ����� Jouse and Williams�

������ in chemical plants �Lee and Park� ����� Rojas�Guzman and Kramer�
������ in motion supervision �Kawato� ����� Houk et al�� ������ and airplane
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takeo� and landing maneuvers �Jorgensen and Schley� ������ General overviews

can be found in �Foss and Johansen� ����� Himmelblau� ����� Schenker and
Agarwal� ������

There exist many troubleshooting methodologies that combine Neural
Networks with some of the other qualitative or quantitative techniques� In
�Rengaswamy and Venkatasubramanian� ������ an integrated framework for

process monitoring� diagnosis� and control by means of the combination of
knowledge�based and Neural Network systems is presented� In �Krijgsman�
������ an advanced lookup table technique strongly related to the 	eld of neural
networks� the Cerebellar Model Articulation Controller �CMAC�� is presented�

Neural Networks are not so widely used as Expert Systems for fault
detection and troubleshooting purposes� however� they are gaining progressive

importance due to their simulation capabilities� There are 	elds in with Neural
Networks are already widely such as� Robotics �Sanderson� ������ autonomous
vehicles �Herman et al�� ������ and motion and trajectory planning �Nguyen and
Widrow� ������ The principal disadvantages of Neural Networks when applied

to large�scale systems are that they do not provide much insight into their
internal reasoning processes� and that they do not o�er any self�assessment
capabilities� i�e�� they do not check whether what they propose is �reasonable�
�fully consistent with the available information��

����� Model�Based Systems

These systems are a combination of qualitative simulation and some other
techniques �for example� those explained in the shallow and deep diagnostic
reasoning sections�� depending on the way in which the model is derived
�Feyock� ������ The model�based approaches are device independent�

They use knowledge about structure and behavior� and provide methodical
coverage� because the model�building process supplies a way of systematically
enumerating the required knowledge� The main problems are how to create
adequate models of complex non�linear behavior� and execution speed under

real�time constraints� Few model�based systems o�er abstraction capabilities
that would allow the system to reach a conclusion faster than by searching
through the entire search space�

When applied to large�scale systems� the combination of qualitative
simulation and model�based approaches seems to be very promising and

powerful� This methodology has a number of striking properties that
make it attractive for use in a� fault detection� b� fault isolation� c� fault
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characterization� and d� fault diagnosis in an automated fault monitoring

system�

In the model�based approaches� the knowledge can be captured using either

deductive techniques employing available meta�knowledge and reasoning on
the basis of 	rst principles� or inductive techniques such as neural networks or
inductive reasoners combined with reasoning on the basis of structure and�or

behavior� Numerous such systems have been built in the ��s and ��s exploring
a variety of problem domains such as electronic circuits �de Kleer� ����� Davis
and Hamscher� ������ hydraulic systems �Pan� ������ neurophysiology �First et
al�� ������ medicine �Patil et al�� ������ aerospace �Scarl et al�� ���
� �����

Enand and Scarl� ����� Scarl� ����a� ����b� ������ and dynamic systems
�Dvorak and Kuipers� ������ The major challenge with all these approaches is
making them adhere to real�time constraints�

Since the basis of the model�based approach is the interaction between
observation and prediction� a fundamental assumption is that� if the model
is correct� all the discrepancies between observation and prediction arise from

defects in the studied system� The tasks of a model�based reasoner applied
to diagnosis and troubleshooting can be summarized as �Davis and Hamscher�
������

i� to determine which of the system�s components could have failed in a
way that accounts for all the discrepancies observed�

ii� to characterize failures in a way that they can be identi	ed uniquely� i�e��
distinguished unambiguously from other failures� and

iii� to learn the possible behavioral modes of the system to such an extent
that one may be able to identify potential mishap before it ever occurs
for the purpose of preventing potential faults from ever happening�

To achieve these goals� model�based diagnosis needs some or all of the following

items�

� Observations of the system� normally consisting of measurements of its
inputs and outputs�

� A description of the system�s internal structure� normally given as a
listing of its components and their interconnections�

� A description of the behavior of each component� and their relationships
among each other�
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The major obstacle in designing model�based systems is the modeling phase�

Whereas the problem of how to apply model�based reasoning� once the
model is available� has been solved to a satisfactory degree� the problem of
modeling complex non�linear behaviors in a systematic and adequate fashion

remains largely unsolved� Consequently� the other partner of the combined
methodology� i�e�� qualitative simulation� will have to provide some help for
how to create models and how to select the appropriate one for the task at
hand�

����	 Qualitative Simulation

In recent years� several di�erent methodologies for qualitative description
of continuous�time processes have emerged� It all started with the �Na�'ve
Physics� approach proposed by Hayes �Hayes� ����� ���
a�� Its main purpose

was to capture physical process knowledge and common�sense knowledge in
a way that can be treated by computers� Since then� research in qualitative
simulation has followed two di�erent lines depending on the desired goal� in
the 	rst one� the objective is the qualitative prediction of behavior� whereas in

the second� the objective is to provide a reasonable cause�e�ect explanation�
The main approaches that evolved from the original Na�'ve Physics concept
are�

i� Common�Sense Reasoning� Proposed by many authors� particularly
by �Carbonell and Minton� ���
�� common�sense reasoning tries to

include common�sense knowledge in the simulation of physical systems�

ii� Qualitative Process Theory� Proposed by �Forbus� ����� Forbus and
Stevens� ������ this approach provides a language for specifying and
describing processes and their e�ects� working with the assumption that

any change in a physical system can be expressed as a qualitative process�
Re	nements of this methodology are presented in �Forbus� ����� ���
��

iii� Qualitative Di�erential Equations� Proposed by �Brauer and Nobel�
����� and resumed by �Kuipers� ������ this methodology provides a

qualitative description of system behavior from a qualitative description
of the system structure� This description is expressed by means of
qualitative di�erential equations� Improved results using this technique
are presented in �Kuipers� ����� ����� ����a� ����b��

iv� Envisionment and the Qualitative Physics of Conuences�

Originally proposed by �de Kleer and Brown� ����� and enhanced by �de
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Kleer and Brown� ������ this world view infers the qualitative behavior

of a physical system by creating qualitative physical laws for each of its
parts�

Since the �Na�'ve Physics Manifesto� �Hayes� ������ several di�erent techniques
have been developed without signi	cant success� except for those that combine

qualitative simulation with other methodologies� such as for example� fault
dictionaries� The main problem with qualitative simulation is its inherent
ambiguity in reasoning� For these reasons it was not possible to adapt any of

these methodologies to the problem of fault detection and troubleshooting in
large�scale systems� The main di�culties were�

�� So far� it seems impossible to avoid the explosion of the manifold of
feasible qualitative solutions� Consequently� these techniques can only be
applied to very simple situations� The methods don�t scale up properly�

and are practically useless when dealing with large�scale systems�

�� Frequently� some of the solutions o�ered do not have any physical

meaning� The self�assessment capabilities of these methods are thus
limited�

�� The strongly symbolic nature of the qualitative models does not allow
to represent the independent variable time in a quantitative fashion�
It is unclear how such models can be coupled to quantitative models�
Consequently� these methods do not lend themselves to a description at

varying levels of granularity consistent with the knowledge available for
di�erent subsystems�

�� Although these models are capable of capturing uncertainty and
informality with respect to the interrelations between system variables�
they require a deep and explicit knowledge of the internal structure of
the system to be modeled� Such knowledge may or may not be available�


� All of these techniques su�er basically from the same shortcomings�
Although each methodology uses a di�erent terminology� all of them are

in fact dealing with the same issues� They are not fundamentally di�erent
methods� only di�erent dialects of one and the same basic methodology�

Summarizing� all these methodologies are excellently suited for emulating
higher�level human reasoning processes by incorporating common�sense

knowledge� however� none of them has the capacity of being useful for solving
complex engineering problems�
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What is required� is a methodology� based on the same principles as those

mentioned earlier� that is capable of qualitatively describing and predicting
the behavior of a physical system� yet without the inherent shortcomings
of the aforementioned qualitative approaches� i�e�� a method that is capable

of interacting with quantitative subsystems �such a method would need to
treat time as a quantitative rather than qualitative variable�� that is able
to convert quantitative variables into qualitative variables with minimal loss
of information in the conversion processes� and 	nally� a method that can

produce a good estimate of quantitative behavior from qualitative reasoning�
In short� a qualitative simulation methodology is needed� whose knowledge
representation structures� pattern recognition algorithms� and knowledge
inferencing mechanisms are placed somewhere in between the pure qualitative

and the pure quantitative modeling and simulation techniques�

On these grounds� Fuzzy Inductive Reasoning� a model�based approach for

qualitative modeling and simulation� originally derived from General Systems
Theory� is most promising� because it overcomes many of the earlier mentioned
problems� The methodology will be fully explained in the next chapter�

Some of the principal advantages of Fuzzy Inductive Reasoning are the
following�

�� Inductive reasoning allows qualitative models to treat time as a

continuous �quantitative� variable� This is of primary importance if
modeling and simulation of mixed quantitative and qualitative systems
is to be attempted�

�� The technique can be applied to any system available to experimentation
and observation� Inductive reasoning is fully based on behavior� thus�

there is no need for knowing the internal structure of the system�

�� The methodology contains an inherent model validation mechanism
inside its qualitative simulation engine preventing it from reaching
conclusions that are not justi	able on the basis of the available facts�

�� Inductive reasoners operate internally in a qualitative fashion just like
knowledge�based reasoners� Therefore� it is possible to apply meta�

knowledge to improve the performance and quality of the inference
engine� and it is also possible to trace back the reasoning process if
desired�

Although Fuzzy Inductive Reasoning is the driving tool of the overall
methodology advocated in this thesis� Reconstruction Analysis� a tool for
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subsystem identi	cation and variable selection through causality analysis and

re	nement procedures� will also be used to meet the requirements imposed by
the need to cope with large�scale systems�



Chapter �

Fuzzy Inductive Reasoning

��� Introduction

Inductive Reasoning is a model�based approach for qualitative modeling and
simulation originally derived from General Systems Theory� The research on
inductive reasoning has had three di�erent stages over the past �� years� The
basic idea was originally conceived by George J� Klir at the State University

of New York at Binghamton� as part of a General Systems Problem Solver�
The 	rst implementation was carried out by one of Klir�s students by the
name of Hugo J� Uyttenhove� and was 	rst published as his Ph�D� dissertation
�Uyttenhove� ������ He named his inductive reasoning tool SAPS� which stands

for Systems Approach Problem Solver� The earliest article in which the SAPS
methodology was presented is �Uyttenhove� ������

In a second stage� the methodology was re�elaborated and reimplemented
by Fran(cois E� Cellier and three of his students at the University of Arizona
at Tucson �Cellier and Yandell� ����� Cellier� ������ They called the new
methodology the Systems Approach Problem Solver II �SAPS�II�� The 	rst

time SAPS�II was applied to a non�trivial engineering problem is presented in
a Master Thesis of one of Cellier�s students �Vesanter�a� ������ One of the main
features included by this research group was a fuzzy extension to the original

tool� The fuzzy SAPS�II was 	rst published in �Li and Cellier� ������ and is
fully explained in �Cellier� ����a��

��
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The third stage has been developed at the Universitat Polit$ecnica de

Catalunya UPC �Polytechnic University of Catalonia� at Barcelona� in a
joint project between the Cybernetics Institute and the Control and Systems
Engineering Department� in cooperation with the Electric and Computer

Engineering Department of the University of Arizona� Although a lot of
research had previously been done on inductive reasoning� at the beginning of
this third stage� the SAPS�II methodology was still a somehow rudimentary
and heuristic tool that had not yet been applied to any real�life problem�

Thus� the main purpose of this third stage was that of improving the
SAPS�II methodology and implementation in such a way that it could be
applied to solve complex real�life problems� Three Ph�D� students� directed
jointly by Fran(ccois E� Cellier from the University of Arizona and Rafael

M� Huber from the Cybernetics Institute at the UPC� were responsible for
upgrading� improving� and applying SAPS�II to solving di�erent engineering
and biomedical problems� The credit for upgrading and improving the SAPS�
II methodology is shared by the three Ph�D� students� and consequently a text

similar to this chapter is present in all three dissertations� The three Ph�D�
theses are �Nebot� ����� Mugica� ���
� and the present thesis�

A number of papers on the improved SAPS�II methodology have already
been published� Di�erent defuzzi	cation methods for inductive reasoning are
presented and compared in �Mugica and Cellier� ������ A comparison between

a crisp inductive reasoner and a fuzzy inductive reasoner can be found in �de
Albornoz and Cellier� ����a� de Albornoz and Cellier� ������ The limitations
of predictability of behavior with inductive reasoning are stated in �Nebot et
al�� ������

In this chapter� a full description of the Fuzzy Inductive Reasoning �FIR�
methodology shall be provided� This will include a discussion of its origins

from General Systems Theory� and precise details shall be given of how the tool
works� of what have been the improvementsmade to the original tool that allow
FIR to tackle� in a qualitative fashion� quantitative complex real�life problems�
To this end� an application example shall also be included with two purposes

in mind� to show all phases of the FIR methodology� and to demonstrate the
practicality of combining quantitative and qualitative simulation�

��� Systems Problem Solving

All activities involved in the study of the properties characterizing a system

and the problems that emanate from this characterization are now becoming
identi	ed with the general term of system science� System Science is an
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interdisciplinary science� For this reason� it should be viewed as a new

dimension in science rather than as a new science� Its main objective is
to provide potential users in various disciplines and problem areas with
methodological tools for studying relational properties of various classes of

systems and for solving systems problems� i�e�� problems that deal with the
relational aspects of systems �Klir� ���
a��

System problem solving is the discipline of systems science in charge of
the development of methodological tools for all recognized types of systems
problems� As far as the characteristics of some kind of system can be
generalized� that system can be treated as a general system� Then� a

methodology to solve problems related to that particular kind of system can
be called a General Systems Problem Solver �GSPS�� In Klir�s own words�
�a general systems problem solver is a conceptual framework through which
types of systems problems are de	ned together with methodological tools for

solving problems of these types�� As mentioned earlier� the inductive reasoning
technique was originally developed as part of Klir�s General Systems Problem
Solver called Systems Approach Problem Solver �SAPS��

For us� a system is a set of properties and relations between them that
can be characterized� This characterization depends on the level of knowledge
abstraction of the system� i�e�� it depends on an epistemological hierarchy of

systems�

����� Epistemological Levels of Systems

An epistemological hierarchy of systems must be considered if the development
of any methodological tool for systems problem solving is to be attempted�
Starting at level one� the amount of knowledge in the systems increases as the

hierarchical ladder is climbed� The di�erent epistemological levels of systems
are derived from two simple notions�

a� A region in the universe must be de	ned where the system and the

observer coexist and interact� A system in this context can be interpreted
as a set of relations between some objects that belong to that region of
the universe and in which the observer is interested�

b� A set of variables to represent the system has to be chosen and classi	ed�
normally� into input and output variables� which is a natural classi	cation

of variables� input variables depend on the environment and control the
output variables�
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A simpli	ed representation of the 	ve epistemological levels can be seen in

Figure ����� They are�

i� Level one� Source System�

ii� Level two� Data System�

iii� Level three� Generative System�

iv� Level four� Structure System�

v� Level 	ve� Meta System�

Source Systems� They are at the lowest epistemological level� Also known
as Dataless Systems� they represent the system as it is recognized by the
observer� The amount of information present at this level represents the basic

description of the problem in which the observer is interested� and consequently
this information must include the variables that are relevant to the problem�
the input�output relationships among these variables� and the states these

variables can assume along their time�history� The number of states� or levels�
that each variable can potentially assume is essentially problem dependent� It
should be kept as low as possible without unacceptable loss of information� The
lower level systems are contained in those that are at higher epistemological

levels� thus the Source system is included in all of the higher level systems� The
reason�s� for the observer to have chosen the system as such is not arbitrary
and can be interpreted as the link between this system and its environment
�Vesanter�a� ������

Data Systems� Data Systems are located at the next epistemological level
in the hierarchy� that is� at level �� They include the Source System and

additionally� the observed or measured time histories of all its variables� i�e��
a Source System supplied with data� Data may be obtained by simulation
of another system model� or by observation in system analysis problems� or
may be imposed as desired states in system design problems� Since the Source

Systems include the states the variables can assume along their time histories�
the data supplied to the Data System must be represented in terms of those
states� i�e�� data become qualitatively classi	ed into the states�

Generative Systems� Located at level �� Generative Systems �also known
as Behavior Systems� include� in addition to the knowledge of Source and
Data Systems� the time�invariant relationships existent among their variables�

�This �gure has been taken from 	Klir� 
���a�
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Data  Description  Language
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Figure ���� Klir�s epistemological levels of systems�

These relationships are really translation rules that can be used to generate
new states of the variables within the time span de	ned in the Data Model�
The generation of new states for each variable is the feature that enables the

inductive reasoning capabilities of the methodology as will be shown later in
this chapter� when the qualitative modeling technique based on Optimal Mask
Analysis is explained� On the same inductive reasoning capabilities of the
generative systems is also based the design of a Fault Monitoring System built

to detect misbehavior� transients� faults� and structural changes in a modeled
system�

Structure Systems� Located at level �� Structure Systems are de	ned in
terms of a set of Generative Systems that can be viewed as a set of subsystems
of the overall system� The knowledge included in this level� besides all the
knowledge of the preceding levels� is composed of the causal and temporal

relationships among the subsystems� In chapter �� Reconstruction Analysis� a
level � methodology used to obtain minimum sets of meaningful variables to
be treated as subsystems� will be explained�

Meta Systems� Meta Systems constitute the 	fth and 	nal level of the
epistemological hierarchy� They are composed of a set of Structure Systems

that are required to share the same Source System� and a set of meta�rules
describing relationships among these systems�
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The Fuzzy Inductive Reasoning approach used in this dissertation is based

on the aforementioned epistemological hierarchy of systems� Each of its
modules has a correspondence with one of the epistemological levels� and
basically� the methodology reaches level �� i�e�� the behavioral level� To be

more precise� Fuzzy Inductive Reasoning involves levels �� �� and �� and in
some way also level �� because one of its tools� namely the Optimal Mask
Analysis� a tool for reasoning about the behavior of a system while deciding
something about its structure that will be explained later in this chapter�

bridges the gap between the epistemological levels � and �� since it draws its
inputs from level �� but delivers outputs at level ��

��� Fuzzy Inductive Reasoning Methodology

The Fuzzy Inductive Reasoning methodology has experienced lots of changes
as it was stated at the beginning of this chapter� In this section� the up�

to�date methodology is presented� i�e�� the ultimate version of SAPS�II� At
this moment� SAPS�II is a Fortran �� coded system with interfaces to Matlab
�MathWorks� ������ CTRL�C �SCT� ���
�� and ACSL �MGA� ������

Fuzzy Inductive Reasoning �FIR from now on� is a technique for
constructing qualitative models that are represented by a special class of fuzzy
Finite State Machines �FSMs�� and that are used to qualitatively simulate the

behavior of a given system� In inductive reasoning� induction stands for the
fact that a set of rules can be derived from measurement data alone� rather
than through any other type of knowledge or meta�knowledge� and reasoning
stands for the fact that a set of rules� and as a consequence new knowledge� is

obtained from previously available knowledge�

As already stated� the FIR methodology is entirely data�driven�

Consequently� it does not require any knowledge of the internal structure of the
system under investigation or any other knowledge except for time histories
of input�output behavior� However� available a priori structural� expert� or

experiential knowledge can be used to restrict the number of generated rules
and the span of the search space� An inductive reasoning model� constructed
on the basis of measurement data� qualitatively represents the input�output
behavior of the modeled system in the vicinity of an operating point or an

operating trajectory�
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����� De
nitions

Before starting to explain in detail how FIR works� it may be helpful to provide

a de	nition of some terms that shall be frequently met in the context of the
FIR methodology� The de	nition list is ordered following the natural order of
the FIR methodology�

� Fuzzy Recoding� The process that converts a single quantitative value

into a qualitative triple� also known as fuzzi	cation�

� Raw Data Matrix� Is where the measurement data �observations� are
stored� Each column of the raw data matrix represents one of the
quantitative variables� and each row represents one time point�

� Qualitative Data Model� Is where the recoded triples corresponding
to the measurement data are stored� The qualitative data model consists

of three matrices of the same size as the raw data matrix� one holding
the class values� the second containing the fuzzy membership values� and
the third storing the side values�

� Mask� Is a matrix representation of a dynamic relationship among
qualitative variables� Each column of the mask represents one qualitative

variable� and each row represents one time point� The negative elements
of the mask represent relative positions of inputs to the qualitative
functional relationship �the so�called m�inputs�� the positive element
marks the position of the output of this relationship �the m�output��

and zero elements denote forbidden connections among the qualitative
variables�

� Mask Candidate Matrix� Is an ensemble of all possible masks from
which the best is chosen by a mechanism of exhaustive search� Here� the
negative elements denote positions of potential inputs to the mask� The

meaning of the positive and zero elements is the same as in the case of
the mask�

� Complexity of a Mask� Is the number of non�zero entries in a mask�
i�e�� the number of allowed relationships between qualitative variables in
the mask�

� Depth of a Mask� Is the number of rows of the mask matrix� It

determines the time span covered by the mask at any point in time�

� Optimal Mask� Is a matrix representation of the most plausible
qualitative causal and temporal relationship among the recoded
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variables� i�e�� it constitutes the qualitative model� The optimal mask

is used to obtain the set of rules called the behavior matrix�

� Quality of a Mask� Is a measure of the optimality of a mask� evaluated
with respect to the maximization of its forecasting power� The
Shannon entropy in combination with the complexity of the mask or

the observation ratio� are the measures used to determine the uncertainty
associated with forecasting a particular output state given any legal input
state�

� Mask History Matrix� It consists of a horizontal concatenation of all

best masks found for each level of allowed complexity� One of these
masks is the optimal mask�

� Optimal Mask Analysis� The process that generates a qualitative
model by analyzing the causal and temporal relationships present in the

episodical behavior� i�e�� the process that leads from the qualitative data
model to the optimal mask�

� Input�Output Matrix� Is the static relationship formed by shifting
the mask over the qualitative data model extracting those values that

coincide with the m�inputs and m�output of the mask� The extracted
values are written next to each other in one row� Each row is called a
state of the system and consists of an input state and an output state�

� Input State and Output State� The input state denotes the vector

of values of all the inputs belonging to the state� and the output state is
the value of the only output of the state�

� Behavior Matrix� Is the input�output matrix with its relationships
sorted in alphanumerical order� The behavior matrix is the ordered set
of rules that� for any given input state� returns the output that is most

likely to be observed�

� Fuzzy Forecasting� The process that carries on the qualitative
simulation predicting the future behavior of the qualitative variables�

� Regeneration� The inverse process of the fuzzy recoding also known as

defuzzi	cation� It converts a qualitative triple into a single quantitative
value�
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����� Obtaining Data

The FIR methodology requires data �behavior trajectories in FIR terminology�

for the inductive reasoner� To obtain this data� two important processes� not
FIR processes but directly related with them� must be performed before any
inferencing can be done� These processes have to do with the way in which
information is produced� and with the way in which variables are selected�

These processes concern �i� the excitation of the system� and �ii� the selection
of variables�

	�	���
 Excitation of the System

In order for FIR to be able to learn the behavior of a certain system� this

system must exhibit the highest possible number of behavioral patterns� i�e��
all operating frequencies must be richly represented� The higher the number
of behavioral patterns observed� the better shall be the characterization of the
system� since FIR cannot predict what it has never observed� A cheap way

of exciting a system is with random binary noise� In this way the complete
dynamics of the system can be properly characterized� however� not all possible
system states are captured since the random binary noise produces extreme

dynamic conditions� To overcome this problem� an excitation strategy of
mixing random binary noise inputs and random harmonic functions of long
periods is normally used� depending on the application�

The system�s excitation can turn out to be a very di�cult task� If a model is
available� as it usually happens in engineering� the excitation can be performed
on the model without any danger to the real system� However� if the system

cannot be modeled in an accurate way� which may happen because e�g� its
internal mechanisms are not fully known� or if the system is a large�scale
system too complex to be modeled in full� the excitation should be performed
on the system itself� An additional problem occurs if the qualitative model

is to be used for fault diagnosis� The quantitative model that is available
may have been validated only for operation within the normal operating range
of the real system� and may not re�ect the behavior of the real plant when
operated outside that region� Also� if the quantitative systemmodel is intended

for safety or training operations� it may not support modes of excitation that
would drive the operating point of the model away from the region that the real
plant is supposed to be operated in� In practice this means that� since a real

system is not necessarily available for excitation in such a way that a proper
characterization can be performed by FIR� the system may only be available
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for modeling and simulating in some but not all of its possible dynamic states�

	�	���� Variable Selection

The variable selection process contains two separate aspects� One has to do
with the selection of the variables that are going to be used as outputs� i�e��
the variables for which future values should be predicted� This selection must

always be carried out by the modeler before the process of qualitative modeling
can be attempted�

The other aspect has to do with the decision� which among the set of
available variables should be considered as potential inputs� In a system of
small or medium size� where the total number of variables is kept within
reasonable limits� the FIR methodology can look at all variables deciding�

which ones are strongly correlated with each other� and which others show
only weak cross�correlations� A meaningful selection of input variables will
include those variables that exhibit strong cross�correlations with the selected
output variable� yet weak cross�correlations among each other�

In a large�scale system� the inductive reasoner cannot deal with the
overwhelming number of variables inherent of such systems� Thus a

preselection of a subset of prospectively good candidate variables must be
performed� This task of selecting a minimum set of meaningful variables
can be done in several ways� It can be done by the modeler if he or
she possesses structural knowledge about the system� It can also be done

by means of analyzing di�erent subsets of variables in sequence using the
Optimal Mask Analysis tool that will be explained later in this chapter �de
Albornoz and Cellier� ����b�� Finally� another way in which a minimum set of
meaningful variables can be preselected is by means of Reconstruction Analysis

�De Albornoz and Cellier� ������ a methodological tool that will be presented in
Chapter 
� The di�erent methods will be compared to each other in Chapter ��

����� Fuzzi
cation

The FIR methodology rests basically on two methodological pillars�
Qualitative Modeling through Optimal Mask Analysis and Qualitative
Simulation through Fuzzy Forecasting� FIR also needs two converter modules�

one that converts quantitative information into qualitative information� and
another that performs the reverse operation� Thus the four main processes in
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FIR are�

i� Fuzzi	cation�

ii� Qualitative Modeling�

iii� Qualitative Simulation�

iv� Defuzzi	cation�

All four of these functions have their foundations in General System Theory�

The entire FIR methodology can be seen in Figure ���� The four tools are now
described�

MEASURED  DATA OUTPUT  DATA
For  Qualitative  Modeling

  and  Simulation

F U Z Z Y
R E C O D I N G

F U Z Z Y
O P T I M A L   M A S K

F U Z Z Y
F O R E C A S T I N G

Quantitative  Raw  Data

Qualitative  Raw  Data

Inference
Engine

Qualitative
Modeling

Qualitative
Simulation

R E G E N E R A T I O NFuzzification Defuzzification

Figure ���� Fuzzy Inductive Reasoning process�

Inductive reasoners� like all other qualitative reasoners� base their reasoning

on discrete �qualitative� variables� To this end� continuous input signals that
constitute the measurement data must be converted to discrete values� In the
language of fuzzy inductive reasoning� the discretization process is referred

to as Fuzzy Recoding� In the fuzzy systems literature� this process is usually
referred to as fuzzi�cation�
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Recoding denotes the process of converting a quantitative variable to a

qualitative variable� In general� some information is lost in the process of
recoding� Obviously� a temperature value of ��oC contains more information
than the value �normal�� Fuzzy recoding avoids this problem by converting

a single quantitative value into a qualitative triple that includes a discrete
�class� value� a �fuzzy membership� value� and a �side� value��
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Figure ���� Typical membership functions used in the process of Fuzzy
Recoding�

Figure ��� shows the fuzzy recoding of a variable called �environmental
temperature�� For example� a quantitative temperature of �� degrees
Centigrade is recoded into a qualitative value of )normal� with a fuzzy

membership function of ����
 and a side function of )right�� Thus� a single
quantitative value is recoded into a qualitative triple� Any temperature with a
quantitative value between ��oC and ��oC will be recoded into the qualitative
value )normal�� The fuzzy membership function denotes the value of the bell�

shaped curve shown in Figure ���� always a value between ��
 and ���� It was
decided to use bell�shaped �normally distributed� fuzzy membership functions
rather than the more commonly used triangular ones� These membership

�One of the current lines of research in FIR deals with the introduction of additional
information about the qualitative derivative of the variables� Although fuzzy recoding does
not lose any information up front� as shall be shown shortly� this does not guarantee that
the total information available will be utilized in the process of fuzzy inferencing� It may
make sense to introduce redundancy into the qualitative data model in order to reduce
the risk of losing information later on in the inferencing process� To this end� Causal
Inductive Reasoning �CIR�� a new approach to inductive reasoning based on FIR� recodes
quantitative values into qualitative quadruples� Each quadruple contains the same three
pieces of information as used in FIR� plus a qualitative derivative value that indicates
whether the recoded variable is currently increasing� decreasing� or staying at about the
same level 	Cellier and L�opez� 
���� However� this line of research was not pursued by the
author of this thesis�
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functions have a value of ��� at the arithmetic mean value mui of any two

neighboring landmarks �the borderlines that separate two qualitative classes��
and a value of ��
 at the landmarks themselves�

One problem remains to be discussed� How normal is normal Obviously�
qualitative terms are somewhat subjective� which makes the concept of
landmarks a treacherous one� Is it really true that an environmental

temperature of ����oC is �normal�� whereas an environmental temperature
of ����oC is �warm� Fuzzy measures were introduced to inductive reasoning
as a technique to deal with the uncertainty of landmarks� Instead of saying
that the environmental temperature is �normal� for values below ��oC and

�warm� for values above ��oC� a fuzzy measure allows us to specify that� as
we pass the value ��oC in the positive direction� the answer �normal� becomes
less and less likely� whereas the answer �warm� becomes more and more likely
�Li and Cellier� ������

The membership functions can be easily calculated using the equation�

Membi  exp ���i � �x� �i�
�� �����

where�

x  continuous variable to be recoded�
�i  algebraic mean between two neighboring landmarks�
�i  is determined such that the membership function Membi

degrades to a value of ��
 at the landmarks�

The 	rst and last membership functions are treated a little di�erently� Their
shape ��i� value is the same as for their immediate neighbors� and they are
semi�open� Contrary to other fuzzy approaches� the tails of the membership

functions �Membi � ��
� are ignored in the method described in this thesis�
The decision to ignore the tails of the membership functions is related to the
selection of the fuzzy inferencing technique� and is justi	ed in �Mugica and
Cellier� ������

The side function indicates whether the quantitative value is to the left or
to the right of the maximum of the fuzzy membership function� In this way�

the class and side values can be used to process the available information in a
qualitative fashion� whereas the fuzzy membership functions allow to preserve
more quantitative information in the reasoning process� The qualitative

analysis allows to generate quickly a rough qualitative response� whereas the
fuzzy membership functions can then be used to smoothly interpolate between
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neighboring qualitative class values� In this way� an inductive reasoning model

is able to preserve some numerical information about the system under study�
information that enables the modeler to undo the process of fuzzy recoding�
thereby making a prediction in quantitative terms� By adding the side value

information to the qualitative triple� the complete quantitative information is
preserved in a concise and easily reversible format without need for multiple
class assignments� as long as no fuzzy membership functions with a �at top
�like trapezoidal membership functions� are being used� Thus� the qualitative

triple contains the same information as the original quantitative variable�
Therefore� our approach to fuzzi	cation can indeed be thought of as a process
of recodi	cation�

The recoded data can be thought of as the Data Model of the epistemological
hierarchy of systems previously de	ned� and can be represented through three
nrec � nvar matrices� where nrec is the number of data recordings collected

in the covered time span� and nvar is the number of variables present in the
model� This is a matrix representation of the episodical behavior �time�history�
of the system� where the input variables are normally located in the leftmost
columns� and time increases from top to bottom of the three matrices� In FIR

terminology� the three matrices together are called the Qualitative Data Model�

	�	�	�
 Qualitative Levels and Landmarks

At this point� the following questions can be raised� How many discrete levels
should be selected for each state variable� and where should the borderlines
�named landmarks in FIR terminology� be drawn that separate neighboring

regions from each other

From statistical considerations� it is known that� in any class analysis� each

legal discrete state should be recorded at least 	ve times �Law and Kelton�
������ Thus� a relation exists between the total number of legal states and the
number of data points required to base the modeling e�ort upon�

nrec � 
 � nleg  
 �
Y
�i

ki �����

where�
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nrec  total number of recordings� i�e�� total number of observed states�
nleg  total number of distinct legal states�
i  index that loops over all variables in the state�
ki  number of levels that the ith variable can assume�

If the number of variables is given �as it usually happens in small� to medium�
sized systems�� the number of recordings is predetermined� and it is assumed
that all variables are recoded into the same number of levels� then the optimum
number of levels� nlev� of all variables can be found from the following equation�

nlev  round �
nvar

q
nrec�
 � �����

For reasons of symmetry� an odd number of levels is often preferred over an

even number of levels� Abnormal states ��too low�� �too high�� and �much
too low�� �much too high�� are grouped symmetrically about the �normal�
state�

The number of levels chosen for each variable is very important for several
reasons� This number in�uences directly the computational complexity of
the inference stage� Traditional fuzzy systems usually require between seven

and �� classes for each variable �Aliev et al�� ����� Maiers and Sherif� ���
��
An exhaustive search in such a high�dimensional discrete search space would
be very expensive� and the number of classes should therefore be reduced�
if possible� to help speed up the optimization� It was shown in �Mugica and

Cellier� ����� that the selected fuzzy inferencing technique makes it possible to
reduce the number of levels down to usually three or 	ve� a number con	rmed
by several practical applications �Vesanter�a� ����� de Albornoz and Cellier�
����a� de Albornoz and Cellier� ����b� Nebot� ����� Mugica� ���
��

Once the number of levels of each variable has been selected� the landmarks
must be chosen to separate neighboring regions from each other� There are

several ways to 	nd a meaningful set of landmarks� Most frequently used is an
approach in which each class is assigned the same number of recoded points�
This method is based on the idea that the expressiveness �or information
content� of the model will be maximized if each level is observed equally often�

In order to distribute the observed trajectory values of each variable equally
among the various levels� they are sorted into ascending order� the sorted
vector is then split into nlev segments of equal length� and the landmarks are

chosen anywhere between the extreme values of neighboring segments� e�g�� as
the arithmetic mean values of neighboring observed data points in di�erent
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segments�

In some cases� an equal distribution of data points among levels may not be
suitable� however� For example� the designation of environmental temperature

values as �cold�� �moderate�� or �hot�� for example� does not depend on
available measurement data� but on common sense� Thus� sometimes it may
be more appropriate to ask one or several �experts� where the borders should

be drawn between neighboring classes� rather than determine these values in
an automated fashion�

Also� the assumption that each variable should be recoded into the same

number of classes does not always hold� For example� it frequently happens
that one or several of the measurement variables are binary signals� It evidently
makes no sense to recode a binary signal into three levels�

The SAPS�II function to perform fuzzy recoding on the raw data model
using the Matlab interface is called recode�

�c�m� s�  recode �meas��� i���fuzzy�� from� to�

where the input variables stand for�

meas��� i�  is the raw data matrix including all rows and one column
corresponding to all possible states of one of the variables
to be recoded�

�fuzzy�  tells SAPS�II that the fuzzy option has been selected�
from  indicates the previously computed landmarks�
to  indicates the corresponding names for the qualitative levels

�)��� )��� )��� etc��

The output variables stand for�

c  is the vector of recoded class values of state i�
m  is the vector of recoded membership function values of state i�
s  is the vector of recoded side values of state i�

����� Qualitative Modeling

By now� the quantitative trajectory behavior �the raw data model� has been
recoded into a qualitative episodical behavior� and has been stored in a
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qualitative data model �consisting of three separate matrices as explained in

the preceding section�� Each column of the qualitative data model represents
one of the observed variables� and each row represents one time point� i�e�� one
recording of all variables� or one recorded state� The class values are in the sets

of legal levels that the variables can assume� In the current implementation of
FIR� they are all positive integers� usually ranging from )�� to )��� )�� to )
�� or )��
to )��� since SAPS�II employs integers instead of symbolic values to represent
qualitative classes �levels�� In an inductive reasoning system coded in LISP or

Prolog� symbolic names would probably be preferred� whereas in an inductive
reasoning system coded in a predominantly numeric software such as Matlab
or CTRL�C� integers will be the representation of choice� From a practical
point of view� it really does not matter� which of the two representations is

being used� since one can easily be mapped into the other�

	�	���
 Masks as Qualitative Models

How does the episodical behavior support the identi	cation of a model of a
given system for the purpose of forecasting its future behavior for any given

input stream

The input�output �trajectory� behavior of the system to be modeled has

been recorded� recoded into a qualitative �episodical� behavior� and is now
available for modeling� It is assumed that all inputs to the real system and
a set of measurable outputs have been recorded� The trajectory behavior can

thus be separated into a set of input trajectories� ui� concatenated from the
right with a set of output trajectories� yi� as shown in the following example
containing two inputs u� and u�� and three outputs y�� y�� and y��

�
BBBBBBBBB�

time u� u� y� y� y�

��� � � � � � � � � � � � � � � �

	t � � � � � � � � � � � � � � �

� � 	t � � � � � � � � � � � � � � �

� � 	t � � � � � � � � � � � � � � �
���

���
���

���
���

���
�nrec � �� � 	t � � � � � � � � � � � � � � �

�
CCCCCCCCCA

�����

In order to avoid possible ambiguities� it is de	ned that the terms �inputs�
and �outputs�� when used in this dissertation without further quali	er� shall

always refer to the input and output variables of the subsystem to be modeled
by the qualitative reasoner�
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In the process of modeling� it is desired to discover 	nite automata relations

among the recoded variables that make the resulting state transition matrices
as deterministic as possible� If such a relationship is found for every output
variable� the behavior of the system can be forecast by iterating through the

state transition matrices� The more deterministic the state transition matrices
are� the better is the certainty that the future behavior will be predicted
correctly�

A possible relation among the qualitative variables for this example could
be of the form�

y��t�  *f�y��t� �	t�� u��t� 	t�� y��t� 	t�� u��t�� ���
�

Equation ���
� can be represented as follows�

�
B�

tnx u� u� y� y� y�

t� �	t � � � � ��
t� 	t � �� �� � �
t �� � !� � �

�
CA �����

The negative elements in this matrix are referred to as m�inputs� M�inputs
denote inputs of the qualitative functional relationship� They can be either
inputs or outputs of the subsystem to be modeled� and they can represent

di�erent time instants� The above example contains four m�inputs� The
sequence in which they are enumerated is immaterial� They are usually
enumerated from left to right and top to bottom� The positive value denotes
the m�output� In the above example� the 	rst m�input� i�� corresponds to the

output variable y� two sampling intervals back� y��t��	t�� the second m�input
refers to the input variable u� one sampling interval in the past� u��t � 	t��
the third m�input corresponds to the output variable y� one sampling interval
in the past� y��t � 	t�� the fourth m�input refers to the input variable u� at

the current sampling interval� u��t�� and the only m�output corresponds to
the output variable y� at the current sampling interval� y��t�� This is exactly
what Equation ����� represents�

In inductive reasoning� such a representation is called a mask� A mask is
a matrix representation of a translation rule relative to a given Data Model�

i�e�� it is a matrix representation of the Generative or Behavior Model of the
system� In FIR terminology� a mask is the qualitative model of the given
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system and denotes the dynamic relationship among its qualitative variables�

A mask has the same number of columns as the episodical behavior to which it
should be applied� that is the number of input and output variables nvar� and
it has a certain number of rows� The number of rows of the mask matrix is

called the depth of the mask� It is related to the number of sampling intervals
that the mask covers� The mask represented by Equation ����� has a depth of
three�

The mask can be used to �atten a dynamic relationship out into a static
relationship� It can be shifted over the qualitative data model� the selected
m�inputs and m�output can be extracted from the qualitative data� and they

can be written next to each other in one row of the so�called input
output
matrix� Figure ��� illustrates this process� After the mask has been applied
to the qualitative data� the formerly dynamic episodical behavior has become
static� i�e�� the relationships are now contained within single rows�
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Figure ���� Flattening dynamic relationships through masking�

Each row of the input�output matrix is called a state of the system� The
state consists of an input state and an output state� The input state denotes

the vector of values of all the m�inputs belonging to the state� and the output
state is the value of the single m�output of the state� The set of all possible
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states is referred to as the set of legal states of the qualitative model� Thus� a

model with nvar number of variables� each of which being recoded into k levels�
has knvar legal states�

Note that� for reasons of causality� the mask�s onlym�output must always be
located in the bottom row of the mask� corresponding to the current sampling
interval t� which means that� as long as the m�input variables are available�

the m�output variable can be obtained� which gives the mask generative
capabilities� Taking the example of Equations ���
� and ������ the state of
the m�output y� at the next sampling interval� y��t! 	t�� represented by the
relationship�

y��t! 	t�  *f�y��t� 	t�� u��t�� y��t�� u��t! 	t�� �����

which can be interpreted as the mask�

�
B�

tnx u� u� y� y� y�

t� 	t � � � � ��
t � �� �� � �
t! 	t �� � !� � �

�
CA �����

can be generated or forecast if them�input variables� one sampling interval into
the future� are known� In this example� y� is not the only output variable of
the system� y� and y� are also outputs and must be obtained as well� however�

FIR does not permit causal dependencies between systems outputs to avoid
algebraic loops� For that reason� y��t� and y��t� in Mask ������ and y��t! 	t�
and y��t! 	t� in Mask ����� are zero� which means forbidden connections� or
forbidden dependencies� The variables y� and y� should be computed using a

di�erent mask for each of them� The mask generating y� should include zeros
in the bottom row for the variables y� and y�� and the one computing y� should
include zeros in the same row for y� and y��

Until now� we only used the class values in the computation of the
input�output matrix� However� also the membership values are useful� The
fuzzy membership value associated with the class value of a variable is a

measure of the con�dence that we have in the correctness of its assignment�
An entire observation �input�output state� contains one or several input
variables and one output variable� Each of them has a class value and a

fuzzy membership value associated with it� and somehow� we need to declare
what con	dence value we assign to the observation as a whole� The con	dence
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of an observation Confobs is de	ned as the joint membership of all the inputs

and the single output associated with that observation �Li and Cellier� ������

In FIR� the joint membership of i membership functions is de	ned as the

smallest individual membership��

Membjoint  
�
�i

Membi  inf
�i
�Membi�

def
 min

�i
�Membi� �����

Thus the con	dence of a particular observation is de	ned as�

Confobs
def
 min

�i
�Membi� ������

In FIR� the function�

�IOmat�Conf �  	omodel �class�Memb�mask�

is used to compute the input�output matrix together with its associated vector
of observation con	dence values from the class and membershipmatrices of the
qualitative data model and a given mask�

The same input�output state �or observation� may have been observed
several times in the past� As the same input�output state is observed again and

again� the con	dence in the correctness of that state grows� Thus� FIR de	nes
the con	dence of the ith input�output state� ConfIO state�i�� as the sum of the
con	dences of its observations�� i�e�� all input�output states that coincide in
their class values�

ConfIO state�i�
def
 
X

Confobs�i� ������

The FIR function�

�Beh�ConfIO�  fbehavior �IOmat�Conf�

�Some fuzzy approaches de�ne the joint membership value as the product of the
membership values of its members�

�Some fuzzy approaches de�ne the accumulated con�dence value of a state as the largest
of the individual con�dence values of its observations�
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is used to compute an ordered list of all input�output states �the behavior of

the input�output matrix� together with the vector of accumulated con	dence
values in each of the observed input�output states�

	�	���� Sampling Interval

It has been discussed in the Fuzzi	cation section� how many measurements

�data points in time� are needed to characterize a system� However� it has not
been discussed yet how long the time intervals between those measurements
should be� i�e�� how the time distance between two logged entries of the
trajectory behavior �sampling interval�� 	t� is chosen in practice� 	t must be

selected carefully� because its value will strongly in�uence the mask selection
process� Determining a good value for this parameter in a systematic way is
currently an object of research� and is one of the open problems that remain
to be tackled� and that will be stated in Chapter �� However� experience has

shown that the mask should cover the largest time constant �the slowest mode�
to be captured by the model�

If the trajectory behavior stems from measurement data� a Bode diagram
of the system to be modeled can be obtained� This enables to determine
the eigenfrequencies of the system� and in particular� the smallest and largest
eigenfrequencies� The smallest eigenfrequency 
low is the smallest frequency�

at which the tangential behavior of the amplitude of the Bode diagram changes
by ��� dB�decade� and the largest eigenvalue 
high is the highest frequency
where this happens� The largest time constant� tsettling� and the shortest time
constant� tfast� of the system can then be computed as follows�

tsettling  
��


low
� tfast  

��


high
������

In order to satisfy the sampling theorem� the sampling rate should be chosen

as�

	t  
tfast
�

������

The mask will cover the slowest time constant tsettling� if the mask depth

is chosen as an integer approximation of the ratio between the largest and
smallest time constants to be captured by the model plus one�
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depth  int � �
tsettling
tfast

� ! � ������

However� this ratio should not be much larger than three or four� Otherwise�
the inductive reasoner won�t work very well� since the computing e�ort grows

factorially with the size of the mask� Multiple frequency resolution in inductive
reasoning is still an area of open research� however� some results relating to
this problem have already been obtained� and shall be presented in due course�

	�	���	 Optimal Mask Analysis

How is the mask found that� within the framework of all allowable masks�
represents the most deterministic state transition matrix� and consequently�
ensures optimal predictiveness of the model

The inductive reasoner operates exclusively on the aforementioned
qualitative triples and reasons about qualitative spatial and temporal relations�
The most plausible qualitative causal relationship among the recoded variables

is called the fuzzy optimal mask� This 	nite state machine represents a
temporal qualitative model� and is used to obtain a set of rules called the
behavior matrix of the system� The optimal mask is obtained by performing
an exhaustive comparison between all possible masks with respect to the

maximization of their forecasting power� The Shannon entropy measure is used
to determine the uncertainty associated with forecasting a particular output
state� given any input state� An observation ratio is introduced as a measure
of mask complexity� disfavoring the selection of unnecessarily �unjusti	ably�

complex models� Let us explain one by one all these concepts�

The Mask Candidate Matrix

In FIR� the concept of a mask candidate matrix has been introduced� A
mask candidate matrix is an ensemble of all possible masks from which the

best is chosen by a mechanism of exhaustive search� The mask candidate
matrix contains ���� elements where the mask has potential m�inputs� a
�!�� element where the mask has its m�output� and ��� elements to denote

forbidden connections� Thus� a good mask candidate matrix to predict y��t�
in the previously introduced 	ve�variable example might be�
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�
B�

tnx u� u� y� y� y�

t� �	t �� �� �� �� ��
t� 	t �� �� �� �� ��
t �� �� !� � �
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Similar mask candidate matrices can be written for the other two system
outputs� y� and y��

Notice that each mask candidate matrix contains only a single m�output�
and that usually all connections are permitted except for those that include

the other outputs of the system at the current time t� By not permitting a
direct interaction among the outputs at the time of prediction� the forecasting
algorithm is prevented from entering into algebraic loops� since otherwise it
could e�g� happen that�

y��t�  f� �y��t��

y��t�  f� �y��t�� ������

The potential inputs in a mask candidate matrix do not need to be numbered
since their function is solely to point out� which are the m�input variables that
may possibly a�ect the behavior of the m�output variable of the mask��

The mask candidate matrix allows to encode meta�knowledge into the
qualitative model� If some knowledge of the system structure is available a
priori� it can be represented in the mask candidate matrix through enforced or

forbidden connections between variables�� For example� in the mask candidate
matrix represented in Mask ����
�� if we already know that the m�output y��t�
may not depend on them�inputs u��t��	t�� u��t�	t�� u��t�� and y��t�	t�� the
following zero elements should be introduced into the mask candidate matrix�

�It would make sense to introduce an additional value� e�g� ����� to denote required
inputs� In this case� only masks would be evaluated that contain the variables identi�ed by
this marker in the mask candidate matrix� reducing the overall search e�ort� However� this
feature has not yet been implemented�

�While the forbidden connections feature is already available� the enforced connections
feature is not�
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Evidently� any � �or ��� value introduced in the mask candidate matrix shall
reduce the search e�ort� because it reduces the number of masks that are

compatible with the mask candidate matrix�

In FIR� the FOPTMASK routine can be used to determine the optimal mask
from a qualitative data model� a mask candidate matrix� and a parameter that

limits the maximumtolerated mask complexity� i�e�� the largest number of non�
zero elements that the mask may contain� FOPTMASK searches through all
legal masks of complexity two� i�e�� all masks with a single permitted m�input

and 	nds the best one� it then proceeds by searching through all legal masks
of complexity three� i�e�� all masks with two m�inputs and 	nds the best of
those� and it continues in the same manner until the maximum complexity has
been reached� In all practical examples� the quality of the masks will 	rst grow

with increasing complexity� then reach a maximum� and then decay rapidly�
For most applications� a maximum complexity value of somewhere between
four and seven is adequate�

The Mask Quality

Each of the possible masks is compared to the others with respect to its
potential merit� The optimality of the mask is evaluated with respect to the
maximization of the forecasting power of the input�output matrix�

The Shannon entropy measure is used to determine the uncertainty
associated with forecasting a particular output state given any legal input
state� The Shannon entropy relative to one input state is calculated from the

equation�

Hi  
X
�o

p�oji� � log� p�oji� ������

where p�oji� is the conditional probability of a certain output state o to occur�
given that the input state i has already occurred� Of course� these probabilities

are not really known� They must be estimated� In FIR� probabilities are
approximated through measures of relative con�dence� Given a particular
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input state� several di�erent output states may have been observed one or

several times in the past associated with this input state� Each of these
input�output states has an accumulated con	dence value associated with it
as shown in Equation ����� Thus� we can write�

p�oji� 
 ConfIO�i� o�P
	o
ConfI�i� o�

������

i�e�� as the con	dence of the given input�output state divided by the sum of the

con	dence values of all input�output states that share the same input state�
This quotient is evidently a real�valued number in the range ����� ����� and can
be interpreted as a probability�

The overall entropy of the mask is then calculated as the sum�

Hm  �X
�i

p�i� �Hi ������

where p�i� is the probability of that input state to occur� Again� the exact
probability is not known� and hence needs to be estimated� This time�

the estimation is done di�erently� The probability of a given input state is
approximated through the relative observation frequency of that input state�

p�i� 
 +obs�i�

+all obs
������

i�e�� as the number of previous observations of that particular input state

divided by the total number of all previous observations�

The highest possible entropy Hmax is obtained when all probabilities are
equal� and a zero entropy is encountered for relationships that are totally

deterministic�

A normalized overall entropy reduction Hr is de	ned as�

Hr  ���� Hm

Hmax
������

Hr is obviously a real number in the range ����� ����� where higher values usually

indicate improved forecasting power� The optimal mask among a set of mask
candidates is de	ned as the one with the highest entropy reduction�
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Application of the Shannon entropy to a con	dence measure is a somewhat

questionable undertaking on theoretical grounds� since the Shannon entropy
was derived in the context of probabilistic measures only� For this reason� some
scientists prefer to replace the Shannon entropy by other types of performance

indices �Klir� ����� Shafer� ������ which have been derived in the context
of the particular measure chosen� However� from a practical point of view�
numerous simulation experiments have shown that the Shannon entropy works
satisfactorily also in the context of fuzzy measures if those con	dences have

been reinterpreted as conditional probabilities� as it has been done in our case
as shown in Equation �����

One problem still remains� The size of the input�output matrix increases as
the complexity of the mask grows� and consequently� the number of legal states
of the model grows quickly� Since the total number of observed states remains
constant� the frequency of observation of each state shrinks rapidly� and so

does the predictiveness of the model� The entropy reduction measure does
not account for this problem� With increasing complexity� Hr simply keeps
growing� Very soon� a situation is encountered where every state that has
ever been observed has been observed precisely once� Thus all observed state

transitions are totally deterministic� and Hr assumes a value of ���� which
means that the forecasting power over a single step is maximized� however�
the predictiveness of the model over several steps will nevertheless be poor�

since already the next predicted state will� in all likelihood� never have been
observed before� and that means the end of forecasting� Therefore� it seems
not practical to use the Shannon entropy exclusively in the performance index
that evaluates the quality of a mask�

Two di�erent approaches to overcome this problem have been implemented
in FIR� On the one hand� using the complexity of the mask in the performance

index� and on the other hand� using the observation ratio in the performance
index� Which of them is selected� is left up to the modeler and is carried out
by changing a single global parameter in the Optimal Mask Analysis module�
The two approaches are now explained�

Complexity of the Mask Approach �Uyttenhove� ������ To 	nd the mask
that best represents the relationship existing among the qualitative variables

under consideration� i�e�� the optimal mask� FIR goes through an exhaustive
search that is carried out in levels� It 	rst computes the qualities of the masks
of lowest complexity �the ones with the smallest number of non�zero elements��
chooses the best at that level and steps to the next complexity level� In this

same fashion� all possible masks at all levels� up to a maximum complexity
level speci	ed by the modeler� will have their quality factors evaluated� In
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order to compare masks at di�erent levels� a mask complexity weight Cm is

de	ned as�

Cm  
nvar � depth � compl

depthmax
������

where�

nvar  number of variables�
depth  current depth of the mask�
compl  complexity of the mask �the number of non�zero entries in

the mask��
depthmax  the maximum possible depth the mask could have �the

depth of the chosen mask candidate��

Finally� the quality measureQm is de	ned in terms of the normalized overall
entropy reduction Hr and the mask complexity weight Cm as�

Qm  
Hr

Cm
������

The mask with the highest quality factor found in the search is the optimal
mask�

Observation Ratio Approach �Li and Cellier� ������ It was mentioned
earlier that� from a statistical point of view� every state should be observed

at least 	ve times �Law and Kelton� ������ Therefore� an observation ratio�
Or� is introduced as an additional contributor to the overall quality measure�
which reduces the mask quality if there exist states that have been observed
less often than 	ve times� This observation ratio is de	ned as�

Or  

 � n�� ! � � n�� ! � � n�� ! � � n�� ! n��


 � nleg ����
�

where�
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nleg  number of legal input states�
n��  number of input states observed only once�
n��  number of input states observed twice�
n��  number of input states observed thrice�
n��  number of input states observed four times�
n��  number of input states observed 	ve times or more�

If every legal input state has been observed at least 	ve times� Or is equal to

���� If no input state has been observed at all �no data are available�� Or is
equal to ���� Thus� Or can also be used as a quality measure�

The overall quality of a mask� Qm� is then de	ned as the product of its
uncertainty reduction measure� Hr� and its observation ratio� Or�

Qm  Hr �Or ������

The optimal mask is then the mask with the largest Qm value�

In FIR� the function used to perform an Optimal Mask Analysis is known
as foptmask� This function returns the overall best mask found in the

optimization� the Shannon entropies of the best masks for every considered
complexity� the corresponding uncertainty reduction measures� and the quality
measures of these suboptimal masks� Finally� foptmask also returns the mask

history matrix� a matrix that consists of a horizontal concatenation of the best
masks at each complexity level� One of these masks is the optimal mask�
which� for reasons of convenience� is also returned separately� The foptmask
function has the following syntax�

�mask�Hm�Hr� Qm�mhis�  foptmask �class�Memb�maskcand� cplx�

where the input variables are�

class  is the matrix of class values�
Memb  is the matrix of fuzzy membership values�
maskcand  is a mask candidate matrix�
cplx  is a number that indicates the maximum tolerated compl�

exity�
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and the output variables are�

mask  is the optimal mask�
Hm  is a row vector that contains the Shannon entropies of the

best masks for every considered complexity�
Hr  is a row vector containing the corresponding uncertainty red�

uction measures�
Qm  is a row vector listing the quality measures of the suboptimal

masks�
mhis  is the mask history matrix�

����� Qualitative Simulation

This process is used to infer class� side� and membership values of the output
variables from class� side� and membership values of the input variables through
a generated set of rules� This inference can be performed e�ciently� since the
search for optimal inference rules is limited to a discrete search space� The

set of rules is obtained by applying the optimal mask to the qualitative data
model resulting in the input�output matrix� that once ordered� becomes the
behavior matrix of the system� which tells us for each input state� which output
is most likely to be observed� The process of qualitative simulation through

fuzzy inductive reasoning is called Fuzzy Forecasting and can be viewed as a
temporal inference engine�

	�	���
 Fuzzy Forecasting

Once the optimal mask has been determined� it can be applied to the

given qualitative data model resulting in an input�output matrix� Since the
input�output matrix contains functional relationships within single rows� the
rows of the input�output matrix can be sorted in alphanumerical order� The
result of this operation is called the behavior matrix of the system� The

behavior matrix is a 	nite state machine� For each input state� it shows which
output is most likely to be observed�

Forecasting has now become a straightforward procedure for the class
and side values� The optimal mask is simply shifted further down over the
qualitative input data records as shown in Figure ���� the values of the m�

inputs are read out from the mask� and the behavior matrix is used to
look for the most likely match among the previously recorded observations
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of input�output behavior� determining the future class and side values of the

m�output� which can then be copied back into the qualitative data model�

This process works in the following way� The membership and side functions

of the new input state are compared with those of all previous recordings of
the same input state contained in the behavior matrix� The one input state
with the most similar membership and side functions is identi	ed� For this

purpose� a normalized quantitative value�

pi  classi ! sidei � ���Membi� ������

is computed for every element of the new input state� and the pi values are
stored in a vector�

p  �p�� p�� � � � � pk� ������

where k denotes the number of input variables in the input state� Normalized
quantitative values are then also computed for all previous recordings of the
same input state�

pij  classij ! sideij � �� �Membij� ������

where the index i denotes the ith input variable� and the index j denotes
the jth previous recording of the same input state� Also the pij values are

concatenated into a vector�

pj  �p�j� p�j� � � � � pkj � ������

Finally� the L� norms of the di�erence between the p vector of the new input
state and the pj vectors of all previous recordings of the same input state are

computed�

dj  kp� pjk� ������
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and the previous recording with the smallest L� norm is identi	ed� Its class

and side values are then used as forecasts for the class and side values of the
current state�

In fuzzy forecasting� it is essential that� together with the qualitative class
and side values� also a fuzzy membership value is forecast� Thus� fuzzy
forecasting predicts an entire qualitative triple from which a quantitative

variable can be regenerated whenever needed�

Forecasting of the new membership function is done a little di�erently� It
is carried out by using the Five�Nearest�Neighbors ��NN� fuzzy inferencing

method presented in �Mugica and Cellier� ������� Here� the 	ve previous
recordings with the smallest L� norms� i�e�� the 	ve nearest neighbors with
respect to their input space� are used �if at least 	ve such recordings are

found in the behavior matrix�� and a distance�weighted average of their fuzzy
membership functions is computed and used as the new forecast for the fuzzy
membership function of the current state�

From Equation ����� the sum of the distances of the 	ve nearest neighbors
is�

sd  
�X

j�

dj ������

and the relative distances are given by�

drelj  
dj
sd

������

By applying this algorithm� the 	ve nearest neighbors can be determined
while simultaneously computing their distance functions� Absolute weights are
computed as follows �Cellier et al�� ����b���

�Two other fuzzy inferencing methods have been implemented in FIR� they are� the
Mean�of�Maxima �MOM�� and the Center�of�Area �COA�� Both of them are described in
	Mugica� 
���� and a comparative study of their application to a linear system is presented
in 	Mugica and Cellier� 
����

�The equation that was used during most of this dissertation for the computation of the
absolute weights was�

wabsj �
d�max � d�j

dmax�dj
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wabsj  
���

drelj
������

The absolute weights are real�valued numbers in the range ����� ����� Using

the sum of the 	ve absolute weights�

sw  
�X

j�

wabsj ����
�

it is possible to compute relative weights�

wrelj  
wabsj

sw
������

Also the relative weights are real�valued numbers in the range ����� �����
However� their sum is always equal to ���� It is therefore possible to interpret

the relative weights as percentages� Using this idea� the membership function
of the new output can be computed as a weighted sum of the membership
functions of the outputs of the previously observed 	ve nearest neighbors�

Memboutnew  
X
�j

wrelj �Memboutj ������

The fuzzy forecasting function usually gives a more accurate forecast than the
previously used probabilistic forecasting function �Cellier and Yandell� ������ as

was shown in �de Albornoz and Cellier ����a�� These results will be presented
in Chapter �� The fuzzy forecasting function of FIR is known as FFORECAST�
and takes the syntactic form�

�ffc� ffm� ffs�  �orecast �fc� fM � fs�mask� rowj�

where the input variables are�
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fc  is the class history of all previous points�
fM  is the membership history of all previous points�
fs  is the side history of all previous points�
mask  is the selected optimal mask�
rowj  pointer that separates past history from behavior to be pre�

dicted�

and the output variables are�

ffc  is the matrix of forecast class values�
ffM  is the matrix of forecast membership function values�
ffs  is the matrix of forecast side values�

����	 Defuzzi
cation

From the predicted qualitative triples� quantitative estimates of the output

variables of the qualitative simulations can then be regenerated� In the fuzzy
literature� this process is usually referred to as defuzzi�cation� In inductive
reasoning terminology� the process is called regeneration� A quasi�continuous
signal can be obtained from the predicted class� side� and membership values

of the qualitative output triples by reversing the process of fuzzy recoding�
These values can subsequently be used as input variables to other quantitative
models in a mixed quantitative�qualitative simulation environment� as will be
shown by means of an example at the end of this chapter� The regenerate

function of FIR takes the form�

r  regenerate �ffc� ffM � ffs� from� to�

where the input parameters are�

ffc  is the vector of predicted class values�
ffM  is the vector of predicted membership function values�
ffs  is the vector of predicted side values�
to  indicates the previously computed landmarks�
from  indicates the corresponding names for the qualitative lev�

els �)��� )��� )��� etc��
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and the single output parameter� r� is the regenerated quantitative value�

Notice that the from and to parameters have exchanged the roles they had
in the recode function�

The way in which fuzziness is treated in this dissertation is di�erent from any
of the traditionally used techniques� Traditional fuzzi	ers do not use the side
value� They replace this information by multiple recodings� associating with

each quantitative value several qualitative tuples consisting of a class value
and its associated membership function value� The fuzzy membership value is
used as a measure of plausibility of its associated class value� In forecasting�
they do not forecast a membership value of the output� Instead� multiple

class values of the output variable are forecast� one for each of the feasible
class values of the inputs� Defuzzi	cation is then accomplished by computing
a weighted average of the forecast class values of the outputs by multiplying
them with the values of the membership functions of the associated inputs�

Several di�erent defuzzi	cation techniques are quoted in the literature that
vary in how the weighted average is computed precisely� Most common are
the Center�of�Area technique and the Mean�of�Maxima approach�

Our approach to fuzzy reasoning o�ers a clear separation between the fuzzy
inferencing stage and the defuzzi	cation stage� whereas these two stages are
usually lumped together into one by the more conventional approaches to fuzzy

reasoning� The reason for this deviation from the commonly used techniques
of fuzzy reasoning is that our approach o�ers a much better smoothing than
the traditional techniques in a data�rich environment� This makes it possible
to get away with a smaller number of classes �three to 	ve versus seven to

�� using one of the conventional techniques�� which dramatically speeds up
the process of qualitative modeling by reducing the associated discrete search
space� This is particularly important in the case of multi�input systems�

����� Capabilities of FIR

Now that the methodological pillars of the FIR methodology have been

explained in some detail� it may be useful to discuss what can be done with
the tool� what types of utilities does the tool o�er�

The qualitative modeling engine� implemented by means of the foptmask
function� allows to learn the behavioral patterns of a system by mere
observation� Input�output data streams are fed to the modeling engine� which

in turn generates a 	nite state machine� represented in a compact form through
the optimal mask� that captures the causal relationship between the various
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input signals and the output signal of the system�

The qualitative simulation engine� implemented by means of the �orecast
function� allows to predict future system behavior given the previously

obtained qualitative model� Whereas qualitative modeling represents an
inductive identi�cation problem �given inputs and outputs� what is the system
connecting them�� qualitative simulation represents a deductive forecasting

problem �given a perceived system model and a set of future input values�
what are the corresponding future outputs��

In our own dialect of fuzzy reasoning� the fuzzy forecasting function predicts

future values of the class� side� and membership of the output variables by
comparing the class� side� and membership values of the input variables of
the current input record �the testing data record as it would be called in the

Neural Network literature� with the corresponding quantities associated with
inputs in the experience data base �the training data set� as it would be called
in the Neural Network literature�� determining the 	ve records that exhibit
the most similar input patterns� The membership value of the current output

variable is then computed as a weighted sum of the membership values of the
	ve nearest neighbors� using the nearness of the 	ve neighbors in the input
space as a measure of importance when determining the new output�

The two �inductive and deductive� reasoning engines are interfaced to
real�world signals through the fuzzi	cation and defuzzi	cation modules�
implemented by means of the recode and regenerate functions� that convert

quantitative signals to their qualitative counterparts and vice�versa�

The approach works amazingly well� better so than any of the Ph�D�

students that contributed to its development and implementation had
expected� Contrary to most other modeling tools� such as the NARMAX
approach or neural networks� that presuppose a model structure� thereby
e�ectively parametrizing the identi	cation problem� which is then solved

by parameter optimization� FIR does not make any assumption about the
system structure at all� and therefore� is less constrained than other modeling
approaches� The optimal mask analysis captures the knowledge contained in
the input�output data streams reliably and e�ectively�

The heart of the methodology is really the qualitative modeling engine�
The other three modules are more or less straightforward� Success or failure of

the approach hinges upon the ability of FIR to extract the knowledge that
is implicitly contained in the available observations� and make it explicit�
Hence the central feature of FIR is its �exibility and e�ectiveness in learning

behavioral patterns of a system from observations of input�output data
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streams�

	�	���
 Learning Abilities

One of the main characteristics of inductive reasoning is its learning capability�

The behavior matrix is created and modi	ed in such a way that� for a certain
set of inputs� a desired set of outputs can be obtained� All meaningful modeling
and simulation schemes must be accompanied by learning capabilities� in order
to enable them to cope with a changing world�

Learning can take place during either the modeling phase �o��line learning�
synthesis� or during the simulation phase �on�line learning� adaptation�� Both

types of learning are essential� O��line learning permits to acquire a new
world view� whereas on�line learning enables us to stay up�to�date in an ever
changing world� FIR is capable of implementing both of these types of learning�

On a somewhat di�erent scale� learning can take place either inductively
�learning by acquiring new pieces of information� i�e�� new observations�
or deductively �learning by concluding new facts from previously available

knowledge�� According to �Sarjoughian� ���
� and from a systems�theoretic
perspective� inductive learning is identical with learning in the modeling phase�
given a set of inputs and an output of a system� inductive learning concludes
something about the system connecting these inputs with the single output�

Deductive learning is identical with learning during the simulation phase� given
a set of inputs and a system structure� deductive learning concludes something
about the outputs of the system� Finally� abductive learning relates to learning
control behavior� given a system structure and a set of desired outputs�

abductive learning concludes something about the inputs needed to drive the
system to the desired outputs� Again� the FIR methodology is capable of
implementing all of the above concepts�

Yet another view of learning is possible� Following the learning classi	cation
proposed in �Cort&es et al�� ������ it can be stated that the FIR methodology
is capable of the following three types of learning�

Learning from observation� If no other knowledge is available� the FIR
methodology is able to learn the behavior of a system by inducing a system

structure from observations of its input�output behavior� Learning from
observation is synonymous with inductive learning� It can take place both o��
line �during the modeling phase� and on�line �during the simulation phase��

During the modeling phase� temporal causal relations are discovered among
the observed input�output variables in such a way that the system is properly
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characterized� i�e�� the observed outputs can be explained in a reasonably

deterministic fashion from the observed inputs� During the simulation phase�
newly made observations can be added to the experience data base on the �y�
enhancing the reliability of future predictions� or newly made observations can

replace previous observations stored in the experience data base enabling the
system to cope with time�varying behavior of the system under study�

Learning from experience�Learning from experience is a deductive form of
learning� New rules are generated by making predictions using the previously
induced set of rules and then adding the predictions to the rule base �behavior
matrix�� Also this type of learning can be applied either in an o��line or

in an on�line mode� During the modeling phase� it may be desirable to
enlarge the experience data base by making predictions that fall in between
observations� This is a form of interpolation� In the fuzzy literature� this
technique is called fuzzy region completion �Sudkamp and Hammel� ������

The technique is particularly useful if not enough measurement data are
available� During the simulation phase� it is also possible to add the newly
made predictions to the experience data base� However� this can be dangerous
since simulation represents some form of extrapolation� Whereas extrapolation

in time �simulation� is perfectly feasible� qualitative models do not contain
su�cient internal validity to support extrapolation in space as well� By adding
predictions made during simulation to the experience data base� it is possible

to fool the system into believing it still makes reasonable predictions �i�e��
predictions that are justi	able on the basis of the available observations��
where� in reality� the system only keeps reiterating on its own previous
assumptions�

Reinforced learning� The learning process includes a reinforcement measure
that describes how good the problem has been solved �Cellier et al��

����a�� In the FIR methodology� a con	dence value is associated with each
prediction made� This is essential for preventing the inductive reasoner
from reaching conclusions that are not justi	able on the basis of observed
behavior� Consequently� such a feature ought to accompany any decently

robust inductive modeling and simulation scheme� However� the same feature
can also be used for reinforced learning� As for the previous two types of
learning� also reinforcement can be applied in either o��line or on�line fashion�
Often� the goal is to come up with the best possible predictions� However� in

other situations� the goal is to come up with the best possible model� i�e��
a time�invariant model that best explains the behavior of the system under
study for all times to come� In the former case� all available facts �observations�
should be used� In the latter case� stray observations �caused either by external

disturbances or by unmodeled system dynamics� may weaken the model and
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should best be eliminated� Reinforced learning can be applied in an o��line

fashion by revisiting the observations already made after the model structure
has been determined� predicting outputs for the inputs in the training data set
and eliminating all input�output pairs from the experience data base that are

inconsistent with the predictions made by the model� Reinforced learning is
however more commonly applied in an on�line fashion� Rather than adding all
newly made predictions to the experience data base� only those predictions are
added that have a high con	dence value� This helps alleviate to some extent

the previously mentioned dangers of extrapolation� of designing a system that
indulges in self�ful	lling prophecies�

In spite of all the aforementioned advantages� the FIR methodology has also
a serious drawback� It is not currently capable of dealing with a large number
of behavior trajectories� Particularly� Optimal Mask Analysis� the advocated
technique for building qualitativemodels� works 	ne only if the number of input

and output variables is kept within reasonable limits� The technique should not
be applied to more than �� variables at a time� Even �� variables will make
the modeling process sluggish and the experience data base bulky� In most
situations dealt with in the past� we have limited the number of variables to

no more than 	ve or six� This limitation is in direct con�ict with our desire to
be able to deal with large�scale systems� Therefore� another technique will be
needed to select minimum sets of signi	cant variables grouped as subsystems�

To this end� we shall make use of Reconstruction Analysis�

��� FIR Implementation

In order to show how the implementation of FIR is accomplished� a simple
linear example with one input and three outputs is introduced� This system

is represented by the following di�erential and algebraic equations�

������

�x  A � x! b � u  

�
B� � � �

� � �
�� �� ��

�
CA � x!

�
B� �
�
�

�
CA � u

������
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y  C � x! d � u  

�
B� � � �
� � �
� � �

�
CA � x!

�
B� �
�
�

�
CA � u

The Bode diagrams for the three output variables can be computed directly
in Matlab �MathWorks� ����a� or ACSL �MGA� ������ From those diagrams
the bandwidth of the system can be obtained� It is 
�dB 
 �sec��� Therefore�
from Equation ������� the settling time is tsettling 
 � sec� and consequently�

according to Equation ������� the communication interval is 	t 
 � sec� Then�
a mask that covers the slowest time constant of the system �tsettling� must be
selected� From Equation ����� the depth of the mask must be set to three�

In order to observe all possible frequencies of this system in an optimal
manner� the system has been simulated directly in Matlab applying binary
random noise to the input signal� trying to excite the system in such a way

that all possible states of its output variables are shown� Since the example
is very simple� it has been decided to recode each of the output states into
just three levels� namely level )��� level )��� and level )��� The input is already

binary� Thus� the number of legal states of the qualitative data model can be
computed according to Equation ����� as�

nleg  
Y
�i

ki  � � � � � � �  
� ������

and therefore� the required number of recordings� also in accordance with
Equation ������ is�

nrec  
 � nleg  ��� ������

This means that the FIR methodology needs at least ��� samples to

characterize the system� i�e�� to learn its behavior� Since this is not a real
system� but only a mathematical model� the �system� will be simulated in
Matlab across ��� seconds of simulated time� equivalent to ��� sampling

intervals �or ��� samples�� from which ��� will be used to obtain the qualitative
model� and the remaining �� will be used to compare the FIR predictions with
the real values�

The Matlab code used to simulate the system is�
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�� a � � � � � � � � � � �� �	 �
 ��

�� b � � � � � � � ��

�� c � eye�a�

�� d � zeros�b�

�� t � ��	�����

�� rand��seed����

�� u � round�rand�	�����

�� x� � zeros�	���

�� �y�x� � lsim�a�b�c�d�u�t�x��

From this simulation� ��� data records� each containing values for the input
and output variables� are obtained� Thus� a raw data matrix of ��� rows

�simulated data records� and four columns �one input and three outputs� can
be formed�

�� meas � � u � y ��

The next step consists of computing the landmarks that separate
neighboring classes� Remember that it had been decided to recode the system
into three qualitative classes� which means that there will be four landmarks�

To obtain the landmarks� the raw data matrix meas will 	rst be sorted for
simplicity� The Matlab code used for the computation of the landmarks is as
follows�

�� m � meas�

�� veps � ���������ones���
�

�� for i���
�

�� �mi�indx� � sort�meas���i�

�� m���i � mi�

�� end

�� LM � � m����

�� �����m������ � m������

�� �����m������ � m������

�� m�	�����veps ��

As it can be seen� landmarks are only obtained for the three output variables�

This is because the input variable is already binary� and hence does not need
to be recoded� The LM matrix containing four rows �the number of landmarks
for each variable� and four columns �the number of variables� is�

LM  

�
BBB�

� ������� ������� �������
� ����
� ������� �������

������ ������ ����
� ������
������ ��
��� ����

 ������

�
CCCA ������
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At this point� the variables need to be recoded into the three classes )��� )���
and )�� de	ned by the above landmarks� As in the case of the computation

of the landmarks� the input variable will not be recoded� The Matlab code to
perform the recoding process is�

�� class� � meas�

�� Memb� � ones�meas�

�� side� � ones�meas�

�� for j���	���

�� if class��j�� �� �

�� side��j�� � ��

�� else

�� side��j�� � ���

�� end

�� end

�� to � ��	�

�� for i���
�

�� from � � LM���	�i � LM���
�i ���

�� �c�m�s� � recode�meas���i��fuzzy ��from�to�

�� class����i � c� Memb����i � m� side����i � s�

�� end

In this way� a continuous trajectory behavior is recoded into an episodical
trajectory behavior� The variables class�� Memb�� and side� contain the

class� membership� and side values of the four variables at each sampling
point� respectively� The parameter from is a � � � matrix that encodes the
landmarks of a single variable� Each column represents one class� whereby
the top row contains the lower end and the bottom row the upper end of the

range characterizing that class� The parameter to is a row vector providing
the names �numbers� that represent each of the recoded classes�

Once the recoding process is completed� FIR is able to look for an optimal
mask that will represent the static relationship among the input and output
variables� It was already mentioned that a mask should only include one

value to be forecast� however� this example has three outputs that need to be
predicted� Consequently� FIR needs to look for three di�erent optimal masks�
one for each output� The 	rst step is to separate the necessary data to carry
out the Optimal Mask Analysis� and this is accomplished in the following way�

�� cclass � class����������

�� MMemb � Memb����������

�� sside � side����������
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Then� three di�erent mask candidates must be proposed� Remember that

relationships between outputs at the time of forecasting are forbidden� The
Matlab code generating the mask candidate matrices is�

�� mcan� � �ones�	�
�

�� mcan��	���
 � � � � � ��

�� mcan� � mcan��

�� mcan��	���
 � � � � � ��

�� mcan	 � mcan�

�� mcan	�	���
 � � � � � ��

The mask candidate matrices are� for the 	rst output variable y��

�
B�

tnx u� y� y� y�

t� �	t �� �� �� ��
t� 	t �� �� �� ��
t �� !� � �

�
CA ������

for the second output variable y��

�
B�

tnx u� y� y� y�

t� �	t �� �� �� ��
t� 	t �� �� �� ��
t �� � !� �

�
CA ������

and for the third output variable y��

�
B�

tnx u� y� y� y�

t� �	t �� �� �� ��
t� 	t �� �� �� ��
t �� � � !�

�
CA ����
�

The Matlab code to carry out the Optimal Mask Analysis is�

�� �mask��hm��hr��q��mhis�� � foptmask�cclass�MMemb�mcan���

�� �Q�indx� � sort��q��

�� m�a � mhis����
��indx�������
�indx���

�� m�b � mhis����
��indx�������
�indx���

�� m�c � mhis����
��indx�	�����
�indx�	�
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�� m� � �m�a�m�b�m�c��

�� �mask��hm��hr��q��mhis�� � foptmask�cclass�MMemb�mcan���

�� �Q�indx� � sort��q��

�� m�a � mhis����
��indx�������
�indx���

�� m�b � mhis����
��indx�������
�indx���

�� m�c � mhis����
��indx�	�����
�indx�	�

�� m� � �m�a�m�b�m�c��

�� �mask	�h�	�hr	�q	�mhis	� � foptmask�cclass�MMemb�mcan	��

�� �Q�indx� � sort��q	�

�� m	a � mhis	���
��indx�������
�indx���

�� m	b � mhis	���
��indx�������
�indx���

�� m	c � mhis	���
��indx�	�����
�indx�	�

�� m	 � �m	a�m	b�m	c��

Notice that the maximumallowed complexity has been set to 	ve� which means

that each mask is allowed to have a maximum of 	ve non�zero entries� The
matrices mia� mib� and mic correspond to the best� the second best� and the
third best masks among the suboptimal masks of di�erent complexity levels�
The optimal masks� mia� found for each output variable are�

�
B�

tnx u� y� y� y�

t� �	t � �� � �
t� 	t �� � � �
t �� !� � �

�
CA ������

for the 	rst output variable� y��

�
B�

tnx u� y� y� y�

t� �	t � � �� �
t� 	t �� � � �
t �� � !� �

�
CA ������

for the second output variable� y�� and

�
B�

tnx u� y� y� y�

t� �	t �� � � �
t� 	t �� � � �
t �� � � !�

�
CA ������

for the third output variable� y��
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At this point� FIR is prepared to carry out the qualitative simulation across

the �� sampling points that had not been used to characterize the system� i�e��
from sampling point ��� to sampling point ���� The forecasting procedure
operates in the following way� FIR loops over the �� steps of the forecast� In

each step� the �orecast routine is called thrice� using in a row the three optimal
masks� mia� to forecast one value only� At the end of the step� the new row
�the forecast� is concatenated to the qualitative data from below� and the step
counter is incremented� Notice that forecasting is always 	rst attempted with

the optimal mask� mia� However� if no value can be predicted with that mask
because the input state has never been observed before� the forecast procedure
returns the qualitative data unchanged� i�e�� the number of rows upon output
is the same as upon input� which is tested in the code� If this has happened�

the code switches to the next mask� mib� which is usually of lower complexity�
or even to the mask mic� If none of the three masks is able to predict the
next step� a random number is drawn as an �approximation� to prevent the
forecasting process from coming to a halt� The forecasting code in Matlab

looks as follows�

�� inpt � class������	�����

�� m�a � m������
� m�b � m�������� m�c � m���������

�� m�a � m������
� m�b � m�������� m�c � m���������

�� m	a � m	�����
� m	b � m	������� m	c � m	��������

�� c � cclass�

�� m � MMemb�

�� s � sside�

�� �row�col� � size�cclass�

�� �n�b� � size�inpt�

�� for i���n�

�� i�

�� in � inpt�i�

�� fc � �in��������

�� fcc � �c�fc��

�� mc � �� ���� ���� ������

�� mcc � �m� mc��

�� sc � �� � � ���

�� scc � �s� sc��

�� �ff��memb���side��� � fforecast�fcc�mcc�scc�

�� m�a�row�i���

�� �rf�cf� � size�ff��

�� if rf �� row � i�

�� �ff��memb���side��� � fforecast�fcc�mcc�scc�

�� m�b�row�i���

�� �rf�cf� � size�ff��

�� if rf �� row � i�

�� �ff��memb���side��� � fforecast�fcc�mcc�scc�

�� m�c�row�i���

�� �rf�cf� � size�ff��
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�� if rf �� row � i�

�� ff� � �ff��round�rand���
��

�� end�

�� end�

�� end�

�� �ff��memb���side��� � fforecast�fcc�mcc�scc�

�� m�a�row�i���

�� �rf�cf� � size�ff��

�� if rf �� row � i�

�� �ff��memb���side��� � fforecast�fcc�mcc�scc�

�� m�b�row�i���

�� �rf�cf� � size�ff��

�� if rf �� row � i�

�� �ff��memb���side��� � fforecast�fcc�mcc�scc�

�� m�c�row�i���

�� �rf�cf� � size�ff��

�� if rf �� row � i�

�� ff� � �ff��round�rand���
��

�� end�

�� end�

�� end�

�� �ff	�memb		�side		� � fforecast�fcc�mcc�scc�

�� m	a�row�i���

�� �rf�cf� � size�ff	�

�� if rf �� row � i�

�� �ff	�memb		�side		� � fforecast�fcc�mcc�scc�

�� m	b�row�i���

�� �rf�cf� � size�ff	�

�� if rf �� row � i�

�� �ff	�memb		�side		� � fforecast�fcc�mcc�scc�

�� m	c�row�i���

�� �rf�cf� � size�ff	�

�� if rf �� row � i�

�� ff	 � �ff	�round�rand���
��

�� end�

�� end�

�� end�

�� ff � �in�ff��row�i���ff��row�i�	�ff	�row�i�
��

�� mf � ���memb���row�i���memb���row�i�	�memb		�row�i�
��

�� sf � ���side���row�i���side���row�i�	�side		�row�i�
��

�� c � �c�ff��

�� m � �m�mf��

�� s � �s�sf��

�� end

At this moment� the �� points have been forecast without problem� and
are stored in the vectors c� m� and s which stand for class� membership� and
side� respectively� A qualitative comparison between the predicted class values

and the previously recoded but not used class values �from ��� to ���� of
the quantitative simulation �the �true� values� can be performed� providing a
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Figure ��
� Comparison between real and regenerated behavior of output
variable y��

measure of accuracy of the qualitative forecast�

�� frcst � c�

�� fmemb � m�

�� fside � s�

�� frcdat� � c�����	�����

�� Mfrcdat� � m�����	�����

�� sfrcdat� �s�����	�����

�� frcdat� � c�����	���	�

�� Mfrcdat� � m�����	���	�

�� sfrcdat� � s�����	���	�

�� frcdat	 � c�����	���
�

�� Mfrcdat	 � m�����	���
�

�� sfrcdat	 � s�����	���
�

�� simdat � class������	�����

�� Msimdat � Memb������	�����

�� ssimdat � side������	�����

�� frcdat � frcst�����	�����

�� Mfrcdat � fmemb�����	�����

�� sfrcdat � fside�����	�����

�� error � simdat � frcdat�

�� � simdat � frcdat � error �
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Figure ���� Comparison between real and regenerated behavior of output
variable y��

The result of this qualitative comparison is that the forecast thirty data points

do not contain even a single class error� The comparison itself is not presented
here to save space� However� in more involved applications� the number of
errors that can be expected oscillates between �, and ��, �de Albornoz and
Cellier ����a��

Finally� if the comparison needs to be done quantitatively instead of
qualitatively� a regeneration of the predicted qualitative triples should be done�

The regeneration process is the inverse operation of the recoding process and
works in a very similar way� The Matlab code for the regeneration process is�

�� from � ��	�

�� to � � LM���	�� � LM���
�� ���

�� rvar � regenerate�frcdat��Mfrcdat��sfrcdat��from�to�

�� rvar� � rvar���

�� from � ��	�

�� to � � LM���	�	 � LM���
�	 ���

�� rvar � regenerate�frcdat��Mfrcdat��sfrcdat��from�to�

�� rvar� � rvar���

�� from � ��	�

�� to � � LM���	�
 � LM���
�
 ���
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�� rvar � regenerate�frcdat	�Mfrcdat	�sfrcdat	�from�to�

�� rvar	 � rvar���

A graphical comparison of the original behavior �continuous line� with the

regenerated behavior �dashed line� is presented in Figures ��
� ���� and ���
corresponding to the output variables y�� y�� and y�� It can be seen that the
di�erences between the real and predicted curves are quite small�
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Figure ���� Comparison between real and regenerated behavior of output
variable y��

��� Combining Quantitative and Qualitative

Simulation

Combinations of quantitative and qualitative simulation have been attempted
during the past years by several research groups� and various approaches have

been developed� most of which are referenced in Chapter �� In this section�
FIR is applied to a problem of mixed simulation�
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We start out with providing some de	nitions related to the task at hand��

Qualitative simulation can be de	ned as evaluating the behavior of a system
in qualitative terms �Cellier� ����b�� To this end� the states that the system
can be in are lumped together to a 	nite �discrete� set� Qualitative variables

are variables that assume qualitative values� Variables of a dynamical system
are functions of time� The behavior of a dynamical system is a description of
the values of its variables over time� The behavior of quantitative variables
has been de	ned as trajectory behavior� whereas the behavior of qualitative

variables has been coined episodical behavior� Qualitative simulation can thus
be de	ned as a process of inferring the episodical behavior of a qualitative
dynamical system or model�

Qualitative variables are frequently interpreted as an ordered set without
distance measure �Babbie� ������ It is correct that )warm� is �larger� �warmer�
than )cold�� and that )hot� is �larger� �warmer� than )warm�� Yet� it is not true

that

)warm�� )cold�  )hot�� )warm�

or� even more absurdly� that

)hot�  � � )warm�� )cold�

Operators such as )�� and )�� are not de	ned for qualitative variables�
Time� in a qualitative simulation� is also frequently treated as a qualitative

variable� It is then possible to determine whether one event happens before or
after another event� but it is not possible to specify when precisely a particular
event takes place�

The purpose of most qualitative simulation attempts is to enumerate�
in qualitative terms� all possible episodical behaviors of a given system
under all feasible experimental conditions� This is in direct contrast to

quantitative simulations that usually content themselves with generating one
single trajectory behavior of a given system under one single set of experimental
conditions�

	Some of the terms introduced here have already been met in earlier chapters� but their
meaning had always been clear from the context� so it was not necessary to introduce them
formally�
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����� Mixed Models

In the light of what has been explained above� it seems questionable

whether mixed quantitative and qualitative models are feasible at all� How
should a mixed quantitative and qualitative simulation deal with the fact
that the quantitative subsystems treat the independent variable� time� as
a quantitative variable� whereas the qualitative subsystems treat the same

variable qualitatively When does a particular qualitative event occur in
terms of quantitative time How are the explicit experimental conditions that
are needed by the quantitative subsystems accounted for in the qualitative
subsystems

Quite obviously� a number of incompatibility issues exist between
quantitative and qualitative subsystems that must be settled before mixed

simulations can be attempted� In a mixed simulation� also the qualitative
subsystems must treat time as a quantitative variable� Furthermore� the
purpose of qualitative models in the context of mixed simulations is revised�

It is no longer their aim to enumerate episodical behaviors� Instead� also the
qualitative models are now used to determine a single episodical behavior in
response to a single set of qualitative experimental conditions�

Do so revised qualitative models make sense It is certainly illegitimate
to request that� because human aircraft pilots are unable to solve Riccati
equations in their heads to determine an optimal �ight path� autopilots

shouldn�t tackle this problem either� It is not su�cient to justify the existence
of qualitative models by human inadequacies to deal with quantitative
information�

Two good reasons for dealing with information in qualitative ways are the
following�

i� Quantitative details about a �sub�system may not be available� For
example� in biomedical applications and in large�autonomy systems�

while some mechanical properties of the system under study may be well
understood and can easily be described by di�erential equation models�
the e�ects of some interactions on the behavior of the system may be

poorly understood and consequently� cannot be easily quanti	ed� A
mixed model could be used to describe those portions of the overall
system that are well understood by quantitative di�erential equation
models� while other aspects that are less well understood may still be

representable in qualitative terms �Nebot� ������

ii� Quantitative details may limit the robustness of a �sub�system to react
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to previously unknown experimental conditions� For example� while a

human pilot is unable to compute an optimal �ight path� he or she can
control the airplane in a much more robust fashion than any of today�s
autopilots� Optimality in behavior can be traded for robustness� A

fuzzy controller and a qualitative Fault Monitoring System are examples
of qualitative subsystems that are designed to deal with a larger class of
experimental conditions in suboptimal ways �Mugica� ���
��

Mixed quantitative and qualitative models may be used to address either or
both of the above applications� However� in order to do so� it is necessary to
devise qualitative modeling and simulation capabilities that are compatible
with their quantitative counterparts and that can be used to represent

qualitative subsystems� such as those mentioned above� appropriately and in
terms of knowledge available to the system designer at the time of modeling�

The FIR methodology can be applied to perform such a task� The
qualitative subsystems can be modeled by means of fuzzy optimal masks and
their episodical behavior can be simulated by means of fuzzy forecasting�
The FIR methodology had originally been implemented as toolboxes of

Matlab and CTRL�C� However� for the purpose of mixed quantitative and
qualitative simulation� a subset of its modules� namely the fuzzy recoding�
fuzzy forecasting� and signal regeneration modules have also been made
available as an application library of the Advanced Continuous Simulation

Language ACSL �MGA� ������ This is the software that is being used in
mixed quantitative and qualitative simulation runs�

Suppose for example� that the system S shown in Figure ��� must be
simulated� The system is composed of four subsystems of which S�� S�� and
S� are structurally known subsystems that can be modeled and simulated
by means of algebraic and di�erential equations without much of an e�ort�

whereas subsystem S� is of a di�erent kind� It may belong to one of two types�

a� the subsystem is basically unknown� and only its interactions with the

other subsystems are known� or

b� the subsystem represents a very large and complex plant� the precise

details of which are of no immediate concern to the problem at hand� and
therefore� a detailed quantitative model would be too costly to develop
and�or run�

Hence it may make sense to treat subsystem S� as a qualitative subsystem
and describe it by means of a qualitative modeling and simulation technique�
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Subsystem  1
(S1)

Subsystem  2
(S2)

Subsystem  3
(S3)

Subsystem  4
(S4)

u e1 e2

e3

e4
y

Figure ���� System S� its subsystems� and the relations between them�

Independently of the used technique� in a mixed simulation environment�
qualitative simulation approaches need converters from quantitative values to

qualitative values and vice�versa� Thus subsystem S� should be connected
to the quantitative subsystems through two such converters� one for its input
variable� e�� and another for its output variables� e� and e��

If the qualitative simulation approach is FIR� the input to subsystem S�

should be passed through the fuzzi	cation module converting the quantitative
input variable e�� to the qualitative triple e��� and the two outputs of S� should

be processed by the defuzzi	cation module converting the qualitative triples e��
and e�� to the quantitative output variables e� and e�� The subsystem S� itself
is represented by an optimal mask� to be qualitatively simulated by means of
fuzzy forecasting� Figure ��� presents an augmented block diagram� in which

the converters and the FIR implementation of the qualitative subsystem S�

are schematically shown�

����� Mixed Simulation of a Hydraulic Control System

In the remainder of this chapter� an example will be presented that
demonstrates the process of mixed quantitative and qualitative simulation
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Subsystem  1
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Figure ���� Subsystem S� transformed to a qualitative subsystem�

using Fuzzy Inductive Reasoning� The example was chosen simple enough
to be presented in full� yet complex enough to demonstrate the generality and
validity of the approach� However� it is not suggested that the chosen example

represent a meaningful application of mixed quantitative and qualitative
simulation� The example was chosen to prove the concept and to clearly
demonstrate the approach� not as a realistic and meaningful application of
the proposed technique�

Figure ���� shows a hydraulic motor with a four�way servo valve� The �ows
from the high�pressure line into the servo valve and from the servo valve back

into the low�pressure line are turbulent� Consequently� the relation between
�ow and pressure is quadratic�

q�  k�x� ! x�
p
PS � p�

q�  k�x� � x�
p
p� � P�

q�  k�x� ! x�
p
p� � P�

q�  k�x� � x�
p
PS � p� ������
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Figure ����� Hydraulic motor with a four�way servo valve�

The chosen parameter values are�

PS  ����� � ��� N m���
P�  ������ � ��� N m��� x�  ���
 m�
k  ����� � ���� kg���� m����

The change in the chamber pressures is proportional to the e�ective �ows in

the two chambers

�p�  c��qL� � qi � qe� � qind�

�p�  c��qind ! qi � qe� � qL�� ���
��

with c�  
��
� � ���� kg m�� sec��� The internal leakage �ow� qi� and the
external leakage �ows� qe� and qe�� can be computed as

qi  ci � pL  ci�p� � p��
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qe�  ce � p�
qe�  ce � p� ���
��

where

ci  ����� � ����� kg�� m� sec� and
ce  ����� � ����� kg�� m� sec�

The induced leakage� qind� is proportional to the angular velocity of the
hydraulic motor� 
m

qind  � � 
m ���
��

with �  ��
�
� ���� m�� and the torque produced by the hydraulic motor is
proportional to the load pressure� pL

Tm  � � pL  ��p� � p�� ���
��

The mechanical side of the motor has an inertia� Jm� of ���� kg m�� and a
viscous friction� � of ��
 kg m� sec���

The hydraulic motor is embedded in the control circuitry shown on
Figure ����� In the mixed quantitative and qualitative simulation� the
mechanical and electrical parts of the control system will be represented by

di�erential equation models� whereas the hydraulic part will be represented by
a fuzzy inductive reasoning model�

For this purpose� it was assumed that no knowledge exists that would permit

a description of the hydraulic equations by means of a di�erential equation
model� All that is known is that the mechanical torque� Tm� of the hydraulic
motor somehow depends on the control signal� u� and the angular velocity� 
m�

For validation purposes� the mixed simulation results will be compared
with previously obtained purely quantitative simulation results� The purely

quantitative simulation of the overall system was simulated over ��
 seconds�
A binary random input signal was applied to the input of the system� �set�
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Figure ����� Hydraulic motor position control circuit�

The values of the control signal� u� the angular velocity� 
m  ��m� and the

torque� Tm� from the 	rst ���
 seconds of the quantitative simulation were
recoded to generate the fuzzy inductive model of the hydraulic motor�

The values of the last ���
 seconds of quantitative simulation were stored for
validation purposes� Validation is accomplished by comparing the simulation
results of the new mixed model with those of the purely quantitative model�
which is being used in the place of �measurement data��

	�����
 Building the Fuzzy Inductive Model

As was described in the previous sections of this chapter and was shown in the

linear system example� the fuzzy inductive model is constructed in two steps�
In the 	rst step� the quantitative data are recoded� and in the second step� the
fuzzy optimal mask is determined from the recoded data�

Fuzzy Recoding of the Hydraulics

The 	rst question to be addressed in the recoding process is the selection
of the appropriate sampling rate �communication interval� for the continuous
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variables to be recorded �either from measurements or� as in this example�

from a quantitative simulation study�� In the given example� this value can be
deduced from the longest time constant to be considered �i�e�� the inverse of the
slowest eigenvalue of the Jacobian�� The eigenvalue is at ���� and therefore�
the longest time constant is ���
 seconds� In accordance with Equations ������
and ����� the three variables u� 
m� and Tm must thus be sampled once every
����
 seconds� and a mask of depth three must be chosen�

Unfortunately� fuzzy inductive forecasting predicts only one value of
Tm per sampling interval� Thus� the mixed qualitative and quantitative
simulation behaves like a sampled�data control system with a sampling rate of

����
 seconds� Thereby� the stability of the control system is lost because the
sampling rate is too slow to keep up with the changes in the system� From a
control system perspective� it is necessary to sample the variables considerably
faster� An ACSL program was coded to study di�erent sampling rates in order

to obtain a stable control performance� This program introduces into the
quantitative simulation a delay in the computation of the torque� The largest
delay time that could be introduced without losing stability of the control
system was identi	ed� It was determined that the longest tolerable delay is

�����
 seconds� Consequently� the mask depth must be increased from three
to ��� i�e�� the depth of the mask covers the slowest time constant� while 	t
satis	es the stability requirements of the control system�

The next step is to 	nd the number of discrete levels into which each of these
variables will be recoded� For the given example� it was decided that all three
variables can be su�ciently well characterized by three levels� A discretization

of the variables in this manner implies� in accordance with Equation ������ that
the number of legal states is �� ��� � � ���
As explained before� it is desirable to record each state at least 	ve

times� Consequently� a minimum of ��� recordings� corresponding to a total
simulation time of ����
 seconds� is needed� However� due to the mismatch

between the sampling rate required by fuzzy forecasting and the actually used
sampling rate that is required due to the control characteristics� considerably
more data are needed� It was decided to choose a total simulation time of
��
 seconds with ���
 seconds being used for model identi	cation� and the

remaining ���
 seconds being used for validation� This provides the optimal
mask module with ��� recordings used for model identi	cation� while fuzzy
forecasting is carried out across the 	nal ��� steps�

While the qualitative subsystem is analyzed in o��line mode� as during
the recoding and the Optimal Mask Analysis� the Matlab FIR modules can be
used� However� once the qualitative subsystem is connected to the quantitative
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subsystems for the purpose of mixed simulation� the ACSL FIRmodules should

be used instead�

Fuzzy Optimal Mask of the Hydraulics

With the data recoded as described above� it is possible to construct a
qualitative model of the hydraulics by means of the Optimal Mask Analysis

procedure� To combine the qualitative and quantitative simulation models� it
is necessary to solve the dynamic stability problem while covering with the
mask the longest time constant to be captured in the qualitative model� This

means that� as mandated by control theory� the sampling interval 	t is chosen
to be �����
 seconds� Consequently� the mask depth must be selected equal
to ��� Even a search through all possible masks of complexities up to seven
only would be painfully slow� Therefore� the following approach was taken�

From the point of view of fuzzy reasoning� a mask depth of three is usually
su�cient� Consequently� it was decided to consider only inputs in the 	rst�
the ��th� and the ��st row of the mask� blocking all other rows out by setting
the corresponding elements of the mask candidate matrix to �� In this way�

the search can proceed quickly� and yet� the resulting �optimal� mask will still
be very close to the truly optimal mask� Thus� the following mask candidate
matrix of depth �� was chosen�

�
BBBBBBBBBBBBBBBBB�

tnx u 
m Tm

t� ��	t �� �� ��
t� ��	t � � �
���

���
���

���
t� ��	t � � �
t� ��	t �� �� ��
t� �	t � � �
���

���
���

���
t� 	t � � �
t �� �� !�

�
CCCCCCCCCCCCCCCCCA

���
��

Consequently� the mechanical torque� Tm� at time t may depend on the
current values of u and 
m� as well as on past values of u� 
m� and Tm at times

t� ����
 seconds and t� ���
 seconds�
The fuzzy optimal mask is obtained using once again the foptmask function

coded in Matlab that makes use of the previously recoded data� The following
optimal mask has been found for this example�
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�
BBBBBBBBBBBBBBBBB�

tnx u 
m Tm

t� ��	t � �� ��
t� ��	t � � �
���

���
���

���
t� ��	t � � �
t� ��	t � � �

t� �	t � � �
���

���
���

���
t� 	t � � �
t �� � !�

�
CCCCCCCCCCCCCCCCCA

���

�

In other words�

Tm�t�  *f�
m�t� ���
�� Tm�t� ���
�� u�t�� ���
��

	������ Fuzzy Forecasting and Signal Regeneration

Once the optimal mask has been determined and before it can be integrated
into the mixed simulation� its prediction capability must be checked� For
this purpose� the �orecast function of Matlab will be used� The point is to
compare the values of Tm obtained from the quantitative simulation with those

obtained with the forecast and regeneration FIR modules� i�e�� those obtained
by means of qualitative simulation� As mentioned before� the 	rst ��� rows
of the qualitative data model were used as past history data to compute the
optimal mask� Fuzzy forecasting is being used to predict new qualitative triples

for Tm� but only for the last ��� rows of the qualitative data model� From the
predicted qualitative triples� quantitative values are then regenerated�

Figure ���� compares the true �measured� values of Tm obtained from the
purely quantitative simulation �solid line� with the forecast and regenerated
values obtained from Fuzzy Inductive Reasoning �dashed line�� The results are
encouraging� Quite obviously� the optimal mask contains su�cient information

about the behavior of the hydraulic subsystem to be used as a valid replacement
of the true quantitative di�erential equation model� although the chosen
recoding scheme was extremely crude using three levels for each variable

only� Notice that the fuzzy inductive reasoning model was constructed solely
on the basis of measurement data� No insight into the functioning of the
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hydraulic subsystem was required other than the knowledge that the torque�

Tm� dynamically depends on the control signal� u� and the angular velocity�

m�
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Figure ����� Comparison between real and regenerated torque behavior�

����� Mixed Modeling and Simulation

Once the prediction capability has been demonstrated� the fuzzy inductive
reasoning model can be used to replace the former di�erential equation model

of the hydraulic subsystem in an on�line mixed simulation� where the electrical
and mechanical subsystems are still modeled using di�erential equations�
whereas the hydraulic subsystem is modeled using a fuzzy optimal mask� The
mixed model is shown on Figure �����

The quantitative control signal� u� is converted to a qualitative triple� u��
using fuzzy recoding� Also the quantitative angular velocity� 
m� of the

hydraulic motor is converted to a qualitative triple� 
�
m� From these two

qualitative signals� a qualitative triple of the torque of the hydraulic motor�
T �
m� is computed by means of fuzzy forecasting� This qualitative signal is then
converted back to a quantitative signal� Tm� using fuzzy signal regeneration�

Forecasting was restricted to the last ��� sampling intervals� i�e�� to the time
span from ���
 to ��
 seconds� Figure ���� compares the angular position� �m�

of the hydraulic motor from the purely quantitative simulation �solid line�
with that of the mixed quantitative and qualitative simulation �dashed line��
As was to be expected� the mixed model behaves like a sampled�data control

system� The mixed simulation exhibits an oscillation amplitude that is slightly
larger and an oscillation frequency that is slightly smaller than those shown by
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Figure ����� Mixed model of the hydraulic system�

the purely quantitative simulation� Surprisingly� the damping characteristics
of the mixed model are slightly better than those of the purely quantitative

model�
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Figure ����� Comparison between real and regenerated closed�loop behavior�

��	 Conclusions

The examples demonstrate the validity of the chosen approach� Mixed
simulations are similar in e�ect to sampled�data system simulations� Fuzzy

recoding takes the place of analog�to�digital converters� and fuzzy signal
regeneration takes the place of digital�to�analog converters� However� this is
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where the similarity ends� Sampled�data systems operate on a fairly accurate

representation of the digital signals� Typical converters are ���bit converters�
corresponding to discretized signals with ���� discrete levels� In contrast�
the fuzzy inductive reasoning model employed in the above examples recoded

all three variables into qualitative variables with the three levels )small��
)medium�� and )large�� The quantitative information is retained in the fuzzy
membership functions that accompany the qualitative signals� Due to the
small number of discrete levels� the resulting 	nite state machine is extremely

simple� Fuzzy membership forecasting has been shown to be very e�ective
in inferring quantitative information about the system under investigation in
qualitative terms�

Some of the principal advantages of Fuzzy Inductive Reasoning are the
following�

�� Inductive reasoning allows qualitative models to treat time as a
continuous �quantitative� variable� This is of primary importance if
modeling and simulation of mixed quantitative and qualitative systems

is to be attempted�

�� The technique can be applied to any system available to experimentation

and observation� Inductive reasoning is fully based on behavior� thus�
there is no need for knowing the internal structure of the system�

�� The methodology contains an inherent model validation mechanism
inside its qualitative simulation engine that prevents it from reaching
conclusions that are not justi	able on the basis of the available facts�

�� Inductive reasoners operate internally in a qualitative fashion just like
knowledge�based reasoners� Therefore� it is possible to apply meta�

knowledge to improve the performance and quality of the inference
engine� and it is also possible to trace back the reasoning process if
desired�

In this dissertation� mixed quantitative and qualitative simulation is applied
to fault monitoring and analysis in large�scale systems� The plant itself is
represented by a purely quantitative di�erential equation model �since no real

large�scale systems were at our disposal to experiment with�� whereas the fault
monitor is a qualitative model that predicts system behavior in parallel with
the quantitative plant model� and reasons about the integrity of the plant and
its controllers� The subsequent chapters of this thesis shall demonstrate how

this is done�
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Chapter �

Building a Qualitative Fault

Monitoring System

��� Introduction

In fault monitoring of large�scale systems� any fault� transient� or malfunction�

i�e�� any misbehavior� can be seen as a structural change� The di�erences
between such a system and a �true� variable structure system �VSS�� can be
stated from two di�erent perspectives� on the one hand� from the point of view
of the normal modes the system can be operating in� and on the other hand�

taking into account the purpose of the Fault Monitoring System �FMS��

In large�scale systems such as those de	ned in Section ���� there is usually

only one normal mode in which the system is operating at any one time� and
consequently� all unexpected �unscheduled� structural changes encountered are
related to malfunctions� transients� and�or accidents taking place� The purpose
of a supervision and decision support system is to detect the anomalous

behavior of the system� or the paths that will lead to it� and take appropriate
actions to correct the problem� providing the supervisory control with su�cient
information to deal with a developing emergency e�ciently and e�ectively� or
to prevent it from happening altogether�

�cf� Section 
�
�� for a de�nition of variable structure system�

���
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In �true� variable structure systems� the transition from one structural

mode to another is not related to an emergency� but represents a normal
event that will happen regularly during system operation� The purpose of the
supervisory controller when applied to a VSS� is to provide the mode transition

controller �usually either a hardwired controller or a software controller�
with su�cient information to guarantee a smooth transition between di�erent
operational modes�

In both cases� the information obtained by the system that monitors
structural changes must be provided to the control system on�line and very
fast� The mode transition must be detected and diagnosed as quickly as

possible� Most physical plants are characterized by an upper time limit before
which the controller must react to a structural change that took place in the
plant� The example of an electrical grid with several interconnected power
plants can be used to show how fast the control system must react to a

structural change� Suppose that the controller of a hydraulic turbine �in one of
the power plants� will naturally react to a short circuit �a structural change�
in the electrical net by opening up the sluice to increase the power of the
turbine to compensate for the sudden jump in perceived load� Whereas this

control action is entirely appropriate in the case of a true load increase� it is
not appropriate in the case of a short circuit� The fault monitoring system has
two seconds time to discover that a structural change took place and what the

nature of it is� before the growing angular velocity of the turbine will trip the
emergency shut�down system� A properly functioning fault monitor should
react faster than the emergency shut�down system� detect that something
abnormal has happened� discover that a short circuit has occurred� determine

where in the net the short circuit is located� isolate the short circuit by
notifying a�ected neighboring power stations of the problem� throw o� the
isolated load� and notify power stations in the vicinity that are not directly
a�ected by the short circuit of the expected transient behavior �a scheduled

structural change�� If the fault monitoring system fails to react faster than
the emergency shut�down system� neighboring power stations will experience
an unexpected additional sudden load increase� Since one power station got
shut down� the others have to take over its customer load� This load increase

may be viewed by the neighboring power stations as a new fault� and a wave
of emergency shut�downs may result in the potential black�out of an entire
region�

The methodology presented here is capable of diagnosing faults in large�
scale systems and structural changes in variable structure systems alike� The
design of a decentralized hierarchical fuzzy inductive reasoning architecture for

fault detection and diagnosis will be presented in this chapter� The advantages



���� Fault Detection Through Inductive Reasoning ���

and disadvantages of this Fault Monitoring System will be demonstrated by

means of some prototypical implementation of such a system in its di�erent
operating modes� applied to a fairly simple model of a Boeing ��� aircraft at
cruise �ight �this chapter�� and a sophisticated large�scale model of a Boiling

Water Nuclear Reactor at ���, power �Chapter ��� as well as for diagnosing
structural changes in two VSSs� namely an interconnected water�tank example�
and an electrical switching circuit example �this chapter��

��� Fault Detection Through Inductive Rea


soning

Fault detection through inductive reasoning can be decomposed into two
di�erent phases� a� o��line and b� on�line� The o��line phase includes the

processes that must be carried out before the qualitative inference process
can be attempted� i�e�� the fuzzi	cation and qualitative modeling processes
described in Chapter �� as well as the characterization of the faults the FMS
should be able to recognize� The main tasks of the o��line phase are�

i� Selection of input�output variables�

ii� Causal and temporal grouping of variables�

iii� Qualitative modeling�

iv� Hierarchical arrangement of qualitative models of subsystems�

The only condition for carrying out these o��line processes is that knowledge
about the system�s behavior must be available�

In the on�line phase� the FMS is coupled to a quantitative dynamic system
or model in order to accomplish the tasks for which it has been designed�
These tasks depend on the system under study� and can be those of detecting

anomalous behavior in dynamic systems� or detecting structural changes in
VSS or both� The processes of the on�line phase� are those described in
Chapter ��

� Detection�
�Chapter � provides a full description and complete references of each one of these

processes�
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� Isolation�
� Characterization�
� Identi	cation�
� Propagation through the hierarchy�
� Diagnosis�
� Analysis�

����� Selection and Causal Grouping of Variables

The process of properly identifying the variables to reason with and the
subsystems making use of these variables� is one of the most important
and di�cult problems to be solved on the way of designing a supervision
and decision support system� To solve this problem� the Optimal Mask

Analysis technique� described in Chapter �� has been implemented to identify
clusters of causally related variables that can be isolated as subsystems in a
model hierarchy�� Structural knowledge of the physical system can also help
in this endeavor� but the identi	ed subsystems do not necessarily coincide

with physical subsystems� The variables making up one reasoning subsystem
are selected by the Reconstruction Analysis and�or Optimal Masks Analysis
methodologies on the basis of similarities in their frequency characteristics and

causal relations rather than on the basis of geometric topology�

Optimal Mask Analysis has already been explained in Chapter �� however�
its use for selecting a minimumset of meaningful variables has not been treated

yet� This selection is made by means of a comparison between di�erent possible
qualitative relationships� each one with a di�erent combination of variables�
i�e�� a comparison between di�erent optimal masks� one for each combination

of variables� The mask with the best quality not just represents the best
qualitative model� but the strongest relationship between input and output
variables from the point of view of their forecasting power� The purpose is then
that of 	nding strong qualitative �non�linear� correlations between inputs and

outputs� and weak correlations among inputs� in such a way that the resulting
relations for the outputs will be as deterministic as possible while avoiding
unnecessary redundancy among highly correlated inputs�

�It has already been mentioned that when the system under consideration is a large�scale
system� the Optimal Masks Analysis technique should be combined with the Reconstruction
Analysis methodology that will be explained in Chapter ��
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If the chosen set of variables is not representative enough of the subsystem to

be characterized� the resulting optimal masks will have few interactions among
their variables� which in turn will lead to poor propagation of information up
the hierarchical ladder �the necessity for a hierarchical arrangement of the

selected sets of variables will be explained in the next section�� The same
can be observed if the chosen variables are too strongly correlated� since� in
this case� the complexity of the search space is enhanced without signi	cantly
augmenting the amount of available information�

Also� the subsystems should complement each other in an optimal manner�
Subsystems that are too independent of each other show few interactions

between them� so that the higher hierarchical levels of the overall architecture
do not contribute signi	cantly to the reasoning process� but simply accumulate
and propagate further the 	ndings of subordinate reasoners� On the other
hand� a duplication of reasoning capabilities within di�erent subsystems

located at the same hierarchical level simply increases the complexity of the
search space of the supervisory reasoner without providing it with additional
information that would justify the enhancement of its complexity�

It may happen that the system under study is composed of lots of variables�
thus� the number of possible subsets of variables to be tried is too high� It
seems not practical to perform an exhaustive test of all possible combinations

of variables� Consequently� the Optimal Masks Analysis is not the appropriate
tool for selecting a minimum set of meaningful variables to reason with� in this
case� To solve this problem� the Reconstruction Analysis methodology will be
introduced in Chapter 
� In this way� if the system to be fault monitored is a

large�scale system� Reconstruction Analysis will be in charge of selecting the
variables� whereas Optimal Mask Analysis will be in charge of obtaining the
qualitative models relating those variables to each other�

����� Hierarchical Fault Monitoring

Since Optimal Mask Analysis inherently involves time� its causality analysis
is necessarily temporal� This means that the identi	ed clusters of meaningful
variables �subsystems� are temporally related to each other� The subsystems

should be hierarchically arranged� Each hierarchical level can be composed
of several subsystems except for the highest level� which can include one
subsystem only� Since each subsystem is modeled by an optimal mask� the

hierarchy of subsystems is in fact modeled as a hierarchy of fuzzy inductive
reasoners �FIRs��
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Hierarchization of inductive reasoners can proceed in two ways� In a top�

down approach� one starts with an overall system output and determines an
optimal mask that estimates its value from a set of selected input variables�
If any of these �input� variables are not true inputs of the system but are

only intermediary variables that may not be accessible at run time� these
�inputs� are declared as new outputs of subsystems� and a new optimal mask
is determined for each of them relating that variable to other variables� until all
�inputs� have been reduced to true system inputs� In a bottom�up approach�

one starts with individual subsystems at the lowest level� determining optimal
masks for them� The output variables of each subsystem are then propagated
up to the next stage of the reasoner to determine the qualitative behavior of
the composite system located at the next higher hierarchical level�

In a FMS� both approaches may be combined� Modeling the behavior of
physical variables is usually better done in a top�down approach� i�e�� when

trying to obtain a qualitative model that explains a physical variable for which
data are available in the training data set� it is better to start out with
this variable as the 	rst output and work oneself backward to the system
inputs� However� the 	nal output of the fault monitor is not normally a

physical variable� It is a global indicator that tells whether or not a fault
has occurred� It is usually computed as a logical function of similar but
local indicators generated by individual subsystems� Each of these indicator

functions� in turn� is computed from di�erences between an observed physical
variable and a predicted estimate of the same physical variable produced by
a yet lower�level inductive reasoner� Consequently� it is better to build the
higher�level reasoners that evaluate the indicator functions using a bottom�

up approach� whereas the lower�level reasoners that predict the behavior of
physical variables are best constructed using a top�down approach�

The highest FIR in the hierarchy is known as the executive FIR� The
executive FIR uses as inputs the output signals of the subsystem FIRs� and
its output is one of the �true� outputs of the system� The role of the higher�
level subsystem FIRs is that of sensor fusion �Luo and Kay� ����� Pau� ������

i�e�� they concentrate the information available through the large number of
sensors to a much smaller number of signals that the executive FIR can be
expected to handle e�ectively and e�ciently� The executive FIR will report
its 	ndings while pointing out which of the subsystem FIRs is most closely

related to the problem� Then� it will turn to that FIR to receive more detailed
information and to continue with the fault characterization� Each of the
subsystem FIRs operates on di�erences between the observed and expected
behaviors of physical variables� The expected behaviors are calculated by yet

lower�level FIRs from the physical plant inputs�
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����� Detection

The FIR methodology predicts the system behavior in qualitative terms� This

behavior is then compared against the real values obtained from either a
quantitative model of the system or from the physical system itself� As the
prediction is based on the recent past behavior of the system� it is somewhat
adaptive to slow changes in system parameters or a slow drift in the steady�

state� but a fault� transient� or structural change is immediately detected since
the behavior of the system can no longer be predicted with the fuzzy optimal
mask that had been determined for the previously active system structure�

Figure ��� depicts the fault detection scheme using FIR�
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Figure ���� Fault detection using FIR�

The detection of a structural change is made through a Dynamic
Comparison Module that continuously compares the forecasting results
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obtained by the inductive reasoner �the qualitative simulation results� against

the real measurement data obtained from either a quantitative model or
a physical system� Since the fuzzy optimal mask operates on qualitative
information� it is to be expected that the forecast is not perfect� For a typical

technical application� we may expect a forecasting error of somewhere in the
order of ����, �de Albornoz and Cellier� ����a� de Albornoz and Cellier� �����
in the FIR predictions� Evidently� it will sometimes happen that a prediction
is kind of poor even if the correct model is in use� or it may also happen that a

prediction is right on the mark even though the incorrect model is being used�
In both cases� an alarm basing its decision on instantaneous errors alone would
be destined to make mistakes�

In order to overcome this problem� the instantaneous error vector is 	rst
being �re	ned� by sending it through an Error Filter Module� The error 	lter
accumulates errors over k steps� i�e�� it generates a moving average of the errors

accumulated over the most recent k steps� The Alarm Module then bases its
decision on the comparison between the number of accumulated errors and a
certain threshold speci	ed by the modeler� In this way� local aberrations or
accidental hits can be 	ltered out and will not in�uence the decision making

process�

Figure ��� shows an example of fault detection using the aforementioned

process� The Dynamic Comparison Module generates an instantaneous error
for each optimal mask output variable at each time interval� The instantaneous
errors are stored in a matrix where the number of rows is t ! n"t and the
number of columns is the number of optimal masks in the hierarchy� In this

example there are 	ve optimal masks in the hierarchy� A moving average error
	lter is shifted further down computing� for each optimal mask� the sum of
the instantaneous errors it covers� These instantaneous errors are stored in a

cumulative errors matrix� If any of these values surpass the threshold of the
alarm module� then the alarm is triggered immediately for those particular
masks� i�e�� the faulty subsystems are identi	ed�

����� Isolation and Characterization

Once the alarm has been triggered because an anomalous behavior has been

detected� the FMS proceeds to the next stages of automated fault monitoring�
i�e�� isolation and characterization� The isolation step is carried out by the
executive FIR that knows which among its input variables �output variables

from other subsystems� are responsible for triggering the alarm� Tracing
back these variables into lower levels of the hierarchical ladder� the executive
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Figure ���� Fault detection scheme�

FIR determines which subsystem or subsystems have failed� In this way� the
detected anomaly is restricted to a set of few candidate subsystems that may
have caused it�

The purpose of the characterization process is to classify the anomalous
behavior in order to simplify the hypothesis formulation process of the
diagnosis� i�e�� to 	nd out what kind of failure has been detected in order

to reduce the number of possible causes� The characterization is done by
comparing the behavior obtained from the set of variables that compose the
a�ected subsystems in the real physical system or quantitative model against
the behavior obtained from previously characterized qualitative models of

those subsystems under di�erent conditions of anomalous behavior�

Up to this point� the anomalous behavior� transient� or fault� �from the

point of view of qualitative fault monitoring a structural change� has been
detected� isolated� and characterized� In the next section� di�erent strategies
will be presented for tackling the diagnosis and analysis processes� and also for

continuing the fault monitoring duties after a fault has taken place� that is�
after a structural change has occurred�
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����� Diagnosis and Analysis

The fault diagnosis and fault analysis can be performed o��line using any
available quantitative or qualitative tool� or on�line using FIR� To carry out
an on�line diagnosis and analysis� FIR must continue with the prediction of
system behavior after the structural change has taken place�

To this end� qualitative models that represent faulty subsystems must
be swapped for other qualitative models that have been determined under

the newly active system structure� i�e�� the optimal masks used before the
structural change took place must be substituted by new optimal masks
that represent the new situation created after the structural change� These
new fuzzy optimal masks that 	t the new situation include the necessary

information for the diagnosis and analysis of the structural change� If the
optimal masks used before the structural change are still capable of forecasting
the behavior of the system after the perceived change has occurred� i�e�� after
the error alarm has been triggered� then it can be concluded that no structural

change has taken place� or that the change is so small and smooth that it cannot
be considered a fault� but represents a small operational disturbance only� In
this case� the alarm threshold has probably been set at too low a value�

There are two reasons for the FMS to continue with the prediction of
system behavior after the change has been detected� the 	rst one is that the

necessary elements to perform the diagnosis and analysis of the structural
change are included in the new qualitative model� i�e�� the qualitative model
itself represents the result of the diagnosis� and with that qualitative model�
an analysis process can be carried out� The second reason is that the role of

the FMS does not terminate once an anomalous behavior has been detected�
but continues into the new post�accident situation�

Since the inductive reasoner is not capable of predicting the behavior of
a system that it has never observed before� a successful prediction of the
system behavior after the change is only possible if one of the following three
assumptions holds�

a� The inductive reasoner switches from the prediction mode� in which it
has been operating before the structural change occurred� to a training
mode in which new incoming data should be observed in order to
generate a new qualitative model that 	ts the new situation�

b� All possible structural modes have been previously observed and
characterized by FIR in such a way that a qualitative model for each one
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is available in a Qualitative Model Library� avoiding the necessity

for a new training phase�

c� All possible structural modes have been previously observed and
characterized by FIR in such a way that a qualitative model for each

one is used in parallel to Forecast All Possible Structures� avoiding
the necessity for a new training phase� and for a search in a qualitative
model library�

In the next subsections� these three assumptions will be explored in full�
However� since the 	rst assumption Back to Training Mode presents severe

drawbacks in a real�time control environment� it will not be implemented in
any practical application�

������
 Back to Training Mode

FIR detects that a structural change has taken place since it cannot predict
the behavior of the system any longer� Since no other structural mode is

known to the reasoner� i�e�� no other structural mode has been previously
observed and consequently modeled� the inductive reasoner switches from the
prediction mode� in which it has been operating before the structural change
occurred� to a training mode� in which it observes new incoming data for a

su�ciently long period of time to characterize a new structural mode� i�e�� to
generate a new set of fuzzy optimal masks� Only after this phase has been
successfully completed will the inductive reasoner switch back to its prediction
mode and resume its original duties� Figure ��� shows a schematic diagram of

this assumption including the qualitative simulation� the dynamic comparison�
and the identi	cation procedures�

This assumption has severe drawbacks in a real�time control environment�
It requires a time period after a structural change has taken place for
determining the new qualitative model to be used� and consequently� for
performing the diagnosis and analysis of the detected structural change�

During this time period� the supervisory control is disabled for all practical
purposes� However� it is exactly this time period when the transient takes
place� and when knowledge of what is going on would be most valuable to

damp out the transition shock and to steer the system smoothly into its new
mode of operation�

Consequently� this assumption makes little sense as the fault monitoring
strategy of a continuous FMS� It can only be used for building�
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Figure ���� �Back to Training Mode� scenario�

� A semi�continuous FMS with functions for early warning� Some
potential problems can be discovered before they become emergencies
or even accidents�

� A semi�continuous transient discovery system for quick detection of an
evolving anomaly capable of pointing out which of the subsystems is
causing the problem� but incapable of diagnosing and analyzing the

precise nature of the detected anomaly�

� An o��line anomaly characterization and identi	cation system to be used
with other tools for post�accident analysis�

������� Qualitative Model Library

In this assumption� the system should have previously been observed by the
inductive reasoner in all its structural modes �or at least in the most common
ones�� and di�erent hierarchies of fuzzy optimal masks� one hierarchy for each

mode� should have been stored away in a Qualitative Model Library for later
reuse� Once a structural change is detected� isolated� and characterized� the
model library is searched for another hierarchy of fuzzy optimal masks that

leads to qualitative behavior that is consistent with the real system behavior
observed after the change�
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Each of a set of qualitative models in the library will be tried during some

speci	ed time� in order to 	nd the one that best 	ts the new situation� Each of
these qualitative models represents a particular type of structure� and because
an abnormal behavior is considered a structural change� this information can

be used to conclude what anomaly has happened� i�e�� to discriminate between
di�erent types of accidents �diagnosis�� and to decide upon an appropriate
corrective action to be taken �analysis�� In this way the continuity of the fault
monitoring tasks after a structural change is also guaranteed� Figure ��� shows

the schematic diagram of this assumption� Notice that the upper modules of
the FMS work in the same way they did in the previous Back to Training Mode
assumption� what really changes is the fault monitoring strategy�
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Figure ���� �Qualitative Model Library� scenario�

This approach avoids the necessity for the FMS of going back to a training
mode during a large period of time� i�e�� it avoids the disconnection of the
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prediction mode during a large period of time� However� a �usually much

shorter� disconnection during the library search cannot be avoided� Thus� this
option su�ers from the same� though less severe� problems as the previous
Back to Training Mode option� Once a structural change has been detected�

isolated� and characterized� the Qualitative Model Librarymust be searched for
a new model that is capable of explaining the observed system behavior� While
this search is proceeding� behavior forecasting for fault monitoring purposes is
disabled� The FMS continues with the prediction of system behavior� but the

purpose of this prediction is that of comparing the new reality with each one
of the qualitative models in the library� in order to select the one that best 	ts
the new situation�

Although this approach works amazingly well for dynamic systems in which
chained faults do not occur� it also fails to predict the system behavior precisely
when the fault is taking place� i�e�� when such a prediction would be most

useful� This approach can be used to build any of the three types of FMSs
described in the previous Back to Training Mode assumption� or a continuous
FMS� with functions for�

� Early warning�
� Quick detection of an evolving anomaly with isolation� characterization�
diagnosis� and analysis capabilities�

� Correct selection of a new qualitative control model that 	ts the new
situation every time an anomaly occurs�

� O��line post�accident analysis�

This Qualitative Model Library approach was successfully applied to a

quantitative model of a Boeing ��� aircraft at cruise �ight� The control
elements of the aircraft�s autopilot were the engine thrust and the elevator
de�ection angle� whereas the related output variables predicted by the

inductive reasoner were the lift� the drag� and the �ight path angle� Four
di�erent malfunctions or accidents were introduced into the quantitative model
in order to alter its normal behavior� The FIR�based FMS was allowed to
learn the behavior of the aircraft in its 	ve structural modes� and to build a

qualitative model library with the 	ve qualitative models� In a subsequent
simulation experiment� malfunctions were triggered to occur randomly in such
a way that the qualitative model was kept in the dark with respect to when
the accident would take place� and which of the accidents had been selected�

�Except for the time needed to �nd the new qualitative model in the library�
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The FMS was capable to detect� characterize� and diagnose the four accidents

unambiguously� The purpose of the supervisory control was to provide a
watchdog monitor for the aircraft�s autopilot� The methodology worked 	ne
for the task at hand�

These results were 	rst presented at the QUARDET��� Qualitative
Reasoning and Decision Technologies Workshop �de Albornoz and Cellier�

����a�� An improved version of this article in which the advantages of a Fuzzy
Inductive Reasoner over a Crisp Inductive Reasoner were demonstrated was
later published in Simulation �de Albornoz and Cellier� ������ The results of
this experiment� and the experiment itself� will be presented at the end of this

chapter�

A second application example of this approach was a large�scale

quantitative model of a Boiling Water Nuclear Reactor at ���, power� The
numerical model used to obtain the measurement data had been built in a
previous project �Ramos and de Albornoz� ����� Ramos� ������ and had been
intended for transient analysis during all phases of plant operation �start�

up� steady state� and shut�down�� Since the numerical model is quite large� it
contains approximately 
�� variables and more than ��� di�erential equations�
the purpose here was limited to the selection of a minimum set of meaningful
variables to provide the inductive reasoner with� and to build a qualitative

model hierarchy of inductive reasoners� i�e�� one inductive reasoner for each
identi	ed subsystem� rather than building qualitative models of all possible
transients� For this reason� only two structural modes were simulated and
characterized in the qualitative library�

The selection and causal grouping of variables was made using Optimal
Mask Analysis rather than Reconstruction Analysis� because the latter

methodology had not yet been implemented at the time when the research
was made� This means that the evaluation of the temporal hierarchical
array of subsystems was made using some expert knowledge from the

modeler rather than the Optimal Structure Analysis of the Reconstruction
Analysis methodology� The two structural modes were properly identi	ed and
discriminated� In this case� the purpose was limited to providing a human plant
operator with additional information that could prove useful when dealing with

these two types of developing emergencies� This experiment was also presented
at the QUARDET�� Workshop �de Albornoz and Cellier� ����b��

This example will be used once more in Chapter � to demonstrate
the validity of the combination of Inductive Reasoning and Reconstruction
Analysis for building a qualitative Fault Monitoring System to be applied to
quantitative large�scale systems�
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������	 Forecasting all Possible Structures

With this strategy� the mode transition is both detected and discriminated
almost immediately� Like in the previously discussed Qualitative Model Library
option� all possible structural modes must have been previously modeled
and characterized� However� instead of placing them in a model library�

all qualitative models are used in parallel to constantly predict di�erent
qualitative behaviors of the system� i�e�� all models corresponding to all
structural modes are used in parallel to predict the future behavior of the
system� Obviously� only one of the models can represent the true behavior

of the system at any one time� This model is identi	ed by continuously
comparing all predictions against the real measurement data just like in the
aforementioned scenarios �de Albornoz et al�� ������

Figure ��
 shows a schematic diagram of the whole process� The measured
data are fed in parallel to the di�erent hierarchies of masks representing the
di�erent structural modes� Each of them produces a stream of qualitative

forecasts� A dynamic comparison is made for all structures simultaneously�
leading to several instantaneous error vectors� one for each structural mode�
The error 	lter works as described before generating a moving average of errors

accumulated over the most recent k steps� The Alarm Module is substituted
by a Mode Selector Module that bases its decision on the smallest among the
	ltered errors�

In this way� the FIR�based FMS can switch from one qualitative model to
another almost immediately after a structural change has taken place� The
determination of a qualitative model capable of representing the behavior of

the system at all times is guaranteed� irrespective of the structural mode the
real system is in�� Thus the diagnosis is done almost immediately which lets
the FMS perform an analysis that can in�uence the control of the current
developing anomaly by avoiding the transition shock and steering the system

smoothly into its new situation�

This approach avoids the shortcomings of the two previously explained

approaches� A continuous FMS using this approach has all their
aforementioned capabilities� and the following advantages�

� The prediction of system behavior is always enabled�

� The time used to diagnose the anomaly is reduced to a minimum�
�Assuming that all possible structural modes the system can be in are precisely those

that the FMS is using in parallel�
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Figure ��
� �Forecasting all Possible Structures� scenario�

� The FMS captures the behavior of the developing anomaly�
� The analysis performed by the FMS can in�uence the control of the
current developing anomaly�

� This fault monitoring strategy can be applied to dynamic systems with
fault chains� and to variable structure systems�

The Forecasting All Possible Structures approach was successfully applied

to two di�erent variable structure system examples� In the 	rst one� a
quantitative model of a two�interconnected�water�tank system was used to
obtain the measurement data� The FMS included quantitative models of the
four possible structural modes the system can be in� and predicted the behavior

of the water level in each of the two tanks using these four quantitative models
in parallel� In another simulation� the quantitative model was randomly driven
through all structural modes in such a way that the FMS was kept in the

dark with respect to when the structural change would take place� and which
of the structural changes had been selected� The FMS proved capable of
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detecting� isolating� characterizing� identifying� diagnosing� and analyzing the

four structural changes�

The second application example of this approach was much more involved�

It consisted of an electrical circuit with three binary switches and eight
possible di�erent structural modes that exhibit behavioral patterns similar
enough to make their correct identi	cation a di�cult problem� The simulation

experiments were carried out in the same way as in the two�interconnected�
water�tank example� In this case� the FMS was capable of identifying most of
the structural modes the system was in� but not all of them�

These experiments and their results were presented at the ESM��
Conference on Qualitative Information� Fuzzy Systems� and Neural Networks
in Simulation �de Albornoz et al�� ������ An extended version of this paper

has been accepted for publication in the Mathematical Modeling of Systems
journal� Both experiments will be explained in full in the implementation
section of this chapter�

��� Implementation of the Qualitative Model

Library Assumption

In this section� a qualitative FMS based on the Qualitative Model Library

assumption is applied to a quantitative model of a Boeing ��� aircraft at
high�altitude horizontal cruise �ight �Vesanter�a� ������

Following the steps explained in the past sections of this chapter� it is now
clear that various qualitative models of the airplane must be built� one for
each structural mode� in order to be used by the FMS� These qualitative
models must be capable of mimicking part of the human situation assessment

process by learning how the system behaves� and the FMS must be capable of
identifying speci	c events that can be treated as faults taking place� In other
words� the qualitative FMS can be trained to determine when a malfunction
occurs in the quantitative model� it can be made to hypothesize about the

nature of this malfunction� and may eventually be brought to suggest a global
control strategy that would allow to safely operate the quantitative aircraft
model under the modi	ed �ying conditions�

Such an algorithm �qualitative aircraft model and FMS� could be
implemented as a �watchdog autopilot�� i�e�� as an addition to a conventional

autopilot that would allow the autopilot to remain operational after a
malfunction has taken place� On a shorter�term basis� such a system could
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be used by a human pilot as an on�line automated advisor� i�e�� a diagnostic

aid and a consultation system� that alerts the pilot to perceived problems� and
o�ers advise as to how to deal with them�

This application has two di�erent objectives� The 	rst one is to show
that a FIR�based Fault Monitoring System is able to recognize� within a few
seconds after a simulated malfunction has taken place� that the aircraft has

qualitatively changed its behavior� triggering then a diagnostic engine based on
the aforementioned qualitative model library approach� all this in order for the
FMS to distinguish unambiguously between 
 di�erent types of malfunctions�

The second objective is to demonstrate that� by incorporating fuzzy
measures into the inductive reasoning process and by modifying the algorithm
for the evaluation of the quality factor of the qualitative �structural�

relationships� the discriminatory power of the inductive reasoner is enhanced�
i�e�� to demonstrate that a FIR�based FMS has an enhanced predictive and
discriminatory power over a crisp inductive reasoner�based FMS �Vesanter�a�
����� Vesanter�a and Cellier� ������ by comparing two fault monitoring systems�

one using the crisp approach and the other using the fuzzy approach� applied
to the same quantitative aircraft model�

In the following sections� a description of the quantitative and qualitative
models will be given� emphasizing the di�erences between the crisp and the
fuzzy inductive reasoning approaches� as well as the importance of the chosen
application from the point of view of the autopilots�

����� Aircraft Control and Autopilots

Small aircrafts can be manually controlled as shown in 	gure ���� The pilot
observes the instruments and the scenery and controls the aircraft as to follow

the desired �ight path�

Larger aircrafts� such as commercial airliners� cannot be controlled in this
fashion� The reason is that the desired managerial �ight characteristics

�high speed� low fuel consumption� are in con�ict with the technical �ight
characteristics �stability� disturbance suppression�� An economic airliner
cannot be built with su�ciently benign technical characteristics for it be �own

by a human pilot� Such an airliner is by itself an almost unstable system�

Therefore� all airliners include automatic controllers that assist the human

pilot in his or her task� The control con	guration of a commercial airliner is
shown in Figure ���� The 	gure is highly simpli	ed� because the automatic
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Figure ���� Aircraft with human control�

control system is in itself a highly complex system consisting of several
controllers for di�erent tasks�

The Stability Augmentation System �SAS� arti	cially enhances the stability
of the aircraft� It consists of three separate controllers� namely a roll damper�
a pitch damper� and a yaw damper�

A commercial airliner has also considerably more parts to be controlled
than a small aircraft� For example� it has �aps on the wings to increase the
lift at low speed� Human pilots have di�culties to control all these parts

separately� They need automated support in reducing the control functions to
a manageable number�

The Control Augmentation System �CAS� supplies this functionality� A
small number of logical human control functions will be expanded to a
considerably larger number of physical automated control functions� The
human pilot thus perceives the aircraft as a quite di�erent device from what

it really is� However� with the SAS and CAS in place� the enhanced aircraft
can now be �own in basically the same manner as a small aircraft would�

Autopilots are designed to replace human pilots during routine operation of
the aircraft� Figure ��� shows a conventional autopilot� The autopilot simply
assumes the place formerly occupied by the human pilot� and the role of the

human pilot is reduced to providing the �ight plan� Autopilots can be classi	ed
in accordance with their functionality� There are two basic types of autopilots�
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Figure ���� Aircraft with SAS and CAS control systems�

a� pilot�relief autopilots� and b� navigation�coupled autopilots �Stevens and
Lewis� ������

a� The pilot�relief autopilots are designed to meet speci	cations on steady�
state error and disturbance rejection� with less emphasis on dynamic

response� Their main function is that of relieving human crew from
routine tasks such as holding the main �ying variables steady� including�

� pitch angle�

� altitude� and

� velocity�

b� The navigation�coupled autopilots are designed to assume control of more
advanced �but normal� operations such as�

� navigation and guidance� and

� automated landing�

Autopilots are rarely equipped to handle abnormal situations� Recently�
some navigation�coupled autopilots have been designed to support small

foreseen structural changes� as for example� the autopilots with automatic
landing capabilities� Modern automatic landing autopilots not only control
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Figure ���� Conventional autopilot scheme�

the descending rate and the �ight path as they used to� but instead� they are

responsible for the entire landing maneuver including control of the structural
change of the wings� During takeo� and landing� the aircraft wings are usually
�recon	gured� �structurally modi	ed� by deploying �aps and wing leading�
edge devices so that the wings e�ectively have more camber� providing the

airplane with more lift at low speed �Air France� ������

However� if structural changes are more serious� i�e�� the aerodynamic

parameters change drastically� as for example when a thin ice plate has formed
on the wings� when one or more engines have been shuto�� when the rudder
or the elevators are stuck� to give just a few examples� the autopilot is
automatically being disengaged� because it is not able to understand what

is happening� and consequently� it would try to maintain the previous �ight
speci	cations that may no longer be valid under the modi	ed circumstances�
This� in turn� requires the human pilot to take full control of the airplane�

By using a �watchdog autopilot�� situations such as the ones described
above can be aided� A watchdog autopilot is an addition to a conventional
autopilot with two possible functions� On the one hand� it can detect that

�ying conditions are changing in such a way that they could become dangerous�
and report its 	ndings immediately to the human crew or to the destination
airport� depending on the perceived seriousness of the anomaly� This function

is depicted in Figure ���� Alternatively� it could try to prevent the modi	ed
�ying conditions from ever becoming an emergency by informing the autopilot
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of the problem� such that the autopilot can modify its behavior and remain

operational even under the modi	ed �ying conditions� The latter kind of
watchdog autopilot is shown in Figure �����
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Figure ���� Watchdog autopilot with alarm function�

An aircraft watchdog autopilot can be designed by means of a di�erential
equation model of the dynamics that is run in real time driven by the
same control actions that are applied to the real aircraft� The di�erences

between the measured aircraft performance and the expected �simulated�
aircraft performance can then be used to disable the autopilot and trigger
the alarm� However� such a solution o�ers relatively little in terms of an
explanation of the nature of the perceived anomaly� If the mathematical

model is not just intended for normal �ight simulation� but for encompassing
anomalous behavior as well �for the purpose of providing a better explanation
of what is going on�� the quantitative simulation will become sluggish� and
very fast and expensive computers will be needed to perform the required

operations in real time� However� if the purpose of the simulation is only that of
distinguishing between a number of structurally di�erent anomalous behaviors�
all these detailed computations may in fact not be needed� To this end�

we propose an alternative approach based on our qualitative Fuzzy Inductive
Reasoning methodology to be applied to this problem� The purpose here is
the construction of a qualitative watchdog autopilot capable of detecting and
identifying sudden changes in the �ying conditions by means of the previously

explained Qualitative Model Library assumption�
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Figure ����� Watchdog autopilot with control function�

����� The Quantitative Model

A brief explanation of the mathematical aircraft model is needed to introduce
the variables that will be used in the qualitative model� The mathematical
aircraft model used in this study re�ects an essentially longitudinal �ight
restricted to longitudinal deviations from a trimmed reference �ight condition�

which is characterized by the requirement that the resultant forces and
moments acting on the aircraft center of mass are zero�

By using the coordinate system shown in Figure ������ where the origin is
placed at the center of gravity of the airplane� the x�axis points in the direction
of the motion� the z�axis points downward� and the y�axis runs spanwise and
points to the right� the three angles that are needed to describe the relative

position of the center of gravity of the airplane� and of the velocity vector
with respect to an earth�	xed reference frame and a fuselage�	xed reference
frame� can be de	ned� The 	rst one� �� is the angle of attack �or incidence�
which is de	ned using the velocity x�axis component� u� and the velocity z�

axis component� w� The angle of attack denotes the inclination of the fuselage
reference line with respect to the velocity vector� i�e�� the tangent to the real
�ight path line� Hence�

�This �gure has been taken from 	Vesanter�a� 
����
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The second is �� the �ight path angle of the aircraft� representing the
inclination of the velocity vector to the horizontal� and the last is �� the pitch
angle� representing the relative position between the two reference frames� that

is� between the fuselage reference line and the horizontal line� The pitch angle
is de	ned in terms of the previous angles as�

�  � ! � �����

Figure ����� Reference angles of the aircraft�

When considering a rigid body on an essentially longitudinal �ight� the
resultant force can be decomposed into its tangential and normal components�
and can be written in terms of the reference angles as�

Ft  m
dv

dt
� Fn  mv

d�

dt
�����
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The only active moment about the center of gravity of the airplane considered

as a rigid body and under the speci	ed �ying conditions will be the pitching
moment� i�e�� the one about the axis that is perpendicular to the longitudinal
symmetry plane called y�axis�

My  Iy
d��

dt�
�����

The quantities a�ecting the airplane in �ight� shown in Figure ������ are
its weight W � the thrust T developed by the engines� the aerodynamic forces
Lift L and Drag D� and the aerodynamic pitching moment M � The weight

of the aircraft is considered constant� The thrust is considered as being a
function of the �ight velocity and of its own control variable 	T � the throttle
opening� For reasons of simplicity� the thrust line will be assumed to coincide

with the x�axis� The aerodynamic forces� Lift L and Drag D� compose the
force response of the aircraft to the motion� The Lift is assumed as being the
normal component of the aerodynamic force with respect to the �ight path�
and the Drag is its tangential component� The aerodynamic pitching moment

M about the center of gravity is de	ned to be positive for a nose�up e�ect�
and negative for a nose�down e�ect�

The standard way of expressing the aerodynamic forces L and D� and the
aerodynamic momentum M is through their non�dimensional aerodynamic
coe�cients CD� CL� and CM �

L  
�

�
v�SCL ���
�

D  
�

�
v�SCD �����

M  
�

�
v�S

%c

�
CM �����

where

�This �gure has been taken from 	Vesanter�a� 
����
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Figure ����� Forces and moment acting on the aircraft�

  is the local air density�
v  is the cruising velocity�
S  is the size of the aerodynamic surface of the plane�
%c  is the mean aerodynamic chord of the wing�

These three non�dimensional coe�cients express the aerodynamic response of
the airplane to variations in the angle of attack �� the elevator de�ection 	e�
the angle of attack rate ��� and the pitch rate q� By expanding these non�
dimensional coe�cients into a Taylor series around an initial value� they can

be expressed in terms of �� 	e� ��� and q as�

CL  CL�
!
�CL

��
�!

�CL

�	e
	e !

�CL

� ��
��!

�CL

�q
q �����

CD  CD�
!
�CD

��
� �����

CM  CM�
!
�CM

��
�!

�CM

�	e
	e !

�CM

� ��
��!

�CM

�q
q ������
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The aerodynamic reactions of the airplane can be represented approximately
by means of stability derivatives� i�e�� the coe�cients of the Taylor series

expansion� The relations between �� 	e� ��� and q are described by these
stability derivatives in the following way�

� coe�cients CL�� CD�� and CM�� They describe how changes in the angle

of attack � a�ect the aerodynamic forces and moments� An increase in the
angle of attack generally induces an increase in the Lift� an increase in the
Drag and a negative pitching moment�

	e coe�cients CL�e
and CM�e

� They describe the e�ect that a de�ection of
the elevator has on the Lift and on the Pitching Moment� A positive elevator

de�ection is de	ned as being elevator down� which causes an increase in the
Lift and a negative pitching moment increment�

�� coe�cients CL ��
and CM ��

� Basically� they represent the adjustment of the

pressure distribution on the aerodynamic surfaces to sudden changes in the
angle of attack�

q coe�cients CLq and CMq � They represent the aerodynamic e�ects induced
by a rotation of the airplane about its spanwise axis when the angle of attack
is kept constant� e�g�� keeping the fuselage tangential to an arbitrarily varying

�ight path�

The equations in which the non�dimensional aerodynamic coe�cients are
expressed in terms of the Taylor series expansion stability derivatives are� for

the Lift coe�cient�

CL  CL�
! CL��! CL�e

	e !
%c��

v

h
CL ��

�� ! CLqq
i

������

for the Drag coe�cient�

CD  CD�
! CD�� ������

and for the aerodynamic momentum coe�cient�
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CM  CM�
! CM��! CM�e

	e !
%c��

v

h
CM ��

��! CMqq
i

������

In order to simplify the analysis� the equations of motion will not be stated
in the stability axes but in the tangential and normal axes with respect to the
�ight path� and they are �Stevens and Lewis� ������

m �v  T cos� �D �W sin � ������

mv ��  T sin�! L�W cos � ����
�

The pitching moment is given by�

Iy �q  M ������

The pitch angle rate is�

��  q ������

The position of the airplane with respect to the ground is given by�

�h  v sin � ������

�x  v cos � ������

Two control laws are implemented in the model for stability and �ight
control� one for the elevator de�ection with feedback on the pitch angle� the
other for the thrust with feedback on the velocity�

	e  	etrim !K��� � �trim� ������
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T  Ttrim !Ku�u� utrim� ������

The subscript trim refers to the trimmed value of the variables� K� and Ku are
the feedback gains� and u refers to the x�component of the velocity vector�

u  v cos� ������

The parameters used in the model are those of a Boeing ��� aircraft in a
horizontal cruise �ight�

The numerical aircraft model has been coded in the continuous system
simulation language ACSL� Some transients�accidents were built into the
aircraft model in order to alter its normal structural behavior� These structural

changes in the longitudinal �ight are simulated by modifying the original
airplane parameters in a discrete event section of the program that is executed
at a scheduled time instant� Once the event has been activated� another
random number is drawn to determine which of the accidents is supposed

to occur� The simulated emergencies are not necessarily realistic in terms of
what might happen to the real aircraft� but this is not essential to our goal� It
is� however� important to realize that the qualitative model is kept in the dark
with respect to when the accident takes place� and which of the accidents has

been selected�

����� The Qualitative Model

The practicality of combining qualitative and quantitative simulation models
of continuous�time processes using fuzzy inductive reasoning techniques has
already been demonstrated in Chapter �� Also� the construction of the

qualitative model itself has been described in detail in the same chapter� In
this section� only a brief description will be given in order to show how the
qualitative model was built�

Two qualitative models of the aircraft will be created using crisp inductive
reasoning and fuzzy inductive reasoning� Both are intended for constructing

a fault monitoring system �one with each model�� The goal is to make a
comparison of the following items�
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� The number of errors in the qualitatively predicted states of both

approaches�

� The length of the error chains produced by those errors�

� The simulated time span needed to identify the same fault�

� The di�culties to discriminate between di�erent types of malfunctions
that make the aircraft react in similar ways�

Thus� in accordance with what has been said in Chapter �� the process of

building the qualitative model should include�

i� Excitation of the system by means of random binary noise and�or
harmonic functions�

ii� Selection of input and output variables�

iii� Fuzzy recoding of the qualitative variables�

iv� Selection of a minimum set of meaningful variables that represent the
system by means of Optimal Mask Analysis�

��	�	�
 Excitation of the Aircraft

Since the aircraft model is intended for longitudinal �ight� the variables that
should be used to excite the model are the elevator de�ection angle e and the
engines thrust T � Thus� the model input variables are perturbations a�ecting

the reference values of the two control variables of the model� Equations �����
and ������ etrim and Ttrim� The trimmed values of these variables are preset
such that the simulation always starts out in a perfectly stable horizontal �ight�
A change in any of these two variables will perturb the model� forcing it into

a new steady state or into a transient condition�

The ACSL simulation language o�ers the user the possibility of computing

the eigenfrequencies of a non�linear system by means of its linearized model� In
particular� the smallest and largest eigenfrequencieswlow and whigh respectively�
In this way� the largest time constant� tsettling� and the shortest time constant

tfast of the system can be computed in accordance with Equation ������� The
results are�
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tsettling  ��sec� � tfast  �sec� ������

Thus� the optimal masks should cover �� sec�� and due to Equation ������� the
sampling interval should be set to � sec� In accordance with Equation �������
the mask depth should hence be chosen as ��� However� with these

values� FIR proved incapable of 	nding a qualitative model to represent the
aircraft� Simulation experience� tells us that the fastest time constant created
instabilities in the model� so it was decided that only the slow behavior of the
aircraft should be captured by the qualitative model� and consequently� the

sampling interval should be set to �� and the mask depth should be set to ��

The numerical model is excited with random ternary noise� In this way�

the recorded data are rich in information about the reaction of the system
to input stimulation at all frequencies of interest� This mode of operating
the aircraft is called the �shaken �ight�� The values of the two control
variables may vary once every � sec� They assume at random one of three

values including the trimmed values themselves� i�e�� 	etrim  ����
�
 lb�
and Ttrim  �������� rad� 
 ��� degrees� as well as positive and negative
deviations from these trimmed values with "	etrim  ����� rad� 
 ��
 degrees
and "Ttrim  ���� lb� Using so small deviations in the elevator and so large

variations in the thrust may not be realistic� Yet� these values were chosen
since the model is very sensitive to changes in the elevator de�ection and much
less sensitive to changes in the thrust� The results of this simulation are stored
in the shaken �ight raw data matrix�

The numerical model is excited once more� this time with harmonic
functions of fairly long periods� This way of operating the aircraft is called

�normal �ight with harmonic perturbations�� In this way� a more realistic but
still dynamic �ight simulation results� This step is used to determine the limits
that the variables can realistically assume� The results of this simulation are

stored in the normal �ight raw data matrix�

The data extracted from the numerical ACSL simulations constitute the
measurement data �the raw data matrices� of the qualitative model� The

execution of the quantitative model and the extraction of the raw data matrices
were done under the control of Matlab� As has been explained before� the raw
data matrices are real�valued matrices in which each column represents one

recorded variable� and each row represents one complete data record collected

�The FIR methodology still has some aspects that are heuristically solved by means of
experience� Chapter � will provide a list of these open problems and their possible solutions�
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at one time instant� These data are then recoded to enable the qualitative

reasoning process using both the crisp and the fuzzy recoding processes�� The
crisp recoding process has not been explained before� As in the fuzzy case� it
maps continuous behavior into discrete qualitative states� but without adding

any measure of con	dence of that state� Remember that� in the fuzzy case� a
fuzzy membership value is appended to the recoded �class� value as shown in
Chapter ��

��	�	�� Variable Selection

To build the qualitative model of the aircraft� not all of the variables that
were obtained by the numerical simulation were used� but only a subset of
	ve variables that capture the main characteristics of the aircraft during high
altitude longitudinal cruise �ight� This subset of variables could be obtained

by previous expertise of the modeler� or by means of Optimal Mask Analysis���

In many applications� the true system inputs are predetermined� In the

given example� these are the elevator de�ection and the thrust� i�e�� the two
control variables that can be in�uenced by the pilot� Often� also the system
outputs are known� They are those variables that the qualitative model is
supposed to predict� However� it can happen that the �distance� between the

true inputs and the true outputs of the system is too large� i�e�� there doesn�t
exist a su�ciently strong correlation between the input and output variables
to support the generation of a reliable and accurate qualitative model� In
this case� the optimal mask analysis will lead to a model with poor prediction

capability�

In such a situation� some additional variables must be chosen that are

located logically somewhere between the true inputs and the true outputs�
An optimal mask is then constructed that relates current and past values of
the true system inputs and the auxiliary variables� as well as past values of
the true outputs to the current values of the true outputs� Then additional

optimal masks are found that predict the auxiliary variables from the inputs�
In this way� a chain of optimal masks can be obtained if necessary� More about
this process shall be presented in Chapter � of this thesis�

	Crisp and fuzzy recoding processes are used because one of the objectives of this chapter
is the comparison between Crisp Inductive Reasoning and Fuzzy Inductive Reasoning�

�
Remember that the Optimal Mask Analysis is used with two di�erent purposes� on
the one hand� for the selection of a minimum set of meaningful variables� and on the other
hand� for the determination of the qualitative model that represents the causal relationships
between the selected variables�
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In the given example� The Optimal Mask Analysis did not need cascaded

qualitative models� The distance between the system inputs and the possible
system outputs was not too large to be bridged by a single qualitative model�
However� it was important to select output variables that were su�ciently

di�erent from each other� covering the dynamics of the aircraft su�ciently
well� in order to allow a clear and unambiguous identi	cation of the di�erent
�accidents� that were considered in this study�

Since it was determined� by previous experience with aircraft models� that
the lift� drag� and �ight path angle together capture the dynamics of an
airplane su�ciently well��� the Optimal Mask Analysis methodology was used

to obtain a qualitative model of the aircraft� but not to perform an exhaustive
search of the most signi	cant variables�

Figure ����� Qualitative input and output variables�

Figure ���� depicts the two inputs and three outputs determined in an ad
hoc manner using Optimal Mask Analysis� They are�

	e  the di�erential elevator de�ection�
	T  the di�erential thrust�
L  the lift�
D  the drag�
�  and the �ight path angle�

��This choice is by no means unique� and depends on the objectives of the model�
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��	�	�	 Optimal Masks

The inductive reasoner operates exclusively on the qualitative class values

and reasons about qualitative spatial and temporal relationships among the
aircraft variables without proposing a single quantitative relationship and� in
fact� without even knowing that they exist� Following the steps described
in Chapter � to 	nd the optimal masks� it should be decided into how

many qualitative levels the variables should be recoded� It has already been
mentioned than an odd number of levels is preferred because a central level is
desired where one state of the variables can be considered �normal�� In this
case� the minimum possible number is �� Finally� expertise has demonstrated

that a complexity between � or 
 works 	ne with 	ve variables� Thus� FIR
needs� in accordance with Equation ����� at least ���
 data points to identify
optimal masks with the following characteristics�

number of variables  
�
number of qualitative levels  ��
maximum mask complexity  
�
depth of the masks  ��

that have been obtained following Equations ������� ������� and ������� �
��

data points from the shaken �ight raw data matrix� known as B� model�
and �
�� data points from the normal �ight raw data matrix will be recoded in
order to have enough data to feed into the FMS� The mask candidate matrices
were built following Equation ����
�� The resulting optimal masks for the three

output variables in the crisp case� using the shaken �ight raw data matrix� are
for the lift�
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and for the �ight path angle�
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Notice that the optimal mask found for the �ight path angle � is a mask of
complexity ���� The resulting optimal masks for the three output variables in
the fuzzy case� using the shaken �ight raw data matrix� are for the lift�

B�L fuzzy  
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for the Drag�

B�D fuzzy  
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and for �ight path angle�

B�� fuzzy  

�
B�
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Notice that the optimal masks for the Lift and the Drag are the same in the

crisp and in the fuzzy cases� However� in the fuzzy case� the optimal mask
found for the �ight path angle � is one with maximum complexity�

��The crisp optimal mask for model B� and for all subsequent models have been
successfully compared with those provided in 	Vesanter�a� 
����
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The optimal masks obtained from the shaken �ight raw data matrix and the

landmarks obtained from the normal �ight raw data matrix are used to forecast
the future normal �ight behavior of the airplane in the crisp and fuzzy cases���

The resulting qualitative variables will then be regenerated in order to make a

comparison between them and the real values obtained from the quantitative
ACSL aircraft model�

There exist three main di�erences between crisp inductive reasoning and
fuzzy inductive reasoning� The 	rst lies in the utilization of the available
fuzzy measures in the reasoning process� the second lies in the computation of
the quality measure of the masks� and the third �and possibly most important�

one relates to quantitative predictions made�

First� crisp inductive reasoning operates on crisp landmarks in the recoding

of the measurement data� i�e�� does not employ any measure of con	dence�
These rigid landmarks are responsible for a loss of valuable information about
the system that can no longer be exploited by the qualitative model� and this�
in turn� leads to a reduction in its forecasting capabilities� which diminishes

the discriminatory power in comparison with the FIR�based FMS�

The second di�erence lies in the computation of the quality measure of the

masks� Crisp inductive reasoning uses the frequency of previous observations
of an input�output state to estimate the likelihood of future observations
of the same state� whereas FIR uses the information contained in the fuzzy
membership functions as a measure of con	dence in a particular input�output

state�

Third� the fuzzy membership information available to FIR can be used to

interpolate between qualitative �class value� predictions� enabling FIR to make
quantitative predictions by use of its regenerate module� The crisp inductive
reasoner does not have this information available� and therefore� can only make
qualitative predictions�

Figure ���� compares the qualitative simulation results �class values only�
obtained using crisp and fuzzy forecasting� Notice in the error matrix that the

crisp methodology produces a reiterative error on the Drag D variable that the
fuzzy methodology avoids� Also� the chained errors produced with the crisp
approach are avoided with the fuzzy approach� Both simulations correspond
to the same aircraft model excited with harmonic functions of long periods�

These qualitative signals can then� in the fuzzy case only� be regenerated
using FIRs regenerate module� Figures ���
� ����� and ���� show a

��The justi�cation for combining optimal masks and landmarks steming from di�erent
excitations of the aircraft model was given in Section 
�����
 �Excitation of the Aircraft��
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Fuzzy Inductive Reasoning
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Figure ����� Di�erences in the error matrices between the crisp and the fuzzy
FMS�
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Figure ����� Real vs� forecast �then regenerated� Drag signals�

comparison between the quantitative model �continuous line� and the

qualitative �regenerated� FIR model �dashed line� of the output variables Lift�
Drag� and �� respectively�

These graphics represent the quantitative and qualitative behavior of the
three output variables� corresponding to the same time points of a �normal
�ight with harmonic perturbations���� Notice the extraordinary performance
of the qualitative model that accurately follows its quantitative counterpart�

especially in the cases of the Drag and the �ight path angle depicted in
Figures ���� and ����� where the di�erences between the two curves �real and
forecast signals� are almost indistinguishable� This accuracy of the qualitative
models will prove essential for the detection and identi	cation of the aircraft

structural changes�

��cf� Section ������
 for the description of a normal �ight with harmonic perturbations�
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��	�	�� Qualitative Structural Changes

The original aerodynamic parameters of the Boeing ��� airplane at cruise �ight

�B� model� were modi	ed to obtain four di�erent models with which a library
was constructed� These models represent structural changes of the original
plane� and were thought to be su�ciently representative to be considered as
�accidents�� in spite of them not being realistic emergencies� The four models

were obtained in the same way as the original one� following the sequence of
steps presented at the beginning of this chapter in Section ���� The main
characteristics of these models are�

Model B� is the original model that represents a Boeing ��� in cruise �ight at
high altitude� Its aerodynamic parameters are considered as reference values
for the other models� This is the model that has been built along this section

up to this point�

Model B��� represents a Boeing ������� in cruise �ight� Basically� this is

a bigger aircraft than the one represented by model B�� Thus� the values
for the weight and wing span are considerable larger� and the aerodynamic
parameters Lift� L� Drag� D� aerodynamic momentum� M � and pitch angle�
�� have also been changed in comparison with the B� model� The reference

value of the elevator de�ection has also su�ered a drastic change �including a
change of sign�� while the reference value of the thrust has remained unchanged�
However� the thrust itself has dropped to about two thirds of its original value

due to a step decrease in the velocity �characteristic of the B��� model��

It clearly never happens that a B��� airplane miraculously changes to

become a B������� aircraft during cruise �ight� In this sense� it is quite clear
that the experiment lacks realism� However� icing of the wings� or a sudden
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deployment of the landing �aps� or a sudden opening of the hatch of the cargo

compartment can have equally drastic e�ects on the �ight characteristics of
the aircraft� In lack of decent data for realistic accidents� a set of arti	cial
structural changes of the aircraft had to be concocted�

The quantitative data is obtained in an analogous manner as in the case of
the B� model� with the di�erence that the �ight is started with the original

model B� and changed to the B��� model during the tenth communication
interval� Once the model is in stable condition �steady state�� the excitation
phase can be started in order to obtain rich data for building up the qualitative
model� This procedure is necessary because every �ight has to be started

trimmed to avoid the initial iterative trimming phase of the model� which
would change the initial conditions that were carefully chosen for the B� model�

The qualitative B��� model is constructed in the same way as the qualitative
B� model� The sampling interval for the B��� model was evaluated based on its
two time constants� tfast  � sec� and tslow  �� sec� Following Equations ������
and ������� the sampling interval is 	t  �� sec� The number of qualitative

classes� and the depth and complexity of the masks are the same as in the case
of the B� model� The optimal masks obtained for the Lift L� Drag D� and
�ight path angle � using crisp inductive reasoning are�
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The optimal masks for the same qualitative variables using fuzzy inductive
reasoning are�
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It can be noticed that the optimal masks in the two cases are almost the
same� Only the masks for the Lift variable are slightly di�erent� However� this
distinction is not essential� Both masks would work with either methodology�

The additional discriminatory power of FIR stems from the experience data
base used by the FIR methodology� and not from a re	ned selection of a more
appropriate optimal mask�

Model B� represents a change of the original B� model� in which the
aerodynamic parameters L and D are increased� whereas M and � are

decreased� and the remainder of the B� model parameters are kept unchanged�
This completely modi	es the in�uence that the angle of attack has on the
aerodynamic response of the aircraft� particularly on the Drag and pitching
moment� The sampling interval for the B
 model is 	t  �� sec� The number

of qualitative classes� and the depth and complexity of the masks are the same
as in the previous models� The optimal masks obtained for the lift� L� the
drag� D� and the �ight path angle� �� using fuzzy inductive reasoning are���

��for this and the next structural changes� only the fuzzy case will be treated because the
comparison between crisp and fuzzy inductive reasoning can be made with the previously
described models B� and B����
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Model B
	 represents another change of the B� model� Here� L� D� and
� are increased� whereas M is decreased� The most signi	cant changes were
made in the e�ect of the angle of attack on the Drag� which has now almost
tripled from its original value� and in the e�ect of the elevator de�ection on the

aerodynamic moment� which makes this model more sensitive to this control
variable� The sampling interval for the B�� model is 	t  �
 sec� The number
of qualitative classes� and the depth and complexity of the masks are the same
as in the previous models� The optimal masks obtained for the lift� L� the

drag� D� and the �ight path angle� �� using fuzzy inductive reasoning are�
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Model B
� is very similar to the B� Model� The only di�erence is that M

and � are a little increased� The intention of this model is that of reducing as
much as possible the in�uence of the elevator de�ection on the aerodynamic
moment� The sampling interval for the B�� model is 	t  �� sec� The optimal

masks obtained for the qualitative variables L� D� and � using fuzzy inductive
reasoning are�
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Notice that these optimal masks are almost the same optimal masks obtained
for the B� model in the fuzzy case� This is due to the very similar trajectory

behavior presented by both models� For this reason� the transition from the
B� to the B�� model was the one that presented the most di�culties for being
detected�
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��	�	�� A FIR�Based Continuous Fault Monitoring System

The inductive reasoning functions were used to qualitatively and inductively
reason about the measurement data taken from 	ve ACSL simulation runs�
The quantitative data were used to build 	ve qualitative models that represent

the behavior of the airplane in the vicinity of 	ve di�erent steady�state
trajectories� Then� as explained in previous sections� a qualitative model
library was constructed with those 	ve qualitative models representing a
variety of structural changes of the aircraft� A threshold error alarm� based on

a moving average error 	lter� was incorporated to decide when a structural
change has taken place� The complete fault monitoring scheme of this
assumption is shown in Figure ����

If a sudden structural change occurs� the qualitative model in use will
receive inputs that have never been seen before� which means that it will no

longer be able to predict the future behavior of the system� If this condition
holds� an alarm will be triggered indicating that an accident has happened�
The failure detector works through a moving average alarm that counts the
incorrect forecasts within a given period of time� and trips the alarm whenever

the accumulated number of incorrectly predicted future states surpasses a
threshold that is built into the detector� Once the original model is no longer
able to predict the system behavior� the models in the library are consulted
in an orderly fashion� trying to identify the one that best predicts the new

behavior of the aircraft�

The recognition of the type of accident starts when the qualitative model

initiates the search for another set of optimal masks that represent the behavior
of the new system� The process is very similar to that of the failure detection�
For each qualitative model �optimal mask� in the data base� the forecast values
of this new qualitative model are compared with the true �measured� values

of the quantitative model of the structurally modi	ed aircraft� If the error
surpasses the threshold� the currently investigated qualitative model does not
represent the behavior of the system� and another qualitative model must be
chosen from the library�

If the accident is included in the library� exactly one qualitative model
should pass the test� irrespective of when the error occurs during the

simulation� If no qualitative model is able to pass the test� the threshold
value has been chosen too stringently� whereas multiplemodels passing the test
indicate poor failure discrimination� It is hoped that the range of acceptable

threshold values is wide� i�e�� the correct accident can be identi	ed using a
fairly small threshold value� whereas all other sets of optimal masks will call
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Figure ����� Error and alarm matrices of the qualitative detection of a B� to
B��� structural change�
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for a considerably higher threshold value before they pass the test� if they do it

at all� Since each of the qualitative models in the library represents a particular
type of accident� in the very moment when a library model has become capable
of correctly predicting the behavior of the structurally modi	ed aircraft� the

FMS is able to conclude what accident has happened� i�e�� to discriminate
between di�erent types of accidents� and with this information� it can decide
upon an appropriate corrective action to be taken� Once the new model is
identi	ed� the monitoring system acts exactly as before the accident�
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Figure ����� Detection alarm vs� time�

Four experiments were carried out� one for each possible structural change�
or accident �B� to B���� B� to B
� B� to B��� and B� to B���� Each one
started with a completely trimmed �ight using the B� model excited with

harmonic functions of fairly long periods� and in each one� a sudden structural
change was scheduled to occur after time t  �
�� sec� As a matter of fact�
	ve rather than four experiments were performed� because the 	rst of the four
possible structural changes was simulated twice� once using crisp inductive

reasoning and once using fuzzy inductive reasoning� The ACSL simulation�s
communication interval had to be set to � sec� in the 	ve experiments� because
that is the greatest common divisor of all sampling intervals of the models in
the qualitative library ��� ��� ��� �
� and �� sec�� and the data generated by

these simulation runs must 	t every model�

The B� to B��� transition will be analyzed in more detail than the others�

since it will be used to compare the crisp and fuzzy methodologies� Figure ����
depicts the di�erences between the detection process corresponding to the crisp
and fuzzy methodologies applied to the B� to B��� structural change� Notice

that the detection of the accident is made faster with the fuzzy approach� This
is due to the reduction in the number of forecast errors� which permits reducing
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Figure ����� Recognition of the B��� model after the accident�
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the threshold value of the moving average error 	lter in the alarm modules�

Figure ���� represents the detection alarm against time�
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Figure ����� Detection and recognition of the B� to B
 structural change�

Figure ���� shows the di�erences between the crisp and the fuzzy
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methodologies when recognizing the B��� model after the accident� Figure ����

represents the recognition alamrm against time� Notice that the crisp
approach has more di�culties than the fuzzy approach in recognizing the right
qualitative model from the library�
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Figure ����� Detection and recognition of the B� to B�� structural change�

The main advantage of the fuzzy methodology over the crisp methodology is
a signi	cant reduction of the number of forecasting errors� The crisp approach
has between �
, and ��, errors in the forecast points� while in the fuzzy
approach the percentage of errors varies consistently between �, and ��,

when the correct qualitative model is being used� This permits a reduction in
the threshold value used by the FMS� Furthermore� with the crisp approach�
an incorrect forecast often leads to an entire chain of consequence errors� which
would immediately trip the alarm if the accumulation window was selected too

narrowly� The fuzzy approach doesn�t exhibit this problem any longer� False
alarms are no longer caused by error chains when using FIR� and therefore� the
accumulation window of the threshold error alarm can be made much shorter�

which allows the structural change to be detected several points earlier than
using the crisp approach�
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With respect to the detection and recognition of the accident itself� the B�

to B��� transition is detected four sampling intervals earlier� and recognized
six sampling intervals earlier with the fuzzy approach than with the crisp
approach� This unambiguous identi	cation of the post�accident steady state�

i�e�� the new set of optimal masks that correctly describe the post�accident
behavior� is the other main advantage of FIR over crisp inductive reasoning�
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Figure ����� Detection and recognition of the B� to B�� structural change�

Let us now play with the other three models� i�e�� models B
� B��� and B���
In this experiment� a structural change occurs at the time step �
��� Once
it has been detected �the alarm is triggered� by the FMS� the system goes
into the library of qualitative models and tries to forecast the behavior of the

structuraly modi	ed system with each of the available models� until the right
model is found �the alarm is shut�o��� The switching between models in the
library occurs if the alarm condition is maintained during 	ve or more time

steps� that is� a model is not cosidered the appropriate one if it cannot predict
the behavior of the new system during 	ve time steps�

The detection and recognition alarms of the B� to B
 transition are depicted
in Figure ����� and those of the B� to B�� transition are depicted in Figure �����
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The B
 and B�� post�accident states exhibit very similar behavioral patterns�

However� the fuzzy FMS was capable of unambiguously recognizing them�
whereas the crisp FMS had di�culties discriminating between them� This
is another important advantage of fuzzy inductive reasoning as compared to

crisp inductive reasoning� The available historical knowledge maintained in the
experience data base helps to sharpen the discriminatory power of the fuzzy
FMS�

Finally� the detection and recognition alarms of the B� to B�� transition
are depicted in Figure �����

The 	rst thing that can be concluded from this Qualitative Model Library
implementation is that a FIR�based FMS proved better than a crisp�based
FMS� Important shortcomings such as number of errors� error chains� and

identi	cation delays are improved� or completely avoided by using the former
instead of the latter approach�

With respect to the other objective of this example� i�e�� demonstrating
that a FIR�based FMS using the Qualitative Model Library fault monitoring
approach could be used as a watchdog autopilot to determine when a structural
malfunction occurs� and to hypothesize about the nature of this malfunction�

it can be said that it has been fully satis	ed� It does not matter that the
proposed structural changes were not realistic emergencies of a real aircraft�
The fact that the qualitative watchdog autopilot proposed here proved capable
of detecting� characterizing� and identifying sudden changes in the simulated

�ying conditions is a good indication that the proposed methodology would
be able to deal with a real emergency in a real aircraft just as well� The main
shortcomings of this approach come from the number of possible structural
changes� and the time needed to recognize the model in the library�
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��� Implementation of Forecasting All Possi


ble Structures Assumption

As had already been stated in the 	rst chapter� in a variable structure system
�VSS� a structural change cannot be viewed as a fault or an emergency
taking place� but is a perfectly normal event that will happen regularly during

system operation� Since these changes can occur frequently� it does not seem
practical to search a qualitative model library for another model that 	ts the
new situation� By the time the new model has been identi	ed� several more
structural changes might have taken place� Consequently� a fault monitoring

approach is needed that is capable of detecting that a structural change has
occurred and is capable of identifying the new structural mode of the system
almost instantaneously�

Thus� the main role of the FIR�based FMS will be that of identifying the
right structural mode the VSS is in at any point in time� instead of detecting

and recognizing developing emergencies with diagnosis and analysis purposes�
For this reason� the Forecasting All Possible Structures fault monitoring
approach is proposed instead of the previously used Qualitative Model Library
approach�

In order to demonstrate the application of this approach to a VSS� two
examples will be presented� The 	rst is a fairly simple example commonly

used in the VSS literature �Str�omberg et al�� ������ and is intended to
show how the FMS works when applied to a VSS� The second is a very
tough example� intended to fully demonstrate the capabilities of the FIR
methodology for correctly discriminating between di�erent structural modes

that are characterized by very similar behavioral patterns�

����� The Interconnected Tank Model

This example describes a system that consists of two interconnected water
tanks� The system description is borrowed from �Str�omberg et al�� ������ and
is shown in Figure ���
��� The quantitative system has one in�ow� the incoming

water �ow� Q� and two out�ows� the outgoing water �ows� Q� and Q�� The
qualitative model used by the inductive reasoner has one input� the incoming
water �ow� Q� and two outputs� the water levels in the two tanks� Y� and Y��
The system can operate in three di�erent structural modes�

��This �gure has been taken from 	Str�omberg et al�� 
����



��� Chapter �� Building a Qualitative Fault Monitoring System

i� Mode I� The water level in the 	rst tank does not reach up to the height

of the separating wall� Y� � H�� In this mode� the 	rst tank can be either
	lled or emptied� whereas the second tank can only be emptied�

ii� Mode II� The 	rst tank is full up to the separating wall between the
two tanks� Y�  H�� whereas the level in the second tank does not extend
all the way up to the separating wall� Y� � H�� In this mode� the 	rst

tank can only be emptied� whereas the second tank can be either 	lled
or emptied�

iii� Mode III� Both tanks are full to or beyond the level of the separating
wall� Y�  Y� � H�� In this mode� both tanks are being 	lled or emptied
together�

H1H1

Q1 Q2

Q

U

STATE I

STATE II

STATE III

Y2

Y1

Figure ���
� Interconnected water tanks system�

Due to the simplicity of this system� it was modeled directly in Matlab

rather than using a general�purpose simulation language� Three quantitative
simulations� each with the system in one of the three possible structural
modes� were conducted across ���� sec� with the inputs being excited with

random binary noise� The slowest time constant was tsettling  ���sec��
the communication interval was set to ���sec�� the sampling interval was
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set to 	t  ���sec�� and the mask depth was set to �� To obtain the

three qualitative models� the Optimal Mask Analysis was performed with the
following characteristics�

number of variables  ��
number of qualitative levels  ��
maximum mask complexity  ��
depth of the masks  ��

For the 	rst operating mode� i�e�� mode I� the optimal masks for the two output

variables y� and y� are�

mode I �y��  

�
B�

tnx Q Y� Y�

t� �	t �� �� �
t� 	t �� � �
t � !� �

�
CA

mode I �y��  

�
B�

tnx Q Y� Y�

t� �	t �� � �
t� 	t � � �
t � � !�

�
CA

for the operating mode II� they are�

mode II �y��  

�
B�

tnx Q Y� Y�

t� �	t �� � �

t� 	t � � �
t � !� �

�
CA

mode II �y��  

�
B�

tnx Q Y� Y�

t� �	t �� � ��
t� 	t �� � �
t � � !�

�
CA

and for the operating mode III� they are�
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mode III �y��  

�
B�

tnx Q Y� Y�

t� �	t �� �� �
t� 	t �� � �
t � !� �

�
CA

mode III �y��  

�
B�

tnx Q Y� Y�

t� �	t �� �� �
t� 	t �� � �
t � � !�

�
CA

With these modes already characterized� an additional quantitative
simulation was performed� once more across ���� sec of simulated time� but

during this simulation� structural changes took place once every ��� sec�
driving the system through the three possible modes� This information
constitutes the real data that are continuously compared against the values
obtained from the three qualitative simulations�

Figure ���� shows the entire simulation of this experiment� The 	rst graph
depicts the behavior of the input variable� Q� The oscillatory behavior is due

to the random binary noise used as input signal� The second and third graphs
of the same 	gure correspond to the output signals� Y� and Y�� i�e�� the water
levels in the two tanks� Notice that when the 	rst tank is full to the top of the
separating wall� and while the second tank is being 	lled� the horizontal line

corresponding to the constant water level of the 	rst tank exhibits numerical
noise� an anomaly of the MATLAB simulation�

Figure ���� shows the identi	cation results by comparing the real and
predicted modes as functions of time� Notice that there usually is a short
delay after the true mode change� before the mode switch is activated� This
delay is caused by the moving average error 	lter� If the number of past points

used in the 	lter is reduced� the delay time will be shortened� but this goes at
the expense of occasional errors in determining the correct operating mode of
the system as a consequence of sporadic errors in the qualitative simulation�

This is a fairly straightforward example since the di�erent modes can easily
be discerned by the naked eye� It does not take much discriminatory power

for the inductive reasoner to distinguish between the three operational modes
of the system� The example was chosen only to show in a clear manner how
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Figure ����� Simulation of the interconnected water tank example�
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Figure ����� Real and identi	ed structural modes�

the methodology works� and since it had been previously discussed in the VSS
literature �Str�omberg et al�� ������

����� Electrical Circuit

The second example is much more involved� It is much more di�cult for the
inductive reasoner to correctly identify the various structural modes� and to
know when a transition from one mode to another takes place� It is therefore
proposed as a benchmark for structure identi	cation�

The system consists of an electrical circuit containing three binary switches
as shown in Figure ����� Consequently� the system can be in any one of eight

di�erent structural modes depending on the switch positions� The resulting
eight structural modes exhibit behavioral patterns that are di�erent enough
to be characterized� yet similar enough to make their correct identi	cation a
di�cult problem�

������
 The Quantitative Model

The system has two inputs� U� and I�� one output� UR�� and several electrical

components� The quantitative circuit model has been built using Dymola
�Elmqvist� ����� Elmqvist et al�� ����� that in turn generates an ACSL
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Figure ����� Electrical circuit variable structure system�

simulation model� The use of Dymola� an object�oriented modeling language�
allows the treatment of each model component as a particular subclass
of a specialized library� In this example� the library includes electrical

components� Two of the major advantages of this language� beside from
its object orientation� are on the one hand� that the modeling of complex
systems can be reduced to a very few code lines if the specialized library is
already available� and on the other hand� that this very simple code can be

automatically translated to ACSL code� even if it contains implicit descriptions
of state and time events� The Dymola model for the electrical circuit of
Figure ���� is presented below�

model Circuit

submodel �CSource� I�
submodel �V Source� V �
submodel �Resistor� R
�R � ������ R��R � 
����� � �

R��R � 
������ R��R � �����
submodel �Capacitor� C
�C � 
���E���� C��C � 
���E���
submodel �Inductor� L
�L � ���E���� L��L � ���E���
submodel �Switch� Sw
� Sw�� Sw�
submodel Common

input u
� u�� o
� o�� o�
output y

node n�� n
� n�� n�� n�� n�� n�

connect � �

Common at n�� � �

V � from n
 to n�� � �

R
 from n
 to n�� � �
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Sw
 from n� to n�� � �

L
 from n
 to n�� � �

C
 from n� to n�� � �

R� from n� to n�� � �

Sw� from n� to n�� � �

I� from n� to n�� � �

R� from n� to n�� � �

R� from n� to n�� � �

Sw� from n� to n�� � �

C� from n� to n�� � �

L� from n� to n�

V ��V � � u

I��I� � u�

Sw
�OpenSwitch � o

Sw��OpenSwitch � o�
Sw��OpenSwitch � o�

y � R��u

end

The code should be self�explanatory� It starts out with the invocation of

the objects �their instantiation from object classes�� and then provides a
topological connection of the circuit similar to the netlist of a Spice program�

In a 	rst quantitative experiment� the switch positions were frozen in one
of the eight possible positions� and the two inputs were excited with binary
random noise to collect data ����� data points� for characterizing the behavior
of the system in that particular mode� The experiment was repeated for all

eight switch combinations� characterizing the behavior of the system in all
eight possible structural modes�

������� The Qualitative Model

The numerical simulations described above were sampled once every ������ sec�
This means that each structural mode was simulated during ��� sec of real
time��� Using the FIR methodology� eight di�erent qualitative models were
obtained� each one with its own optimal masks and its own set of landmarks

�the borderlines between neighboring qualitative classes�� The numerical
information was recoded into 	ve qualitative classes� The mask candidate
matrices were designed to cover the slowest time constant of the system� for
that reason they are of depth  
� but with only three rows of data separated

��The eight structural modes were considered to have the same stability constants for
reasons of simplicity�
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by rows 	lled with zeros� The maximum complexity of the masks was set to

�� The optimal masks found for each of the structural modes were�

mode ���  

�
BBBBBB�

tnx U� I� UR�

t� �	t � �� �
t� �	t � � �
t� �	t �� � �

t� 	t � � �
t � �� !�

�
CCCCCCA

mode ���  

�
BBBBBB�

tnx U� I� UR�

t� �	t � � ��
t� �	t � � �
t� �	t � � ��
t� 	t � � �
t � �� !�

�
CCCCCCA

mode ���  

�
BBBBBB�

tnx U� I� UR�

t� �	t � �� �
t� �	t � � �

t� �	t � � ��
t� 	t � � �
t �� � !�

�
CCCCCCA

mode ���  

�
BBBBBB�

tnx U� I� UR�

t� �	t � � ��
t� �	t � �� �

t� �	t �� � �
t� 	t � � �
t �� � !�

�
CCCCCCA

mode ���  

�
BBBBBB�

tnx U� I� UR�

t� �	t � �� �

t� �	t � � �
t� �	t � � ��
t� 	t � � �
t �� � !�

�
CCCCCCA
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mode ���  

�
BBBBBB�

tnx U� I� UR�

t� �	t �� � �
t� �	t � � �
t� �	t �� � �

t� 	t � � �
t � �� !�

�
CCCCCCA

mode ���  

�
BBBBBB�

tnx U� I� UR�

t� �	t �� � �
t� �	t � � �

t� �	t �� � �
t� 	t � � �
t �� � !�

�
CCCCCCA

mode ���  

�
BBBBBB�

tnx U� I� UR�

t� �	t �� � �
t� �	t � � �

t� �	t � � ��
t� 	t � � �
t � �� !�

�
CCCCCCA

It has to be said that that some of these masks are not the optimal ones found

by FIR� but suboptimal that� due to the characteristics of the example� gave
better forecasting results than the optimal���

The mode number represents a decimal encoding of the binary �three�bit�

mode patterns� For example� mode ��� refers to the particular mode in which
all three switches are in their closed positions� whereas mode ��� refers to the
particular mode in which switches � and � are open whereas switch � is closed�

etc�

��It has happened sometimes that the optimal mask obtained by the Optimal Mask
Analysis� i�e�� the mask with highest quality� is not the mask with the best forecasting
capabilities� This obviously has to do with the implemented quality measure� and for this
reason� alternate quality measures have been proposed but they are not yet implemented�
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������	 A FIR�Based Structure Identi�cation System

This problem is much tougher than the two�water�tank problem� Several
of the eight modes lead to input�output behavioral patterns that are almost
indistinguishable� At least by simply looking at the data� it is not obvious that
they were generated from di�erent structural modes�

Before trying to identify the eight di�erent structural modes� let us try to
demonstrate that the FIR methodology is capable of discriminating between

two very similar structural modes� To this end� two very similar input�output
behavior modes were chosen� They were mode ��� �switches � and � are in
the closed position� whereas switch � is in the open position�� and mode ���
�switches �� �� and � are all in the closed position�� A numerical simulation

was carried out across ��� data points with only one structural change in the
middle of the simulation� The obtained data streams were used as the �real
data� for identifying the structural mode the system is in� but 	rst they were

recoded �fuzzi	ed� twice� once for each structural mode involved� using the
speci	c landmarks obtained for the respective qualitative models���

The 	rst graph of Figure ���� depicts the results of the mode ��� to mode

��� transition� The continuous line represents the true trajectory behavior of
the system that corresponds� from sampling point � to sampling point 
�� to
the structural mode ���� and from sampling point 
� to sampling point ����

to the structural mode ���� The dashed line represents the FIR forecast of the
system using the qualitative ����mode model� and the dotted line represents
the FIR forecast of the system using the qualitative ����mode model� Notice
that the prediction made with the qualitativemodel ��� is very accurate during

the 	rst 
� sampling points� whereas it is not accurate at all during the second

� sampling points� i�e�� after the structural change� The reverse can be stated
for the qualitative model ���� Its prediction is not accurate at all in the
left part of the graph� whereas it is very accurate in the right part of the

graph� This means that each qualitative model is capable of recognizing its
own characteristic behavior� but incapable of recognizing the behavior of the
other�

The second graph of Figure ���� shows the detection and identi	cation
results� The structural mode change occurs at sampling point 
�� Due to
the transient taking place immediately following the switching event� and due

�	In the previous examples with several operating modes or structural changes �aircraft
and two�water�tank�� the landmarks obtained for one of these modes were used for recoding
the data of the others� however� in this example the circuit is so sensitive� and the structural
modes so similar� that each of them had to be recoded with its particular landmarks and
consequently� the quantitative data �lled into the FMS must be recoded eight di�erent times�
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Figure ����� Recognition of two very similar structural modes�

to the lag behavior of the error 	lter �the width of the moving average error
	lter was chosen to be 	ve sampling intervals�� it takes 	ve sampling points�
before the mode selector switches from mode ��� to mode ���� i�e�� before the
FMS detects the structural change and recognizes the new structural mode�

Notice that the FIR mode detector was capable of unambiguously identifying
the correct modes�

Once the FIR�based FMS has demonstrated its discriminatory power
between two very similar structural modes� let us try to 	nd out if it is capable
of discriminating between the eight possible structural modes of the circuit�
To this end� the numerical model was rerun in a new experiment� this time

including a mechanism to change the switch positions once every 
� sampling
intervals� By going through eight randomly chosen structural modes� ��� data
points of variable structure circuit simulation were obtained to be used as the

�real data� for identifying the structural mode that the circuit is in at any one
point in time�
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Figure ����� Real output of the electrical circuit VSS�

The ��� data points collected from the numerical variable structure
simulation were recoded eight times using the speci	c landmarks obtained
for the eight qualitative models� i�e�� the same number of qualitative classes

for all models� but speci	c landmarks for each one� in order for each model
to be capable of identifying its own behavior� It was now possible to forecast
the system behavior eight times over the entire period using the eight di�erent

sets of fuzzy optimal masks� It was hoped that each of the eight qualitative
models would produce a decent prediction during the time span when the
real model was operating in its corresponding structural mode� and a poor
prediction during all other times� as it happened in the previous mode

transition experiment shown in Figure �����

Figure ���� shows the numerical ��� points of VSS simulation� Notice that

some structural modes present very similar output behavior�

Figure ���� shows the identi	cation results obtained by the inductive

reasoning methodology of the eight di�erent structural modes shown in
Figure ����� with a moving average error 	lter width of �� sampling intervals�
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Figure ����� Structural modes identi	cation with a �� sample moving average
error 	lter�

The solid line represents the true mode the system is in� whereas the dashed

line denotes the mode identi	ed by the FIR method�

Every 
� data points the system changed from one mode to another� As can

be seen� the FIR�based FMS was able to identify the correct mode in which
the system is operating in six out of the eight cases� From points �
� to ����
corresponding to mode ��� �switches � and � closed� and switch � open�� the
FMS toggled between two plausible modes� the correct mode ��� �switches �

and � closed� and switch � open� and the very similar mode ��� �switches ��
�� and � open�� In this case� the similarities between the two modes were so
strong that the FMS was not able to discriminate between them�
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From points �
� to ���� corresponding to mode ��� �switches � and �
open� and switch � closed�� the FMS was not able to identi	ed anything� In
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this case� the wrong identi	cation has a di�erent cause� namely an incorrect

characterization of the ��� mode� Some structural modes presented more
di�culties than others for their characterization due to the e�ects of the excited
input signals on the single output signal of the system�
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Figure ����� Structural modes identi	cation with a �� sample moving average
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It is possible to overcome some of the identi	cation problems by changing

the width of the moving average error 	lter� Figures ����� ����� ����� and
���
 show the same experiment as depicted in Figures ���� and ����� but
with di�erent widths of the moving average error 	lter� As can be seen in
Figure ����� corresponding to a moving average error 	lter width of 
 sampling

intervals� if the width is reduced� so will be the identi	cation delay� but this
goes at the expense of a great amount of local aberrations and occasional errors
that� in turn� can lead to a wrong structure identi	cation�
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On the contrary� if the width is augmented� as can be seen in Figures ����

and ����� corresponding to moving average error 	lters with widths of �� and
�
 sampling intervals respectively� the local aberrations and accidental hits
almost vanish� but this goes at the expense of an increased identi	cation delay�

The extreme case is shown in 	gure ���
 that corresponds to a moving average
error 	lter width of 
� sampling intervals�
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Of course� the structure identi	cation problem can be made less di�cult

by adding additional output signals to the circuit� so that the FIR method
obtains redundancy in determining the right mode� However� it was decided
to keep the problem as tough as it is� and present the results as they were
obtained�

There are still some problems that must be tackled in order to improve the
overall performance of the FIR�based FMS methodology as applied to VSS

structure identi	cation problems� They are�

i� The structural mode characterization� i�e�� the determination of the most
appropriate landmarks and the subsequent identi	cation of the optimal
masks�

ii� The selection of the moving average error 	lter width�

In the two shown examples� the characterization of each structural mode was
originally carried out in exactly the same way� i�e�� using the same excitation
signals and amplitudes� using the same operational limits �landmarks�� and

assuming the same number of qualitative classes� In the electrical circuit
example� this proved to be an inadequate approach� since none of the structural



��	� Conclusions ��


modes could be properly characterized� Then it was decided to compute for

each one of the eight circuit structural modes its characteristic landmarks�
This proved to be enough to characterize six of the eight modes� but still one
mode could not be properly characterized� and another could not be properly

identi	ed�

It might be possible to overcome this problem by trying di�erent numbers

of qualitative classes for each structural mode� and by varying the type of
excitation during the mode characterization phase in one of two ways� exciting
all structural modes at the same time but letting the excitation signal go
through all structure characteristic signals� or exciting each structural mode

separately with its own characteristic signal���

With respect to the other stated problem� i�e�� the selection of the moving

average 	lter width� there must be a compromise reached between the
a�ordable delay in the identi	cation of the new structural mode� and the
tolerated number of local aberrations or accidental hits that may temporarily
lead to a wrong identi	cation�

One more problem� that has to do with the number of possible structural
modes the system can be in� should be stated� Theoretically� there are

no limitations to the number of structural modes that the FIR�based FMS
can manage with the Forecasting All Possible Structures Assumption� but in
practice� limitations due to computational capacity will always arise�

��� Conclusions

In this chapter� the basis for the design of a FIR�based Fault Monitoring
System was presented� The resulting FMS proved capable of detecting�
isolating� characterizing� identifying� diagnosing� and analyzing developing

anomalies that can be considered faults or structural changes� depending on
the dynamic system monitored� Some practical examples of applications of
a FIR�based FMS were also presented to demonstrate the practicality of
the Qualitative Model Library and the Forecasting All Possible Structures

fault monitoring approaches when dealing with dynamic systems and variable
structure systems� respectively�

�
In FIR terms� the characteristic excitation signal of a system is the one that makes
the system exhibit the highest possible number of behavioral patterns� i�e�� all operating
frequencies are richly represented� The higher the number of behavioral patterns observed�
the better the characterization of the system�
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The aircraft example had two objectives� On the one hand� the intention

was that of demonstrating that a FIR�based FMS using the Qualitative Model
Library fault monitoring approach can be used as a watchdog autopilot to
determine when a structural malfunction occurs� and to hypothesize about

the nature of this malfunction� On the other hand� the intention was that of
demonstrating the enhanced discriminatory power and improved forecasting
capabilities of a fuzzy inductive reasoning FMS in comparison with a crisp
inductive reasoning FMS when applied to this problem�

The main advantages of a FMS based on fuzzy inductive reasoning over a
FMS based on crisp inductive reasoning are�

�� The number of errors in the qualitatively predicted states has been
reduced from one third �using the crisp approach� to less than one tenth

�using the fuzzy approach�� and the error chains produced by those errors
have almost vanished�

�� Whereas the crisp FMS has sometimes di�culties to discriminate
between di�erent types of malfunctions� the fuzzy FMS is able to

discriminate clearly and unambiguously between di�erent types of
malfunctions that make the aircraft react in similar ways�

�� The fuzzy FMS is able to identify malfunctions in a shorter span of
simulated time of the quantitative model than its crisp counterpart�

�� In addition� the FIR�based FMS allows to predict a quasi�continuous

response spectrum� whereas its crisp counterpart is able to predict
discrete �class� values only�


� The FIR�based FMS presents improved predictive and discriminatory
power when compared with its crisp counterpart�

The implementation of the Forecasting All Possible Structures approach

demonstrated that the FIR�based FMS methodology is a powerful tool for
structure characterization and identi	cation in variable structure systems� The
parallel forecasting of all possible structures enhances the previously used
Qualitative Model Library scenario in several ways�

� The disabling of the qualitative simulator during the library search is
avoided� In this way� the structural change itself can be simulated and
characterized�
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� Once a structural change has taken place� its detection and the

identi	cation of the new structural mode are almost instantaneous� In
this way� the FIR can switch from one structural mode to another almost
immediately depending only on the width of the moving average error

	lter�

� The determination of a qualitative model capable of representing the
behavior of the system at all times is guaranteed� irrespective of the
structural mode the real system is in���

Two examples have been presented� a �fairly simple� two�water�tank
problem� and an electrical circuit model containing three switches� The latter
example is a very tough problem� and it is therefore proposed as a benchmark
problem for structure identi	cation by means of qualitative algorithms and

codes�

The results shown in this chapter con	rm that the combination of a FIR�

based supervision and control system on�line with a quantitative dynamic
system or VSS is a powerful tool that should be considered when qualitative
fault monitoring of quantitative dynamic processes is to be attempted�

��If and only if that particular structural mode has been previously observed� characterized
and modeled�
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Chapter �

Reconstruction Analysis

��� Introduction

When the second implementation of the Systems Approach Problem Solver
�SAPS� was 	rst presented in ���� �Cellier and Yandell� ������ the

epistemological hierarchy of the General Systems Problem Solver �GSPS�
methodology� had already been implemented up to level �� i�e�� up to the
structural level� However� the tool had only been used for any practical
purposes up to level �� i�e�� up to the behavioral level�

To be more precise� the tool that had been used until now is the Optimal
Mask Analysis� As described in Chapter �� the Optimal Mask Analysis is a

method for reasoning about the behavior of a system while deciding something
about its structure� The optimal mask denotes a selection of variables chosen
from a larger set that su�ce to qualitatively characterize the behavior of a
system� In this sense� the Optimal Mask Analysis bridges the gap between the

epistemological levels � and �� since it draws its inputs from level �� but delivers
outputs at level �� When fuzzy measures were added to the methodology� it was
hoped that the Fuzzy Optimal Mask Analysis would provide the user with an
improved resolution that would enable him or her to distinguish better between

similar behavioral patterns� This hope was indeed fully justi	ed �de Albornoz

�A detailed description of the GSPS epistemological levels has been given in Chapter ��
and SAPS�II has also been presented in Chapter �

���



��� Chapter 	� Reconstruction Analysis

and Cellier� ������ However� it was recognized soon that fuzzy reasoning had

another bene	cial side e�ect� It enables the user to regenerate estimates of
quantitative �real�valued� signals from their qualitative counterparts �Cellier�
����b��

This initially unintended side e�ect became soon the cornerstone of the
entire methodology� since it enabled us to perform mixed quantitative and

qualitative simulations of complex technical processes �Cellier et al�� ����a� and
opened up an entire array of interesting new applications of this technology� It
turned out that Fuzzy Optimal Mask Analysis is a very powerful tool indeed
that enables the user to conclude a lot about the structure of a system under

investigation beside from its behavior� For example� in Chapter � it was shown
how this methodology can be used to successfully discern between di�erent
structures in a variable structure model� although the behavioral patterns
exhibited by the various di�erent structures were quite similar� This really

constituted a breakthrough in the analysis of variable structure systems� and
consequently� the Fuzzy Optimal Mask Analysis reached even into the realm
of the epistemological level 
� i�e�� that of the meta�structures�

Yet� we feel that we now have come to a limit of what can be reasonably
expected of this tool� Although it is possible to use a level � tool to reason
about level 
 problems� it may not be e�cient to do so� It may be useful

to involve a level � tool like Reconstruction Analysis to enhance the overall
e�ciency of the analysis�

����� The Need for Reconstruction Analysis

It should be remembered that the main objectives of this dissertation are� a�
to help bridge the gap between the two worlds of quantitative computation

and qualitative reasoning by developing a combined quantitative�qualitative
methodology based on tools steming from General Systems Problem Solving�
and b� the application of this combined methodology for qualitative fault
monitoring and troubleshooting of dynamic large�scale systems� i�e�� for

addressing the information overload problems inherent in such systems�

As has been remarked earlier in this dissertation� the comportment of

intelligent Fault Monitoring Systems �FMSs� is not fundamentally di�erent
from that of human plant operators� They also su�er� in some fashion� from
the same overload problem that humans are faced with� The FMS based on

Fuzzy Inductive Reasoning �FIR� proposed in Chapter �� is capable of avoiding
this problem if the number of variables and subsystems is kept below reasonable
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limits� that is� the FIR�based FMS alone su�ces to deal with problems of fault

monitoring and troubleshooting in small� to medium�sized systems� However�
when dealing with large�scale systems� in which the number of variables and
subsystems may vary with time� depending on either the scheduled phase of the

operation or characteristics of an observed anomaly� also this FIR�based FMS
will need tools that help it focus its attention on essential system properties
while ignoring features and facets of lesser importance� In terms of the FIR
methodology� a tool is needed that continuously provides FIR with the right

set of variables to reason with�

In Chapters � and �� the task of fault monitoring was subdivided into various

phases�� In fault detection� FIR will need to be provided with a carefully
selected set of variables to reason with� This set should be the minimum set
of meaningful variables� minimum� in order to provide FIR with the smallest
possible number of variables� and meaningful� in order not to overlook any

misbehavior as it occurs� This set may depend on the currently scheduled phase
of operation� and several FIR models� reasoning about di�erent subsets of
variables� may be used in parallel that monitor di�erent facets of the operation
or subsystems of the overall plant�

After detection� the anomaly must be isolated to a particular subsystem� To
this end� another set of variables may be selected� depending on the previously

observed variables that have exhibited aberrant behavior� a set of variables
that may allow the reasoner to learn more about the nature of the observed
anomaly�

Once the defective subsystem has been isolated� the anomaly needs to be
characterized within the subsystem� Each subsystem is responsible for one
or several facets of plant operation� Fault characterization refers to deciding�

which facet �or facets� of operation is �are� a�ected by the fault in order to
discriminate between di�erent faults� which means that a comparison between
sets of variables must be carried out�

Finally� fault diagnosis relates to determining� which among a foreseen set
of faults has actually occurred� For this purpose� it may be necessary to drive
the system into a particular operating point 	rst or excite the system in a

speci	c fashion to be able to distinguish �discriminate� between the e�ects of
similar hypothesized faults� while continuously comparing di�erent subsets of
variables�

�Chapter � provides a general description of the fault monitoring phases� whereas
Chapter � presents a particular description of how these phases are carried out by a FIR�
based FMS
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Thus� our FIR�based FMS will need to reason about di�erent subsets of

variables during each of the aforementioned stages� and consequently� a tool is
needed that determines which variables to use in each case� We stipulate that
GSPS level � tools provide such capabilities� The tool that has been selected

and implemented to carry out these tasks is the Reconstruction Analysis�

��� Reconstruction Analysis Methodology

Reconstruction Analysis �RA� originated with the Reconstructability Analysis

proposed in �Cavallo and Klir� ����� Cavallo and Klir� ������ It was revisited
in �Cellier� ����a� Klir� ������ and was taken up again in �Cellier et al�� ����b�
de Albornoz and Cellier� ����� de Albornoz et al�� ����b�� It is a tool that is
quite closely related to the FIR methodology� It allows to inductively recognize

temporal causal structures �potential subsystems� that are characterized by a
large number of behavior trajectories� i�e�� it can be used to determine the
correlations between subsets of these trajectories� In contrast to statistical
techniques used for the same purpose� Reconstruction Analysis deals with the

behavior information in qualitative �crisp or fuzzy� terms� The input data
used by this methodology are the same recoded data that are also used by
the inductive reasoner� Contrary to the statistical correlation analysis that

computes a linear measure of dependence between variables� Reconstruction
Analysis operates on non�linear dependence� and is therefore better suited to
characterize the behavior of non�linear systems than classical techniques like
correlation analysis�

The purpose of the RA methodology is then the determination of the
minimum sets of meaningful variables capable of representing the original

system� in such a way that each set of variables can be considered as a
subsystem� These sets of variables� or subsystems� will be fed into the FIR
methodology as the behavior trajectories to reason with�

Since many of the concepts that will be used in this chapter have already
been introduced in Chapter � �Fuzzy Inductive Reasoning Methodology�� this
gives us the opportunity to explain the RA methodology by means of an

example that will be carried on along the entire chapter�
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����� Reconstructability� The Basic Idea

Amathematical model of a system consists of a set of variables and a set of rules
mapping them into each other� Input variables are variables whose behavior is

exogenous to the model� i�e�� for which no generative rules or maps exist inside
the model� All other variables are generated �computed� by the model using
some form of mapping mechanism�

The behavior of a model can be de	ned as a description of the states
of the endogenous variables in function of the states of the exogenous
variables� and the states of endogenous variables at earlier time points� If

all feasible behavioral patterns of a model have been recorded� it is possible
to predict correctly the states of the endogenous variables from the states
of the exogenous variables� This is basically how level � tools within the
GSPS epistemological hierarchy work� Although a level � tool can� in

principle� explain the functioning of a system� such a description is evidently
never compact� and reasoning along these lines can be quite ine�cient when
su�ciently many variables are involved �as it usually happens in large�scale
systems��

The structure of a model can be de	ned as a description of the rules that are
used inside the model to map variables into each other� In the most abstract

of senses� determining the structure in a model can be de	ned as searching for
submodels that cooperate in producing the overall model behavior� In doing
so� we may� in a 	rst step� try to de	ne the interfaces between the submodels
rather than the submodels themselves� i�e�� we may be interested in knowing

which variables are used at the interfaces of each of the submodels rather than
describing the rules themselves that connect these variables to each other� This
is what the Reconstruction Analysis tries to accomplish�

For example� Figure 
�� shows a model� M � that is composed of two
submodels� M� and M�� The model contains 	ve variables� the input variable
v�� the output variable v�� and the internal variables v�� v�� and v�� v� is also

an input variable of submodel M�� whereas v�� v�� and v� are output variables
of M�� It is possible that the submodels are decomposed further� but their
internal structure is not shown� thus� it is not known whether these submodels

contain any internal variables themselves�

In RA� composite structures are denoted by row vectors� The variables

are simply enumerated� Substructures are separated by zero elements in the
vector� Thus� the composite structure of modelM would be encoded as�
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��� System M with subsystems M� and M��

cs�  � � � � � � � � � 
 � �
���

denoting that the modelM contains two submodels� the 	rst of which relates
the variables v�� v�� v�� and v� to each other� whereas the second describes
relationships between the variables v�� v�� v�� and v�� At the chosen abstraction
level� there is no distinction made between inputs and outputs� i�e�� the model

structures are temporally acausal� This may be just as well� since �causality�
in physical system modeling is a dubious concept anyway �Cellier and L&opez�
���
��

Structures may be represented in a second fashion using RA� namely in the
form of a so�called binary structure� The binary structure of a model consists

of an enumeration of all binary connections of variables within its submodels�
The binary structure of the model M would be�
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bs�  � � �
� �
� �
� �
� �
� 

� �
� 

� 
 �

�
���

The only binary connection that is missing is the connection � �� 
 �� since
there is no direct connection between the variables v� and v�� A totally

connected model� i�e�� a model without any internal structure� contains a
complete list of binary connections in its binary structure� whereas a totally
unconnected model� i�e�� a model containing a set of completely unrelated
variables� does not contain any binary connections� i�e�� the binary structure is

empty� Variables that are not connected to anything else are represented in the
binary structure as unitary variables� For example� the composite structure�

cs�  � � � � � � �
���

would be mapped into the binary structure�

bs�  � � �
� � �

�
���

In this case� the zero element denotes that v� has no relationship with any of
the other variables� The totally unconnected composite structure�

cs�  � � � � � � � �
�
�

would be mapped into�

bs�  � � �
� �
� � �

�
���
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The two types of structure representations �composite and binary� are in some
ways equivalent� and one can be mapped into the other by means of the binary
and compose functions�

bs  binary �cs�

computes the binary structure bs from the composite structure cs� and�

cs  compose �bs�

computes the composite structure cs from the binary structure bs�
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Figure 
��� Representation of cs�a composite structure�

The transition from the composite structure to its binary counterpart is
obviously unique� The reverse is not true� For example� let us consider the
following two new composite structures�

cs�a  � � � � � � � � 
 � 
 � � � �
���

and�

cs�b  � � � � � � � � 
 � 
 � � � � 
 � � �
���
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that may represent the causal structures shown in Figures 
�� and 
��� They
map into the same binary structure bs��

bs�  � � �
� �
� �
� �
� 

� �
� 

� 

� �

 �

 �
� � �

�
���

RA uses thus the additional rule that the compose operator always computes
the minimal structure� i�e�� redundant structures are never shown� This
makes sense since� if the variables of Figure 
�� are algebraic variables� i�e��

there is no time di�erence between any of the variables� then the model of
Figure 
�� contains an algebraic loop involving variables v�� v�� and v�� and
when solving this algebraic loop� another structure will be obtained� namely
that of Figure 
���
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��� Representation of cs�b composite structure�

Once the way in which structures are represented in RA has been explained�
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the time has come to talk about the main steps of the RA methodology� It

has been mentioned that the same qualitative behavior used to feed FIR can
also be used to feed RA� The main objective is to obtain a reconstruction of
the structure represented by the behavior� To this end� the RA methodology

proposes reconstruction hypotheses about what this structure may look like
by means of behavior projections and reconstructions� Each one of the
reconstructed behavioral patterns may di�er from those observed in the
original physical system� If this di�erence� i�e�� a distance function between

the original and the reconstructed behavior� is su�ciently small� then the
proposed structure represents a decent reconstruction of the original system�
Finally� the determination of the most suitable reconstruction hypothesis� i�e��
the most suitable decomposition into subsystems� is carried out by means of

suboptimal search strategies known as� Optimal Structure Analysis�

Thus� the RA methodology rests on the following main processes�

i� Generation of Reconstruction Hypotheses�

ii� Reconstruction from Subsystems�

iii� Computation of the Information Distance�

iv� Optimal Structure Analysis�

Each of those will be fully described in the next sections�

The entire reconstruction process is shown in Figure 
��� An original
system with a behavior �b� p� is decomposed �its behavior is projected�
into n subsystems with behaviors �b�� p��� �b�� p�� to �bn� pn�� that form

a reconstruction hypothesis� In a second step� these subsystems are
reconstructed two by two �their behavior is recombined� forming a
reconstructed system with a behavior �br� pr�� The comparison between �b� p�

and �br� pr� is the error measure called the information distance�

The 	nal step of the methodology� i�e�� Optimal Structure Analysis� that
will be discussed a few sections ahead� proposes di�erent algorithms for the

suboptimal determination of the most suitable reconstruction hypothesis� that
is� the most suitable decompositions into sybsystems�

����� Generation of Reconstruction Hypotheses

In RA� the behavior of a system is de	ned in exactly the same fashion that had
been introduced earlier in the context of FIR� namely as a set of variables� a
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Figure 
��� The reconstruction process�

behavior matrix that lists all qualitative states that the system can be in� and
a probability �or con	dence� vector that speci	es the likelihood of occurrence
of each state� A reconstruction hypothesis is a set of subsets of variables that

are hypothesized to be used in each of the subsystems� i�e�� a set of possible
causal structures �subsystems��

The behavior of a subsystem is obtained by projecting the behavior of the
overall system onto the subspace spanned by the selected variables of that
subsystem� As a consequence� variables that are not included in the subsystem
are eliminated from the behavior of the system� and states that can no longer

be distinguished from each other are amalgamated into one� accumulating their
individual probability �or con	dence� values�

������
 Behavior Projections

How are the reconstruction hypotheses obtained� and how meaningful is a
particular hypothesized model structure To answer these questions� the

quality of the proposed structure must be assessed relative to the observed
behavior� This can be accomplished in many di�erent ways� The Optimal
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Mask Analysis starts out with a given output variable �it is normally known

which among a set of variables is the desired output�� and determines a set
of �input� variables� i�e�� a submodel� such that the input�output behavior of
that submodel is as deterministic as possible� This makes a lot of sense� but

the search for the optimal mask is expensive and can therefore not be used in
the presence of too many variables� Reconstruction analysis goes a di�erent
way�

RA uses the same measurement data used by FIR� and the same recoding
process� Let us remember how this process works� Let an observation� obs�
of the behavior of a system be given in the form of a set of variables sampled

equidistantly in time� The observation can be stored in a matrix where each
column represents one variable� and each row represents one sampling instant�
In Chapter � we called this matrix the raw data matrix� The variables in
this matrix need to be recoded into discrete classes� The basic behavior of this

observation can then be obtained using the command�

�b� p�  behavior �obs� �
����

b  denotes a numerically ordered list of individual records �rows� of
the observation�

p  denotes a numerically ordered list of the observation frequencies
relative to the records of b�

Vector p can be reinterpreted as a probability vector� Let us suppose the
following b matrix and p vector�

b  � � � � � � p  � ���
� � � � � ���
� � � � � ���

� � � � � ���
� � � � � ����
� � � � � ����
� � � � � ���

� � � � � � ���
 �

�
����

denote such a basic behavior� This is a 	ve�variable system� Each variable is
binary� thus� there are �� possible di�erent states �observations� in the system�
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However� only eight of them have ever been observed� Their observation

frequencies �probabilities of occurrence� are shown in vector p�

Let us assume that this behavior corresponds to the one of model M

described earlier in Figure 
��� We can extract the behavior of the submodel
M� by projecting the 	ve�dimensional behavior space of the variables v�� v�� v��
v�� and v� �modelM� onto the four�dimensional behavior space of the variables

v�� v�� v�� and v� �submodel M��� The composite structure of model M has
been de	ned as cs� in Equation 
��� the composite structure of submodel M�

is�

cs
  � � � � � � �
����

The projection to extract the submodelM� behavior is accomplished using
the function�

�b
� p
�  extract �b� p� cs
� �
����

where the input variables stand for�

b  is the behavior of model M �
p  is the probability vector of modelM �
cs
  is the composite structure of submodel M��

And the output parameters stand for�

b
  is the behavior of submodel M��
p
  is the probability vector of submodel M��

The result of this operation will be the four variable behavior matrix b
�
and its correspondent probability vector p
�
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b
  � � � � � p
  � ���
� � � � ���
� � � � ���

� � � � ���
� � � � ����
� � � � ����
� � � � ���

� � � � � ���
 �

�
����

The projection onto the subspace of submodelM� is made similarly by de	ning
	rst its composite structure as�

cs�  � � � � 
 � �
��
�

and then by extracting the behavior of submodel M��

�b�� p��  extract �b� p� cs�� �
����

The result of this operation is the four variable behavior matrix b� and its
correspondent probability vector p��

b�  � � � � � p�  � ����
� � � � ���
� � � � ���
� � � � ���
� � � � ���

� � � � � ���� �

�
����

This result is a little more interesting since the number of states and the

probability values are di�erent from those of Behaviors �
��� and �
����� that
correspond to modelM and submodelM� respectively� The behavioral states
of submodel M� were extracted from the set of overall states� they were then

rearranged in numerical order� and because of multiple occurrences of the same
state� their observation frequencies �probabilities� were added�
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����� Reconstruction from Subsystems

The behavior of the proposed subsystems in a reconstruction hypothesis

can be recombined in such a way that the original overall system can be
�reconstructed�� The idea behind this procedure is the following� If the
subsystem structure� i�e�� the combination between all subsets of variables�
that is proposed in the reconstruction hypothesis� corresponds to the real

structure of the physical system under study� then the projections represent
true behaviors of physical subsystems� In this case� it should be possible
to obtain the observed overall system behavior as a reconstruction from the

behaviors exhibited by its physical subsystems without much of an error�

����	�
 Behavior Recombinations

Let us look at the two projections obtained at the preceding section for

submodels M� and M�� and reconstruct a new 	ve�dimensional space out of
the knowledge that we still possess through these two projections in such a
way that the projections of this new 	ve�dimensional space onto the two four�
dimensional spaces are the same as the projections from the original 	ve�

dimensional space�

This is accomplished by de	ning the overall composite structure of model

M � i�e�� Structure �
��� once more as the wanted structure of the reconstructed
system�

cs�  � � � � � � � � � 
 � �
����

and by combining the projections obtained for submodels M� and M� using

the function�

�b�� p��  combine�b
� p
� b�� p�� cs�� �
����

where the output variables stand for�

b�  is the behavior of the reconstructed system cs��
p�  is the probability vector of the reconstructed system cs��
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The result of this operation will be�

b�  � � � � � � p�  � ������
� � � � � ������
� � � � � ���
� � � � � ���

� � � � � ���
� � � � � ����
� � � � � ������
� � � � � ������
� � � � � ���

� � � � � � ���
 �

�
����

The reconstructed behavior is calculated by means of the previously de	ned

function combine� which combines the behavioral states of the two original
behaviors b
 and b�� and calculates the probability of each reconstructed state
as the conditional probability of that state in the 	rst behavior p
 multiplied
by the probability of the same state in the second behavior p�� For example�

in the structure � v�� v�� v� � that is common to both behaviors� the state

� v�� v�� v� �  � �� �� � � �
����

occurs twice within the behavior b
� once with probability ��� and v�  �� and
once with probability ���
 and v�  �� and once within the behavior b� with
probability ���
 and v�  �� This means that in the combined behavior b�
there will be two states with � v�� v�� v� � � �� �� � �� one with v�  �� the

other with v�  �� and both with v�  �� The conditional probability for the
state

� v�� v�� v�� v� �  � �� �� �� � � �
����

is determined by the fraction

���

���� ! ���
�
�
����
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and since the probability of the state

� v�� v�� v�� v� �  � �� �� �� � � �
����

from behavior b� is ���
� the probability of the reconstructed state

� v�� v�� v�� v�� v� �  � �� �� �� �� � � �
��
�

is

�
���

���� ! ���
�
� � ���
  ��� �
����

In the same way� the probability of the second state derived from this

combination

� v�� v�� v�� v�� v� �  � �� �� �� �� � � �
����

is

�
���


���� ! ���
�
� � ���
  ���
 �
����

In the reconstruction� all the original states will reappear� but some additional
states may appear as well� In the above reconstruction� two additional

states are present� This can be seen by comparing Behavior �
���� with
Behavior �
�����

The reconstruction carried out here is considered free of distortion since
the two projections of the reconstructed 	ve�dimensional space onto the two
four�dimensional spaces spanned by the two submodels are indeed the same

as for the original system� i�e�� the same projections �b
� p
� and �b�� p�� are
obtained both from �b� p�� and from �b�� p���
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Unfortunately� this result does not extend to general reconstructions�

If more than two submodels are present in the model structure� the
reconstruction will have to be done sequentially� For example� let us consider
the new structure cs� with the same original behavior �b� p� represented in

Behavior �
�����

cs�  � � � � � 
 � � 
 � � � � � �
����

that can be reconstructed following the next sequence of projections and

recombinations� The projection for the 	rst substructure in cs�� that can
be de	ned as cs�a� can be obtained by specifying�

cs�a  � � � � �
����

�b�a� p�a�  extract �b� p� cs�a�

For the second substructure de	ned as cs�b�

cs�b  � � 
 � �
����

�b�b� p�b�  extract �b� p� cs�b�

for the third substructure de	ned as cs�c�

cs�c  � � 
 � �
����

�b�c� p�c�  extract �b� p� cs�c�

and for the fourth substructure de	ned as cs�d�

cs�d  � � � � � �
����

�b�d� p�d�  extract �b� p� cs�d�
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Then� the behavior recombinations must be done two by two� i�e�� combining
behavior �b�a� p�a� with �b�b� p�b� in a subreconstruction called cs�e�

cs�e  � � 
 � � � � �
����

�b�e� p�e�  combine�b�b� p�b� b�a� p�a� cs�e�

behavior �b�c� p�c� with �b�e� p�e� in a subreconstruction called cs�f �

cs�f  � � 
 � � � � � 
 � �
��
�

�b�f� p�f �  combine �b�c� p�c� b�e� p�e� cs�f�

and behavior �b�d� p�d� with �b�f� p�f � in the 	nal reconstruction called cs�g�

cs�g  � � � � � � � � 
 � �
����

�b�g� p�g�  combine�b�d� p�d� b�f� p�f� cs�g�

The result of the whole operation� i�e�� the reconstructed system� is�



��� Chapter 	� Reconstruction Analysis

b�g  � � � � � � p�g  � ������
� � � � � ������
� � � � � ������
� � � � � ������
� � � � � ������
� � � � � ���
��
� � � � � ������
� � � � � ������
� � � � � ������
� � � � � ������
� � � � � ������
� � � � � ����
�
� � � � � ������
� � � � � ������
� � � � � � ����
� �

�
����

Unfortunately� although the projections of the intermediate reconstruction are
free of distortion� those of the reconstruction itself are no longer the same as

those of the original space� and therefore� the 	nal reconstruction contains a
small amount of distortion�

����� Information Distance

Why are we at all interested in reconstructions We want to identify true or
at least plausible subsystems� Their reconstructions should exhibit behavioral

patterns that are as similar as possible to those of the original system�

A distance function can be de	ned� namely the Information Distance�

between the original and the reconstructed behavior� and if that distance
function assumes a su�ciently small value� then the proposed structure
represents a decent hypothesis for what the true structure of the physical
system might look like� Thus� the information distance can be seen as a loss

of information measure�

This distance function is computed in the following way� First� the original

behavior is augmented by the additional reconstructed states� However� a
probability value of ��� is assigned to these states in the original probability
vector� since they have never been observed� Then� the distance function is

computed as the L��norm �the Euclidean norm� of the di�erence between the
original and the reconstructed probability vectors�
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The structure function�

err  structure �b� p� cs�

performs all the necessary projections and recombinations for a proposed
composite structure� cs� and then computes the information distance function�

err� Since normally reconstructions are not entirely free of distortions� the
distance will also depend slightly on the sequence of the reconstructions�
i�e�� the same behavior applied to the same composite structure where the
substructures are speci	ed in a di�erent sequence may lead to slightly �but

not drastically� di�erent values of the distance function�

For example� the structure function applied to the original behavior �b� p�

provided in Behavior �
���� and to the structure cs� de	ned in Structure �
����
in the following way�

err�  structure �b� p� cs�� �
����

leads to a distance of err�  ������� However� if the substructures in cs� are

rearranged as shown in cs��

cs�  �� � � � � 
 � � � � � 
 � �
����

and the structure function is applied to the same behavior �b� p� and to this

new cs� structure

err�  structure �b� p� cs�� �
����

a distance of err�  ���

� is obtained� We had to search for quite some time

to 	nd an example with a di�erence in distance as large as in this example�
due just to the sequence in which the di�erent substructures are speci	ed�
However� it is claimed that this is quite alright� After all� we are performing a
qualitative analysis only� and small variations in the obtained numerical values

should not in�uence our decisions in any signi	cant way�
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������
 Correction of Distortions

Let us obtain the reconstructed behavior of the previous two examples cs� and
cs� supposing that both structures have the original behavior �b� p� de	ned in
Behavior �
����� The results will be �b�� p�� and �b�� p��� Since b�  b�� they
can be expressed by a single matrix�

b�  b�  � � � � � � p�  � ������ p�  � ������
� � � � � ����� ������
� � � � � ������ ������
� � � � � ������ ������
� � � � � ������ ������
� � � � � ���
�� �����

� � � � � ������ ������
� � � � � ���� ������
� � � � � ����� �����

� � � � � ������ ������
� � � � � ������ ������
� � � � � ����
� ������
� � � � � ������ �����
� � � � � ������ ������
� � � � � � ����
� �����
 �

�
����

Seven additional states have been added in comparison with the original
behavior �b� p� shown in Behavior �
����� The reconstructed states do not

depend on the sequence of the reconstruction� only on the structure itself�
However� the probability vectors may vary slightly depending on the sequence
of the substructures�

It may sometimes be useful to guarantee a distortion�free reconstruction�
Neither of the above reconstructions is distortion�free� In the above example�
we know the reconstructed states� What is unknown are the correct values of

the �
 probabilities associated with the reconstructed states� Let us call these
probabilities q� to q���

What it is known in addition� for a distortion�free reconstruction� is that
the projections of the reconstructed states are supposed to have the same
probabilities as the projections of the original states� For example� the

	rst substructure in cs�� namely � v�� v� � is equal to the state � �� � �

�� v�� v� � � �� � �� in the 	rst� second� fourth� ninth� tenth� and twelfth
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reconstructed states of b�� It is also know that� in the original behavior �b� p��

this is true for the 	rst� third� sixth� and seventh states� Adding up the
corresponding probabilities from the original behavior� we obtain a value of
������� Thus� we know that the sum should be�

q� ! q� ! q� ! q� ! q�� ! q��  ������ �
����

We can proceed similarly for all the other states of the same substructure�
and for all the other substructures� In this way� �� equations in �
 unknowns
are obtained that can be written in a matrix form as�

M � q  y �
����

where M and y are known� and q is unknown�

M  � � � � � � � � � � � � � � � � y  � ����
� � � � � � � � � � � � � � � ���
� � � � � � � � � � � � � � � ����
� � � � � � � � � � � � � � � ����
� � � � � � � � � � � � � � � ���
� � � � � � � � � � � � � � � ����
� � � � � � � � � � � � � � � ����
� � � � � � � � � � � � � � � ��
�
� � � � � � � � � � � � � � � ���
� � � � � � � � � � � � � � � ���
� � � � � � � � � � � � � � � ���

� � � � � � � � � � � � � � � ���
� � � � � � � � � � � � � � � ����
� � � � � � � � � � � � � � � ����
� � � � � � � � � � � � � � � ���

� � � � � � � � � � � � � � � � ���
 �

�
����

Since the rank of M is nine� there are six degrees of freedom� Consequently�

there are many ways for getting a distortion�free reconstruction� What can
be done is to 	nd a distortion�free reconstruction that has its probabilities as
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close as possible to the ones found by the recombination algorithm� In Matlab�

this is done by augmenting the set of equations in the following way�

MM  � M � eye��
� � �
��
�

yy  � y � p� � �
����

where eye is the Matlab command used to obtain the identity matrix� and p� is
the vector of probabilities found using the recombination algorithm� and solve
the overdetermined set of �� equations in a least square sense�

q  MMnyy �
����

The remaining distortion can now be computed as�

err  MM � q � yy �
����

err  norm�err�� � ���� �inf�� �
����

Clearly� the error is still not zero� i�e�� the reconstruction is still not distortion�

free� However� we can use the obtained q vector as the new improved p� vector
and keep iterating�

while err � ���e���
p�  q

yy  � y � p� ��
q  MMnyy�
err  MM � q � yy�
err  norm�err�� � ����� inf ���

end

until the error has decreased below the desired threshold� In the above

example� nine iterations are required for convergence� The same procedure
was repeated with p� instead of p�� The resulting probability vectors were�
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p�corr  � �����
 p�corr  � ������
������ ������
������ �����

����
� ����
�
������ ������
���
�
 ���
��
�����
 ������
���� ����
������ ������
������ ������
������ ������
������ ������
������ ����
�
������ ������
������ � ������ �

�
�
��

The two reconstructions are still not identical� However� they are now both
distortion�free�

A reconstruction of any composite structure cs� with correction for the
distortion can be obtained using the reconstruct� function in the following

way�

�brec� prec�  reconstruct �b� p� cs� �
�
��

where brec is the behavior of the reconstructed system and prec its probability
vector� However� since the correction is not normally needed and since
it reduces the overall e�ciency of the algorithm� the previously introduced

structure command does not correct for distortions�

����� Fuzzy Reconstruction

Since the Fault Monitoring System proposed in Chapter � is based on the Fuzzy
Inductive Reasoning methodology developed in Chapter �� it will be normally
the case that the recoding of an observed behavior will be fuzzy rather than

crisp� The fbehavior function is the fuzzy equivalent of the crisp behavior

�Not yet implemented�
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function presented in Equation �
����� and is used to compute the possibilistic

behavior of a fuzzy observation�

�b� c�  fbehavior �obs� conf�

where the input variables stand for�

obs  is the matrix of class values of the fuzzy observation�
conf  is the con	dence vector associated with these observations�

and the output variables stand for�

b  denotes a numerically ordered list of individual records �rows� of
the observation�

c  accumulated con	dences of the corresponding records of b�

Usually� the con	dence of a fuzzy observation is de	ned as the smallest of

the fuzzy membership values associated with any of the variables within this
observation�

Whereas b is the same behavior matrix as in the crisp case� c no longer
denotes observation frequencies� Instead� this vector expresses the accumulated
con�dence in a particular observed state� If a state has been observed many

times� the con	dence in that state grows� Thus� the accumulated con	dence in
a given state is simply the sum of the con	dences assigned to each individual
previous observation of that state�

If a con	dence vector already exists� it would be a pity to throw this valuable
information away� Hence� it makes sense to look for a tool that can reason
about structures related to possibilistic behaviors�

Let us use the same Model M of Figure 
�� with the same behavior �b� p��
but this time with the probability vector p reinterpreted as a con	dence vector

c� i�e�� ModelM has this time a possibilistic behavior instead of a probabilistic
one�
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b  � � � � � � c  � ���
� � � � � ���
� � � � � ���

� � � � � ���
� � � � � ����
� � � � � ����
� � � � � ���

� � � � � � ���
 �

�
�
��

Fuzzy capabilities were added to the RA methodology in order to deal with
fuzzy behavior� The functions fextract� fcombine� and fstructure� are the fuzzy

equivalent of the crisp functions extract� combine� and structure previously
explained� Thus� the extraction of the possibilistic behavior of submodel M�

is made exactly in the same way as in the crisp case� except for the use of
fextract instead of extract� From Structure �
��
�� we know that cs� is�

cs�  � � � � 
 � �
�
��

Thus the fuzzy projection onto the space spanned by the variables v�� v�� v��
and v�� is obtained with�

�b�� c��  fextract �b� c� cs�� �
�
��

And the result is�

b�  � � � � � c�  � ����
� � � � ���
� � � � ���
� � � � ���

� � � � ���

� � � � � ���� �

�
�

�

We chose the same example as in the crisp case so that the results of crisp
and fuzzy reconstruction analysis can be compared more easily with each

other� Clearly� it is always possible to reinterpret a probabilistic behavior as
possibilistic� although the reverse is not true� The di�erence becomes evident
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after the projection� since the con	dences of the projection no longer add up

to one�

Similarly� a projection onto the subspace � v�� v�� v�� v� � is accomplished

using the cs
 structure given in Structure �
�����

cs
  � � � � � � �
�
��

and the function�

�b
� c
�  fextract �b� c� cs
� �
�
��

The result of this operation is�

b
  � � � � � c
  � ���
� � � � ���
� � � � ���

� � � � ���
� � � � ����
� � � � ����
� � � � ���

� � � � � ���
 �

�
�
��

It would have made perfect sense to compute the con	dences of the
projection by accumulating the con	dences of individual multiple observations�

However� in accordance with the theoretical work of �Cavallo and Klir� ������
this was not done� Instead� the con	dence of the projection of a given state is
simply the largest among the con	dences of the previous observations of that

state�

A recombination �or join� of two projections is accomplished by combining
the states in the same manner as was done in the crisp case� However�

the con	dence in the join is computed as the smallest among the individual
con	dences� Let us take the original composite structure cs� of Model M
proposed in Structure �
�����

cs�  � � � � � � � � � 
 � �
�
��
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and combine the fuzzy behaviors of submodelsM� and M� with the fcombine
function�

�b�� c��  fcombine�b
� c
� b�� c�� cs�� �
����

The result of this operation will be�

b�  � � � � � � c�  � ����
� � � � � ���
� � � � � ���
� � � � � ���

� � � � � ���
� � � � � ����
� � � � � ����
� � � � � ����
� � � � � ���

� � � � � � ���
 �

�
����

However� and contrary to the crisp reconstructions� fuzzy reconstructions are
distortion�free across multiple sequential reconstructions� Thus� no distortion

correction algorithm is needed as was true for the crisp case�

Once more in accordance with the theoretical work of �Cavallo and

Klir� ������ a di�erent distance measure was used to determine the fuzzy
reconstruction error� namely through the Ambiguity Measure�

The ambiguity of the original behavior �b� c� �Behavior �
�
��� is computed
as�

a  ����
�
����

�
!
����

�
!
���


�
!
���


�
!
���


�
!
����

�

�
 ������ �
����

���� is the smallest con	dence value found in the con	dence vector� All eight
observed states have a con	dence larger or equal than ����� This is how the

	rst term between the parentheses is computed� The next higher con	dence
is ���
� The di�erence to the previous one is ����� There are seven con	dence



��� Chapter 	� Reconstruction Analysis

values in the vector that are larger or equal to ���
� This determines the next

term� etc� It is easier to explain how the ambiguity is computed by means of
an example than through a general formula� So� this way was chosen here�
The ambiguity of the reconstructed behavior is computed as�

a�  ����
�
����

��
!
����

�
!
���


�
!
���


�
!
���


�
!
����

�

�
 ������ �
����

The distance function then is the di�erence between the ambiguities of the
reconstructed and original behaviors�

err�  a�� a  ������
 �
����

This same error can be obtained directly using the function fstructure that
performs all the necessary projections and recombinations for the composite
structure cs�� and then computes the distance function error err��

err�  fstructure �b� c� cs�� �
��
�

Why do we use this strange distance measure The distance measure used

should be de	ned in accordance with the projection and recombination rules in
such a way that� when a probabilistic behavior is reinterpreted as possibilistic
behavior� and when a suboptimal structure is searched explaining the observed
behavior� the two approaches �probabilistic and possibilistic� should lead to

similar ordering sequences of structures� and thereby to the selection of a
similar suboptimal structure� The distance measure proposed above satis	es
this criterion�

����	 Optimal Structure Analysis

How do we go about determining the most suitable structure hypothesis
The determination of the most suitable reconstruction hypothesis is a search

problem� Enumerating all possible structure candidates is much too expensive�
hence suboptimal search strategies must be found� Three such techniques were
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proposed in �Uyttenhove� ����� and elaborated upon in �Cellier� ����a�� and

all three have been implemented in RA� They all operate on binary structures
rather than on composite structures� These three suboptimal search strategies
are�

i� Structure Re	nement�

ii� Structure Aggregation�

iii� Single Re	nement�

The RA function that carries out the suboptimal search using the crisp

behavior is�

cs  optstruc �b� p� qmin� group�� algorithm�� �
����

and in the case of fuzzy behavior�

cs  foptstruc �b� c� qmin� group�� algorithm�� �
����

where the input variables stand for�

b  behavior the system�
p  probability vector relative to behavior b�
c  accumulated con	dences relative to behavior b�
qmin  smallest tolerated quality�
group  is a grouping parameter provided by the modeler�
algorithm  denotes the search strategy�

and the output variable cs is the suboptimal structure found� The parameter
group can be explained by means of an example� If a four variable system is
grouped as�

group  � � � � � � � � �
����
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this instructs the optimization algorithm that� in a given six�variable system�

the 	rst and 	fth variable must appear in any subsystem either together or
not at all� whereas the fourth variable must not appear in any subsystem� If
no a priori grouping knowledge exists� group should be coded as�

group  � � n �
����

where n denotes the number of variables in the system�

������
 Structure Re�nement

It starts out with the totally connected binary structure� i�e�� with a model
without internal structure� or� which is saying the same� a composite structure
with just one subsystem that includes the same variables as the original system�

Evidently� the reconstruction error is zero for this structure� since there is
nothing to be reconstructed�

Then one binary connection is severed at a time� and the reconstruction
error is calculated in every case� In an n�variable system� this leads to�

n �n � ��
�

�
����

di�erent structures to be investigated� The one with the smallest
reconstruction error among these candidate structures is found as a good
working hypothesis� The binary connection is thus permanently removed� and
the search process continues by removing an additional binary connection from

the remaining�

n �n� ��
�

� � �
����

candidate connections� The search stops when the smallest reconstruction

error �information distance� within one set of candidate structures has become
larger than the largest tolerated error determined by the modeler�



	��� Reconstruction Analysis Methodology ���

Let us call the error of the totally unconnected model errunc� We de	ne the

structure quality Qs as follows�

QS  ��� � err

errunc
�
����

QS is equal to ��� for the totally connected model and equal to ��� for the
totally unconnected model� The structure quality is more useful than the

reconstruction error� since it is normalized� The modeler is thus asked to
specify the smallest tolerated quality� qmin� rather than the largest tolerated
error� errmax�

Let us apply the optstruc function with the Structure Re	nement search
option� i�e�� re�ne� to the previously de	ned behavior of Behavior �
�����

cs  optstruc �b� p� qmin� group�� re	ne�� �
����

with�

qmin  ���
group  � � 


The optstruc function gives results at each level of re	nement� as can be seen

in the next print�out�

STRUCTURE �Q � ������ �����	�
��

BEST STRUCTURE ON THIS LEVEL� �����	�
��

THE BEST QUALITY IS ������

SEARCH IS CONTINUED WITH THIS STRUCTURE

STRUCTURE �Q � ������ ���	�
�� ���	�
��

STRUCTURE �Q � ���
�� �����
�� ���	�
��

STRUCTURE �Q � ������ �����	�� ���	�
��

STRUCTURE �Q � ������ �����	�
 ���	�
��

STRUCTURE �Q � ���	�� �����
�� ���	�
��

STRUCTURE �Q � ������ �����	�� ���	�
��

STRUCTURE �Q � ������ �����	�
 ���	�
��

STRUCTURE �Q � �����
 �����	�� �����
��

STRUCTURE �Q � ����
� �����	�
 �����
��
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WHICH IS CONSIDERED TOO LOW� SEARCH IS TERMINATED

TOTAL RESULTING STRUCTURE� �	�� �� �� �


This result has the following meaning� while variables � and 
 must
be considered always together� variables �� �� and � can be considered
independently�

The importance of this result can be seen if for example� variable 
 is the
output of this 	ve variable system� in that case� variables �� �� and � can be

neglected because the only variable related with the output is variable �� Thus
the system is reduced to a two variable system� namely� variables � and 
�

Let us see what happens if the fuzzy option foptstruct is applied to the

same example� In this case the probability vector p is reinterpreted as the
accumulated con	dence vector c�

TOTAL RESULTING STRUCTURE� �	�
 �� �� ��

A di�erent result has been obtained� This is probably due to the small value
given to the smallest tolerated quality�

������� Structure Aggregation

This strategy is the dual to the former one� This time� the search starts
with the totally unconnected binary structure� i�e�� a composite structure in

which each single variable corresponds to a subsystem� that is� a structure
with zero quality� Evidently� the reconstruction error is very large� One binary
connection is added at a time� Among the n�n � ���� candidate structures
with a single binary connection� the one that reduces the reconstruction error

the most is chosen� i�e�� the one that o�ers the highest quality� This binary
connection is thus made permanent� and a second one is added� The search
continues until the quality has increased to a value that is larger than the

smallest tolerated quality determined by the modeler�

Evidently� since the Structure Re	nement and the Structure Aggregation

algorithms are suboptimal search strategies� they will not necessarily lead to
the same conclusion�
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Let us apply the optstruc function with the Structure Aggregation

suboptimal search strategy i�e�� aggregate� to the same example�

cs  optstruc �b� p� qmin� group�� aggregate�� �
����

As in the case of the previous algorithm� the optstruc function gives a complete
print�out of each re	nement step�

STRUCTURE �Q � ������ �� �� �	 �
 ��

BEST STRUCTURE ON THIS LEVEL� �� �� �	 �
 ��

THE BEST QUALITY IS ������
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STRUCTURE �Q � ������ ���� �	 �
 ��

STRUCTURE �Q � ������ ���	 �� �
 ��

STRUCTURE �Q � ����		 ���
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STRUCTURE �Q � ������ �
�� �� �� �	

BEST STRUCTURE ON THIS LEVEL HAS A QUALITY OF ����	�

WHICH IS CONSIDERED LARGE ENOUGH

SEARCH IS TERMINATED

TOTAL RESULTING STRUCTURE� �	�� �� �� �


This result coincides with the one obtained by the aforementioned Structure
Re	nement algorithm� having the same interpretation� Applying the same
algorithm with the fuzzy option� the following result is obtained�

TOTAL RESULTING STRUCTURE� �	�� �� �� �


which is once again the same result as previously obtained�
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Please� notice that Qs is not a quality measure �Cellier et al�� ����a� in the

strict sense� since the totally unconnected model does not necessarily have the
poorest quality of all� as the above example shows�

������	 Single Re�nement

This search strategy is the coarsest but also cheapest one� This algorithm starts
out like the structure re	nement algorithm� that is� with the totally connected
binary structure� but rather than severing only one binary connection at a

time� all binary connections with a su�ciently small error �determined by the
modeler� are removed at once� and the algorithm stops after investigating the
	rst n�n� ���� candidate structures�
Here� it doesn�t make sense to talk about a minimal tolerated quality�

Instead� the user should specify the largest tolerated error resulting from a
single severed binary connection�

Let us apply the optstruc function with the Single Re	nement suboptimal
search strategy i�e�� singleref� to the same example�

cs  optstruc �b� p� ermax� group�� singleref�� �
��
�

with ermax  ����

In this case� the optstruc function gives a complete print�out of all binary
relations included� and their related omission error�

STATISTICS ON BINARY RELATIONS�

�������������������������������

ERROR BINARY RELATION

STRENGTH OMITTED

�������� ���������������

�������� � �� 


�������� � �� 


�������� � 
� �

���					 � �� 	

���
���
 � �� �

����	��� � �� �

����	��� � �� 	

�������� � �� �
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���					 � 	� 


�������� � 	� �

FROM THE ABOVE LIST

THE � LOWERMOST RELATIONS ARE CONSIDERED IMPORTANT

TOTAL RESULTING STRUCTURE� �	�
 �����	��

Since the maximum tolerated error is ����� the 	rst three binary relations can
be neglected� whereas the other seven� with an associated error greater than

���� must be considered� Applying the same singleref option to the fuzzy case�
the resulting structure is�

TOTAL RESULTING STRUCTURE� �	�
 �����	��

which is the same result as obtained with the crisp option� Had we chosen

ermax  ���
� the same structure would have resulted as with the re�ne and
aggregate options� as can be seen from the above list of statistics on binary
relations�

If we assume once again that variable 
 is the output of the system whereas
all other variables are inputs� the obtained structure indicates that variable �

can be neglected because it has no relation with the output� whereas variables
�� �� and � must be considered� The original 	ve variable system has become
a four variable system�

Variations in the maximum tolerated error may lead to variations in the
resulting structure� thus the way in which this error is chosen is a delicate
matter�

The single re	nement technique is particularly attractive due to its much
reduced cost� The computational complexity of the single re	nement algorithm

is polynomial and of the order of n�� where n denotes the number of variables
in the system� whereas the computational complexity of the two other search
algorithms is exponential and of the order �n� It turns out that for our purpose�
i�e�� for selecting a subset of variables to reason with� the single re	nement

algorithm is always the method of choice�
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������� Postoptimization

Finally� there is a way of postoptimizing the found suboptimal structures� The
postoptimization function is�

cspopt  singleref �cs� b� p� ermax� �
����

It performs the Single Re	nement algorithm on each of the substructures found

by any of the three suboptimal search strategies� For example� the command
sequence�

cs��a  optstruc �b� p� qmin� group�� re	ne��

cs��b  singleref �cs��a� b� p� ermax�

	nds 	rst a suboptimal structure� cs��a� using the structure re	nement
algorithm� and then looks at each of the submodels of cs��a separately� and
performs the single re	nement algorithm on it� The 	nal structure� cs��b� is
the combination of all these re	nements� Consequently� cs��b may have less

binary connections that cs��a� but never more�

If selection of the correct structure is critical� it may be a good idea to

repeat the search with the three algorithms to check whether the same or
similar suboptimal structures are obtained� If this is not the case initially�
grouping may help to force the search algorithms to come up with more similar
solutions� In this way� the user will gain more and more con	dence in the

structures proposed by the suboptimal search techniques�

��� Conclusions

In this chapter� the implementation of the Reconstruction Analysis
methodology has been shown as a tool for subsystem identi	cation and variable
selection through causality analysis and re	nement procedures� In FIR terms�

a tool for selecting the minimum set of meaningful variables to reason with at
any new situation has been found�

Reconstruction Analysis has proven to be the right GSPS level � tool to be
combined with FIR� Some of its properties are�
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� We have implemented RA in such a way that it is fully compatible with
the previously developed Fuzzy Inductive Reasoning methodology�

� Some functions of FIR such as recode� behavior� and fbehavior are also
used in RA�

� FIR recodes the original behavior trajectories and feeds RA with this
data� RA� by means of the Optimal Structure Analysis techniques�
searches for suboptimal structures that can be considered as subsystems�
Finally� RA feeds FIR with these subsystems� i�e�� sets of variables� which�

in turn� will make qualitative models by means of the Optimal Mask
Analysis� and carry out the reasoning process�

� Since both methodologies �FIR and RA� use the same recoded
information and complement each other in the way described in the
previous step� they can be considered as two facets of one and the same
methodology� Both tools are available in SAPS�II�

In the next two chapters� it will be shown how these two methodologies are
combined to construct the Fault Monitoring System described in Chapter ��

and how the combined methodology is applied to large�scale systems�
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Chapter �

Selection and Causal Grouping

of Variables Using RA

	�� Introduction

In the preceding chapter� the Reconstruction Analysis methodology has been
explained in full� and an example was provided to enforce the understanding

of this GSPS� level � tool� The need for such a tool was stated on the basis
of the selection of minimum sets of meaningful variables that can be isolated
as subsystems� among the large set of variables inherent in any large�scale
system�

It could be useful at this point to remember that Reconstruction Analysis
uses the Single Re	nement algorithm of the Optimal Structure Analysis for

the selection and causal grouping of variables� Two considerations were taken
into account in order to decide the implementation of the RA methodology�
a� the GSPS level � technique used by the FIR methodology to obtain
qualitative models� i�e�� Optimal Mask Analysis� may not be e�cient when

dealing with level 
 problems� and b� Optimal Mask Analysis� and the whole
FIR methodology� su�ce to deal with problems of fault monitoring in small�
to medium�sized systems� but not in large�scale systems� in which the number

�A detailed description of the General Systems Problem Solver epistemological levels is
provided in Chapter ��

���
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of variables and subsystems is larger and may vary with time�

Thus� the goal of the RA methodology is that of providing the Fault
Monitoring System based on Fuzzy Inductive Reasoning with the subsets of

variables to reason with� This means that RA must be capable of identifying
clusters of causally related variables with the following characteristics�

� Each cluster constitutes an identi	ed subsystem� and should be composed
of one or several inputs and a single output�

� From each cluster� it should be possible to obtain an optimal mask�

Thus� the number of subsystem variables should be kept inside the FIR
methodology limits�

� Clusters should be causally related among each other� i�e�� form a causal
temporal hierarchy�

Some issues need to be addressed before RA can deliver this kind of results�
These are�

i� Since Reconstruction Analysis is intended to perform temporal causality
analysis� the concept of time must be included somehow�

ii� Some heuristic recipes must be proposed to introduce the concepts
of input and output variables in Optimal Structure Analysis� and to
interpret the relationships between input and output variables obtained
by the Single Re	nement algorithm�

iii� The third issue addresses the management of the large number of
variables in a large�scale system� Just like FIR� also the RAmethodology
cannot deal with a large number of variables at the same time� This
means that the original system needs to be decomposed into several

subsystems in order to facilitate the re	nement procedures of the Optimal
Structure Analysis�

iv� A comparison between the input�output relationships obtained by
Optimal Structure Analysis and Correlation Analysis on the one hand

and by Optimal Mask Analysis on the other will be provided for short�
and medium�sized systems in order to gain con	dence that� if the results
obtained are similar� then it can be inferred that the Optimal Structure

Analysis will likely obtain reasonable results also when applied to large�
scale systems�
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Thus in this chapter� the problems related with the management of large

numbers of variables� and the causal grouping between them will be tackled�
Some of these problems will be directly solved by applying the RAmethodology
and interpreting its results� whereas others will be solved by means of heuristic

recipes specially developed for such purposes�

	�� Including Time in the RA Methodology

The original Reconstructability Analysis� methodology does not consider the

passing of time� However� since in this dissertation it is intended to apply
Reconstruction Analysis to the problem of temporal causality analysis� the
variable time has to be incorporated into the methodology�

This is accomplished in the following way� Assuming that the dynamics of a
system to be modeled can be captured coveringm sampling intervals or a time
span of m ��t time units� which is equivalent to saying that the system can be
qualitatively represented by an optimal mask� of depth �m! ��� it is possible
to duplicate the raw data matrix of the system m times� and concatenate the
duplicates to the original behavior trajectory matrix from the right� each of

them shifted up by one row in comparison to the previous one�

Let us take as an example the linear system presented in Section ���� This
input�output system is composed of one input u� and three outputs y�� y�� and

y� that have already been recoded into three qualitative classes with a slowest
time constant that can be covered by two sampling intervals� i�e�� a mask of
depth three had been chosen before� The matrix of class values �raw data

matrix� for this system looks as follows�

�
BBBBBBBBBBB�

tnx u� y� y� y�

��� � � � �
	t � � � �

� � 	t � � � �
� � 	t � � � �
� � 	t � � � �
���

���
���

���
���

m � 	t � � � �

�
CCCCCCCCCCCA

�����

�Reconstructability Analysis is composed of two stages� Identi�cation and Reconstruc�
tion� In this dissertation� only the Reconstruction stage is used� Further details on Recon�
structability Analysis can be found in 	Cavallo and Klir� 
���� 
��
� Klir� 
���a�

�See the Optimal Mask Analysis section in Chapter ��
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Thus� the expanded behavior trajectory matrix will look like�

�
BBBBBBBBB�

tnx u� u� u� u� u� u� u� u� u� y� y� y�

��� � � � �
	t � � � � � � � �

� � 	t � � � � � � � � � � � �
� � 	t � � � � � � � � � � � �
� � 	t � � � � � � � � � � � �
���

���
���

���
���

���
���

���
���

���
���

���
���

�
CCCCCCCCCA

�����

This expanded matrix contains m times as many variables as the original
matrix� but in return� an optimal mask of depth � can be found that is
equivalent to the formerly used optimal mask of depth �m ! ��� The new
optimal mask matrix has the dimensions �� �n �m� instead of m�n as before�

where n is the number of variables �columns� of the original behavior trajectory
matrix� For the example of Matrix ����� the translation rule between the old
and the new optimal masks is�

�
B�

t� �	t u� u� u� u�
t� 	t u� u� u� u�
t u� y� y� y�

�
CA �����

In the modi	ed system� time is no longer an issue� Consequently� the

Reconstruction Analysis technique can be applied to the behavior of this
much larger system� and the temporal causality analysis can be performed
as described in the previous chapter�

	�� Management of Large Numbers of Vari


ables

The variable selection process is carried out by using the Single Re�nement
algorithm of the RA methodology in the same way it has been mentioned in

Chapter 
� The purpose is to 	nd strong qualitative �non�linear� correlations
between inputs and outputs� and weak correlations among inputs� in such a way
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that the resulting relations for the outputs will be as deterministic as possible

while avoiding unnecessary redundancy among highly correlated inputs�

The 	rst step of this process is the computation of the system time constants

from the input�output behavior as it was shown in Chapter �� In this way� a
mask depth is obtained that assures that the system dynamics will be covered
by the resulting optimal mask� Then� the number of original variables �one

input and three output variables� i�e�� a total of four variables in the above
example� is multiplied by the mask depth as it was explained in the previous
section� The resulting number is the new number of variables �nine input and
three output variables� i�e�� a total of �� variables in the given example� that

must be considered in the Reconstruction Analysis�

The second step is the decomposition of the overall system �with the

new number of variables� into sets of inputs and outputs that must include
all possible binary relations between the variables� This decomposition is
necessary because the new number of variables is much larger than the original
one� and it has already been said that RA is not capable of managing too many

variables at a time��

Let us revisit the one input� three outputs example of the preceding section�

Of course� this example can be managed by the RA methodology without
needing any decomposition� but for comparison purposes� it will be useful to
show how the decomposition is carried out� First� one output variable must be
selected� As in the FIR methodology� RA treats each output separately� With

each of the three outputs we will do the following�

i� The Single Re	nement algorithm of RA will be directly applied to the

nine input and one output variable system obtaining a list with all binary
relations and their corresponding reconstruction error�

ii� The nine input one output variable system will be decomposed into
subsets of variables that must be constructed in such a way that all
possible binary combinations are included�

iii� RA will be applied to each of these subsets of variables obtaining a list
with all binary relations and their corresponding reconstruction errors� If

binary relations are present in more than one subset� their corresponding
	nal error strengths will be averaged�

iv� From the two lists of binary relations and their corresponding
reconstruction errors� two tables of correlations between the inputs and
the selected output will be constructed� one for each list�

�The current limit is �� variables�
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v� A comparison between the two constructed tables� i�e�� the one obtained

by applying RA directly to the overall system and the one obtained
by applying RA to the decomposed system� will be performed� The
objective of this comparison is that of demonstrating that an overall

system can be decomposed into several subsystems without introducing
a large error�

In a 	rst step� the Single Re	nement algorithm is directly applied to the

nine input and one output system� The corresponding reconstruction error� i�e��
the error that results from a comparison between the original overall system
and the reconstructed system with one binary relation missing� is obtained for
each binary relation� At the end� a list is con	gured with all possible binary

relations and their corresponding reconstruction errors� In this way� strong
binary relations �with a large error value� are distinguished from weak binary
relations �with a small error value��

The list of binary relations and their corresponding reconstruction errors
for the 	rst output variable y� of the linear system example we have dealt with

is�

STATISTICS ON BINARY RELATIONS�

�������������������������������

ERROR BINARY RELATION ERROR BINARY RELATION

STRENGTH OMITTED STRENGTH OMITTED

�������� ��������������� �������� ���������������

�������� � �� � �������� � �� 


�������� � �� � �������� � 	� �

�������� � �� � �������	 � 
� �

�������� � �� � �������	 � 
� �

�������� � �� � ������	� � 	� �

�������� � �� � ����	��� � �� ��

�������� � �� � ����
	�� � 
� �

�������� � �� � ����
��� � �� ��
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where variables � to � represent inputs to the single row mask obtained when
including time in RA� and variable number �� stands for the y� output�

For comparison purposes� RA will be applied once more to the nine input
and one output variables system� but this time the system will be decomposed

into subsets of variables� These subsets of variables must be constructed in
such a way that all possible binary combinations are included� Thus� for output
y� these subsets might be��

� u�� u�� u�� y� ��
� u�� u�� u�� y� ��
� u�� u�� u�� y� ��
� u�� u�� u�� y� ��
� u�� u�� u�� y� ��
� u�� u�� u�� y� ��
� u�� u�� u�� y� ��
� u�� u�� u�� y� ��
� u�� u�� u�� y� ��
� u�� u�� u�� y� ��
� u�� u�� u�� y� ��
� u�� u�� u�� y� ��

The Single Re	nement algorithm is applied to each of these �� subsets�
and the corresponding reconstruction error is obtained for each of its binary

relations� The resulting lists for each subset �subsystem� are the following�

STATISTICS ON BINARY RELATIONS ��st subsystem�

������������������������������������������������

ERROR BINARY RELATION REAL

STRENGTH OMITTED VARIABLES

�������� ��������������� �����������

�������� � �� 
 � �� ��

�������� � 	� 
 � 	� ��

�����	�� � �� 
 � �� ��

���
	
�� � �� � � �� �

�������	 � �� 	 � �� 	

��	�
��� � �� 	 � �� 	

�This choice is by no means unique� but for this example� it is the simplest one since
each binary relation between input variables appears only once�
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STATISTICS ON BINARY RELATIONS ��nd subsystem�

�����������������������������������������������

ERROR BINARY RELATION REAL

STRENGTH OMITTED VARIABLES
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STATISTICS ON BINARY RELATIONS �	rd subsystem�
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ERROR BINARY RELATION REAL

STRENGTH OMITTED VARIABLES
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STATISTICS ON BINARY RELATIONS �
th subsystem�
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STRENGTH OMITTED VARIABLES
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ERROR BINARY RELATION REAL

STRENGTH OMITTED VARIABLES
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Some of these binary relations appear twice or more times �in this example
only binary relations between inputs and output�� and consequently� their

corresponding reconstructions errors should be averaged� At the end� a list�
similar to that shown earlier� is con	gured with the results obtained for all
the variable subsets� which means that all possible binary relations and their

corresponding reconstruction errors are in the list�

The list of binary relations and their corresponding reconstruction errors

for the 	rst output variable y� of the decomposed linear system example
is�

STATISTICS ON BINARY RELATIONS�

�������������������������������

ERROR BINARY RELATION ERROR BINARY RELATION

STRENGTH OMITTED STRENGTH OMITTED
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Once again� variables � to � represents inputs to the single row mask obtained
when including time in RA� and variable number �� stands for the y� output�

In the cases of outputs y� and y�� the same subsets of variables will be
constructed including the respective desired output replacing y��
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A strong binary relation means that the link between its associated variables

cannot be severed� whereas a weak binary relation means that this link
can be neglected without much of an e�ect on the overall system behavior�
Consequently� a strong binary relation points to a strong non�linear correlation

between the variables of the pair� whereas a weak binary relation points
to a weak correlation� For any desired output variable� �taking only one
output variable at a time�� it is thus possible to identify a set of candidate
input variables that exhibit strong correlations with that output� yet weak

correlations among each other�

To this end� several heuristic rules will be introduced� The goal is to 	nd

a set of candidate inputs that is large enough to contain the necessary inputs
for constructing a good optimal mask� yet small enough to be tractable by
the inductive reasoner�� The complexity of this intended optimal mask is the
number of variables minus one �the output is already known� that need to be

selected�

	���� Heuristic Recipes for Variable Selection

Once the list with all possible binary relations and their errors is con	gured� a
table needs to be constructed that includes on its left side all input variables
from the new number of variables� i�e�� with time being included in RA� and
on its right side� )!� and )�� marks that are added in accordance with the

following set of rules�

�� The list of binary relations and reconstruction errors is visited from
the bottom to the top� i�e�� starting with the most important binary
connections� and ending with the least important ones�

�� When a binary connection is encountered between any input variable
and the designated output� a )!� is added to the right of the table for
that input variable�

�� When a binary connection is encountered between two input variables�

)�� marks are added to the right of the table for both inputs�

At the end of the procedure� each row of the table� for a system with n input
variables� contains �n� �� )�� marks� and one )!� mark�

�Variable limitation problems in Optimal Mask Analysis were exposed in Chapter ��




��� Management of Large Numbers of Variables �
�

The table that has just been constructed indicates how strong the binary

relations are between the inputs and the desired output� For the example
that we have been working on �	rst output variable of the linear system�� the
resulting tables for the overall and decomposed systems look as follows�

Input Optimal Structure Analysis
Variables Relation with Output y�

� � � ! � � � � � �
� � � � � � � ! � �
� � � � � � � ! � �
� � � � � � � � � !

 ! � � � � � � � �
� � � � ! � � � � �
� � � � ! � � � � �
� � � � � � � ! � �
� ! � � � � � � � �

Figure ���� Relation between input variables and output y� of the overall linear
system�

Input Optimal Structure Analysis
Variables Relation with Output y�

� � � � � � � ! � �
� � � � � � � � ! �
� � � � � � � ! � �
� � � � � � � ! � �

 ! � � � � � � � �
� � � ! � � � � � �
� � � � ! � � � � �
� � � � � ! � � � �
� ! � � � � � � � �

Figure ���� Relation between input variables and output y� of the decomposed
linear system�

The input variables with the strongest relations are the ones that should be
taken into account� whereas all other variables can be neglected� Thus� two

more heuristic rules are needed in order to choose these important variables�
They are�
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�� Those variables that have a )!� mark in the 	rst position on the right side

of the table should be considered 	rst� These are the input variables that
had the greatest reconstruction error values with respect to the output
variable in the list of binary relations�


� If there are not enough of these variables� those that have a )!� mark in
the second position on the right side of the table should be considered
next� and so on�

There are several criteria to stop the variable search� One of them is the
aforementioned complexity of the mask� Another one is that all variables with

a strong relation with the output should be considered� no matter how many
they are� where �strong� is de	ned as a function of the reconstruction error�
and is set by the user� Whatever approach is used� once the required number
of variables has been reached� all the remaining variables can be neglected�

From Figure ���� and following rules � and 
� there are 	ve possible optimal
structures with complexities from � to � for the overall linear system� They

are�

� u�� u�� y��

� u�� u�� u�� y��

� u�� u� u�� u�� y��

� u�� u� u�� u�� y��

� u�� u�� u�� u�� u�� y�� �����

Each of these relationships can be translated into a mask matrix� as was shown
in Mask ������ The complexity and depth of these masks are given by the
number of variables in the relation� and by the previously obtained slowest

time constant of the system� respectively� In the case of the linear example��

the mask depth was computed to be �� Thus� from Structures ������ the
following 	ve masks with complexities ranging from � to � are obtained for the

case of the overall linear system�

�
B�

tnx u� y� y� y�

t� �	t � � � �
t� 	t �� � � �

t �� !� � �

�
CA Q  ������ ���
�

�See Section ��� for details about the characterization of the linear system example and
how its optimal masks were obtained�
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tnx u� y� y� y�

t� �	t �� � � �
t� 	t �� � �� �
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�
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�
B�

tnx u� y� y� y�

t� �	t �� � � �
t� 	t �� �� �� �

t �
 !� � �

�
CA Q  ������ �����

The mask quality values� Q� were added to the right of each of the masks�
They were obtained using FIR as explained in Chapter ���

For the decomposed linear system� according to Figure ��� and following
the rules � and 
� there are four possible optimal structures with complexities

ranging from � to �� They are�

� u�� u�� y��

� u�� u�� u�� y��

� u�� u� u�� u�� y��

� u�� u�� u�� u�� u�� y�� ������

From Structures ������� the following four masks with complexities ranging

from � to � are obtained for the case of the decomposed linear system�

�In Chapter � the mask quality was denoted as QM � Equation �������
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�
B�

tnx u� y� y� y�
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t �� !� � �
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t� �	t � � � �

t� 	t �� �� �� ��
t �
 !� � �

�
CA Q  ������ ������

Let us now compare the tables� optimal structures� and masks obtained
for the overall linear system with those obtained for the decomposed linear
system�

From the tables of Figures ��� and ���� it can be seen that the main di�erence
relates to variables u� and u�� In the 	rst table� u� is an important variable�

whereas in the second table it is not� and instead� another variable u� appears�

This di�erence implies that only one of the optimal structures presented

in ����� coincides with one of the structures presented in ������� However�
it can also be noticed that the basic structure composed of u�� u�� u�� and
u� is common to both approaches� This fact means that� although the
decomposition of a system into several subsystem adds an error that may

be viewed as a loss of information� this error is not unacceptably large�

This statement is con	rmed when comparing the qualities of the resulting

masks obtained for the overall linear system� Masks ���
�� ������ ������ ������
and ������ with those obtained for the decomposed linear system� Masks �������
������� ������� and ������� The qualities of the masks belonging to the same

complexity levels are all quite similar� Hence the quality reduction due to
decomposition is small and therefore acceptable�
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Now that it has been shown that the decomposition of a system into several

subsystems can be used without introducing an unacceptably large error� the
following question can be raised� Will the optimal structures obtained by the
mixed RA�heuristic�recipes methodology be always translatable directly into

optimal masks

The answer depends on the number of selected variables� There are two

possibilities� On the one hand� if the number of selected variables does not
exceed the allowed complexity of the intended mask� then those variables
directly constitute suboptimal masks proposed by the mixed RA�heuristic�
recipes methodology� as is the case for Masks ���
� to ����� and ������ to

������� since a maximum complexity of 
 was originally computed for this
system� On the other hand� if the number of variables is greater than the
allowed complexity of the intended mask� as is the case for Masks ����� and
������� Optimal Mask Analysis should now be applied to the already reduced

system� in which the input variables proposed by the RA methodology are
chosen as potential inputs in the mask candidate matrix�

At this point� it is interesting to make a comparison between the results
obtained here by Optimal Structure Analysis and the heuristic recipes
constructed around it on the one side� and the results obtained by Optimal
Mask Analysis on the other� Moreover� it may also be of interest to make

a comparison against a typical Correlation Analysis to see if what has been
proposed in this chapter is reasonable�

	�� Optimal Structure and Correlation vs�

Optimal Mask Analyses

Optimal Structure and Correlation Analyses can be seen as alternatives to
FIR �Optimal Mask Analysis� for determining high�quality masks� To assert
this statement� a comparison should be performed between Optimal Structure
and Correlation Analyses on the one hand� and Optimal Mask Analysis on the

other�

To make these comparisons� let us apply Reconstruction Analysis and the

aforementioned recipes to some of the examples that have been presented
in previous chapters� namely� the linear system described in Chapter �� and
the aircraft model introduced in Chapter �� These short� and medium�sized

systems have been chosen because of two reasons� The 	rst one is that both
of them can be treated by FIR and RA methodologies� and the second one
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is that the results of applying Optimal Mask Analysis to both system have

already been presented in previous chapters�

The goal is to demonstrate� by means of the aforementioned examples�

that the relationships between inputs and outputs obtained with the mixed
RA�heuristic�recipes methodology proposed here are very similar to those
obtained with Optimal Mask Analysis� and somewhat better than those

obtained by Correlation Analysis� It can be assumed that if the RA
methodology gives accurate results when applied to short� and medium�sized
systems� it will also give accurate results when applied to large�scale systems�
i�e�� the methodological set of tools explained along this chapter constitutes a

powerful technique for the selection and causal grouping of variables in large�
scale systems�

The comparison against Correlation Analysis will be carried out to
demonstrate that a methodology based on non�linear relations� such as RA� is
better suited to perform a reasonable selection and grouping of variables than
one based on linear relations� such as Correlation Analysis� The correlations

will be computed by using appropriate Matlab �MathWorks� ����a� functions
as will be explained in the following section�

	���� Correlation Analysis

Correlation Analysis is a well known statistical technique used to discover
linear relationships �patterns� between variables� For this reason� only a brief

explanation will be given�

Let us suppose that we have the three inputs and one output raw data
matrix shown in Matrix ������ where each row is an observation� and each

column a variable� The �covariance� of a single variable is a number that
indicates its variance� For the entire matrix� the covariance is another matrix
the diagonal of which is a vector of variances for each column� or which is

saying the same� a vector of squared standard deviations�

The correlations between a set of variables is computed using the corrcoef

function of Matlab� The application of this function to the raw data matrix
returns a matrix of correlation coe�cients S whose �i� j� element is related to
the aforementioned covariance matrix C by�

S�i� j�  
C�i� j�q

C�i� i� C�j� j�
����
�
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The Matlab code to perform this operation for the 	rst output variable of the
linear example is the following�

�� mcan � � �� �� �	 �


�� �� �� ��

�� �� � � �

�� io � iomodel�raw�mcan�

�� coef � corrcoef�io�

�� coefabs � abs�coef�

�� �order�I� � sort�coefabs�

The mask candidate matrix mcan indicates to the FIR command iomodel�

how many times the original raw data matrix raw should be duplicated and
concatenated to the right shifted up by one row �the inclusion of time in RA��
Then� the Matlab command corrcoef computes the correlation coe�cients� the
absolute values of which are calculated by means of the Matlab command abs�

Finally� the coe�cients are sorted in increasing order by means of the sort
command� and are stored in the order matrix� The correspondence between
the sorted correlation coe�cients and the variables they belong to is stored in
the matrix I� In this way� each column of this matrix indicates� in a bottom�up

approach� how strong the relationships are between variables�

As in the cases of Optimal Structure and Optimal Mask Analyses� what is

important are the relationships between inputs and the desired output� The I
matrix contains those relationships� Let us revisit the example that we have
been dealing with all along this chapter� i�e�� the 	rst output variable of the
linear system presented in Chapter �� The I matrix of the y� output is�

I  

�
BBBBBBBBBBBBBBBBBBB�
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where the last row indicates that the maximum possible correlation of each
variable is with itself� Variables � to � are the input variables whereas
variable �� is the output variable� Thus� we are interested in those columns

in which variable �� appears at the lowermost positions� i�e�� variables 
� ��
and ��

In the preceding section� 	ve heuristic recipes were proposed in order to
interpret the resulting list of binary relations and corresponding reconstruction
errors obtained by the application of the Single Re	nement Algorithm� The
result of the recipes was the construction of the table 	lled with )�� and )!�

marks presented in Figure ��� that clearly indicates which� among all input
variables� had strong relationships with the desired output�

A similar table can be constructed here to interpret the results obtained
by Correlation Analysis� or saying the same� to interpret the I matrix� As a
matter of fact� the I matrix presented above� Matrix ������� can be converted
directly into a table by simply rotating it �� degrees clockwise� In this way�

the columns of the I matrix� except for the last one that corresponds to the
output variable and is thus eliminated� are now the rows of the table� In each
row� all input variables are substituted by a )�� mark� whereas the desired
output variable is substituted by a )!� mark� The resulting table is depicted

in Figure ����

Input Correlation Analysis
Variables Relation with Output y�

� � � � � � � ! � �
� � � � ! � � � � �
� � � � � � ! � � �
� � � � � � � ! � �

 � ! � � � � � � �
� � � � � � � ! � �
� � ! � � � � � � �
� � � � � � ! � � �
� ! � � � � � � � �

Figure ���� Correlation between input variables and output y� of the
decomposed linear system�

From this table� the following relationships can be extracted�
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� u�� y��

� u�� u�� y��

� u�� u�� y��

� u�� u�� u�� y��

� u�� u�� u�� u�� y�� ������

All of them can be translated into optimal masks as was done in the preceding

section�

In this way� equivalent relationships that can be compared between them

are obtained by the three methodologies �Optimal Structure� Optimal Mask�
and Correlation Analyses��

	���� The Linear System Example

Along this chapter� the 	rst output variable of the linear system presented in
Chapter � has been used as an example to demonstrate� step by step� 	rstly�
how Reconstruction Analysis and the heuristic rules constructed around it
work� and secondly� that the error introduced by the decomposition of the

overall system into subsystems that altogether include all possible binary
relations is very small and acceptable�

In this section� the three output variables of this example will be analyzed
using the mixed RA�heuristic�recipes methodology previously explained� and
their results will be compared with those obtained by Optimal Mask and

Correlation Analyses� In all cases� the resulting structures of the former of
these methodologies will correspond to the decomposed linear system�� and the
comparison will be carried out using the quality values of their corresponding
masks�

������
 Output Variable y�

For the y� output variable� the results obtained by the Optimal Structure
Analysis are summarized by the following list of relationships� Since there is

	The detailed results of applying RA to each of the subsystems �resulting from the
decomposed system� will not be presented due to space limitations� Instead� only the table
of relations between the input variables and the desired output will be shown�
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no need any more to translate these relationships into masks� let us include the

complexity and the quality of the mask that each of these relations represents�
The list is�

� u�� u�� y�� C  �� Q  ������

� u�� u�� u�� y�� C  �� Q  ����
�

� u�� u� u�� u�� y�� C  
� Q  ������

� u�� u�� u�� u�� u�� y�� C  �� Q  ������ ������

where the relationships are those from Structures ������� and the qualities
are those from Masks ������� ������� ������� and ������� Notice that the two

	rst structures have a high quality value� whereas the third structure shows a
much lower value� and the fourth one exhibits an even more dramatic quality
drop� It seems that� for the Optimal Structure Analysis� the complexity level �

coincides with the in�ection point of the quality function� and thus� the best
possible mask is that of complexity �� As will be immediately shown� this
conclusion is indeed correct�

Following the same way of expressing relationships and qualities that
has been established above� let us include� for comparison purposes� those
relationships obtained by Optimal Mask Analysis for all complexity levels

�from � to ��� They were�

� u�� y�� C  �� Q  ������

� u�� u�� y�� C  �� Q  ������

� u�� u�� u�� y�� C  �� Q  ������

� u�� u�� u�� u�� y�� C  
� Q  ���
��

� u�� u�� u�� u�� u�� y�� C  �� Q  ������ ������

Notice that these relationships include one more than those presented in �������

since the Optimal Structure Analysis did not obtain any relationship of
complexity �� As in the previous case� the best mask is the one of complexity ��
Notice that� in spite of having a higher quality value� relationships of

complexity levels � and � of this set are not far apart from relationships of
the same complexity levels of the previous set� As a matter of fact� one of
them is exactly the same�

Finally� and once more for comparison purposes� let us include the
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results previously obtained by the Correlation Analysis and presented in

Structures ������� they were�

� u�� y�� C  �� Q  ������

� u�� u�� y�� C  �� Q  ������

� u�� u�� y�� C  �� Q  ������

� u�� u�� u�� y�� C  �� Q  ��
���

� u�� u�� u�� u�� y�� C  
� Q  ������ ������

In this case� there are two di�erent relationships of complexity �� Contrary
to the previous two cases� Correlation Analysis concludes that the mask of
maximum quality is of complexity �� Beside from that� and beside from
	nding masks with lower quality values in general� Correlation Analysis

managed to obtain two relatively good masks� namely those of complexity ��
This acceptable performance of the Correlation Analysis is due to the linear
characteristics of the example�

Making a comparison as a whole between the four optimal masks obtained
by the Optimal Structure Analysis of the RA methodology� the 	ve optimal
masks previously obtained by the Optimal Mask Analysis of the FIR

methodology� and the 	ve masks obtained by the Correlation Analysis� it
can be said that the Optimal Structure Analysis delivered better results than
those obtained by Correlation Analysis� not only because the quality values
are higher in the former than in the latter� but because the former found in

general masks that are closer to the truly optimal masks found by FIR than
the latter�

The maximum complexity level for the linear system example had been
set to 
� thus no masks with complexity � were allowed� The results have
demonstrated clearly the dependence between the quality of a mask and

the complexity��� and have shown that limiting the search to a maximum
complexity level of 
 was indeed justi	ed�

������� Output Variable y�

Let us see what happens when analyzing the second output variable� y�� The
system has been decomposed in exactly the same manner as shown for the case

�
In Chapter �� it has been shown that the quality of a mask rises with the complexity
level until a certain limit� after which the quality decays rapidly�
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of the 	rst output variable y�� Once more� the mixed RA�heuristic�recipes is

applied �� times� one for each decomposed subsystem� and once more the
reconstruction error of those binary relations that appear more than once
are averaged� The resulting list of binary relations and their corresponding

reconstruction errors for the output variable y� of the decomposed linear system
example is���

STATISTICS ON BINARY RELATIONS�

�������������������������������

ERROR BINARY RELATION ERROR BINARY RELATION

STRENGTH OMITTED STRENGTH OMITTED

�������� ��������������� �������� ���������������

�������� � �� � �������
 � 	� �

�������� � �� � ������		 � 
� �

�����
�� � 	� � �������� � �� ��

���
���
 � 	� � �������� � �� ��

�������� � �� � ���	���� � 
� �

�����	
� � �� � ���	���� � �� ��

������
� � 
� � �������� � �� �

�������� � �� � �������� � �� �

�����	�� � �� 
 �����
�
 � 	� �

�������� � �� �� �����
�� � �� 	

����	��� � 	� �� �������� � �� 	

�������� � �� � ��	����� � �� �

�������� � �� �� ��	�	��� � �� �

�������	 � �� � ��	���		 � 	� 


�������
 � �� � ��	����	 � 	� �

���	���� � �� � ��	����� � 
� �

���
���� � 
� �� ��	����� � �� �

���
���� � �� � ��		���� � �� 


�������� � 
� � ��	����� � �� �

����
��� � �� � ��	��		� � �� �

�������	 � �� � ��	�	�	� � �� �

�������� � �� �� ��
	���� � �� �

��
��
�� � �� ��

From this list� and following the recipes presented in the previous section� the

table that graphically represents the relationships between the input variables
and the y� output variable can be constructed� This table is depicted in
Figure ����

From this table� 	ve relationships can be extracted� They are�

��It has already been said that the application of the mixed RA�heuristic�recipes for
output variables y� and y� will only be shown for the case of the decomposed subsystem�
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Input Optimal Structure Analysis
Variables Relation with Output y�

� � � � � � � ! � �
� � � � � � � � ! �
� � � � � � � ! � �
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� ! � � � � � � � �

Figure ���� Relation between input variables and output y� of the decomposed
linear system�

� u�� y�� C  �� Q  ������

� u�� u�� y�� C  �� Q  ������

� u�� u�� u�� y�� C  �� Q  ���
��

� u�� u�� u�� y�� C  �� Q  ������

� u�� u�� u�� u�� y�� C  
� Q  ������ ������

Notice that� this time around� Optimal Structure Analysis did 	nd a
relationship of complexity �� and two relationships of complexity �� but did
not 	nd a relationship of complexity �� Once more the quality function seems
to have an in�ection point at complexity level �� as the suboptimal structures

of this level are the ones with the highest quality values� Again� this is the
case for the true optimal masks as well�

The optimal masks obtained by the Optimal Mask Analysis for each
complexity level were�

� u�� y�� C  �� Q  ������

� u�� u�� y�� C  �� Q  ����
�

� u�� u�� u�� y�� C  �� Q  ������

� u�� u�� u�� u�� y�� C  
� Q  ������

� u�� u�� u�� u�� u�� y�� C  �� Q  ������ ������
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It can be noticed that the quality values of the optimal masks of complexities �

and 
 are almost the same� which means that the in�ection point of the quality
function is near the complexity level 
� The fact that the 	rst relation of this set
�complexity �� coincides with the 	rst relation of the previous set is irrelevant�

because their quality value of ������ is far away from the maximum quality
value of ������� What is really important is that� at complexity levels � and ��
Optimal Structure Analysis obtained very good suboptimal relations� and that
the quality function behaved in very similar ways in both cases�

Finally� and once more for comparison purposes� let us include the results
obtained from the Correlation Analysis�

� u�� y�� C  �� Q  ������

� u�� u�� y�� C  �� Q  ������

� u�� u�� u�� y�� C  �� Q  ������

� u�� u�� u�� y�� C  �� Q  ������

� u�� u�� u�� y�� C  �� Q  ���
��

� u�� u�� u�� u� u�� y�� C  �� Q  ������ ������

and observe that there are three di�erent relations of complexity � and none
of complexity 
� One of the level � relations coincides with the optimal

mask� and the other two are good suboptimal approximations� Another good
suboptimal mask is the one of complexity �� without mentioning that the one
of complexity � coincides with the optimal mask at that level�

In the comparison as a whole between the three sets of relationships�
Correlation Analysis gives here slightly better results than those obtained

by Optimal Structure Analysis� However� the performance of the latter
methodology was quite acceptable as well�

������	 Output Variable y�

For the third output variable of this decomposed linear system example� y��
the list of binary relations and their corresponding errors is�
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STATISTICS ON BINARY RELATIONS�
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ERROR BINARY RELATION ERROR BINARY RELATION

STRENGTH OMITTED STRENGTH OMITTED
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The table that results from the applications of the heuristic recipes is depicted
in Figure ��
�

The following four optimal structures can be read out of this table�

� u�� u�� y�� C  �� Q  ��
���

� u�� u�� u�� y�� C  �� Q  �����


� u�� u�� u�� y�� C  �� Q  ������

� u�� u�� u�� u�� y�� C  
� Q  ������ ������

There are no optimal structures for complexity levels � and �� Notice the

low quality of all structures but the second� which is a good suboptimal
approximation to the optimal mask of that level�

As in the case of the previous two output variables� the masks obtained by
the Optimal Mask Analysis and the correlations obtained by the Correlation
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Input Optimal Structure Analysis
Variables Relation with Output y�
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� ! � � � � � � � �

Figure ��
� Relation between input variables and output y� of the decomposed
linear system�

Analysis will be included� The optimal masks found for each complexity level
were�

� u�� y�� C  �� Q  ������

� u�� u�� y�� C  �� Q  ������

� u�� u�� u�� y�� C  �� Q  �����


� u�� u�� u�� u�� y�� C  
� Q  ������

� u�� u�� u�� u�� u�� y�� C  �� Q  ������ ����
�

The quality values of the optimal masks are very similar to those obtained for
the previous output �y��� and consequently� the quality function is also very
similar�

Finally� the correlations and their qualities are�

� u�� y�� C  �� Q  ������

� u�� u�� y�� C  �� Q  ��
���

� u�� u�� y�� C  �� Q  ��
���

� u�� u�� u�� y�� C  �� Q  ������

� u�� u�� u�� u�� y�� C  
� Q  ������ ������

The quality values are far from those of the optimal masks� None of these
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relationships is a good suboptimal approximation� and it seems clear that� for

this case� Correlation Analysis performs rather poorly�

The comparison as a whole of the three sets of relationships shows that

this third output is much more di�cult to be characterized than the other
two� Whereas Optimal Mask Analysis is capable of 	nding high quality
optimal masks� Optimal Structure Analysis is capable of 	nding just one good

suboptimal approximation� and Correlation Analysis is not capable of 	nding
any meaningful masks�

Taking into account the results obtained for the three output variables� and

in particular the relations proposed for complexity level �� which is the level
where all optimal masks were found� Optimal Structure Analysis showed a
very good performance in two cases� and a decent performance in the third

one� whereas Correlation Analysis exhibited one good� one decent� and one
poor performance�

	���� The Aircraft Example

As it was done with the linear system� the B� aircraft model will be used to

verify that RA and the heuristic recipes proposed in this chapter work 	ne�
To this end� what was called in Chapter � the shaken �ight raw data matrix
is used as the original input data for model B�� This data is already recoded

using the same number of qualitative classes and the same landmarks as in
Section �������� As a matter of fact� these are exactly the same data that were
used to obtain the qualitative model of the shaken �ight� Thus� the same mask
depth can be considered�

The shaken �ight raw data matrix should be reorganized in order for the
RA methodology to recognize its temporal causality� Thus� as was explained

in Section ��� and done in the previous example� also this matrix should be
triplicated� Thus� a mask with �� input variables and � output variables ��

columns� will be obtained�

Then� as it was done for the 	rst output variable of the linear system
example� the mixed RA�heuristic�recipes methodology will be applied to the
decomposed aircraft system example in order to demonstrate once more that

no signi	cant error is introduced with such a procedure�
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����	�
 Output Variable Lift

This example� as the preceding one� can be managed by the RA methodology

without needing any decomposition� but the goal is that of demonstrating that
the methodology works also on a medium�sized decomposed system�

To this end� the �
 variables should be grouped together into subsets� in
such a way that all possible binary combinations are included� The 	nal e�ects
of repeated binary relations will be averaged� As in the previous example� each
subset must be composed of several inputs and one output� For the case of

the 	rst output variable Lift� the way in which variables have been grouped
�this choice is by no means unique� is�

� u�� u�� u�� u�� y� ��
� u�� u�� u�� u�� y� ��
� u�� u��� u��� u��� y� ��
� u�� u�� u�� u�� y� ��
� u�� u�� u�� u��� y� ��
� u�� u�� u�� u��� y� ��
� u�� u�� u�� u�� y� ��
� u�� u�� u�� u��� y� ��
� u�� u�� u�� u��� y� ��
� u�� u�� u�� u�� y� ��
� u�� u�� u�� u��� y� ��
� u�� u�� u�� u��� y� ��
� u�� u�� u�� u��� y� ��
� u�� u�� u��� u��� y� ��
� u�� u�� u��� u��� y� ��

with the same subsets being used for output variables y� �Drag� and y� �the

�ight path angle ��� Keeping the number of variables in each subset low� the
computation of the optimal structure for each subset is easier� but the number
of subsets is increased� On the other hand� letting the number of variables
in each subset be a little larger� the number of subsets is reduced� but the

computation to obtain the optimal structure of each subset is increased�

Once more� the Single Re	nement algorithm of the Optimal Structure

Analysis of the Reconstruction Analysis methodology is applied to each of
these subsets� and the corresponding reconstruction errors are obtained for
each of its binary relations� The results of the 	fteen subsystems are�
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where variables � to �� represent inputs� and variable �� stands for the Lift
output� Some of these binary relations appear twice or more times� and
consequently� their corresponding reconstructions errors should be averaged�

At the end� a list is con	gured with the results obtained for all the variable
subsets� which means that all possible binary relations and their corresponding
reconstruction errors are in the list�

The list that includes all possible binary relations and their reconstruction
errors is� for the 	rst output variable� Lift�
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From this list� the table that relates the twelve input variables with the output
variable y� that is currently being considered can be constructed� This table
is depicted in Figure ����

Input Optimal Structure Analysis
Variables Relation with Output Lift

� ! � � � � � � � � � � �
� � � � ! � � � � � � � �
� � � � � ! � � � � � � �
� � � � � � ! � � � � � �

 � � � ! � � � � � � � �
� ! � � � � � � � � � � �
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� � � � � ! � � � � � � �
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�� ! � � � � � � � � � � �
�� � � � � � ! � � � � � �
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Figure ���� Relation between input variables and output Lift of the
decomposed B� aircraft system�

Considering the 	rst two qualitative columns of this table� the two following
structures of complexities 
 and � can be proposed�
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� u�� u�� u�� u��� y�� C  
� Q  ������

� u�� u�� u�� u�� u��� y�� C  �� Q  ������ ������

As in the case of the linear example� let us revisit� for the 	rst output variable
y�� the optimal masks of all complexity levels obtained for the B� aircraft

model in Chapter �� They were�

� u�� y�� C  �� Q  ���
��

� u�� u�� y�� C  �� Q  ������

� u�� u�� u�� y�� C  �� Q  ������

� u�� u�� u�� u�� y�� C  
� Q  ����
�

� u�� u�� u�� u�� u�� y�� C  �� Q  ��
��� ������

As can be seen� the two relationships obtained by Optimal Structure Analysis�
namely Relations ������� are splendid approximations to the real optimalmasks

of complexities 
 and �� Notice that� this time around� the maximum of
the quality function seems to be at complexity level �� Notice also that� in
comparison with the linear system example previously explained� the quality
values are much lower�

The Correlation Analysis between all the inputs and the y� output gives the
following four relationships�

� u�� u�� y�� C  �� Q  ������

� u�� u�� u��� y�� C  �� Q  ������

� u�� u�� u�� u��� y�� C  
� Q  ������

� u�� u�� u�� u�� u��� y�� C  �� Q  ������ ������

In this case� Correlation Analysis obtained very good results� They are not as
good as those obtained by Optimal Structure Analysis� but they are certainly

acceptable�
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����	�� Output Variable Drag

Following the same standard procedure for the second output variable Drag
of the B� aircraft model� the following binary relations list is obtained���
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from which the table of Figure ��� can be obtained�

Variables Relation with Output
� ! � � � � � � � � � � �
� � ! � � � � � � � � � �
� � � � ! � � � � � � � �
� � � � � � ! � � � � � �

 � � � � ! � � � � � � �
� ! � � � � � � � � � � �
� ! � � � � � � � � � � �
� � � � ! � � � � � � � �
� � � � � � ! � � � � � �
�� � ! � � � � � � � � � �
�� � � � � ! � � � � � � �
�� � � � � ! � � � � � � �

Figure ���� Relation between input variables and output Drag of the
decomposed B� aircraft system�

Four optimal structures of complexities � to � can be deduced from this table�
They are�

� u�� u�� u�� y�� C  �� Q  ���

�

� u�� u�� u�� u�� y�� C  
� Q  ������

� u�� u�� u�� u��� y�� C  
� Q  ������

� u�� u�� u�� u�� u��� y�� C  �� Q  ������ ������

The structure of complexity � coincides with the optimal mask at that level�
and the 	rst structure of complexity 
 as well as the one with complexity �
are good approximations to the optimal masks at those levels� The optimal
masks found for this output were�

� u�� y�� C  �� Q  ������
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� u�� u�� y�� C  �� Q  ������

� u�� u�� u�� y�� C  �� Q  ���

�

� u�� u�� u�� u�� y�� C  
� Q  ����
�

� u�� u�� u�� u�� u�� y�� C  �� Q  ������ ������

Once more� the mask of highest quality is that of complexity �� Finally� the
structures obtained by Correlation Analysis are�

� u�� u�� y�� C  �� Q  ������

� u�� u�� u�� y�� C  �� Q  ���

�

� u�� u�� u�� y�� C  �� Q  ������

� u�� u�� u�� u�� y�� C  
� Q  ������

� u�� u�� u�� u�� u��� y�� C  �� Q  ������ ������

Except for the 	rst relationship of complexity � that coincides with the optimal
mask at that level� all other relationships exhibit low quality values that are
far from the quality values of the optimal masks� For this output variable�

it is clear that Optimal Structure Analysis exhibited a considerably better
performance than Correlation Analysis�

����	�	 Output Variable � �Flight Path Angle�

Finally� let us take a look at the third output variable� namely y� ��ight path
angle�� Following the same procedure as for the other two variables� the list of

binary relationships and their corresponding reconstruction errors are�

STATISTICS ON BINARY RELATIONS�

�������������������������������

ERROR BINARY RELATION ERROR BINARY RELATION

STRENGTH OMITTED STRENGTH OMITTED
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Applying the 	rst three heuristic recipes to the binary relationships in this list�

the table of Figure ��� can be constructed�

from which four optimal structures of complexities � to � can be proposed�

� u�� u�� u�� y�� C  �� Q  ������

� u�� u�� u�� u�� y�� C  
� Q  ������

� u�� u�� u�� u��� y�� C  
� Q  ������

� u�� u�� u�� u�� u��� y�� C  �� Q  ������ ������
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Variables Relation with Output
� � � � � ! � � � � � � �
� ! � � � � � � � � � � �
� � ! � � � � � � � � � �
� � � � ! � � � � � � � �

 � � � ! � � � � � � � �
� ! � � � � � � � � � � �
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� � � � ! � � � � � � � �
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�� � � � ! � � � � � � � �
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Figure ���� Relation between input variables and output � �Flight Path Angle�
of the decomposed B� aircraft system�

The optimal masks obtained for this third output were�

� u�� y�� C  �� Q  ������

� u�� u��� y�� C  �� Q  ������

� u�� u�� u�� y�� C  �� Q  ������

� u�� u�� u�� u��� y�� C  
� Q  ������

� u�� u�� u�� u�� u�� y�� C  �� Q  ������ ������

Notice that the two last relationships �complexities 
 and �� obtained by

Optimal Structure Analysis are very good approximations to the optimal
masks at those levels� Let us take a look at the relationships obtained by
Correlation Analysis� They are�

� u�� u�� y�� C  �� Q  �����


� u�� u�� u��� y�� C  �� Q  �����


� u�� u�� u�� u��� y�� C  
� Q  ������

� u�� u�� u��� u��� y�� C  
� Q  ������

� u�� u�� u�� u��� u��� y�� C  �� Q  ����
� ����
�



��� Chapter 
� Selection and Causal Grouping of Variables Using RA

As in the case of the previous output variable� the quality of the relationships
found by Correlation Analysis is considerably lower than that of the
relationships found by the other two methods�

Making a comparison as a whole� it seems clear that� except for the 	rst
output variable� Correlation Analysis showed a poor performance� In contrast�

Optimal Structure Analysis always proposed good approximations to the real
optimal masks�

	�� Conclusions

The satisfactory comparison between Optimal Structure Analysis on the one
hand� and Optimal Mask and Correlation Analyses on the other� in the two
presented examples� give us con	dence that the methodological set of tools
presented in this chapter can be applied to a large�scale system as well� We

should expect as good results as those obtained with the short and medium�
sized systems presented here� since the error introduced by the decomposition
of an overall system into subsystems has been shown to be acceptably small�

Reconstruction Analysis� and the heuristic recipes that have been
constructed around it� have been shown to constitute a powerful tool for the

selection and causal grouping of variables�

Notice that the computational complexity of the Single Re	nement
algorithm that determines the binary strengths between all pairs of variables

is proportional to n�� where n denotes the number of variables in the system�
Thus� even in a large�scale system� such as the nuclear reactor that will be
presented in Chapter �� with possibly as many as 
�� variables� 	nding all

binary strengths calls for roughly ��
���� structure evaluations� which is a
very large� but not unacceptably large� number�



Chapter �

Qualitative Fault Monitoring of

a BWR Nuclear Reactor

��� Introduction

The tools and algorithms that have been presented along this thesis were
all guided by the basic goal of proposing a methodology that is capable of
safely and reliably fault�monitoring Large�Scale physical systems� Although

quantitative fault monitoring schemes have been reported in the literature
that perform rather well under certain conditions and for certain types of
systems� our emphasis and focus have been on the development of qualitative

approaches that mimic somehow the way in which human operators would
approach the fault monitoring problem� in the hope to come up with schemes
that are simpler and more robust when dealing with truly large�scale physical
systems�

This chapter makes use of all the tools that were developed and described
in previous chapters� that is� the Fuzzy Inductive Reasoning methodology

�Chapter ��� the qualitative Fault Monitoring System �Chapter ��� the
Reconstruction Analysis methodology �Chapter 
�� and the heuristic recipes
for the selection and causal grouping of variables �Chapter ���

This chapter can be considered in some way an extension to Chapter ��

��
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The same algorithms for building a qualitative Fault Monitoring System will

be used� and the di�erent aspects of fault monitoring� i�e�� detection� isolation�
characterization� diagnosis� and analysis� will be carried out in the same way�
The big di�erence stems from the way in which the variables are selected

and the subsystems identi	ed� Whereas in Chapter � these selection and
identi	cation processes were performed manually for small�sized systems� and
by means of Optimal Mask Analysis for medium�sized systems� here� they
will be performed by the Optimal Structure re	nement algorithms of the

Reconstruction Analysis methodology� In this way� the number of variables
of a quantitative Large�Scale System is signi	cantly reduced� and its structure
is translated to an equivalent hierarchy of qualitative subsystems�

The variable reduction methodology is one of the most relevant aspects of
the tools and algorithms developed in this thesis� We are not just trying to
deduce which are the most important variables� but to reduce their number�

in order to counter the overload problem�

Although mentioned brie�y in the introductory chapter� the adverse e�ects

of the control system architecture on the fault monitoring capabilities have
not been met in practice until now� In this chapter� they will become very
clear� The controllers that are responsible for plant safety prevent us from
exciting the system properly in order to obtain decent data for the qualitative

models� the controllers that are responsible for plant stability and disturbance
suppression will attempt to 	lter out the small perturbances that the safety
controllers allow us to apply to the system� and the feedback controllers that
are responsible for tracking control �the model following controllers� will try

their hardest to make us identify them rather than the plant they control�

In the 	rst part of this chapter� a combined Fuzzy Inductive Reasoning

and Reconstruction Analysis �FIR�RA� methodology is proposed� and its
advantages for fault detection and troubleshooting in large�scale systems are
discussed� In the second part of the chapter� the problem of human overload in

monitoring the many sensors� controls� and actuators of a complex engineering
large�scale system is addressed� A hierarchical automated Fault Monitoring
System based on the combined Fuzzy Inductive Reasoning�Reconstruction
Analysis methodology� previously explained� for high�level decision making

is presented� The FMS will operate in parallel with the traditional channels�
It will have no e�ect other than being able to display its 	ndings to the human
operators� and to point out potential problems and their perceived causes�
The prospects as well as di�culties in realizing such a monitoring system are

analyzed by discussing a prototypical implementation of such a system on a
sophisticated quantitative large�scale model of a nuclear boiling water reactor
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under operational transient conditions�

��� Combined FIR � RA Methodology

In the previous chapter� Reconstruction Analysis �RA� has been introduced as
an alternative tool to Fuzzy Inductive Reasoning �FIR� for building qualitative
models� i�e�� for identifying high�quality masks� The main advantage of this
approach has been that RA can be performed in parts� which enables us to

deal with large�scale systems�

In this chapter� the role of RA will be reduced to one of determining sets of

relevant variables� rather than using it to 	nd optimal masks directly� Once a
su�ciently small number of relevant variables has been identi	ed� FIR will be
used to determine the optimal mask relating these variables to each other�

Both methodologies� FIR and RA� are now implemented in SAPS�II� a
Fortran�coded system with interfaces to Matlab �MathWorks� ������ CTRL�C
�SCT� ���
�� and ACSL �MGA� ������

In the light of what has been said along this thesis� the combination of
FIR and RA can best be understood as a partly heuristic methodology for

qualitative modeling and simulation of continuous�time processes� The main
capabilities of this combined methodology are listed below and can be seen in
Figure ���� They are�

� Conversion of quantitative information into qualitative triples that
include class values� membership function values� and side values� the
conversion is done in such a way that the quantitative information can be

regenerated from the qualitative triples without any loss of information�

� Determination of signi	cant sets of qualitative variables that can be
treated as subsystems� the subsystems are found by means of temporal

causality analysis and re	nement procedures�

� Automatic generation of the best possible qualitative models� i�e�� those
with the best forecasting capabilities� for each of the previously identi	ed

subsystems�

� Construction of a hierarchy of qualitative models whereby each node
represents an inductive reasoner� i�e�� construction of a hierarchy of
inductive reasoners�
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MEASURED  DATA
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  and  Simulation

D  Y  N  A  M   I  C        C  O  M   P  A  R   I  S  O  N
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MASK  1

FORECAST

F A U L T   M O N I T O R I N G
S T R A T E G Y
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. . .

RECONSTRUCTION
ANALYSIS

Figure ���� Combined FIR�RA methodology

� Qualitative simulation through inductive reasoning using all the
previously found qualitative models in the hierarchy�

� Recognition of the structural state that the system is in at any point in
time�

� Regeneration of quantitative results from qualitative results� if so desired�
that can subsequently be used by either human operators or automatic

controllers�

The capabilities of the mixed methodology as they relate to fault detection
are�

� Reduction of a quantitative large�scale system to an equivalent hierarchy
of qualitative subsystems�

� Comparison at sampling time between the qualitative results obtained
from the inductive reasoners and the actual quantitative values obtained
from the real physical system or a numerical model thereof to detect
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discrepancies that would indicate some sort of misbehavior having

occurred�

� Inspection of the upper levels of the reasoning hierarchy to hypothesize
about which subsystem might have been responsible for producing the

encountered behavioral anomaly�

� Characterization of detected misbehaviors in such a way that they can
be incorporated into a library of anomalous behaviors�

� Characterization and learning of the patterns that produced the detected
misbehavior in such a way that they can be easily identi	ed and
prevented�

� Diagnosis of the possible causes of observed anomalous behaviors in
such a way that they can also be incorporated in a library of observed
faults� The idea is to be able to recognize anomalies �once they have
been properly characterized and stored away in the library of anomalous
behaviors� easily identi	ed as soon as they occur again� and relate them

to their most likely causes as they are already stored in the library of
faults�

��� Control� Monitoring� and Safety of

Nuclear Reactors

It is not our intention to provide full details about the operation of commercial
nuclear reactors� However� some basic concepts should be explained in order to
introduce the control and safety problems related to the normal and abnormal
operation of such reactors� and the way in which faults can be prevented and

mitigated by means of Fault Monitoring Systems�

A nuclear reactor consists of a core� containing the fuel� normally uranium�

in which heat is released from the 	ssion reactions of the uranium atoms�
mainly as a result of the absorption of slow neutrons� Inside the core� there is
also a moderator� the function of which is that of slowing down the high�energy
neutrons liberated in the 	ssion reaction� mainly by elastic scattering� The best

moderators are materials consisting of elements of low mass number such as
ordinary water� heavy water� and graphite� Surrounding the core there is a
re�ector� the purpose of which is to decrease the loss of neutrons by scattering

back many of those that have escaped� Generally� the same material used as
moderator serves also as re�ector�
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The processes that take place in the core are the following� a low�energy

neutron may be absorbed by a uranium atom� If this happens� that atom will
su�er a 	ssion reaction producing two new atoms of other elements� two or
three high�energy neutrons� and pure energy� If at least one of the neutrons

produced can be moderated and then absorbed by another uranium atom�
then another 	ssion will be produced� and so on� Thus� the 	ssion reaction is
autosustained� and the reactor is said to have become �critical�� The neutron�
multiplying property is called reactivity�

A coolant circulating through the core is needed to extract the generated
heat and transfer it to a steam generator from which steam can then be used in

a turbine�generator pair to produce electricity� In most reactors� the coolant
serves also as moderator and consists of ordinary water� There exist two
di�erent reactor types that fall into this category� a� those that use highly
pressurized liquid water where boiling conditions are not allowed directly in

the core� but take place only in an external low�pressure steam generator�
these are called Pressurized Water Reactors �PWRs�� and b� those that use
low pressure water where boiling conditions are allowed directly in the core�
in which case there is no need for the external steam generator component�

since the core itself is the steam generator� these are called Boiling Water
Reactors �BWRs�� The reactor model that will be used here is of this latter
type� These BWR reactors needs forced coolant recirculation to have stable

operating conditions� As can be seen in Figure ���� two recirculation circuits
and several jet pumps provide this condition�

In Figure ���� a simpli	ed diagram of the nuclear and non�nuclear

components of a nuclear power plant equipped with a BWR reactor are shown�
As in any power plant� the heat produced by fuel burn�up is used to boil water
and produce high pressure and speed steam� The steam is used to propel the

turbine that in turn moves the electric generator� The resulting low pressure
steam is then condensated and pumped once more into the reactor�

The unique feature of a nuclear power plant that is distinct from other power
generating facilities� is the presence of large amounts of radioactive materials�
primarily the 	ssion products� Thus� the central safety problem in the design
and operation of a nuclear plant is to assure that these radioactive elements

will remain safely con	ned at all times� no matter what kind of expected or
unexpected conditions are present�

The radioactive elements are con	ned inside the fuel bars at the core of
the nuclear reactor� The core itself is con	ned inside the reactor vessel� and
this one in turn is con	ned inside a primary containment building� Finally�
this building is also con	ned inside a secondary containment building� The



���� Control� Monitoring� and Safety of Nuclear Reactors ���

TURBINE GENERATOR

COOLING
WATER

EXHAUST
STEAM

THERMAL
DISCHARGE

CONDENSER

REACTOR
VESSEL

PRIMARY
CONTAINMENT

SECONDARY
CONTAINMENT

RECIRCULATION
CIRCUIT

STEAM

FEEDWATER

Figure ���� Simpli	ed diagram of a BWR nuclear power plant�

only way in which radioactive materials can scape from the core is due to high
temperature� i�e�� a loss of coolant� in such a way that the hole core melts
down forming a non�refrigerable geometry� The whole reactor and the whole
plant are designed on the basis of this worst accident� 	rstly� preventing it

from happening� and secondly� providing features to mitigate it once it has
happened� For these reasons� the control of a nuclear power plant must be
precise� reliable� robust� and safe�

The most important control system of the reactor is the Reactivity Control�
It works in the following way� The rate of heat generation is proportional to
the nuclear 	ssion rate and is determined by the neutron density� Control�

including startup� operation at any desired power level� and shutdown� is thus
achieved by varying the neutron density in the core� This is accomplished
by moving control rods of a material that absorbs neutrons readily �boron or
cadmium�� Insertion of control rods into the core results in a decrease in the

reactivity and consequently� in a decrease of the neutron density� Hence� the
reactor power level is reduced� Withdrawal of the control rods� on the other
hand� is accompanied by an increase in the reactivity� and thus in the neutron

density and power level� Thus� reactivity turns out to be the main control
variable� and its control turns out to be the reactor stability control �Hetrick�
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������

Reactivity can be a�ected in positive or negative ways by several factors� the
most important of which are� neutron �ux� coolant temperature� moderator

boiling� 	ssion products poisoning� recirculation �ow rate� and control rods
�Duderstadt and Hamilton� ������ Some of them are produced as a result of
the reactor operation itself and the fuel burn�up� while others are induced by

the operators in order to change the operating conditions� or by malfunctions
in one or several reactor components�

In the normal operation of a nuclear reactor� the functions of the control

systems may be divided broadly into three phases� startup� power operation�
and shutdown� There are three di�erent startup conditions� from �cold�
condition� with a low pressure and low temperature reactor� from �hot

standby� condition� with a high pressure and temperature reactor� and from
�poisoned� condition� In either case� the control of the reactor requires careful
attention during the startup phase� in order to prevent the possibility of an
accident due to a power excursion� i�e�� a tremendous increase in the reactivity

of a localized core zone� Startup is accomplished by a slow withdrawal of the
control rods� and by a slow increase of the recirculation �ow�

During power operation� the required power level is normally maintained
essentially constant by automatic controllers� An error signal� representing the
di�erence between a particular measured operating parameter and the desired
value of that parameter� is fed to a servomechanism� which then causes the

necessary actions� e�g�� control rod motion and�or change in recirculation �ow
rate� to bring the error back to zero�

Except for emergency situations� the reactor is shutdown by the slow
insertion of the control rods and through recirculation pump slowdown� In
principle� rapid shutdown is possible� but it is usually avoided in order
to decrease mechanical stress that would result from the drastic associated

temperature gradients� As in the startup phase� there are three di�erent
shutdown conditions� to hot standby� to cool condition� and to minimum
allowable power condition�

All power reactors utilize both human and automatic control systems during
startup� normal operation� shutdown� and emergencies� The conditions under
which one control mode is preferred over the other have been explained in

Chapter �� and depend on the circumstances� In Figure ���� both an operator
loop and an automatic loop form part of the reactor control system� A third
loop corresponding to the Reactor Protection System has been introduced

as the ultimate automatic protection that overrides all other human and�or
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automatic controllers�

Several of the reactor variables are associated� both in reality and in the
quantitative reactor model used in this thesis� with built�in control loops and
safety systems� Among them� the most important ones are �Glasstone and
Sesonske� ������

� Pressure Control� This control system continuously compares the

amount of steam leaving the vessel with the amount of feedwater entering
the vessel� It is also in�uenced by the turbine and steam line pressures�

� Feedwater Control� It is based on a comparison between the desired

and actual water levels inside the vessel� It also takes into account the
feedwater temperature�

� Power Control� This control accounts for small variations in reactivity�
and consequently in the desired output power level� by changing the

recirculation �ow rate�

� Reactivity Control� As has been previously explained� the reactivity
control serves to account for small variations in the neutron �ux of the

core� and consequently in the desired output power level� by adjusting
the depth of insertion of the control rods�

� Reactor Protection System� It is not a control system but a

protection system� in charge of the ultimate defense of the reactor� i�e��
Emergency Scram� Emergency Core Cooling Systems� etc�
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All of the above functions are preformed by automatic controllers� However�

simulator sessions and nuclear past accidents have demonstrated that one of
the most critical and unreliable factors in the control and safety of a nuclear
reactor relates to the operators� override capabilities� i�e�� their capabilities of

interfering with the automatic control systems �Glasstone and Sesonske� ������
This process is highly a�ected by the information overload problem stated
and explained in Chapters �� �� and �� It could indeed be argued that in no
other engineering activity human operators are as much a�ected by overload

problems� as in the case of the control room of a nuclear power plant� specially
under emergency conditions�

Since operators are in charge of unexpected and emergency conditions� all
modern nuclear power plants include various features� beside from the regular
instrumentation and controls� to support the operator crew in this endeavor�
Most of these features are related to Fault Monitoring Systems requiring either

quantitative or qualitative simulation�

Quantitative simulation of nuclear power plants is widely used� There exist

not only static simulation codes for nuclear fuel analysis� but also complex
dynamic codes for licensing� evaluation� and validation of operational and
non�operational transients� as well as for the evaluation of severe emergencies�
such as the so�called design�based accident� the worst�case scenario �loss of

coolant�� for the prevention of which all reactor safety systems are primarily
designed� Recently� fast compact numerical real�time simulators have been
installed in the control rooms of many nuclear power plants for the prediction of
those reactor variables that are most useful for the early detection of abnormal

conditions�

However� not just quantitative but also qualitative methods have been

introduced during recent years to the control rooms of nuclear power stations�
and their application has been diversi	ed from knowledge�based advice
systems� to Neural Network�based malfunction pattern recognition algorithms�

as well as fuzzy controllers�

This has happened for three primary reasons� a� the need for a highly
quali	ed and well trained sta� to operate the plants calls for sophisticated

training simulators� b� the overall complexity of the system and the di�culties
in properly assessing what is going on in the plant at any point in time call for
highly reliable simulation codes used as on�line analysis tools� and c� pressure

exercised by public opinion on safety aspects of the power plants calls for
redundant control and safety systems�

Some of these new features that were recently introduced in nuclear power
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plant control rooms to aid human operators in their decision making processes

are �Glasstone and Sesonske� ������

� A numerical simpli	ed simulation system of the reactor capable of
at least ten times real time to perform basic nuclear kinetics and
thermohydraulics predictions�

� A numerical Fault Monitoring System for the �� most signi	cant plant
variables �NSAC�EPRI� ������

� A qualitative simulation system that shows the tendencies� i�e��
derivatives� of the most signi	cant plant variables�

� A qualitative Expert System to relate actual symptoms back to
previously learned emergencies to provide the operators with guidance
regarding measures to be taken�

� A qualitative Expert System to relate developing emergencies back to
previously learned emergency operation procedures� by pointing out
appropriate sections and pages in the Emergency Operations Manual�

� A qualitative Neural Network Fault Monitoring System with early
warning functions for recognition of transient patterns�

In subsequent sections of this chapter� a qualitative combined FIR�RA
methodology�based Fault Monitoring System to tackle the information
overload problem during operational transient conditions will be presented�

��� The Quantitative Large�Scale Model

The quantitative �numerical� nuclear reactor model used in this project has
been developed as an infrastucture project of the Nuclear Energy Department
at the Electric Research Institute in Cuernavaca� M&exico� This model has
served as the keystone for the development of the core model for the Laguna

Verde Nuclear Power Station Full�Scope Training Simulator �Ramos et al��
������ and for the reactor model of the Graphic and Interactive Compact
Simulator �Morales et al�� ���
�� This model has also been used for validation

of the results obtained by a Probabilistic Risk Analysis model of the same
reactor� and for thermohydraulic e�ects research�

The model itself is a complex di�erential equation model of ��th order� It
is composed of �� state variables� �� initial values for those state variables�
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��� de	ned variables� and ��� parameters� which gives a total of ��� variables�

representing the Boiling Water Reactor of the Laguna Verde Nuclear Power
Station Unit �� at Veracruz� M&exico�

The model� intended for operational transient validation and thermohy�
draulic calculations� is very detailed in the nuclear kinetics� but even more
so in the core thermohydraulics� With respect to the nuclear kinetics� it in�

cludes a point approximation with six delayed neutron precursor groups and
with three reactivity feedback mechanisms due to water boiling �the voids
formation�� temperature change �Doppler e�ect�� and the neutron absorber
mechanisms �Scram��

With respect to the thermohydraulics� the heat generation process considers
one average fuel bar with four radial nodes modeled by 	nite di�erence

approximations including the residual heat� The thermohydraulics are
simulated using a unidimensional axial model that takes into account all
boiling phases and two phase �ows� even in opposite directions� The heat
conduction model has one axial node associated with each axial node of the

thermohydraulics and is composed of two radial nodes� one for the fuel and
the other for the cladding�

The model of the reactor vessel includes the lower plenum region� the core�
the upper plenum region� the steam separators� the dome region� the bulk
water region� the downcomer region� and two independent recirculation circuits
as can be seen in Figure ����� Considering all these regions� mass� energy�

and pressure balances are carried out taking also into account the amount of
produced steam leaving the vessel� and the amount of feedwater entering the
vessel�

To perform these balances� the dome of the vessel is considered as divided
into three regions� namely the steam region� the steam and saturated water
region� and the returning water region� as they are shown in Figure ��
��

Two independent recirculation circuits are modeled providing the possibility
for one or both of them to trip� In this way� multiple operational transients in

which only one loop fails can be simulated� Each recirculation loop includes a
fully modeled motor pump �with all its operating regimes� and a very detailed
generalized jet pump� Since each circuit is composed of several pressure nodes�
as shown in Figure ����� the e�ects of reverse �ow can also be simulated�

The reactor model also includes a submodel of the steam line without

�This �gure has been taken from 	Ramos� 
��
�
�Idem�
�Idem�
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capacitive properties� i�e�� without a pressure node� Along the steam line�
several control and safety valves are placed� Belonging to the former category�
there are the pressure control valves at the turbine inlet �only one is modeled

since only one generalized steam line is present�� and belonging to the latter
class� there are the bypass channel �one modeled�� as well as relief �ten
modeled�� safety �ten modeled�� and isolation �one modeled� valves�

One generalized feedwater pump �with all its operation regimes� and one
generalized feedwater preheater are modeled in order to include the feedwater
controller�

The control of this reactor is accomplished by means of three simulated
controllers� They are�

i� Pressure Controller� This controller is attached to the steam valves
at the turbine inlet� and its model takes into account� on the one hand�
the di�erence between the amount of steam leaving the vessel and its

reference value� and on the other hand� the di�erence between the
pressure at the turbine inlet and its reference value�
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ii� Feedwater Controller� This controller� also known as the level
controller� is attached to the feedwater valve� and its model takes into
account� on the one hand� the di�erence between the amount of steam

leaving the vessel and the amount of feedwater entering the vessel� and
on the other hand� the di�erence between the reactor water level and its
reference value�

iii� Recirculation Controller� This controller� also known as the power
controller� is attached to the recirculation valves �one for each loop�� Its

model takes into account� on the one hand� the di�erence between the
power level and its reference value� and on the other hand� the di�erence
between the amount of water entering the core and its reference value�

As will be explained subsequently in this chapter� some of these controllers
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were disabled to carry out the reactor excitement processes�

All the automatic transient mitigation and emergency actions and alarms
are modeled in the Reactor Protection System� This system is in charge

of the automatic opening and closing of the steam line isolation� relief� safety�
and bypass channel valves� It can also reduce speed or trip one or both
recirculation pumps and the feedwater pump� Finally� its most important

action is the emergency shutdown� No control rods are simulated� instead the
equivalent negative reactivity is inserted directly into the core through the
feedback reactivity variable Scram� The same applies for the slow insertion
or withdrawal of control rods during normal startup and shutdown�

The plant simulator can be used during all phases of plant operation
�startup� steady�state� and shutdown�� and it can also be used for both normal

and abnormal plant operation� i�e�� during operational transients� Since the
mathematical description of the model takes more than �� pages� the interested
reader is friendly invited to consult the references� Full details of this nuclear
reactor model have been published in �Ramos� ����� Ramos et al�� ����� Ramos

and de Albornoz� ������

Two operational transients were built into the reactor model to alter its

normal full�power steady�state behavior� These transients are simulated by
modifying� at a scheduled time instant� a set of ad hoc parameters that the
model includes for such purposes�

The simulated emergencies are absolutely realistic in terms of what might
happen to the real reactor� this being in contrast with the aircraft emergencies
simulated in Chapter � that were not realistic� In that case �aircraft�� this was

not of vital importance since the experiment was intended for demonstrating
the validity of the FIR�based FMS approach only� However� in the nuclear
reactor case� it is important to show that a FIR�RA�based FMS can be used
to aid the human operators in their decision making process of a very complex

Large�Scale System�

����� Operational Transients

In a Boiling Water Nuclear Reactor �BWR�� safety is related to two main

considerations� a� radioactivity con	nement� and b� nuclear fuel cooling�
These two di�erent� but closely related� factors in�uence the whole plant
design� The situation where the nuclear fuel can no longer be properly cooled

is known as the �design�based accident�� The reactor and the whole plant are
designed to prevent this possibility� Beside this worst possible accident� there
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are lots of events with small to medium danger levels known as �transients��

A transient is an anomaly� misbehavior� or fault that causes some
malfunction in the reactor or somewhere in the plant� Anomalies in a �BWR�

can be divided into several categories depending on their probability� frequency
of occurrence� or potential danger� For the purposes of this dissertation� we will
use the latter approach� Accordingly� transients in a BWR can be classi	ed

into three categories depending on their potential danger� They are� from
minor to major danger�

i� Operational Transients� An operational transient is a fault that does
not produce a signi	cant refrigerant leakage� and�or does not trigger

any emergency reactor cooling system� The transient is usually very
fast� and may be caused by internal factors such as human errors or
equipment malfunctions� or by external factors such as black�out or
generator load rejection� This kind of transients is well known� and

human and automatic controllers are well trained to deal with them�
The basic considerations when dealing with operational transients are
safety and a rapid restart of the full power operation� In most cases�
human operators do not know what is happening until the reactor is

automatically shut down to the hot standby condition� or driven to a new
steady state� i�e�� until they perform a post�mortem analysis� Therefore�
operators normally do obstain from taking any immediate action�

ii� Non�Operational Transients� These are faults that do produce a
refrigerant leakage and�or trigger one or more emergency cooling systems
and�or impede a rapid restart of the full power operation� The transient

is normally caused by a combination of events such as� for example�
operational transients� human errors� or equipment malfunctions� These
types of transients are mostly discovered by means of Probabilistic Risk

Analysis� and analyzed by means of Decision Trees� The most common
ones are well known to operators� In most cases� human operators
do need to take some actions to complement those of the automatic
controllers� with the purpose of avoiding that the non�operational

transients become emergencies�

iii� Emergency Operations� Non�Operational transients that cannot be

rapidly and safely mitigated become emergency operations� In this

�In the hot standby condition� reactor pressure and temperature values are still near to
those of operation� This permits the reactor to resume operation within minutes or very
few hours� In contrast� if the reactor has been depressurized and cooled� operation cannot
be resumed until several hours or even days later�



��� Chapter �� Qualitative Fault Monitoring of a BWR Nuclear Reactor

condition� almost all actions are taken manually by the human operators�

and the only concern is radioactivity con	nement� Since in an emergency
situation� it takes some time before human operators are able to realize
what is really going on� they must always follow the Emergency Operation

Procedures no matter which fault has occurred� These procedures are
intended for preserving nuclear fuel integrity� and are based exclusively
on the monitoring of the main reactor variables �pressure� water level�
thermal power� temperature� etc��� i�e�� operators should forget about

everything but the main reactor variables�

Since the numerical model is intended for simulation of normal operation

and operational transients� only those will be considered in this analysis�

Operational transients can be classi	ed with respect to their ultimate

in�uence on the thermohydraulics and the neutronics of the reactor� Following
�Lamarsh� ������ their classi	cation is�

i� Pressure Increase�

� Turbine trip�

� Generator trip�

� Sudden closure of the Main Steam Isolation valves�

ii� Pressure Decrease�

� Pressure regulator failure�

� Sudden opening of a Safety�Relief valve�

iii� Refrigerant Flow Increase�

� Recirculation pumps control failure�

� Sudden speed�up of a recirculation pump�

iv� Refrigerant Flow Decrease�

� Recirculation pumps control failure�

�When the heat produced by the nuclear fuel elements cannot be extracted from the core�
the temperature and the power density will rise until levels at which those fuel elements may
melt� A molten core will not only liberate all radioactive �ssion products� but it may produce
a non�refrigerable nuclear fuel geometry� This is the worst accident that can ever happen
in a nuclear reactor�



��	� The Qualitative Model ���

� Recirculation pump trip�

� Sudden slow�down of a recirculation pump�

v� Refrigerant Temperature Increase�

� Feedwater control failure�

� Feedwater pumps trip�

vi� Refrigerant Temperature Decrease�

� Feedwater control failure�

� Feedwater preheaters loss�

vii� Neutron Flux Increase�

� Control rod drop�

viii� Neutron Flux Decrease�

� Sudden total or partial Scram�

��� The Qualitative Model

Three qualitative models of the reactor will be created� One for the full�power

steady�state normal operation� one for the recirculation pump trip operational
transient� and one more for the feedwater control failure operational transient�
As a matter of fact� there will be four models instead of three� since the latter

transient is composed of various other transients� one of which needs also to
be modeled and characterized� namely the Scram transient�

In the construction of these models� four modeling di�culties will be faced�

i� Excitation of the reactor model� It is fortunately quite impossible
to excite a nuclear reactor �or even a sophisticated quantitative model

thereof� in such a way that all frequencies are richly represented in
the input�output behavior of the excited subsystem for the purpose
of the best possible identi	cation of an optimal mask� Sophisticated

quantitative models of nuclear reactors� as the one presented here� are
very detailed due to their training� validation or licensing purpose� and
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are designed to re�ect the behavior of the real system including its

automatic responses to emergency situations� For these reasons� small
deviations in the expected behavior will be interpreted as anomalies
that could trigger an emergency process� which may eventually lead

to a shutdown of the reactor� The reactor will then behave quite
di�erently due to the transient in comparison with its behaviour under
normal operating conditions� The very test signals that are needed
to excite the quantitative model for the identi	cation of its qualitative

counterpart are easily interpreted as transients by the reactor simulator�
The quantitative reactor model trips over its own shoe�lace� so to speak�

ii� Variable Selection for each operating condition� The previously
mentioned limitation on the number of input variables that a human
can simultaneously process is shared by most automated reasoning

algorithms� A single sequential reasoning algorithm turns slow and
unwieldy when being requested to cope with too many facts at the same
time� Inductive reasoners �like neural networks� may be quite e�cient
once they are properly trained because they are inherently parallel in

nature� but their re�learning abilities degenerate quickly as the number
of input variables �i�e�� the dimension of their reasoning space� grows�
It is therefore very important to select a minimum set of variables that

meaningfully represent the system to be reasoned about� and that can
be handled by the inductive reasoner in an e�cient manner�

iii� Change of meaningful variables during di�erent stages of the

same operating condition� This problem copes with the variable
selection and subsystem identi	cation for the changing characteristics of

the accident conditions� and for the post�accident conditions� Most of
the operational transients end with a reactor emergency procedure that
may result in a reactor shutdown� Once an emergency procedure has
been initiated� there occurs a dramatic change in the minimum set of

meaningful variables needed to represent the system� i�e�� the valid set
of variables used to describe the system prior to the transient is not the
same set that is needed to represent the system during and following the
transient�

iv� Subsystems identi�cation in a closed�loop environment� The

problem is one that has haunted for decades the researchers who are
working in the identi	cation of control systems� When identifying a
subsystem within a feedback structure� it is desirable to break the system

open� since otherwise� it is never fully clear whether it is really the
subsystem itself that has been identi	ed� or whether it might not be the
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feedback loop around the subsystem that� by its own nature� constitutes

another subsystem with the same extraneous variables but exchanged
inputs and outputs� or maybe a combination of both� However� inductive
models are only valid within a limited range around an operating point

or operating trajectory� By opening up the feedback loop� the subsystem
is likely to exhibit behavioral patterns that resemble little those of the
closed�loop operation� Thus� the �learned� qualitative model will be of
little or no use for predicting the behavior of the subsystem in closed�

loop operation� It is thus essential that the feedback loops are kept intact
when identifying the subsystems� Consequently� the modeler has to live
with the aforementioned di�culties�

The way in which these problems have been solved will be explained in full
in the corresponding next sections�

����� Full�Power Steady State

A nuclear reactor is intended for full�power operation during the maximum

possible time� When driven to full power� our numerical model stabilizes
at ����� , of designed thermal output power� At this power level� with
recirculation pumps operating at ��� , of their speed ��� , of their pumping
capacity�� and control rods fully withdrawn�� the reactor reaches a steady state

that can be maintained during in	nite time in the model� or during almost a
year in a real plant� unless an unscheduled event �transient� occurs�

As has been explained before� the model includes the Reactor Protection
System that is in charge of all automatic response actions when the main
variables surpass critical values� This has the e�ect that a small deviation
from the steady state will be immediately detected and pointed out to the

operators through a visual alarm� and that a signi	cant deviation will be
countermeasured automatically� This gives us little chance to excite the reactor
model outside the range of regularly allowed operations�

Beside normal full�power operation� two representative transients were
numerically simulated� They were� a� a recirculation pump trip� and b�
a feedwater control failure� These transients have been selected because

neither of them produces an immediate emergency stop �Scram�� The 	rst

�Since the numerical model is not intended for nuclear fuel calculations� but for
thermohydraulic analysis and operational transients validation� it is supposed that the
reactivity due to control rods must be always zero during normal operation� i�e�� the full
power condition is reached with the control rods completely withdrawn�
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one� recirculation pump trip� will be used to show how a small and well

known transient produces important and very fast variations in the main
reactor parameters� which makes it impossible for the operators to perform
a characterization and identi	cation of the transient in real�time� The second

transient� feedwater control failure� is much more involved and cannot be
considered a small transient� since practically all reactor systems take part in
it� It is intended to demonstrate how a qualitative Fault Monitoring Systems
is capable of characterizing and identifying a transient before automatic

emergency actions are triggered�

����
�
 Excitation of the Reactor

The limitations with respect to exciting the reactor model have been stated
earlier� The excitation process is limited to forcing the system to perform small

oscillations around its steady state� To this end� two state variables related
to the pressure control� WGref � and to the feedwater control� WFWref

� will be
used to excite the model� The excitation input variables are perturbations
a�ecting the reference values of two control variables of the model� The

reference values of these variables are preset such that the simulation starts
out at some predetermined power level� In this case� full power level values are
used� A change in any of these two variables will perturb the model� forcing
it into a new steady state or into a transient condition�

Exciting the reactor model with random binary or ternary noise is out
of the question� since the induced e�ects of such a violent change on the

thermohydraulics will immediately trigger one or more emergency systems�
Instead� the model will be excited with harmonic functions of short periods
and amplitudes� Following the terminology used in the aircraft example of
Chapter �� this way of operating the model is known as the �shaken reactor��

The amplitude values are chosen in such a way that the reactor reaction does
not produce any alarm or emergency condition� which means that only small
oscillations around the steady state are allowed� Although this restriction can
be viewed� in principle� as a shortcoming since only those behavioral states

in the vicinity of the steady state can be captured� i�e�� predicted� it� in fact�
makes the transient detection process easier since even small deviations from
the expected trajectories are quickly recognized as anomalous behaviors�

The initial values of the two chosen variables� the control reference value
of the amount of steam leaving the reactor vessel �WGref � and the control

reference value of the amount of feedwater entering the reactor vessel �WFWref
�

are ���
��� kg�sec each� Logically� they have the same value since the
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total amount of water in the reactor during normal operation should be kept

constant�

The maximum allowed amplitudes of the harmonic short period excitation

signals are�

"WGref  ���
��� � ���
 kg

sec
�����

"WFWref
 ���
��� � ���� kg

sec
�����

These are applied directly to the di�erential equations model�

Due to the complexity of the model and its highly non�linear behavior� it is
not an easy matter to compute the smallest and largest eigenfrequencies� i�e��
the slowest and fastest time constants� To start� we know from preceding
sections that the reactor model is divided into subsystems with di�erent

degrees of sti�ness� This makes some subsystems react faster than others� The
simulation uses a variable�step integration algorithm� The shortest integration
step observed was �����
 sec and corresponds to the core nuclear kinetics�
whereas the largest integration step was ��
�� sec corresponding to the pumped

water and to the mixed enthalpy equations�

If these integration steps are interpreted as approximations of the time

constants� Tfast and Tsettling� of the model� following Equations ������ and
������� the sampling rate 	t should be chosen as ����� sec and the mask
depth should be ��� However� since neither the full�power steady state nor the
operational transients that will be simulated are intended for nuclear elements

analysis� the nuclear kinetics integration step can be substituted by the shortest
thermohydraulics integration step� which happens to be ����� sec� Following
the same aforementioned equations� the sampling rate will be ����� sec and

the mask depth will be 
� This drastic reduction in the mask depth �from ��
to 
� leads also to a drastic reduction in the mask complexity��

With these excitation parameters� a simulation was carried out along �
��

sampling points corresponding to ��
 seconds� The results of this simulation
are stored in the shaken reactor raw data matrix� The numerical reactor model
is excited once more� this time with harmonic functions of fairly long periods

�Such a mask will not capture the highest frequencies in the model� but as long as they
are irrelevant to the task at hand of identifying the two proposed transients� this may be
acceptable�
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�same amplitudes�� along another �
�� sampling points� This way of operating

the reactor is called �normal reactor operation with harmonic perturbations��
In this way� a more realistic but still dynamic reactor simulation results� This
step is used to determine the limits that the variables can realistically assume�

The results of this simulation are stored in the normal reactor raw data matrix�

The data extracted from the numerical Fortran simulations constitute the

measurement data �the raw data matrices� of the qualitative models� As has
been explained before� the raw data matrices are real�valued matrices in which
each column represents one recorded variable� whereas each row represents a
complete data record collected at one time instant� These data must then be

recoded to enable the qualitative reasoning process�

����
�� Variable Selection and Hierarchization

To build the qualitative models of the reactor� not all of the variables that were
considered in the numerical simulation can be used� but only some subsets of
variables that capture the main characteristics of the reactor during all facets

of operation�

There are two main di�erences between the variable selection processes

carried out in Chapter � for the aircraft and circuit examples� and the one that
will be carried out here for the nuclear rector example� The 	rst di�erence has
to do with how many and which ones are the important variables that must be
taken into account� and the second is related to the utilization of the same set

of selected variables to represent the abnormal conditions� Whereas in all the
examples presented in this thesis so far� the set of important variables were
always known in advance� their number was kept inside the limits imposed
by the FIR methodology� and this set of selected variables was kept constant

during all abnormal conditions� in the example presented here� none of these
three conditions applies� since the number of variables is far beyond the current
software and even the methodological limits� there is not a predetermined
selection of variables� and the set of variables that represent the system will

vary from transient to transient�

Although in Chapters 
 and � a solution to these problems has been

proposed and demonstrated� respectively� by means of Reconstruction
Analysis� it is only in the present chapter that this methodology is extensively
used� and where the hierarchies of identi	ed qualitative subsystems� each one

represented by an optimal mask� are shown� To this end let us remember how
these arrays are constructed�
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� Clusters of causally related variables will be identi	ed�

� Each cluster constitutes an identi	ed subsystem� and should be composed
of one or several inputs and a single output�

� From each cluster� it should be possible to obtain an optimal mask�

Thus� the number of subsystem variables should be kept inside the FIR
methodology and software limits�

� Clusters should be causally related among each other� i�e�� form a causal
temporal hierarchy�

� At the uppermost level of the hierarchy� there is one or more executive
subsystems� the input variables of which are outputs generated by
subsystems located at a lower hierarchical level�

In Section ���� it was already explained that the numerical model is
composed of �� state variables� �� initial values for those state variables� ���
de	ned variables� and ��� parameters� It does not make any sense to preform

the analysis over these ��� variables since� among them there are constants�
arrays� and lots of variables that the operators cannot observe or in�uence from
the control room� This latter condition is specially relevant for the licensing
and transient validation simulation programs �NSAC�EPRI� ������ in which all

output variables must coincide with instrumentation in the control room� i�e��
they must be variables that the operators can directly monitor and control�

Thus for the selection process� the parameters� the initial condition values�
and the array variables will be neglected� From the remaining 

 state variables
and ��
 de	ned variables� all of those that the operators cannot monitor and
in�uence from the control room will be neglected as well� At the end� there

remain �� state variables and �
 de	ned variables� i�e�� a total of 
� variables�
a number that is much smaller than the original number of ��� variables� but
that� from the point of view of the FIR methodology� is still far from being

manageable�

Among these 
� variables� there are power variables� water levels�

reactivities� pressures� temperatures� enthalpies� heat �ows� water �ows� steam
�ows� two phase �ows� and some induced voltages� The entire list of variables
is given below�

General purpose variables�

Pow  Reactor thermal output power �, age��
Level  Water level �meters��
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Reactivity related variables �Dollars��

Reac  Core total reactivity�
V oids  Voids reactivity�
Dopler  Doppler reactivity�
Scram  Emergency stop reactivity�

Pressure related variables �Pascals��

PDM  Dome pressure�
PLP  Lower plenum pressure�
PC  Core pressure�
PBY P  Bypass channel pressure�
PTUR  Turbine pressure�
"PC  Core pressure drop�
"PSEP  Steam separators pressure drop�
PTURref  Turbine reference pressure�
"PREC�

 Recirculation loop � pressure drop�
"PREC�

 Recirculation loop � pressure drop�
"PPP�  Recirculation pump � pressure drop�
"PPP�  Recirculation pump � pressure drop�

Temperature related variables �degrees Kelvin��

TFUEL  Fuel temperature�
TMOD  Moderator temperature�
TMIX  Mixed water temperature�
TSAT  Saturation temperature�

Enthalpy related variables �Joules�kg��

HFW  Feedwater enthalpy�
HMIX  Mixed water enthalpy�
HFUP  Upper plenum water enthalpy�
HFGDM  Dome steam and saturated water enthalpy�
HLLP  Lower plenum liquid enthalpy�
HREC�

 Recirculation loop � water enthalpy�
HREC�

 Recirculation loop � water enthalpy�

Heat related variables �Joules��

QRES  Residual heat�
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Water� steam� or two phase �ows �kg�sec��

WGDM  Dome steam �ow�
WFW  Feedwater �ow�
WLP  Lower plenum �ow�
WBY P  Bypass channel �ow�
WSRV  Safety and relief valves �ow�
WGFBW  Bulkwater steam and water �ow�
WGref  Steam reference �ow�
WFSEP  Steam separators water �ow�
WGSEP  Steam separators steam �ow�
WFWref

 Feedwater reference �ow�
WGUP  Upper plenum steam �ow�
WGC  Core steam �ow�
WTC  Core total �ow�
WREC�

 Recirculation loop � total �ow�
WREC�

 Recirculation loop � total �ow�
WSUC�

 Jet pump loop � suction �ow�
WSUC�

 Jet pump loop � suction �ow�
WPP�  Recirculation loop � pumped �ow�
WPP�  Recirculation loop � pumped �ow�

Voltage related variables �V olts��

V olt�  Recirculation pump � voltage�
V olt�  Recirculation pump � voltage�

From these 
� selected variables extracted from the shaken reactor raw

data matrix� subsets of variables will be identi	ed by applying Reconstruction
Analysis� To this end� the variables must 	rst be recoded using the fuzzy
recoding process explained in Section ������ All variables will be recoded into

	ve qualitative classes�

For the full�power steady�state case� two variables have been chosen as the
ultimate hierarchy outputs� They are� Pow and Level� and will be considered

as the executive subsystems� The reason for such a selection is that those
variables are two of the most characteristic ones for representing operational
transients� At the same time� these two variables are usually some of the 	rst

ones the operator looks at when something begins to go wrong�

Since these two variables will be the top level outputs of the Fault

Monitoring System� all others will be considered as input variables ���
variables�� To 	nd out the strengths of the binary relationships between those
inputs and the two selected outputs� Reconstruction Analysis is being applied�
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as described in Chapter �� to each of the above subsystems� For those binary

relationships that appear more than once� their corresponding reconstruction
error will be averaged�

However� there is an important di�erence in the role that RA has played in
Chapter �� and the role that it will play here� In Chapter �� RA was used to
identify subsets of relevant variables� directly 	nding high�quality masks for

them� whereas in this chapter� RA will be limited to identify subsets of relevant
variables� This limitation has to do with the large number of variables that
makes the introduction of time in the analysis unpractical� For this reason�
the columns of the raw data matrix will not be duplicated shifted up by one

row�

Since time must be introduced somehow� Optimal Mask Analysis will be

applied in a subsequent step to the identi	ed subsets of variables� in order to
obtain optimal masks for them�

The goal is the reduction of the number of possible inputs while maintaining
the representativeness of the system� In this way� the FIR�based FMS will
have a minimum set of meaningful variables to reason with� However� since

� variables are still far too many to be managed by RA directly� RA will be

performed in parts� as proposed in the two examples of Chapter ��

The overall system of 
� variables will be decomposed into several

subsystems� Each of them must contain some input variables and the desired
output� in such a way that all possible binary relations are included at least
once in the set of subsystems� Since the two selected output variables are Pow
and Level� one decomposition will be made for each of them �excluding the

other one�� Thus� for the 	rst output variable� Pow� the input variables were
grouped in the following way�

� u�� u�� u�� u�� u�� u�� u�� P ow ��
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� u�� u��� u��� u��� u��� u��� u��� P ow ��
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For the case of the output variable� Level� the subsystems are exactly the

same with Level instead of Pow� However� since di�erent qualitative models
should be obtained for each one of the three analyzed cases� i�e�� full�power
steady state� recirculation pump trip� and feedwater controller failure�� a
Reconstruction Analysis must be performed among all possible input variables

for each output variable of each case� That means that each output variable
will be considered independently of the others�

The procedure for each case is governed by the following rules�

�� The Single Re	nement algorithm of RA is applied to each output
subsystem �excluding all other output subsystems� determining the input
variables it depends on�

�� If the input variables that the system depends on are more than 	ve�� the
variables with the strongest binary relationships �the limit value is set
by the modeler� with the selected output are considered as intermediate

subsystem of the next hierarchical level�

�� RA is applied to each intermediate subsystem determining the input
variables it depends on�

�� If there remain more than 	ve input variables� return to step �� otherwise
proceed to step 
�


� Once the analysis has been applied to all intermediate subsystems of all
levels� the variables that were not considered as intermediate subsystems
are now considered as true input variables�

Let us analyze the three cases one by one� For the full�power steady�

state case� RA is applied to the 	rst output variable� Pow� excluding the
other output variable� Level� as potential input� After a 	rst re	nement� the
dependencies of Pow can be seen in Figures ��� and ����

�The feedwater controller failure operational transient includes one more operation regime
that also needs to be characterized� i�e�� the emergency shutdown �Scram��

	Five input and one output variables constitute a reasonable limit for a mask when
working with Optimal Mask Analysis�
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Input Optimal Structure Analysis
Variables Relation with Output Pow
Reac � � � � � � � � � � � � � � � � � �
V oids � � � � � � ! � � � � � � � � � � �
Dopler � � � � � � � � � � � � � � � � � �
Scram � � � � � � � � � � � � � � � � � �
PDM � ! � � � � � � � � � � � � � � � �
PLP � � � � � � ! � � � � � � � � � � �
PC � � � � � � � � � � � � � � ! � � �
PBY P � � � � � � � � � � � � � � � � � �
PTUR � � � ! � � � � � � � � � � � � � �
"PC � � � � � � � � � � � � � ! � � � �
"PSEP � � � � � � � � � ! � � � � � � � �
PTURref � � � � � ! � � � � � � � � � � � �
"PREC�

� � � � � � � � � � � � � � � � � �
"PREC�

� � � � � � � � � � � � � � � � � �
"PPP� � � � � � � � � � � � � � � � � � �
"PPP� � � � � � � � � � � � � � � � � � �
TFUEL � � � � � � � � � � � � � � � � � �
TMOD � � � � � � � � � � � � � � � � � �
TMIX � � � � � � � � � � � � � � ! � � �
TSAT � � � � � � � � � � � � � � � � � �
HFW � � � � � � � ! � � � � � � � � � �
HMIX � � � � � � � � � � � � � � ! � � �
HFUP � � � � � � � � � � � � � � � � � �
HFGDM � � � � � � � � ! � � � � � � � � �
HLLP � � � � � � � � � � � � � � � � � �
HREC�

� � � � � � � � � � � � � � � � � �
HREC�

� � � � � � � � � � � � � � � � � �
QRES � � � � � � � � � � � � � � � � � �
WGDM � � � � � � � � � � � � ! � � � � �
WFW � � � � � � ! � � � � � � � � � � �
WLP � � ! � � � � � � � � � � � � � � �
WBY P � � � � � � � � � � � � � � � � � �
WSRV � � � � � � � � � � � � � � � � � �
WGFBW � � � � � � � � � � � � � � � � � �
WGref ! � � � � � � � � � � � � � � � � �
WFSEP � � � � � � � � � ! � � � � � � � �
WGSEP � � � � � � � � � � � � � � ! � � �
WFWref

� � � � � � � � � � � � � � � � � �
WGUP � � � � � � � � � � � � � � � � � �

Figure ���� Relation between input variables and output Pow of the
decomposed nuclear reactor system�
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Input Optimal Structure Analysis
Variables Relation with Output Pow �Cont�
WGC � � � � � � � � � � � � � � � � � �
WTC � � � � � � � � � � � � � � � � � �
WREC�

� � � � � � � � � � � � � � � � � �
WREC�

� � � � � � � � � � � � � � � � � �
WSUC�

� � � � � � � � � � � � � � � � � �
WSUC�

� � � � � � � � � � � � � � � � � �
WPP� � � � � � � � � � � � � � � � � � �
WPP� � � � � � � � � � � � � � � � � � �
V olt� � � � � � � � � � � � � � � � � � �
V olt� � � � � � � � � � � � � � � � � � �

Figure ���� Relation between input variables and output Pow of the
decomposed nuclear reactor system �continued��

From the table of Figure ���� and taking into account those input variables
that present a )!� mark between the 	rst and the tenth column� It can be seen

that the output variable Pow depends on �� variables� They are�

Pow  f �WGref � PDM �WLP � PTUR� PTURref � PLP �WFW �

V oids�HFW �HFGDM �"PSEP �WFSEP � �����

The most important variables� i�e�� the ones with the strongest relationship
with the output� have been chosen as outputs of intermediate subsystems�
They are� WGref � PDM and WLP � From them� WGref is omitted since its only

purpose was that of exciting the reactor� and in steady�state operation� it
remains practically unchanged�

In order to determine a model for the intermediate output PDM � RA is
applied once more to the subsets of inputs consisting of the �� selected variables
except for Pow and the other intermediate output� WLP � The resulting table
is depicted in Figure ����

From this table and taking into account only the 	rst � columns� the input
variables that PDM depends on are�

PDM  f �PTUR� PTURref � PLP � V oids�"PSEP �HFW �HFGDM � �����
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Input Optimal Structure Analysis
Variables Relation with Output PDM
V oids � � � ! � � � � �
PLP � � ! � � � � � �
PTUR ! � � � � � � � �
"PSEP � � � � ! � � � �
PTURref ! � � � � � � � �
HFW � � � � � ! � � �
HFGDM � � � � � ! � � �
WFW � � � � � � � � !
WFSEP � � � � � � � ! �

Figure ���� Relation between inputs and intermediate variable PDM of the
decomposed nuclear reactor system�

It has been said that not more than 	ve input variables are admitted in each

FIR� Since there still remain more than 	ve variables� Reconstruction Analysis
is applied once again to the variables with the strongest relationships� in this
case PTUR� To this end� only the seven variables of Relation ����� will be

considered excluding PTUR itself from the analysis� For PTUR� we 	nd the
table depicted in Figure �����

Input Optimal Structure Analysis
Variables Relation with Output PTUR
V oids � � � � � � � !
PLP � � � � � � ! �
"PSEP � ! � � � � � �
PTURref ! � � � � � � �
HFW � � � � � � � !
HFGDM � � � � � ! � �

Figure ����� Relation between inputs and intermediate variable PTUR of the
decomposed nuclear reactor system�

From this table and taking into account only the 	rst two columns� the
input variables that PTUR depends on are�
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PTUR  f �PTURref �"PSEP � ���
�

which means that PDM has a lowest hierarchical subsystem called PTUR�

The variables that PTUR depends on are now eliminated from the list of
direct inputs to the intermediate subsystem� hence�

PDM  f �PTUR� PLP � V oids�HFW �HFGDM � �����

The other variable� besides PDM � with a strong binary relation with
Pow is WLP � For this subsystem� a Reconstruction Analysis must be
performed considering only the �� variables that Pow depends on as shown in

Relation ������ and excluding Pow and PDM � The results obtained from the
analysis are shown in the table of Figure �����

Input Optimal Structure Analysis
Variables Relation with Output WLP

V oids � � � � � � ! � �
PLP � � ! � � � � � �
PTUR ! � � � � � � � �
"PSEP � � � � � � ! � �
PTURref � � � � � ! � � �
HFW � � � � � � � ! �
HFGDM � � � � � � � � !
WFW ! � � � � � � � �
WFSEP � ! � � � � � � �

Figure ����� Relation between inputs and intermediate variable WLP of the
decomposed nuclear reactor system�

From this table and taking into account only the 	rst three columns� a
relation for WLP can be constructed� It is�

WLP  f �WFW �WFsep� PLP � �����
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In this way� the output variable Pow is computed using three hierarchical levels

of FMSs� Pow depends on � input variables whereby � are di�erent�

For the case of the other executive FIR output variable� Level� a

Reconstruction Analysis was performed excluding variable Pow only� From
this analysis� �� variables were considered important���

Level  f �WFWref
�WGDM �WLP �"PC � PLP � V oids�

WFW �WGFBW � PC �WFSEP �"PSEP � �����

The variables with the strongest binary relationship with Level are� WFWref
�

WGDM � "PC � and WLP � They will be considered as subsystems� The 	rst

of them� WFWref
� is neglected since its only purpose was that of exciting the

reactor model� and during steady state it remains practically unchanged� For
each of the other three variables� Reconstruction Analysis must be applied

once more� The results of these operations are the following� The 	rst of the
three subsystems� WGDM � depends on � variables�

WGDM  f �V oids�WGFBW �WFW � �����

The second subsystem� "PC � depends also on three variables�

"PC  f �PLP � PC �"PSEP � ������

The third subsystem� WLP � depends on three variables as well� They are�

WLP  f �WFW �WFSEP � PLP � ������

The output variable Level depends on � input variables �� are di�erent� and
has two hierarchical levels� in contrast to the output variable Pow that depends
on � input variables �� di�erent� and has three hierarchical levels�

�
Due to space limitations� the resulting tables of each analysis will be omitted from now
on� and only the derived relationships will be presented�
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Figure ����� Hierarchy of subsystems and input variables for the steady state
case�

Notice that the number of variables that the system depends on has been
reduced from 
� to ��� However� since several variables are inputs to more

than one subsystem� and even one entire subsystem is common to both output
variables� the total reduction is from 
� to ��� This means that the system
can be qualitatively represented with less than one 	fth of the original number
of variables�

Figure ���� represents the hierarchical arrangement of subsystems and input
variables for the full�power steady�state case� The two excitation variables�

WGref and WFWref
� are symbolically shown as inputs to the two executive

subsystems� However� they cannot be considered true inputs� since they
are constant during the considered steady states� Notice that some of the
subsystems do not coincide with true physical subsystems of the nuclear reactor

model� whereas others do� This is the case of subsystems PTUR�WLP � and "PC�
In particular� the pressure drop in the core� "PC � is a derivative equation that
includes in its calculation the previous� the actual� and the next pressure knots�

i�e�� the lower plenum pressure� PLP � the core pressure� PC � and the pressure
drop of the steam separators� "PSEP � respectively�
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����
�	 Propagation of Errors

The question may be raised why the signals of the lower�level subsystems are
used as inputs to the higher level ones� if the true signals are available as

measurements� as was explained earlier�

To answer this question� it should be remembered that the fault monitoring

scheme presented in this thesis is based on the errors obtained by the
continuous comparison between the predicted behavior of a system� and its
true behavior� Thus� the reason has to do with the propagation of errors
through the hierarchical ladder�

A lower� or intermediate�level subsystem detects an anomalous behavior
when its error matrix contains a certain combination of saturated states and a

certain number of consecutive prediction errors� The output of this lower�
level subsystem contains the erroneous behavior� If this output serves as
input to another intermediate subsystem or a high�level subsystem� the error
condition is propagated to the upper levels of the hierarchical ladder� making

the detection process of the subsystems at those levels faster and easier� In
contrast� if the true signals �available as measurements at any time� were
used as inputs to the higher�levels subsystems� the error condition would not
be propagated� making the detection process of those subsystems longer and

more di�cult�

It must be considered that for the three cases presented in this chapter�

i�e�� full�power steady state� recirculation pump trip� and feedwater controller
failure� only the intermediate� and higher�level subsystems make a continuous
comparison between their predicted behavior and the true system behavior�

The lower�level subsystems are included as a further system decomposition
needed to keep the number of variables of an intermediate�level subsystem
inside FIR limits� i�e�� they are used to support the qualitative modeling of the
variables at the intermediate level� and not to reason about faults� The output

of the PTUR subsystem is a qualitative representation of the PTUR variable�
whereas the outputs of the PDM � WLP � WGDM � and "PC subsystems are local
alarm signals�

����
�� Optimal Masks

Every identi	ed subsystem needs to be represented by means of an optimal

mask� i�e�� all of them must be qualitatively modeled by means of Optimal
Mask Analysis� and in fact� the hierarchy of subsystems is a hierarchy of
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qualitative models generated and simulated by FIR� From the past section�

we know the mask depth and the number of qualitative classes that each
variable can assume� At this point two approaches are possible� On the one
hand� a� all masks can be supposed to have the same depth and sampling

rate� and a di�erent number of variables� and on the other hand� b� the masks
can be allowed to assume di�erent parameters among each other� With the
latter option� it can be expected that more accurate masks might be obtained
at the cost of making the qualitative modeling process slower� since a new

stability analysis would have to be performed for each identi	ed subsystem to
determine the most appropriate sampling interval and mask depth� With the
former option� the qualitative modeling process is simpli	ed at the cost of a
somewhat reduced mask accuracy�

Since the FMS that will be used to monitor the nuclear reactor must be able
to operate in a continuous way� the Forecasting All Possible Structures fault

monitoring strategy�� will be applied� propagating information up and down
the hierarchical ladder� It therefore seems reasonable that all masks should at
least cover the same time intervals� i�e�� they all should have the same depth
and sampling rate� Thus for simplicity reasons it has been decided to choose

option �a�� applying to all masks the same parameters� These parameters are�

sampling rate  ����� sec�
number of qualitative levels  
�
depth of the masks  
�
maximum mask complexity  ��
number of variables  variable�

The mask candidate matrices were built following Equation ����
�� Applying

Optimal Mask Analysis to each identi	ed subsystem� the resulting optimal
masks for the output variable Pow of Figure ���� are� for the lowest hierarchical
level�
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�
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tnx PTURref "PSEP PTUR
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t �� � !�

�
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for the intermediate hierarchical level�

��c�f� Section �������
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and for the top�level �executive� Pow variable itself�
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Notice that� at this point� another input variable has been eliminated� since
PDM no longer depends on HFGDM �

The second subhierarchy of Figure ����� that of the executive output
variable Level has two levels only� For the lower level� the optimal masks

are�
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and for the executive Level variable itself�

Level  

�
BBBBBB�

tnx WGDM "PC WLP Level

t� �	t � � � �
t� �	t � � � �
t� �	t �� � � ��
t� 	t � �� � ��
t �
 � �� !�

�
CCCCCCA

����� Recirculation Pump Trip

As can be seen in Figure ���� the BWR has two recirculation loops each one
with one recirculation pump� A recirculation pump trip can be produced by
an operator error� a failure in the pump power supply� or by the Reactor

Protection System when one or several of the following conditions are reached
inside the reactor� low water level� high pressure� or low feedwater �ow� The
primary e�ects that a recirculation pump trip produces are� a decrease in

the water �ow �refrigerant� that goes into the core of almost 
� ,� and
consequently� a �� , reduction in the reactor�s output thermal power� The
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secondary e�ects have to do with the reactor water level� the steam �ow that

leaves the reactor� the feedwater supply� and the core temperature�

During the transient initial phase� the reactor water level is increased due

to the increment in the core voids produced by the reduction of refrigerant�
The pressure and the water level controllers respond in an integrated way to
the water level increment and the thermal power reduction by decreasing the

feedwater �ow and the steam �ow leaving the reactor� trying to maintain the
reactor pressure and the water level� while avoiding further emergency actions
and smoothly driving the reactor to a new steady state� In the transient second
phase� once the recirculation pump has stopped rotating� the �ow through this

loop is reversed� while the recirculation �ow in the second loop �the one that
remains operational� increases to ��� , due to the reactor pressure reduction�
compensating in part for the loss of the 	rst loop� At the 	nal phase of the
transient� a new steady state is reached at about �
 , of thermal output

power�� with a reduction in the core temperature� small oscillations in the
water level around its normal position� a reduction in the feedwater �ow� and
a reduction in the reactor pressure�

The entire transient� from the pump trip to the new steady state� takes no
longer than �
 seconds� In spite of being a well�known small operational
transient that does not trigger any emergency action and that permits

proceeding without shutting down the reactor� from an operator�s perspective�
sitting in front of the control panels� this transient will result in the triggering of
three or four acoustic alarms �low pressure� high water level� low recirculation
�ow� low�low recirculation �ow� etc��� more than thirty blinking emergency

lights� and about 	fteen indicators changing their values �without counting
duplicated and triplicated indicators�� This simply makes it impossible for
him or her to discern the true causes of the transient from their consequences�

and therefore� it is unrealistic to expect that the operator would be able to
correctly characterize and identify the transient in real time� i�e�� within a time
interval� in which a real�time interaction might have been meaningful�

The transient characterization and identi	cation can only be performed
by the operators in a post�accident condition by consulting the Final Safety
Analysis Report� the Transient Safety Analysis Report� the Emergency

Operation Procedures� and by bringing to bear lots of previous expertise�

��The negative reactivity introduced by voids is compensated for by a positive reactivity
introduced by the core temperature change �doppler�� This null reactivity equilibrium value
maintains the criticality of the reactor�
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������
 Excitation

Although the time constants and consequently the sampling rate and the mask

depth are the same for this transient� the excitation process was done in a
completely di�erent way� Since this is a sudden transient that cannot be
inductively discovered by data analysis� i�e�� cannot be prevented by a FMS of

the type presented here� the reactor excitation is performed by provoking the
same transient with variable intensity in the forward and reverse directions�

Let us explain how this is accomplished� The simulation is started at full�

power steady state� Then suddenly� at time step 
�� the induced voltage value
of the recirculation pump number one �V olt�� is set to zero� The transient
takes about �
 seconds� until a new steady state is reached� At time step ����

the induced voltage value of the same recirculation pump is suddenly reset
to its original value� This reverse transient takes about �
 seconds until the
original steady state is reached� Then� at time step ��
� the forward transient
is repeated� and at time step ��
� the reverse transient is repeated� and so on�

in such a way that every ��
 time steps a forward transient should start� The
simulation was run along ���� time steps� and the results were stored in the
zero �ow raw data matrix�

This procedure was repeated four more times� each one with a di�erent value
for the reduction of the induced voltage V olt�� Since the relationship between
voltage and pumped �ow is non�linear� the values at which this variable will

be reduced in each simulation correspond to �� ,� �� ,� �� ,� and �� , of
the pumped �ow� respectively� The results of these simulations were stored
in four di�erent matrices known as the �� � �ow raw data matrix� the �� �
�ow raw data matrix� etc� The idea behind this procedure is that of obtaining

data of intermediate states of the transient trying to have the richest possible
information about the reaction of the system�

Finally� the reactor is excited once more around the steady state reached by
the 	rst simulation run� i�e�� the one in which the voltage value was suddenly
reduced to zero� in exactly the same manner shown for the 	rst excitation of the
full�power steady state �same variables� same periods� and same amplitudes�

along ��� time steps� In this way� the new steady state is also characterized�
which permits the FMS to remain operational during and beyond the accident�

All these matrices are 	nally combined into a single matrix that contains
the information of all simulations in such a way that� once recoded� only the
occurrences of those states that were not present in the zero �ow raw data

matrix were included� This matrix is known as the combined �ow raw data
matrix and constitutes the measurement data of the qualitative model�
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������� Variable Selection and Hierarchization

In the case of this 	rst transient� the process of variable selection and causal

grouping of variables was done in exactly the same way as shown for the
steady�state case� The same 
� variables were considered for the analysis�
but this time extracted from the combine �ow raw data matrix� Variables
Pow and Level are once again chosen as the output variables of the executive

subsystems� and Reconstruction Analysis is applied to each of these outputs
separately�

Output Pow depends on the following �� variables�

Pow  f �PLP �WREC�
� Reac� V oids� V olt��"PPP� �

"PC �WLP � PC �WPP� �WSUC�
� PDM �Dopler� ������

The variables with the strongest binary relationships with the output Pow are�

PLP � WREC�
� and Reac� They will be considered as intermediate subsystems�

which means that Reconstruction Analysis should be applied to each one of
them to obtain their dependencies�

Applying RA to subsystem PLP � where only the �� variables of
Relation ������ are considered and variables Pow� WREC�

� and Reac are
excluded� � variables are considered important� They are�

PLP  f �"PC� PC � PDM � ������

Applying RA to subsystemWREC�
� excluding Pow� PLP � and Reac� � variables

are considered important� They are�

WREC�
 f �V olt��"PPP� �WPP� �WSUC�

� ������

Finally� applying RA to subsystem Reac �excluding Pow� PLP � and WREC�
��

� variables are considered important� They are�

Reac  f �V oids�WLP � PC �Dopler� ����
�
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In this way� the executive output variable Pow is fed by three subsystems that
depend on �� variables�

The other executive subsystem output variable was chosen to be Level� RA
should be applied to this variable in order to look for its dependencies� The
only excluded variable in this analysis will be Pow� The result of this analysis

shows that Level depends on �� variables in the following way�

Level  f �WREC�
�WREC�

�WGDM � V olt��"PPP� �WPP� �

WFW �WSUC�
�"PPP� �WPP� �WSUC�

� V oids� PC� ������

From them� those with the strongest binary relationships with the output are
chosen as intermediate subsystems� They are� WREC�

� WREC�
� and WGDM �

RA should be applied once more to each one of these subsystems� In the
case of subsystemWREC�

� taking into account only the �� variables that Level
depends on and excluding Level� WREC�

� and WGDM � the variables that the
subsystem depends on are�

WREC�
 f �V olt��"PPP� �WPP� �WSUC�

� PC� ������

Applying RA to subsystem WREC�
�excluding Level� WREC�

� and WGDM �� 

variables are considered important� They are�

WREC�
 f �"PPP� �WPP� �WSUC�

�"PPP� � PC� ������

Applying RA to subsystem WGDM �excluding Level� WREC�
� and WREC�

�� �

variables are considered important� They are�

WGDM  f �WFW � PDM � V oids� ������
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Both output variables Pow and Level have two hierarchical levels� The 	rst

one depends on �� input variables ��� di�erent�� whereas the second one
depends on �� input variables ��� di�erent��

W          ReacP    W             W          W          

Pow Level

∆P Volt Voids Volt ∆P W
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Figure ����� Hierarchy of subsystems and input variables for the recirculation
pump trip case�

The number of variables that the system depends on has been reduced
from 
� to ��� However� since several variables are inputs to more than one
subsystem� and even one subsystem is common to both output variables� i�e��

subsystem WREC�
� the total reduction is from 
� to �
� This means that the

system can be qualitatively represented with less than one third of the original
number of variables�

Figure ���� represents the hierarchical arrangement of subsystems and input
variables for the recirculation pump trip case� As in the previously analyzed
full�power steady�state case� some subsystems coincide with true physical

subsystems of the model� They are the �ows in the recirculation loops number
� and �� WREC�

and WREC�
� respectively� Their numerical equations depend

on the pressure drop due to the pumps� "PPP� and "PPP� � the suctioned and

pumped �ows in each loop� WSUC�
� WSUC�

� WPP� � and WPP� � and the voltage
of each pump V olt� and V olt��
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Notice also that the subsystem WREC�
�recirculation loop � �ow� includes

the input variable "PPP� �recirculation pump � pressure drop�� This happens
because� in this transient� the tripped pump in�uences the remaining pump in
such a way that� while the former shows reversed �ow� the latter increases its

pumping capacity trying to compensate for the lost �ow�

������	 Optimal Masks

It has already been said in the preceding section that the mask parameters will

be the same as those used in the steady state case� The two hierarchies shown
in Figure ���� have only two levels� Thus� applying Optimal Mask Analysis
to each of the identi	ed subsystems� the resulting optimal masks are� for the
lower level 	rst subhierarchy�
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and for the upper level variable Pow itself�
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For the second subhierarchy lower level� they are�

WREC�
 

�
BBBBBB�

tnx V olt� "PPP� WPP� WSUC�
PC WREC�

t� �	t �� � � � � �
t� �	t � � � � � �
t� �	t � �� � � � �
t� 	t � � �� �� � �

t � �
 � � �� !�

�
CCCCCCA

WREC�
 

�
BBBBBB�

tnx "PPP� WPP� WSUC�
"PPP� PC WREC�

t� �	t � � � � � �

t� �	t �� � � � � �
t� �	t � � � � �� �
t� 	t � � �� �� �
 �
t � � � �� � !�

�
CCCCCCA

WGDM  

�
BBBBBB�

tnx WFW PDM V oids WGDM

t� �	t � � � �

t� �	t � � � �
t� �	t � � �� �
t� 	t �� �� � �
t �� � � !�

�
CCCCCCA

and for the upper level executive variable Level�
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Notice that once again� two additional variables� WLP and WPP� � have been

dropped in the process�

����� Feedwater Controller Failure

This transient begins when the feedwater controller su�ers a failure that causes
the feedwater pumps to inject ��� , of their nominal value into the reactor�
The main di�erence between the previously analyzed recirculation pump trip

and this transient is that� whereas the former produced a new reactor steady
state without any emergency actions� the latter is progressive and concludes
with a reactor emergency shutdown�

The feedwater control failure is produced by an error in its set point values�
or by the control itself when interpreting the signal of the feedwater demand�
The primary e�ects that this transient produces are� an increase in the core

inlet water subcooling� and an increase in the reactor water level due to the
increment in the feedwater �ow� and also an increase in the reactor thermal
output power due to a reduction in the core voids produced by the subcooled
refrigerant� Secondary e�ects have to do with the core temperature� the reactor

pressure� an emergency stop� a core power excursion� and a series of emergency
actions in the steam line such as� turbine trip� opening of the steam bypass�
and opening of the relief valves�

During the transient initial phase� the water level and the pressure
controllers react in an integrated way by sending a reduction signal to the
feedwater controller� trying to reduce pressure� water level� and thermal output

power� However� since the feedwater controller is stuck at ��� , of its nominal
value and no automatic actions are available that would counter this e�ect� all
these variables will continue rising� At this point the operator could take some

manual actions to overcome the problem� or at least to reduce its impact�
if only he or she were able to know what is really going on� During the
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second phase� pressure� water level� core temperature� and thermal output

power will continue rising� In the control room� the operator will probably
be concentrating his or her attention on the main variable indicators �water
level� core temperature� and thermal output power�� while ignoring the acoustic

alarms� the blinking lights� and the remaining indicators� The operator knows
that somehow the reactor is getting 	lled with water� but runs out of time
and has no way of knowing that the real cause is a failure in the feedwater
controller� Thus� the operator will not take any action at all�

In the 	nal phase of the transient� the reactor will be automatically shut
down due to one or both of the following two conditions� thermal output power

equivalent to ��� ,� and reactor water level reaching the maximum tolerable
level� depending on the error magnitude of the feedwater controller� In this
case� with an error of �� ,� the latter condition is reached 	rst� At this point�
the Reactor Protection System takes the following emergency actions�

� Turbine trip� The inlet turbine valves are closed impeding the steam
from being vented�

� Reactor emergency shutdown �Scram�� The control rods are pushed into
the core injecting a great amount of negative reactivity� thereby shutting
down the reactor�

� Steam bypass opening� Since the steam cannot be vented through the

turbine anymore� the reactor pressure undergoes a signi	cant increase
that forces the steam bypass valves to open at their maximum capacity�

� Relief valves opening� The steam bypass alone is not capable of venting
the accumulated steam� Thus� to reduce the pressure� the steam relief
valves open�

With these conditions� the reactor water level is 	rst reduced due to the turbine
trip� and then augmented due to the swelling produced by the relief valves
sudden reactor depressurization� The reactor thermal output power su�ers a
continuous increase during the initial and second phases of the transient due to

an increase in the core voids produced by the subcooled water� Then suddenly�
in the 	nal phase and due to the turbine trip� it su�ers a tremendous increase
of about ��� , �power excursion� that is mitigated by means of the emergency

shutdown�

The entire transient takes about �� seconds� the last �� seconds of which

correspond to the 	nal phase� i�e�� the stabilization time after the emergency
shutdown� The transient analysis is normally carried out by the operators in
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a post�accident condition� Each acoustic alarm and each blinking emergency

light must be individually recognized and reset to know if the alarm condition
is over� At the end of this process� the operators will notice that the
lights corresponding to the feedwater controller cannot be turned o�� i�e�� the

condition that turned them on is not over� and will identify this controller as
the transient triggering component� In this way� the operators 	nally conclude
that the reactor su�ered a feedwater controller failure� a known operational
transient that allows a fast reactor restart� once the faulty component has been

	xed or exchanged�

However� if during the 	rst �� to �� seconds� the operators� or some

FMS that reports its 	ndings to them� were able to identify� characterize�
and analyze the transient� it would be possible for the operators to avoid
the emergency shutdown by taking manual actions directly on the feedwater
control�

����	�
 Excitation

The excitation process of this transient is very similar to that of the
recirculation pump trip� and consists of provoking the same transient with
variable intensity in the forward and reverse directions� Once more� the time
constants are considered to be the same that were used in the simulation of the

full�power steady state� However� this is not a sudden transient� but a slowly
increasing transient that can indeed be inductively discovered by data analysis�
and consequently� that can be prevented by a FMS of the type presented here�

Things start out as in the previous case� i�e�� at full�power steady state� At
time step 
�� the reference value of the feedwater �ow control is set to� and
stuck at ������
 kg�sec� representing a �� , increase of the original steady

state value of ���
��� kg�sec� causing an increase in the feedwater �ow that
reaches ��� ,� The transient takes about 
� seconds from the beginning to
immediately before the emergency shutdown is initialized� Thus� at time step
��
 �� time steps before the emergency shutdown�� the reference value of the

feedwater �ow controller is reset to its original value� This reverse transient
takes another 
� seconds until the original steady state is reached� Then� at
time step �
�� the forward transient is repeated� and at time step ���� the

reverse transient is repeated� and so on� in such a way that every ��� time
steps a forward transient should start� The simulation was run along ����
time steps� and the results were stored in the ��� � failure raw data matrix�

This procedure was repeated twice� each with a di�erent value for the
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increment of the feedwater �ow control reference WFWref
� The values are

�� , and � ,� corresponding to feedwater �ows of ���
��� kg�sec ���� ,�
and ������� kg�sec ���� ,�� respectively� The results of these simulations were
stored in the ��� � failure raw data matrix and in the ��� � failure raw data

matrix� The three raw data matrices were combined into one� in such a way
that� once recoded� only the occurrences of those states that were not present
in the ��� , failure raw data matrix were included� This matrix is known as
the combined failure raw data matrix� and constitutes the measurement data

of the qualitative model�

In the 	rst case� the transient takes about �� seconds� whereas in the second

case it takes about �� seconds��� In both cases� the reverse transient is initiated
some time intervals before the Scram emergency shutdown� The Scram is
avoided in all three simulations� because� once the shutdown has been initiated�
no reverse transient can be attempted any longer�

The Scram is itself an operational transient� and must be separately modeled
and simulated� To this end� three di�erent manual Scram simulations were

carried out �only in the forward direction� since it is impossible to do it in
the reverse direction� along 
�� sampling intervals� and starting at di�erent
power levels at the sampling interval 
�� The 	rst one started at ��� , power�
which is the power limit at which the feedwater controller failure transient

terminates� The second started at ��� , power� and the third at ��� ,
power� Each simulation was stored in a di�erent raw data matrix� Then� the
three matrices were combined into a single matrix as was done in the previous
simulations�

����	�� Variable Selection and Hierarchization

The same 
� variables used in the two previous cases will be considered here�
but this time extracted from the combined failure raw data matrix� All these

variables will once more be recoded into 
 qualitative levels in order to apply
Reconstruction Analysis�

Let us keep variables Pow and Level as the output variables of the executive
subsystems� Thus� as has been done for the full�power steady state and
recirculation pump trip cases� RA should be applied to each of these two

��This is logical since more feedwater �ow will produce a faster increase in the refrigerant
subcooling� that in turn will cause more voids and more thermal output power� taking less
time to reach the limit Scram condition� In contrast� a smaller increment in the feedwater
�ow will produce a transient with a larger duration�
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variables separately� Applying RA to Pow� it is determined that it depends

on �� variables in the following way�

Pow  f �PDM � Reac� TFUEL�WGDM � TMOD�HFW � Scram�

HMIX � V oids� PLP � PTUR�HFGDM �WBY P �WSR�

PC � QRES� PTURref� ������

The variables with the strongest binary relationships with the output will be
considered as intermediate subsystems� They are� PDM � Reac� TFUEL� and

WGDM � To each of them RA should be applied to discover its dependencies�

Let us start with subsystem PDM � In order to apply RA to this subsystem�

only the �� variables that Pow depends on should be considered� and all other
subsystems should be excluded� that is� Pow� Reac� TFUEL� and WGDM � The
result of this operation is that PDM depends on the following four variables�

PDM  f �PTUR�WBY P � PC � PTURref� ������

Performing the same analysis with subsystem Reac �excluding Pow� PDM �
TFUEL� and WGDM �� � variables are considered important� They are�

Reac  f �Scram�HFW � V oids� ������

Applying RA to subsystem TFUEL �excluding Pow� PDM � Reac� and WGDM ��
� variables are considered important� They are�

TFUEL  f �TMOD�HMIX�HFW � PLP � Scram�HFGDM �

V oids�QRES� ������

Since subsystem TFUEL depends on more than 	ve variables� those variables
with the strongest binary relationships with TFUEL itself will be considered
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as intermediate subsystems� In this case� the only variable that shall be

considered a subsystem� as a consequence of its strong binary relationship�
is TMOD�

Applying RA to the new subsystem TMOD� where only the � variables that
TFUEL depends on are considered� and TFUEL and TMOD itself are excluded� �
variables are considered important� They are�

TMOD  f �HMIX � Scram�HFGDM � ������

This means that these three variables will be inputs to the third hierarchical
level subsystem TMOD� whereas the other four variables of Relation ������ will
be inputs to the second hierarchical level subsystem TFUEL�

TFUEL  f �TMOD�HFW � PLP � V oids�QRES� ����
�

Finally� the last subsystem of this level is WGDM � Applying RA to this
subsystem while excluding Pow� PDM � and TFUEL� the following variables are
obtained�

WGDM  f �PTUR�WBY P �WSR� ������

This means that the output variable Pow has three hierarchical levels and
depends on �� input variables ��� di�erent��

For the other output variable� Level� the procedure is the same� Let us
apply RA to this subsystem�

Level  f �WFW � Reac�WGDM � Scram� V oids�WFWref
�

PTUR�WBY P �Dopler�WSR�HFW � PC �WGFBW � ������

�� variables are obtained� From them� those with the strongest binary

relationships will be considered as intermediate subsystems� They are� WFW �
Reac� and WGDM � Thus� RA should be applied once more to these subsystems�
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For the case of subsystem WFW �excluding Level� Reac� and WGDM �� �

variables are considered important� They are�

WFW  f �WFWref
� PC� ������

Applying RA to the second subsystem Reac �excluding Level� WFW � and
WGDM �� � variables are obtained� They are�

Reac  f �Scram� V oids�Dopler�HFW � ������

Finally� applying RA to the third subsystem� WGDM � �excluding Level� WFW �
and Reac�� � variables are obtained� They are�

WGDM  f �PTUR�WBY P �WSR�WGFBW � ������

This means that the output subsystem Level has two hierarchical levels and
depends on �� input variables� whereas the output subsystem Pow has three

hierarchical levels and depends on �� input variables ��� di�erent��

The number of variables that the system depends on has been reduced

from 
� to ��� However� since several variables are inputs to more than one
subsystem� and even two subsystems are common to both output variables�
i�e�� subsystems Reac and WGDM � the total reduction is from 
� to �
� This
means that the system can be qualitatively represented with less than one

third of the original number of variables� i�e�� an analogous reduction to that
obtained in the recirculation pump trip case� in spite of this transient being
much more involved�

Figure ���� represents the hierarchical arrangement of subsystems and input
variables for the feedwater control failure case� As can be seen� there are no
subsystems that coincide with true physical subsystems of the plant� However�

when this transient really occurs� there are two variables that become very
important due to the subcooling increase� they are� TFUEL and TMOD� It
can be noticed �from Figure ����� that these variables are two of the most

important selected subsystems� They depend on enthalpies� reactivities� and
the residual heat QRES� It can also be noticed that some other subsystems
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Figure ����� Hierarchy of subsystems and input variables for the feedwater
controller failure transient�

depend on reactivity variables as well� especially on Scram �the reactivity
introduced by the emergency shutdown��

����	�	 Optimal Masks

The mask parameters will be exactly the same as those used in the two previous
cases� From Figure ����� it can be seen that one of the hierarchies has three
levels� whereas the other has only two� Thus� applying Optimal Mask Analysis

to each of the identi	ed subsystems� the resulting optimal masks are� for the
two 	rst intermediate subsystems PDM and Reac of the left side hierarchy�
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Evidently� variable PC is being dropped� For the lowest hierarchical level
subsystem TMOD�
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For the intermediate level subsystems TFUEL and WGDM �
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Variables PLP and WGFBW are no longer considered important�

For the highest level executive variable Pow�
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Considering the right subhierarchy of Figure ����� the optimal masks for the
subsystems at the intermediate level are�
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again dropping variable WGFBW �

For the top�level executive variable Level�
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����� A FIRRA�Based Continuous Fault Monitoring
System

The idea of building a fully integrated fault monitoring system for the

nuclear reactor was originally presented in �de Albornoz and Cellier� ����b��
Although at that time neither the Reconstruction Analysis methodology
nor the Forecasting All Possible Structures fault monitoring strategy were
implemented yet� it was possible to construct�

�� A semi�continuous fault monitoring system with functions for early
warning� since some potential problems can be discovered before they
become emergencies�

�� A semi�continuous transient discovery system for quick detection of

evolving emergencies� The transient discovery system was able to point
out which of the subsystems were causing the problem� but was not
able to analyze the precise nature of the anomaly� The on�line system

operated with the optimal masks of the properly functioning plant
exclusively� i�e�� there were no masks for the transient conditions�
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�� An o��line transient characterization and identi	cation system used for

post�mortem analysis�

That approach was only the 	rst step� Since operational� non�operational�

and serious transients often call for a decision to initiate a mitigation or
emergency procedure within a few seconds� there is no way that a semi�
continuous FIR�RA�based FMS could possibly aid the decision making process
at such a time scale� Thus� it is essential for the FMS to be able to operate

on�line and in a continuous�time way�

The on�line� continuous�time FIR�RA�based FMS that is presented here

includes� beside from the previous three functions� procedures supporting the
following tasks�

�� Early warning�

�� Fault detection�

�� Fault isolation�

�� Fault characterization�


� Fault Diagnosis�

�� Fault Analysis�

Since plant safety is and must always be the highest priority� the only
function o�ered by the FMS is that of presenting its 	ndings to the human

operators� trying to help them in their decision making process� This is
accomplished by an early discovery of what transient is really going on
�providing a con	dence measure of its own prediction� while pointing out to

its most probable causes�

The Forecasting All Possible Structures fault monitoring strategy will be
used� thus� it is hoped that each of the three qualitative models would

produce a decent prediction if the actual behavior of the reactor coincides
with the behavior represented by the model� and a poor prediction when the
aforementioned coincidence is not present�

The FMS will detect that a transient is taking place because the optimal
masks no longer represent correctly the behavior of the system� An error

threshold alarm matrix detects that the executive FIR�s forecasting process
contains too many errors� The comparison between the numerical variables
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and the forecast variables provide the values for the error matrix� The alarm

matrix reads those values and triggers the alarm if a combination of consecutive
incorrect forecasts and saturated states occurs� Once the executiveFIR�s alarm
is triggered� the FMS proceeds downward to the next hierarchical level and

checks the alarm matrices of the subsystems to try to determine which of them
might have caused the transient to occur� Once a transient has been detected�
the FMS will switch to the model that best represents the new situation�

If a single subsystem FIR triggers an alarm that is not picked up by the
executive FIR�s alarm matrix as well� the FMS is facing a small failure that
eventually could cause the executive FIR to start the general alarm� This

failure should be presented to the operators as an early warning to avoid the
possibility of an operational transient later on� that might then lead to an
unnecessary reactor shutdown�

The transients selected to demonstrate� in this thesis� the detection
capabilities of the FMS are� beside the normal operation full�power steady
state� a recirculation pump trip� and a feedwater controller failure� These three

models have already been characterized in the preceding sections�

������
 Fault Monitoring of the Full�Power Steady State

In this section� the normal operation full�power steady state is maintained

along �
�� sampling points� Since there is no transient scheduled� what can
be seen in Figures ���
 and ���� is how well the FIR�RA�based FMS has
characterized the harmonic oscillations of fairly long period around the steady
state� The continuous line represents the quantitative reactor model� whereas

the dashed line represents the regenerated qualitative FIR model output�

These aforementioned 	gures represent the two executive subsystem

variables Pow and Level� i�e�� those that trigger the general detection alarm���

depicted in Figure ����� corresponding to the same time points of �normal
reactor operation with harmonic perturbations��

Notice the extraordinary performance of the qualitative model that
accurately follows its quantitative counterpart� This accuracy of the qualitative
models will prove essential for the detection and identi	cation of the reactor

operational transients�

��Graphics for the alarms associated with the executive subsystems or lower level
subsystems are not presented since no alarm will be triggered during this simulation�
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Figure ����� Real vs� forecast executive Level subsystem variable�

������� Fault Monitoring of the Recirculation Pump Trip

Departing from a full�power steady state� a recirculation pump trip was

initiated� in the numericalmodel� at time step 
�� The graphics of Figures ����
and ���� represent the two executive subsystem variables Pow and Level�
respectively� corresponding to the same time points of the �combined �ow
recirculation pump trip��

As can be seen in these two graphics� the quantitative variables are
accurately followed by their qualitative counterparts� which means that the

transient has been properly characterized� The qualitative model is able to
perform splendid predictions of the thermal output power and water level
during a recirculation pump trip operational transient�

In Figures ���� and ���� the real and forecast recirculation �ows are
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Figure ����� Real vs� forecast executive Level subsystem variable�

compared� Noticed that while the �ow in the 	rst loop becomes negative
�reversed �ow�� the �ow in the second loop is increased to its maximum� As

a matter of fact� in these four graphics a transition between two qualitative
models has been carried out� from the full�power steady�state model� to the
recirculation pump trip model� The detection process is carried out by the
former model� whereas the recognition process is carried out by the latter

model�

From Figure ����� where the error and alarm matrices of the executive

subsystems Pow and Level are depicted� it can be observed that the Pow
variable detects the anomaly �� sampling steps later� however� no alarm is
triggered since the other variable Level reacts very slowly since the total

amount of water in the reactor takes some time to change� Thus� the threshold
built into the construction of the alarm matrix is not immediately reached by
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the observed anomaly�

The second executive variable Level detects the transient after �� sampling

intervals� i�e�� at sampling interval ��� The detection general alarm is triggered
when both executive variables� at the same time� present three consecutive
error predictions� Thus� the detection general alarm is triggered at time step
��� This means that the FMS is able to detect a misbehavior ��
 seconds after

it has been initiated- This represents a very good performance even compared
to a quantitative FMS�

The transient was 	rst detected by the WREC�
�recirculation loop � �ow�

subsystem� This subsystem is directly related to the transient through
the "PPP� �pressure drop� and WSUC�

�suctioned �ow� variables in the

recirculation circuit� Figure ���� shows the error and alarm matrices of the
WREC�

subsystem output variable� corresponding to the left subhierarchy in
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Figure ����� Error and alarm matrices of the FMS executive subsystems during
detection of the recirculation pump trip transient�

Figure ����� It can be observed that the transient is 	rst detected only 	ve

sampling intervals after its beginning� at time steps 

 and 
�� and then an
obviously bad forecast accidentally produced a �good forecast� �a � error
condition�� still impeding the three consecutive errors needed to start the
intermediate and high�level subsystem alarm� which is 	nally triggered at

sampling interval ���

At this moment� the subsystem WREC�
has discovered the beginning of

a malfunction� If the transient would have stopped at this point� i�e�� the
magnitude of the reduction in the recirculated �ow would have been of such a
limited magnitude that no other subsystem alarm were triggered as well� the

FMS would have reported its 	nding to the operators in the form of an early
warning message�



��	� The Qualitative Model ���

Error Matrix Alarm Vector

�
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB�

stepn
var error WREC�

�� �
�
 �
�� �
�� �
�� �
�� �

�� ��
�� �
�� �
�� �
�� �
�
 �

�� �
�� �
�� �
�� �
�� �
�� �
�� �
�� �
�� �

�
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCA

�
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB�

alarm

�
�
�
�
�
�
�
�
�
�
�





















�
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCA

Figure ����� Error and alarm matrices of the WREC�
subsystem during

detection of the recirculation pump trip transient�

It should be noticed that the two subsystems WREC�
in the left and right

subhierarchies of Figure ���� are not identical� since the one in the right
subhierarchy depends also on the core pressure PC � This makes its reaction to

the transient slower and more smooth�

The detection alarm in the right subhierarchy is not produced by theWREC�

subsystem output variable� but by WREC�
that also depends on the core

pressure PC � This is the reason for the detection time di�erences between
the executive variables Pow and Level� The detection process on subsystem
WREC�

can be seen in Figure ����� The transient is 	rst detected by this

subsystem at the sampling interval �
� and the subsystem alarm is triggered
three time intervals later� at time step ��� which in turn� triggers the executive
subsystem Level alarm one sampling interval later� at time step ��� and the

general alarm� as has been said before� at time step ���

The subsystems Reac and WGDM �reactivity and steam produced�

respectively� detect the malfunction various sampling intervals later�
Particularly� the reactivity is a�ected by a slight increase in the fuel and coolant
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Figure ����� Error and alarm matrices of the WREC�
subsystem during

detection of the recirculation pump trip transient�

temperatures� and also in the core voids� These two subsystems are a�ected

through the lower plenum pressure PLP variable� The lower plenum pressure
is a�ected by the �ows WSUC and WREC from both recirculation loops� Thus
the subsystem PLP is the one that transmits the transient e�ects into the core�

the upper plenum� and the dome regions�

The transient is considered recognized when one of the qualitative models
running in parallel is able to predict the new behavior of the reactor without a

signi	cant number of errors� i�e�� with the general alarm being untriggered and
the executive subsystems alarms untriggered during at least three consecutive
time intervals� Remember that the predictions of the full�power steady�state

model are now full of errors due to the detection of the transient�

Figure ���� depicts the error and alarm matrices of the executive subsystems

Pow and Level of the recirculation pump trip model� during the recognition
process� As can be seen� the new behavior is 	rst recognized by the new model
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Figure ����� Error and alarm matrices of the executive Pow and Level
subsystems during recognition of the recirculation pump trip transient�
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no more than �� sampling intervals after the accident� however the number of

errors is not stable until �� sampling intervals after the accident� This means
that� although the error condition of the new qualitative model executive Pow
variable disappears at time step �� �the transient is not detected until time

step ���� the general alarm� i�e�� the three consecutive zero error condition in
both executive subsystems� remains triggered until time step ��� that is� ��
sampling intervals after the accident� or ��� seconds after the transient started�

The behavior of the simulated reactor subsystems is a good approximation
of what would be observed in a real reactor under similar circumstances�
In a BWR nuclear reactor confronted with such a transient� WREC�

drops

dramatically to even negative values� i�e�� reversed �ow in the recirculation
circuit� The power Pow reacts immediately� whereas the pressure PC and the
produced steam WGDM decrease much more slowly�

������	 Fault Monitoring of the Feedwater Controller Failure

As in the case of the previous transient� this one starts out from a full�power
steady state� A feedwater controller failure of ��� , of normal demand is
initiated� in the numerical model� at time step 
�� The graphics of Figures ���


and ���� represent the two executive subsystem variables Pow and Level�
respectively� corresponding to the same time points of the �combined feedwater
control failure��
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Figure ���
� Real vs� forecast executive Pow subsystem variable�

As can be seen in these two graphics� the quantitative variables are

accurately followed by their qualitative counterparts� which means that this
transient has also been properly characterized� The qualitative model is once
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Figure ����� Real vs� forecast executive Level subsystem variable�

more able to provide very good predictions of the thermal output power and
water level during a feedwater controller failure operational transient�

In Figures ���� and ����� the real and forecast fuel temperature and
reactivity are compared� In these two graphs� two di�erent transitions between

qualitative models have been carried out� The 	rst one was from the full�power
steady�state model to the feedwater controller failure model� and the second
was from this latter model to the emergency stop Scram model� The detection
and recognition process are the following� The steady�state model detects

that a transient is happening and then� the feedwater model recognizes which
transient it was� In a second stage� this latter model detects a new transient
happening� and the Scram model recognizes which transient it was�
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Figure ����� Real vs� forecast TFUEL subsystem variable�

From Figure ����� where the error and alarm matrices of the executive
subsystems Pow and Level are depicted� it can be observed that the Pow
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Figure ����� Real vs� forecast Reac subsystem variable�

variable detects the anomaly �� sampling intervals later� however� the general
alarm is not triggered because the other executive variable Level detects the

transient only �� sampling intervals after the accident�

Following the same rule of three consecutive error predictions of both

executive subsystems� the detection general alarm is triggered 
� sampling
intervals later� i�e�� at time step ���� This means that the FMS is able to
detect the transient ���
 seconds after it has been initiated�

The transient was 	rst detected by the TFUEL �fuel temperature� subsystem�
This subsystem is directly related to the transient through theHFW �feedwater
enthalpy� and TMOD �moderator�coolant temperature� variables in the core�

Figure ���� shows the error and alarm matrices of the TFUEL subsystem
output variable� corresponding to the left hierarchy in Figure ����� It can

be observed that the transient is 	rst detected �� sampling intervals after its
beginning� i�e�� at time step ��� however� the error condition is not maintained
during three consecutive sampling intervals until time step ��� i�e�� ���� seconds

later�

At this moment� the subsystem TFUEL has discovered the beginning of
the malfunction� If the transient would have stopped at this point� i�e�� the

magnitude of the increase in the feedwater controller set point would have been
of such a limited magnitude that no other subsystem alarm were triggered as
well� the FMS would have reported its 	nding to the operators in the form of

an early warning message� Since this transient usually ends with an emergency
reactor shutdown �Scram� due to a power excursion� a fast early warning of
the developing anomaly may serve to prevent that shutdown�

The detection alarm in the right subhierarchy is triggered by the Reac
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Figure ����� Error and alarm matrices of the FMS executive subsystems during
detection of the feedwater controller failure transient�
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Figure ����� Error and alarm matrices of the TFUEL subsystem during
detection of the feedwater controller failure transient�

subsystem� Notice that this subsystem in the right subhierarchy of Figure ����
is not the same as the one in the left subhierarchy of the same 	gure� The one in
the right side includes also the temperature associated reactivity Dopler input
variable� Thus� it is much more sensitive to changes in the fuel temperature

than its left side counterpart� This explains why the former triggers its
subsystem alarm while the latter does not�

Once more� the transient is considered recognized when one of the
qualitative models running in parallel is able to predict the new behavior of
the reactor without a signi	cant number of errors� i�e�� with the general alarm
untriggered and the executive subsystems alarms also untriggered during at

least three consecutive time intervals� Remember that the predictions of the
full�power steady�state model are now full of errors due to the detection of the
transient�

Figure ���� depicts the error and alarm matrices of the executive subsystems
Pow and Level of the feedwater controller failure model during the recognition

process� As can be seen� the new behavior is recognized by the new model ��
sampling intervals after the accident� at time step ����
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Figure ����� Error and alarm matrices of the executive Pow and Level
subsystems during recognition of the feedwater controller failure transient�
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This means that ���� second after the transient began� the operators are

informed about�

�� At time step ��� ����
 sec�� a developing transient has been detected�

�� At time step ��� ����� sec�� this developing transient has been identi	ed
as a feedwater controller failure�

�� At time step ���� the operator is also informed that the most a�ected
monitorable variables are the fuel temperature TFUEL and the core
reactivity Reac� that in turn have a�ected the thermal output power

Pow and the water level Level� respectively�

�� At the same time step ���� the operator could be presented with the

appropriate strategy to mitigate the transient and to avoid� if possible�
the emergency shutdown�

It should also be noticed that when the emergency shutdown �Scram� is
	nally produced� the feedwater controller failuremodel detects that some other

transient has been initiated� and then the Scram model recognizes the new
behavior as that of an emergency shutdown� This last part of the transient
has not been presented in detail since an emergency stop is easily detected by
the operators in the control room� without the need of the FMS�

Let us suppose� however� that the operator takes into account the results
of the FMS and follows the advice provided at time step ��� ����� seconds

after the beginning of the accident�� i�e�� the correct strategy to mitigate the
transient� thereby avoiding the emergency shutdown� Let us also suppose
that the operator takes �
 seconds between the moment when he or she was
informed and the instant when the corrective action is applied� which in this

case is a change in the setpoint value of the feedwater controller��� �
 seconds
are equivalent to ��� sampling intervals� Then� the corrective action is initiated
by the operator at time step ����

Figures ���� and ���� show the thermal output power and the water level�
respectively� of the original transient with a corrective action taken by the
operator at time step ���� equivalent to ���
 seconds of simulation� and just

� seconds before the emergency shutdown� Since the change in the feedwater
controller setpoint is drastic and instantaneous� the transient is mitigated and
the emergency shutdown is avoided� as can be seen when comparing this two
graphs with those of Figures ���
 and �����

��If this corrective action does not succeed� the transient will continue until the emergency
shutdown is triggered� as was to happen anyway�
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��	 Conclusions

In this chapter� a prototypical implementation of an on�line continuous�
time hierarchically structured Fault Monitoring System for large�scale systems
based on Fuzzy Inductive Reasoning and Reconstruction Analysis was
presented�

Two operational transients �beside the steady�state full�power operation
and the emergency shutdown� Scram�� namely a recirculation pump trip and

a feedwater controller failure� have been detected� characterized� identi	ed�
and analyzed using the Forecasting All Possible Structures approach of the
combined FIR�RA methodology� It is true that the two transients are

completely di�erent� and consequently not very much discriminatory power
was needed to make distinctions between them� however� the important thing
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is that they are identi	ed before a new steady state or an emergency shutdown

condition are reached� i�e�� when operator actions can overcome the problem
or at least reduce its impact� as was demonstrated with the second transient�

It was indicated that such a Fault Monitoring System can be meaningfully
used to help operators of large�scale engineering plants in their decision making
process� specially under emergency conditions because of its capabilities for�


�� early warning� ��� fault detection� 	�� fault isolation� ��� fault

characterization� ��� fault diagnosis� and ��� fault analysis�

The di�culties in constructing such an FMS were also stated� They relate to

the problems of system excitation� variable selection� subsystem identi	cation�
hierarchical ordering of such identi	ed subsystems� and the di�culties that
stem from the need to identify subsystems in a closed�loop environment�

Besides the FIR�RA�based FMS itself� the other important tools that have
been validated in this chapter are�

� The variable selection and subsystem identi	cation processes by means

of Reconstruction Analysis� that prove capable of drastically reducing
the number of variables� as well as decomposing the overall system into
a hierarchy of identi	ed subsystems�

� The power of the qualitative modeling technique capable of representing
the behavior of a nuclear reactor� including nuclear kinetics and
thermohydraulic e�ects� during normal and abnormal operation� with
just a few masks�

� The Forecasting All Possible Structures fault monitoring approach� which
makes the fault detection and fault recognition processes very fast and
accurate�

Not all the problems explained in this chapter have been completely
overcome yet� however� they have been solved to the extent required for

the task at hand� Whereas we were able to successfully fault�monitor the
envisaged scenario of three di�erent steady states �the original full�power
steady state� the one reached after the recirculation pump trip� and the one
reached after the emergency shutdown�� two operational transients� and one

emergency shutdown� we cannot claim that we have solved the problem of
building a FMS that could be used to fault�monitor a wide palette of di�erent
operational transients� However� this was not the purpose� The goal was

that of demonstrating that the combination of the Fuzzy Inductive Reasoning
and Reconstruction Analysis techniques results in a powerful methodology �at
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least as powerful as Neural Networks� for qualitative simulation of real physical

processes�
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Chapter 	

Summary and Future Research

The objective of this chapter is not that of providing detailed conclusions of
every single issue treated in this dissertation� since every chapter includes a

conclusions section where these aspects were mentioned� but to summarize the
results obtained� stress the main contributions of this research e�ort� mention
how the techniques that were presented here can be further improved� and
outline the characteristics and possible solutions to the problems that remain

unsolved� Hence this chapter explains what has been accomplished� what goals
have not been reached� and how the research might be continued in the future�

To this end� let us remember the motivation and objectives of this research�
The motivation of this thesis was to help bridge the gap between the two
worlds of quantitative computation and qualitative reasoning� Following this
motivation� the objectives were stated as�

�� The development of a combined quantitative�qualitative modeling and

simulation methodology to be applied to continuous�time dynamic
processes�

�� The development and application of qualitative methodologies to solve

information overload problems during normal and abnormal operation of
quantitative complex large�scale systems�

���
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�� The construction of a Fault Monitoring System based on the

aforementioned combined quantitative and qualitative methodology�
capable of mimicking the human assessment process when detecting�
characterizing� identifying� diagnosing� and analyzing faults�

We argue that that these three objectives have been accomplished� since a
powerful methodology capable of qualitatively fault monitoring quantitative

large�scale systems in real�time has been developed and shown to be e�ective�

�� Summary of Results

In Chapter �� the Fuzzy Inductive Reasoning �FIR� methodology was

introduced and explained� The main characteristics of this methodology can
be summarized as follows�

� No information is lost in the fuzzi	cation and defuzzi	cation processes�
� The qualitative models that represent the behavior of dynamic systems
are always very simple�

� Inductive reasoning allows qualitative models to treat time as a

continuous �quantitative� variable� This is of primary importance if
modeling and simulation of mixed quantitative and qualitative systems
is to be attempted�

� The technique can be applied to any system available to experimentation
and observation� Inductive reasoning is fully based on behavior� thus�

there is no need for knowing the internal structure of the system�

� The methodology contains an inherent model validation mechanism
inside its qualitative simulation engine� which prevents it from reaching
conclusions that are not justi	able on the basis of the available facts�

� Inductive reasoners operate internally in a qualitative fashion just like
knowledge�based reasoners� Therefore� it is possible to apply meta�
knowledge to improve the performance and quality of the inference

engine� and it is also possible to trace back the reasoning process if
desired�

In Chapter �� the basis for the design of a FIR�based Fault Monitoring
System �FMS� was presented� The resulting FMS proved capable of detecting�
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isolating� characterizing� identifying� diagnosing� and analyzing developing

anomalies that can be considered faults or structural changes� depending on
the dynamic system monitored� Some practical examples of the application
of a FIR�based FMS were also presented to demonstrate the practicality

of the Qualitative Model Library and the Forecasting All Possible Structures
fault monitoring approaches when dealing with dynamic systems and variable
structure systems� respectively�

The aircraft example had two objectives� On the one hand� the intention
was that of demonstrating that a FIR�based FMS using the Qualitative Model
Library fault monitoring approach� can be used as a watchdog autopilot to

determine when a structural malfunction occurs� to hypothesize about the
nature of this malfunction� and to decide upon a global strategy that allows to
operate the quantitative aircraft model under the modi	ed �ying conditions�
On the other hand� the intention was that of demonstrating the enhanced

discriminatory power and the improved forecasting capabilities of a fuzzy
inductive reasoning FMS in comparison with a crisp inductive reasoning FMS
when applied to this problem�

The implementation of the Forecasting All Possible Structures approach
demonstrated that the FIR�based FMS methodology is a powerful tool for
structure characterization and identi	cation in variable structure systems� The

parallel forecasting of all possible structures enhances the previously used
Qualitative Model Library scenario�

Two examples have been presented� a �fairly simple� two�water�tank
problem� and an electrical circuit model containing three switches� The latter
example was a very hard problem� and it is therefore proposed as a benchmark
problem for structure identi	cation by means of qualitative algorithms and

codes� The results shown con	rm that the combination of a FIR�based
supervision and control system on�line with a quantitative dynamic system
or VSS is a powerful tool that should be considered when qualitative fault

monitoring of quantitative dynamic processes is to be attempted�

In Chapter 
� the Reconstruction Analysis �RA� methodology has been
introduced� and demonstrated to be a valuable tool for subsystem identi	cation

and variable selection through causality analysis and re	nement procedures�
Reconstruction Analysis has been shown to be a well suited General Systems
Problem Solver �GSPS� level � tool to be combined with FIR� Some of its

properties are�

� RA is fully compatible with the previously developed FIR methodology�
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� Some functions of FIR such as recode� behavior� fbehavior� and iomodel

are also used in RA�

� FIR recodes the original behavior trajectories and feeds RA with this
data� RA� by means of the Optimal Structure Analysis techniques�

searches for suboptimal structures that can be considered as subsystems�
and constructs a temporal causality hierarchy with these subsystems�
Finally� RA feeds FIR with these subsystems� i�e�� sets of variables� which�

in turn� will construct qualitative models by means of the Optimal Mask
Analysis� and carry out the reasoning process�

� Since both methodologies �FIR and RA� use the same recoded

information and complement each other in the way described in the
previous step� they can be considered as two facets of one and the same
methodology�

In Chapter �� a satisfactory comparison between Optimal Structure Analysis
on the one hand� and Optimal Mask and Correlation Analyses on the other�
gave us con	dence that Reconstruction Analysis� and the heuristic recipes that
have been designed around this methodology� constitute a sound and powerful

tool for the selection and causal grouping of variables� i�e�� Optimal Structure
Analysis can be used as an alternative to Optimal Mask Analysis for 	nding
high�quality qualitative models� It was also noted that the computational
complexity of the Single Re	nement algorithm used to determine the minimum

set of meaningful variables is proportional to n�� where n denotes the number
of variables in the system�

In Chapter �� a prototypical implementation of an on�line continuous�
time hierarchically structured Fault Monitoring System for large�scale systems
based on Fuzzy Inductive Reasoning and Reconstruction Analysis was
presented�

Two operational transients of a Boiling Water Nuclear Reactor �BWR��
beside from the full�power steady�state operation and the emergency shutdown�

Scram� namely a recirculation pump trip and a feedwater controller failure� have
been detected� characterized� identi	ed� and analyzed using the Forecasting All
Possible Structures approach of the combined FIR�RA methodology� It is true
that the two transients were completely di�erent� and consequently not much

discriminatory power was needed to make distinctions between them� however�
the important point is that they were identi	ed before a new steady state or an
emergency shutdown condition were reached� i�e�� when operator actions can

still overcome the problem or at least reduce its impact� as was demonstrated
with the second transient�
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It was also indicated in the same chapter� that such a Fault Monitoring

System can be meaningfully used to help operators of large�scale engineering
plants in their decision making process� specially under emergency conditions�
because of its capabilities for� 
�� early warning� ��� fault detection� 	��

fault isolation� ��� fault characterization� ��� fault diagnosis� and ���

fault analysis�

�� Major Contributions of This Thesis

The major contributions of this thesis can be looked at from two di�erent
perspectives� from the point of view of advancing the methodology� and from
the point of view of its applications� The contributions relating to the former
perspective can be summarized as follows�

�� Enhancement of the Fuzzy Inductive Reasoning methodology by adding
the necessary capabilities to deal with large�scale systems� i�e�� for
working with a large set of variables representing information that may
be redundant and�or di�cult to discriminate�

�� Development of a mixed quantitative�qualitative modeling and simula�
tion environment� This task was done in cooperation with two other

doctoral students as mentioned in the introductory section of Chapter ��

�� Comparison between a crisp and a fuzzy inductive reasoner�

�� Implementation and application of the Reconstruction Analysis method�
ology to reduce� discriminate� and divide redundant information� i�e�� to

perform a temporal causality analysis among a large number of behav�
ior variables� to 	nd minimum sets of signi	cant variables necessary to
characterize di�erent subsystems�


� Development of a combined Fuzzy Inductive Reasoning and Reconstruc�
tion Analysis methodology for qualitative modeling and simulation of
continuous�time large�scale processes�

�� Comparison of the capabilities of the Optimal Mask Analysis of the FIR
methodology and the re	nement procedures of the Optimal Structure

Analysis of the Reconstruction Analysis for characterizing system
behavior in qualitative terms� i�e�� for qualitative modeling�

�� Design of a tool capable of reducing a large�scale system to a hierarchy
of subsystems� each one represented by a separate FIR optimal mask�
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From the point of view of the applications of the methodology� the

contributions are�

�� A powerful qualitative tool for detecting� identifying� and characterizing
di�erent structural modes in quantitative variable structure systems�

�� Use of the combined Inductive Reasoning�Reconstruction Analysis
methodology to detect� identify� characterize� and analyze misbehaviors

related to malfunctions� faults� transients� and�or structural changes in
quantitative continuous�time large�scale physical processes�

�� Combination of a qualitative fault monitoring and decision support
system and a quantitative large�scale system for decision support under

real�time constraints�

�� Future Research

Several problems remain unsolved� Some of them have to do with the combined
methodology developed in this thesis� whereas others are concerned with the

fault monitoring aspects of the application� Those problems related to the
former aspect are�

� The landmarks between qualitative classes are normally set in such a way
that all classes contain the same number of observations� however� this
approach turned out to be inappropriate in some cases� thus� alternative

techniques for establishing suitable landmarks should be proposed�

� Depending on the complexity and the non�linearity of the system
under study� the optimal mask proposed by the Optimal Mask Analysis
is not always the mask with the best forecasting capability� This

obviously has to do with the implemented quality measure� and for this
reason� complementary quality measures are currently being proposed
and implemented by other students of the same research group� The

true relationship between the quality of a mask and its forecasting power
needs to be explored and quanti	ed�

� One of the current lines of research in FIR deals with the introduction
of additional information about qualitative knowledge of the variables�

Although fuzzy recoding does not lose any information up front� as was
shown� this does not guarantee that the total information available will
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be utilized in the process of fuzzy inferencing� It may make sense to

introduce redundancy into the qualitative data model in order to reduce
the risk of losing information later on in the inferencing process� To this
end� two di�erent possibilities are now being explored�

i� Causal Inductive Reasoning �CIR�� a new approach to inductive
reasoning based on FIR� recodes quantitative values into qualitative
quadruples instead of triples� Each quadruple contains the same
three pieces of information as used in FIR� plus a qualitative

derivative value that indicates whether the recoded variable is
currently increasing� decreasing� or staying at about the same level�

ii� The potential inputs in a mask candidate matrix do not need to
be numbered since their function is solely to point out� which
are the m�input variables that may possibly a�ect the behavior
of the m�output variable of the mask� however� it would make

sense to introduce an additional value� e�g� ����� to denote required
inputs� In this case� only masks would be evaluated that contain the
variables identi	ed by this marker in the mask candidate matrix�
reducing the overall search e�ort�

With respect to the problems derived from the fault monitoring application of

the combined FIR�RA methodology� the following aspects should be tackled
in the future�

� The applicability of the Forecasting All Possible Structures fault
monitoring approach is limited by the number of qualitative models that
can be computed at the same time in parallel� One solution that could
be studied is the possibility of grouping related faults in such a way that

a single model may represent the behavior of more than one fault�

� Several aspects of the fault monitoring strategies still need to be
automated� as for example the heuristic rules for the reduction of the

number of variables proposed in Chapter �� and the setting of the
threshold values for the moving average error counters�

� It was mentioned in Chapter � that� beside from Expert Systems and
Neural Networks� �FIR has already been successfuly compared against

Expert Systems and Neural Networks in the biomedical domain�� there
are some other qualitative methodologies for fault monitoring of physical
processes such as QSIM and QUALSIM� A set of benchmark problems

should be created in order to carry out a detailed comparison between
FIR�RA and the other methodologies�
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Not all the problems explained in this thesis have been completely overcome

yet� however� they have been solved to the extent required for the task at hand�
Whereas we were able to successfully fault�monitor the envisaged scenario of
four di�erent examples� we cannot claim that we have solved the problem

of building an FMS that could be used to fault�monitor a wide palette of
di�erent dynamic systems� However� this was not the purpose� The goal was
that of demonstrating that the combination of the Fuzzy Inductive Reasoning
and Reconstruction Analysis techniques results in a powerful methodology �at

least as powerful as Neural Networks� for qualitative simulation of real physical
processes�

The research e�ort will continue� While there remain many problems
yet to be addressed� we are quite excited about the possibilities of the
chosen approach� We believe strongly that the FIR�RA methodology o�ers
great opportunities in tackling a number of �hot� issues in applied Arti	cial

Intelligence� di�cult issues that� to this date� other methodologies have not
been able to master�
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