














Index

1 Introduction 1

1.1 Motivation for the Research . . . . . . . . . . . . . . . . . . . . 3

1.2 Selection of the Methodology . . . . . . . . . . . . . . . . . . . 5

1.3 Aims and Scope of the Thesis . . . . . . . . . . . . . . . . . . . 8

1.4 Structure of the Thesis . . . . . . . . . . . . . . . . . . . . . . . 11

2 The Use of Qualitative Reasoning in Biomedicine 13

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2 Qualitative Methodologies for Reasoning with Biomedical Systems 16

2.2.1 Expert Systems . . . . . . . . . . . . . . . . . . . . . . . 16

2.2.2 Neural Networks . . . . . . . . . . . . . . . . . . . . . . 20

2.2.3 Qualitative Physics . . . . . . . . . . . . . . . . . . . . . 22

2.2.3.1 Qualitative Simulation . . . . . . . . . . . . . . 22

2.2.3.2 Qualitative Physics Based on Confluences . . . 23

2.2.3.3 Qualitative Process Theory . . . . . . . . . . . 24

2.2.4 Fuzzy Systems . . . . . . . . . . . . . . . . . . . . . . . 25

2.2.5 Inductive Reasoning . . . . . . . . . . . . . . . . . . . . 27

2.3 Aims of Qualitative Research . . . . . . . . . . . . . . . . . . . 28

2.4 Biomedical Applications . . . . . . . . . . . . . . . . . . . . . . 32

i



ii INDEX

2.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3 Fuzzy Inductive Reasoning Methodology 37

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.2 The Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.2.1 Fuzzification . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.2.2 Qualitative Modeling . . . . . . . . . . . . . . . . . . . . 49

3.2.2.1 Masks as Qualitative Models . . . . . . . . . . 50

3.2.2.2 Determination of the Optimal Mask . . . . . . 53

3.2.3 Qualitative Simulation . . . . . . . . . . . . . . . . . . . 59

3.2.4 Defuzzification . . . . . . . . . . . . . . . . . . . . . . . 64

3.3 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4 Mixed Quantitative/Qualitative Modeling and Simulation 69

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.2 Importance of a Mixed Technique . . . . . . . . . . . . . . . . . 70

4.3 Mixed Quantitative/Qualitative Technique . . . . . . . . . . . . 72

4.4 Position Control System Application . . . . . . . . . . . . . . . 78

4.4.1 Building the Fuzzy Inductive Model . . . . . . . . . . . . 81

4.4.1.1 Fuzzy Recoding of the Hydraulics . . . . . . . . 81

4.4.1.2 Fuzzy Optimal Mask of the Hydraulics . . . . . 82

4.4.1.3 Fuzzy Forecasting and Signal Regeneration . . . 84

4.4.2 Mixed Modeling and Simulation . . . . . . . . . . . . . . 86

4.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

5 Difficulties in Biomedical Applications 91

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91



INDEX iii

5.2 Problems of Biomedical Applications . . . . . . . . . . . . . . . 92

5.3 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

6 Qualitative Control of Biomedical Systems 99

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

6.2 Anesthesiology . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

6.2.1 About Anesthesiology . . . . . . . . . . . . . . . . . . . 102

6.2.2 Background: ANNAD . . . . . . . . . . . . . . . . . . . 103

6.2.2.1 Artificial Neural Network Patient Model . . . . 103

6.2.2.2 Artificial Neural Network Controller . . . . . . 104

6.2.2.3 Closed–loop Control . . . . . . . . . . . . . . . 105

6.2.3 FIRAD . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

6.2.3.1 SAPS Patient Model . . . . . . . . . . . . . . . 105

6.2.3.2 SAPS Controller Model . . . . . . . . . . . . . 108

6.2.4 Comparison of Results from the two Modeling Method-
ologies . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

6.2.5 Summary of the Relevant Issues . . . . . . . . . . . . . . 116

6.3 Cardiovascular System . . . . . . . . . . . . . . . . . . . . . . . 119

6.3.1 About the Cardiovascular System . . . . . . . . . . . . . 119

6.3.2 Hemodynamical System . . . . . . . . . . . . . . . . . . 122

6.3.3 Central Nervous System Control . . . . . . . . . . . . . . 122

6.3.3.1 Heart Rate Controller . . . . . . . . . . . . . . 128

6.3.3.2 Peripheric Resistance Controller . . . . . . . . . 132

6.3.3.3 Myocardiac Contractility Controller . . . . . . 133

6.3.3.4 Venous Tone Controller . . . . . . . . . . . . . 139

6.3.3.5 Coronary Resistance Controller . . . . . . . . . 142



iv INDEX

6.3.3.6 Comparisons of NARMAX vs. FIR Controller
Models . . . . . . . . . . . . . . . . . . . . . . 145

6.3.4 Cardiovascular Closed–Loop System . . . . . . . . . . . . 149

6.3.5 General Comments About NARMAX and FIR Method-
ologies . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

6.3.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . 157

7 Limitations to Predictability of Behavior Using FIR 161

7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161

7.2 The Causality Horizon . . . . . . . . . . . . . . . . . . . . . . . 162

7.2.1 Determination of the Mask Depth . . . . . . . . . . . . . 163

7.2.2 Linear System . . . . . . . . . . . . . . . . . . . . . . . . 164

7.2.3 Biomedical System . . . . . . . . . . . . . . . . . . . . . 171

7.2.4 Summary of the Relevant Issues . . . . . . . . . . . . . . 177

7.3 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179

8 Dealing With Incomplete Data Records 181

8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181

8.2 Missing Data Option . . . . . . . . . . . . . . . . . . . . . . . . 182

8.3 Limits to Predictability . . . . . . . . . . . . . . . . . . . . . . . 186

8.3.1 Biomedical Application . . . . . . . . . . . . . . . . . . . 186

8.3.1.1 Adjacent Missing Data . . . . . . . . . . . . . . 188

8.3.1.2 Scattered Missing Data . . . . . . . . . . . . . 191

8.3.2 Linear Model Application . . . . . . . . . . . . . . . . . 193

8.3.2.1 Adjacent Missing Data . . . . . . . . . . . . . . 196

8.3.2.2 Scattered Missing Data . . . . . . . . . . . . . 196

8.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198





vi INDEX



List of Figures

3.1 Membership Functions of the Systolic Blood Pressure. . . . . . . 43

3.2 Flattening of Dynamic relationships by Use of a Mask. . . . . . 52

3.3 Original and Regenerated Continuous–Time Signal y1. . . . . . 65

3.4 Original and Regenerated Continuous–Time Signal y2. . . . . . 66

3.5 Original and Regenerated Continuous–Time Signal y3. . . . . . 67

4.1 Example of a System Composed of 4 Subsystems . . . . . . . . 73

4.2 Example of a Mixed Simulation Process . . . . . . . . . . . . . . 73

4.3 Hydraulic Motor with a Four–way Servo Valve . . . . . . . . . . 79

4.4 Hydraulic Motor Position Control Circuit . . . . . . . . . . . . . 81

4.5 Validation of Qualitative Model . . . . . . . . . . . . . . . . . . 84

4.6 Comparison between Simulated and Forecast Signals (Open Loop) 85

4.7 Mixed Model of the Hydraulic System . . . . . . . . . . . . . . 86

4.8 Comparison between Simulated and Forecast Signal (Closed Loop) 87

6.1 Feedback Loop Involving Patient Simulator and Drug Controller 104

6.2 Patient Model Measurement Data . . . . . . . . . . . . . . . . . 106

6.3 Controller Model Measurement Data . . . . . . . . . . . . . . . 109

6.4 Comparison RESAC/FIRAD . . . . . . . . . . . . . . . . . . . . 114

6.5 Comparison RESAC/ANNAD/FIRAD . . . . . . . . . . . . . . 117

vii



viii LIST OF FIGURES

6.6 Simplified Diagram of the Cardiovascular System (Adapted
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Chapter 1

Introduction

Qualitative simulation has become a fashionable branch of research in artificial
intelligence. Human reasoning has been understood as a process of mental
simulation, and qualitative simulation has been introduced as an attempt to
replicate, in the computer, facets of human reasoning.

Qualitative simulation can be defined as evaluating the behavior of a system
in qualitative terms (Cellier, 1991a). To this end, the states that the system
can be in are lumped together to a finite (discrete) set. For example, instead of
dealing with temperature as a real–valued quantity with values such as 22.0oC,
or 71.6oF, or 295.15 K, qualitative temperature values may be characterized
as ‘cold,’ ‘warm,’ or ‘hot.’

Qualitative variables are variables that assume qualitative values. Variables
of a dynamical system are functions of time. The behavior of a dynamical
system is a description of the values of its variables over time. The behavior of
qualitative variables is commonly referred to as episodical behavior. Qualitative
simulation can thus be defined as the process of inferring the episodical
behavior of a qualitative dynamical system or model.

Qualitative variables are frequently interpreted as an ordered set without
distance measure (Babbie, 1989). It is correct that ‘warm’ is “larger” (warmer)
than ‘cold,’ and that ‘hot’ is “larger” (warmer) than ‘warm.’ Yet, it is not true
that

‘warm’ − ‘cold’ = ‘hot’ − ‘warm’ (1.1)

or, even more absurdly, that

1



2 Chapter 1. Introduction

‘hot’ = 2 ∗ ‘warm’ − ‘cold’ (1.2)

The approaches to qualitative modeling proposed in the literature vary in how
they derive qualitative rules from either structural knowledge (modeling from
first principles) or behavioral knowledge (modeling from observations). The
approaches to qualitative simulation proposed in the literature vary in how
they propagate qualitative facts through the qualitative rules, i.e., in how they
infer new qualitative knowledge from existing knowledge.

The qualitative modeling and simulation methodology of choice in this thesis
is the so–called Fuzzy Inductive Reasoning (FIR) technique. It is entirely
based on behavioral knowledge. Therefore, the approach is well suited for
dealing with soft sciences, such as biomedical engineering, where the structure
of systems to be modeled is usually either totally or at least partially unknown.

Biomedical Engineering is a research area of fairly recent vintage. According
to Rushmer (Rushmer, 1972), it can be defined as the discipline that applies
principles of science and engineering, as well as technological practices and
methods to characterizing, understanding, and solving medical and biological
problems.

During recent years, the use of analysis and dynamical system modeling
methods to solve biological and medical problems has considerably increased.
These techniques can supply accurate descriptions of complex dynamical
processes, provide ideas for how to improve experimental designs, and
offer means for testing hypotheses. The application of these techniques to
physiological systems can generate a deep and diversified understanding of the
general nature of these systems and of the complex processes that govern them.

Biomedical engineering encompasses three major facets:

• Clinical Engineering deals with the application of engineering and
technology concepts to the improvement of the operation of hospitals and
other health care systems. It is concerned, for example, with questions
of resource management and equipment maintenance.

• Medical Engineering studies the application of engineering and
technology concepts to the development of instrumentation, materials,
diagnostic and therapeutic devices, artificial organs, and other medical
equipment.
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• Medical Computer Science focuses on the application of computer
science concepts and methods to the development of equipment for
diagnosis and therapeutic aid, as well as for routine daily work in
hospitals and nursing homes.

Of course, the borders of the division between the three subareas of biomedical
engineering are not crisp, and there is no reason either why they should be.
Information must flow freely between these three subareas to obtain the most
useful results.

It is the aim of this thesis to illuminate inherent characteristics, limitations,
and problems of soft sciences in general, and of biomedical engineering
in particular. A few of the known problems in biomedical engineering
technology have been solved, and some of the previous limitations of biomedical
engineering technology have been removed. To this end, the fuzzy inductive
reasoning (FIR) methodology has been applied to tackling some practical
biomedical applications of realistic complexity. The solutions that are being
exemplified in this thesis by means of these applications are of a fairly general
nature, and it will be possible to apply the same approaches to a large variety
of other biomedical applications in the future.

This is the first account ever of applying the FIR methodology to biomedical
engineering problems, and we are convinced that we have made a significant
contribution to biomedical engineering research by doing so. We predict that
many more biomedical applications of this technology will be reported in the
future.

In the next sections of this report, the motivation for this research is being
presented as well as a justification of why the FIR methodology was chosen to
accomplish the goals of this work. The aims and scope of the doctoral thesis
are also outlined later in this chapter. Finally, in order to simplify the reading
of this thesis, its overall structure is provided in the last section of the present
chapter.

1.1 Motivation for the Research

The dissertation focuses on the application of fuzzy inductive modeling and
simulation methodologies to the analysis of biomedical systems.

Since qualitative simulation, due to its inherent coarseness, is able to
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deal with uncertainty, it was hypothesized that this methodology should be
well suited for dealing with an application area in which different types of
uncertainties are inevitable.

Biomedical systems exhibit uncertainties with respect to:

• the functional relationships among the variables of the system, which
may be unknown or at least incompletely known,

• the model parameters, which may exhibit a large variation from one
patient to another, and

• the measurement data, which are mostly scarce and often incomplete,
since the patient’s needs and comfort are more important than the
obtaining of reliable data records.

Biomedical systems were studied under two different scenarios:

• Purely qualitative modeling and simulation: The internal
structure of the system is either entirely unknown or at least partially
unknown.

• Mixed quantitative/qualitative modeling and simulation: The
mathematical models of some subsystems are well understood, whereas
the internal structure of other subsystems is unknown. A mixed model
can describe those portions of the overall system that are well understood
by quantitative differential equation models, while other aspects that are
less well understood may be representable in qualitative terms.

Several reasons can be brought forward that may justify the use of qualitative
modeling and simulation in biomedical systems. These can be summarized as
follows:

• The internal structure of biomedical systems is commonly found to be
totally or partially unknown, making it impossible to apply analytical
models. For instance, it is well known that a blood volume increase
within a vascular compartment causes an increase in blood pressure.
However, formulating an exact mathematical model of this relationship
requires a wealth of information that is often not available, such as the
dimensions of different vessels, the visco–elastic characteristics of the
walls, etc.
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• The knowledge of the physiological and biomedical processes is often too
scanty and fragmentary for an accurate mathematical description of their
internal dynamics.

• Knowledge, encoded in a mathematical model, e.g. formulated as a set of
differential equations, cannot easily be translated into useful explanation
and justification mechanisms as they are needed by the end users of these
models, i.e., by the medical personnel.

• Biomedical models, in order to be useful, must have interfaces to the
human users of these models, i.e., the medical personnel, both at the
input side and the output side. It is therefore of vital importance
that these models, at least at their interface points, are compatible
with human reasoning mechanisms. It does not make sense at all to
formulate models that require input data that the medical personnel is
unable to provide, or that generate outputs that are not translatable into
meaningful and applicable biomedical recommendations.

• In biomedical systems, it is often very useful to explore all possible
system behaviors. This requirement can only be satisfied by qualitative
methodologies.

Therefore, qualitative modeling and simulation techniques with their inherent
tolerance for uncertainty and ambiguity were expected to provide an excellent
platform for the simulation of biomedical systems that may be difficult to
model in quantitative terms, and even where quantitative models are available,
qualitative models may constitute an important complement to the more
classical quantitative models.

1.2 Selection of the Methodology

Several qualitative methodologies have been applied to biomedical systems in
the past including expert systems, neural networks, qualitative physics, and
fuzzy systems.

Some of these techniques are knowledge–based, i.e., they rely on structural
knowledge about the internal functioning of the system under study.
Qualitative aspects are brought into these methods by relaxing the quantitative
details of this structural knowledge. For example, a particular quantitative
formula relating two internal variables to each other may be replaced by
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a generalized (qualitative) formula stating that variable y is monotonically
increasing with variable x. In the artificial intelligence literature, these
approaches are often referred to as “modeling from first principles.” They
are essentially deductive modeling approaches.

Other techniques are pattern–based, i.e., they rely on behavioral knowledge
about the external relationships between inputs and outputs of the system
under study. Qualitative aspects are brought into these methods by relaxing
details of the behavioral knowledge. For example, rather than looking at
precise (microscopic) relationships between two quantitative variables, they
look at the more global (macroscopic) relationships between class values of
qualitative variables.

The most widely advocated among the qualitative simulation techniques are
the knowledge–based approaches that were originally derived from the Näıve
Physics Manifesto (Hayes, 1979). Several dialects of these types of qualitative
models exist (de Kleer and Brown, 1984), (Forbus, 1984), (Kuipers, 1986).
They are best summarized in (Bobrow, 1984).

Although in the past two decades some expert systems were successfully
developed to function as automated consultation systems for the diagnosis of
diseases (Shortliffe, 1976; Bratko, 1988), artificial intelligence was not able to
make a significant impact on the health care domain (Uckun, 1992). One
reason for the deficiency of expert systems to deal with many aspects of
biomedical problems is their knowledge–based foundation. Whereas static
(statistical) knowledge about relationships among biomedical variables can
be obtained easily, precise knowledge about the time constants that govern
the dynamic behavior of biomedical systems is rarely available. Consequently,
knowledge–based approaches to biomedical system modeling often fail when
dealing with time–varying phenomena. Also, these approaches are usually in
trouble when confronted with missing data, as they are all too common in
biomedical applications. Although first attempts have been reported that
may indeed, in the future, enable knowledge–based systems to deal with
incomplete and even inconsistent information (Genesereth and Nilsson, 1987),
the proposed non–monotic reasoning techniques are very difficult to apply in
practice, and no large scale engineering applications of these techniques have
yet been reported (Sarjoughian, 1994).

Among the pattern–based approaches to modeling, neural networks are the
most widely acclaimed techniques. Neural networks are more likely to be able
to come up with predictive models. However, also neural networks haven’t
made much of an impact on the health care domain yet. The reasons for their
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inability to deal with biomedical systems adequately are manifold:

• Most neural networks operate on quantitative (real–valued) variables,
rather than on qualitative (enumerated) variables. They are not
naturally compatible with the higher levels of human reasoning, and
it is therefore difficult to provide meaningful interfaces between a neural
network and its medical users.

• Neural networks don’t usually provide much insight into their internal
reasoning processes. A medical doctor will not usually trust a
recommendation made by a program, unless he or she can obtain
a printout of the qualitative reasoning steps that led to this
recommendation. It is thus insufficient to just provide a qualitative
interface while performing the internal computations in a quantitative
fashion.

• Neural networks provide for a natural interpolation/extrapolation
capability. While this is usually a desirable feature, it is quite dangerous
when applied to biomedical systems. Neural networks may predict
behavior or issue recommendations that are not justifiable on the basis
of the available facts. Any model should carry with it a self–assessment
capability that is able to check whether the inherent assumptions behind
the model are met, e.g. whether the model variables are operating in
a range for which the model has been validated. This is even more
important in qualitative modeling. Neural networks don’t usually offer
any self–assessment capabilities at all.

The fuzzy inductive reasoning methodology originally proposed by George Klir
(Klir, 1985), was chosen for developing this dissertation, since it overcomes
many of the problems mentioned earlier both with respect to the knowledge–
based and the pattern–based approaches (Nebot, 1994). Some of the
advantages of this methodology are the following:

• The technique can be applied to any system available to experimentation
and observation. Inductive reasoning is fully pattern–based, thus, there
is no need for knowing the internal structure of the system under study.
In this respect, inductive reasoners are similar to neural networks.

• Inductive reasoners allow the otherwise qualitative models to treat time
as a continuous (quantitative) variable. This is of primary importance if
we wish to model and simulate mixed quantitative/qualitative systems.
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• The methodology contains an inherent model validation mechanism
inside the simulation method, which will prevent it from reaching
conclusions that are not justifiable on the basis of the available facts. In
this respect, inductive reasoners are similar to knowledge–based systems.

• Inductive reasoning operates in a qualitative fashion just like the
knowledge–based reasoners. Although the inductive reasoner is not able,
at this moment, to offer a complete trace back of the full reasoning
process, as expert systems do, it does provide information about the
subset of variables selected for the reasoning process, and it can at least
provide a justification for the predicted output based on the qualitative
states of the selected input variables. Another student of the Universitat
Politècnica de Catalunya is currently working on an extension of the
methodology that will permit, in the future, to provide the user with
a more complete and better comprehensible trace back of the reasoning
mechanisms.

1.3 Aims and Scope of the Thesis

The work developed in this dissertation establishes a contribution to modeling
and simulation efforts in soft sciences, such as biomedical engineering. To this
end, a qualitative methodology based on induction and fuzziness is proposed
that addresses some of the difficulties inherent in dealing with these types of
systems. To illustrate the results obtained in this research effort, two kinds of
biomedical signals are being used:

• Anaesthesia signals used to control the amount of Isoflurane dosage to
be applied to patients during surgical operations. These data records
were measured at the University Hospital of the University of Glasgow
(Scotland) during two different types of surgery: a renal transplant
operation and an abdominal–perineal resection operation.

• Cardiovascular signals from a patient with coronary disease obtained by
means of cardiac catheterization in the Hospital de la Santa Creu i Sant
Pau (Barcelona).

Describing in more detail the purpose of this work, the following aspects can
be mentioned:
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1. Modeling and simulation of mixed quantitative/qualitative
biomedical systems. The main objective here is to be able to simulate
biomedical systems with partial structural knowledge. Subsystems for
which quantitative structural knowledge is available should be modeled
by traditional quantitative techniques, such as differential equation
models, whereas subsystems for which such detailed knowledge is lacking
should be modeled by qualitative techniques.

A position control system involving a hydraulic motor with a four–
way servo valve demonstrates, for the first time, the process of mixed
quantitative and qualitative simulation using fuzzy inductive reasoning
(Cellier et al., 1992, 1994). With this example, it has been possible
to tackle the theoretical challenges of the mixed modeling methodology
without mingling them at once with practical issues of poorly understood
biomedical processes. This work is described in Chapter 4 of this
dissertation.

Subsequently, a biomedical system representing the cardiovascular
control system is being studied. The cardiovascular control system is
composed of the hemodynamical system with a well known structure
comprising the heart and the blood vessels, and the central nervous
system control, with a partially unknown structure, responsible for the
beating of the heart. This work is presented in Chapter 6 of this
dissertation.

2. Qualitative control of biomedical systems. This research, described
also in Chapter 6, has been centered around a biomedical control
application. Fuzzy inductive reasoning is applied to a system for
predicting the right value of an anaesthetic agent to be administered to
patients during surgery. It replicates a human decision making process
(Nebot et al., 1993a).

The main objective here is to address some of the problems that arise
when working with this kind of systems, such as dealing within a single
qualitative model with time constants that are one order of magnitude
apart. It turns out that stiff systems pose difficulties not only to
quantitative simulation attempts, but create serious obstacles also when
dealt with in qualitative terms.

3. Dealing with incomplete measurement data. Modelers of
biomedical systems are often plagued by incomplete data records. When
a set of data is being recorded from a patient in the hospital, a variety
of unexpected circumstances can produce gaps of data not registered by
the computer.
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Qualitative methodologies that cannot deal with missing data values are
therefore quite useless for biomedical applications. The main objective
of this work, explained in detail in Chapter 8 of the dissertation, is
the development of a missing data feature, that makes the qualitative
modeling methodology resilient to missing data values, thereby enabling
the researcher to successfully work with incomplete data sets and to
extract as much information from them as they contain. The feature,
called missing data option, makes it possible to convert incomplete
quantitative data sets to reduced qualitative data sets in order to
derive the best possible qualitative model for prediction of future system
behavior (Nebot and Cellier, 1994b).

4. Elimination of patient–specific behavior. This research focuses on
preconditioning biomedical data to eliminate patient–specific behavior.
In most biomedical applications, such as for instance the control of depth
of anaesthesia of a patient undergoing surgery, it is extremely useful
to have available a model that identifies not only the behavior of one
concrete patient on a specific day during a specific operation, but one that
is able to capture the behavior of a class of similar patients undergoing
similar operations.

In Chapter 9, a systematic way for taking advantage of medical
information obtained from different patient/operation pairs is being
developed. The measured data streams stemming from different such
pairs are being combined in such a way as to allow the synthesis of a
common model. It is expected that this model can be used for an entire
class of similar patients undergoing similar types of surgery (Nebot and
Cellier, 1994a).

5. Limitations to predictability of behavior. In this research, the
concept of a causality horizon is introduced, a conceptual barrier limiting
the predictability of future states of a system under investigation.

Experiences with several applications have shown that the quality of
predictions is not always the same. In particular, it was much more
difficult to obtain even half–way decent predictions for biomedical
applications, whereas the predictions in technical applications were
accurate far beyond our original expectations. This part of the research,
described in Chapter 7 of the dissertation, illuminates and explains this
discrepancy by means of the causality horizon concept.

This concept is directly related to the shape of the cross–correlation
functions between each input with the output of a given multi–input
single–output system and the autocorrelation function of its output. The
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correlation functions can be viewed as measures of causality (Nebot et
al., 1994).

1.4 Structure of the Thesis

This thesis is structured in 10 chapters. The state of the art of qualitative
reasoning applied to biomedical applications is presented in Chapter 2,
providing an insight into the different qualitative methodologies used to this
day for dealing with the problems inherent in biomedical applications.

Chapter 3 describes in detail the Fuzzy Inductive Reasoning methodology.
The foundations of this methodology were laid by Prof. George Klir of the
State University of New York (SUNY) at Binghamton. It has been further
developed and brought to maturity in a joint effort by three Ph.D. students of
the Universitat Politècnica de Catalunya under the guidance of Prof. François
Cellier and Prof. Rafael Huber. The author of this dissertation was one among
these three students. In the interest of completeness and closedness of this
dissertation, the methodology is explained here in full, although the credit for
this development must be shared by all three Ph.D. students. A corresponding
chapter will consequently be present in all three dissertations.

The methodology used for mixed quantitative/qualitative modeling and
simulation is presented in Chapter 4 of the dissertation, where a discussion
of its usefulness for soft sciences is also given. This concept is described
by means of a hydraulic control system example, where the validity of the
proposed approach to mixed modeling and simulation is clearly demonstrated.
Also this research represents a joint effort of all three Ph.D. students.

The next chapters are centered on biomedical systems, starting with
Chapter 5 where the difficulties inherent in dealing with these types of systems
are enumerated and explained in detail.

Chapter 6 focuses on the qualitative control of biomedical systems. Two
vastly different types of biomedical system controllers are described: the
control of the depth of anaesthesia and the part of the central nervous
system that controls the hemodynamical system. The former application
represents a technical (external) controller of a biomedical system, whereas the
latter represents an electro–chemical (internal) control mechanism built into a
biomedical system. The purpose of the former application is the external
control of a biomedical system, whereas the purpose of the latter is that
of modeling a portion of the central nervous system, of understanding its
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functioning, and of predicting its future behavior. The difficulties encountered
when modeling and simulating these two controllers are presented, and the
solutions obtained by applying the fuzzy inductive reasoning approach to these
systems demonstrate the strength of this methodology.

In Chapter 7, some limitations and weaknesses of the FIR methodology, as
it had originally been devised, are presented.

Chapter 8 describes an enhancement of the FIR methodology for dealing
with incomplete data records. To this end, a technique called missing data
option is implemented.

Chapter 9 uses the missing data option to tackle one important problem,
described already in Chapter 7, namely the elimination of patient–specific
behavior.

Finally, Chapter 10 provides a summary of the applicability of this
methodology, lists the major contributions of the dissertation, and presents
an outlook of open problems and possible future research efforts extending the
work presented in this thesis.



Chapter 2

The Use of Qualitative
Reasoning in Biomedicine

2.1 Introduction

The aim of this chapter is to provide a brief state–of–the–art survey of ongoing
research efforts in the use of qualitative reasoning techniques as they are
applied to biomedical processes, and to show how the research presented in
this dissertation fits into the overall picture of related research activities.

First, a historical overview of the early days of this research area is given.
Subsequently, the chapter offers a classification of the different qualitative
reasoning methodologies that have contributed significantly to this application
area, and that are therefore considered to be of major interest here. For
each of these techniques, the most important results obtained are summarized
with reference to the most relevant publications in each case. A list of
those application areas within the larger field of biomedicine that have most
benefitted from these research efforts is also provided.

The qualitative approach to modeling and simulation has several advantages
over conventional numerical methods when dealing with medical problems. A
full description of its advantages has already been presented in Chapter 1 of
this dissertation, therefore, only the two most relevant ones are remembered
here. First, in order to obtain a quantitative model, exact numerical values
of all parameters characterizing the system have to be obtained. This is a
true obstacle to quantitative modeling in medicine as well as in biomedical
engineering, since many parameters of these types of systems are difficult or

13
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impossible to measure, and even the values of those that can be measured may
differ vastly from one patient to another. Second, the qualitative point of view
is closer to human reasoning mechanisms, and therefore, if the entire chain of
thoughts rather than only a final result obtained in obscure ways, is reported
back to the human users of the tool, i.e., the medical personnel, people who
are often characterized by an almost instinctive fear of computers and a deep–
rooted distrust in their functionings, these users will be much more at ease, and
the findings may be met with more trust, making them much more effective
on the long run.

These considerations suggest that artificial intelligence techniques might
offer good perspectives for these kinds of systems. It is indeed a fact that
meanwhile many medical instruments rely on artificial intelligence in order to:

• provide a more accurate interpretation of patient status (diagnosis),

• provide a better understanding of causal mechanisms (explanation),
and

• suggest modifications in patient management (therapy).

This was not the case two decades ago when qualitative modeling and
simulation methodologies were first investigated by researchers and applied
to a wide range of disciplines with significant success, yet failed to make a
true impact on biomedical sciences. Several biomedical expert systems were
developed during the seventies and the beginning of the eighties, triggered by
the advocacy of researchers in the academic community recommending the use
of artificial intelligence concepts, such as expert systems and causal reasoning.
The MYCIN diagnostic system (Shortliffe, 1976) is the earliest well–publicized
example of a biomedical expert system. Several other expert systems were
developed around the same time, some of which are still being worked on
at the current time. However, few of these expert systems were of extended
practical use, maybe with the exceptions of INTERNIST-I/QMR described in
(Miller et al., 1986) and DXplain (Barnett et al., 1987).

There is a principal reason why artificial intelligence research failed when
applied to biomedical sciences. The main idea of the early artificial intelligence
researchers working on such applications was to come up with automated
diagnosis systems, an idea that was vehemently rejected by the health care
professionals. Most physicians are much more inclined to rely on their
colleagues’ opinions than on computers. This had already been predicted
by Szolovits who wrote that this kind of programs will be clinically accepted
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only when their indispensability is established, in other words, when it can
be successfully demonstrated that medical personnel does perform better when
assisted by these programs (Uckun, 1992).

As it is described by Uckun, some other reasons contributed to the lack of
success, such as:

• the relatively shallow level of knowledge researchers have about most
disease processes,

• the complexity and the inherent variability of human anatomy and
physiology,

• lack of understanding of the cognitive processes that underlie medical
decision making,

• the sheer size of the required knowledge bases,

• lack of familiarity with computers on the part of most health care
personnel, and

• the legal implications of making use of computer–assisted advice in the
case of health care applications.

Recent advances in biomedical instrumentation have led to more and more
digital and analog data being obtained from the patient and presented to the
medical personnel in real time, e.g. during surgery or in an intensive care unit.
Practitioners like this wealth of data, but feel often overwhelmed, and live with
the constant fear that one day they might overlook something important in
the sea of information presented to them, something they could have noticed
if only they had paid attention to the right monitor at the right moment of
time.

They therefore yearn for intelligent data monitors, i.e., artificial intelligence
systems that monitor the incoming data, screen it, look out for anomalies, and
point out potential problems to the practitioner. Consequently, the focus is no
longer on automated decision making, but rather on smart sensors, intelligent
monitors, data fusion techniques, data filtering methods, and other tools that
can assist the human practitioner in coming up with the right decision within
a minimum amount of time.

If the scope of artificial intelligence research efforts is focused on satisfying
the expressed needs of medical personnel rather than satisfying their own
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desires and aspirations while ignoring the realities of the application area at
hand, then the perspectives of success of qualitative methodologies applied to
biomedical systems are in fact quite high. This realization led to a second
generation of artificial intelligence tools for biomedical processes.

In the next section, a general classification of qualitative methodologies that
have been applied in the past to address questions in biomedicine is provided.

2.2 Qualitative Methodologies for Reasoning

with Biomedical Systems

In the previous section, a general review of the early days of qualitative
methodologies applied to biomedical systems was presented. The objective of
the current section is to provide an insight into some of the results obtained in
the biomedical field using qualitative techniques. Qualitative methodologies
that have been successfully applied to biomedical systems can be grouped
into the following five categories: expert systems, neural networks, qualitative
physics, fuzzy systems, and inductive reasoners.

2.2.1 Expert Systems

As has been pointed out earlier, expert system technologies have been applied
to biomedical systems already in the seventies. This is the reason why
a lot of publications can be found in this area. Most of the research
efforts in biomedicine that make use of expert systems are focused on
diagnosis. Major authors of papers contributing to these efforts are: Shortliffe
(MYCIN), Bratko (KARDIO), Miller (INTERNIST–I), Marine (CAEMF),
Levy (SESAM–DIABETE), and Linkens (RESAC).

MYCIN was the first rule–based expert system developed in the biomedical
field (Shortliffe, 1976). A major shortcoming of most early medical expert
systems, such as MYCIN, is their total ignorance of the passing of time. Yet,
time is a major factor that ought to have an influence on the diagnosis process.
Taking the flow of time into consideration is crucial for proper assessment of
the patient’s evolution. Several theories have been developed that discuss how
time can be incorporated as a factor in expert systems, and indeed, many of
the newer biomedical expert systems are time–dependent. One such system
is ONCOCIN (Kahn et al., 1985). Its function is to aid the chemotherapy of
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cancer. In that system, the patient is associated with a temporal graph whose
nodes represent important clinical events. These nodes are open if the event
is currently taking place, and they are closed if the event has already ended.

A later version of MYCIN is NEOMYCIN developed in the early eighties
(Clancey and Letsinger, 1984). The idea behind NEOMYCIN was a
reconfiguration of the rule–based expert system MYCIN for applications to
teaching. The resistance of practitioners immediately vanished as soon as
no real patients were at stake. The purpose of NEOMYCIN is to raise the
confidence level of young medical doctors in their capabilities to come up with
correct diagnoses of diseases. This is definitely useful.

ONYX is an extension of the ONCOCIN system (Langlotz et al., 1987).
The modeling tasks are enhanced by means of an object–oriented simulation
environment that facilitates the use of the system. The simulation strategy
used is similar to the device concept advocated in (de Kleer and Brown, 1984).

Another example of a time–dependent expert systems is CAEMF–2,
offering a language for the description and representation of medical temporal
knowledge (Maŕın et al., 1990). The application area of CAEMF–2 is
obstetrics. CAEMF–2 represents a further development of an earlier
biomedical expert system, CAEMF, used for patient monitoring during
pregnancy.

A recent development in the area of temporal reasoning is the HyperLipid
system developed by (Rucker et al., 1990). Its main purpose is to combine
expert systems and temporal databases in the domain of lipid management.

Although most of the early biomedical expert systems concentrated on
various issues related to diagnosis, the variety of different diseases or types
of applications to which these expert systems were applied is extremely
diversified. They have been applied to almost all the areas within the
biomedical domain. An important focus is primary care. Fox and Frost
developed in the early eighties an expert systems capable of assisting primary
care personnel with screening, diagnosis, and patient management (Fox and
Frost, 1985). The idea was to offer a second opinion during and after a
consultation with a medical doctor. As another example, Binik developed
an expert system for the diagnosis of sexual dysfunctions (Binik et al., 1988).

Another diagnostic expert system is CADIAG–2/PANCREAS (Adlassnig
and Scheithauer, 1989). This system was developed for the diagnosis of
pancreatic diseases. The CADIAG–2 system is integrated into the medical
information system of the Vienna General Hospital. This integration allows
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CADIAG–2 to collect patients’ data directly from the information system,
and to infer diagnoses from this data. CADIAG–2/PANCREAS contains the
profiles of 10 different pancreatic diseases.

Apart from applications dedicated to computer-assisted diagnosis of
pancreatic diseases alone, there are several other systems that include
pancreatic diagnoses among others. This is the case of INTERNIST–
ICADUCEUS, aimed at medical diagnoses in the entire field of internal
medicine. INTERNIST–ICADUCEUS contains profiles of eight pancreatic
diseases (Miller et al., 1986).

Kinney and co–workers developed an expert system for the diagnosis of
ascites (Kinney et al., 1988). The authors found that rules produced from a
small set of non–redundant examples seemed to capture most of the currently
available knowledge about diagnosis of ascites. This system offered a correct
clinical diagnosis in 82% of all cases when it was tested against a new set of
patient data.

Another widely publicized expert system developed in the eighties is
KARDIO (Bratko et al., 1989; Bratko, 1988; Mozetic̆, 1990). KARDIO has
been developed for electrocardiogram (ECG) diagnosis of disorders in the
heart, known as cardiac arrhythmia, and the main task of the system is the
interpretation of electrocardiograms. This expert system is implemented in
Prolog, and it is composed of 35 rules. Its inference mechanism is a forward
chaining engine. KARDIO does not offer a temporal dimension. KARDIO is
probably the most used artificial intelligence system for ECG interpretation
and one of the most successful and complete qualitative models in biomedicine
to date (Hunter et al., 1991).

Hunter and co–workers, strongly influenced by the KARDIO project,
developed a qualitative approach based on the definition of a formalism that
represents the state of the system at a point in time or over a time interval, and
that defines a set of constraints (or rules) that specify what transitions between
states are possible (Hunter et al., 1991). Consequently, this approach is more
closely related to qualitative physics methodologies than to expert systems,
yet, it was decided to include it here due to its direct relation with KARDIO.
The objective of this work, as in the case of KARDIO, is the interpretation of
electrocardiograms.

Several expert systems, mostly developed during the late eighties and the
early nineties, have focused on other than diagnosis tasks. RESAC is a system
designed for controlling the depth of anaesthesia during surgery (Linkens et
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al., 1986; Linkens et al., 1990). RESAC comprises a rule–based backward
chaining inference engine with about 400 rules, and makes use of fuzzy logic
and Bayesian reasoning.

Another example is SESAM–DIABETE, an interactive educational expert
system for controlling the amount of insulin dosage required by diabetic
patients (Levy et al., 1989). It was developed from a previous expert system
called SESAM, and has been implemented in MBX, a Lisp–based general–
purpose expert system design software. The SESAM–DIABETE system is
currently accessible through the French Teletel network by means of a Minitel,
and is under clinical evaluation.

Prokosch and co–workers developed an expert system for the human genetics
area (Prokosch et al., 1989). This work presents an object–oriented fact–based
model for the representation of genealogical information, and can be used as
a genetic counseling system. The application is of interest since this field has
otherwise been largely ignored by the artificial intelligence community.

Ursino and colleagues present a method for qualitative simulation of
dynamic physiological models that, in some aspects, is derived from QSIM (cf.
section on Qualitative Simulation in this chapter). As in QSIM, the status of a
physiological quantity is described by “magnitude” and the “rate of change.”
The main difference is that Ursino adopts a simplified representation of
magnitude that is in closer agreement with that commonly used by physicians
(Ursino et al., 1992). In contrast to QSIM, the inference engine is an expert
system developed within the KEE environment using a class of production
rules that the authors call “certainty rules.” This methodology has so far been
tested by means of simple submodels of the cardiovascular system.

The AI/MM system designed by Kunz (Kunz, 1983), is an uncommon
example of an expert system based on empirical rules that also uses the
knowledge of a physiologic mathematical model of the system, in that case
the renal system. The aim of this work is prediction of future states of the
system, as well as to offer causal explanations of observed behavior.

The aim of PNEUMON–IA is to assess the etiology of community–acquired
pneumonia from clinical, radiological, and laboratory data obtained at the
beginning of an epidemic (Verdaguer et al., 1992). PNEUMON–IA uses an
inference engine named MILORD that operates on fuzzy logic and linguistic
variables to express uncertainty (Sierra, 1989).

A medical diagnostic expert system in the domain of post–menopausal
osteoporosis has been developed by Binaghi and co–workers (Binaghi et
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al., 1993). The fundamental aims of the expert system are to standardize
knowledge about and support physicians in the early detection of post–
menopausal osteoporosis. This system has been generated within the AMDIS
fuzzy expert system shell.

2.2.2 Neural Networks

This technology is currently receiving major attention from the medical
community. A large number of research efforts are currently ongoing that
make use of this methodology for the purpose of dealing with medical systems.
Contrary to the previously discussed expert systems that are predominantly
knowledge–based, neural networks are almost exclusively pattern–based.
Thus, they deal with a distinct set of applications. The principal tasks
dealt with by this methodology are patient monitoring, prognosis (forecasting
patient progress), medical control, and classification. Cheung, Navabi,
Linkens, Ciarroca, and Orr are some of the major researchers in this field.

The majority of neural networks deals with quantitative information
directly, and therefore, such neural networks are not qualitative techniques in
a puristic sense. Yet, they are able to function meaningfully in the presence of
incomplete or imprecise knowledge, and they tackle the same kinds of problems
that some of the qualitative techniques address. Thus, it makes sense to include
them in the list of tools used for qualitative reasoning. Also, this approach
comes in fact closest to the qualitative reasoning technique that is advocated
in this dissertation, and therefore, it is even more important to include neural
networks in the discussion. When assessing the success or failure of our own
qualitative reasoning technique, we will frequently do so by comparing our
results with those obtainable using neural networks.

In the area of patient monitoring, Artificial Neural Networks (ANNs) can
play an important role in the classification of waveforms. Navabi and his
colleagues have developed a computer–based, integrated monitoring system
that collects and interactively manages physiological data from six routinely
used operating room monitors (Navabi et al., 1991). ANNs were used in this
system for two purposes: first, for correctly classifying CO2 waveforms into
spontaneous, mechanical, and mechanical mixed with spontaneous breathing;
second, for the detection of elevated and depressed so–called ST segments in
the ECG signals. Two three–layer feed–forward ANNs were used, in the first
case with 50 input nodes, six hidden layer nodes, and one output node, and in
the second case with 80 input nodes, six hidden layer nodes, and two output
nodes. This system also uses other kinds of reasoning tools, such as an expert
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system for the purpose of intubation detection.

Other experimental operating room monitors have used ANNs as well and
have obtain very good results, such as those described in (Cheung and Hull,
1989; Ciarroca, 1989; Orr and Westenskow, 1989).

Artificial neural networks are also used in the control area. As an
alternative to the expert system RESAC, Linkens and Rehman have designed
a neural network, ANNAD, to control the anaesthetic depth of patients
during surgical operations (Linkens and Rehman, 1992a; Rehman et al.,
1993). The idea behind this development was that a neural network could
make recommendations much faster than a 400–rule expert system. This is
important in a real–time environment. A back–propagation algorithm was
used to train a three–layered network with 10 input nodes, three hidden layer
nodes, and four outputs nodes. This controller was able to forecast the amount
of anaesthetic agent to be administered to a patient during surgery.

Pedrycz developed a scheme of electrocardiogram pattern classification
using fuzzy sets for the categorization of the space of parameters for the
recognition process, while using a single–layer ANN for the classification
process (Pedrycz et al., 1991).

Another area of application of neural networks inside the medical domain
is as a predictive instrument for optimizing the scheduling of cardiac surgery
patients in times of limited intensive care unit (ICU) resources. This is an
important issue in countries such as Canada, where cardiovascular intensive
care resources are limited and where waiting lists for cardiac surgery exist
(Tu and Guerriere, 1993). The network developed uses the standard back–
propagation algorithm, and it is composed of three layers of 15 processing
input units, 12 hidden units, and a single output unit.

Schaltenbrand and co–workers have applied a new method based on a
neural network model for discovering sleep stage patterns from data. The
method is based on a simultaneous anaysis of three electrophysiological signals:
electroencephalogram, electrooculogram, and electromyogram (Schaltenbrand
et al., 1993). The system contains two separate ANNs, an automatic sleep
stage classifier consisting of a multilayer feedforward ANN, and a supervision
unit watching over the automatic decision made that uses a non–supervised
ANN.

Although ANNs had been known since the early forties (McCulloch and
Pitts, 1943), only the advent of the backpropagation algorithm popularized
as recently as 1986 (Rumelhart et al., 1986) made ANNs applicable to more
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than mere toy problems. Consequently, all the neural network applications in
biomedicine are of a fairly recent vintage, and new results appear in the press
daily. An end to this development is not yet in sight, and it is to be predicted
that more, and exciting, research results will be published shortly.

2.2.3 Qualitative Physics

Some qualitative techniques that have their origin in the more traditional
modeling methods have been advocated quite heavily in the eighties and have
received a lot of attention. Their main emphasis is on explanation, diagnosis,
and prognosis. The main advocates of these techniques are Kuipers, de Kleer,
and Forbus.

2.2.3.1 Qualitative Simulation

Kuipers’ approach, implemented in QSIM, can be viewed as an abstraction
of ordinary differential equations (Kuipers, 1986). A model is defined by a
set of “functions” of time, and a set of “constraints” on these functions. The
values that the functions can take are either a landmark (a symbolic value), or
an interval between two adjacent landmarks. Usual mathematical operations,
such as arithmetic operations, time derivatives, and monotonically increasing
and decreasing functions, are used to relate constraints and functions. QSIM
treats time as a sequence of symbolic time points that are created when
a function crosses its landmark value or when the derivative of a function
becomes equal to zero. Kuipers’ approach allows new landmarks to be
discovered in the course of the qualitative simulation.

QSIM is the most rigorous of all the qualitative physics approaches due to
its solid mathematical basis, and it is also the least structurally constraining
among these methods. Therefore, this methodology is well suited for the
representation of a wide variety of domains reaching from renal physiology
to population dynamics.

Kuipers and Kassier applied QSIM to physiological processes, such as the
renal control of the salt and water balance in the body, and the regulation
of arterial blood pressure (Kuipers and Kassier, 1985). Later on, Coiera used
QSIM as a basis for a diagnostic architecture applied to acid–base disorders
and their regulation (Coiera, 1990).

Another diagnostic system that uses QSIM is NEOANEMIA. The domain
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of application of NEOANEMIA and its predecessor ANEMIA is the iron
metabolism in the human body, and it is used to recognize disorders causing
anaemia. This system takes advantage of a qualitative simulation based
on the QSIM constraint language for deducing expected parameter values,
deriving a hybrid expert system (Stefanelli et al., 1988; Lanzola et al., 1990).
NEOANEMIA has been implemented using KEE and Common Lisp, and is
able to explain why a particular disease has been taken into consideration and
to show the conditions that led to its pursuance.

There are two major limitations to QSIM. The first is related to the close
relationship between differential equation models and QSIM models. It is
almost impossible to model, in QSIM, systems that are not well suited to be
modeled with differential equations as well. Second, QSIM can unfortunately
generate spurious behaviors that are not physically feasible, which is a highly
undesirable property of this methodology. This is referred to as excessive
branching.

Another system that uses the QSIM technique is MIMIC, developed
by Dvorak and co–workers (Dvorak et al., 1990). MIMIC is a method
for monitoring continuous–time dynamic systems, and in order to test its
performance, MIMIC has been applied to an electric water heater.

2.2.3.2 Qualitative Physics Based on Confluences

This is the qualitative physics approach of de Kleer and Brown (de Kleer
and Brown, 1984). It is centered around the concept of “confluence,” i.e.,
a qualitative differential equation. The structure of the model is described
through its components and their interconnections.

It is assumed that the behavior of a physical system can be derived from
the behavior of its physical components. Unfortunately, this is not always
the case. Therefore, this methodology can only be applied to systems were
this assumption holds. This is the reason why qualitative physics based on
confluences has been predominantly applied to electronic circuits, whereas it
is not evident that this technology can be successfully applied to biomedical
modeling.

Although at least one attempt to develop a scheme for qualitative
representation of behavior in the medical domain using qualitative physics
based on confluences has been reported in the literature (Bylander et al., 1988),
it has not been shown in any detail, how this could be applied to physiological
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processes.

Weinberg has developed a prototype that models the electrical subsystem
of the heart, and simulates normal and deviant cardiac rhythms (Weinberg
et al., 1989). This has been accomplished by means of a methodology that
combines the device–centered methodology of de Kleer and Brown, and the
process theory approach of Forbus (cf. next subsection of this chapter). The
authors claim that this prototype could be the kernel of a decision–making
tool for assisting medical personnel, or might be used as an instructional tool
for teaching students about cardiac functions.

2.2.3.3 Qualitative Process Theory

The Qualitative Process Theory (QPT) was developed by Forbus (Forbus,
1984). In this methodology, all changes in the physical world are described in
terms of “processes.” As Forbus writes in his article, processes usually start
and stop when orderings between quantities change. In QPT, the value of a
number is represented by a “quantity space,” a partial ordering of quantities
determined by the domain physics and the analysis being performed. A
quantity consists of two parts, an amount and a derivative, each of the two
comprised of a sign value and a magnitude value. QPT does not contain the
qualitative simulation algorithm. This is implemented separately, and is called
Qualitative Process Engine (QPE).

Compared with the previously discussed approach of de Kleer and
Brown, this methodology has the advantage that models can be dynamically
restructured when an object no longer exists or when a new object is born
to the system. Its main inconveniences are that it is the most complicated
of all three approaches in terms of designing programs implementing the
methodology, and that the computational complexity of the method is larger
than in the other two cases.

QPT has been applied to realistic biomedical problems such as patient
monitoring. One intelligent monitoring framework using this methodology
is SIMON (Uckun et al., 1993). SIMON has been applied to ventilator
management in premature infants with respiratory distress syndrome. SIMON
uses a methodology called YAQ. Its modeling method, prediction mechanism,
and qualitative algebra are derived from QPT.

Another system based on QPT is QMI (Qualitative Measurement
Interpretation algorithm) developed by Todd (Todd, 1988). QMI uses the
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quantity spaces generated by the envisionment process to interpret numerical
data taken across time. The application is based on the interpretation of blood
glucose data using an envisionment generated from a model of the physiology
of human glucose regulation.

2.2.4 Fuzzy Systems

Fuzzy systems constitute yet another qualitative reasoning paradigm. Fuzzy
controllers have successfully been applied to various medical systems, and they
therefore deserve to be mentioned in this context. Some of the more important
contributions to the field of fuzzy systems as related to medical systems have
been obtained and reported by: Meier, Isaka, Ying, and Czogala.

Isaka and Sebald propose a procedure for designing a fuzzy controller using a
high–dimensional numerical optimization algorithm (Isaka and Sebald, 1992).
In order to design a fuzzy controller, it is required to understand very well
the dynamics of the process to be controlled and how they are influenced by
the control variables, and it is also important to understand what effect the
fuzzy membership functions exert on the performance of the fuzzy controller.
This method, by means of an optimization strategy, selects the membership
functions such that they optimize the control performance. The method has
been applied to blood pressure regulation.

A fuzzy controller for the cultivation of microorganisms has been described
by Czogala and Rawlik (Czogala and Rawlik, 1989). These authors applied two
different kinds of controllers, a classical PID controller and a fuzzy controller,
in order to compare their performance. The results obtained by means of fuzzy
control were considerably better than those obtained by PID control due to
the fact that the biological mechanisms involved are not completely known
and highly non–linear.

A fuzzy controller for anaesthesia has been presented by Meier (Meier et
al., 1992). The mean arterial pressure is used as a parameter for estimating
the amount of anaesthetic agent, Isoflurane, to be administered to a patient
during surgery. The design of this fuzzy controller was iterative, and the
reference points of the membership functions as well as the rules were chosen
by trial and error. A major attraction of this controller is that, at the time
of reporting, it had already been tested during 11 real surgical operations,
where the anaesthetists who supervised the controller never had to intervene
or override its recommendations. This is not the case of the fuzzy controller
developed by Ying (Ying et al., 1990), that still needs some improvements
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before it can be used in a real clinical situation. Ying’s fuzzy controller is used
to regulate the mean arterial pressure of critically ill patients through sodium
nitroprusside infusions.

Linkens and Mahfouf introduced another fuzzy controller for anaesthesia,
this time to control muscle relaxation rather than the awareness level (Linkens
and Mahfouf, 1988). In this work, the fuzzy rules were obtained using human
operator control recorded manually during some operations. The recordings
of the anesthetist’s commands were then used to fill in the rule base. In
order to solve the problem of knowledge acquisition in the design of fuzzy
controllers, Linkens and Hasnain developed a technique for self–organization
of fuzzy controllers (Linkens and Hasnain, 1991). This technique was capable
of generating a meaningful set of rules for highly nonlinear dynamic systems.

Although the greater part of fuzzy set research in biomedicine has focused
on control issues, fuzzy sets have been used for other purposes as well. This
is the case of the work reported by Feng (Feng et al., 1991), where fuzzy
sets were used for the detection of the epicardial boundary. The resulting
automated system is able to detect the endocardial and epicardial boundaries
in a 2–D echocardiography. In this research, the high–level knowledge of global
intensity change in the image is acquired from experts, and is then represented
in the form of fuzzy linguistic descriptions and relations. The knowledge of
local intensity change is then deduced from the knowledge of global intensity
change through fuzzy reasoning.

The work of Cios (Cios et al., 1991) is another example of a fuzzy biomedical
system used for other than control purposes. This research focuses on the
diagnosis of coronary artery stenosis. The authors claim that their tool
could be used as a stand–alone system for the incorporation of automatically
generated production rules into the knowledge base of an expert system.

Mira and his colleagues (Mira et al., 1991) developed another strategy using
the fuzzy paradigm for data acquisition to automatically build a database and a
knowledge representation scheme. This acquisition methodology has been used
in the expert system ONCOGAL for advise in diagnosis and chemotherapy
treatment of cancer.

Barro and co–workers developed a fuzzy classifier of cardiac beats. The
classification of each beat is performed applying fuzzy conditional statements
that represent the knowledge of the cardiologist expert and use a set of
descriptions of temporal and morphological attributes of the analyzed beat
(Barro et al., 1990a). This signal classifier has been integrated in a system
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for the diagnosis of arrhythmia that has been implemented in a real–time
monitoring system for physiological signals (SUTIL), developed for patients
interned in coronary care units (Barro et al., 1990b).

It can be noticed that fuzzy systems have already been employed in a large
variety of real clinical situations for many different purposes. This is a very
active research area, and more results are expected to be reported shortly.

2.2.5 Inductive Reasoning

Fuzzy Inductive Reasoning (FIR) is a fairly new paradigm that combines
some attributes of knowledge–based systems with others of pattern–based
approaches, is similar in its applicability to that of artificial neural networks,
yet contains facets of fuzzy systems as well. Hence, FIR is a very versatile
modeling paradigm that raises high expectations. Its major aims in the
context of biomedical research are control, modeling, prognosis, diagnosis, and
monitoring.

The FIR methodology has been derived from Klir’s General Systems
Problem Solving (GSPS) approach (Klir, 1985). Its main focus is on general
systems analysis, to study the conceptual modes of behavior of systems. A
crisp implementation of this theory was developed in 1987 (Cellier and Yandell,
1987) as an application library for CTRL–C. It was called SAPS–II, since it
represented a reimplementation of an earlier tool called SAPS, which stands
for Systems Approach Problem Solver (Uyttenhove, 1979). Later on, a fuzzy
extension of SAPS–II was created by Li and Cellier (Li and Cellier, 1990).
This was the basis for subsequent enhancements of this methodology with the
purpose of obtaining a tool that can be used for qualitatively studying the
behavior of biomedical systems (Nebot et al., 1993a; Nebot and Cellier, 1994a,
1994b). Currently, several versions of SAPS–II exist. One is configured as a
toolbox for Matlab. Another version (implementing only a subset of SAPS
tools) can be used together with ACSL for mixed quantitative and qualitative
simulations.

A reimplementation of the RESAC expert system (Linkens et al., 1986;
Linkens et al., 1990) has recently been realized by means of the FIR
methodology (Nebot et al., 1993a). The system, called FIRAD, was able to
control the amount of anaesthetic agent to be given to a patient during surgery.
It compares favorably with the earlier neural network–based reimplementation
called ANNAD (Linkens and Rehman, 1992a; Rehman et al., 1993).
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Another application of this methodology inside the biomedical field is the
modeling and simulation of the cardiovascular control system. A combined
quantitative/qualitative modeling and simulation technique was used in that
case, allowing the representation of the hemodynamical system by means of
quantitative methodologies using a differential equation model, and that of
the central nervous system by means of a FIR model. The FIR model here
replaces a previously developed NARMAX model (Vallverdú, 1993). The FIR
model compares very favorably to the NARMAX model in many respects.

Since the FIR methodology is a very new approach in its early development
phase that is still undergoing frequent modifications and enhancements, it was
preferred to use the tool for reimplementing existing applications rather than
for tackling new problems. In this way, the previous implementations can be
used as a gauge to measure the success or failure of the FIR methodology
against.

Each of the five methodologies described in this chapter is characterized by
its own advantages and limitations when dealing with biomedical applications.
Therefore, it depends on the characteristics of the biomedical system to be
modeled and simulated, which of them should best be used. A description
of the major advantages and disadvantages of the different methodologies
presented here was already provided in the first chapter of this dissertation.

2.3 Aims of Qualitative Research

Each of the methodologies presented in the previous section is suitable for
tackling a different subset of biomedical problems, and therefore the objectives
vary from one approach to another. Table 2.1 presents the most frequently
reported aims and scopes of these methodologies in a tabular form together
with a description of their significance.

As it has been mentioned in previous sections, diagnosis is the most
frequent focus of qualitative research within the biomedical engineering
domain. Expert systems were the methodology most used for diagnostic
purposes, especially during the early years. This is the case of many systems
developed during the late seventies, the eighties and the early nineties, such
are: MYCIN (Shortliffe, 1976), (Fox and Frost, 1985), (Binik et al., 1988),
CADIAG–2/PANCREAS (Adlassnig and Scheithauer, 1989), INTERNIST–
I/CADUCEUS (Miller, 1986), (Kinney et al., 1988), and KARDIO (Bratko et
al., 1989; Bratko, 1988; Mozetic̆, 1990).
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Aim Significance Methodology

Diagnosis Patient state Mostly expert
systems

Prognosis Prediction of ANNs and FIRs,
patient progress Qualitative physics

Therapeutic Therapy suggestion Mostly expert
Management or modification systems
Monitoring Integration of ANNs and FIRs,

monitors and Fuzzy systems
data processing

Modeling Many applications All kinds of
of different kinds methodologies

Decision Provide suggestion So far rejected by
Support for treatment plan most physicians
Control Behavior optimization FIRs, Fuzzy systems
Consultation Monitoring and Mostly expert
System management of systems

patients records
Causal Description of Expert systems,
Explanation causal mechanisms Qualitative physics
Imaging Boundary detection ANNs, Fuzzy systems,

of an image Statistical methods
Classification To choose between Usually recurrent

different options neural networks
Training To educate All kinds of

medical personnel methodologies

Table 2.1: Principal aims of qualitative research
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A very important aim that is currently receiving major attention by the
medical community is prognosis. Prognosis is based on the prediction of patient
progress, and is extremely valuable in the medical context. Especially in those
circumstances, where an advance notice of a potential problem of as little as
five minutes may mean the difference between life and death of the patient, an
early warning at practically any cost will be most welcome. Since the purpose
of prognosis systems is only to set off an alarm at as early a time as possible,
such systems are accepted without reservation by the medical practitioners,
especially for use in intensive care units where no medical doctor is constantly
present, but needs to be notified by the resident nurse as soon as a potential
problem has been observed. Prognosis systems have been less accepted for
the operating theater so far, since there is less of a need (the specialist is
around at all times) and since too frequent alarms can be a major hassle. The
medical field that has so far benefitted most from automated prognosis systems
is cardiology. An early example of a biomedical prognosis system is AI/MM
(Kunz, 1983).

Another primary focus of qualitative techniques is control. Automated
feedback control can be useful both in the operating theater and in all kinds
of care units, relieving the medical personnel of high–frequency low–level
interventions. Several research efforts have been reported in which single–
sensor/single–actuator (SSSA) controllers were designed to regulate a unique
parameter of the body by use of a single physiological signal. A well studied
application is the regulation of blood pressure by means of a drug. This is the
case of the following works: (Kuipers and Kassier, 1985), (Ying et al., 1990),
(Isaka and Sebald, 1992), and (Meier et al., 1992). In some of these cases, the
blood pressure was controlled as an indicator of another signal that cannot
directly be measured: the depth of anaesthesia during surgery.

Other qualitative controllers dealing with the regulation of anaesthetic
depth during surgery are RESAC (Linkens et al., 1986; Linkens et al., 1990),
ANNAD (Linkens and Rehman, 1992a; Rehman et al., 1993), and FIRAD
(Nebot et al., 1993a). These systems are multi–sensor/single–actuator (MSSA)
controllers. Qualitative control efforts have been reported for all of the
qualitative methodologies presented in the previous section.

Modeling denotes the process of finding qualitative relationships between
the variables of a system. In other words, it is the process of identifying a
model that represents the dynamics of the system. Therefore, it is always
necessary to obtain a model of the system before any other aim or scope can
be accomplished. For this reason, it can be argued that modeling does not
constitute an aim in its own right. In biomedical applications, the structure
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of the systems under investigation are often at least partially unknown.
Hence, it is of crucial importance for experimentation and in order to increase
the knowledge that the doctors possess about these systems, to be able to
model them. Therefore, qualitative modeling of biomedical systems, the inner
functionings of which are either not well known or even totally unknown, is a
truly important task that therefore deserves to be mentioned as a goal of its
own.

Monitoring comprises several purposes, from the integration of a variety
of signals coming from the patient or from other monitors (sensor fusion),
to the incorporation of “smart alarm” algorithms that reduce the number of
false alarms produced by the monitors, which is one of the major problems of
actual monitors (Navabi et al., 1991). Other monitors are enhanced by means
of the incorporation of algorithms that permit the real–time scanning of one
or more monitor signals detecting anomalies in these signals and/or are able
to predict problems in the immediate future by some sort of extrapolation
algorithms (Navabi et al., 1991). Other related publications in this general
area are: (Cheung and Hull, 1989), (Ciarroca, 1989), (Orr and Westenskow,
1989), (Uckun et al., 1993), and (Barro et al., 1990b).

There are aims that are usually more closely related to a specific qualitative
methodology. This is the case of therapeutic management, consultation
systems, and decision support, functions that are all usually supported by
expert systems. Therapeutic management helps the clinician with suggesting
a therapy to be followed by the patient, or changing a therapy that has been
followed in the past. This is the next step after diagnosis. One such expert
system is ONCOGAL (Mira et al., 1991). An example of a decision support
and consultation system is presented in (Fox and Frost, 1985), a system that
is being used by primary care doctors for obtaining a second opinion.

In Table 2.1, the imaging aim is also included. This aim is not much related
to the primary goals of this state–o–the–art survey, because it is basically
focused on static images and therefore on edge detection and pattern matching
problems. An example is the work by Feng (Feng et al., 1991).

Classification is the process to decide, given a new input set, which output
set is concerned. Recurrent neural networks are perfect for this kind of purpose
(Navabi et al., 1991; Schaltenbrand et al., 1993), however, some results have
also been reported using fuzzy sets (Barro et al., 1990a; Pedrycz et al., 1991).
Signal classification has most frequently been applied to cardiology for the
detection of a specific kind of anomaly in the ECG signal. The proper
classification of such anomalies is very useful for diagnostic purposes. However,
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signal classification has also been applied to other application areas, such as for
the diagnosis of respiratory diseases (Navabi et al., 1991), or the identification
of sleep stages (Schaltenbrand et al., 1993).

Current trends are also focused on an area that has been coined causal
explanation. This means the ability of a given methodology to explain causal
mechanisms, i.e., to be able to offer a complete description of the different
steps trough which the reasoner has passed to obtain the final conclusion.
This is very useful when dealing with biomedical applications since it provides
more trust in the recommendation made by the system, as medical doctors are
not usually inclined to blindly follow a recommendation made by an obscure
algorithm that he or she doesn’t really understand, and moreover, it may
provide additional useful information. For example, an anaesthetist may like
to know why he or she is supposed to increase the amount of Isuflurane in
a given situation (e.g., because the systolic arterial pressure of the patient is
way too high), rather then only being told by how much to increase it. The
ability to offer causal explanations is directly dependent on the methodology
in use. Expert systems, for instance, have the possibility to offer high–level
explanations. This is not the case of neural networks, whose structure does
not permit to give any kind of explanation. Inductive reasoning methodologies
are somewhere in between. They offer the possibility to provide a general
explanation of what is happening, but at a considerably lower level than expert
systems.

Training is another area with lots of potential. Yet, educational systems
have so far mostly been by–products of other research efforts. The reason
is that, whereas hospitals have almost unlimited resources to conduct clinical
research, the medical colleges fight with the same funding limitations as all the
other colleges. It is thus much more difficult to attract research funding for
propaedeutical purposes than for clinical needs. Yet, this is a very attractive
area for future cooperation between educators in medicine and researchers in
engineering and computer science.

2.4 Biomedical Applications

A wide range of biomedical problems has been tackled by means of qualitative
reasoning methodologies. However, as has been shown in a previous section,
one of the major application areas, in which a variety of different reasoning
methodologies have been successfully used, is cardiology. The intensity of
research in the field of cardiology can be explained by the fact that the heart
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- Acid–Base Disorders - Diabetes
- Anaesthesia - Muscles
- Anaemia - Nervous System
- Arterial Pressure - Obstetrics
- Assisted Ventilation - Primary Care
- Bacterium Infection - Psychiatry
- Cancer Chemotherapy - Renal Physiology
- Cardiology - Sexual Dysfunctions
- Cirrhosis - Sleep

Table 2.2: Applications most frequently cited in literature

is one of the most central organs of the human body. Heart problems are
usually fulminant in the sense that death comes quickly, and there is often
not much time to react, once the symptoms of the disease have set in. This
is not the case in many of the other aspects of human health. It is therefore
fairly easy to get funding for sensible clinical research in cardiology, and this
is of course another motivating factor for research in this area. Yet another
factor that helps to explain the large number of ongoing research activities in
this area is the relative ease with which large amounts of data can be obtained
from patients using non–intrusive measurement techniques.

The application areas that have been mentioned in the literature most
frequently have been listed in Table 2.2 in alphabetic order.

Arterial Blood Pressure is another field that has been frequently studied
using practically all of the qualitative reasoning methodologies presented in
this chapter. The reason is that this application is simple enough to be used
as a benchmark problem for all kinds of control techniques (Linkens, 1992),
be it quantitative, e.g. of the PID type, or be it qualitative, e.g. using fuzzy
techniques such as those proposed in (Ying et al., 1990; Meier et al., 1992;
Isaka and Sebald, 1992), or using qualitative simulation (Kuipers and Kassier,
1985).

Another application area that has been widely studied using qualitative
methodologies is anaesthesia. The anaesthetic field, as well as almost all the
other applications from Table 2.2, can be treated from different points of view
and with different scopes in mind, and depending on those, the complexity
of the work to be accomplished may vary drastically. It is much simpler to
regulate the mean arterial pressure through the anaesthetic dose than to try
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to truly predict the anaesthetic depth of a patient using all of the available
sensory information.

An attraction of this area is that a large number of results have been
reported using different methodologies, such as expert systems (Linkens et al.,
1986; Linkens et al., 1990), neural networks (Linkens and Rehman, 1992a),
fuzzy inductive reasoning (Nebot et al., 1993a), and fuzzy systems (Meier
et al., 1992). Therefore, it is possible to compare the performance of these
methodologies and to assess their relative advantages and disadvantages at
least for this one application area.

Qualitative physics methodologies have been applied to a fairly small
subset of biomedical problems related to acid–base disorders (Coiera, 1990),
to assisted ventilation (Uckun et al., 1993), and to cardiology (Kuipers and
Kassier, 1985). In a previous section, the major limitations of the three types
of qualitative physics methodologies have been shown, limitations that hamper
their applicability in the case of biomedical systems.

2.5 Conclusions

In this chapter, a general view of the use of qualitative analysis in biomedical
engineering has been offered. It was shown that the first generation of research
efforts relating to the use of qualitative modeling and simulation methodologies
in biomedical systems did not make a significant impact on the biomedical
sciences. This fact was explained to have been caused by several factors that
were discussed in some detail in this chapter. In summary:

• The first generation tools primarily focused on automated diagnosis,
leading to a rejection by the medical personnel.

• The level of knowledge that researchers have about most disease
processes is relatively shallow.

• The human anatomy and physiology are highly complex and exhibit a
large variability from one individual to the next.

• The cognitive processes that underlie medical decision making are still
poorly understood.

• The knowledge bases required for meaningful decision making would be
formidable in their size, yet knowledge is very hard to come by.
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• Few clinicians are sufficiently familiar with computers to contribute to
these research efforts in any significant way, or even to use the systems
adequately once they have been designed.

• The legal implications of computer–assisted advice in the health care
domain form a considerable barrier to its acceptance.

Current research in this area can be classified as second generation efforts, and
hopefully a major subset of the causes that led to the rejection of the first
generation tools can be overcome. In fact, several of these factors have already
disappeared. For example, this is the case of the scope of automated diagnosis
systems. Current research on the use of qualitative methodologies for diagnosis
is much more in line with the needs of the medical personnel than this was
the case with the first generation tools. Rather than trying to replace human
decision making, the new systems are designed to aid the medical personnel
in their tasks in an optimal manner. This has been outlined in the section on
the “aims of qualitative research.”

During the current decade, both the researchers, most of whom hold
advanced degrees in either engineering or computer science, and the medical
doctors, who are envisaged to be the end users of the tools to be developed,
have become acutely aware that a more intensive level of communication
and knowledge transfer between them is absolutely essential, if these research
efforts are to amount to anything. This awareness has lead to in–depth studies
of the needs and requirements of the physicians. One such study is for instance
the work by Forsythe and co–workers (Forsythe et al., 1992). The hope is
therefore substantiated that some of the previous obstacles can be eliminated
or at least alleviated in the second generation set of tools.

It can be seen already now that the second generation research efforts
on qualitative modeling and simulation methodologies applied to biomedical
systems are indeed making a significant impact on the biomedical domain, and
this impact is expected to increase even further in the near future.

This doctoral thesis contributes to overcome several of the limitations that
have previously prevented the use of qualitative reasoning in biomedicine from
being successful and that have hampered the development of analytical tools
for use in biomedicine as a whole. It does so by advocating the use of a new
qualitative reasoning paradigm, the fuzzy inductive reasoning methodology.
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Chapter 3

Fuzzy Inductive Reasoning
Methodology

3.1 Introduction

Up to this point, we have looked at the state–of–the–art of various qualitative
modeling and simulation techniques advocated in the literature. From here on,
we shall concentrate on one particular technique, Fuzzy Inductive Reasoning
(FIR), for the remainder of this dissertation.

The FIR methodology is still fairly new and has not yet been widely
used. Therefore, it is presented in this chapter, in order to ensure the
understandability of this thesis. The examples presented in the subsequent
chapters of the thesis will demonstrate that the FIR methodology is indeed a
very promising technique for dealing with biomedical applications.

The FIR methodology is composed of four main processes, namely
fuzzification, qualitative modeling, qualitative simulation, and defuzzification.
These four modules form the basis of the FIR methodology. However, other
functions have been implemented as well, functions that offer additional
features to the user.

The aim of this chapter is to provide a detailed account of the basic tool set
within the overall FIR methodology. In recent years, several new techniques,
tools, and features have been developed and added to the methodology, in
order to enhance its reasoning power in the contexts of qualitatively dealing
with complex non–linear technical systems, the automatic design of fuzzy

37
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controllers, and the qualitative analysis of systems from the soft sciences.

Three Ph.D. students of the Universitat Politècnica de Catalunya (UPC)
were involved in generating these additional tools for enhancing the FIR
methodology. In particular, the author of this dissertation signs responsible
for the research efforts related to the qualitative analysis of systems stemming
from the soft sciences in general, and from biomedicine in particular.

The advances and new techniques developed to support this endeavor will
be introduced along the chapters of this thesis, and their effectiveness will
be demonstrated by means of realistically complex biomedical examples. The
focus of the current chapter is on presenting a detailed description of the FIR
kernel, i.e., those functions that are common to all three research directions.

Whereas a rudimentary FIR kernel had already been implemented by other
researchers before either of the three dissertations even began (Cellier and
Yandell, 1987; Li and Cellier, 1990; Cellier, 1991a), also the kernel functions
needed many modifications and enhancements, before they could adequately
and in a robust fashion be used to tackle complex problems. Three Ph.D.
students of the Universitat Politècnica de Catalunya sign jointly responsible
for upgrading and maintaining the FIR kernel modules.

3.2 The Methodology

The inductive reasoning methodology had originally been developed by George
Klir (Klir, 1985) as a tool for general system analysis, to study the conceptual
modes of behavior of systems. The inductive reasoning set of methods and
algorithms forms a subset of Klir’s General System Problem Solving (GSPS)
framework, facets of which have been described in numerous of his publications
starting in the seventies. Klir’s research efforts along the lines of his GSPS
framework are still ongoing.

The GSPS methodology distinguishes between different types of “systems”
characterized by different levels of abstraction. In our own terminology,
however, a system is the physical entity from which mathematical descriptions
of varying abstraction, so–called models, can be derived. Using Bernard
Zeigler’s words, the system is nothing but a potential source of data (Zeigler,
1976). Consequently, Klir’s “systems” will be called “models” in the remainder
of this thesis.

The GSPS methodology distinguishes between an infinity of abstraction
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levels. The most abstract model is the base model. It simply encodes
knowledge about which facets of the real system are to be captured in
the mathematical description. For most practical purposes, this knowledge
consists in a declaration of a set of variables to be contained in the model.

The next higher (i.e., more refined, or less abstract) level along Klir’s
“epistemological hierarchy” is the data model. In order to climb the
epistemological hierarchy ladder from the level of the base model to that of
the data model, one or several experiments must be performed on the real
system, whereby sensors are to be attached to physical quantities that are
represented by some or all of the variables to be included in the model. The
result is a bunch of data streams, or trajectories, which, at this point, still do
not contain a description of any logical or causal relationship connecting these
data streams to each other. Thus, the data model is characterized by a set of
variables measured and recorded over time. Their only known relationship so
far is their common time stamp.

In our own terminology, we shall call this the raw data model, because the
data have not yet been processed in any way. The raw data model, in our
implementation of the methodology, is represented by a real–valued matrix,
whereby each column denotes one variable trajectory, i.e., the recording of the
values of one variable as a function of time, whereas each row denotes one data
record, i.e., a collection of the values of all variables with identical time stamp.

In order to proceed to higher levels along the epistemological hierarchy
ladder, it will prove useful to preprocess these data. In our implementation of
the methodology, the raw data model will be preprocessed into a qualitative
data model, whereby each raw (quantitative) data value is being replaced by a
qualitative triple. The details of this process will be explained in due course.
Since the raw data model and the qualitative data model contain exactly the
same information, GSPS does not distinguish between the two. Both are
located at the same epistemological hierarchy level. Climbing up the hierarchy
ladder inevitably implies, according to Klir, adding more information to the
model. Since the transformation from the raw (quantitative) data model to
its qualitative counterpart does not add any information to the model, Klir
places them at the same hierarchy level.

Climbing up the ladder one rung further, we end up with the behavior
model. The behavior model adds logical or causal relationships to subsets
of the variables. Whereas before we did not know anything about the causal
relationship between the recorded variables, they might even stem from entirely
different physical objects for that matter, at the new level, this is no longer
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possible. Now, we know which set of variables we must consult to infer
knowledge about one or several other variables. All so–called input/output
models are located at this hierarchical level.

The FIR methodology, a subset of the GSPS methodology, is located entirely
at the hierarchical levels of the data and behavioral models. It deals with
transformations within each of these levels, and with transitions between
the two levels. The fuzzification module describes a transformation within
the data model level, namely from the quantitative (raw) data model to its
qualitative counterpart. The qualitative modeling module describes the step up
the ladder from the data model to the behavioral model. This is accomplished
by induction. The term induction is synonymous with climbing up the
epistemological ladder, while deduction means descending it. The qualitative
simulation module denotes the transition back down the ladder to the previous
level, and the defuzzification module performs another transformation at the
data model level.

Climbing the epistemological hierarchy ladder even further, we reach the
rung of the structural models. Most deductively derived (classic) differential
equation models are located at that level. Here, the causal relationships of the
former behavioral models are concretized to explicit structural relationships
between variables, i.e., formulae replacing mere tabulations. Finally, GSPS
defines infinitely many rungs of so–called meta–models that are not further
qualified in the GSPS architecture. In some publications, the first meta
model level is characterized by variable structure models, i.e., by models that
abruptly change their behavior as a consequence of a discrete event taking
place (Uyttenhove, 1979). However, since the FIR methodology does not deal
at all with these higher elevated rungs of the GSPS methodology, there is no
need to explore their properties any further in this dissertation.

In the late seventies, a Ph.D. student of George Klir’s: Hugo Uyttenhove,
went about to implement a significantly large subset of the GSPS methodology
under the name Systems Approach Problem Solver, abbreviated as SAPS
(Uyttenhove, 1979). Unfortunately, the limited computer science tools
available to Uyttenhove at that time did not lend themselves to a sufficiently
flexible implementation of the GSPS concepts with the limited manpower
resources available to a single Ph.D. student, and consequently, SAPS could
never be used for anything but mere toy problems.

In the mid eighties, Cellier and his students went about to reimplement
SAPS as a CTRL–C function library. The new implementation was called
SAPS–II (Cellier and Yandell, 1987). CTRL–C provided all the matrix
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manipulation capabilities necessary for processing the GSPS data structures
in an elegant and convenient fashion, and the interactive programming
environment of CTRL–C provided sufficient flexibility to enable the user to
combine individual SAPS modules to ever more powerful building blocks.

Fuzzy measures were introduced into the GSPS methodology in the late
eighties (Klir and Folger, 1988; Klir, 1989; Wang and Klir, 1992), and were
incorporated into the SAPS–II toolkit by DongHui Li, a student of Francois
Cellier (Li and Cellier, 1990).

Even more recently, SAPS–II has been demonstrated to be an effective tool
for qualitatively studying the behavior of highly complex non–linear technical
systems (Cellier et al., 1992, 1994; de Albornoz and Cellier, 1993a, 1993b;
Cellier and Mugica, 1992), as well as biomedical systems (Nebot et al., 1993a,
1993b).

SAPS–II is currently available as either a CTRL–C library or a Matlab
toolbox. It runs on any platform offering an implementation of either CTRL–
C or Matlab and a Fortran compiler. No other facilities are needed.

The fuzzy inductive reasoning methodology is composed of four
basic functions: fuzzification (fuzzy recoding), qualitative modeling (fuzzy
optimization), qualitative simulation (fuzzy forecasting), and defuzzification
(fuzzy regeneration).

The fuzzy recoding module converts quantitative values into qualitative
triples. The first element of the triple is the class value, the second element is
the fuzzy membership value, and the third element is the side value. The class
value represents a coarse discretization of the original real–valued variable.
The fuzzy membership value denotes the level of confidence expressed in the
class value chosen to represent a particular quantitative value. Finally, the
side value tells us whether the quantitative value is to the left or to the right
of the peak value of the membership function. The side value, which is a
specialty of our methodology since it is not commonly introduced in fuzzy
logic, is responsible for preserving the complete knowledge in the qualitative
triple that had been contained in the original quantitative value.

The fuzzy optimal mask function realizes the process of qualitative modeling.
It is able to establish qualitative relationships between different variables of
the model. It does so by a process of exhaustive search in the discrete search
space of the class values.

Fuzzy simulation is performed by means of the fuzzy forecasting function,
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which is able to predict future qualitative outputs (qualitative triples) from
past similar experiences. Fuzzy simulation interpolates between previous
occurrences of similar behavioral patterns, and uses the interpolated values
to extrapolate the output variable across time.

Finally, the fuzzy regeneration facility implements the inverse process of the
fuzzy recoding module. It converts qualitative triples back to quantitative
values. Since fuzzy recoding preserves the complete information of the original
quantitative value, an immediate cascade of a fuzzy recoding operation followed
by a fuzzy regeneration operation restores the original signal without any error.
This is a special feature of our particular dialect of fuzzy logic. Most fuzzy
logic signals lose information in the process of fuzzification, information that
cannot be retrieved by means of defuzzification.

In the following sections, an accurate description of each of these processes
is provided. Also, a simple example is carried through this chapter, in order
to explain how these modules are being used in practice.

3.2.1 Fuzzification

It had previously been explained that a transformation from quantitative
values into qualitative triples is very useful for the purpose of inductive
modeling. Any data fitting algorithm (and this is what inductive modeling
is all about) invariably involves some sort of optimization procedure. Thus,
inductive modeling applied to the original quantitative, i.e., real–valued,
variables involves a search across an n–dimensional continuous search space.
Such a search is invariable very time–consuming. By converting the
quantitative values to qualitative triples, the search is simplified dramatically,
since the search space gets reduced to the n–dimensional discrete search space
of the class values. Using this approach, the class values are used for a fairly
coarse optimization, whereas the fuzzy membership values are then used for
the fine interpolation between neighboring class values, once the optimal class
value has been found.

In the FIR methodology, the fuzzification process is accomplished by means
of the fuzzy recoding function. Recoding denotes the process of converting a
quantitative variable to a qualitative variable.

In most transformations from a quantitative to a qualitative space, some
information is lost in the process. Obviously, a temperature value of 97oF
contains more information than the value ‘hot.’ Our fuzzy recoding technique
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from the qualitative triple precisely, i.e., without any error or uncertainty, at
any point in time.

In the first implementation of fuzzy measures within SAPS–II (Li and
Cellier, 1990), bell–shaped rather than the more commonly used triangular
fuzzy membership functions had been implemented, just as those shown in
Figure 3.1. However in the mean time, triangular membership functions have
been added as an additional option.

The bell–shaped membership functions can be expressed mathematically
using the equation:

Membi = exp(−τi · (x− µi)
2) (3.1)

where x is the continuous variable to be recoded, µi is the algebraic mean
between two neighboring landmarks (landmarks being the points where the
class value changes), and τi is determined such that the membership function,
Membi, degrades to a value of 0.5 at both of these landmarks.

At this point, the question needs to be raised, how many discrete levels (i.e.,
classes) should be selected for each state variable, and where the borderlines
(landmarks) that separate neighboring regions from each other are to be drawn.

From statistical considerations, it is known that in any cluster analysis, each
legal discrete state should be recorded at least five times (Law and Kelton,
1990). Thus, a relation exists between the total number of legal states and the
number of data points required to base the modeling effort upon:

nrec ≥ 5 · nleg = 5 ·∏
∀i

ki (3.2)

where nrec denotes the total number of recordings, i.e., the total number of
observed states, nleg denotes the total number of distinct legal states, i is an
index that loops over all variables in the state, and ki denotes the number of
levels that the ith variable can assume. The number of variables is usually
given, and the number of recordings is frequently predetermined. In such a
case, the optimum number of levels, nlev, of all variables can be found from
the following equation:

nlev = round ( nvar

√
nrec/5 ) (3.3)
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assuming that all variables are classified into the same number of levels. For
reasons of symmetry, an odd number of levels is often preferred over an even
number of levels. Abnormal states (‘too low,’ ‘too high,’ and ‘much too low,’
‘much too high’) are grouped symmetrically about the ‘normal’ state.

The number of levels chosen for each variable determines the expressiveness
and predictiveness of the qualitative model. The expressiveness of a qualitative
model is a measure of the information content that the model provides. The
predictiveness of a qualitative model is a measure of its forecasting power, i.e.,
it determines the length of time over which the model can be used to forecast
the future behavior of the underlying system (Li and Cellier, 1990).

If all variables are recoded into exactly one level, the qualitative model
exhibits only one legal state. Such a model is called a null model. It is able to
predict the future behavior of the underlying system perfectly over an infinite
time span (within the framework of its model resolution). Yet the prediction
does not provide any useful information. Thus, the null model is characterized
by an infinitely high predictiveness and a zero expressiveness.

On the other hand, if every variable is recoded into 1000 levels, the system
exhibits a high number of legal states. The expressiveness (i.e., resolution) of
such a model will be excellent. Each state contains a large amount of valuable
information about the real system. Yet the predictiveness of this model will
be miserable unless an extremely large base of observed data is available. In
all likelihood, this model cannot be used to predict the behavior of the real
system for even a single time step into the future. Consequently, a compromise
must be reached.

The number of levels chosen for each variable influences directly the
computational complexity of the inference stage. Traditional fuzzy systems
usually require between seven and 13 classes for each variable (Aliev et
al., 1992; Maiers and Sherif, 1985). An exhaustive search in such a high–
dimensional discrete search space would be very expensive, and the number
of classes should therefore be reduced, if possible, to help speed up the
optimization. It was shown in (Mugica and Cellier, 1993) that the selected
fuzzy inferencing technique makes it possible to reduce the number of levels
down to usually three or five, a number confirmed by several practical
applications (de Albornoz and Cellier, 1993a, 1993b; Cellier, 1991c; Vesanterä
and Cellier, 1989).

Once the number of levels of each variable has been selected, the landmarks
must be chosen to separate neighboring regions from each other. There are
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several ways to find a meaningful set of landmarks. The most effective way
is based on the idea that the expressiveness (or information contents) of the
model will be maximized if each level is observed equally often. In order to
distribute the observed trajectory values of each variable equally among the
various levels, they are sorted into ascending order, the sorted vector is then
split into nlev segments of equal length, and the landmarks are chosen anywhere
between the extreme values of neighboring segments, e.g., using the arithmetic
mean values of neighboring observed data points in different segments.

Let us now introduce a simple example to show how fuzzification can be
accomplished using the SAPS–II toolbox in the Matlab environment. Our
example is a linear system described by the following equations:

ẋ = A · x + b · u

=

⎛
⎜⎝ 0 1 0

0 0 1
−2 −3 −4

⎞
⎟⎠ · x +

⎛
⎜⎝ 0

0
1

⎞
⎟⎠ · u

y = C · x + d · u

=

⎛
⎜⎝ 1 0 0

0 1 0
0 0 1

⎞
⎟⎠ · x +

⎛
⎜⎝ 0

0
0

⎞
⎟⎠ · u

Computing the step response, it can be concluded that the settling time is
tl ≈ 6 sec (Cellier, 1991a). Therefore, if it is decided to use a “mask depth”
of three covering the slowest time constant in the system, the communication
interval should be δt ≈ 3 sec. The term “mask” has not yet been introduced,
but this will happen shortly.

A binary random sequence is used as input signal to the system, in order
to excite it in an optimal manner at all relevant frequencies. It was decided to
recode each of the output states into three levels (the input is already binary),
and therefore, the number of legal states can be computed as:

nleg =
∏
∀i

ki = 2 · 3 · 3 · 3 = 54 (3.4)

and the required number of recordings is:
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nrec = 5 · nleg = 270 (3.5)

The following Matlab code simulates the system over 300 communication
intervals, in order to obtain data to work with.

� t = 0 : 3 : 897;
� u = round(rand(t));
� x0 = zeros(3, 1);
� [y, x] = lsim(a, b, c, d, u, t, x0);

The input/output data obtained from the quantitative simulation run
constitute the raw data model, meas.

� meas = [u′, y];

The raw data model is a matrix with four columns (four variables) and 300
rows (300 data records). The first variable (column) is already binary, but the
other three variables need to be recoded into three levels each. The landmarks
are computed using the sorting algorithm outlined earlier:

� for i = 2 : 4,
� [mi, indx] = sort(meas(:, i));
� m(:, i) = mi;
� end
� lm = [m(1, :)
� 0.5 ∗ (m(100, :) +m(101, :))
� 0.5 ∗ (m(200, :) +m(201, :))
� m(300, :)];

The matrix m contains the sorted variable vectors, whereby sorting was done
for each variable separately. The first column of m is a dummy column. The
landmarks, lm, are stored in a 4 × 4 matrix, where each column denotes a
variable, and each row denotes a landmark. The four landmarks for each
variable are: the smallest variable value ever recorded, the boundary between
the classes ‘low’ and ‘medium,’ the boundary between the classes ‘medium’ and
‘high,’ and the largest variable value ever recorded. Again, the first column of
lm is a dummy column.

Once the landmarks have been computed, we are ready to use the SAPS–II
recoding algorithm to fuzzify (discretize) the three output variables.
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� to = 1 : 3;
� for i = 2 : 4,
� from = [lm(1 : 3, i), lm(2 : 4, i)]′;
� [c,m, s] = recode(meas(:, i), ′fuzzy′, from, to);
� class(:, i) = c; memb(:, i) = m; side(:, i) = s;
� end

The first argument of the recode function is a column vector containing a
quantitative trajectory to be recoded into a qualitative episode. The second
argument denotes the method of recoding, in our case fuzzy, and the third
and fourth arguments contain the mapping information. The desired shape
of the membership functions (bell–shaped or triangular) is stored in a global
variable, rather than being passed on to the recode function as an argument.

The from matrix is a 2 × nlev matrix, where nlev denotes the number of
classes. It contains the rearranged landmarks. Each column of the from matrix
selects a range in the original quantitative domain to be mapped into the
discrete value stored in the corresponding position of the to vector. Thus, the
from matrix and to vector for the systolic blood pressure of Figure 3.1 would
be:

from =
(

0.0 75.0 100.0 150.0 180.0
75.0 100.0 150.0 180.0 999.9

)

to = ( 1 2 3 4 5 )

In the linear system example presented above, the mapping information is
obtained from the previously computed landmarks.

Notice that the class values, in SAPS–II, are integers rather than
mnemonics. Thus, we use the values ‘1,’ ‘2,’ and ‘3’ to represent the classes
‘low,’ ‘medium,’ and ‘large.’

The same holds for the side function values. Rather than using the
mnemonics ‘left,’ ‘center,’ and ‘right,’ SAPS–II encodes the side values as
‘−1’, ‘0’, and ‘+1.’

Since the input signal of the linear example is already binary, it is only
necessary to add its membership function value (always 1.0) and its side
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function value (always ‘0’). This is accomplished using the following Matlab
code:

� [nrec, nvar] = size(meas);
� for j = 1 : nrec,
� if meas(j, 1) == 0
� class(j, 1) = 1;
� memb(j, 1) = 1.0;
� side(j, 1) = 0;
� else
� class(j, 1) = 2;
� memb(j, 1) = 1.0;
� side(j, 1) = 0;
� end
� end

This completes the description of recoding as applied to the linear system
example.

3.2.2 Qualitative Modeling

By now, the quantitative trajectory behavior has been recoded into a
qualitative episodical behavior. In SAPS–II, the episodical behavior is stored
in a qualitative data model. It consists of three matrices of identical size, one
containing the class values, the second storing the membership information,
and the third recording the side values. Each column represents one of the
observed variables, and each row denotes one time point, i.e., one recording of
all variables, or one recorded state.

The class values are in the set of legal levels that each variable can assume.
They are all positive integers, usually in the range from ‘1’ to ‘5,’ as SAPS–II
uses integers in place of symbolic values to represent qualitative levels.

In the FIR methodology, the fuzzy modeling process is performed by means
of the fuzzy optimal mask function. It optimizes the predictiveness of the model
by performing an exhaustive search in the discrete space of the class values.
The details of how this is accomplished are presented in this section.
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3.2.2.1 Masks as Qualitative Models

How does the episodical behavior support the identification of a qualitative
model of a given system for the purpose of forecasting its future behavior for
any given input stream?

A continuous trajectory behavior has been recorded and is available for
modeling. The inputs of the real system and a set of measurable outputs have
been recorded as functions of time and are stored in the trajectory behavior.
The trajectory behavior can be separated into a set of input trajectories, ui,
concatenated from the right with a set of output trajectories, yi, as shown in
the following example containing two inputs and three outputs:

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

time u1 u2 y1 y2 y3

0.0 . . . . . . . . . . . . . . .
δt . . . . . . . . . . . . . . .
2 · δt . . . . . . . . . . . . . . .
3 · δt . . . . . . . . . . . . . . .
...

...
...

...
...

...
(nrec − 1) · δt . . . . . . . . . . . . . . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

(3.6)

where nrec is the number of data records, and δt is the sampling interval.

In order to avoid possible ambiguities, it is defined that the terms “input”
and “output,” when used in this chapter without further qualifier, shall always
refer to the input and output variables of the subsystem to be modeled by the
qualitative reasoner.

In the process of modeling, it is desired to discover finite automata relations
among the recoded variables that make the resulting state transition matrices
as deterministic as possible. If such a relationship is found for every output
variable, the behavior of the system can be forecast by iterating through
the state transition matrices. The more deterministic the state transition
matrices are, the higher is the likelihood that the future system behavior will
be predicted correctly.

A possible relation among the qualitative variables for this example could
be of the form:

y1(t) = f̃(y3(t− 2δt), u2(t− δt), y1(t− δt), u1(t)) (3.7)
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where f̃ denotes a qualitative relationship. Notice that f̃ does not stand for
any (known or unknown) explicit formula relating the input arguments to the
output argument, but only represents a generic causality relationship that, in
the case of the FIR methodology, will be encoded in the form of a tabulation
of likely input/output patterns, i.e., a state transition table. In SAPS–II,
Equation 3.7 is represented by the following matrix:

⎛
⎜⎝

t\x u1 u2 y1 y2 y3

t− 2δt 0 0 0 0 −1
t− δt 0 −2 −3 0 0
t −4 0 +1 0 0

⎞
⎟⎠ (3.8)

The negative elements in this matrix are referred to as m–inputs. M–inputs
denote input arguments of the qualitative functional relationship. They can
be either inputs or outputs of the subsystem to be modeled, and they can
have different time stamps. The above example contains four m–inputs.
The sequence in which they are enumerated is immaterial. They are usually
enumerated from left to right and top to bottom. The single positive value
denotes the m–output. The terms m–input and m–output are used in order
to avoid a potential confusion with the inputs and outputs of the plant. In
the above example, the first m–input, i1, corresponds to the output variable
y3 two sampling intervals back, y3(t− 2δt), whereas the second m–input refers
to the input variable u2 one sampling interval into the past, u2(t− δt), etc.

In the FIR methodology, such a representation is called a mask. A mask
denotes a dynamic relationship among qualitative variables. A mask has the
same number of columns as the episodical behavior to which it should be
applied, and it has a certain number of rows, the depth of the mask.

The mask can be used to flatten a dynamic relationship out into a static
relationship. It can be shifted over the raw data matrix, the selected m—
inputs and m–output can be extracted from the raw data, and they can be
written next to each other in one row of the so–called input/output matrix.
The selected m—inputs and m–output are those that are visible through the
holes of the mask, when it is in a specific position. This is the reason for the
terminology: the mask. Figure 3.2 illustrates this process.

After the mask has been applied to the qualitative data model, the formerly
dynamic episodical behavior has become static, i.e., the relationships are now
contained within single rows.

Each row of the input/output matrix is called a state of the system. A
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depth = round(
∆t

δt
) + 1 (3.10)

but this ratio should not be much larger than three or four, otherwise the
inductive reasoner won’t work very well, since the computing effort grows
factorially with the size of the mask. In later chapters of the dissertation, it
will be shown how this limitation can be overcome. An extensive analysis of the
effects that an incorrect selection of these parameters have on the prediction
is provided in Chapter 7.

In order to determine the two time constants of interest, several techniques
can be used. If the physical system itself is available for experimentation, a
Bode diagram of the system to be modeled can be obtained. This enables to
determine the eigen frequencies of the system, and in particular, the smallest
and largest eigen frequencies. The smallest eigen frequency ωlow is the smallest
frequency, at which the tangential behavior of the amplitude of the Bode
diagram changes by −20 dB/decade, and the largest eigenvalue ωhigh is the
highest frequency where this happens. The largest time constant, tl, and the
shortest time constant, ts, of the system can then be computed as follows:

tl =
2π

ωlow

; ts =
2π

ωhigh

(3.11)

If an analytical (quantitative) model of the system under investigation is
available, the relevant time constants can be read out from it. If only time
series are available that may have been measured earlier by someone else, or if
the physical system is not open to free experimentation, such as in the case of
a biomedical system involving humans, spectra of the input and output signals
can be determined, but the information obtained from those may be deceiving.
Ultimately, the modeler may have to rely on expert opinion as to what these
time constants may be. In biomedicine, this is frequently the case.

3.2.2.2 Determination of the Optimal Mask

How is a mask found that, within the framework of all allowable masks,
represents the most deterministic state transition matrix? This mask will
optimize the predictiveness of the model. In SAPS–II, the concept of a
mask candidate matrix has been introduced. A mask candidate matrix is an
ensemble of all possible masks from which the best is chosen by a mechanism of
exhaustive search. The mask candidate matrix contains ‘−1’ elements where
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the mask has a potential m–input, a ‘+1’ element where the mask has its
m–output, and ‘0’ elements to denote forbidden connections. Thus, a good
mask candidate matrix to determine a predictive model for variable y1 in the
previously introduced five–variable example might be:

⎛
⎜⎝

t\x u1 u2 y1 y2 y3

t− 2δt −1 −1 −1 −1 −1
t− δt −1 −1 −1 −1 −1
t −1 −1 +1 0 0

⎞
⎟⎠ (3.12)

Corresponding mask candidate matrices are used to find predictive models for
y2 and y3. In all three mask candidate matrices, the instantaneous values of
the other two output variables are blocked out in order to prevent algebraic
loops to occur between the output variables that are to be estimated.

In SAPS–II, the foptmask routine determines the optimal mask from the
class value matrix, the fuzzy membership matrix, a mask candidate matrix,
and a parameter that limits the maximum tolerated mask complexity, i.e., the
largest number of non–zero elements that the mask may contain. Foptmask
searches through all legal masks of complexity two, i.e., all masks with a single
m–input and finds the best one; it then proceeds by searching through all
legal masks of complexity three, i.e., all masks with two m–inputs and finds
the best of those; and it continues in the same manner until the maximum
complexity has been reached. In all practical examples, the quality of the
mask will first grow with increasing complexity, then reach a maximum, and
then decay rapidly. A good value for the maximum complexity is usually five
or six.

Each of the possible masks is compared to the others with respect to its
potential merit. The optimality of the mask is evaluated with respect to the
maximization of its forecasting power.

The Shannon entropy measure is used to determine the uncertainty
associated with forecasting a particular output state given any legal input
state. The Shannon entropy relative to one input state is calculated from the
equation:

Hi =
∑
∀o

p(o|i) · log2 p(o|i) (3.13)

where p(o|i) is the “conditional probability” of a certain m–output state o
to occur, given that the m–input state i has already occurred. The term
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probability is meant in a statistical rather than in a true probabilistic sense.
It denotes the quotient of the observed frequency of a particular state divided
by the highest possible frequency of that state.

The overall entropy of the mask is then computed as the sum:

Hm = −∑
∀i

p(i) ·Hi (3.14)

where p(i) is the probability of that input state to occur. The highest possible
entropy Hmax is obtained when all probabilities are equal, and a zero entropy
is encountered for relationships that are totally deterministic.

A normalized overall entropy reduction Hr is defined as:

Hr = 1.0 − Hm

Hmax

(3.15)

Hr is obviously a real number in the range between 0.0 and 1.0, where
higher values usually indicate an improved forecasting power. The masks with
highest entropy reduction values generate forecasts with the smallest amounts
of uncertainty.

The fuzzy membership associated with the value of a qualitative variable
is a measure of confidence. In the computation of the input/output matrix,
a confidence value can be assigned to each row. The confidence of a row of
the input/output matrix is the joint membership of all the variables associated
with that row (Li and Cellier, 1990).

The joint membership of i membership functions is defined in SAPS–II as
the smallest individual membership:

Membjoint =
⋂
∀i

Membi = inf
∀i

(Membi)
def
= min

∀i
(Membi) (3.16)

The confidence vector indicates how much confidence can be expressed in the
individual rows of the input/output matrix.

The basic behavior of the input/output model can now be computed. It
is defined as an ordered set of all observed distinct states, together with a
measure of confidence of each state. Rather than counting the observation
frequencies (as would be done in the case of a probabilistic measure), the
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individual confidences of each observed state are accumulated. If a state has
been observed more than once, more and more confidence can be expressed in
it. Thus, the individual confidences of each observation of a given state are
simply added together to compute the cumulative membership.

This is a peculiar and rather uncommon choice. Most fuzzy algorithms
either use the smallest individual membership value to compute joint
membership (as we do in SAPS–II), and the largest individual membership
value to denote cumulative membership:

Membjoint =
⋂
∀i
Membi = inf

∀i
(Membi)

def
= min

∀i
(Membi)

Membcumul =
⋃
∀i
Membi = sup

∀i
(Membi)

def
= max

∀i
(Membi)

or alternatively, they use the sum of the individual membership functions to
denote accumulation (as we do in SAPS–II), and then they use the product to
denote intersection (or joining):

Membjoint =
∏
∀i
Membi

Membcumul =
∑
∀i
Membi

There is no deep reason behind our unconventional choice. It simply resulted
from experimentation. It led to the best mask selections in a fairly large
number of experiments.

In order to be able to use the Shannon entropy, which is a probabilistic
measure of information content, in the computation of the fuzzy optimal
mask, the accumulated confidences must first be converted back to values that
can be interpreted as conditional probabilities. To this end, the confidences
of all states containing the same m–input state are added together, and
the confidence of each of them is then divided by this sum. The resulting
normalized confidences can be interpreted as conditional probabilities.

Application of the Shannon entropy to a confidence measure is a somewhat
questionable undertaking on theoretical grounds, since the Shannon entropy
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was derived in the context of probabilistic measures only. For this reason, some
scientists prefer to replace the Shannon entropy by other types of performance
indices (Klir, 1989; Shafer, 1976), which have been derived in the context
of the particular measure chosen. However, from a practical point of view,
numerous simulation experiments have shown that the Shannon entropy works
satisfactorily also in the FIR context.

One problem still remains. The size of the input/output matrix increases
as the complexity of the mask grows, and consequently, the number of legal
states of the model grows quickly. Since the total number of observed states
remains constant, the frequency of observation of each state shrinks rapidly,
and so does the predictiveness of the model. The entropy reduction measure
does not account for this problem. With increasing complexity, Hr simply
keeps growing. Very soon, a situation is encountered where every state that
has ever been observed has been observed precisely once. This obviously leads
to a totally deterministic state transition matrix, and Hr assumes a value of
1.0. Yet the predictiveness of the model will be dismal, since in all likelihood
already the next predicted state has never before been observed, and that
means the end of forecasting. Therefore, this consideration must be included
in the overall quality measure.

It was mentioned earlier that, from a statistical point of view, every state
should be observed at least five times (Law and Kelton, 1990). Therefore, an
observation ratio, Or, is introduced as an additional contributor to the overall
quality measure (Li and Cellier, 1990):

Or =
5 · n5× + 4 · n4× + 3 · n3× + 2 · n2× + n1×

5 · nleg

(3.17)

where:

nleg = number of legal m–input states;
n1× = number of m–input states observed only once;
n2× = number of m–input states observed twice;
n3× = number of m–input states observed thrice;
n4× = number of m–input states observed four times;
n5× = number of m–input states observed five times or more.

If every legal m–input state has been observed at least five times, Or is equal
to 1.0. If no m–input state has been observed at all (no data are available),
Or is equal to 0.0. Thus, Or can also be used as a quality measure.
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The overall quality of a mask, Qm, is then defined as the product of its
uncertainty reduction measure, Hr, and its observation ratio, Or:

Qm = Hr ·Or (3.18)

The optimal mask is the mask with the largest Qm value.

Notice that the observation ratio does not influence the quality of a forecast
if it is possible to make a forecast at all. It only influences the likelihood that
a forecast can indeed be made. In other words, higher complexity masks with
a large entropy reduction value but with smaller overall quality (due to their
high complexity) will usually provide excellent forecasts . . . if they are able to
produce forecasts at all.

Let us use the linear example described in the fuzzification section to show
how the optimal mask function is performed using SAPS–II in the Matlab
environment. In that example, three optimal masks should be computed, one
for each output variable. The following code shows the optimal mask analysis
for the first output. As has been mentioned earlier, the first 270 rows of the
raw data matrix are used for model identification. The remaining 30 rows will
be use for model validation.

� cclass = class(1 : 270, :);
� mmemb = memb(1 : 270, :);
� mcan = −ones(3, 4);
� mcan(3, 2 : 4) = [1, 0, 0];
� [mask, hm, hr, qm,mhis] = foptmask(cclass,mmemb,mcan, 5);

In SAPS–II, the foptmask function returns: the overall best mask found in the
optimization, mask; the row vector that contains the Shannon entropies of the
best masks for every considered complexity, Hm; the row vector containing
the corresponding uncertainty reduction measures, Hr; and yet another row
vector listing the quality measures, Qm, of these suboptimal masks. Finally,
foptmask also returns the mask history matrix, mhis, a matrix that consists of
a horizontal concatenation of all suboptimal masks. One of these masks is the
optimal mask, which, for reasons of convenience, is also returned separately in
the first output argument, mask.
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3.2.3 Qualitative Simulation

Once an optimal mask has been determined, it can be applied to the given
class value matrix resulting in a particular input/output matrix. Since the
input/output matrix contains functional relationships within single rows, the
rows of the input/output matrix can now be sorted in alphanumerical order.
The result of this operation is called the behavior matrix of the system. The
behavior matrix is a finite state machine. For each input state, it shows which
output is most likely to be observed.

Forecasting has now become a straightforward procedure. The mask is
simply shifted further down beyond the end of the raw data matrix, the values
of the m–inputs are read out from the mask, and the behavior matrix is used
to determine the future value of the m–output, which can then be copied back
into the raw data matrix. In fuzzy forecasting, it is essential that, together
with the class value of the output, also fuzzy membership and side values
are forecast. Thus, fuzzy forecasting predicts an entire qualitative triple from
which a quantitative variable can be regenerated whenever needed.

In fuzzy forecasting, the membership and side functions of the new input
state are compared with those of all previous recordings of the same input state
contained in the behavior matrix. The one input state with the most similar
membership and side functions is identified. For this purpose, a normalization
function:

pi = classi + sidei ∗ (1 −Membi) (3.19)

is computed for every element of the new input state. The pi values
are quantitative (real–valued) variables that can be used to represent the
relative magnitude of a particular qualitative triple. However, they are
not regenerations of the original quantitative signals. They are normalized
variables. Irrespective of whether an original signal was very small, ranging
from −10−15 to +10−14, or very large, ranging from 106 to 1012, the
corresponding pi signal ranges exactly from 0.5 to 1.5 for values in class ‘1,’ from
1.5 to 2.5 for values in class ‘2,’ etc. Consequently, different pi signals can be
compared to each other or can be summed up, without weighing them relative
to each other, something that would not be meaningful using the original
or regenerated signals. The normalization function is a transformation from a
qualitative triple to a quantitative variable, but this variable lives in a different
space from the original quantitative variable.
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The pi values corresponding to the different variables of an input state are
then concatenated to form the vector:

p = [p1, p2, . . . , pj] (3.20)

assuming, the state contains j m–inputs. We call the vector p the norm image
of the original input state.

The analysis proceeds by computing norm images for every previous
recording of the same input state. Let us call these vectors pk. Every pk

vector is a little different, since only the class values of the recorded input
states are identical, but not their membership or side function values.

Finally, the L2 norms of the differences between the p vector representing
the new norm image and the pk vectors representing all previous recordings
of the same input state are computed:

dk = ‖p − pk‖2 (3.21)

and the previous recording with the smallest L2 norm is identified. Its output
and side values are then used as forecasts for the output and side values of the
current state.

Forecasting of the new membership function value is done a little differently.
Here, the five previous recordings with the smallest L2 norms are used (if at
least five such recordings are found in the behavior matrix), and a distance–
weighted average of their fuzzy membership functions is computed and used
as the forecast for the fuzzy membership function of the current state.

This is done in the following manner. Absolute weights are computed using
one of two formulae. If none of the five smallest distance functions, dk is
exactly equal to zero, we use the equation:

wabsk
=

(d2
max − d2

k)

dmax · dk

(3.22)

where the index k loops over the five closest neighbors, and di ≤ dj , i < j;
dmax = d5.

Evidently, the above formula will not work if any of the dk values is zero,
since this leads to a singularity. In this situation, the modified equation:
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wabsk
=

{ 0.0 ; dk �= 0.0

1.0 ; dk = 0.0
(3.23)

is being used instead.

The idea behind these formulae is that, if one of the previous observations
leads to a very small distance function, its weight should dominate the
computation, yet if all distance functions are equally large, we should make
use of an arithmetic mean between the previous distance functions.

Using the sum of the five absolute weights:

sw =
∑
∀k

wabsk
(3.24)

it is possible to compute relative weights:

wrelk =
wabsk

sw

(3.25)

The relative weights are numbers between 0.0 and 1.0, and their sum always
equals 1.0. Thus, the relative weights can be interpreted as percentages. Using
this idea, the membership function of the new output can be computed as a
weighted sum of the membership functions of the outputs of the previously
observed five nearest neighbors:

Memboutnew =
∑
∀k

wrelk ·Memboutk (3.26)

In most of the experiments made in the past, it could be noticed that the fuzzy
forecasting function computed using this algorithm generated a more accurate
forecast than when using a probabilistic forecasting function (another option
available within SAPS–II).

Let us now check how the simulation process for the linear example would
be encoded:

� oc = class(1 : 270, :);
� om = memb(1 : 270, :);
� os = side(1 : 270, :);
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� nc = class(271 : 300, 1);
� nm = memb(271 : 300, 1);
� ns = side(271 : 300, 1);
� for i = 1 : 30,
� j = 270 + i− 1; k = j + 1;
� ic = [oc;nc(i), 0, 0, 0];
� im = [om;nm(i), 1.0, 1.0, 1.0];
� is = [os;ns(i), 0, 0, 0];
� [fc1, fm1, fs1] = fforecast(ic, im, is,mask1, j);
� [fc2, fm2, fs2] = fforecast(ic, im, is,mask2, j);
� [fc3, fm3, fs3] = fforecast(ic, im, is,mask3, j);
� oc = [oc;nc(i), fc1(k, 2), fc2(k, 3), fc3(k, 4)];
� om = [om;nm(i), fm1(k, 2), fm2(k, 3), fm3(k, 4)];
� os = [os;ns(i), fs1(k, 2), fs2(k, 3), fs3(k, 4)];
� end

The qualitative simulation operates in the following way: We loop over the
30 steps of the desired forecast. In each step, the SAPS–II routine fforecast is
called thrice, once with each of the three optimal masks to predict one new
qualitative triple at a time. At the end of the loop, the three predicted triples
are copied back into the qualitative model, and the pointer is shifted down one
row. After the 30 steps are completed, 30 new qualitative triples have been
forecast for each of the three output variables.

Initially, the class, membership, and side values of the first 270 steps are
copied as past data into the matrices oc, om, and os, where the character “o”
stands for old. These three matrices together make up the past history data
base. The last 30 rows of the first column are then copied into the vectors
nc, nm, and ns, where the letter “n” stands for new. These three vectors
constitute the future inputs.

After these preparatory steps, we start with the loop. The matrices ic,
im, and is are the three past data matrices concatenated from below with
one new row containing the next input value in the first column, and arbitrary
values in the second to fourth columns. These matrices are the first three input
arguments of routine fforecast. The fourth input argument is the optimal mask
to be used during the prediction, and the fifth and last input argument denotes
the number of past data rows within the three data matrices. Upon return,
fci is the same matrix as ic, but with the new prediction filled into one of the
previously unused spots of the last row of the class value matrix, fmi is the
updated im matrix, and fsi is the augmented is matrix.



3.2. The Methodology 63

At the end of the loop, the three old data matrices are updated to include
one new row at the bottom, and the same procedure begins again one sampling
interval into the future.

One of the most significant advantages of SAPS–II in comparison with other
qualitative methodologies is its intrinsic model validation mechanism that
ensures that SAPS–II will decline to predict anything that is not justifiable
given the available facts. This is accomplished by computing a measure of
forecasting quality, Qf . The measure of forecasting quality is defined as the
cumulative output probability obtained during the forecasting process.

SAPS–II not only maintains a qualitative model of the system under study,
which enables it to estimate the value of the output variable of that system at
any point in time, but it also maintains a statistical model of the qualitative
model of that system, which enables it to estimate the accuracy of its own
predictions, i.e., it maintains an error model. Thus, with every prediction,
SAPS–II also generates an estimate of the probability of correctness of that
prediction.

If SAPS–II is asked to forecast more than one step at a time, Qf is computed
by multiplying the individual probabilities of correctness of the predictions of
each step with each other. Since every probability is a number ≤ 1.0, the
cumulative probability of a forecast can only decline with time, never increase.
This is meaningful, since errors committed during one step must reduce the
probability of correctness of the subsequent prediction even more, since already
the initial value used in that step is uncertain. The user can specify a value
for Qfmin

below which no further prediction is meaningful. As soon as the
cumulative Qf value has decreased to a level smaller than Qfmin

, the forecasting
process will come to a halt.

Notice that the probabilistic error model used by SAPS–II assumes the
statistical independence of each forecast. This assumption is evidently never
justified. However, it is a conservative assumption, i.e., forecasting may stop
too early because of it, but never too late. Notice further that the error model
is a probabilistic one rather than a possibilistic one. It has thus been designed
for use with crisp inductive reasoning rather than fuzzy inductive reasoning.

In fuzzy inductive reasoning, we are currently using a pseudo–probabilistic
approach. Rather than computing the probability of correctness of a
prediction, we compute the confidence that we have in that prediction. We can
also compute the accumulated confidences of all possible predictions during the
same step, defined as the sum of all individual confidences for each possible
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example. The recoding function allows to convert quantitative signals into
their qualitative counterparts. This process is the first step on the way of
obtaining qualitative knowledge about the system under study. The optimal
mask analysis allows us to determine qualitative causality relations among a
set of causally related variables. An optimal mask can be viewed as a sort of
feature extractor. Future outputs of the system can be predicted by means
of the forecasting process. The forecasting function predicts not only the
class value of the new output, but also its corresponding membership and side
values. Finally, the estimated qualitative output triples can be converted back
to quantitative signals by means of the regeneration function.

The present chapter establishes the basis of the fuzzy inductive reasoning
methodology. Our implementation of this methodology is the SAPS–II
software, which is available as either a CTRL–C library or a Matlab toolbox.

The qualitative reasoning process itself is composed of the qualitative
modeling and simulation engines. The fuzzification and defuzzification
modules are not directly related to the reasoner itself. However, they are
essential as well, since they enable the user to work with mixed quantitative and
qualitative simulation models, whereby quantitative subsystems are modeled
using differential equations and qualitative subsystems are modeled using the
FIR technology.

The next chapter of this dissertation explains how such a mixed modeling
and simulation environment can be constructed, and it demonstrates the use
of the newly introduced concepts and tools by means of a generic example.



Chapter 4

Mixed Quantitative/Qualitative
Modeling and Simulation

4.1 Introduction

One serious difficulty with many qualitative modeling and simulation
techniques is that they have a tendency of overgeneralizing knowledge.
Thereby, too much ambiguity is introduced into the qualitative results, making
them practically worthless. Detailed knowledge should be incorporated into
the model wherever it is available in order to reduce the ambiguity of the
results. However, many qualitative modeling and simulation approaches do not
permit to incorporate quantitative knowledge at all, even where it is available.

There exist many examples of systems with partial structural knowledge
available to the modeler. These are systems that contain facets or components,
usually called subsystems, that are well understood and for which quantitative
structural knowledge is available, whereas other facets or components of the
overall system are not well understood, the functioning of which may even be
totally unknown.

Subsystems for which quantitative structural knowledge is available should
be modeled using traditional quantitative techniques, such as sets of ordinary
or partial differential equations, whereas those subsystems for which such
detailed knowledge is lacking should be modeled by qualitative techniques.

For example, whereas the mechanical properties of a human heart are well
understood and can be described by differential equation models fairly well,
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the effects of chemical substances on the behavior of the heart are poorly
understood and cannot easily be quantified. A mixed model should be used
to describe those portions of the overall system that are well understood by
quantitative differential equation models, whereas other aspects that are less
well understood are being represented in qualitative terms.

It is, in such cases, desirable to have available a mixed modeling
methodology that allows to encode each type of subsystem in the manner
most appropriate for it, and that makes it possible to simulate the ensemble
of models in an efficient way and with minimal ambiguity.

The main objective of this chapter is to show that mixed quantitative and
qualitative modeling and simulation is feasible within the FIR methodology,
and how the two worlds: the differential equation models to describe
quantitative knowledge and the FIR models to encode qualitative information,
are reconcilable with each other.

4.2 Importance of a Mixed Technique

Mixed modeling and simulation is needed for all types of systems that
are composed of well–known and poorly–understood subsystems. This
characteristic is common to a large variety of different applications.

Fuzzy control systems are of that nature. If it is desired to simulate a fuzzy
control system, it is necessary to generate models of the plant to be controlled
and of the controller itself, and simulate both together in one simulation
program. Usually, the plant is a real physical system for which detailed
quantitative knowledge is available to the modeler. Thus, the model of the
plant can be and should be described by a differential equation model. On the
other hand, the fuzzy controller enacts a qualitative control upon the system,
and should be dealt with accordingly. Therefore, when a fuzzy controller is
used to govern a physical plant, a system with partial structural knowledge is
created. It is thus essential to have available a mixed modeling and simulation
technique that enables the user to model each subsystem separately in the
most effective way, and then simulate the combined system using a mixed
simulation environment (Cellier and Mugica, 1992).

Fault monitoring in complex systems is another area where the use of a
mixed modeling and simulation technique is highly desirable. During the
design of a fault monitoring system, it is often useful to be able to simulate the
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real plant for which the fault monitor is to be developed, together with faults
that are scheduled to occur frequently, and together with the fault monitor
that tries to detect these faults and then discriminate between them. In the
real system, one may have to wait for a long time before a particular fault
occurs, and therefore, it may be hard to debug the fault monitor using the real
system. As in the previous example, the plant to be monitored is usually a
physical plant with lots of detailed knowledge available to the modeler. Thus,
it is appropriate to model the plant by use of differential equations. The fault
monitor, on the other hand, mimics the behavior of a human plant operator.
It contains one or several qualitative models of facets or modes of functioning
of the very same plant, and reasons about discrepancies between expected and
observed plant behavior (Cellier and de Albornoz, 1993b).

In biomedical engineering, it is frequently necessary to deal with systems
with partial structural knowledge. Many subsystems of the human body
contain facets, e.g. mechanical or electrical aspects, that have been well
studied and that can therefore be represented reliably by differential equation
models. Yet, these very same subsystems usually contain other facets, often
related to chemical processes, the functioning of which is known in an intuitive
manner only. Therefore, as in the other two cases, it is essential to be able to
have available a mixed quantitative and qualitative modeling and simulation
methodology that can be used to analyze such systems.

The development of the mixed modeling and simulation methodology
presented in this chapter is common to three doctoral theses under
simultaneous development at the Universitat Politècnica de Catalunya,
focusing on the three application areas that were briefly outlined in this section.
All of them require a mixed quantitative/qualitative modeling and simulation
environment to work with (Cellier et al., 1992, 1994).

The design of such an environment is not a straightforward task. Several
problems arise that need to be addressed. How should a mixed quantitative
and qualitative simulation deal with the fact that the quantitative subsystems
treat the independent variable, time, as a quantitative variable, whereas the
qualitative subsystems treat the same variable qualitatively? When does
a particular qualitative event occur in terms of quantitative time? How
are the explicit experimental conditions that are needed by the quantitative
subsystems accounted for in the qualitative subsystems?

Quite obviously, a number of incompatibility issues exist between
quantitative and qualitative subsystems that must be settled before mixed
simulations can be attempted. In a mixed simulation, also the qualitative
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subsystems must treat time as a quantitative variable. Furthermore, the
purpose of qualitative models in the context of mixed simulations is revised.
It is no longer their aim to enumerate episodical behaviors. Instead, also
the qualitative models are now used to determine a single episodical behavior
in response to a single set of qualitative experimental conditions. However,
whereas quantitative simulation of a deterministic system generates the one
and only true trajectory behavior, qualitative simulation only is able to
generate the most likely episodical behavior and attach a measure of likelihood
to each prediction made.

It is thus necessary to devise qualitative modeling and simulation
capabilities that are compatible with their quantitative counterparts and that
can be used to represent qualitative subsystems, such as those mentioned
above, appropriately and in terms of knowledge available to the system
designer at the time of modeling.

4.3 Mixed Quantitative/Qualitative Technique

The two main components of the FIR methodology that enable the
combination of quantitative and qualitative subsystems are the fuzzification
(recode) and defuzzification (regeneration) modules.

The fuzzification module performs the functions of a fuzzy A/D converter. It
converts quantitative signals (analog signals) into qualitative signals (discrete
signals). However, and contrary to the regular A/D converters, it uses a very
coarse discretization that is augmented by fuzzy membership functions to be
used for the fine interpolation between neighboring discrete states. In contrast,
the defuzzification module operates as a fuzzy D/A converter. It converts
qualitative signals back into quantitative signals. Consequently, the interfaces
between the quantitative and qualitative subsystems are achieved by means of
the FIR recoding and regeneration functions.

Let us sketch a generic example that demonstrates how the problem is
tackled. Let us assume that we have a system consisting of four subsystems,
as presented in Figure 4.1.

It is furthermore assumed that the internal structure of subsystems S1,
S3, and S4 is well known, and therefore, quantitative models for each of
these subsystems can be constructed. However, subsystem S2 is modeled
qualitatively, because its internal structure is unknown. The only fact that is
known about subsystem S2 is that there exist (possibly dynamic) input/output
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will show that feedback loops do not present any insurmountable barriers to
the methodology.

Quantitative subsystems are modeled using a mixture of differential
and algebraic equations and are simulated using the Advanced Continuous
Simulation Language, abbreviated as ACSL (MGA, 1991). Qualitative
subsystems are modeled by means of the fuzzy inductive reasoning
methodology, and therefore, they are represented as masks. The simulation
of those subsystems is accomplished using a subset of the SAPS–II modules.
In order to simulate both types of subsystems together, interfaces had to be
created between ACSL and SAPS–II.

These interfaces will subsequently be described. Notice that, of all the
SAPS–II modules, only three are needed during simulation: the fuzzy recoding
module, the fuzzy regeneration module, and the fuzzy forecasting model. All
other SAPS modules, such as the optimal mask generation module, are used
in an off–line fashion only, and need not be accessible from within the mixed
simulation environment. Therefore, the masks and the recoded raw data
matrices to be used in the mixed simulation are either introduced as local
variables in the ACSL program, or they are imported from the Matlab or
CTRL–C environment.

All three interfaces are encoded as ACSL macros. The recode interface takes
the following form:

macro recode (class,memb, side, signal, from, nlev)
procedural (class,memb, side = signal, from, nlev)

call recode (class,memb, side, signal, from, 1, nlev)
end ! of procedural

macro end

ACSL calls the same Fortran–encoded subroutine that resides inside the
SAPS–II software when called from Matlab. It packs it into a macro for easier
use from within the ACSL software environment. The recode macro has three
output parameters, the class value, class, the fuzzy membership value, memb,
and the side value, side. It also has three input parameters, the analog input
to be recoded, signal, the from matrix, with the same definition as provided in
Chapter 3, and the number of discrete levels, nlev, into which the continuous
signal is to be recoded, corresponding to the number of columns of the from
matrix. The call to the Fortran routine contains one more parameter (with
value ‘1’), which denotes the number of data records to be recoded. Contrary
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to Chapter 3, where recode had always been used to fuzzify the entire raw data
matrix in a single function call, in the ACSL interface, we only fuzzify the
current value of the analog variable, signal.

The regen macro performs the inverse operation. It has the same formal
arguments as the recode macro, just arranged in a different sequence.

macro regen (signal, class,memb, side, to, nlev)
procedural (signal = class,memb, side, to, nlev)

call regen (signal, class,memb, side, to, 1, nlev)
end ! of procedural

macro end

It converts a qualitative triple, <class,memb,side>, into an analog variable,
signal. The to matrix assumes here the role of the former from matrix. As in
the case of the recode macro, regen converts a single record of a single variable
at any one time.

The forecasting interface is a bit more complex. It looks as follows:

macro forcst (class,memb, side,mask, cmat,mmat, smat, k)
procedural (class,memb, side = mask, cmat,mmat, smat, k)

call forcst (class,memb, side,mask, cmat,mmat, smat,
k − 1, nvar, depth, nrec)

end ! of procedural
macro end

The forcst macro forecasts one qualitative triple, <class,memb,side>, using
the optimal mask, mask. However, the forcst routine must also access the
experience data base (the past behavior) consisting of the class value matrix,
cmat, the membership value matrix, mmat, and the side value matrix, smat.
Also these variables must thus be passed through the parameter list. Due to
constraints of the Fortran language, we must also provide the subroutine with
the dimensions of all these matrices by letting it know the number of variables
involved, nvar, the depth of the mask, depth, and the number of records for
which the experience data base is dimensioned, nrec. In order to keep the run–
time calling list short, the dimensions are treated as constants, rather than
passing them along as formal arguments of the macro. The parameter k is a
pointer variable that points to the data record, for which a new value is to be
forecast. The forcst routine wants to know how many records the experience
data base currently contains, i.e., one row less.
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We need two additional macros in order to be able to use the ACSL/SAPS
interface. Remember from Chapter 3 that, before being able to forecast, we
must pack the new input triples into the experience data base and preset the
to be predicted outputs to arbitrary legal values. This is accomplished using
the prefrc macro:

macro prefrc (cmat,mmat, smat, class,memb, side, k)
procedural (cmat,mmat, smat = class,memb, side, k)
cmat(k, 1) = class
mmat(k, 1) = memb
smat(k, 1) = side
cmat(k, 2) = 0
mmat(k, 2) = 1.0
smat(k, 2) = 0
cmat(k, 3) = 0
mmat(k, 3) = 1.0
smat(k, 3) = 0
cmat(k, 4) = 0
mmat(k, 4) = 1.0
smat(k, 4) = 0

end ! of procedural
macro end

assuming that we are dealing with a four–variable system with one input and
three outputs.

Finally, we need to pack the forecasts back into the experience data base.
This is done using the pack macro:

macro pack (dat, u, y1, y2, y3, k)
procedural (dat = u, y1, y2, y3, k)
dat(k, 1) = u
dat(k, 2) = y1
dat(k, 3) = y2
dat(k, 4) = y3

end ! of procedural
macro end

assuming again the same four–variable system.
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We are now ready to describe the qualitative simulation to be performed
within the ACSL environment. Let us continue to assume a four–variable
system with a single input, u, and the three outputs, y1, y2, and y3. The
sampling rate is assumed to be δt = 3 seconds.

discrete saps
interval tsaps = 3.0
integer k, cu, su, cy1, sy1, cy2, sy2, cy3, sy3
procedural
k =ifix(t/tsaps+ 1.5)

cu =ifix(u) + 1
mu = 1.0
su = −ifix(2.0 ∗ (u− 0.5))

prefrc(cmat,mmat, smat = cu,mu, su, k)

forcst(cy1,my1, sy1 = mask1, cmat,mmat, smat, k)
forcst(cy2,my2, sy2 = mask2, cmat,mmat, smat, k)
forcst(cy3,my3, sy3 = mask3, cmat,mmat, smat, k)

pack(cmat = cu, cy1, cy2, cy3, k)
pack(mmat = mu,my1,my2,my3, k)
pack(smat = su, sy1, sy2, sy3, k)

y1 =regen(cy1,my1, sy1, ty1, 3)
y2 =regen(cy2,my2, sy2, ty2, 3)
y3 =regen(cy3,my3, sy3, ty3, 3)

end ! of procedural
end ! of discrete saps

The qualitative simulation is encoded in a discrete block of ACSL to be
executed once every 3.0 seconds. Inside this block, we first determine the
current value of the pointer variable, k, i.e., we need to know what row of
the experience data base corresponds to the current time, t. Recoding of the
input was done manually in the above example, since the input was assumed to
be already binary, thus no fuzzy recoding was needed. The qualitative input
triples are immediately stored in the experience data base using the prefrc
macro. Forecasting can now begin. Three separate forecasts are made, one for
each output variable. The predicted qualitative output triples are then packed
back into the experience data base, and quantitative outputs are regenerated
from them.

The ACSL/SAPS interface is considerably less comfortable in its utilization
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than the Matlab/SAPS interface. The reasons for this inconvenience are speed
requirements. It is assumed that SAPS routines will be called from within the
Matlab environment sparingly. Thus, a slow interface using files to transfer
variables to and fro between Matlab and SAPS–II is acceptable. Each time
a SAPS module is called from within Matlab or CTRL–C, a new process
is spawned. This makes the interface even slower. The same luxury is not
acceptable when calling SAPS from within ACSL. This interface is written for
complex nonlinear applications, and it is foreseen that hundreds or maybe even
thousands of steps are to be forecast. This requires a very efficient interface
between the two languages, which, in turn, forces us down to the level of
Fortran subroutine calls.

In the next section, the mixed simulation technique is addressed by means
of a simple, yet non–trivial, example from the technical domain. A position
control system involving a hydraulic motor with a four–way servo valve
demonstrates the process of mixed quantitative and qualitative simulation
using fuzzy inductive reasoning.

In this example, the hydraulic subsystem is being modeled by means
of qualitative techniques, whereas the mechanical and electrical parts are
modeled using differential equation models. This system has been chosen,
since complete quantitative knowledge is available for this system, so that
the results obtained can be compared with the results obtainable by purely
quantitative approaches. In this way, it was possible to attack the theoretical
challenges of the mixed modeling methodology first, without mingling them at
once with practical issues of poorly understood biomedical processes.

A realistic and meaningful biomedical application of the proposed technique
has been developed also. It is presented in Chapter 6 of this thesis. This
biomedical application represents aspects of the cardiovascular system of the
human body.

4.4 Position Control System Application

The example was chosen simple enough to be presented in full, yet complex
enough to demonstrate the generality and validity of the approach. However, it
is not suggested that the chosen example represent a meaningful application of
mixed quantitative and qualitative simulation. After all, if complete knowledge
about a process indeed is available, why bother to design a qualitative model
for it. The example was chosen to prove the concept and to clearly present
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ṗ1 = c1(qL1 − qi − qe1 − qind)

ṗ2 = c1(qind + qi − qe2 − qL2) (4.2)

with c1 = 5.857 × 1013 kgm−4sec−2. The internal leakage flow, qi, and the
external leakage flows, qe1 and qe2, can be computed as,

qi = ci · pL = ci(p1 − p2)

qe1 = ce · p1

qe2 = ce · p2 (4.3)

where ci = 0.737 × 10−13 kg−1m4sec, and ce = 0.737 × 10−12 kg−1m4sec.

The induced flow, qind, is proportional to the angular velocity of the
hydraulic motor, ωm:

qind = ψ · ωm (4.4)

with ψ = 0.575× 10−5 m3, and the torque produced by the hydraulic motor is
proportional to the load pressure, pL:

Tm = ψ · pL = ψ(p1 − p2) (4.5)

The mechanical side of the motor has an inertia of Jm = 0.08 kgm2, and a
viscous friction of ρ = 1.5 kgm2sec−1.

The hydraulic motor is embedded in the control circuitry shown on
Figure 4.4. In the mixed quantitative and qualitative simulation, the
mechanical and electrical parts of the control system are represented by
differential equation models, whereas the hydraulic part is represented by a
fuzzy inductive reasoning model.

For this purpose, it was assumed that no knowledge exists that would permit
a description of the hydraulic equations by means of a differential equation
model. All that is known is that the mechanical torque, Tm, of the hydraulic
motor somehow depends on the control signal, u, and the angular velocity, ωm.

For validation purposes, the mixed simulation results are compared with
previously obtained purely quantitative simulation results. The purely
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be deduced (cf. Equation 3.10) once the mask depth has been chosen and
the longest time constant of the system determined. The eigenvalue is at
−20 sec−1, and therefore, the longest time constant is 0.05 seconds. In order
to capture the longest time constant, the three variables u, ωm, and Tm must
be sampled once every 0.025 seconds if a mask depth of depth = 3 is chosen.

Unfortunately, fuzzy inductive forecasting predicts only one value of
Tm per sampling interval. Thus, the mixed qualitative and quantitative
simulation behaves like a sampled–data control system with a sampling rate
of 0.025 seconds. Thereby, the stability of the control system is lost because
the sampling rate is too slow to keep up with the changes in the system.
From a control system perspective, it is necessary to sample the variables
considerably faster. An ACSL program was coded to study different sampling
rates in order to obtain a stable control performance. This program introduces
into the quantitative simulation a delay in the computation of the torque. The
largest delay time that can be introduced without losing stability of the control
system was identified. It was determined that the longest tolerable delay is
0.0025 seconds. Consequently, the mask depth must be increased from three
to 21.

The next step is to find the number of discrete levels into which each of
these variables should be recoded. For the given example, it was decided that
all three variables can be sufficiently well characterized by three levels. A
discretization of the variables in this manner implies that the number of legal
states is 27 (3 × 3 × 3).

As explained before, it is desirable to record each state at least five
times. Consequently, a minimum of 130 recordings, corresponding to a total
simulation time of 0.325 seconds, is needed. However, due to the mismatch
between the sampling rate required by fuzzy forecasting and the actually
used sampling rate that is required due to the control system characteristics,
considerably more data are needed. It was decided to choose a total simulation
time of 2.5 seconds with 2.25 seconds being used for model identification, and
the remaining 0.25 seconds being used for validation. This provides the optimal
mask module with 900 recordings used for model identification, while fuzzy
forecasting is carried out over the final 100 steps.

4.4.1.2 Fuzzy Optimal Mask of the Hydraulics

With the data recoded as previously described, it is possible to build the
qualitative model of the hydraulics by means of the fuzzy optimal mask module
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inside SAPS–II. To combine the qualitative and quantitative simulation
models, it was necessary to observe the limitation imposed by the dynamic
stability problem, while covering with the mask the longest time constant,
∆t = 0.05 seconds, of interest to the qualitative model. This meant that, as
mandated by control theory, a sampling interval of δt = 0.0025 seconds had to
be chosen. Consequently, the mask depth can be computed as:

depth = round(
∆t

δt
) + 1 = 21 (4.6)

Filling such a large mask candidate matrix up with −1 elements to denote
potential inputs, even while limiting the search to masks of complexities up
to six only, would be painfully slow. Therefore, the following approach was
taken. From the point of view of fuzzy reasoning, a mask depth of three is
usually sufficient. Consequently, it was decided to consider only inputs in the
first, the 11th, and the 21st row of the mask, blocking all other rows out by
setting the corresponding elements of the mask candidate matrix equal to 0.
In this way, the search can proceed quickly, and yet, the resulting “optimal”
mask will still be very close to the truly optimal mask. Thus, the following
mask candidate matrix of depth 21 was chosen:

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

t\x u ωm Tm

t− 20δt −1 −1 −1
t− 19δt 0 0 0
...

...
...

...
t− 11δt 0 0 0
t− 10δt −1 −1 −1
t− 9δt 0 0 0
...

...
...

...
t− δt 0 0 0
t −1 −1 +1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(4.7)

This mask candidate matrix indicates that the mechanical torque, Tm, at time
t may depend on the current values of u and ωm, as well as on past values of
u, ωm, and Tm at times t− 0.025 seconds and t− 0.05 seconds.

The following optimal mask has been found for this example:
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small number of discrete levels, the resulting finite state machine is extremely
simple. Fuzzy membership forecasting has been shown to be very effective
in inferring quantitative information about the system under investigation in
qualitative terms.

4.5 Conclusions

In this chapter, a mixed quantitative and qualitative modeling and simulation
methodology has been introduced. Quantitative subsystems are modeled and
simulated as differential equation models, whereas qualitative subsystems are
described using fuzzy inductive reasoning. Mixed quantitative/qualitative
modeling is a highly valuable methodology when dealing with any type of
systems composed of well–known and poorly–understood subsystems. This
approach allows to encode exactly as much information about the system
under study as is available to the modeler. Purely quantitative modeling
approaches require detailed information to be provided for all subsystems,
forcing the modeler to make assumptions, the correctness of which may be
hard to verify. Such models will generate unique answers when simulated, but
it may be an impossibly difficult task to assess the correctness of the simulation
results obtained in this fashion. Purely qualitative modeling approaches,
on the other hand, prevent the modeler from providing detailed information
that he or she may possess, leading to unnecessary ambiguity. These models
will certainly produce valid answers when simulated, but these answers may
often not contain much useful information due to the inherent ambiguity
problem. Mixed simulation is thus an indispensable tool for obtaining valid
and yet unambiguous results when dealing with systems for which only partial
knowledge is available.

Our implementation of the mixed simulation environment employs ACSL as
the underlying simulation language. Quantitative subsystems are implemented
in a straightforward manner by encoding the corresponding differential and
algebraic equations in the derivative section of the ACSL program. This is
what ACSL had been designed for. The qualitative subsystems, however, are
encoded in one or several discrete sections of the ACSL program that are
executed once per sampling interval. These sections call upon ACSL macros,
which in turn make calls to Fortran–encoded SAPS routines for fuzzy recoding,
fuzzy forecasting, and fuzzy signal regeneration.

In order to demonstrate the feasibility of mixed simulation using the
proposed approach, a hydraulic motor control system has been simulated,
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whereby the hydraulic subsystem has been modeled by means of qualitative
techniques, whereas the mechanical and electrical parts were modeled using
differential equations. Special attention had to be paid to the stability of
the sampled feedback control system, satisfying simultaneously the Shannon
sampling theorem and the needs of the inductive reasoner. The excellent
results obtained from the mixed simulation of this system demonstrate the
validity of the chosen approach.

A mixed model has meanwhile also been used in the simulation of a
fairly complex biomedical application, describing aspects of the cardiovascular
system of the human body. This work is presented in Chapter 6 of this
dissertation.

In chapters 3 and 4 of this doctoral thesis, a new and very promising
modeling and simulation methodology was presented. The general descriptions
provided in these two chapters have laid the ground for an understanding of
the biomedical applications that will be described in subsequent chapters.
The remainder of this thesis deals with biomedical questions exclusively.
The discussion begins in Chapter 5 with a compilation of the differences
between technical and biomedical applications to modeling and simulation,
with a discussion of the inherent difficulties that need to be overcome when
dealing with biomedical systems, and with an explanation of why modeling
and simulation, when applied to biomedicine, must still be considered an art
rather than a science.
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Chapter 5

Difficulties in Biomedical
Applications

5.1 Introduction

In previous chapters of this dissertation, a general state–of–the–art review of
techniques and tools used in qualitative modeling and simulation of biomedical
systems was presented, and one of these techniques, the Fuzzy Inductive
Reasoning (FIR) methodology, was described in more detail, together with an
extension that allows mixed quantitative (differential equation) and qualitative
(FIR) models to be treated.

It is now time to dig a little more deeply into the biomedical engineering
field, and to discuss the specific difficulties that have hampered progress in
modeling and simulation of biomedical systems in the past, and that make
these systems much more difficult to handle than practically all other types
of systems met anywhere in science and engineering. This chapter provides
first insights into these domain–specific problems. It also forms a basis for
the subsequent chapters, where several of the problems presented here will be
addressed in order to try to provide a general solution to them, or at least, to
alleviate their implications.

As has been mentioned in Chapter 2, qualitative techniques have not been
as extensively applied to modeling and temporal reasoning in biomedicine as in
other problem domains. The inherent complexity of medicine has contributed
to this lack of success. The difficulties encountered when dealing with
biomedical applications are manyfold and formidable. They are summarized
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in this chapter.

5.2 Problems of Biomedical Applications

Biomedical systems pose particular problems that make it difficult to come
up with models capturing their dynamical behavior. Some of those are
summarized here:

• Lack of information from the point of view of quantity:
Biomedical time constants are often long, and the length of experiments
from which data can be extracted is limited. For example, a surgical
operation has a certain length specific to the operation. If a particular
surgery lasts for a duration of one hour, yet the slowest time constants of
the patient are of the order of 10 minutes, it is unfortunately not possible
to observe the system for more than six of these time constants in order
to obtain better data.

This is of special importance when working with inductive methodolo-
gies. All inductive techniques, such as fuzzy inductive reasoners and neu-
ral networks, need lots of data to work with. It is not possible to generate
meaningful and reliable inductive models without ample and rich data.
This poses a serious problem for most health care applications, where
data may not be as easily to come by as in other application domains,
such as electrical engineering.

• Lack of information from the point of view of quality: Data
stemming from biomedical experiments are poor in quality for two
reasons. On the one hand, there is a strong dependence on the
patient from whom the data are taken. Thus, it is difficult to separate
system–generic information from patient–specific information. Even
more detrimental, however, are the problems that have to do with the
limited range of experiments that can be performed on human subjects.
It is not possible to expose a patient to experiments just for the purpose
of getting data. Even if a heart surgery lasts for several hours, the data
that can be extracted from the patient may be (and hopefully are) quite
uniform. However, in order to come up with models to predict potential
problems, we would need recordings of earlier disasters of the same or a
similar kind from which specific symptoms leading to the problem can be
extracted. Such data are very difficult to come by. Having rich data is
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indispensable for inductive methodologies. Inductively generated models
cannot predict system behavior that they have never seen before.

• Technical difficulties with obtaining information: The interest of
the patient must always come first. Therefore, data from e.g. a surgery
can only be gathered if this can be accomplished in a non–intrusive
fashion. If the data gathering setup is in any way intrusive and carries
the potential for increasing the risk to the patient, then data gathering
must not be done in the interest of the patient.

• Ethical difficulties with obtaining information: It is excellent for
the modeler if he or she can apply random input signals to the system
under study in order to exert it equally at all frequencies. However,
if the “system under study” is a human patient, this is hardly feasible.
Moreover, it is always necessary to obtain the permission of the patient to
record any data for whatever purposes, irrespective of whether this puts
the patient in danger or not. Many patients are reluctant to grant this
permission, since they don’t understand the purpose of the measurements
and cannot truly judge whether this puts them at extra risk or not.

• Diversity in patient behavior: Usually, the aim of modeling is
that of knowledge generalization. It is rarely useful to obtain a model
that applies to a single patient only. Obtaining data from one single
patient in order to identify a model that is specific to him or her for
future use with the same patient makes sense only in cases of long–
term support such as the determination of Insuline levels for diabetic
patients, Levadopa dosage for people suffering from Parkinson’s disease,
or the administration of anticoagulants for people with chronic heart
disorders. In must other situations, it only makes sense to have a model
that is generic, i.e., can be used for all patients suffering from a given
type of disease. Unfortunately, biomedical systems exhibit a much larger
variability in system behavior than those in most other application areas,
and it is not easy to separate system–generic patterns from patient–
specific patterns in observed data records. Many observations from the
same type of application are usually needed in order to be able to filter
out patient–specific behavior.

• Incomplete information: Biomedical data records are notorious for
being incomplete. A patient on a specific monitor is routinely taken off
the monitor while he or she is being cleaned by the nurse. A particular
instrument may exist in one copy only. Although the instrument is
currently in use by one patient, it is temporarily removed to be given
to another patient who needs it more urgently. Thus, it is quite common
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that data records contain big holes where no data is recorded for one
or more variables during some period of time. It is necessary to be
able to deal with such kinds of data sets. In other types of systems,
e.g. mechanical or electrical, it may be possible to throw out incomplete
data sets and repeat the experiment. In medical systems, this is rarely
an option. A sufficiently long and rich data stream obtained from a
patient is far too valuable an asset to being thrown out on the basis of
incomplete data records alone.

Yet, there exists a second and quite different reason why medical data
records are notoriously incomplete. Many important variables are not
being recorded, either because the monitors in use are not equipped for
permanent recording, or because these variables are not recorded at all
by any monitors. For example, an anaesthetist may decide to change the
amount of an anaesthetic drug to be administered to a patient on the
basis of his or her skin coloring, or after looking at lacrimation levels.
These variables are easy to be observed manually, but they are difficult
to record, and this is therefore never done. Furthermore, the same
anaesthetist may decide to reduce the dosage of an anaesthetic agent
after being told by the surgeon that the operation will last for another
10 minutes only. This information is not something that any type of
monitor could possibly pick up.

• Different sampling rates: Many biomedical types of measurements
cannot be taken continuously, but are sampled at discrete points in
time only. The sampling frequencies often differ from one variable to
another, and not even an assumption of equidistant sampling holds true
in all situations. During critical time periods, samples are usually drawn
more frequently than during other time periods. In this situations, it
is necessary to at least synchronize if not consolidate the data records
of the different variables that have been sampled at different rates and
have been recorded by different pieces of equipment, before modeling and
simulation can even begin.

• Diverse time constants: It is quite common in biomedical domains
that time constants of interest differ by one or two orders of magnitude.
In such situations, the modeler is dealing with stiff systems, and such
systems pose equally severe if not even more severe difficulties to
qualitative simulation as to quantitative simulation. Hardly any results
have been reported in the artificial intelligence literature about the effects
of system stiffness on qualitative modeling and simulation.
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• Retrospectivity: As soon as a system is to be modeled that contains
variables whose values can be influenced by a conscious decision on the
part of the object of the modeling effort, we are faced with the problem
that the understanding of the object under investigation of what is going
on may influence the very results of the effort. This phenomenon is called
the retrospectivity of a system. It can pose a serious problem when
modeling any system involving humans. During surgery, signals such as
the heart beat or breathing rate of the patient are normally indicated
by acoustic signals. This is useful since the eyes of the surgeon need
to be focused on the patient, and not on a variety of monitors. Thus,
any signal that can be picked up by the ears rather than by the eyes
relieves the surgeon from having to get visual information from other
sources than the patient. Unfortunately, not only the surgeon has ears,
but also the patient, and this can create a hazard in situations where the
patient is left conscious (e.g. surgery with epidural anaesthesia) or if the
anaesthesia is not kept at a sufficiently deep level.

Due to all of the above reasons, data stemming from biological sources are
commonly scarce and of poor quality, with large variability from one patient
to another, but of boring monotonicity for any one patient during most of
the time. Data are notoriously incomplete and frequently quite unreliable.
Coming up with decent models for such systems is therefore an impossibly
difficult task. Knowledge–based approaches to modeling usually fail because of
a lack of meta–knowledge. Pattern–based approaches to modeling commonly
fail due to a lack of data, both in quantity and in quality.

Several of the aforementioned factors are analyzed and discussed in this
thesis from the fuzzy inductive reasoning methodology point of view, in the
hope to at least alleviate some of the difficulties, possibly even eliminate them
once and for all. The results of these efforts are presented in the subsequent
chapters of this dissertation.

The previously mentioned difficulties are the most prevalent problems that
we have to deal with when modeling and simulating biomedical systems.
However, progress in biomedical engineering has been impeded by several other
factors as well, factors that are not inherent in the medical sciences per se, but
that are derived from human limitations and more specifically the difficulties
of communication between the engineering researchers and the health care
personnel, and between the health care personnel and their end users, the
patients. Some of these factors are the following:
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• Health care personnel usually offer resistance to the implantation of
computer technology in their operating environment. Resistance in the
medical community is sometimes attributed to the natural conservatism
of physicians, as well as to a lack of understanding on the part of these
physicians, what computer technology can to for them. Yet, the most
important reason for the reluctance of clinicians to embrace modern
computer technology is a quite different one.

Especially in a country, such as the United States of America, where
malpractice suits are a common and accepted way of boosting one’s
income levels, clinicians live under a constant fear of getting sued. In the
early days of qualitative reasoning, this fear impeded the proliferation of
artificial intelligence techniques in the medical field. If the clinicians had
to take the full responsibility for their decisions, they at least wanted to
be in full control of what these decisions were.

Ironically enough, these very same considerations that originally had
impeded introduction of artificial intelligence into the medical field, now
make its use almost mandatory. It has happened several times that
a physician got sued after a complication, because he or she had not
ordered the most expensive and outlandish laboratory experiment to
be performed on the patient, an experiment that might possibly have
unveiled the problem before it occurred. Thus, physicians are more and
more forced to order all kinds of experiments and use the most fancy
monitors they can get, even if it hardly makes any sense, just to cover
their own back. This is the main reason for the astronomic increase in
health care cost in countries such as the United States. The conglomerate
of fancy monitoring equipment in use generates a wealth of data that
need to be screened in real time, because overlooking an essential piece
of information provided by one of the monitors may be even more likely
to trigger a malpractice suit than not using the monitor in the first place.
So now the surgeons are suffering from human overload, and they badly
need intelligent monitors and smart alarms that screen the incoming data
for them and alert them if any of the patient’s physiological signals look
suspicious.

• On the other hand, the engineering researchers still have a frightening
lack of understanding of the cognitive processes that underlie medical
decision making. The decisions taken by a physician is founded not
only in medical knowledge, but also and primarily in his or her gut
feelings acquired through years of medical experience, knowledge that is
vague and diffuse, and almost impossible to extract and codify in any
systematic fashion. This makes it very hard for engineering researchers to
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understand the decision making process in a logical way, and therefore,
the deduction and synthetization of the relevant pieces of information
needed to identify the model becomes an impossibly complicated issue.

In order to overcome these difficulties, a frequent and intense dialogue
between the medical doctors and the engineering researchers is of
paramount importance. Without such a dialogue, the engineers don’t
understand what the medical personnel needs, and the physicians don’t
understand what the engineers have to offer. It has been only in the
very recent past that this dialogue has begun to emerge and flourish.
This dialogue can lead to a deepened understanding of the other party’s
perspectives, which in turn is the only way to achieve profound mutual
respect between the parties involved. It is this respect finally that allows
to form well–functioning teams of cooperating experts that ultimately
will be able to address and solve some of the most fascinating problems
of this century.

5.3 Conclusions

This chapter has presented the main problems characteristic of biomedical
applications. These problems make the modeling and simulation of biomedical
systems a very difficult task of frightening complexity. The greater part
of these problems cannot truly be solved, because they are inherent in the
medical sciences. However, it is of major importance to understand these
difficulties, and to be able to offer advice how these difficulties can be
minimized. Without such understanding, the modeling and simulation of
biomedical systems becomes a hopeless undertaking.

However, other factors beside the practical aspects of biological systems
themselves contribute to the difficulties encountered when dealing with these
types of systems. These problems are related to the difference in education
between the engineering researchers, who are trained to think in terms of non–
disputable mathematical logic, and the physicians, who are educated to rely
on a wealth of imprecisely formulated clinical experience and draw conclusions
by means of qualitative associations. The engineers have a very hard time
to extract this clinical experience from the physicians and codify it in terms
of their beloved facts and rules. The physicians, on the other hand, have an
equally hard time to experience anything that the engineers present them with
as being more than just a toy and of having clinical relevance.
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It is the aim of the subsequent chapters of this thesis to address several
of the aforementioned difficulties, and to come up with a methodology that,
although being unable to do away with the system–inherent problems, at least
can make use of the available data in an optimal fashion, and can do so in the
context of realistic clinical applications and not only when confronted with toy
problems.



Chapter 6

Qualitative Control of
Biomedical Systems

6.1 Introduction

The aim of this chapter is to demonstrate by means of two different biomedical
systems that the Fuzzy Inductive Reasoning (FIR) methodology can indeed
be used to qualitatively capture the dynamic behavior of systems stemming
from soft sciences.

In the previous chapter, the difficulties that arise when modeling biomedical
systems for the purpose of predicting their future behavior had been
enumerated. This chapter proposes how to tackle some of these problems, such
as lack of information from the point of view of quantity, lack of information
from the point of view of quality, and diversity of time constants, using the
FIR methodology.

Also, it has been considered essential and valuable to be able to compare
the results obtained using the FIR methodology with those obtained using
other either quantitative or qualitative methodologies. In this manner, it
will be possible to know not only if the FIR technique works, but also how
it fares in comparison with these other methodologies. To this end, two
biomedical problems are being tackled that had been previously addressed
in the literature, one from the field of Anesthesiology, the other from the
field of Cardiology.

Anesthesiology is an area of major interest in the medical domain. Ideally,
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the aim of anaesthesia is to allow surgeons to perform a surgical operation on
a patient within physiological normality while not causing any response in the
autonomic nervous system of the patient due to stimulation. However, it is
equally essential that the patient have no memory of the operation to prevent
post–traumatic stress disorder (PTSD) syndrome. According to information
obtained from an anaesthetist of the Can Ruti Hospital (Barcelona, Spain),
the foremost source of incident reports after surgery is that patients have been
operated on under a too light anaesthesia leading to PTSD syndrome because,
although the surgeon was able to complete the operation without any technical
difficulties, the patient remembers the operation (Garćıa, 1993). This is very
difficult to detect during the surgery, since muscle relaxation, pain suppression,
and awareness suppression are three quite separate and independent issues, and
patients may be suffering pain or may be aware of what is going on without
being able to express any signs of their pain or awareness.

The anesthesiology application presented in this chapter is the control of
an anaesthetic agent, Isoflurane, during surgical operations, an agent that is
predominantly being used for awareness suppression. The control of the depth
of anaesthesia is a difficult undertaking, because the level of anaesthesia cannot
be measured directly. Progress has been made during recent years by use of
different monitoring systems that allow to estimate the depth of anaesthesia
in indirect ways, i.e., by measuring other physiological variables and deducing
the depth of anaesthesia from these observations. Often, artificial intelligence
systems go one step beyond mere estimation of the depth of anaesthesia and
directly suggest a safe amount of the anaesthetic agent to be administered
to the patient, considering his or her individual conditions (such as weight,
age, known heart conditions, etc.). Despite these improvements, anaesthetists
still rely heavily on personal experience (gut feeling) when suggesting the
anaesthetic dosage to be used during surgery.

A comparison between a neural network approach and the fuzzy inductive
reasoning technique is also presented in the first part of this chapter. To
this end, an already exiting system, ANNAD (Artificial Neural Network for
Anaesthetic Dose determination), is taken as a starting point. This system
had been previously developed in the United Kingdom (Linkens and Rehman,
1992a). As an alternative, a new system, FIRAD (Fuzzy Inductive Reasoning
model for Anaesthetic Dose determination), has been developed by the author
of this thesis (Nebot et al., 1993a). The design of FIRAD is discussed in full
detail here. The same data that had been used to drive ANNAD have also
been used with FIRAD, in order to be able to objectively compare the results
obtained from the two approaches.
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Cardiology is an area of medicine that has been studied from many different
angles, and with equally many different focus points. In the second part
of this chapter, the cardiovascular control system is being investigated. The
cardiovascular system is composed of the hemodynamical system comprising
the heart and the blood vessels, and the central nervous system control that
is responsible, among other things, for the beating of the heart.

The hemodynamical system can be modeled as a mechanical (hydraulic)
system. The dynamics of this system have been extensively studied,
and good differential equation models exist describing the behavior of the
hemodynamical system in much detail.

In contrast, the central nervous controller is still not fully understood.
It is quite clear which are the input output variables of the controller, and
some differential equation models have already been proposed. However, and
different from the hemodynamical differential equation models in use, these
models are not based on an accurate knowledge of the precise structural
relationships among the internal variables governing the controller. In our
study, it was decided to generate a pattern–based input/output model of the
central nervous controller by means of fuzzy inductive reasoning. The mixed
quantitative and qualitative modeling and simulation technique, described in
Chapter 4 of this dissertation, is required in order to be able to close the loop
between the (quantitative) hemodynamical system model and the (qualitative)
central nervous controller model.

A previous dissertation (Vallverdú, 1993) worked with two different
quantitative central nervous controller models, a differential equation model
and a NARMAX (Nonlinear AutoRegressive Moving Average with eXternal
inputs) model. The hemodynamical model used in our own study is exactly
the same that had been used by Vallverdú. Consequently, it will be possible
to make quantitative comparisons, for a single patient, between our own FIR
model and the two models developed by Vallverdú.

In the remainder of the chapter, these two biomedical studies are presented.
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6.2 Anesthesiology

6.2.1 About Anesthesiology

Both sleep and general anaesthesia are states of unresponsiveness, which vary
in depth. While sleep is healthy, natural, and repeats itself rhythmically once
every 24 hours, anaesthesia is an artificial state maintained by the continuing
presence of chemical agents in the brain.

Anaesthetic agents affect the respiratory system, the cardiovascular system,
the central nervous system, and the muscles. The use of anaesthetic agents can
produce severe complications and side effects, which, under extreme conditions,
may even cause the death of the patient. It is therefore essential that the dose
of anaesthetic agents is limited to the minimum amount necessary for proper
anaesthesia thereby reducing undesired side effects and minimizing the risk to
the patient.

Monitoring devices can be used to record the values of indicator variables,
to reason about the consistency of these values, and suggest to the anaesthetist
an appropriate dose of anaesthetic agent. Research results have recently been
reported in the area of monitor integration that enhance the clinical robustness
of such monitoring devices by improving their reasoning capabilities through
the detection of critical events and by means of enhancing their alarm accuracy
(Navabi et al., 1991).

Several new results have been reported in the past few years relating to
the control of the depth of anaesthesia. Both open–loop and closed–loop
techniques have been explored (Linkens, 1992; Linkens and Rehman, 1992b).

One of these studies resulted in the development of a computer–based on–
line expert system called RESAC (Real–time Expert System for Advice and
Control) (Linkens et al., 1986; Linkens et al., 1990). RESAC comprises a rule–
based backward chaining inference engine with about 400 rules and makes use
of fuzzy logic and Bayesian reasoning. The rule base was obtained through
knowledge acquisition in consultation with expert anaesthetists. RESAC has
been tested during real surgeries, and its advice was found to be consistent with
clinical necessities. The major problem of the approach underlying RESAC is
the formidable size of the employed rule base. Evidently, such a system is of no
practical use if it cannot provide advice in real time. As the understanding of
the mechanisms underlying anaesthesia and their measurable effects grew, so
did the size of the rule base that was integrated into the system, up to a point,
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where a much faster and more expensive computer would have to be acquired
in order for the system to still be able to function in a real–time setting.

Triggered by the aforementioned difficulties, another study was carried out
by the same group that promised to enhance the run–time efficiency of the
monitoring system. A new system, ANNAD — an Artificial Neural Network
for Anaesthetic Dose determination, was created that was supposed to replicate
the capabilities of RESAC (Linkens and Rehman, 1992a, 1992b). ANNAD
employs a feedforward neural network trained through back–propagation. This
work is being reviewed in the next section.

6.2.2 Background: ANNAD

The artificial neural network approach was chosen due to its inherent ability
to learn the input/output behavior of a system in situations where it is
possible to specify the inputs and outputs, but where it is difficult to define
analytically a relationship between them. This is precisely the situation in
biomedical applications, such as anaesthesia, since clinical signals are readily
available through measurements, but no precise analytical relationships are
known between them, and variations between patients are large. Also, neural
networks are inherently parallel in nature, and are therefore well suited for
real–time environments.

The clinical variables comprising heart rate (HR), respiration rate (RR),
systolic arterial pressure (SAP), gender, age, and weight of the patient were
selected as the key clinical indicator signals to be used for suggesting an
anaesthetic dose (control signal).

A patient model and a controller model were independently synthesized by
means of the neural network methodology. The control loop was then closed
as shown in Figure 6.1.

6.2.2.1 Artificial Neural Network Patient Model

An Artificial Neural Network (ANN) patient model was obtained using a back–
propagation algorithm applied to a set of data measured on a patient during
a surgical operation.

Three separate neural networks were trained, one for each output: HR, SAP,
and RR. The inputs for the training networks were the Dose, older (delayed)
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and the controller model depend heavily on the choice of the anaesthetic agent
in use, and the process of model identification must therefore be repeated from
scratch if another agent is to be used in the process.

6.2.2.3 Closed–loop Control

As shown in Figure 6.1, the control loop was then closed by connecting ANNAD
with the ANN patient model. The results of this experiment demonstrate the
stability of the control loop. ANNAD was able to replicate satisfactorily the
advice that was obtainable from RESAC. ANNAD also produced good control
performance when coupled to a patient simulator. Contrary to RESAC, which
had actually and successfully been used during surgical operations, ANNAD
has not yet undergone real–life testing.

For a deeper insight into this work, the reader is referred to (Linkens and
Rehman, 1992b; Rehman et al., 1993).

6.2.3 FIRAD

The motivation for the research described in this section was to investigate how
the fuzzy inductive reasoning methodology would perform in comparison with
the neural network approach when applied to the identification of dynamic
processes from the soft sciences. To this end, we first tried to develop a
fuzzy inductive reasoning model for the patient, and then to find a fuzzy
inductive reasoning model for the controller. The controller model has
been named FIRAD (Fuzzy Inductive Reasoning model for Anaesthetic Dose
determination). The insights gained during this research effort are detailed in
the following subsections.

6.2.3.1 SAPS Patient Model

The patient model should be identified from the qualitative relationship
between its single input variable, the administered Dose, and its output
variables, the clinical signals of the patient (SAP, HR, and RR) that reflect
his or her body reaction to the amount of agent applied.

In order to determine the patient model, we worked with the data sets of two
different patients. The available measurement data are plotted in Figure 6.2.
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of the experiment, and goes “low” only at the very end of the experiment.
It is quite clear that, in the meantime, the output variables react in various
ways that are obviously not driven by the input directly, since the input does
not change at all. The changes in the output variables were caused by other
extraneous factors that were not recorded, and therefore, the variations in the
output variables look like noise to the inductive reasoner. In fact, the recorded
data do indeed contain considerable digitization noise, since all variables were
recorded as integers only.

According to (Garćıa, 1993) and fortunately for the two patients, both
surgeries went by boringly uneventful. Had the surgeon cut into any major
blood vessel during the operation, the heart rate would have immediately
jumped up to much higher levels, the blood pressure would have risen
accordingly, and the anaesthetist would have had to react by increasing the
amount of Isoflurane administered to the patient. Due to the monotonicity of
the patient behavior (the anaesthetist considers such small variations in the
patient signals basically as noise), he or she did the right thing: start out with
a high level of Isoflurane to raise the amount of the drug in the blood to the
desired level, then reduce the administered dose to a maintenance level for the
duration of the surgery, and finally, when the surgeon told him or her that the
operation was about to end, switch off the supply of anaesthetic agent and
leave. Since nothing major happened during the surgery, the anaesthetist had
no reason at all to intervene.

Since in neither of the two cases there exists a causal relationship between
the administered Dose (the “input”) and the physiological variables of the
patient (the “outputs”), our fuzzy inductive reasoner could not find masks that
would model the patient system in any meaningful way. The best masks found
during the two searches, did not forecast correctly, and because the obtained
input/output behaviors were not deterministic at all, the confidence in the
forecasts dropped immediately to unacceptably low levels, and forecasting
stopped almost at once. Thus, the built–in self–assessment capability of the
FIR methodology came to play, and no forecast could be produced at all except
through overriding the self–assessment feature by declaring that any forecast,
irrespective of how unlikely it may be, would be considered acceptable.

This was not the case when using the neural network methodology. At least
for one of the two data streams, Rehman reported that he had found a neural
network that gave reasonable responses for that patient model (Rehman et al.,
1993). Evidently, since there really doesn’t exist a causal relationship within
the system, the match is purely coincidental. We consider it a dubious quality if
a methodology produces accidental hits, especially in an application area where
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little meta–knowledge is available, and where it is therefore difficult after the
fact to distinguish an accidental hit from true success, and in an application
area where few of the end users of the tool (i.e., the medical personnel) are
educated to make this distinction. We therefore consider the self–assessment
capability of the FIR methodology, which prevents accidental hits from being
reported as success stories, one of the foremost assets of the FIR methodology.

As for all inductive techniques, inductive reasoners need a lot of data to work
with. It is not possible to generate meaningful and reliable inductive models
without ample and rich data. This is equally true for the neural network
approach (another inductive modeling technique). However, while the neural
network will always predict something, the inductive reasoner will not predict
anything that cannot be validated on the basis of the available data. SAPS,
our inductive reasoner, simply declines to predict anything when confronted
with the patient model data, since no prediction can truly be justified given
the available facts.

Here, we observe one of the strengths of the fuzzy inductive reasoning
methodology. It will not generate models that are not justifiable from the
given data. The neural network methodology generates models for any data,
irrespective of whether they are justifiable or not. While SAPS contains
an inherent model validation mechanism inside the simulation methodology,
the neural network approach does not. The fact that the neural network
was able to produce a reasonable response for one of the data sets does not
mean that the model is validated. The fact that it was unable to produce a
reasonable response for the other data set indicates just the opposite. Since
inductive models necessarily lack physical insight, we believe it to be absolutely
essential for any inductive modeler to contain an intrinsic model validation
mechanism that is inseparable from the modeling/simulation tool itself. Our
fuzzy inductive reasoner, SAPS–II, offers such a mechanism.

6.2.3.2 SAPS Controller Model

The controller model is determined by the qualitative relationship between its
three “input” variables: SAP, HR, and RR; and its single “output” variable:
the administered Dose.

We could, of course, have worked with the data sets shown in Figure 6.2
for the identification of the controller model, after simply swapping inputs and
outputs. However, as it was explained earlier, also this system does not contain
sufficient causality between its inputs and outputs. The only causality that
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Looking at the plots, we can see that the new output variable, Dose, varies
here considerably more than in the clinical data sets that had been used
for the patient model. The human anaesthetist didn’t find the variations in
the biological variables (HR, RR, and SAP) alarming, and therefore, reacted
very little during the entire operation. Fortunately for us, RESAC is more
“industrious” than a human anaesthetist would ever be, and reacts to small
variations in the biological variables by recommending a slightly modified
Dose of the anaesthetic drug. Therefore, there now exists a direct causal
relationship between the observed biological data and the recommended Dose,
and it should, therefore, be possible to correlate the administered Dose with
the biological variables, and come up with a causal inductive model that can
be used to replace the anaesthetist (or RESAC) in his or her (its) decision
making process.

Notice that the Dose recommended by RESAC is quite different from that
recommended by the anaesthetist. To an engineer, who is used to much more
precise and unambiguous information, the two signals look even qualitatively
quite distinct, and he or she would therefore be inclined to conclude that
RESAC has failed to make a meaningful suggestion for the appropriate amount
of Isoflurane to be administered. However, medical personnel is much more
generous than engineers are in their interpretation of what is similar or
acceptable. RESAC has already been field–tested, i.e., anaesthetists have
observed RESAC at work during several real surgeries in a real operating
theater and have concluded that the recommendations made by RESAC were
clinically acceptable in all cases. Consequently, the chosen approach makes
sense.

The two data sets contain 163 and 185 records, respectively. They were
sampled once per minute. According to information obtained from the Sheffield
group (Linkens, 1993), the slowest time constant of interest in our system is
on the order of 10 minutes, and the fastest time constant of importance is on
the order of one minute.

In accordance with Shannon’s sampling theorem we should therefore use
a sampling rate of approximately one sample every 0.5 minutes. For this
reason, before starting to identify an optimal model, we decided to use a Spline
interpolation to find one new data record per interval, located exactly in the
middle between the two neighboring measurement data records. Thereby, the
length of the data records was enhanced to 325 and 369 records, respectively.
We can assume that not too much information was lost by sampling once
instead of twice per minute, because the plots reveal that the data vary
sufficiently slowly.
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It was decided to recode (discretize) the variables SAP, HR, and Dose into
three qualitative levels (classes), whereas RR was recoded into two qualitative
levels only. This decision has been taken on the basis that, in any class analysis,
each legal discrete state should be recorded at least five times, see Equation
6.6 (Law and Kelton, 1990).

Due to the fact that there are available less than 400 data points, it is not
possible to recode each variable in three classes. A maximum of three of the
four system variables can be recoded into three classes, whereas the fourth one
has to be recoded into two classes. It was decided that the respiration rate
would be recoded into two classes because its behavior contains less variation
than that of the other variables.

Due to the difference between the slowest and the largest time constants of
importance, it was necessary to use a mask candidate matrix of depth 21 with
nine zero rows in between rows that contain potential inputs.

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

t\x SAP HR RR DOSE

t− 20δt −1 −1 −1 −1
t− 19δt 0 0 0 0
...

...
...

...
...

t− 11δt 0 0 0 0
t− 10δt −1 −1 −1 −1
t− 9δt 0 0 0 0
...

...
...

...
...

t− δt 0 0 0 0
t −1 −1 −1 +1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(6.1)

In this way, one new forecast is produced every 0.5 minutes, satisfying
Shannon’s sampling theorem, and yet, the inductive reasoner looks at input
values 5 minutes and 10 minutes back to capture the slowest time constant.
This technique, that permits to operate on data at different sampling rates,
has proven successful in the past (Cellier et al., 1992).

The first 270 (320) rows of the data matrix were used as past history data to
compute the optimal mask. Fuzzy forecasting is used to predict new qualitative
class and fuzzy membership values for Dose for the last 55 (49) rows of the
raw data matrix, respectively.

For the first data set, the optimal mask obtained was the following:
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⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

t\x SAP HR RR DOSE

t− 20δt 0 0 0 0
t− 19δt 0 0 0 0
...

...
...

...
...

t− 11δt 0 0 0 0
t− 10δt 0 0 0 −1
t− 9δt 0 0 0 0
...

...
...

...
...

t− δt 0 0 0 0
t −2 0 0 +1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(6.2)

This mask denotes the qualitative relationship:

Dose(t) = f̃(Dose(t− 10δt), SAP (t)) (6.3)

For the second data set, the optimal mask obtained was:

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

t\x SAP HR RR DOSE

t− 20δt 0 0 0 0
t− 19δt 0 0 0 0
...

...
...

...
...

t− 11δt 0 0 0 0
t− 10δt −1 0 0 −2
t− 9δt 0 0 0 0
...

...
...

...
...

t− δt 0 0 0 0
t 0 −3 0 +1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(6.4)

This masks denotes the qualitative relationship:

Dose(t) = f̃(SAP (t− 10δt), Dose(t− 10δt), HR(t)) (6.5)

It turns out that the two masks obtained are different. Although RESAC used
the same causal reasoning, SAPS decided that, by proposing a different causal
relationship in the two cases, the quality of the forecast can be improved. The
proposed controller is thus different for each of the two patients.

Since our gauge is the decision making process of RESAC, it makes sense
to use the best possible mask, i.e., the mask that produces results that are
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as consistent as possible with those obtained from RESAC. However, both
optimal masks will produce answers that a human anaesthetist would consider
clinically plausible, and so, for practical purposes, it doesn’t really matter
which of them we use.

In reality, human anaesthetists use imprecise patient models (gut feeling)
in their decision making. Thus, different optimal masks correspond to slightly
inconsistent decision making, a fact that we are well prepared to accept since
human decision making is never fully consistent. Different anaesthetists may
decide differently when exposed to the same data, and the same anaesthetist
may decide differently depending on e.g. the number of hours he or she
slept the night before, or depending on whether he or she had gotten into
an argument with his or her spouse the evening before, or simply, depending
on the current mood he or she is in. There is no such thing as a “correct”
vs. an “incorrect” decision. We can only talk about “clinically acceptable”
vs. “clinically unacceptable” decisions. Within the range of the clinically
acceptable decisions, it doesn’t matter too much how the decision is drawn.
Thus, SAPS is simply being realistic in its assessment.

One fact that is common to both optimal masks is that the output of the
controller model depends on the amount of previously administered anaesthetic
agent. This is clinically plausible since the chemical substance accumulates in
the patient for some time.

The forecast results for the two data sets are shown in Figure 6.4.

The results are quite good. The optimal masks contain sufficient
information about the behavior of RESAC to be used as a valid controller
of the dosage of Isoflurane given to the patient. In contrast, Rehman reported
that the neural network gave good responses for the controller model only for
one of the two data files.

From these results, we can conclude that the SAPS methodology is fairly
robust, i.e., it consistently generates a decent inductive model whenever the
data allow it to, and it categorically declines to generate a model if the available
data do not permit to validate an inductive model.

The neural network approach is different in this respect, since it uses a
gradient technique (back–propagation) for optimization in the original (i.e.,
continuous) search space, whereas SAPS uses an exhaustive search in a reduced
(discrete) search space. Therefore, it is perfectly feasible that the neural
network does not converge (as it happened with one of the data records),
whereas SAPS will come up with the “best possible” model (within the
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Would it have been possible then to simply swap inputs and outputs of the
data sets shown in Figure 6.3, i.e., use the RESAC–generated data to obtain
also a patient model? The answer to this question is no. Causal modeling
is an extension to the concept of uni–valued functions. Given the function
y = sin(x), it is always possible to find a unique value of y for any given value
of x, because sin(x) is a uni–valued function. On the other hand, x = sin−1(y)
is multi–valued, and therefore, it is not possible to conclude a unique value of
x given a value of y. It therefore makes sense to call a uni–valued function a
strictly causal function, whereas a multi–valued function is not a strictly causal
function.

Causal modeling is an extension of this concept. A causal model is a uni–
valued (deterministic) function that accepts, as inputs, not only current values
of its input variables, but also past values of all its inputs as well as its output.
The controller model is obviously a fairly causal model, since the anaesthetist
(or RESAC) bases his or her (its) decision making in a semi–deterministic
(fully–deterministic) fashion on the available inputs. The reverse, however, is
not true. It is not evident that it is possible to conclude current and future
values of the biological parameters in a unique fashion from measurements of
their own past, and from current as well as past Dose values, and SAPS indeed
concludes that this is not a meaningful proposition.

6.2.4 Comparison of Results from the two Modeling
Methodologies

Before comparing the results obtained from ANNAD and FIRAD, we wish to
make a comment about the SAPS methodology. The original idea was that
FIRAD should forecast the Dose during 63 minutes in order to obtain the
same plot length as was shown in the previously published ANNAD report
(Linkens and Rehman, 1992a). This was not possible because SAPS needed
more data points (training data) than the neural network methodology to
identify a model.

Previous investigations involving SAPS, presented in Chapter 3 of this
thesis, have led to a recommendation with respect to the minimum number of
data records to be used in the identification of an inductive model. This rule
is based on statistical considerations, and states that, in any class analysis,
each (discrete) state should be recorded at least five times (Law and Kelton,
1990). Thus:
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nrec ≥ 5 ·∏
∀i

ki (6.6)

where nrec denotes the total number of recordings, i.e., the total number of
observed states, i is an index that loops over all variables, and ki denotes the
number of levels (i.e., discrete class values) of the variable i.

In the given application, the number of suggested records is:

nrec ≥ 5 · (3 · 3 · 3 · 2) = 270 (6.7)

Consequently, the first 270 data records should be used for model
identification, which, for the first data stream, leaves us with only 55 records,
or 27 minutes worth of measurement data for forecasting.

To improve the situation, tests were made to find the minimum number of
records needed to identify the same controller model that was found using the
set of 270 records. It was determined that, if at least 240 records are used for
identification, the same controller model can still be found. This then allows
us to forecast the system over the last 43 minutes of the recorded data. This
forecast may be compared with the forecast obtained from ANNAD and with
the original Dose recommendations made by RESAC. The comparative results
are presented in Figure 6.5.

As can be seen from this plot, FIRAD forecasts the Dose quite well,
even a good deal better than ANNAD. Thus, the fuzzy inductive reasoning
methodology has been shown to be able to synthesize, at least for this example,
an inductive biomedical model that works equally well or better than a neural
network would.

6.2.5 Summary of the Relevant Issues

The results shown in this section confirm the ability of the FIR methodology
to produce good control performance of the anaesthetic agent delivery system.
For the two patients used in the experiment, the FIRAD software not only
replicated the advice from RESAC correctly, but it performed even more
accurately, more reliably, and more consistently than the ANNAD software.

Evidently, the selected approach will never permit us to obtain results that
are better than those obtained by RESAC, since RESAC was used as the
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This is why the SAPS methodology would not generate a patient model
that is not justifiable from the given data. We consider this intrinsic model
validation mechanism a distinct and significant advantage in comparison with
the neural network methodology, especially in the context of soft sciences.

For the controller model, two different masks have been found from the
two different data sets available. Although RESAC used the same causal
reasoning, SAPS decided that, by proposing a different causal relationship in
the two cases, the quality of the forecast can be improved.

However, from a medical point of view, it would be much more useful to
have available a unique model for a class of similar patients undergoing similar
operations. In that manner, it would not be necessary to wait until the first
operation of a given patient is over in order to have data available that would
allow the identification of a controller model to be used for the same patient
during a later surgery of the same or a similar kind. If we are able to obtain
a decent model that can be used for all similar patients undergoing similar
operations, it would be possible to use this model for a new patient of this set,
i.e., for patient who never underwent surgery before. This is an interesting
and important issue that will be discussed in more detail in Chapter 9 of this
dissertation.

Was this a success story? From an artificial intelligence perspective, it most
certainly was. Not only was the FIR methodology (FIRAD) shown to be
able to replicate the behavior obtained by a neural network (ANNAD), but it
outperformed the latter by leaps and bounds. The quality of the forecast of
FIRAD is considerably better than that of ANNAD, and FIRAD is much more
reliable. It always works when it is supposed to work, and it avoids the pitfalls
of accidental hits. Also, the training of FIRAD is considerably faster than that
of ANNAD. We were not able to provide quantitative information about this
fact since the report by Rehman does not provide any numbers to this effect,
but a SAPS model can usually be trained within a few minutes of CPU time,
whereas a back–propagation neural network usually takes hours if not days
of CPU time to train (Korn, 1991). Consequently, it is much more feasible
using the FIR approach to try out different alternatives, e.g., look at different
suboptimal masks, to see which one offers the best forecast. Retraining a
feedforward neural network is so painfully slow that most researchers would
shun the expense.

From a clinical perspective, the success is less evident. We cannot claim that
FIRAD has learned everything that RESAC knows. An inductive reasoner
can only replicate behaviors it has seen before. Yet, we know that all that was
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shown to FIRAD are two boringly uneventful trajectories. Would FIRAD know
how to react in the case of a true emergency? It most certainly wouldn’t. In our
opinion, it would have been better to forget the clinical data altogether and to
drive RESAC by streams of random noise of clinically meaningful magnitude to
exert the software “at all frequencies” (whatever that may mean in the context
of an expert system). In this way, it would have been possible (and even cheap)
to obtain arbitrarily long sequences of data streams that exhibit every possible
mode RESAC con operate under, from which both a neural network and a FIR
model could have been deduced that would then truly replicate the behavior
of RESAC in a clinically meaningful and significant way. However, since we
had no access to either RESAC or ANNAD, we had to live with the limited
data sets we had been provided with. In addition, this approach would have
allowed us to also make use of the additional input variables that RESAC is
working with (gender, age, and weight), which we were unable to use in the
FIR model described in the previous sections of this chapter.

6.3 Cardiovascular System

6.3.1 About the Cardiovascular System

Understanding of the central nervous system is essential because it is of
paramount importance to the functioning of the human body. It comprises
among others the signals that are transmitted from the brain to the heart and
to the blood vessels, controlling the hemodynamical system. Failure of the
central nervous system to deliver the triggering impulses to the heart results
in an almost immediate death of the person.

In this section, a model of the Central Nervous System (CNS) control of the
cardiovascular system is developed. The CNS control and the hemodynamical
system compose the cardiovascular system. A simplified diagram of the
cardiovascular system is presented in Figure 6.6.

In order to validate the cardiovascular system model, it is of high utility
to have experimental data from a patient carrying out the Valsalva maneuver
due to the fact that, under this scenario, all control mechanisms that belong to
the central nervous system operate in a significant way. The validation of the
cardiovascular system for one particular patient is described in Section 6.3.4
of this chapter.

The Valsalva maneuver has been described by Antonio M. de Valsalva







122 Chapter 6. Qualitative Control of Biomedical Systems

cardiovascular repercussions. Phase I occurs just after the onset of the
maneuver, phase II takes place just before the effort is concluded, phase III
corresponds to the ending of the maneuver, and finally, phase IV occurs after
the attempt has been aborted.

6.3.2 Hemodynamical System

Over the years, the mathematical models describing the hemodynamical
system have grown in size and complexity, proportional to the computational
capacity of the available computers and progress made in cardiovascular
system clinical research. Elaborate models of the arterial, vein, and cardiac
systems that together form the hemodynamical system have been developed
by researchers such as Beneken, Snyder, Rideout, and Sagawa (Beneken and
Rideout, 1968; Snyder and Rideout, 1969; Sagawa, 1973). They are in
compliance with the laws of fluid mechanics.

A recent and very detailed hemodynamical model was developed in
(Vallverdú, 1993). In this model, the heart is composed of four chambers,
modeled from the relations between pressure, volume, and elasticity variables.
This model is influenced by the publications of Leaning (Leaning et al., 1983)
and Suga (Suga et al., 1974) as well as those of a few other authors. The
hemodynamical system has been widely studied, and its mechanisms are quite
well understood. They are not fundamentally different from those of a hydro–
mechanical pump. There only exist much larger parameter variations from one
specimen to the next than would be the case among hydro–mechanical pumps.

It does not make much sense to use a qualitative methodology to identify a
hemodynamical model, since no new knowledge can be acquired in this way.
Consequently, the quantitative hemodynamical model presented in (Vallverdú,
1993), described through a set of differential equations, has been adopted in
our study.

6.3.3 Central Nervous System Control

The central nervous system is composed of the spinal cord, the brain, and
the hypothalamus. One of the systems that the central nervous system
controls is the hemodynamical system by generating the regulation signals
for the blood vessels and the heart. These signals are transmitted through
the bundles of sympathetic and parasympathetic nerves, producing stimuli in
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the corresponding organs and other body parts. Sympathetic stimuli cause an
increase in the cardiac frequency and the contraction of the heart, as well as
blood flow resistance in the peripherical vascular system and the venous tone.
Parasympathetic stimuli, on the other hand, reduce the pumping of the heart.

The functioning of the central nervous system is of high complexity and not
yet fully understood. This is the reason why many of the cardiovascular system
models developed so far have been designed without taking into account the
effects of its CNS control.

Although the central nervous system control is, at present, still not
completely known, individual differential equation models for each of the
hypothesized control mechanisms have been postulated by various authors
on the basis of measurements obtained from experiments with dogs. Yet,
these models are less than perfect, and in many respects, they fall short
of providing a true understanding of the structural mechanisms responsible
for the control actions inside the physiological system. The use of inductive
modeling techniques with their reduced explanatory power but enhanced
flexibility for properly reflecting the input/output behavior of a system may
offer an attractive alternative to these differential equation models. It is the
aim of this section to apply the FIR methodology to find a qualitative model
of the CNS control that accurately represents the input/output behavioral
patterns of the CNS control that are available from observations for a particular
patient.

To this end, the previous research efforts of Vallverdú are taken as a starting
point (Vallverdú, 1993). She developed two separate CNS control models,
a differential equation model and a NARMAX (Nonlinear AutoRegressive
Moving Average with eXternal inputs) model. The differential equation
model developed by Vallverdú is an enhancement of many individual previous
research efforts described by various authors, and certainly represents one of
the most complete deductive CNS control descriptions currently available. The
NARMAX model is an inductive model that shares many of the advantages
and shortcomings of neural network (NN) models. Just like the NN models,
the NARMAX model is basically a quantitative model with slow training
capabilities but easy adaptation possibilities. Both NN and NARMAX models
may predict anything when provided with inputs outside the range for which
the model had been trained. The NARMAX model developed by Vallverdú
contains parameter values that are specific for every analyzed patient, yet
a common equation structure that was optimized using the data from five
different patients.
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The CNS control is composed of five separate controllers: the heart rate
controller, the peripheric resistance controller, the myocardiac contractility
controller, the venous tone controller, and the coronary resistance controller.

Some of the controller signals cannot be measured directly from human
patients, and dog experiments are not viable for this purpose. In qualitative
modeling, it would be possible to hypothesize causal relationships between
variables that are measurable, and probably, this would work quite well.
However, in the interest of being able to compare our results with those
previously obtained by Valverdú, it was decided not to deviate from the
approach chosen by her. The signals obtained from the simulation of the CNS
control modeled with differential equations were used by Vallverdú as initial
data for the identification of the NARMAX models common, in structure, to a
set of different patients, and were also used as initial data for the identification
of the FIR models for a single patient. This may be an acceptable solution
since the differential equation model, from which the data were generated, had
been previously validated.

Of course, the question must be raised whether it makes any sense to
identify an inductive model if a deductive model is needed first. Evidently, we
cannot expect to obtain in this way models that are better than the differential
equation model that was used as the basis for their construction.

It is always a virtue to work with the simplest models possible that explain
the available data in order to make potentially necessary patient–specific
adjustments to the models as quickly and painlessly as possible. It serves
no purpose whatsoever to carry in the models highly sophisticated parameters
that are conceptually satisfying, the values of which are however impossible to
determine either through direct measurements or through indirect parameter
identification techniques. The NARMAX models are extremely simple in their
internal structure, and therefore satisfy the requirement for simple models.
The FIR models are less simple, but they are non–parametric anyway, and
setting up a new FIR model can be done easily and quickly. Both types of
inductive models are much more manageable than the differential equation
model.

Although in Vallverdú’s work it was deemed necessary to obtain a
structurally unique model, it was not required that this model also contain
the same parameter values for all the available patients. However, for other
purposes, the parametric dependence of a model can constitute a major
difficulty. A discussion of what could be done in the context of the FIR
methodology to alleviate this problem will be presented later in this thesis.
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As had been explained earlier, it would have been perfectly feasible to
generate a qualitative FIR model on the basis of true measurement signals
alone. This approach might have made more sense in some ways, but it would
have had drawbacks as well. Most of the variables at the interface between the
(qualitative) CNS control model and the (quantitative) hemodynamical model
are not directly measurable. Thus, a model derived from measurements alone
would not have allowed us to gain such a clear–cut separation between these
two models.

After these methodological explanations, let us now return to the task at
hand. Five controllers have to be identified. All of them are of the single–
input single–output (SISO) type. In each case, the input signal is the carotid
sinus pressure. The outputs of the five controllers are respectively: the heart
rate control signal, the peripheric resistance control signal, the myocardiac
contractility control signal, the venous tone control signal, and the coronary
resistance control signal.

The input and output signals of the system had originally been recorded
with a sampling rate of 0.12 seconds. In Figures 6.8 and 6.9, the input and
output signals of a specific patient suffering from an at least 70% coronary
arterial obstruction are presented.

In the modeling process, the normalized mean square error (in percentage)
between the simulated output, ŷ(t), and the system output, y(t), is used to
determine the validity of the models. This error is described in Equation 6.8.

MSE =
E[(y(t) − ŷ(t))2]

yvar

· 100% (6.8)

where yvar is the variance defined as:

yvar = E[y2(t)] − {E[y(t)]}2 (6.9)

This error measure will also be used to compare the quality of the models for
a single patient obtained by the NARMAX vs. FIR methodologies.

The signals used for identifying the NARMAX models for all the controllers
for a single patient are plotted in Figures 6.8 and 6.9. It is desirable to use
the same data to identify the FIR models for the same patient. Each of these
signals contains 7279 data points. As the currently used version of SAPS is
limited in size to raw data models containing no more than 5000 data records, it
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was decided to reduce the amount of data used to identify the model. However
if a portion of the initial data is thrown away, potentially useful patterns may
be lost. Therefore, it was decided to keep the entire length of the trajectories,
while decreasing the sampling frequency. A sampling rate of 0.24 seconds
was used for identification. This could be achieved easily by eliminating every
second data record from the original data set. This process is called decimation.

The plots of the reduced data set look exactly the same as the ones shown
in Figures 6.8 and 6.9. Yet, in order to be absolutely sure, a spectral power
density analysis was performed. The spectral plots obtained from the reduced
data set look identical to the ones obtained from the original data set. Hence
it can be concluded that no important system frequencies have been filtered
out in the process of decimation. Therefore from now on, we will say that
the data used for the identification of the FIR models are those plotted in
Figures 6.8 and 6.9, although being precise, we did not use the entire set of
7279 points, but only half of them, throwing away every other point. Due to
the fact that the data containing about 3600 points look exactly the same as
the data plotted in those figures, it does not make sense to show here the same
identical plots once more using a different abscissa.

6.3.3.1 Heart Rate Controller

The qualitative heart rate controller model has to be determined from the
relationship between its input, the carotid sinus pressure, and its output,
the heart rate control signal. The signals used for the heart rate controller
identification process are plotted in the first two graphs of Figure 6.8.

The input and output variables were recoded into three qualitative levels
each. Three classes are sufficient to obtain a good qualitative model for the
system, and consequently, it was not necessary to work with more complex
models.

For the heart rate controller, the optimal mask obtained was the following:

⎛
⎜⎝

t\x CSP HR

t− 2δt 0 0
t− δt −1 −2
t −3 +1

⎞
⎟⎠ (6.10)

This mask denotes the qualitative relationship:
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HR(t) = f̃(CSP (t− δt), HR(t− δt), CSP (t)) (6.11)

Once the model has been identified, it must be validated. The data used in
the identification process (Figure 6.8) constituted only a subset of the data
available from the studied patient. Model validation is done by forecasting
six data sets that were not used in the identification process, i.e., data that
the model has never seen before. Each one of these six data sets, with a size
of about 300 points, contains signals with specific morphologies, allowing the
validation of the model for different system behaviors. Data set #1 represents
two consecutive Valsalva maneuvers of 10 seconds duration separated by a
two second break, data set #2 shows two consecutive Valsalva maneuvers of
10 seconds duration separated by a four second break, and data set #3 exhibits
two consecutive Valsalva maneuvers of 10 seconds duration separated by an
eight second break. Data set #4 shows a single Valsalva maneuver of 10 seconds
duration with an intensity (pressure) increase of 50% relative to the previous
three data sets. Data set #5 describes a single Valsalva maneuver of 20 seconds
duration with nominal pressure. Finally, data set #6 characterizes a single
Valsalva maneuver of 10 seconds duration with nominal pressure. Data set #6
is called the reference data set, since it represents a standardized Valsalva
maneuver, from which all the other variants are derived by modifying a single
parameter.

A comparison of the results obtained by simulation with the quantitative
differential equation model and the qualitative FIR model is presented in
Figures 6.10 and 6.11. The solid lines show the quantitative simulation results,
whereas the dashed lines represent the qualitative simulation results.

The results obtained are quite good, and consequently, the identified model
can be accepted. The normalized mean square errors (in percentage), MSE,
of the heart rate controller model have been computed for each of the data
sets individually, and also for all data sets together. These results are given in
Table 6.1.

As can be seen from this table, the average error is quite low, and a
comparison of this result with the one obtained using a NARMAX model of
four terms for the same patient will confirm this assessment. This comparison
is presented in Section 6.3.3.6. The FIR heart rate model requires a delay of
one sample only in order to capture the dynamics of the system.
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MSE
Data Set 1 5.74 %
Data Set 2 0.97 %
Data Set 3 4.94 %
Data Set 4 8.64 %
Data Set 5 0.84 %
Data Set 6 0.82 %
Average Error 3.65 %

Table 6.1: MSE Errors of the Heart Rate Controller Model

6.3.3.2 Peripheric Resistance Controller

The qualitative peripheric resistance controller model is determined from the
relationship between its input variable, the carotid sinus pressure, and its
output variable, the peripheric resistance control signal. The signals used for
the identification process are plotted in Figure 6.8.

For this model, the output variable has been recoded into four qualitative
levels whereas the input variable has been recoded into three levels. In
accordance with Equation 6.6, the number of classes for both variables could be
made quite large, but four output classes and three input classes are sufficient
to warrant a good model.

For the peripheric resistance controller, the optimal mask obtained was the
following:

⎛
⎜⎝

t\x CSP PR

t− 2δt 0 −1
t− δt −2 −3
t 0 +1

⎞
⎟⎠ (6.12)

This mask denotes the qualitative relationship:

PR(t) = f̃(PR(t− 2δt), CSP (t− δt), PR(t− δt)) (6.13)

The same procedure was used to validate the model that had been employed
to validate the heart rate controller model. A comparison of the quantitative
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and qualitative simulation results is presented in Figures 6.12 and 6.13. As
before, the solid line shows the quantitative simulation results, whereas the
dashed line depicts the qualitative simulation results.

The results are for the most part as good as those obtained for the heart rate
model. The normalized mean square errors for each data set individually as
well as for all six data sets together have been computed. The results are shown
in Table 6.2. It turns out that the results from data set #4 are considerably
poorer than those from all other data sets. Evidently, this controller is quite
sensitive to the pressure used in the Valsalva maneuver. More data varying
the pressure would need to be used in the identification data set in order for
this error to be reduced to a smaller value.

MSE
Data Set 1 2.08 %
Data Set 2 0.03 %
Data Set 3 1.31 %
Data Set 4 10.51 %
Data Set 5 0.62 %
Data Set 6 0.12 %
Average Error 2.44 %

Table 6.2: MSE Errors of the Peripheric Resistance Controller Model

This model is the simplest FIR model that was found to represent the
peripheric resistance controller at a good quality. The FIR peripheric
resistance model only requires a delay of two samples in order to capture
the dynamics of the system. A comparison between the results obtained with
this FIR model and a NARMAX peripheric resistance controller model of two
terms for the same patient is provided in Section 6.3.3.6.

6.3.3.3 Myocardiac Contractility Controller

The third controller to be determined is the myocardiac contractility controller.
Its qualitative model is determined from the relationship between the carotid
sinus pressure, its input, and the myocardiac contractility control signal, its
output. The signals used for the identification process are plotted in Figures 6.8
and 6.9.
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For this model, the input variable has been recoded into three qualitative
levels whereas the output variable has been recoded into five levels.

For the myocardiac contractility controller, the optimal mask obtained was
the following:

⎛
⎜⎝

t\x CSP MC

t− 2δt −1 0
t− δt 0 −2
t −3 +1

⎞
⎟⎠ (6.14)

This mask denotes the qualitative relationship:

MC(t) = f̃(CSP (t− 2δt),MC(t− δt), CSP (t)) (6.15)

The model has been validated using the same approach as before. The
comparative results for this controller are shown in Figures 6.14 and 6.15.

On the average, the results obtained are fairly good. However, data sets
#1 and #4 are not truly optimal. An identification data set that characterizes
the controller a little better could cure this problem easily. However, in order
to follow as closely as possible the design process proposed in the dissertation
by Vallverdú, we decided to stick with the same identification experiment that
was used before.

The MSE errors for this controller are summarized in Table 6.3.

MSE
Data Set 1 15.00 %
Data Set 2 0.10 %
Data Set 3 3.77 %
Data Set 4 8.31 %
Data Set 5 1.36 %
Data Set 6 0.61 %
Average Error 4.86 %

Table 6.3: MSE Errors of the Myocardiac Contractility Controller Model

As shown in Table 6.3, the average error obtained for the myocardiac
contractility controller model is the largest obtained for all five controllers.
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However, the error is still acceptably small, and consequently, the FIR model
can be used as a valid representation of the myocardiac contractility controller.
This will be confirmed in Section 6.3.3.6 where the results obtained by this FIR
model are compared with the ones obtained with a NARMAX model of two
terms for the same patient.

6.3.3.4 Venous Tone Controller

The fourth controller is the venous tone controller that uses the carotid
sinus pressure as its input variable, and the venous tone control signal as its
output variable. The signals used for the identification process are plotted in
Figures 6.8 and 6.9.

Here, the input variable has been recoded into three qualitative levels
whereas the output variable has been recoded into four classes.

For the venous tone controller, the optimal mask obtained was the following:

⎛
⎜⎝

t\x CSP V T

t− 2δt 0 −1
t− δt −2 −3
t 0 +1

⎞
⎟⎠ (6.16)

This mask denotes the qualitative relationship:

V T (t) = f̃(V T (t− 2δt), CSP (t− δt), V T (t− δt)) (6.17)

Once again using the same approach as before, the venous tone controller
model has been validated. The comparative results are plotted in Figures 6.16
and 6.17.

The results obtained using the FIR venous tone controller model were
generally quite good. The normalized mean square errors are tabulated in
Table 6.4.

This model is the simplest FIR model that was found to represent the venous
tone controller at a good quality level. The FIR venous tone controller requires
a delay of two samples in order to capture the dynamics of the system. A
comparison between the results obtained with this FIR model and a NARMAX
venous tone controller model of two terms for the same patient is provided in
Section 6.3.3.6.
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MSE
Data Set 1 2.59 %
Data Set 2 0.28 %
Data Set 3 7.20 %
Data Set 4 6.18 %
Data Set 5 0.42 %
Data Set 6 0.42 %
Average Error 2.85 %

Table 6.4: MSE Errors of the Venous Tone Controller Model

6.3.3.5 Coronary Resistance Controller

The fifth and last qualitative CNS controller is the coronary resistance
controller. It describes the qualitative relationship between the carotid sinus
pressure and the coronary resistance control signal. The signals used for the
identification process are plotted in Figures 6.8 and 6.9.

For this model, the input variable has been recoded into three qualitative
levels whereas the output variable has been recoded into two classes only.

The optimal mask obtained for the coronary resistance controller was the
following:

⎛
⎜⎝

t\x CSP CR

t− 2δt −1 0
t− δt −2 −3
t −4 +1

⎞
⎟⎠ (6.18)

This mask denotes the qualitative relationship:

CR(t) = f̃(CSP (t− 2δt), CSP (t− δt), CR(t− δt), CSP (t)) (6.19)

The validation results for this model are shown in Figures 6.18 and 6.19.

The results obtained using this model are quite excellent. It turns out that
the coronary resistance controller model obtained using the FIR methodology
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MSE
Data Set 1 3.07 %
Data Set 2 0.02 %
Data Set 3 2.62 %
Data Set 4 0.56 %
Data Set 5 0.15 %
Data Set 6 0.11 %
Average Error 1.09 %

Table 6.5: MSE Errors of the Coronary Resistance Controller Model

exhibits the smallest MSE error of all FIR controller models. The normalized
mean square errors are tabulated in Table 6.5.

This model, as the previous ones, is the simplest FIR model that was
found to represent the coronary resistance controller with a high degree of
quality. A comparison between the results obtained with this FIR model and
a NARMAX coronary resistance controller model of five terms for the same
patient is provided in Section 6.3.3.6.

6.3.3.6 Comparisons of NARMAX vs. FIR Controller Models

In this section, a comparison of the five controller models obtained for a given
patient using two different methodologies is presented. These methodologies
are the NARMAX quantitative inductive modeling technique vs. the FIR
qualitative inductive modeling technique.

There is something that must be clarified before the comparison. Both
methodologies have used the same data sets presented in Figures 6.8 and 6.9
for model identification. In the validation process, the same six data subsets
described in Section 6.3.3.1 were used by both the NARMAX and FIR
methodologies. However, while in the FIR validation process, the six subsets
of data were predicted separately, in the NARMAX validation process these
data subsets have been concatenated one behind the other, and the prediction
of the overall set was done at once. It is necessary to bear this in mind since
this difference may influence the obtained errors somewhat.
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Heart Rate Controller Model

The NARMAX model of four terms found in Vallverdú’s thesis that represents
best the heart rate controller relative to the signals of the patient shown in
Figure 6.8 is described in Equation 6.20.

y(t) = 0.0346 + 7.9151 · 10−4 ∗ x(t)
+0.7612 ∗ y(t− 1) + 0.1133 ∗ y(t− 7)

−1.5930 · 10−6 ∗ x(t) ∗ x(t− 3) (6.20)

where y(t) is the output, i.e., the heart rate control signal, and x(t) is the
input, i.e., the carotid sinus pressure. This model is composed of a constant
term, three linear terms, and one bi–linear term.

In order to validate this model of five terms, the six data sets given for
validation purposes were simulated, yielding an overall MSE error of 9.3%,
which is larger than the MSE error of 3.65% obtained with the FIR model. It
can thus be concluded that the FIR model of the heart rate controller describes
the system somewhat more accurately than a NARMAX model of five terms.

However, the reader should bear in mind that the NARMAX model is
a much simpler model than the FIR model. Including more terms in the
NARMAX model would certainly reduce the error of the NARMAX model
further at the cost of having to carry along more parameters. The best model
is not necessarily the one that carries the smallest error, but the simplest
(easiest to identify) model that still explains the available facts. In favor of
the FIR model, it should be mentioned that, although the FIR model is much
more complex than the NARMAX model, it is as easily identifiable as the
NARMAX model, and the identification process consumes very little time.

Peripheric Resistance Control Model

The NARMAX model of two terms found in Vallverdú’s thesis that represents
best the peripheric resistance controller relative to the signals of the patient
shown in Figure 6.8 is described in Equation 6.21.
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y(t) = 0.0489 + 0.9851 ∗ y(t− 1)

−2.0074 · 10−6 ∗ x(t− 1) ∗ x(t− 7) (6.21)

where y(t) is the output, i.e., the peripheric resistance control signal, and x(t)
denotes the input, i.e., the carotid sinus pressure. The model is composed of
a constant term, a linear term, and a bi–linear term.

To validate this model of three terms, the same six data sets were used,
yielding an MSE error of 18.5%, clearly much larger than the 2.44% MSE
error obtained with the FIR model. Hence it can be concluded that the FIR
model of the peripheric resistance controller describes the system considerably
more accurately than a NARMAX model of three terms.

Myocardiac Contractility Control Model

The NARMAX model of two terms found in Vallverdú’s thesis that represents
best the myocardiac contractility controller relative to the signals of the patient
shown in Figures 6.8 and 6.9 is described in Equation 6.22.

y(t) = 0.0177 + 0.9897 ∗ y(t− 1)

−6.5093 · 10−7 ∗ x(t− 1) ∗ x(t− 7) (6.22)

where y(t) is the myocardiac contractility control signal, i.e., the output, and
x(t) is the carotid sinus pressure, i.e., the input. This model, just like the one
used for the peripheric resistance controller, is composed of one constant term,
one linear term, and one bi–linear term.

The same six data sets were used to validate the NARMAX model of three
terms. This experiment generated an MSE error of 22%, clearly much larger
than the 4.86% MSE error obtained with the FIR model.

Venous Tone Control Model

The NARMAX model of two terms found in Vallverdú’s thesis that represents
best the venous tone controller relative to the signals of the patient shown in
Figures 6.8 and 6.9 is described in Equation 6.23.
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y(t) = 0.01374 + 0.9897 ∗ y(t− 1)

−5.6402 · 10−7 ∗ x(t− 1) ∗ x(t− 7) (6.23)

where y(t) is the venous tone control signal, and x(t) is the carotid sinus
pressure. Also this model is composed of a constant term, a linear term, and
a bi–linear term.

Use of this model of three terms with the same six data sets leads to an
MSE error of 22%, much larger than the average 2.85% MSE error obtained
with the FIR methodology.

Coronary Resistance Control Model

The NARMAX model of six terms found in Vallverdú’s thesis that represents
best the coronary resistance controller relative to the signals of the patient
shown in Figures 6.8 and 6.9 is described in Equation 6.24.

y(t) = −0.0245 − 7.6672 · 10−5 ∗ x(t− 10)

+0.9914 ∗ y(t− 1) − 9.0794 · 10−7 ∗ x(t− 6) ∗ x(t− 8)

+3.9906 · 10−7 ∗ x(t− 10) ∗ x(t− 10)

−9.4522 · 10−5 ∗ x(t− 10) ∗ y(t− 1) (6.24)

where y(t) is the coronary resistance control signal, and x(t) is the carotid
sinus pressure. The model is composed of a constant term, two linear terms,
and three bi–linear terms.

The average MSE error for this model is 25.5%, substantially larger than
the average MSE error of the FIR model of 1.09%. It is interesting to notice
that the NARMAX methodology had most difficulties with this controller
model, whereas the FIR methodology had the least problems with it.

After these comparisons, it can be concluded that the FIR methodology is
indeed able to find five controller models that represent, for a given patient, the
controllers with surprising accuracy, much better so than NARMAX models.
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6.3.4 Cardiovascular Closed–Loop System

The aim of this section is to close the loop between the hemodynamical system,
modeled by means of differential equations, and the central nervous control
system, modeled in terms of the fuzzy inductive reasoning methodology.

It has been demonstrated in previous sections of this chapter that the FIR
methodology is indeed able to model every one of the five CNS controllers
individually. Now it is time to study the behavior of the cardiovascular system
as a whole.

Real physiological data obtained from cardiac catheterization are used for
this study. These data stem from the hemodynamical division of the Hospital
de la Santa Creu i de Sant Pau in Barcelona and have been supplied by
Vallverdú. The data stem from a patient with coronary arterial obstruction of
at least 70%. The physiological variables of interest are: the right auricular
pressure, PAD(t), the aortic pressure, PA(t), the coronary blood flow, FC(t),
and the heart rate, HR(t). The physiological variables were recorded during
the following phases of the Valsalva maneuver (Figure 6.7):

• Pre–Valsalva phase.

• Valsalva Phase I, immediately after the onset of the maneuver.

• Valsalva Phase II, just before the end of the maneuver.

• Valsalva Phase III, immediately after the maneuver has ended.

• Valsalva Phase IV, after the maneuver has come to an end.

From the trajectories of the right auricular pressure, the aortic pressure, the
coronary blood flow, and the heart rate, mean values are computed for each
of the five phases of the maneuver. PADM denotes the average right auricular
pressure during a phase, PAM stands for the mean aortic pressure, FCM is the
average coronary blood flow, and HRM signifies the average heart rate during
any one of the phases.

The measurement results obtained through cardiac catheterization for the
studied patient are summarized in Table 6.6. Only the mean values computed
for the pre–Valsalva phase, the Valsalva phase II, and the Valsalva phase IV
are shown in the table, because these are the most significant phases.
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Pre–V 4
PADM II 38

IV 5
Pre–V 107

PAM II 99
IV 119
Pre–V 123

FCM II 106
IV 118
Pre–V 77

HRM II 82
IV 70

Table 6.6: Measurement Results Obtained from Catheterization (From
Vallverdú’s Thesis)

The mean values presented in Table 6.6 are obtained from real
measurements. They will consequently be used as reference values in the model
validation process. In order for a model to pass the acceptance test, none of
the four key variables, i.e., the average right auricular pressure, the mean
aortic pressure, the mean coronary blood flow, and the average heart rate must
deviate from the reference values by more than ±10% during any of the three
key phases of the Valsalva maneuver, i.e., the pre–Valsalva phase, the Valsalva
phase II, and the Valsalva phase IV.

In Vallverdú’s dissertation (Vallverdú, 1993), two different cardiovascular
system models were studied: a model described solely by means of differential
equations, and another model whose hemodynamical subsystem was modeled
using differential equations and whose central nervous system control was
modeled embracing the NARMAX methodology.

The simulation results obtained from either of the two cardiovascular system
models was found to lie inside the ±10% error margin permitted, and therefore,
both models were considered to be valid for the task at hand. The results
obtained with the purely deductive differential equation model are presented
in Table 6.7.

The largest negative relative deviation from the measurement values is
−5.19%, and the largest positive relative deviation is +5.93%. Thus, all the
indicators are clearly within the requested ±10% margin. The average relative
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Pre–V 4
PADM II 38

IV 5
Pre–V 111

PAM II 100
IV 118
Pre–V 119

FCM II 105
IV 125
Pre–V 73

HRM II 79
IV 74

Table 6.7: Results Obtained from Purely Deductive Differential Equation
Model (From Vallverdú’s Thesis)

deviation from the measurement values is 2.52%.

The results obtained from the mixed differential equation and NARMAX
model are summarized in Table 6.8. It is necessary to point out that these
results have been obtained using models of each of the five controllers with a
structure common to all patients rather than the individual models shown in
Section 6.3.3.6. However, the parameters of the NARMAX models were post–
optimized for each patient individually in closed loop, comparing the results
obtained from simulating the mixed model with the actual measurement data.

Here, the largest negative relative deviation from the measurement values
is −4.06%, and the largest positive relative deviation is +6.09%. Thus, all the
indicators are again within the requested ±10% margin. The average relative
deviation from the measurement values is 1.48%. Since the average deviation
is a little smaller than in the case of the differential equation model, the mixed
differential equation and NARMAX model can be considered to be of higher
quality than the pure differential equation model. These excellent results were
possible as a consequence of the post–optimization.

At this point, the question to be raised is whether a mixed model of the
cardiovascular system, whereby the hemodynamical subsystem is described by
means of differential equations and the CNS control is described using a FIR
model also generates results inside the ±10% error margin permitted and can
therefore also be considered a valid model for the task at hand.
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Pre–V 4
PADM II 38

IV 5
Pre–V 108

PAM II 99
IV 117
Pre–V 128

FCM II 102
IV 118
Pre–V 76

HRM II 77
IV 70

Table 6.8: Results Obtained from mixed differential equation and NARMAX
Model (From Vallverdú’s Thesis)

To answer this question, the mixed quantitative and qualitative modeling
and simulation methodology described in detail in Chapter 4 of this
dissertation have been applied.

A graph of the entire cardiovascular system showing the interactions
between the hemodynamical system and the central nervous system control
is presented in Figure 6.20.

In this figure, the solid boxes represent physiological components of the
cardiovascular system, such as the heart and the arteries and the veins, and the
solid arrows represent the blood flow passing between these body components.
These are controlled by the CNS. The conceptual controllers within the CNS
control are drawn as dashed boxes, and the information flow from the body
to these controllers and from the controllers back to the body are indicated
through dashed arrows. The heart, the thorax, and the abdomen are the
principal areas where the control takes place. The baroreceptors are the
sensorial organs that record the pressure changes, and thereby, are able to
determine the carotid sinus pressure, the input variable to all of the CNS
controllers. Figure 6.20 clarifies the overall structure of the cardiovascular
system model and its implementation.

The differential equation model of the hemodynamical system is
implemented using the Advanced Continuous Simulation Language (ACSL),
whereas the qualitative central nervous system control is realized using SAPS.
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the SAPS fuzzy regeneration function. The regenerated signals are finally
made available to the hemodynamical system for use within the differential
equation model. The overall effect of the qualitative CNS control model is
that of a single–input multi–output (SIMO) digital controller with sample–
and–hold (ZOH) circuitry at each of the five controller outputs. The qualitative
processes, recode, forecast, and regenerate, are run inside SAPS–II, reducing
the ACSL implementation of the CNS control to a mere interface.

The simulation results obtained from the mixed quantitative and qualitative
cardiovascular system model using fuzzy inductive reasoning for the description
of the CNS control are summarized in Table 6.9.

Pre–V 4
PADM II 38

IV 5
Pre–V 110

PAM II 100
IV 117
Pre–V 118

FCM II 105
IV 125
Pre–V 71

HRM II 78
IV 73

Table 6.9: Results Obtained from mixed differential equation and FIR Model

As can be seen from this table, the largest negative relative deviation from
the measurement values is −5.093%, and the largest positive relative deviation
is +7.79%. Thus, all the indicators are again within the requested ±10%
margin, and in accordance with the requirements, also this model is to be
accepted as a valid representation of reality for the task at hand. The average
relative deviation from the measurement values is 2.78%. Consequently, the
average deviation from the measurement data is here a little larger than in the
other two models.

Notice that it is not fair to compare the mixed differential equation model
and FIR model with the mixed differential equation model and NARMAX
model, due to the fact that, in the latter case, the CNS control models are
common, in structure, to all patients and its parameters were post–optimized
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for the single patient studied, whereas the CNS control models of the mixed
differential equations and FIR models were obtained for the single patient
studied, without any kind of generalization.

It should also be remembered how the FIR model was created, namely
as a replica of the purely quantitative differential equation model and not
as a replica of the measurement data. Comparing the FIR model with the
differential equation model, we find that the largest negative relative deviation
between the two models is 0.0%, and the largest positive relative deviation is
+2.73%. The average relative deviation between the two models is 0.66%.

This is an impressive similarity. The FIR model replicates exceptionally
well what it was told to be the “reality,” i.e., the differential equation model.

6.3.5 General Comments About NARMAX and FIR
Methodologies

NARMAX models are parametric models. Once their structure has been
determined, the five NARMAX models form a set of algebraic equations
containing a bunch of parameters. Thus, NARMAX models can be easily
optimized by any off–the–shelf curve–fitting algorithm. Training a NARMAX
model consists of two separate steps: (i) determining the optimal equation
structure, and (ii) optimizing the parameters of the selected structure. Most
of the computational effort is spent on the optimization. Thus, designing a
NARMAX model is predominantly an optimization problem.

FIR models are non–parametric models. Training a FIR model also consists
of two steps: (i) determining the qualitative equation structure, i.e., the
optimal mask, and (ii) composing a historical data base for holding the previous
experience, i.e., the previously observed input/output patterns. Designing a
FIR model is a synthesis procedure, not an optimization problem. Hence,
although it is fairly simple and fast to set up a FIR model, the methodology
does not offer an easy means for post–optimizing it.

The NARMAX approach has the advantage of being naturally adaptive,
i.e., it lends itself to post–optimization. This does not hold true for the FIR
model. However, since setting up a new FIR model is usually a simple and fast
process, post–optimization is not truly needed. When a FIR model needs to be
modified, it is acceptable to simply identify a new model, since this procedure
doesn’t require much time. Also, some adaptation would be possible in the
FIR approach as well, not by optimizing parameters, but by updating the
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experience data base on the fly.

The NARMAX model is much simpler to implement and does not require an
experience data base as is the case for the FIR model. Thus, the NARMAX
model needs much less memory, and also the simulation is somewhat faster
than using the FIR model. However, the additional implementational effort of
the FIR methodology goes hand in hand with a much increased flexibility and
capability of replicating arbitrarily nonlinear system behavior.

6.3.6 Conclusions

In this chapter, the fuzzy inductive reasoning methodology has been applied
to two quite different applications from two very different biomedical areas:
anesthesiology and cardiology. In the first example, the system to be modeled
was the decision making process of the anaesthetist. Hence we were fighting
problems of limited causality between input variables and output variables.
The system could just as easily have been classified as a psychological system
instead of being called a biomedical system. In the second example, the system
to be modeled was truly a biomedical system. Here, we were modeling a
portion of the human central nervous system control, namely the portion that
is responsible for the functioning of the heart, and, more generally, for the
blood transport through the body. In this example, we were fighting problems
of dealing with model variables for which no measurement data were available,
variables that possibly do not even represent physiological quantities.

The main objective of this chapter was to address some of the problems that
arise when working with this kind of systems, namely the problems of poor data
availability and/or poor data quality, and diversity of time constants. Rather
than tackling these problems in a theoretical manner (which may prove to be
impossibly difficult due to the complexity of the issues involved), the problems
were dealt with by means of two practical examples.

It is also the purpose of this chapter to offer comparisons between the
FIR methodology and other methodologies, such as the ANN and NARMAX
methodologies. This is valuable for validating the FIR methodology per se,
i.e., for getting a feeling for what it can accomplish, what is clearly outside
its capabilities, and how it fares in comparison with other methodologies that
promise to solve similar problems. Since the FIR methodology is still fairly
new and has not been used widely by the research community at large, such
comparisons should be of great interest.
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To this end, the control of an anaesthetic agent during surgical operation
has been presented. A previous publication that made use of an ANN for
the same purpose has been taken as a starting point, in order to be able
to compare the FIR results with those obtainable by an already established
modeling technique. The same identification data were used for finding the
ANN and FIR models. In that manner, a fair comparison between the two
methodologies could be achieved.

As Figure 6.5 shows, the FIR model captures the system behavior much
better than the ANN model. Moreover, it could be concluded from the results
that the FIR methodology is fairly robust, because it consistently generates
a decent inductive model whenever the data allow it to, and it categorically
declines to generate a model if the available data do not permit to validate an
inductive model.

The second part of the chapter has presented an effort to model and simulate
a part of the central nervous system control of the human body, namely the part
responsible for the blood delivery system throughout the body. Five controller
models, for a unique patient, for different control actions have been identified
separately using the FIR methodology. In a previous research effort due to
Vallverdú, different NARMAX models for the same five CNS controllers where
obtained for the same patient. The first NARMAX controller had five terms,
the next three controllers contained three terms each, and the last NARMAX
controller model was characterized by six terms.

The average MSE errors obtained using the two methodologies are
summarized in Table 6.10 for each of the five controllers.

Controller NARMAX2 FIR

Heart Rate 9.30 % 3.65 %
Peripheric Res. 18.5 % 2.44 %
Myocardiac Cont. 22.0 % 4.86 %
Venous Tone 22.0 % 2.85 %
Coronary Res. 25.5 % 1.09 %

Table 6.10: MSE Errors of NARMAX and FIR Controller Models

The FIR methodology proved much more capable than the NARMAX

2Notice that the number of terms of each NARMAX model differs as explained in the
text.
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methodology to accurately reproduce the input/output behavior of an
arbitrarily nonlinear unknown dynamic system.

To summarize, it has been demonstrated that the qualitative non–
parametric FIR model synthesis technique is a powerful tool for the
identification of inductive models of the CNS controllers. It compares favorably
with the quantitative parametric NARMAX model optimization technique,
when used for such purpose.

The FIR CNS control models had only been developed for a single patient.
However, in later chapters of this dissertation, a technique will be presented
that could allow us to find, for each of the five CNS controllers, a single FIR
model, a model that is independent of the individual patient characteristics.
However, this has not actually been tried yet for the CNS control system.

The two applications presented in this chapter demonstrate unequivocally
the validity of the FIR approach to qualitative modeling and simulation of
biomedical systems, and show that the FIR approach is at least as powerful
as if not better suited than other well–established modeling techniques, such
as the ANN and NARMAX methodologies, for these kinds of tasks.

Yet, although the results presented in this chapter are remarkable as they
stand and raise high expectations for the future, there are still lots of known
limitations to the FIR methodology. The next chapter tries to explain some
of these limitations.
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Chapter 7

Limitations to Predictability of
Behavior Using FIR

7.1 Introduction

In Chapter 6, the validity of the FIR methodology for use in biomedicine has
been demonstrated. It was also shown that this new methodology compares
quite favorably with more established inductive modeling techniques, such as
the ANN and NARMAX approaches. Two real biomedical applications have
been discussed relating to modeling and control problems in anesthesiology
and in cardiology.

The good results obtained make fuzzy inductive reasoning a promising
qualitative modeling and simulation methodology, offering good perspectives
when used in the biomedical domain. Yet, and in spite of the good
results obtained in the previous biomedical applications, some limitations to
predictability of behavior exist when using fuzzy inductive reasoning. These
limitations have also been studied in this doctoral thesis and are explained in
some detail in the following sections.

The reader may already have noticed that the forecasts obtained in the
cardiological problem were considerably better than those obtained in the
anaesthesia example. This has probably to do with the fact that the signals in
cardiology are more repetitive than those in anaesthesia, beside from the fact
that we had more past data available in the cardiology case. Somehow, the fact
that the relationship between inputs and output in the anaesthesia example
was not totally causal, hurt our prediction capabilities badly. The question
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now is, can this –until now quite vague– notion of causality in input/output
behavior be quantified? Can we look at a data set and determine beforehand
how causal the data are, how likely it is that good predictions can be obtained
relating the observed “inputs” to the perceived “output”?

The concept of a causality horizon will be introduced. The causality
horizon helps determine the likelihood of success of a qualitative prediction.
This research is a consequence of personal experiences that have demonstrated
limitations to predictability of behavior in biomedical applications, whereas
predictions in technical areas had mostly been accurate far beyond our original
expectations.

A word of warning! Whereas the last chapter showed the FIR methodology
in all its glory, and may have raised high expectations in the reader, this
chapter is a chapter of doom. It points out an important problem, and the
answer is rather depressing for the most part. Yet, this is an important chapter.
While it may by pleasant to know your friends, it is more essential to know
your enemies. Some battles can be won by taking proper precautions. Others
cannot, and this is very useful knowledge also. Battles that cannot be won
should best be avoided.

7.2 The Causality Horizon

This section focuses on limitations to predictability of system behavior through
induction. These limitations are demonstrated by two types of systems:
a linear state–space model, and observations of input/output behavior of a
biomedical system. The causality horizon is introduced, a conceptual barrier
limiting the predictability of future states of the system under investigation.

Experiences with technical and biomedical applications have shown that
the quality of predictions is not always the same. In particular, it is much
more difficult to obtain even half–way decent predictions for many of the
biomedical applications, whereas the predictions in technical applications are
often accurate far beyond expectations. It is the purpose of this section to
illuminate and explain this discrepancy.
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7.2.1 Determination of the Mask Depth

Chapter 3 offers a complete description of the FIR methodology. In that
chapter, the determination of the mask depth is explained in detail. It has
been claimed that the mask should cover the largest time constant of interest,
tl, and that the sampling rate, δt, should be no larger than one half of the
shortest time constant, ts, of the system to be captured by the model, thus:

∆t ≥ tl ; δt ≤ ts
2

(7.1)

where ∆t, is the time span to be covered by the mask.

The depth of the mask should then be computed as follows:

depth = round(
∆t

δt
) + 1 (7.2)

In this section, it is shown that the mask depth is not only dictated by the
two time constants mentioned earlier, but is limited also by yet another factor
that has been coined the causality horizon, HC . The causality horizon can be
defined as an upper limit of the depth of the optimal mask beyond which no
good forecast quality can be expected.

Up to this point, no measure of the causality between inputs and outputs
was taken into account. Seemingly, any two signals can be declared as “input”
and “output” of a “system,” and a system response can be predicted between
them. Obviously, this cannot be done. A measure of causality should be
introduced that allows to determine the likelihood of success of a qualitative
prediction. Such a measure is the correlation function.

For the following mask:

⎛
⎜⎝

t\x u1 u2 u3 y1 y2

t− 2δt 0 0 −1 −2 −3
t− δt 0 −4 0 0 0
t −5 0 0 +1 0

⎞
⎟⎠ (7.3)

representing the qualitative equation:

y1(t) = f̃(u3(t− 2δt), y1(t− 2δt), y2(t− 2δt), u2(t− δt), u1(t)) (7.4)
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the output y1 depends on current and past values of the inputs ui, and on
past values of the outputs yi. The autocorrelation function for y1, as well as
the cross–correlation functions between ui and y1 and the cross–correlation
between y2 and y1 can be computed. All these functions decay for sufficiently
large values of the time lapse ∆t. The correlation functions can be viewed as
measures of causality. Once a sufficiently long time span ∆t has elapsed, the
output, y1(t), is no longer causally related to any of the inputs, ui(t−∆t), the
other output, y2(t−∆t), or its own past, y1(t−∆t), since the corresponding
correlation functions for this value of ∆t are small.

By making ∆t larger and larger, the inductive reasoner is told to predict the
future from old data values that are no longer causally related to the current
time. This obviously can’t work. The effect is that, even if the best possible
mask spanning ∆t time units is used, recurrences of the same input patterns
lead to all legal output values with approximately equal probability. This is
just another way of saying that the output does not causally depend on these
inputs. The forecasting algorithm within the FIR methodology is therefore
uncertain which value to predict and chooses one of the values arbitrarily,
assigning to its forecast a low confidence value. In those cases, the forecast is
poor and looks like noise.

If ∆t is chosen smaller than the shortest time constant to be captured, the
FIR forecast basically consists of a constant value (in lack of better knowledge,
tomorrow’s weather is predicted to be the same as today’s). If ∆t is increased
to cover the fast time constants but not the slow ones, the forecast exhibits
local maxima and minima where the real data show them, but the forecast
won’t follow the general trend, i.e., it cannot follow the slow time constants.
If ∆t can be chosen sufficiently large for all time constants to be covered but
not larger than the causality horizon, the forecast will be the best that can be
obtained. All these types of behaviors can be seen in the following examples.

7.2.2 Linear System

The linear system used in this example is described by the following equations:

ẋ =

⎛
⎜⎝ 0 1 0

0 0 1
−2 −3 −4

⎞
⎟⎠ · x +

⎛
⎜⎝ 0

0
1

⎞
⎟⎠ · u (7.5)
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y =
(

1 0 0
)
· x

It is demonstrated with this example, how the selection of δt and ∆t influence
the quality of the forecast. To this end, ∆t is varied, and an optimal mask
is computed in each case using a subset of the available data. These optimal
masks are then used to forecast the remainder of the data stream.

For the different tests presented in this section, each of the two variables, u
and y, was recoded into three qualitative classes.

Three major types of behavior can be observed in this experiment:

δt < ts, tl < ∆t < HC

In this experiment, δt and ∆t were calculated using the characteristics of the
linear system. This system exhibits two time constants, a slow (large) one of
tl = 2.7 seconds, and a fast (small) one of ts = 0.3 seconds. Consequently,
δt = 0.15 seconds and ∆t = 2.7 seconds were used, which yields a mask depth
of depth = 19, as can be seen from Equation 7.6:

depth = round(
2.7

0.15
) + 1 = 19 (7.6)

With these values for ∆t and δt, the reasoner operates in a region where both
time constants are captured and, as shown in Figure 7.1, the cross–correlation
function between input and output is comfortably large. The autocorrelation
function of the output variable has also been computed. It exhibits the same
wide correlation as the cross–correlation function between the input and the
output. Therefore, the predictions of future output values are expected to be
good, as can be verified in Figure 7.2.

The optimal mask that represents this system and that was used to obtain
the good results presented in Figure 7.2 is shown in Equation 7.7.
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Evidently, the cross–correlation between y2 and y1 is completely harmless in
this example, since y2 is not used at all to predict values of y1. Let us now
assume that the sampling frequency is decreased (δt is increased) until such a
point, where the cross–correlation between y3 and y1 is not wide enough any
more to cover the entire mask depth of 2δt. In this case, the relationship
between y3 and y1 will no longer be deterministic, and the optimal mask
analysis will find a new optimal mask in which y3 is excluded from the list
of input variables. The new optimal mask obtained in this situation has been:

⎛
⎜⎝

t\x u1 u2 y1 y2 y3

t− 2δt −1 0 0 0 0
t− δt 0 −2 −3 0 0
t −4 0 +1 0 0

⎞
⎟⎠ (7.15)

What will be the effect of this mask change? We shall probably notice a
decrease in forecasting power, since y3 can no longer be considered in the
evaluation of y1. How large this decrease is, depends on the importance of
y3 in the determination of y1. If y3 is very important, the forecast may have
become useless, and the causality horizon has already been reached. On the
other hand, if y3 only added confidence to a prediction that could also have
been reached without looking at y3, the forecast may still be acceptable.

Thus, we need to know how critical a variable is in the prediction process.
This is not always easy to assess. What we can say is the following: Whenever
the cross–correlation of the first critical variable has decayed to a value of
60%, the causality horizon has been reached. In the linear system analyzed in
this section, only two variables were considered, and both are critical to the
forecasting capability. This explains the causality horizon of HC = 9 seconds
found for the above example.

The same study has been realized with a biomedical system, namely the
anaesthesia example that had already been used in Chapter 6 of this thesis.
This work is presented in the next section.

7.2.3 Biomedical System

As has been mentioned previously, it is much more difficult to obtain good
predictions for biomedical than for technical applications. This is due to
the qualitative shape of the correlation functions in the two cases. Whereas
the technical systems usually offer wide correlation functions, biomedical



172 Chapter 7. Limitations to Predictability of Behavior Using FIR

correlation functions are often quite narrow.

The biomedical system, presented in Chapter 6, for predicting the right
value of an anaesthetic agent to be applied to patients during surgery is being
used in this study. The clinical variables comprising the heart rate (HR), the
respiration rate (RR), and the systolic arterial pressure (SAP), are the key
clinical indicator signals to be used for suggesting an anaesthetic Dose (the
control signal).

For all the tests presented in this section, the variables SAP, HR, and Dose
were discretized into three qualitative classes, whereas RR was discretized into
two qualitative classes only.

According to information obtained from anaesthetists, the slowest time
constant of interest in this system is on the order of 10 minutes, and the
fastest time constant of importance is on the order of one minute (Nebot et
al., 1993a).

As in the case of the linear system, the variation in forecast quality as a
function of the time span covered by the mask, ∆t, will be shown.

δt < ts, tl < ∆t < HC

In accordance with the previously made recommendations, values of δt =
0.5 seconds and ∆t = 10 seconds were chosen. Consequently, the mask depth
is 21, computed as shown in Equation 7.16.

depth = round(
10.0

0.5
) + 1 = 21 (7.16)

The optimal mask obtained for this depth is the one shown in Equation 7.17.
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slowest time constants. The sampling rate, δt is kept at a value of 0.5 minutes,
but the mask depth is reduced to 11, such that ∆t = 5 minutes.

depth = round(
5.0

0.5
) + 1 = 11 (7.20)

The optimal mask obtained in this case was:

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

t\x SAP HR RR DOSE

t− 10δt −1 0 0 −2
t− 9δt 0 0 0 0
...

...
...

...
...

t− 6δt 0 0 0 0
t− 5δt 0 0 0 0
t− 4δt 0 0 0 0
...

...
...

...
...

t− δt 0 0 0 0
t 0 −3 0 +1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(7.21)

In this situation, the forecast exhibits local maxima and minima where the real
data show them, but the forecast does not follow the general trend any longer,
because it cannot follow the slowest time constant. This result is illustrated
in Figure 7.9.

δt,∆t < ts, tl, HC

In the fourth and last experiment of this series, both the sampling rate and the
total coverage of the mask were reduced until the mask covered a time interval
smaller than the fastest time constant of 0.5 seconds. To this end, a sampling
rate of δt = 0.2 minutes and a mask coverage of ∆t = 0.2 minutes were chosen,
leading to a mask depth of depth = 2 in accordance with Equation 7.22.

depth = round(
0.2

0.2
) + 1 = 2 (7.22)

As was to be expected, the fuzzy inductive reasoner now predicts that the
amount of anaesthetic agent to be administered to the patient should always
be the same as during the previous sampling period. This becomes evident
already by looking at the optimal mask found in this case:
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indeed does exploit whatever causality exists among the possible input/output
relationships of a multivariable system, and makes the best of the situation,
better so than most other inductive modeling techniques such as ANNs and
NARMAX models.

7.3 Conclusions

This chapter has focused on limitations to predictability of system behavior
using the fuzzy inductive reasoning methodology. The limitation is related to
the concept of a causality horizon. The causality horizon helps to determine
the likelihood of success of a qualitative prediction, providing an upper limit
on the mask depth beyond which no good predictions can be obtained any
longer.

Two systems, a linear state–space model and a biomedical system, have
served to demonstrate the concept. These different types of systems
were chosen in order to illustrate the differences in predictability between
applications from technical domains and those from soft sciences areas. It
is much more difficult to obtain decent predictions for soft science systems
than to obtain accurate predictions for systems from the hard sciences. In this
chapter, this discrepancy has been explained.

Thus, we now know that no good qualitative predictions of system
behavior can be obtained unless there exist strong, either positive or negative,
correlations between the inputs and the outputs of that system. Thus, no
causality is possible without correlation. The question now is: can this
statement also be negated, i.e., is it possible to conclude that a large correlation
between inputs and outputs of a system implies causality?

This is a dangerous proposition if accepted thoughtlessly. As explained in
(Cellier, 1991a), there exists a strong positive correlation between the stork
populations in Switzerland and the birth rate of human infants in the same
country during the twentieth century. Indeed, it is perfectly feasible to predict
human birth rates from the stork populations (or vice–versa). Yet, most
researchers would shun away from the biomedical implications of assuming
a direct causality between these two correlated facts.

Consequently, a high correlation implies predictability . . . and it also implies
a latent causality, yet, it does not imply an open causality. What is a latent
causality? It is correct that higher educated women in a well–functioning
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modern society give, on the average, less births than women with a lower degree
of education or women living under primitive conditions. In order to support
an advanced social environment and provide for the educational infrastructure
needed, more industry is required, which, in turn, eats up the living space
of the storks. So indeed, the two facts have a common cause, and this is
what we define as latent causality. A latent causality between two phenomena
indicates that both phenomena are caused by yet another phenomena that is
not contained in the data set, rather than one being caused by the other. In
our experience, a high correlation is never coincidental. It just doesn’t happen
that way. Thus, at least a latent causality can indeed be implied from high
correlation.

The results obtained in this chapter may sound somewhat depressive. Well,
if biomedical system modeling and simulation were that easy, all problems
would have been solved long ago, and this doctoral thesis would not have been
needed. Yet, it is the knowledge of the limitations inherent in a technology that
allows us to exploit its strengths by by–passing them, and the very positive
results reported in the previous chapter of this thesis and in the chapters yet
to come are by no means curtailed by carefully exploring these limitations.



Chapter 8

Dealing With Incomplete Data
Records

8.1 Introduction

As has been explained in Chapter 5, one of the major problems in biomedical
qualitative modeling is the lack of information. Inductive, pattern–based
modeling techniques are extremely data hungry. It is therefore essential for
behavioral qualitative methodologies to have available a large amount of rich
data to work with. Unfortunately, in biomedical applications, this is hardly
ever the case.

The lack of information may have several different causes, all of them
related to acquisition difficulties. The problems are further amplified when the
data records obtained from medical experiments are incomplete. Incomplete
information is another crucial problem of biomedical applications that makes
the information deficiency even worse.

Biomedical data records are notorious for being incomplete. A patient on
a heart monitor is routinely taken off the monitor while being cleaned by
the nurse. A particular instrument may exist only in one copy. Although the
instrument is in use by one patient, it is temporarily removed in order to give it
to another patient who needs it more urgently. Signal detectors that are taped
to the patients’ body often fall off during the night. The recording device (e.g.
a tape cassette) is full and is not replaced for a while. There are dozens of
circumstances that can produce gaps of information for one, several, or all of
the parameters. Qualitative methodologies that cannot deal with missing data
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values are therefore quite useless for dealing with biomedical applications.

In other types of systems, e.g. mechanical or electrical, it may be possible
to throw out incomplete data sets and repeat the experiment. In medical
systems, this is rarely an option. A sufficiently long and rich data stream
obtained from a patient is far too valuable an asset to being thrown out on
the basis of incomplete data records alone.

The purpose of this chapter is to tackle the incomplete information problem
by means of the fuzzy inductive reasoning methodology. To this end, a
technique called missing data option is proposed that allows to work with
incomplete medical data records. This technique represents an enhancement
to the FIR methodology. The first part of this chapter describes how the
missing data option has been implemented.

A practical study of the limits to predictability of behavior when incomplete
data records are present in the training data set is discussed in the second
part of this chapter. Two different applications have been used to show those
limits: a (generic) linear state–space model, and observations of input/output
behavior stemming from a biomedical system.

8.2 Missing Data Option

Even when sufficient and sufficiently rich data are available, incomplete data
sets can still pose difficult problems to the modeler, and this situation is
unfortunately all too common in the biomedical domain.

The missing data feature enables the researcher to work with incomplete
data records and extract as much information from them as they contain.
The feature makes it possible to convert incomplete quantitative data sets to
reduced qualitative data sets in order to derive the best possible qualitative
model for prediction of future system behavior. The feature has been designed
for use with all the FIR modules implemented in the SAPS–II tool kit.

As described in detail in Chapter 3 of this dissertation, the fuzzy inductive
reasoning methodology is composed of four basic functions: fuzzification (fuzzy
recoding), qualitative modeling (fuzzy optimization), qualitative simulation
(fuzzy forecasting), and defuzzification (fuzzy regeneration). In order to
explain how the missing data option has been implemented within the SAPS–
II software environment, a description of how this feature affects these four
primary FIR modules is provided next.
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Medical data bases usually denote missing data by a physiologically
impossible value. For example, a value of −999 is a rather uncommon value do
denote the systolic arterial pressure of a patient. Thus, when a blood pressure
value is missing in the data base for whatever reason, the medical personnel
may decide to mark this value down as −999.

It is very convenient if medical data records can be read into the programs
that use them without first having to modify them. Thus, it was decided to
mark missing values also in SAPS–II by a number that the user can freely
allocate. It was also decided that the missing data option should be made
as transparent to the user as possible. Thus, rather than modifying all the
SAPS–II functions and adding the missing data value to them as an additional
argument, a global variable, miss data, has been introduced that influences the
behavior of many of the SAPS–II modules when set.

� global miss data;
� miss data = − 999;

By default, miss data assumes a value of 0, which indicates that the missing
data option is disabled, thus 0 is an illegal value for marking missing values.

The fuzzy recoding function computes a qualitative triple for each
quantitative data entry in the raw data matrix. When a missing data
value is encountered, the class value of the corresponding qualitative triple
is not computed, keeping the missing data marker as the class value. The
membership value is set to one, and the side value is set to zero. For example,
if the global variable miss data is set to 500, a quantitative value of 500 is
recoded into the qualitative triple < 500, 1, 0 >. In this manner, the location
of the missing data elements is preserved within the qualitative data model.
This is important, since data entries in the qualitative data model are time–
stamped, yet the time stamp is implied, i.e., it is not written into the data
record itself.

The call of the recode module looks exactly the same as presented in
Chapter 3 of this thesis. It thus makes no sense to repeat the description
of the syntax of calls to the recode module in this chapter. Only the semantics
of the recoding operation have been slightly modified by introducing the global
variable miss data.

Whereas SAPS–II can take care of missing data values correctly within
its intrinsic functions, the user is responsible for properly handling missing
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values when manipulating data records manually. For example, SAPS–II does
not currently offer a function to compute landmarks. This operation is so
simple that, until now, landmarks were always computed in a short Matlab (or
CTRL–C) code segment, as indicated in Chapter 3. In the following example,
landmarks are computed in the presence of missing data values. Evidently,
the approach advocated in Chapter 3 will fail, since missing data values are
usually marked through large either positive or negative numbers outside the
legal domain of the variable, numbers that, without special care, would be
treated as highly visible and prominent landmark values.

� [pointer,m] =sortm(meas);
� [row, column] =size(meas);
� for i = 1 : colum,
� p1 =round( pointer(i)/3 );
� p2 =round( 2 ∗ pointer(i)/3 );
� lm = [ m(1, i)
� 0.5 ∗ (m(p1, i) +m(p1 + 1, i))
� 0.5 ∗ (m(p2, i) +m(p2 + 1, i))
� m(pointer(i), i) ];
� end

In the above code segment, sortm is an auxiliary SAPS–II function that knows
about the significance of missing values, places them at the end of each of
the sorted trajectories, represented by column vectors of m, and sets the
corresponding pointer variable, pointer(i), to the last significant data value
within the ith sorted data vector, m(:, i). Notice that a single call to sortm
sorts the entire raw data model by looping over its columns (trajectories).

In order to identify the model that best represents the system, the fuzzy
optimal mask function is used. It performs an optimization that finds the
best model (mask) among all legal models (masks) through a mechanism of
exhaustive search. Each of the candidate masks is compared to the others
with respect to its potential merit. The optimality of the mask is evaluated
with respect to the maximization of its forecasting power using an uncertainty
measure and a complexity measure (cf. Chapter 3).

In order to evaluate the quality of a mask, it is necessary to have available
the input/output matrix. As was mentioned in Chapter 3 of this doctoral
thesis, the input/output matrix is obtained by shifting the mask over the
episodical behavior, picking out the selected inputs and outputs, and writing
them together in one row. Hence it can happen that the input/output matrix
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contains missing elements that might get used during the quality evaluation.
It is therefore essential to eliminate from the input/output matrix all data
records that are contaminated by missing values. The SAPS function that
computes the optimal mask has been modified to eliminate all contaminated
records from the input/output matrix.

As with the recode function, the syntax of calls to the foptmask function
is unchanged from that described in Chapter 3. Only the semantics of such
a call are slightly modified. The same holds for the fforecast and regenerate
functions.

Once the optimal model that describes the system has been found, it can be
used to forecast future outputs of the system. When the missing data option is
activated, the forecasting function (just like before the optimal mask function)
goes through the input/output matrix, deleting all rows that are contaminated
by missing values. This corresponds to the elimination of illegal rules from a
rule base. Once the input/output matrix is free of contaminated data records,
the behavior matrix is computed from it, and the class, membership, and side
values of the desired output can be forecast.

It is important to distinguish between two types of past data: (i) the history
data that is being used to recognize similar behavioral patterns in the past,
and (ii) the immediate past data that is used by the recursion of the finite state
machine. Whereas missing values in the history data base are comparatively
harmless since contaminated records can simply be eliminated, missing data
values among the immediate past data are much more critical. If the current
forecast requires an immediate past value that is missing, the routine needs to
backtrack to first come up with a prediction of that value.

The modifications needed to upgrade the regenerate function were trivial.
Contaminated qualitative triples are simply converted to missing quantitative
values. The quantitative regenerated value of a missing qualitative triple (e.g.
< 500, 1, 0 >), is simply the class value of that triple (i.e., 500).

The idea behind this kind of an implementation is to remove the user
as much as possible from the details of the internal codification. In this
manner, by pre–setting the miss data variable to zero at the beginning of
the program, a user who does not need the missing data option can ignore
this feature altogether. If the same user later on encounters a data file that
is contaminated by missing data values, all he or she needs to do is to reset
the global variable miss data to a new value. Most of the previously written
(Matlab) M–files should still be operating correctly. Exceptions would be



186 Chapter 8. Dealing With Incomplete Data Records

functions that manipulate the data manually, as was the case in the earlier
presented example of computing landmarks.

8.3 Limits to Predictability

How many missing data values can be tolerated before the forecasting power of
the fuzzy inductive reasoner deteriorates? This question is difficult to answer
in a precise quantitative fashion. The missing data feature is implemented
in such a way that missing data do not affect the forecasting power of the
model per se. It is the lack of training data that affects the forecasting power.
Thus, as long as the training data set is sufficiently rich, missing data will not
affect the forecasting very much, i.e., missing data can be compensated for
by redundancy in data records. A significant degradation of the forecasting
power will be experienced when the number of missing data records is so large
that the richness of the training data set no longer suffices to compensate for
the loss, or if the missing data are in some way systematic. For example, if
the missing data always occur when one of the variables is at its peak value,
then obviously, the training data set no longer contains any information as
to how the model should behave when that variable is at its peak value, and
the model will be unable to forecast appropriately in that situation. After all,
forecasting in fuzzy inductive reasoning is only a smart way of remembering
(associating) similar past behavior with the current situation. Two examples
are used in this chapter to clarify these statements.

8.3.1 Biomedical Application

The biomedical system presented in this example is a subsystem of the central
nervous control system of the human heart. More specifically, it concerns the
venous tone controller that had already been introduced in Chapter 6 of this
thesis. The most important characteristics of this system can be captured by
a SISO model where the input signal is the carotid pressure and the output
signal represents the control of the venous tone, i.e., a signal that influences
the compliance of the vein that finally dictates the blood pressure in the vein
itself.

Figure 8.1 shows the input and output signals that are used to identify the
qualitative model. In this data set, there are no missing values. 1500 data
records are used as identification data to obtain the model, whereas the final
300 data records are used for validation. Clearly, there is a large amount of
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rich data available for the identification of the model.

The input and output signals were first recoded in such a way that the best
model representing the dynamics of this system could be obtained. It was
decided to recode the two signals into three levels each. In this example, three
levels were considered sufficient for obtaining good results. The best qualitative
model (the optimal mask) for representing the venous tone controller is the
following:

⎛
⎜⎝

t\x u y

t− 2δt −1 0
t− δt 0 −2
t −3 1

⎞
⎟⎠ (8.1)

This mask indicates that the control output at the current time depends on
its own past one time step back, and on the carotid pressure at the current
time as well as two time steps back.

Now that the best model has been found, we are ready to forecast future
behavior. To this end, a new set of data that has not been used in the
identification process will be forecast. The measured output signal of the
new data set can be used for validation purposes. It will be compared with
the forecast output signal. The forecasting results obtained from this model
are presented in Figure 8.2. The solid line represents the measurement data,
whereas the dashed line denotes the forecast. As can be seen, they are very
close. The fast time constant is captured with high accuracy, and also the slow
time constant is captured quite well.

It is evident that the identified qualitative model represents the system
rather accurately. Note that the data used in the model identification process
did not contain any missing values. A series of tests have then been carried
out modifying the number and position of missing data entries. A few of them
are presented in this chapter.

8.3.1.1 Adjacent Missing Data

In this test, varying amounts of missing values have been inserted in the
identification data set adjacent to each other.

In a first test, 10% of the identification data were declared missing, namely
those from sampling points 501 to 650. Figure 8.3 shows the identification
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data used to obtain the best mask. The portion of the curves that are marked
by a ladder represent missing data, and consequently, unknown behavioral
knowledge of the system. In this case, the optimal mask analysis found, as
best model, the same mask obtained when no missing values were encountered
within the identification data set. Notice that, although the mask is the same,
the behavior matrix is different.

As can be seen from Figure 8.3, this portion of the data is the one that is
most similar to the curve to be forecast. Therefore, although the amount of
missing data is not very high, its loss is significant for the prediction. The
forecast results obtained in this test can be seen in Figure 8.4. The prediction
still works, but its quality is definitely reduced with respect to the results
obtained when the identification data set does not contain any missing data
(cf. Figure 8.2).

In a second test, the identification data set contains a gap of 40% missing
values from sampling points 800 to 1400. Figure 8.5 shows this training set.

Here, a different mask is obtained as the best model to represent the system:

⎛
⎜⎝

t\x u y

t− 2δt −1 0
t− δt −2 −3
t −4 1

⎞
⎟⎠ (8.2)

The set of missing data chosen in this test is not similar to the curve to be
predicted (cf. Figure 8.5), and consequently, it is not essential for the model to
capture them. Hence the prediction is quite good and definitely better than in
the previous case in spite of the much larger chunk of missing data, as shown
in Figure 8.6.

8.3.1.2 Scattered Missing Data

In this test, 40% data values are missing like in the previous one. However, they
are scattered throughout the data file. Groups of 30 to 50 missing data records
are distributed arbitrarily along the identification data toggling between input
stream and output stream: from samples 51 to 100, 91–140, 232–281, 262–311,
423–472, 451–500, 623–672, 731–780, 821–840, 961–1010, 1061–1110, 1310–
1354, and 1410–1459. The identification data set, including the missing data
groups, is shown in Figure 8.7.
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⎛
⎜⎝

t\x u y

t− 2δt −1 −2
t− δt −3 −4
t −5 1

⎞
⎟⎠ (8.3)

The results of the prediction using this model are presented in Figure 8.10.

As can be seen, the results obtained are excellent, which is not further
surprising thanks to the regularity of the output pattern.

8.3.2.1 Adjacent Missing Data

In a first test, different amounts of missing data values are inserted in the
identification data set adjacently. As can be seen in Figure 8.9, the redundancy
on the original data is quite large, therefore the forecast results obtained with
50% missing data included in the raw data are as good as the results shown
in Figure 8.10.

The amount of missing data has then been increased to a level of 60% (from
samples one to 690) on the identification data set, as can be seen in Figure 8.11.
In this example, the best mask found during the optimal mask analysis was the
same one encountered when no missing data is included in the identification
data set.

In this case, the output forecast is affected by the reduction of the available
data, as can be seen in the first plot of Figure 8.13. If the amount of
missing data is further increased to 75% (from samples one to 855), as shown
in Figure 8.12, the results get worse (second plot of Figure 8.13). Here,
identification is performed with only one period of the signal, and therefore,
no more redundancy exists in the training data.

8.3.2.2 Scattered Missing Data

A different test has been realized in this example. Here, the missing data
groups are not distributed arbitrarily as in the biomedical example. The
missing groups coincide always with the maximum of the servo position.

If the missing data are always located at the maximum of the output
variable, the training data set no longer contains any information indicating
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how the model should behave when the position of the servo mechanism is
at its maximum. In this test, the missing data gaps were inserted at samples
51 to 90, 301–340, 551–590, 801–840, and 1051–1090 of the output variable,
corresponding to a data loss of 17%. The identification data set is presented
in Figure 8.14. The best model found in this example by means of the optimal
mask analysis is the same one as in the previous tests. Using this model, the
forecast has been computed and the results are shown in Figure 8.15.

Evidently, a severe degradation of the forecasting power at the peak takes
place due to the missing behavioral information in the identification data set.

8.4 Conclusions

This chapter contains a detailed explanation of how the missing data feature
for use in fuzzy inductive reasoning has been implemented. It is described how
the four pillars of the FIR methodology: fuzzification, qualitative modeling,
qualitative simulation, and defuzzification are affected by missing data, and
how the corresponding modules within SAPS–II have been enhanced to work
reliably with incomplete data streams.

A practical study of the limits to predictability with respect to the amount
of missing data encountered in the input/output data of the system under
investigation is also presented in the chapter. Two different applications
were used to show those limits: a (generic) linear state–space model, and
observations of input/output behavior stemming from a biomedical system.

The tests done with both systems show that the limits to predictability are
difficult to quantify in a precise fashion. The degradation of the forecasting
power depends on the richness and the redundancy of the data records in the
data history. It is the lack of training data (previous behavioral experience)
that affects the forecasting power and not the presence or absence of data gaps.

The next chapter presents an important application of the missing data
feature. The missing data technique is used as a tool to aid the modeler in the
elimination of patient–specific behavior. The diversity in patient behavior is
another important problem inherent to most biomedical applications.



Chapter 9

Elimination of Patient–Specific
Behavior

9.1 Introduction

In Chapter 8, we focused our attention on one of the principal problems
of biomedical modeling, incomplete information. In Chapter 9, another
important difficulty of biomedical modeling and simulation is analyzed, namely
the diversity in patient behavior.

Is knowledge acquired from and about one patient at all applicable to
another, and if so, to what extent? Can an inductive qualitative model
acquired by analyzing data retrieved from one patient be used to predict the
behavior of another? The purpose of this chapter is to discuss these questions
in the context of the fuzzy inductive reasoning methodology.

To this end, a technique based on combining knowledge obtained from
different patients is presented in this chapter that makes it possible to derive
a single model characterizing a specific class of similar patients undergoing
similar operations. Data streams stemming from different patients are grouped
together, separated by segments of “missing data” in order to prevent the
creation of fake causal relationships at the seam between neighboring data
streams in the concatenated data set.

A medical application relating to the control of a specific anaesthetic
agent administered to patients undergoing surgery is used to demonstrate the
feasibility of this method. Two data streams stemming from two different
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patients undergoing different operations were used to obtain a single model
identifying a similar patient/operation class.

It will be shown that the predictions obtained by this common model are
not as good as those obtained from each patient alone using patient–specific
models. This is reasonable and characteristic of all knowledge generalization
schemes. However, the results obtained are still significant and useful for
medical advice in the operating theater.

9.2 Knowledge Combination Technique

This chapter focuses on the preconditioning of biomedical data to eliminate
patient–specific behavior. In most biomedical applications, such as, for
instance, the control of depth of anaesthesia of a patient undergoing surgery,
it is extremely useful to have available a model that identifies not only the
behavior of one concrete patient on a specific day during a specific operation,
but one that is able to capture the behavior of a class of similar patients
undergoing similar operations. The definition of what makes different patients
or operations similar is left to the medical experts.

It does not make practical sense, from a medical point of view, to first have
to identify a model for a given patient during surgery to be able to predict
his or her behavior at some later time. A reliable model must be ready for
use before surgery begins. It is therefore important to be able to synthesize
a generic model that is valid for a specific type of patient undergoing a given
kind of surgery.

This section presents a knowledge combination technique that allows to
merge the knowledge stemming from different patients in order to obtain
a general knowledge base. This knowledge base can then be used for the
prediction of future states of a new patient with characteristics similar to
those of the patients used for obtaining the knowledge base.

In order to be able to merge two or more patient data sets, the missing
data option presented in the previous chapter has been used. This option
makes it possible to merge data streams stemming from different patients for
the purpose of desensitizing the derived qualitative model to patient–specific
characteristics of the observed data.

Since the research focuses on models of dynamic behavior, the advocated
methodology searches for causal relationships between variables measured at
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In the newly proposed technique, data from different patients are merged
into a single data stream using a single set of landmarks. In this case, it is
necessary to use a linear prefilter to get rid of the dc values of the individual
patients’ data streams before merging them. This simple normalization
procedure has been applied to the data of each patient separately, prior to
concatenating the two data records.

In order to improve the quality of the prediction and reduce the risk of
coming up with entirely incorrect forecasting values, a voting procedure is
adopted. Instead of working with a single optimal mask, as was done in
all the earlier examples, three high–quality masks are determined, and three
different state transition matrices are obtained. In the forecasting process,
three separate forecasts are computed using the three state transition matrices.

Let Ma, Mb, and Mc be the three selected masks. Each of these masks leads
to a different forecast. Let them be called Fa, Fb, and Fc. Three distance
measures are computed in the following way:

Da = abs(Fa − Fb) + abs(Fa − Fc) (9.1)

Db = abs(Fb − Fa) + abs(Fb − Fc) (9.2)

Dc = abs(Fc − Fa) + abs(Fc − Fb) (9.3)

Once the distance measures have been computed, the predicted value with the
largest distance measure is refused. The new forecast value will be the mean
value of the two predicted points obtained with the two remaining masks. For
instance, if Db > Da and Db > Dc, then forecast Fb is rejected, and the new
forecast is computed as:

F =
Fa+ Fc

2
(9.4)

This technique offers a systematic way to compute predictions for all patients
in the patient/operation class. Evidently, we could have applied the same
technique already earlier, i.e., when dealing with individual patient models.
However, good forecasts could be obtained in that case without going through
the additional computational effort of implementing the voting algorithm. In
the new context, it is more difficult to come up with good forecasts, and
therefore, the additional expense is justified.

In the next section, the voting method is used in a biomedical application.
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⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

t\x SAP HR RR Dose

t− 20δt 0 0 0 0
t− 19δt 0 0 0 0
...

...
...

...
...

t− 11δt 0 0 0 0
t− 10δt 0 0 0 −1
t− 9δt 0 0 0 0
...

...
...

...
...

t− δt 0 0 0 0
t −2 0 0 +1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(9.5)

denoting the qualitative relationship:

Dose(t) = f̃(Dose(t− 10δt), SAP (t)) (9.6)

For the second patient, the optimal mask obtained had been:

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

t\x SAP HR RR Dose

t− 20δt 0 0 0 0
t− 19δt 0 0 0 0
...

...
...

...
...

t− 11δt 0 0 0 0
t− 10δt −1 0 0 −2
t− 9δt 0 0 0 0
...

...
...

...
...

t− δt 0 0 0 0
t 0 −3 0 +1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(9.7)

which denotes the qualitative relationship:

Dose(t) = f̃(SAP (t− 10δt), Dose(t− 10δt), HR(t)) (9.8)

As can be seen, the obtained qualitative models were distinct. It had not been
possible at that time to apply either of the two qualitative models to the other
patient and obtain meaningful predictions of that patient’s future behavior.

Making use of the new approach for dealing with multiple patient models,
it was decided to merge the data from the two patients in order to extract a
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in concert with the other two voting masks, it turns out to be acceptable.

Finally, the optimal mask obtained for the second patient when the two
data sets were treated separately was chosen as the third mask in the voting
set (cf. Equation 9.7).

The forecasting results for the two data sets using the voting scheme are
shown in Figure 9.2.

As can be seen, the prediction follows the real curve in an acceptable way.
The predictions are not as good as those obtained from the individual models,
especially as far as patient B is concerned. However, the results obtained using
the combined model are still better than those obtained with the ANNAD
system, a feedforward neural network trained for individual patients (Rehman
et al., 1993). The results obtained by ANNAD had been judged by medical
personnel as “clinically meaningful.” Consequently, the results obtained from
our combined model are equally valid.

Computing the least square error of the predictions for the two patients,
the following results are obtained:

• The predicted Dose to be administered to patient A when using the
individual model exhibits an error of 0.4886, whereas the error is 0.5449
when the combined model is in use.

• The predicted Dose to be given to patient B according to the individual
model shows an error of 1.4156, whereas an error of 1.8224 results when
using the combined model.

It is quite evident that the predictive power of the combined model is poorer
than that of the individual models (as had to be expected), but the reduction
in predictive power is not unacceptably large.

9.4 Conclusions

This chapter presents a systematic way for generalizing knowledge about
patient behavior, reaching beyond individual patient–specific behavioral
patterns contained in data files reflecting individual patient measurements.
The approach chosen is extremely simple, yet very powerful. Individual data
streams stemming from different patients are concatenated to each other, while
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gaps of missing data are introduced in between each pair of adjacent data
streams to prevent a contamination of the generated rule base with fake causal
relationships. The dc values are subtracted from each of the data streams
before merging them, and, if necessary, the ranges can also be normalized.

It is then left to the faculties of the FIR methodology to generalize the
available knowledge. The FIR methodology is able to exploit (in an indirect
fashion) available correlations between the signals contained in the model,
recognize similar behavioral patterns observed in the past, interpolate between
these previously seen behavioral patterns, and extrapolate behavior over time.

A representative biomedical example demonstrated how medical informa-
tion obtained from different patients undergoing similar operations can be pro-
cessed in a systematic though still not fully automated manner. The measured
data streams stemming from different patient/operation pairs are combined in
such a way as to allow the synthesis of a common model that can be used for
an entire class of similar patients undergoing similar types of surgery.

Using the fuzzy inductive reasoning methodology augmented by the missing
data option, it does now seem feasible to generate a single qualitative model
that can be used to predict the future behavior of patients within an entire
class of similar patient/operation pairs. The predictions are not as good as
those obtained from individual models, but they are still clinically meaningful.

A quantification of the degradation of the predictive power of the combined
model relative to the individual models was also presented at the end of this
chapter. This quantification demonstrates that the prediction errors made
by the combined model are not drastically increased in comparison with the
prediction errors obtained when using the individual models.

Has the anesthesiology example demonstrated the capability of the FIR
methodology to generalize knowledge? Unfortunately, it has not. In order to
prove the generalization capability, we would have needed a third data stream
stemming from yet another patient, a stream not used in the combined past
history data and show that the combined model is capable of also predicting
the future behavior of that patient.

It is not clear that this might have worked. Although the approach is valid
–this is evident from the way in which it was designed– it is not clear that
two individual patient data streams are enough to lead to a generalization
of knowledge that would suffice for predicting the behavior of an arbitrary
patient. In all likelihood, considerably more patient data would have to be
included in the combined data stream.
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Luckily, there are 10 different data streams available for the cardiology
example presented in Chapter 6 of this dissertation. In that chapter, only
one of these data streams had actually been used. It turns out that these
trajectories exhibit an impressive (or depressive) variability one from the other,
and thus, true knowledge generalization that would enable us to predict the
behavior of one patient given his or her own immediate past data and a history
data base comprised of the past behaviors of some other patients would be truly
remarkable. It is planned to work on this problem in the near future. We hope
to be able to use a subset of the 10 data streams available, and show that the
behavior of the other data streams, that have not been used for constructing
the history data base, can indeed be predicted using the combined model.



Chapter 10

Summary and Future Research

Biomedical engineering is a discipline that addresses medical and biological
problems through the use of theories borrowed from the physical sciences, and
technologies inherited from engineering.

As a consequence of the imprecision of knowledge available in biomedicine in
general, one would expect that qualitative reasoning techniques, as they have
been developed during recent decades by researchers working in the area of
artificial intelligence, would be ideally suited to tackle problems stemming from
biomedical fields. Yet, the application of artificial intelligence to biomedical
sciences has not advanced rapidly in the past. Artificial intelligence techniques
have been proliferated much more rapidly to and within other areas of science
and technology.

Several difficulties inherent to the biomedical fields have restrained the
progress in modeling and simulation of this type of systems in the past,
problems that make these systems much more difficult to tackle than
practically all other types of systems met anywhere in science and engineering.

The aim of the work developed in this dissertation was to address some of
these difficulties, of soft sciences in general and of biomedical engineering in
particular, and to come up with a methodology that would make optimal use of
the limited knowledge available to the modeler, a modeling methodology that
would not get confused by the inevitable incompleteness and even inconsistency
of information generally available for these types of systems.

To this end, a qualitative modeling and simulation methodology called Fuzzy
Inductive Reasoning (FIR) has been employed, a modeling technique of fairly
recent vintage that looked promising for the task at hand, and for which a
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prototypical implementation was available to us. The methodology has been
refined, and a second generation of FIR software was implemented that would
allow us to work with biomedical and other soft science systems.

The FIR modeling technique can be classified as pattern–based, because
it works with behavioral knowledge about the external relationships between
inputs and outputs of the system under study. Therefore, the FIR methodology
is well suited for dealing with biomedical engineering systems, where the
structure of the systems to be modeled is usually either totally or at least
partially unknown.

Fuzzy qualitative modeling and simulation are, in the context of biomedical
research, topics of a rather recent vintage. For this reason, we decided to show
and describe not only the positive results that we obtained during this thesis
research, but also to explain the difficulties encountered and to delineate the
disappointments that we met on our way. For these reasons will the reader
find both types of accounts described in here: the very promising results that
were discovered in this research effort, the results that truly made this effort
rewarding and exciting, but also some brick walls that we encountered and
that we were unable to tear down or at least circumvent.

Also negative results are results indeed, and they are often even more
valuable that the positive ones, since they may prevent future researchers from
falling into the same traps that we ventured into, wasting weeks if not months
of their precious time, and because they are all too often bashfully concealed
by the research community.

10.1 Summary of Results Obtained

The results obtained in this doctoral thesis address several of the problems that
are characteristic of biomedical system modeling and simulation. In a first step,
a mixed quantitative and qualitative modeling and simulation methodology
was developed. Mixed modeling and simulation is needed for all types of
systems that are composed of well–known and poorly–understood subsystems.
This characteristic is common to a large variety of different applications.

In biomedical engineering, it is frequently necessary to deal with systems
with partial structural knowledge. It was therefore essential to be able to
have available a mixed quantitative and qualitative modeling and simulation
methodology that could be used to analyze such systems.
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The validity of the mixed qualitative/quantitative modeling technique has
been demonstrated by means of two examples. First, an example from
the technical domain, a position control system involving a hydraulic motor
with a four–way servo valve, explains the process of mixed quantitative and
qualitative simulation using fuzzy inductive reasoning in detail.

Second, a realistic and meaningful biomedical application has been used
to demonstrate the validity of this methodology inside the soft science area.
This biomedical application represents aspects of the cardiovascular system
of the human body. The cardiovascular control system is composed of the
hemodynamical system comprising the heart and the blood vessels, and the
central nervous control system that is responsible, among other things, for the
beating of the heart.

While the functioning of the hemodynamical system is fairly well known,
it operates similarly to a mechanical (hydraulic) system and can therefore
be modeled quite accurately by means of differential equations, the central
nervous controller is still not fully understood, and it was therefore decided to
use the FIR methodology to model it in qualitative terms. The results obtained
in both examples were excellent, consolidating the mixed methodology as a
valuable technique for dealing with systems with partial structural knowledge.

Some of the problems that arise when working with biomedical systems,
namely the problems of poor data availability and/or poor data quality, have
been addressed later on in this dissertation. Rather than tackling these
problems in a theoretical manner (which may prove to be impossibly difficult
due to the complexity of the issues involved), the problems were dealt with by
means of a practical example. The system to be modeled was the control of an
anaesthetic agent during surgical operation, where a model of the patient and
a model of the controller were to be developed. An earlier publication that
made use of an artificial neural network for the same purpose was employed as
a starting point in order to be able to compare our results against previously
established state–of–the–art technology.

Following the approach taken in the earlier publication, we first tried to
develop a fuzzy inductive reasoning model for the patient, and then to find a
fuzzy inductive reasoning model for the controller.

The FIR methodology was not able to generate a decent model for the
patient due to a lack of information from the point of view of data quality.
The available data was extremely poor not only in quantity but, even worse,
in quality. As goes for all inductive techniques, inductive reasoners need a lot
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of data to work with. It is not possible to generate meaningful and reliable
inductive models without ample and rich data. This holds equally true for the
neural network approach (another inductive modeling technique). However,
while a neural network will always predict something, the inductive reasoner
will not predict anything that cannot be validated on the basis of the available
data. SAPS–II, our inductive reasoner, simply declined to predict anything
when confronted with the patient model data, since no prediction can truly be
justified given the available facts.

On the other hand, SAPS–II was able to generate a qualitative model with
decent predictive power for the anaesthetic controller. For this model, the data
quality was sufficient to allow a meaningful prediction.

This is a definite strength of the FIR modeling methodology, since the
approach consistently generates a decent inductive model whenever the
available data allow it to, and it categorically declines to generate a model
if the data at hand do not permit to validate an inductive model. Generating
a seemingly good model that is not justifiable on the basis of the available
data (as it happened in the case of the neural network approach with the
patient model of one of the two available data streams) is maybe even more
dangerous than failing to generate a model if the data at hand would support
such a model (as it happened in the case of the neural network approach with
the controller model of the other data stream), since the modeler will rely on
the not properly validated model and trust its predictions in another situation
where it may predict pure nonsense.

Along this dissertation, results obtained using neural network and
NARMAX approaches for two specific biomedical systems under study have
been compared with those obtained using the FIR methodology for the same
systems. At least in the examples analyzed in this thesis, the FIR methodology
turned out to be consistently far superior to both of the other modeling
techniques in terms of its capability to capture a maximum of linear and non–
linear correlations in input/output behavior. It is considerably more flexible
than the NARMAX approach, and does not call for multiple layers as the
neural network approach does. The model identification process is very fast,
and alternative models (masks) can be investigated quickly to determine their
predictive power.

A study of the limits to predictability of system behavior using the fuzzy
inductive reasoning methodology has also been presented in the thesis. This
research was a consequence of personal experiences that have demonstrated
limitations to predictability of behavior in biomedical applications, whereas
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predictions in technical areas had mostly been accurate far beyond our original
expectations.

The concept of a causality horizon was introduced. The causality horizon
helps determine the likelihood of success of a qualitative prediction. It has
been found that the most appropriate mask depth is not only dictated by the
slowest and fastest time constants of interest in the system, but is limited also
by the causality contained in the input/output behavior, a concept closely
related to the cross–correlations used in statistics. The causality horizon was
defined as a measure of causality in input/output behavior allowing to assess
beforehand the likelihood of success of a qualitative prediction. This idea has
been exemplified by means of two systems: a (generic) linear system and a
biomedical system.

No meaningful qualitative predictions of system behavior can be obtained
unless there exist strong, either positive or negative, correlations between the
inputs and the output of that system. Thus, no causality is possible without
correlation. Although a strong correlation between signals does not necessarily
imply true causality between these signals, it does imply predictability of
behavior. In this sense, the FIR modeling methodology (and the same goes
for neural networks) is not fundamentally different from statistical modeling
techniques. However, both of these inductive approaches to modeling are much
easier to apply than statistical approaches to modeling, and both of them
exploit non–linear correlations considerably better than at least the classical
statistical techniques.

Another inherent problem of biomedical systems is incomplete information.
This issue has also been studied in this doctoral thesis. The lack of information
problem, that has already been treated before, may have several different
causes, all of them related to acquisition difficulties. The problems are
further amplified when the data records obtained from medical experiments
are incomplete. There are lots of circumstances that can produce gaps
of information for one, several, or all of the parameters. Qualitative
methodologies that cannot deal with missing data values are therefore quite
useless for dealing with biomedical applications.

In this dissertation, the FIR methodology has been enhanced in order to be
able to tackle incomplete information. To this end, a technique called missing
data option has been developed that allows to work with incomplete medical
data records.

A practical study of the limits to predictability of behavior when incomplete
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data records are present in the training data set is discussed in this dissertation.
Two different applications have been used to show those limits: a (generic)
linear state–space model, and observations of input/output behavior stemming
from a biomedical system.

The tests done with both systems show that the limits to predictability are
difficult to quantify in a precise fashion. The degradation of the forecasting
power depends on the richness and the redundancy of the data records in the
data history. It is the lack of training data (previous behavioral experience)
that affects the forecasting power and not the presence or absence of data gaps.

Another important problem in biomedical modeling is the inevitable
variability in system behavior from one patient to another. This doctoral
thesis thus has also focused on the preconditioning of biomedical data to
eliminate patient–specific behavior. This is a crucial issue that has received
some attention in this dissertation. In most biomedical applications, such
as, for instance, the control of depth of anaesthesia of a patient undergoing
surgery, it is extremely useful to have available a model that identifies not
only the behavior of one concrete patient on a specific day during a specific
operation, but one that is able to capture the behavior of a class of similar
patients undergoing similar operations.

This study presents a knowledge combination technique that allows to merge
the knowledge stemming from different patients in order to obtain a general
knowledge base. This knowledge base can then be used for the prediction
of future states of a new patient with characteristics similar to those of the
patients used for obtaining the knowledge base.

The combination technique makes use of the missing data option that allows
to merge different patient data streams avoiding the creation of fake causal
relationships at the seam between adjacent streams. This technique offers a
systematic way to compute predictions for all patients in the patient/operation
class.

The efficiency of the advocated technique has been demonstrated by means
of the anesthesiology application presented earlier. It became feasible to
generate a single qualitative model that could be used to predict the future
behavior of two different patients. The predictions were not as good as those
obtained from individual models generated separately for each of the two
patients, but they were still clinically meaningful.

A quantification of the degradation of the predictive power of the combined
model relative to the individual models was also presented. This quantification
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demonstrates that the prediction errors made by the combined model were
not drastically increased in comparison with those obtained when using the
individual models.

It can be remarked that the FIR methodology has two major restrictions
relative to the types of systems that can be handled by it. These restrictions
are the following:

• It is necessary to have available a sufficiently large amount of rich
behavioral data of the system to be modeled. Data–poor systems are not
amenable to be modeled using the FIR methodology. This limitation is
shared by all inductive modeling approaches and is not specific to the
FIR methodology.

• The number of variables that the SAPS–II software can reason with
simultaneously is limited. This limitation is partly caused by the current
implementation of the toolbox (Fortran does not handle variable arrays
very well), but it is also dictated by the computational complexity of
the algorithms used within the SAPS–II implementation of the FIR
methodology. This restriction will be relaxed in a few months, when
another Ph.D. dissertation based on the FIR methodology will be
completed. That dissertation deals explicitly with the problems inherent
in large–scale system modeling, and the modified algorithms presented in
that thesis along with an upgrade of the SAPS–II software will allow the
user to work with complex system with a fairly large number of variables.

Summarizing, the major contributions of this doctoral thesis are the
following:

• A methodology for modeling and simulation of mixed quantitative
and qualitative biomedical systems exemplified by means of the
cardiovascular system.

• A methodology for qualitative replication of human decision making
processes exemplified by means of the anaesthetic agent delivery system.

• A statistical analysis tool for assessing the forecasting power of
qualitative models.

• A methodology for dealing with incomplete measurement data sets in
qualitative modeling of biomedical (or other) systems.

• A methodology for filtering out patient–specific behavior from separate
measurement data sets stemming from different patients.
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10.2 Future Research

As has been described in Chapter 5 of this dissertation, biomedical systems
pose particular problems that make it difficult to come up with models
capturing their dynamical behavior. Several of those difficulties have been
analyzed in this dissertation, from the fuzzy inductive reasoning methodology
perspective, in the hope to eliminate at least some of them once and for all,
while alleviating the consequences of others. However, some problems have
either not yet been tackled at all, or they have been discussed but have not
been solved in a conclusive fashion. These remain open to future research.

This is the case, for example, of the problem of diversity in patient
behavior. In this dissertation, a first step has been realized tackling this
difficult problem. A data stream merging technique has been developed that
is systematic and that, at least conceptually, allows to obtain a model for a
given patient/operation class. However, this technique has only been applied
to two patient/operation sets. Therefore, the anesthesiology example has
not yet demonstrated the capability of the FIR methodology to generalize
knowledge. In order to prove the knowledge generalization capability, we
would have needed a third data stream stemming from yet another patient, a
stream not used in the combined past history data and show that the combined
model derived for the first two patients is capable of also predicting the future
behavior of the third patient.

It is not clear that this might have worked. It is doubtful that two individual
patient data streams are enough to lead to a generalization of knowledge
that would suffice for predicting the behavior of an arbitrary patient. In all
likelihood, considerably more patient data would have to be included in the
combined data stream for this purpose.

Therefore, a deeper study using a biomedical system with much more
data stemming from many different patients needs to be performed to truly
demonstrate the knowledge generalization capability of the data merging
approach. The cardiology example presented in Chapter 6 of this dissertation
would lend itself to such an investigation. For this application, there are
already available data streams from 16 different patients. In that chapter,
only one of these data streams has actually been used. It turns out that
these trajectories exhibit a formidable and frightening variability one from the
other, and thus, true knowledge generalization that would enable us to predict
the behavior of one patient given his or her own immediate past data and
a history data base comprised of the merged past behaviors of some other
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patients would constitute a sensational breakthrough in machine learning. It
is planned to work on this problem in the near future. We hope to be able to
use a subset of the 16 data streams available, and show that the behavior of
the other data streams, that have not been used for constructing the history
data base, can indeed be predicted using the combined model.

Another interesting topic for additional research in the future is the
incomplete information issue. In this dissertation, our interest was focused
on the ability to work with sets of data where missing values might be present
basically due to recording problems. To this end, the idea was to extract as
much information as possible from the available data sets, eliminating data
records that are contaminated by missing values. In medical systems, such a
feature is extremely useful since missing values are utterly common in data
records obtained from this type of systems and since it is not acceptable to
throw out incomplete data sets and repeat the experiment, as this would be
the case in most engineering systems. A sufficiently long and rich data stream
obtained from a human patient is far too valuable an asset to being thrown
out on the basis of incomplete data records alone.

However, it could also be of interest to focus new research on the idea of
reconstructing missing data encountered in the identification data set. Some
research has already been developed along these lines (Albridge et al., 1988)
that can provide a starting point to center a new research effort using the fuzzy
inductive reasoning methodology for extending the available knowledge.

Different data reconstruction strategies have been studied during past years,
such as interpolation, extrapolation, patient–specific mean value, and patient–
specific linear regression over time. General conclusions from these previous
studies can be reached. First, several strategies exist for estimating missing
data values, yet none of these strategies works uniformly best in all situations.
Second, the quality of the strategy as a predictor depends on the characteristics
of the variable that is contaminated by the missing value and the goals of the
study being conducted. Third, serious limitations exist in the current literature
in that a significant portion of this literature assumes data to be “randomly”
missing. This is not a meaningful proposition in the context of medical data.
If a sensor breaks down, usually more than one data value will be missing in a
row. On the basis of these previous conclusions, a deep study of the prediction
of missing values in biomedical system applications can be made. Such a
study can provide a rigorous comparison of the already existing methods when
applied to biomedical systems as well as propose a new method to tackle this
problem.
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This new method could be based on first extracting the relevant information
contained in the identification data set that is contaminated by missing values.
This can be accomplished using the missing data option developed in this
dissertation, obtaining a reduced history data set. Then, this historical
information could be used to try to forecast the missing values that exist in
the training data set, replacing the missing elements by the predicted values.

We have seen that predictions of future behavior of a biomedical system
are possible whenever there exists sufficient correlation in the input/output
behavior of the system. The FIR methodology will exploit this behavior in
a quasi optimal fashion. However, whereas correlation implies predictability,
it does not necessarily imply causality as well. It will often be the case that
there is a large conceptual distance between the inputs and the output of a
qualitative model. In such a case, it will not be easy to reduce the qualitative
knowledge available in the FIR model, which is perfectly sufficient for purposes
of prediction of behavior, to explanations of causal behavior that a practitioner
would be able to interpret in terms of variables that he or she can understand.

To this end, it would be useful to subdivide complex systems into simpler
subsystems, although the goal of prediction does not require such a subdivision,
in order to limit the conceptual gap between the inputs and the output of each
subsystem for the purpose of enabling the methodology to provide meaningful
explanations of the reasoning process. In this context, a merge between
knowledge–based approaches to modeling (decomposition) and pattern–based
approaches to modeling (identification) may prove to be fruitful.

The attentive reader may have noticed that the development of FIR models
still contains a fair amount of heuristics. Into how many classes should a
variable be discretized? In the cardiology example, some of the controller
outputs were recoded into four levels, others into five levels, yet others into
two levels only. Why was this done? The answer is simple. We tried a
number of different alternatives, and selected the one that provided the best
compromise between accuracy of forecast and model complexity in each case.

Where precisely are the landmarks to be placed that separate neighboring
classes? A quite heuristic algorithm for the selection of landmarks was
proposed in Chapter 3 of this dissertation. This algorithm usually works
quite well, but sometimes, it didn’t lead to good forecasts, and in those cases,
intuition was used to come up with a more appropriate set of landmarks. There
is a wealth of literature available that deals with the problem of clustering.
Evidently, the selection of landmarks is closely related to the problem of
clustering as discussed in the artificial intelligence literature.
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Although the necessity of take heuristic decisions turned out to be fairly
harmless in the examples described in this dissertation, it must be feared that,
in examples of much larger size, this may no longer be the case. More research
should be made to reduce the number of heuristic decisions to be made by the
user of the tool to a minimum.

As this section shows, many interesting problems are still open to be tackled
in future research efforts, and we are eager to continue with this line of research
ourselves. We are excited about the very promising possibilities of the FIR
methodology and about the results that are documented in this thesis. They
were, in many cases, far better than we had expected them to be. After we had
designed the central nervous system controllers of the cardiovascular system
individually, we were quite sceptical when we put everything together whether
the mixed simulation would work at all. After all, this was the very first time
that anyone had tried to put five separate qualitative FIR controllers into a
single system and make them work together. To our own amazement, the
closed–loop control worked on the first try.

We hope that, with this thesis, we have provided a significant contribution
to the field of biomedical engineering, and that our results will prove to be
useful for many other researchers dealing with time–dependent bioengineering
systems.






































