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Resumen

En esta tesis se describen nuevos elementos introducidos en la metodolog��a
del Razonamiento Inductive Borroso (Fuzzy Inductive Reasoning (FIR)) que
permiten predecir el comportamiento futuro de series temporales. En la
identi�caci�on de sistemas ya se hab��an obtenido antes muy buenos resultados
al utilizar esta metodolog��a. Por ello se decidi�o evaluar esta metodolog��a
tambi�en en el campo del an�alisis de series temporales que es un asunto m�as
complejo a causa de la imposibilidad de excitar las entradas de los sistemas
que las generan.

Para saber si esta metodolog��a es v�alida en el campo de an�alisis de series
temporales se hizo un estudio comparativo con otras metodolog��as como
son las conexionistas, las que utilizan modelos lineales y no lineales. Esto
permiti�o caracterizar el tipo de series temporales que mejor predice FIR. Se
muestra que esta metodolog��a explota toda la informaci�on contenida en los
datos disponibles de las series temporales quasi{estacionarias con elementos
deterministas.

A causa de la naturaleza cualitativa de la metodolog��a, en un inicio
se produjeron predicciones ambiguas. Para superar las di�cultades se
incorporaron nuevos elementos de predicci�on. Se modi�c�o la f�ormula para
calcular la distancia relativa y pesos absolutos de los cinco vecinos m�as
cercanos, se incorporaron nuevas medidas de con�anza similitud y proximidad
que permiten evaluar el error de predicci�on sin necesidad de conocer el
valor real. La medida de proximidad se basa en la funci�on de la distancia,
mientras que la similitud est�a basada en la similitud de conjuntos borrosos.
Se utiliza una generalizaci�on de la funci�on cl�asica de equivalencia basada en
las de�niciones de cardinalidad y diferencia de la teor��a de conjuntos borrosos,
originalmente presentada por Dubois y Prad�e.

Se desarrollaron dos nuevas t�ecnicas de predicci�on utilizando las nuevas
medidas de con�anza que permiten elegir en cada instante de tiempo el mejor
modelo cualitativo de predicci�on.



Estas nuevas t�ecnicas permiten mejorar la predicci�on de una serie
temporal quasi{estacionaria. Al cambiar din�amicamente el modelo
cualitativo el error de predicci�on disminuye considerablemente para una serie
temporal no estacionaria con m�ultiples reg��menes.

Se evalu�o la relaci�on cuantitativa entre el grado del deterioro de la
con�anza acumulada y el horizonte de la predictibilidad de una se~nal
demostr�andose que la medida cualitativa de similitud es m�as susceptible al
error de predicci�on.

Se presentan tambi�en primeros resultados de aplicar esta metodolog��a en
el dise~no de sensores inteligentes y control predictivo.

Esta tesis se organiza en ocho cap��tulos y dos ap�endices.
En el cap��tulo uno se describe el enfoque principal de la investigaci�on

realizada as�� como los antecedentes.
En el cap��tulo dos se establecen los par�ametros para clasi�car las series

temporales que se analizan en esta investigaci�on as�� como una revisi�on de
todas las metodolog��as de an�alisis de series temporales.

En el cap��tulo tres se presenta la situaci�on actual de la metodolog��a de
Razonamiento Inductivo Borroso.

El estudio compartivo de la metodolog��a FIR con las m�as conocidas en el
mundo del an�alisis de series temporales se describe en el cap��tulo cuatro.

Se introducen dos nuevas medidas de la calidad de predicci�on en la
metodo-log��a FIR. Los resultados de esta investigaci�on se presentan en el
cap��tulo cinco. Se describe la base te�orica de estas medidas y se muestran
los resultados obtenidos en diferentes tipos de series temporales.

En el cap��tulo seis se presentan los resultados de aplicar las medidas de
calidad de predicci�on introducidas en el cap��tulo anterior para mejorar los
resultados de predicci�on en el caso de aplicar FIR en series no estacionarias.

Para evaluar hasta que punto es �able la predicci�on, en el cap��tulo siete se
introducen las medidas de calidad de predicci�on para establecer el horizonte
de predicci�on en series quasi{estacionarias.

En el cap��tulo ocho se resumen las aportaciones realizadas a la
metodologia FIR.

Su aplicaci�on como metodolog��a para dise~nar sensores inteligentes y el
dise~no de controladores predictivos se presentan en los ap�endices A y B.



Summary

In this dissertation, new elements are described that have been added to
the methodology of Fuzzy Inductive Reasoning (FIR), elements that allow
the prediction of the future behavior of time series. In the identi�cation
of systems, very good results of using this methodology had been reported
earlier. Therefore, it was decided to evaluate the methodology also in the
context of predicting time series, a more complex undertaking, because of the
impossibility of exerting the systems that generate these time series through
their inputs.

In order to determine whether the methodology could be used in the
analysis of time series, a comparative study of di�erent methodologies was
made, including connectionist methods, as well as linear and non{linear
predictors. This study allowed to characterize the types of time series that
FIR predicts well. It turns out that FIR exploits all the information that
is contained in the available training data of time series that are quasi{
stationary with deterministic elements.

Due to the qualitative nature of the methodology, predictions were
initially obtained that were ambiguous. In order to overcome these
di�culties, new elements of prediction were introduced. The formula used
for calculating the relative distances and the absolute weights of the �ve
nearest neighbors was modi�ed, and new con�dence measures (based on
similarity and proximity) were incorporated, measures that allow to estimate
the prediction error without necessity of knowing the true value of the series.
The proximity measure is based on a distance function, whereas the similarity
measure is based on the similarity between fuzzy sets. A generalization of the
classical equivalence function is used that is based on de�nitions of cardinality
and di�erence of the theory of fuzzy sets, originally proposed by Dubois and
Prad�e.

Two new techniques of prediction were developed that make use of these
con�dence measures. These methods allow to select, at every time instant,
the best qualitative prediction model.



These new techniques allow to improve the prediction of a quasi{
stationary time series. By dynamically changing the qualitative model, the
prediction error can be reduced considerably in non{stationary time series
that operate in multiple regimes.

The relation between the degree of deterioration of the accumulated
con�dence measure and the horizon of predictability of a signal was evaluated
in a quantitative fashion. It was shown that the similarity measure is more
sensitive to the prediction error than the proximity measure.

Also presented are �rst results obtained when applying the methodology
to the problems of the design of intelligent sensors and predictive controllers.

This thesis is structured into eight chapters and two appendices.
In Chapter 1, the principal focus of the investigation is described as well

as its antecedents.
In Chapter 2, the parameters are established that allow to classify the

time series that are analyzed in this investigation. The chapter also o�ers a
brief review of the methodologies that are being used in time series analysis.

In Chapter 3, the state of the art of the Fuzzy Inductive Reasoning
methodology is presented.

A study comparing the performance of FIR with that of the best known
time{series prediction methods is presented in Chapter 4.

Two new measures of the prediction quality are introduced in the FIR
methodology. The results of this investigation are presented in Chapter 5.
The theoretical foundations of these measures are described, and their
application to di�erent types of time series is shown.

In Chapter 6, the results of applying the prediction quality measures,
introduced in the previous chapter, to the problem of improving the
prediction capability of FIR in the case of non{stationary time series are
presented.

In order to evaluate up to which point a prediction is reliable, Chapter 7
introduces measures of accumulated prediction quality that can be used to
estimate the horizon of predictability in quasi{stationary time series.

In Chapter 8, the contributions obtained in this dissertation related to
the FIR methodology are summarized.

Its applications as a methodology for designing intelligent sensors and
predictive controllers are presented in Appendices A and B.
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Chapter 1

Introduction, Motivation and

Overview.

To be able to predict the future has been a dream of mankind since it became
aware of its environment and its ability to manipulate it. People want to
\play it safe," by making informed decisions, decisions that are based on an
understanding of the implications that these decisions will have. This calls
for the need to predict the consequences of decisions made, i.e., predict the
future.

How can this be accomplished? Essentially, there are two potential roads
to success.

1. One can predict the future by extrapolating directly from past
observations.

2. One can try to make a model that explains relationships between
observations made in the past, and then use that model in a simulation
to make predictions of the future, given a set of scenarios speci�ed in
terms of input trajectories.

Making predictions is easy, in fact, it is as easy as throwing a coin. What is
di�cult, is to know how good these predictions are, i.e., estimate the error
associated with any prediction made.

Direct extrapolation is inherently unsafe, because it does not provide
for means that would allow to estimate the quality of the predictions
made. Modeling is the better approach, since it allows to correlate di�erent
observations with each other, thereby improving the chances of making
correct predictions. Also, the modeling approach enables the user to work
with input variables, thereby allowing him or her to formulate di�erent
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scenarios and observe the consequences that might result when implementing
any one of these scenarios.

Yet, also the modeling approach carries inherent risks. Most modeling
approaches are parametric in nature, i.e., they make use of training data to
optimize a set of parameters, then use the model, once trained, for making
predictions, without referring back to the training data set.

Any parametric modeling approach presupposes a model structure. Once
this decision is made, it will be di�cult to assess the errors associated
with that decision, i.e., whereas the chosen structure may be appropriate to
explain the training data, there is no guarantee that the same structure will
also be appropriate to predict outcomes given input data that have never been
observed before. The extrapolation capability of the approach lies precisely
in the structural assumptions made, and is unsafe for the very same reasons.

Luckily, the two approaches outlined above are only two extremes within
a continuous spectrum of possible approaches. Is a standard Box{Jenkins
approach to predicting the future of a univariate time series a modeling or an
extrapolation approach? The answer to this question depends probably more
on personal tastes than a solid scienti�c foundation, as the method \models"
the time series, but does so directly, i.e., without reasoning about any cause{
and{e�ect relationships, thereby making it impossible to investigate di�erent
scenarios1. It is a parametric modeling approach in the sense that it indeed
makes a structural assumption, and then estimates the parameters of that
structural model. It is an extrapolation method in the sense that it does not
identify any system relating inputs to outputs, it only characterizes a signal.

Any successful method will have to somehow exploit the best of both
worlds, i.e., use modeling, where applicable, to extract as much information
from the available observations as possible, yet use the available training
data carefully and cautiously in an extrapolation mode to make sure that
the inherent assumptions behind the model do not invalidate the predictions
made.

Estimating the error of a prediction is itself a modeling task. A model
needs to be made that relates the testing data (the new pattern, for which
a prediction is to be made) to the training data (the patterns observed in
the past, the outcomes of which are known). Estimating the error of the
prediction essentially means to estimate the relevance that the training data
have in explaining the testing data.

Fuzzy Inductive Reasoning (FIR), the methodology investigated in this
dissertation, is one such mixed modeling/extrapolation approach. It is

1There exist variants of the classical Box{Jenkins method that enable the user to model
input/output relationships, but this is not the typical application of the methodology.
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a non{parametric modeling method that does not presuppose any model
structure. All that FIR does in terms of modeling is to determine the set
of input variables that best explain the observed input/output behavior for
the training data. During its simulation phase, FIR compares the current
testing data (input patterns) with their nearest neighbors in the data base
of training data, and interpolates between the previously observed outputs
associated with these neighbors.

Investigations into the FIR methodology and its applications are central
to the research performed by the qualitative modeling team at the Universitat
Polit�ecnica de Catalunya, a research e�ort that already led to three Ph.D.
dissertations (Nebot 1994; Mugica 1995; de Albornoz 1996). Whereas �Angela
Nebot (Nebot 1994) dealt with the basic FIR methodology and its application
to the qualitative modeling and simulation of ill{de�ned systems stemming
predominantly from the biomedical domain, Francisco Mugica (Mugica 1995)
treated the systematic design of multivariable fuzzy controllers using FIR,
and �Alvaro de Albornoz (de Albornoz 1996) concentrated on the development
of a sister methodology, called Reconstruction Analysis (RA), and applied
both methodologies to the problem of fault monitoring in large{scale systems,
the present dissertation focuses on time{series prediction.

The rationale behind this research is quite simple: in the past, the results
published by our research team were often criticized as being too heuristic.
Although FIR was shown over and over again to produce spectacular results,
none of the previous e�orts tried to analyze why the results were as they were,
or what are the features that make FIR a successful modeling and simulation
technique. Since all three application areas previously dealt with are quite
esoteric, it was di�cult, if not impossible, to compare the performance of
FIR with that of competing technologies.

In contrast, it is very easy to come up with methods for predicting
time series, and in particular, univariate time series. Yet, making high{
quality predictions of such time series is a di�cult task, exposing weaker
methodologies at once as inferior. Thus for the �rst time, it was attempted
to apply FIR to a class of problems where there exist plenty of competitors,
such that the quality of FIRs performance can be quanti�ed by comparing
it with that of other competing approaches.

It was found that FIR fares well indeed. In all time series tested, FIR
performed at least as good as the best among its competitors, and often, FIR
outperformed all of the competitors that were used in the comparison.

Yet, comparisons alone do not constitute a Ph.D. dissertation, being as
convincing as they may be. The methodological focus of this dissertation
is a thorough analysis of techniques for estimating the error of predictions
made, an aspect of the FIR methodology that had not been looked at before.
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This research focus led to a methodology for estimating the horizon of
predictability of FIR, and a new approach to dynamically choosing between
di�erent FIR models based on their own error estimate.

Chapter 2 describes the state of the art of time{series predictions,
introducing the ideas behind the various approaches that have been proposed
in the past. It classi�es time series as well as methods for predicting their
future.

Chapter 3 introduces the FIR methodology and discusses the results that
had been previously obtained. It then specializes the discussion to the task of
predicting either univariate or multi{variate time series. It introduces a new
error formula to quantify the errors of predictions made, and it introduces a
�rst set of four time series of di�erent types analyzing how FIR deals with
them.

Chapter 4 evaluates the FIR methodology for the purpose of time{
series analysis, characterizes di�erent time series, and presents a quantitative
comparison of FIR with other contending methodologies.

Chapter 5 discusses means for estimating the local error of predictions
made, introducing to this end a class of qualitative con�dence measures that
are based in part on estimates of proximity and in part on estimates of
similarity with the nearest neighbors in the input space, it discusses the
e�ects of dispersion of the outputs observed for the nearest neighbors in
the output space, and it shows the e�ectiveness of these measures in terms
of predicting time series whose outputs are known, so that the predictions
using di�erent models can be compared with the true outputs, and the error
estimates can be correlated with the true errors.

Chapter 6 describes the dynamic model selection in FIR based on local
error estimates. The e�ectiveness of this technique is demonstrated by means
of non{stationary time series, whose behavior changes over time. Di�erent
models were constructed for di�erent regimes in which these time series
operate, and the dynamic model selection algorithm is used to automatically
determine the best model during each time step.

Chapter 7 introduces global error estimates, based on the previously
introduced local error estimates and assumptions about statistical
independence between subsequent local error estimates. Based on these
global error estimates, a technique is presented that allows to estimate the
horizon of predictability, i.e., to determine for how long into the future valid
predictions can be made.

Chapter 8 rounds o� the dissertation by summarizing the contributions
made, and by o�ering suggestions for future research. Two of these future
research directions have already been partially explored by the author of this
dissertation. The �ndings are reported in two appendices that conclude the
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dissertation.
Appendix A shows an application of the methodology introduced

in Chapter 7, applied to the problem of designing smart sensors with
look{ahead capabilities. The idea behind the smart{sensor design is
straightforward: by the time the sensor detects that the sensed signal passes
through a preset threshold and sends out an alarm, it may already be too
late to do anything about the problem, forcing the operator to shut down the
plant. On the other hand, if the sensors are equipped with local intelligence
and can make predictions of the future, such that they can send out an early
warning when their prediction passes through the threshold, the operator
may still have enough time to take corrective action, which would prevent
the true signal from ever reaching the threshold.

Appendix B shows an application of the previously introduced smart{
sensor technology used in closed{loop operation for the design of a new
class of predictive controllers, coined signal{predictive controllers (SPC).
The idea behind this research is quite simple: any control action that is
based on real measurements comes always late. If the signal that is used
to calculate the control action contains a certain degree of lead time, i.e., is
based on a prediction, the control may react more quickly, thereby reducing
the overshoot. This is similar in nature to adding a D{term to a PI controller,
i.e., converting a PI controller to a PID controller, but the results can be
slightly better, because the prediction corresponds to a negative delay, rather
than a numeric estimate of a derivative, and because the predictor can take
non{linearities in the system that generate the signal into account.
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Chapter 2

State of the Art of Time{Series

Modeling and Simulation

2.1 Introduction

The analysis of time series concerns itself with the investigation of single
or multiple observations of measurement data streams taken from a system
under observation. It is a characteristic property of time series that they
never contain complete information about the system being observed, and in
particular, that the excitations that are imposed on the system are not under
the observer's control, and are, in many cases, unknown to him or her.

One of the primary objectives of time{series analysis is to be able
to predict the future behavior of a measurement signal on the basis of
observations of its past behavior.

Time series are assumed to have been generated by dynamic systems. It
is therefore important to know when the measurements were taken, i.e., it
must either be assumed that the measurement signal has been equidistantly
sampled, or alternatively, the time instant when each sample was taken must
be stored together with the time series as a second piece of information.

In time{series analysis, it is common to investigate a single data stream
stemming from a single source observed by a single sensor. However, it is also
common that multiple time series are obtained simultaneously from multiple
measurement sensors attached to the same system. In that case, it can
be assumed that the individual signals are correlated among each other, and
this cross{correlation can be exploited to improve the accuracy of predictions
made about the future behavior of these signals.

Time{series analysis has been applied to many di�erent application areas,
such as the prediction of �nancial markets (economical models), or the
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monitoring of physiological signals stemming from a patient during surgery
(biomedical systems). In engineering, time{series analysis is of interest in
the contexts of instrumentation and �ltering of signals, and the design of
predictive controllers, among others.

There exists a rich literature on methods for analyzing time series.
There even were organized competitions on a worldwide level in order to
advance the state of the art of methodologies for time{series analysis and
prediction (Makridakis and Hibon 1979; Makridakis et al. 1984; Weigend
and Gershenfeld 1994).

In the early days, most of the models proposed were linear regression
models. Their implementation is simple, yet they are quite limited in their
capabilities of interpreting time series. They are not capable of dealing with
non{linear and/or non{stationary behavioral patterns. They always assume
the systems from which the time series has been measured to be linear and to
operate under stationary conditions (Priestley 1981; Ljung 1987; Chat�eld
1989; Box and Jenkins 1994).

In order to extend the power of time{series analysis to systems with non{
linear characteristics, non{linear models were proposed in (Volterra 1959;
Tong 1990). In order to be able to deal with time series that exhibit non{
stationary characteristics, pre�ltering methods were developed that convert
non{stationary time series into equivalent stationary ones (Brockwell and
David 1991,1996; Box and Jenkins 1994).

The last decade has seen two decisive contributions, made possible as
a consequence of the appearance of more powerful computers that allowed
to deal with larger data streams and apply more complex algorithms in
an interactive fashion. Thanks to these new developments, progress was
achieved in statistical modeling techniques (Tong 1990) and in physical
modeling methods (Casdagli 1991). These techniques were applied to
problems in engineering and control (White and Sofge 1992). They were
made possible, because �nally, it had become feasible to construct and
identify arbitrarily non{linear models rapidly and conveniently.

Some of the more important contributions were the construction and
identi�cation of state{space models (Casdagli and Eubank 1992), the
application of arti�cial intelligence to the generation of data{driven rule{
based models (Weigend et al. 1990), and �nally the introduction of learning
techniques for model identi�cation (Weigend and Gershenfeld 1994).

The use of learning techniques constitutes an important trend in modern
time{series analysis methods. It enabled the scientists and engineers to
abstract from the explicit equation{driven models of the past to models that
are more generic (and usually widely over{parameterized), that make less
structural assumptions about the system from which the time series was
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generated, and that are therefore more generally applicable to a wider class
of time series. The most widely used among these so{called connectionist
models are neural networks that come in many di�erent shades: static
(feedforward) networks consisting of static neurons, dynamic (feedback)
networks consisting of static neurons, static networks consisting of dynamic
(di�erential equation) neurons, and �nally, dynamic networks consisting of
dynamic neurons (Kosko 1991,1992).

Another class of connectionist models are those that are based on fuzzy
logic (Klir and Yuan 1995; Jang 1997). They share many of the properties
of neural network models, yet their internal structure is quite di�erent.
Some of these techniques are non{parametric, i.e., they refer to the training
data themselves during the prediction process, rather than incorporating
the knowledge contained in the training data in a set of model parameters.
Some of these techniques use model synthesis methods rather than model
training approaches. The methodology advocated in this dissertation, Fuzzy
Inductive Reasoning (FIR) falls into this category of approaches. FIR models
are qualitative non{parametric methods that are synthesized rather than
trained.

There also exist a number of mixed methods involving either fuzzy
inferencing systems with parameters determining the shape of the fuzzy
membership functions that are trained using neural networks, or neural
networks, the weights of which are identi�ed using fuzzy logic (Takagi and
Sugeno 1991; Stahl 1996; Ghoshray 1996; Zhang and Li 1996; Chen 1996;
Ishikawa and Moriyama 1996; Burr 1998).

Finally, some references distinguish between the prediction of time series
and their simulation (Ljung 1987; MathWorks 1997). Prediction methods are
simple data extrapolation techniques that do not rely on generating a model
�rst, but simply use the available data to make predictions about the future.
These are single{shot approaches. They do not make use of previously made
predictions in further predictions. On the other hand, simulation methods
are based on (either explicit or implicit) models of the time series. They
�rst create a model, then make predictions using that model. They are often
recursive in nature, i.e., they make use of previous predictions in making
more predictions further into the future.

This dissertation deals with qualitative simulation of time series. The
proposed methods are all based on qualitative models synthesized by use of
a training data set.

Sometimes, time series analysis is used for purposes other than
determining future behavior. For example, di�erent signatures of a foreign
submarine in muddywaters constitute multiple correlated time series that are
being analyzed with the purpose of identifying where the submarine currently
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is. This dissertation does not deal with these types of time series analyses.

2.2 Characterization of Time Series

Weigend and Gershenfeld (1994) provided a useful classi�cation of di�erent
time series. In Table 2.1, it is repeated with a few modi�cations and
enhancements.

Table 2.1: Classi�cation of Time Series

natural synthetic
stationary non{stationary

time invariant time varying
low dimensional stochastic

clean noisy
short long

dormant active
documented blind

linear non{linear
scalar vector

single recording multiple recordings
continuous discrete

In academia, time series are quite often synthesized from simulation
experiments. Such time series are very clean, and techniques that are
capable of dealing with such synthetic time series are not necessarily also well
suited to deal with natural (measured) time series. Hence it is important to
record whether a time series is natural or synthetic. This dissertation shall
deal mostly with natural time series, as the methodology embraced in this
dissertation is well suited to �lter out residual noise components (Ljung 1992;
Ivanova et al. 1994; Weigend and Mangeas 1995).

Many, especially statistical, techniques rely on stationary behavior. If a
time series is non{stationary, they have di�culties dealing with it. Also,
many non{parametrical techniques (such as FIR) have di�culties dealing
with growth functions, as they can only predict behavioral patterns that
have been previously observed as part of the training series. Although a
work{around has been found (Moorthy et al. 1998), this dissertation shall
deal with stationary or pseudo{stationary time series only.

Time series can be either time invariant or time varying. A time varying
time series is one that operates in di�erent regimes at di�erent points in
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time (Chang 1996). For example, the signature of a military aircraft 
ying at
high{altitude horizontal 
ight is quite di�erent from that of the same aircraft
during attack. In this dissertation, a methodology will be introduced that
is particularly geared to dealing successfully with time series that are time
varying, i.e., that operate in di�erent regimes during di�erent time periods.

Time series can be low dimensional, exhibiting a limited set of behavioral
patterns, such as periodicity, or high dimensional, leading to chaotic behavior.
It shall be shown in this dissertation that FIR is well suited to deal with both
\deterministic" and \stochastic" time series1.

A noisy time series is frequently produced by problems with the
measurement equipment. For example, the ECG signal of a patient may
be interrupted, because the nurse takes o� the sensor while she cleans the
patient, or may be disturbed, because the patient moves around in his or
her bed. Similarly, industrial processes, such as the water supply system
of a region, may be equipped at times with faulty sensors that cannot be
immediately replaced due to the geographically distributed nature of the
system. Most natural time series are somewhat noisy. Statistical and fuzzy
techniques are particularly well suited to �lter out measurement noise (Klir
and Folger 1988; Lee 1990; Karr and Gentry 1993; Tanaka et al. 1995; Wang
and Langari 1995; Kim and Kim 1997).

Time series can be short or long. A short time series may be caused by
a transitory event, such as a surgery, that is of limited duration. Although
it is possible to increase the sampling rate, thereby making the time series
\longer," this may not help. There exists a natural sampling rate for each
time series that is related to the natural frequencies (eigenfrequencies) of
the system from which the time series is sampled. Oversampling increases
the length of the time series, but not its information contents. Forecasting
techniques that are based on models su�er from data deprivation in the
presence of short or oversampled time series. The simple extrapolation
techniques may work best in this case, at least for single time series.
Multiple correlated time series may still be better predicted using model{
based approaches.

A time series can be active or dormant. These terms relate to the type
of excitation placed on the inputs of the system from which the time series
is drawn. Active time series are more easily identi�able, since they show all
patterns that the system is capable of exhibiting. Yet, dormant time series

1The term \stochastic time series" is somewhat a misnomer as deterministic systems
(which most real systems are) with deterministic inputs (a meaningful assumption) can
never produce stochastic outputs. Thus, \high{dimensional systems" or \chaotic patterns"
are better terms in a puristic sense. However, the term \stochastic system" is commonly
used, and therefore, it shall not be strictly avoided in the context of this dissertation either.
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are often desirable and unavoidable. For example, a surgeon is very happy if
his or her patient exhibits \dormant" behavior throughout the surgery. It is
certainly unacceptable to \exert" a patient unnecessarily for the purpose of
obtaining a time series that is more easily identi�able. No special e�orts were
made in this dissertation to avoid dealing with time series that are poorly
excited, yet most of the time series used in this dissertation are naturally
well excited.

A time series may be documented or blind. These terms relate to the
amount of knowledge available about the systems from which the time series
was drawn. Clearly, such knowledge can be exploited, when available, and
especially deductive approaches (which are of no immediate concern to this
dissertation) make use of such knowledge to infer a model structure that
matches that of the underlying system. Since FIR is a strictly inductive
method, the distinction is of little concern to this dissertation.

The system from which the time series is drawn may be either linear
or non{linear. Linearity is being exploited mostly by some of the classical
techniques, and is therefore of little concern to this dissertation.

Time series can either be of the scalar or of the vector type. These terms
relate to the number of correlated time series observed from the system under
investigation. A scalar time series is one that consists of a single trajectory,
whereas a vector time series consists of multiple correlated trajectories. FIR
can easily deal with both situations, although this dissertation concerns itself
mostly with scalar time series, as they are more di�cult to predict.

Time series may consist of a single recording, or of multiple recordings.
Multiple recordings lead to multiple uncorrelated trajectories representing
di�erent patterns of the same phenomenon. FIR is well suited to deal with
both single and multiple recordings, and examples of both types shall be
discussed in this dissertation.

Finally, the system from which the time series is drawn can be either
continuous or discrete. Since the time series itself is always sampled, the
distinction is of not much concern to the discussion at hand.

2.3 Classi�cation of Time Series Analysis

Techniques

A �rst coarse classi�cation can be made by distinguishing between prediction
and simulation approaches, i.e., techniques that operate on the time series
directly vs. techniques that �rst create a model and then operate on that
model. Yet, this classi�cation is not truly crisp. Even simple extrapolation
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techniques usually identify parameters of a polynomial or regression function.
Whether this polynomial or regression function is called a \model" is simply
a question of taste.

A second (still very coarse) classi�cation can be made by distinguishing
between deductive and inductive modeling techniques. Again, also this
classi�cation is not strictly crisp. In fact, there are no strictly deductive
approaches to time{series analysis. Even in the case of an extremely well
documented time series, such as the Lorenz attractor series described in
(Gershenfeld and Weigend 1994), a \deductive" modeling approach would
make use of the knowledge provided about the system to conclude that the
output signal is governed by the Lorenz equations, a set of three very simply
and well understood bi-linear di�erential equations that are furthermore
autonomous, i.e., excitation free. The modeler would thus only need to
identify the three (linear) parameters of the Lorenz model, such that they
match optimally well the observed output patterns. The technique is almost
purely deductive, except for the identi�cation of the parameters, which can
be considered an inductive process. The less structural assumptions are being
made about the system from which the time series is drawn, the more the
approach must be considered inductive. FIR is an essentially purely inductive
modeling approach.

Among the various available primarily inductive modeling approaches,
the following four: Fuzzy Inductive Reasoning (FIR), (L�opez et al. 1996),
Arti�cial Neural Networks (ANN) (Kosko 1991; Kosko 1992; Wan 1994),
Box{Jenkins (BJ), (Box and Jenkins 1994), and NARMA (NRM), (Connor
et al. 1992) shall be used in the subsequent chapters of this dissertation,
although only FIR shall be discussed in any great detail. For this reason, it
makes sense to analyze how the four approaches can deal with the di�erent
types of time series presented in the previous section. Table 2.2 presents an
overview of these classi�cation.
ANNs and NARMA (NRM) models can better deal with non{stationary
behavior, because they do not exploit stationarity explicitly, except that
training the weights of the neurons may become more problematic in the case
of a non{stationary time series. FIR can deal with non{stationary behavior,
such as growth functions, but the data need to be pre�ltered (Moorthy et al.
1998). Box{Jenkins (ARIMA, BJ) models are statistical models that are
based on an assumption of strict stationarity.

A technique shall be introduced in Chapter 6 of this dissertation that
allows FIR to deal elegantly and conveniently with systems that operate
in di�erent regimes. All other techniques have di�culties dealing with
time varying systems, although applications of neural networks that switch
between di�erent modes have been described in the literature (Weigend and



14 State of the Art of Time{Series Modeling and Simulation

Nix 1994; Weigend et al. 1995; Guo et al. 1997; Kim and Kim 1997;
Papadakis et al. 1998).

The Box{Jenkins models have di�culties when dealing with periodic
behavior. Special techniques must be applied when dealing with periodic
behavioral characteristics. The reasons for this statement will become clear
in Chapter 4 of this dissertation, where the Box{Jenkins approach to time{
series analysis is explained in more detail. None of the other techniques have
di�culties of this kind.

High dimensionality leads to behavior that can be interpreted as
stochastic. ANN and NARMA models have more di�culties when dealing
with stochastic behavior. They do �lter out noise, but FIR and the Box{
Jenkins models actually exploit the statistical properties of the noise signals,
whereas ANN and NARMA only try to get rid of the noise.

FIR has more di�culties than any of the other techniques when faced with
data deprivation. This is due to the inherent complexity of the approach.
The simpler a method is, the less data it needs to produce results (although
the results generated may often not be reasonable as a consequence of the
data deprivation problem).

Neither FIR nor ANN techniques explicitly exploit the structural
knowledge available. They are purely inductive, whereas the other two
approaches are partly deductive. Box{Jenkins makes an assumption of strict
linearity, and NARMA has a prede�ned (rather simple) structure that allows
it to also exploit structural knowledge to some extent. The very same
characteristic makes it impossible for Box{Jenkins methods to deal with non{
linear systems in any decent way (except by ignoring the non{linearity), and
makes it harder for NARMA to deal with arbitrarily non{linear systems.

Both the Box{Jenkins approaches and the NARMA methods have more
di�culties when dealing with multi{variable systems, because it increases
the complexity of their models. ANN methods do not have this limitation,
and FIR models even work better when applied to multi{variable systems.

One of the most important advantages of FIR is its ability to generate
decent models of time series in a fairly automated manner. The parameters
that need to be chosen are either quite intuitive (such as the mask
depth (cf. Chapter 3)) or fairly insensitive (such as the number of classes
(cf. Chapter 3)), and their selection could therefore be fully automated. In
contrast, Box{Jenkins and NARMAmodels require a lot of user intervention,
and the decisions to be taken are often non{trivial, i.e., require much
knowledge about the speci�c characteristics of the time series to be predicted
and/or the modeling methodology in use. ANN models are less sensitive to
user intervention, but require parameters to be user selected that are non{
intuitive and sensitive, such as the number of network layers and the number
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of neurons per layer, which then often leads to quite a bit of trial and error,
before the ANN o�ers its best performance.

2.4 Conclusions

This chapter provided an introduction to the nature and importance of time
series analysis. It also o�ered an overview over and a classi�cation of the
di�erent types of time series to be found. It �nally suggested a classi�cation
of some of the more commonly used inductive modeling approaches for time
series.

There are other aspects of these techniques that were not mentioned in
this brief introduction. For example, FIR has a technique built into the
methodology that enables it to generate not only an estimate of future
values of the time series, but with it an estimate of the error associated
with the aforementioned estimate. This is easily the single most important
characteristic of FIR, a facet of the methodology that will be extensively
discussed and exploited in subsequent chapters of this dissertation.
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Table 2.2: Classi�cation of Inductive Time Series Analysis Methods

Type of Time Series Type of Modeling Method
FIR ANN BJ NRM

Behavior stationary ** ** ** **
non-stationary * ** - **

Regimes single ** ** ** **
multiple * * - -

Dimensionality low dimensional ** ** * **
high dimensional ** * ** *

Source clean ** ** ** **
noisy ** * ** *

Length short * ** ** **
long ** ** ** **

Excitation dormant * * * *
active ** ** ** **

Knowledge exploits structure - - ** **
blind ** ** - *

Linearity exploits linearity - - ** **
non-linear ** ** - *

Sensors single ** ** ** **
multiple ** ** * *

Observations single ** ** ** **
multiple ** ** ** **

System type continuous ** ** ** **
discrete ** ** ** **

Modeling designer intervention - * ** **
automatic ** * - -

Legend well suited **
suited *
unsuited -



Chapter 3

Fuzzy Inductive Reasoning for

Time Series Prediction

3.1 Introduction

In this chapter, the application of Fuzzy Inductive Reasoning (FIR) to time{
series analysis and forecasting is presented. The methodology combines facets
of Inductive Reasoning and Fuzzy Logic.

The FIR methodology operates strictly on measured data streams, and
reasons about the spatial and temporal relationships among these data
without pre{proposing any equation structure. In this thesis, FIR is being
used to predict the future behavior of either univariate or multivariate time
series, i.e., it learns and analyzes observed patterns of measurement signals,
and predicts their future behavior on the basis of their own past, without
ever identifying the systems from which these signals were generated.

The Inductive Reasoning technique was originally suggested by G. Klir
of the State University of New York at Binghamton (Uyttenhove 1978; Klir
1985). It was reimplemented in CTRL{C by F. Cellier at the University
of Arizona (Cellier and Yandell 1987; Cellier 1987). Fuzzy measures were
added to the originally crisp inductivemodeling methodology by D. Li (Li and
Cellier 1990). Several additional features were added to the FIR methodology
in due course, such as the treatment of missing values (Nebot 1994) and
measures for estimating the prediction error (Cellier et al. 1998). FIR has
meanwhile been ported from CTRL{C to Matlab (Cellier et al. 1996). This
is the form in which the software is currently being used.

Many interesting and promising results in dynamic system identi�cation
using FIR were reported in recent years. Among others, research related
to this methodology already led to three Ph.D. dissertations describing
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methodological contributions to and applications of the FIR methodology
related to dynamical system identi�cation. Nebot (1994) discusses the use of
FIR for identifying ill{de�ned systems, primarily in the context of biomedical
applications; Mugica (1995) describes the use of FIR for the systematic design
of fuzzy controllers; and de Albornoz (1996) analyzes the use of FIR for
detecting and characterizing faults in large{scale systems.

Time{series analysis is di�erent from the mathematical modeling and
simulation of dynamical systems in several respects. Although a time
series can be interpreted as an output of a system, it is, by de�nition, an
output of an unknown system. Neither the system characteristics nor the
input functions driving the system are known, and consequently, time{series
analysis must content itself with estimating future output values by means
of extrapolation from their own past. Although the prediction of (at least
univariate) time series is conceptually simpler than the identi�cation and
simulation of dynamical systems, with the result that many methodologies
have been proposed that can be used to predict univariate time series, but
that cannot be used to identify multi{variate time series and/or dynamical
systems, the prediction of univariate time series poses serious practical
problems because of the lack of information available, and it can be quite a
bit more di�cult to obtain good results for time{series prediction than for
dynamical system identi�cation and simulation.

The scienti�c community has been interested in the analysis of time series
for a long time. Time series are important when studying the behavior of a
system that is not completely understood, such as the time-varying intensity
of a star, or the stock market. Clearly, one should not expect similarly
accurate results when forecasting a time series as when simulating a known
system with known inputs. It is also important to recognize that the time
horizon of a meaningful prediction will, in this case, usually be limited, and
in fact, may be rather short. Furthermore, a successful prediction of a time
series depends on the characteristics of the time series. It is to be expected
that a stationary or quasi{stationary process can be predicted better and
over a longer time horizon than a non{stationary process. Also, time series
that exhibit a more regular, more deterministic (e.g., cyclic) behavior should
be more easily predictable than time series that exhibit a more stochastic
behavior.
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Figure 3.1: Fuzzi�cation process

3.2 The Fuzzy Inductive Reasoning Method-

ology

Fuzzy inductive reasoning FIR is a modeling and simulation methodology
that generates a qualitative input/output model of a system by �nding the
best possible fuzzy �nite state machine between discretized (fuzzi�ed) input
and output states of the system. The methodology is composed of four main
functions that will be described in the remainder of this section.

3.2.1 Fuzzi�cation

The process of converting quantitative (real{valued) variables into qualitative
triples is normally referred to as recoding in the FIR methodology. The �rst
component of the triple is the class value, the second is the fuzzy membership
function value, and the third is the side value (Cellier 1991). The process of
fuzzy recoding (or fuzzi�cation) is illustrated in Figure 3.1.

This example fuzzi�es ambient temperature using �ve classes. A
quantitative value of 23o C is recoded into the class value \normal" with
a fuzzy membership value of 0:8 and a side value of \right." The side
value refers to the fact that the quantitative value is situated to the right
or left of the peak of the Gaussian membership function associated with
the selected class. Clearly, no information is being lost in the process.
The original quantitative value can be regenerated (defuzzi�ed) easily and
unambiguously from the qualitative triple. In the current implementation of
FIR, a Matlab (MathWorks 1997) toolbox, classes are denoted by positive
integers rather than linguistic variables, and the side value is an integer in
the range f�1; 0;+1g, where �1 stands for left, +1 represents right, and 0
denotes center.
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The name \recoding" had been chosen before fuzzy measures were added
to the FIR methodology, i.e., when this was purely a process of discretizing
real{valued (continuous) variables into class{valued (discretized) variables.
Today, the name \fuzzi�cation" would seem more adequate. Yet, the
former name is still appropriate, because FIR, contrary to most other fuzzy
techniques, does not make use of the information stored in the tails of
the fuzzy membership functions. Each quantitative value corresponds to
exactly one qualitative triple, rather than several qualitative pairs of class
and membership values. The added side value, which is peculiar to the FIR
methodology, makes this possible. Hence fuzzi�cation (or recoding), in the
context of FIR, entails nothing but a non{linear mapping of one space into
another equivalent space.

The process of recoding is applied to each observed variable (trajectory)
separately. The recoded qualitative episodical behavior is stored in three
matrices, one containing the class values, the second storing the membership
function values, and the third keeping the side values. Each column of these
matrices represents one of the observed variables, and each row represents
one recorded state. The trajectory behavior can thus be separated into a set
of trajectories, yi, as shown in the following example:

0
BBBBBBBB@

time y1 y2

0:0 : : : : : :
�t : : : : : :
2�t : : : : : :
3�t : : : : : :
...

...
...

(nrec � 1) � �t : : : : : :

1
CCCCCCCCA

(3.1)

In the above example, it was assumed that two separate signals are
measured simultaneously from the same system, resulting in two (most
likely correlated) trajectories that can be interpreted as a multivariate time
series. The sampling rate, �t, needs to be chosen in accordance with the
eigenfrequencies of the signals to be observed (Shannon sampling theorem).

For many practical applications, it has been found that the optimal
number of classes is between three and �ve (Cellier 1991). More classes
provide a �ner resolution, but also call for more training data in order to
provide relevant history information.

The fuzzy membership value will be calculated, in accordance with the
most relevant among the Gaussian membership functions (Figure 3.1), as
follows:
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Membi = exp(�ki � (x� �i)
2) (3.2)

where x it is the variable to be fuzzi�ed, i is the index of the most relevant
Gaussian, i.e., the index representing the selected class, �i is the numerical
value corresponding to the center of the chosen class, which is also the
algebraic mean of the two landmarks that separate the chosen class from
its left and right neighbors, and �ki shapes the fuzzy membership function
of the chosen class such that it decays to a value of 0:5 at the two landmarks
that mark the left and right limits of the interval associated with the chosen
class.

From statistical considerations, it is known that in any class analysis, one
would like to record each possible discrete state at least �ve times (Law and
Kelton 1990). Thus, a relation exists between the possible number of legal
states and the number of data points that are required to base the modeling
e�ort upon:

nrec � 5 � nleg = 5 �
Y
8i

ki (3.3)

where nrec denotes the total number of recordings, i.e., the total number
of observed states, nleg denotes the total number of di�erent legal (discrete)
states, i is an index that loops over all variables belonging to the observation,
and ki denotes the number of classes associated with the ith variable.
The number of variables is usually given, and the number of recordings is
frequently predetermined. In such a case, the optimum number of levels can
be determined from the following equation:

nlev = round( nvar

r
nrec
5

) (3.4)

For reasons of symmetry, an odd number of levels is often preferred
over an even number of levels. The number of levels of the variables
determines the expressiveness and predictiveness of the qualitative model.
The expressiveness of a qualitative model is a measure of the information
content that the model provides. The predictiveness of a qualitative model is
a measure of its forecasting power, i.e., it determines the length of time over
which the model can be used to forecast the future behavior of the underlying
system (Li and Cellier 1990).

3.2.2 Qualitative Modeling

Once the quantitative trajectory behavior has been recoded into a qualitative
episodical behavior, the process of modeling consists of �nding �nite
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automata relations between the recoded variables that make the resulting
state transition matrices as deterministic as possible. Such a relation is
called a mask. An example of a mask related to the previously introduced
multivariate time series might be:

0
BBBBBBBB@

tnx y1 y2
t� 5�t �1 0
t� 4�t 0 �2
t� 3�t 0 0
t� 2�t �3 0
t� �t �4 �5
t 0 +1

1
CCCCCCCCA

(3.5)

The negative elements in this matrix denote inputs of the qualitative
functional relationship, so-called m{inputs. The above example has �ve m{
inputs. The positive value represents the m{output. A mask denotes a
dynamic relationship between qualitative variables. A mask has the same
number of columns as the episodical behavior to which it is applied, and it
has a certain number of rows. The number of rows of the mask matrix is
called the depth of the mask. The above mask would denote the structural
relationship:

y2(t) = f (y1(t� 5�t); y2(t� 4�t); y1(t� 2�t); y1(t� �t); y2(t� �t)) (3.6)

Amask candidate matrix is an ensemble of all possible masks, from which the
best one is chosen by a mechanism of exhaustive search. The mask candidate
matrix contains �1 elements where the mask has a potential m{input, it
contains a +1 element where the mask has its m{output, and it contains 0
elements to denote forbidden connections. Thus, a mask candidate matrix
for the previous two{variable example might be:

0
BBBBBBBB@

tnx y1 y2
t� 5�t �1 �1
t� 4�t �1 �1
t� 3�t 0 0
t� 2�t �1 �1
t� �t �1 �1
t 0 +1

1
CCCCCCCCA

(3.7)

Each of the possible masks is compared to the others with respect to its
potential merit. The optimality of the mask is evaluated with respect to the
maximization of its forecasting power. The Shannon entropy measure is used
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to determine the uncertainly associated with the forecasting of the output
state, given a feasible input state.

The Shannon entropy relative to one input is calculated from the equation

Hi =
X
8o

p(oji) � log2 p(oji); (3.8)

where p(o=i) is the likelihood of a certain output state o to occur, given that
the input state i has already occurred. The likelihood is to be understood, in
the usual sense of fuzzy logic, as the con�dence expressed in the occurrence of
the outcome o relative to the occurrence of any other outcome. It is computed
from the fuzzy membership information associated with the observations
contained in the experience data base.

The overall entropy of the mask is then calculated as the sum

Hm = �
X
8i

pi �Hi; (3.9)

where pi is the likelihood of that input to occur. The highest possible
entropy Hmax is obtained when all likelihoods are equal, and a zero entropy
is encountered for relationships that are totally deterministic.

A normalized overall entropy reduction Hr is then de�ned as:

Hr = 1:0�
Hm

Hmax
(3.10)

Hr is obviously a real number in the range between 0.0 and 1.0, where
higher values usually indicate an improved forecasting power. A performance
indicator that has this property is called a quality measure (Cellier
1991). Quality measures are useful in multi{criteria optimizations, since a
meaningful overall performance index for such an optimization can be de�ned
as the product of the quality measures representing the (often competing)
individual criteria.

The optimal mask among a set of mask candidates could be de�ned as
the one with the highest entropy reduction. However, a problem remains.
If the complexity of the mask is increased, the state transition matrix
becomes more and more deterministic. With growing mask complexity, more
and more possible input states (combinations of levels of the various input
variables) exist. Since the total number of observations nrec remains constant,
the observation frequencies of the observed states will become smaller and
smaller. Very soon, a situation will be found where every state that has ever
been observed has been observed precisely once. This leads obviously to a
completely deterministic state transition matrix. Yet the predictiveness of
the model may still be very poor, since already the next predicted state has
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probably never before been observed, and that means the end of the forecast.
Therefore, this consideration must be included in the quality measure.

It was mentioned earlier that, from a statistical point of view, one would
like to make sure that every state is observed at least �ve times. This demand
leads to the de�nition of an observation ratio (Li and Cellier 1990):

OR =
5 � n5� + 4 � n4� + 3 � n3� + 2 � n2� + n1�

5 � nleg
(3.11)

where:
nleg = number of legal input states;
n1� = number of input states observed only once;
n2� = number of input states observed twice;
n3� = number of input states observed thrice;
n4� = number of input states observed four times;
n5� = number of input states observed �ve times or more.

If every legal input state has been observed at least �ve times, OR is equal
to 1.0. If no input state has been observed at all (no data), OR is equal to
0.0. Thus, OR also quali�es as a quality measure.

Themask quality is consequently de�ned as the product of the uncertainty
reduction measure and the observation ratio:

Q = Hr �OR (3.12)

The optimal mask is the mask with the largest Q value.

3.2.3 Qualitative Simulation

Once the optimal mask has been determined, it can be applied to the given
fuzzi�ed time series resulting in an input/output history consisting of three
matrices, one each for the class values, membership values, and side values
of the input/output observations. This process is depicted in Figure 3.2.

On the left side, an excerpt of the recoded class{value matrix is shown
with Mask (3.5) laid over the �rst �ve rows. The square boxes denote the
positions of the m{inputs, whereas the angular brackets denote the position
of the m{output. The m{inputs and m{output are read out from the class{
value matrix from left to right and top to bottom. They are written next to
each other into a row of the input/output matrix that is shown on the right
side of Figure 3.2. The variables ij here denote the �ve m{inputs, whereas
the variable o1 denotes the single m{output. The mask is then shifted down
by one row, and the procedure is repeated, leading to the second row of the
input/output matrix, etc. In this way, the dynamic relationship between the
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+

0
BBBBBBBBBBBBB@

y1 y2
0 1 2

�t 2 3
2�t 1 2
3�t 2 2

4�t 3 3
5�t 2 < 1 >
6�t 3 1
7�t 1 3

1
CCCCCCCCCCCCCA

=)

0
B@
i1 i2 i3 i4 i5 o1

5�t 1 3 2 3 3 < 1 >
6�t 2 2 3 2 1 1
7�t 1 2 2 3 1 3

1
CA

Figure 3.2: Flattening dynamic relationships through masking

values contained in the original recoded class{value matrix can be 
attened
out.

Since the input/output matrix contains functional relationships within
single rows, the rows of the class{value matrix belonging to the input/output
history can now be sorted in alphanumerical order, while treating the other
two matrices as tags. The result of this operation is called the input/output
behavior of the system. The input/output behavior also consists of three
matrices, together de�ning a fuzzy �nite state machine. For each combination
of input values, it shows, which outputs are likely to be observed.

The input/output behavior can now be used in predictions. Given a
new input state (a combination of values of all m{inputs), the input/output
behavior (sometimes also referred to as the experience data base) can be
searched for similar m{input patterns having been observed in the past.
To this end, a position vector is associated with each input state in the
input/output behavior. Each qualitative triple is thereby associated with a
quantitative value that can be viewed as a normalized defuzzi�cation of that
triple.

In the normalization, each Gaussian is mapped separately to the
range [�0:5;+0:5], thus �i = 0:0. ki can be determined by evaluating
Equation (3.2) at one of the borders, e.g. by setting x = 0:5 and Membi =
0:5:

0:5 = exp
�
�ki � (0:5

2)
�

(3.13)

i.e.,

ki = �4:0 � ln(0:5) (3.14)
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Figure 3.3: Position value of the normalized defuzzi�cation.

thus:

Membi = exp
�
4:0 � ln(0:5) � (x2)

�
(3.15)

or:

x = sidei �

vuut ln(Membi)

4:0 � ln(0:5)
(3.16)

Using this normalized defuzzi�cation, the position value, posi associated with
a given qualitative triple, fclassi;Membi; sideig, can be de�ned as:

posi = classi + sidei �B �
q
� ln(Membi) (3.17)

where:

B =

s
�1:0

4:0 � ln(0:5)
(3.18)

The process of determining the position value is depicted in Figure 3.3.
It can be seen that the relationship between the original quantitative

value, x, and the normalized position value, posi, is a (usually non{linear)
transformation that maps the de�nition range of x into the range [1:0; ncl],
where ncl is the number of classes associated with the fuzzi�cation of x.

The position vector associated with an input state is the vector of the
position values of the individual variables associated with the input state:

posin = [pos1; pos2; : : : ; posn] (3.19)
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assuming that the input state contains n variables, i.e., that the optimal mask
that was used to produce the input/output behavior contains n m{inputs,
i.e., is of complexity (n+ 1).

A position vector is associated with the current input state for which an
output is to be predicted, and also with every input state in the input/output
behavior.

Let posin denote the position vector of the current input state, and
posjin the position vector of the jth entry in the input/output behavior.
The distance between the current input state and any input state in the
experience data base can be de�ned as:

disjin = kposin � posjink (3.20)

It is now easy to determine the closest neighbor in the experience data base.
The class and side values of the current output are simply predicted to be
the same as those of the nearest neighbor.

Prediction of the membership value of the current output proceeds
di�erently. To this end, the �ve nearest neighbors are determined. The
membership value of the current output is predicted as a weighted sum of
the membership values of the outputs of the �ve nearest neighbors in the
experience data base.

In order to prevent a possible division by zero in the proposed algorithm,
it is necessary to avoid distance values of 0:0:

dj = max(disjin; �) (3.21)

where � is the smallest number that can be distinguished from 1:0 in addition.

sd =
5X

j=1

dj (3.22)

is the sum of the distances of the �ve nearest neighbors, and:

djrel =
dj

sd
(3.23)

are the relative distances.
Absolute weights are computed as:

wj
abs =

1:0

djrel
(3.24)

and:
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sw =
5X

j=1

wj
abs (3.25)

is the sum of the absolute weights. Hence relative weights can be computed
as:

wj
rel =

wj
abs

sw
(3.26)

and the membership value of the current output is:

Membout =
5X

j=1

wj
rel �Membjout (3.27)

3.2.4 Defuzzi�cation

This is the inverse function of the recoding process. In fuzzy inductive
reasoning, it is called regeneration. If the shape of the membership functions
used in the recoding process is known, the regeneration of the quantitative
(real{valued) data can be obtained in an unambiguous fashion, i.e., without
loss of information. In this sense, the regeneration function is indeed the
inverse of the recoding function. However, it is not being used to reconstruct
the original data. Instead, it is being used to construct quantitative (real{
valued) estimates of the forecasts made from the predicted qualitative triples.

In the following sections, speci�c aspects of the FIR methodology are
introduced as they relate to the forecasting of time series in particular.

3.3 Characterizing Time Series

It had been pointed out already in Chapter 2 that, in time{series analysis,
one or several outputs of a system can be observed, but the system cannot be
excited through its inputs that generally are not even known. The objective
of the time{series analysis usually is to predict the future behavior of a
measured signal through observations of its behavior in the past. There
exists a wide range of literature relating to di�erent methodologies used for
forecasting the behavior of time series (Weigend et al. 1990).

The oldest references discuss the use of the immediate previous values of
a time series to predict their future behavior (Yule 1927). Soon, this idea was
generalized to using a subset of the past history of a time series to predict
its future behavior.
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The knowledge available about a univariate time series can be represented
by n values fx1; x2; � � � ; xng observed in the past. In the process of
observation, samples should either be drawn equidistantly (i.e., using a
constant sampling rate), or alternatively, the time instants when the samples
were taken need to be added as a tag (the series needs to be time{stamped).
The prediction consists of looking for the future values fxn+1; xn+2; � � �g
(Takens 1981).

If the time series is deterministic and time{invariant, there exists a scalar
value d and a scalar function f , such that for each t > d:

xt = f(xt�1; xt�2; � � � ; xt�d) (3.28)

The quantity d is often referred to as the embedding dimension of the time
series. It corresponds to the number of degrees of freedom of the system
from which the time series was generated. The function f , usually a highly
non{linear relationship, characterizes the system that was used to produce
the time series. Hence Equation (3.28) can be called a model of the system,
simpler though less accurately, a generating \model" of the time series itself.

Given a set of n observations, the modeling task now is to �nd d and f .
In the research presented in this dissertation, autocorrelation analysis was
used to determine d, and FIR was used to determine f .

The literature on time{series analysis distinguishes between two di�erent
situations: the direct prediction and the interactive prediction. The
direct prediction only uses real observations for the forecast, whereas the
interactive prediction also uses previously made forecasts as if they were
real observations. Sometimes, the former type is simply referred to as
\prediction," whereas the latter kind is called \simulation."

3.4 Procedure for Multi{Step Prediction

Analysis

Once the embedding dimension d and the functional relationship f have been
identi�ed (i.e., the model has been found), the following procedure is carried
out as an attempt to standardize the multi{step prediction analysis.

Matrix (3.29) shows how the computations are performed. It shows an
excerpt of the time series. The �rst column, with variables written in italic
type, denotes the true measurement data. At each sampling point, a multi{
step prediction is being performed, the results of which are written in roman
type to the right of the last measurement data point used in the prediction.
The �rst argument denotes the time instant for which the prediction is
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computed, whereas the second argument denotes the number of prediction
steps used to reach the prediction. Across one of the anti{diagonals, values
are marked in bold type for illustration. They all refer to the same time
point, yet values further to the right and top are less accurate, because they
have been obtained using a longer prediction path (second argument).

Y =

0
BBBBBBBBBBBBB@

: : : : : : : : : : : : : : : : : :

y(t� 4�t) y(t� 3�t;1) y(t� 2�t;2) y(t� �t;3) y(t;4) : : :

y(t� 3�t) y(t� 2�t;1) y(t� �t;2) y(t;3) y(t + �t; 4) : : :

y(t� 2�t) y(t� �t;1) y(t;2) y(t+ �t;3) y(t + 2�t;4) : : :

y(t� �t) y(t;1) y(t + �t;2) y(t + 2�t;3) y(t + 3�t;4) : : :

y(t) y(t + �t;1) y(t + 2�t;2) y(t + 3�t;3) y(t+ 4�t;4) : : :

y(t+ �t) y(t + 2�t;1) y(t + 3�t;2) y(t+ 4�t; 3) y(t + 5�t;4) : : :

y(t+ 2�t) y(t + 3�t;1) y(t+ 4�t;2) y(t + 5�t;3) y(t + 6�t;4) : : :

y(t+ 3�t) y(t+ 4�t;1) y(t + 5�t;2) y(t + 6�t;3) y(t + 7�t;4) : : :

y(t+ 4�t) y(t + 5�t;1) y(t + 6�t;2) y(t + 7�t;3) y(t + 8�t;4) : : :

y(t+ 5�t) y(t + 6�t;1) y(t + 7�t;2) y(t + 8�t;3) y(t + 9�t;4) : : :

: : : : : : : : : : : : : : : : : :

1
CCCCCCCCCCCCCA

(3.29)

The above matrix can now be used in di�erent ways. Horizontal rows indicate
individual multi{step predictions starting from the time shown in the �rst
column that represents the last measurement data point. Each new data
point contains more sources of error than the previous one, because it is built
on a longer prediction history. Vertical columns show long{term prediction
cycles, whereby the measurement data lack behind the prediction by a �xed
number of steps. Columns further to the left should, on average, be more
accurate than columns further to the right, because the prediction history
leading to them is shorter. The �rst column is 100% accurate, since it
represents the measurement data. Finally, values in anti{diagonals represent
the same time instant estimated using longer and longer prediction histories.

As a standard experiment, multi{step predictions are being performed
over 15 steps throughout most of the time series predicted in this dissertation.
Errors between the true forecast and the predictions are computed along the
anti{diagonals, and are averaged across columns.

3.5 The Prediction Error

There does not exist a single error formula that everyone would agree upon
as being the best for evaluating success (or rather failure) of a prediction.

The absolute error of an i{step prediction, erri, can be de�ned as:

erri = y � ŷi (3.30)

where ŷi denotes the prediction of the observation y with the last observed
value lagging i steps behind. Yet, such a measure would have the
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disadvantage that the absolute values of the errors could not be compared
across di�erent time series.

Alternatively, one could use a variety of di�erent formulae measuring the
relative error, such as:

erri =
abs(y � ŷi)

mean(y)
(3.31)

which fails, if accidentally mean(y) = 0:0. Other formulae that are sometimes
used include:

erri =
abs(y � ŷi)

max(abs(y); abs(ŷi); �)
(3.32)

where � is the smallest number that can be distinguished from 1:0 in addition
(a prede�ned Matlab variable). This formula will never fail, but the addition
of the fudge factor � is not truly satisfactory in all situations, and it is not
clear that this formula re
ects well the intuitive understanding of \goodness
of �t" that a human researcher would have when visually comparing a set of
values y(t) with their predictions ŷi(t).

In this dissertation, another formula is being proposed that consists of
four di�erent components. The �rst component measures the accuracy with
which the forecast predicts the mean value of the time series:

errmeani =
abs(mean(y(t))�mean(ŷi(t)))

max(abs(mean(y(t))); abs(mean(ŷi(t))); �)
(3.33)

It is a relative error with a fudge factor. Yet, the fudge factor will never
come to play, because it will only be applied when:

mean(y(t)) = mean(ŷi(t)) = 0:0 (3.34)

in which case the numerator is exactly equal to zero.
The second component measures the accuracy, with which the standard

deviation of the time series is being predicted:

errstdi =
abs(std(y(t))� std(ŷi(t)))

max(abs(std(y(t))); abs(std(ŷi(t))); �)
(3.35)

The same applies as above w.r.t. the fudge factor.
For the third and fourth component, the time series and its prediction

are jointly normalized to the range [0:0; 1:0]. Let:

ymax = max(y(t); ŷi(t)) (3.36)
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where the max{operator is applied to the concatenated series consisting of
y(t) and ŷi(t), and similarly:

ymin = min(y(t); ŷi(t)) (3.37)

Normalized time series can be computed as:

ynorm(t) =
y(t)� ymin

max(ymax � ymin; �)
(3.38)

and similarly:

ynormi
(t) =

ŷi(t)� ymin

max(ymax� ymin; �)
(3.39)

Since the two curves have been normalized, it is now possible to use the
absolute errors. The pointwise absolute error between the two curves y(t)
and ŷi(t) can be computed as:

errabsi(t) = abs(ynorm(t)� ynormi
(t)) (3.40)

It is also possible to de�ne the pointwise similarity between the two curves
as:

simi(t) =
min(ynorm(t); ynormi

(t))

max(ynorm(t); ynormi
(t); �)

(3.41)

where, this time around, the min{ and max{operators are being applied
elementwise rather than to the concatenated time series.

Using the pointwise similarity, a pointwise similarity error can be de�ned
as:

errsimi
(t) = 1:0 � simi(t) (3.42)

The averaged absolute and similarity error is then de�ned as:

erravgi = mean(errabsi(t) + errsimi
(t)) (3.43)

Finally, the total error, in percentage, is the sum of the four components
multiplied by 25:0:

errtoti = 25:0 � (errmeani + errstdi + erravgi) (3.44)

The factor 25:0 is justi�ed, because there are four separate components that
all measure di�erent aspects of one and the same thing. Each one of them
is usually in the range [0:0; 1:0] (although some errors could be larger than
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1:0 at times), thus, the accumulated total error should be somewhere in the
range [0%,100%] most of the time.

The proposed formula is a compromise that was developed over a long
period of time, and that saw many revisions over the years. It results in a
quanti�cation of success (or rather failure) of predictions that is, as shall be
seen, quite consistent with the intuitive understanding of success (failure)
that a human observer would have when comparing y(t) and ŷi(t) by the
naked eye.

3.6 Two Examples

In order to explain how the FIR methodology is being applied to time{series
analysis, this section introduces two time series that have quite di�erent
characteristics, one representing a single mode far infrared NH3 laser beam,
the other representing the number of cases of the meningitis disease in
Barcelona and its suburban regions. In order to distinguish easily between the
di�erent series that shall be introduced in this dissertation, each is identi�ed
by a single uppercase character. The laser series shall henceforth be called
Series L, and the meningitis series shall be called Series M.

3.6.1 Forecasting Time Series L

Figure 3.4 shows the chaotic intensity pulsations of a single{mode far infrared
NH3 laser beam. This time series was �rst presented in (Weigend and
Gershenfeld 1994). 9800 data points are available. The �rst 1000 points were
used for training, i.e., to construct the experience data base. The sequence
starting from sample 8601 and ending with sample 9800 was used for testing,
i.e., to verify the success (failure) of the prediction. The testing sequence
contains three amplitude switch{overs. It will be of particular interest to
observe how well FIR performs in predicting these switch{over events. Multi{
step predictions were performed over 15 samples.

Table 3.1 characterizes (classi�es) Series L using the nomenclature
introduced in Chapter 2.

The behavior of this time series is highly regular, though chaotic.
Although it may be di�cult to predict, with high precision, the amplitude of
each peak and the time of the next amplitude switch{over event, the behavior
in between peaks should be well predictable. The time series does not look
stochastic at all, i.e., the \signal{to{noise" ratio is high.

Figure 3.5 shows the autocorrelation of the training data.
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Figure 3.4: Chaotic intensity pulsations in a single{mode far infrared NH3

laser. For training, the �rst 1000 data points were used, whereas data points
8601 to 9800 served for testing

It can be seen quite clearly that there is a strong correlation over
7 samples. Since also data point 8 still has a very high auto{correlation, it
was decided to choose the embedding dimension to be d = 8. Consequently,
the mask candidate matrix takes the form:

mcan =

0
BBBBBBBBBBBBBBB@

tnx y1
t� 8�t �1
t� 7�t �1
t� 6�t �1
t� 5�t �1
t� 4�t �1
t� 3�t �1
t� 2�t �1
t� �t �1
t +1

1
CCCCCCCCCCCCCCCA

(3.45)

The data were recoded into three levels. An optimal mask analysis was then
performed in SAPS{II (our current implementation of the FIR methodology).
It resulted in the following optimal mask:
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Table 3.1: Classi�cation of Time Series L.

natural L synthetic
stationary L non{stationary

time invariant L time varying
low dimensional L stochastic

clean L noisy
short long L

dormant active L
documented L blind

linear non{linear L
scalar L vector

single recording L multiple recordings
continuous L discrete

mask =

0
BBBBBBBBBBBBBBB@

tnx y1
t� 8�t 0
t� 7�t �1
t� 6�t 0
t� 5�t 0
t� 4�t 0
t� 3�t 0
t� 2�t 0
t� �t �2
t +1

1
CCCCCCCCCCCCCCCA

(3.46)

FIR decided that it needed a mask of complexity 3 with a depth of 8 (d = 7).
It decided further that the best prediction can be obtained by looking at the
immediate past value and also the value 7 samples ago. This is certainly
reasonable. FIR determined that the quality of this mask is Q3 = 0:6977.

FIR o�ered the following alternative \good" masks:
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Figure 3.5: Auto{correlation of the training data of Series L.

0
BBBBBBBBBBBBBBB@

tnx y1

t� 8�t 0
t� 7�t �1
t� 6�t 0
t� 5�t 0
t� 4�t 0
t� 3�t 0
t� 2�t 0
t� �t 0
t +1

1
CCCCCCCCCCCCCCCA

0
BBBBBBBBBBBBBBB@

tnx y1

t� 8�t 0
t� 7�t �1
t� 6�t 0
t� 5�t 0
t� 4�t 0
t� 3�t �2
t� 2�t 0
t� �t �3
t +1

1
CCCCCCCCCCCCCCCA

0
BBBBBBBBBBBBBBB@

tnx y1

t� 8�t 0
t� 7�t �1
t� 6�t 0
t� 5�t �2
t� 4�t 0
t� 3�t �3
t� 2�t 0
t� �t �4
t +1

1
CCCCCCCCCCCCCCCA

(3.47)

of complexities 2, 4, and 5, respectively. The corresponding mask qualities
were: Q2 = 0:4857, Q4 = 0:6182, and Q5 = 0:3615.

The mask of complexity 2 is probably not reasonable, because it does
not make use of the immediate past value, i.e., it will not recognize switch{
over events for a long time. The mask of complexity 4 is quite reasonable.
It might be a good alternative to that of complexity 3. The mask of
complexity 5 cannot be justi�ed on the basis of the available training data.
Data deprivation has set in, and has drastically reduced the quality of the
mask (because of a low OR value). More training data would be needed to
justify a mask of such high complexity.
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Figure 3.6 shows the average total error as a function of the number of
samples to be predicted. Clearly, for 0 samples of prediction, the error must
be zero, because the prediction simply is the real data stream. A 1{sample
forecast is a \prediction" in the true sense, as it only uses real data for making
the prediction. All longer{term forecasts are \simulations," as they make use
of previously made predictions in determining the forecast.
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Figure 3.6: Comparative error analysis of prediction

The dashed curve is the trivial \daily" prediction, which was added for
comparison. The trivial \daily" prediction simply forecasts that \today's"
value is the same as \yesterday's". The dot{dashed curve is the trivial
\weekly" prediction. It forecasts that \today's" value is the same as that
of \one week ago1."

Clearly, FIR needs to do better than both the daily and weekly trivial
predictions in order to claim that it has accomplished anything of signi�cance.

FIR predicts considerably better than the trivial one{sample (\daily")
prediction. However, because of the strong auto{correlation for 7 samples,
the error of the trivial prediction is much smaller for a 7 sample delay than for
a smaller delay. This fact can be exploited, by voluntarily increasing the delay
to multiples of 7 samples at all times, i.e., the predictions up to 7 samples
ahead are based on observations 7 samples earlier, whereas the predictions
over 8 to 14 samples are based on observations that lag 14 samples behind,
etc. This is the so{called \trivial weekly prediction."

FIR also outperforms the trivial \weekly" prediction, but not by as much
as one might have hoped. It is this gain in performance over the trivial
prediction that can be considered FIR's \work."

1The terms \daily" and \weekly" are used here in a metaphorical sense.
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Figure 3.7 shows the original data, the 1{step forecast, the 8{step forecast,
and the 15{step forecast. Figure 3.8 shows an excerpt of the same forecasts
around the sample 9000, i.e., during an amplitude switch{over event.

Figure 3.7 shows that FIR essentially was able to learn the behavior of
this time series. Although the series is only stationary over a long time
frame (much longer than the depth of the mask), FIR reproduces quite well
the amplitude growth patterns, and it is also capable of dealing well with the
amplitude switch{over events.
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Figure 3.7: Prediction and simulation results of Time Series L

Figure 3.8 shows an excerpt of Figure 3.7 around such a switch{over event.
The delay in recognizing the event (which essentially cannot be predicted
until it occurs) is exactly equal to the number of samples that the real data
lag behind. Yet, once the event has been recognized, FIR deals with it
con�dently and reliably.

It would have been possible to obtain yet better results by trying di�erent
masks or choosing a di�erent testing window, but this is beside the point.
The purpose is not to show beautiful results, but to learn something about
FIR's capabilities, and demonstrate what FIR can do on its own. Thus, the
results were accepted as they were produced by FIR on its �rst run, without
ever trying to \manicure" the results in any way.
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Figure 3.8: Window of the simulation results on Time Series L.

3.6.2 Forecasting Time Series M

Figure 3.9 shows the number of cases of the meningitis disease in the city
of Barcelona and its surroundings. Monthly data are available starting from
January 1963 until December 1996. Hence 400 data points are available. The
�rst 350 points were used for training. The remaining 50 samples were used
for testing.

Series M can be characterized as shown in Table 3.2 using the
nomenclature introduced in Chapter 2.

The behavior of this time series is highly stochastic. Looking at
Figure 3.9, one might conclude that Series M is stationary over a long time
period. However, there are not enough data available to truly support such
a statement. Moreover, the notion may even be incorrect. Over such a long
time frame (the data reach over more than 30 years, the population density
in the Barcelona region, the frequency of travels across region boundaries,
and the medical support system, three important factors determining the
epidemiological dynamics of the disease, have certainly not remained the
same. It will thus be quite interesting to see how FIR reacts to such
a time series, whether it would predict anything reasonable, and, even
more interestingly, whether it is aware that it might be trying to predict
unpredictable data.
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Figure 3.9: Barcelona Meningitis Cases. 350 monthly samples were used for
training, the remaining 50 samples were used for testing. Data are available
starting from January of 1963, and ending with December of 1996.

Figure 3.10 shows the autocorrelation of the training data.

It can be seen quite clearly that there exists an seasonal correlation.
However, the correlation is not very strong. For this reason, it was decided
to give FIR a little more than a year to work with. The embedding dimension
was thus chosen to be d = 15. Consequently, the mask candidate matrix takes
the form:

mcan =

0
BBBBBBBBBBB@

tnx y1
t� 15�t �1
t� 14�t �1
...

...
...

...
t� 2�t �1
t� �t �1
t +1

1
CCCCCCCCCCCA

(3.48)

As in the previous case, the data were recoded into three levels. The optimal
mask analysis resulted in the following model:
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Table 3.2: Classi�cation of Time Series M

natural M synthetic
stationary non{stationary M

time invariant M time varying
low dimensional stochastic M

clean noisy M
short M long

dormant active M
documented M blind

linear non{linear M
scalar M vector

single recording M multiple recordings
continuous discrete M

mask =

0
BBBBBBBBBBBBBBBBBBBBB@

tnx y1

t� 15�t 0
t� 14�t �1
t� 13�t 0
t� 12�t 0
t� 11�t 0
t� 10�t �2
t� 9�t 0
...

...
t� 2�t 0
t� �t �3
t +1

1
CCCCCCCCCCCCCCCCCCCCCA

(3.49)

FIR decided that the optimal model consists of a mask of complexity 4 with
a depth of 15 (d = 14). It decided further that the best prediction can be
obtained by looking at the immediate past value and also the values 10, and
14 samples ago. Thus, although the auto{correlation function has a relative
maxima at 11 samples ago, FIR decided that a di�erent selection ofm{inputs
provides better forecasts. It determined the quality of the optimal mask to
be Q4 = 0:3485.

FIR o�ered the following alternative \good" masks:
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Figure 3.10: Auto{correlation of the training data of Series M.
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(3.50)

of complexities 2, 3, and 5, respectively. The corresponding mask qualities
were: Q2 = 0:2532, Q3 = 0:3169, and Q5 = 0:3011.
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In general, the quality values are lower than those obtained for Series L.
All proposed masks are quite reasonable. The auto{correlation cycles are not
strong enough to lock FIR into any particular patterns. FIR decides that it
is best to distribute the m{inputs more or less regularly over the available
time window, except with the immediate past sample that is selected always.

Figure 3.11 shows the average total error as a function of the number of
samples to be predicted.
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Figure 3.11: Comparative prediction error analysis of Series M.

The curve marked with `+' symbols is the trivial monthly prediction,
which was added for comparison. The trivial monthly prediction forecasts
that today's number of meningitis cases is the same as that of one month
ago. The dot{dashed curve is the trivial annual prediction. It forecasts that
today's value is the same as that of one year ago.

It is quite evident that, this time, FIR does not accomplish anything.
Both of the trivial predictions outperform FIR by leaps and bounds.

Figure 3.12 shows the original data, the 1{month forecast, the 8{month
forecast, and the 15{month forecast.

FIR does not predict impossible or even improbable outcomes. It would
not know how to, as it can only predict patterns that it has observed before.
The 1{month predictions look somehow similar to the real observations,
though by no means better than the trivial prediction that would simply
lag one month behind the real observations. The 15{month prediction still
estimates the mean value correctly, but does not accomplish much more than
that.

It was mentioned in Chapter 1 that one of FIR's foremost advantages is
its capability to recognize its own mistakes. How come that FIR still was
able to make predictions that are essentially garbage? The answer is that up
to this point, the author chose to ignore FIR's warning messages. Figure 3.13
shows the average accumulated con�dence that FIR has in its own predictions
over 15 steps for the two time series. Chapter 5 of this thesis will explain
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Figure 3.12: FIR prediction and simulation of Series M.

how FIR goes about to compute the con�dence value.
Figure 3.13 shows that, for Series L, FIR has an average con�dence of

87% during its �rst prediction step. In contrast, the average con�dence
for Series M is only 50% during the �rst step, i.e., FIR tells the user that,
with 50% likelihood, already the �rst prediction is garbage. The user is well
advised to heed this warning, and not place too much trust on the results
obtained.

3.7 Forecasting Noise: Time Series N

At this point, it was decided to introduce yet another \time series." This
series consists of uniformly distributed noise in the range [0:0; 1:0], generated
by Matlab's random number generator. Clearly, FIR (or any other technique
for that matter) cannot be expected to outperform the trivial predictor on
this series.

Figure 3.14 shows the average errors and the accumulated con�dence for
Series N. FIR's error is compared with the one{sample trivial prediction
on the one hand, and with the na��ve prediction on the other. The na��ve
prediction consists of predicting the constant value of 0.5.

Since the na��ve predictor does not predict the standard deviation well, it
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Figure 3.13: Accumulated FIR con�dence of Series L and M.

is severely punished using the proposed error formula. The trivial predictor
always exhibits zero error for both the mean and the standard deviation,
which gives it quite an advantage. FIR performs somewhere in the middle
between the trivial and the na��ve predictor, but, for larger prediction periods,
approaches more and more the performance of the na��ve predictor. As in the
case of Series M, the con�dence in the validity of its predictions decreases
rapidly.

Figure 3.15 shows the auto{correlation of the original \time series" and of
the 1{sample, 8{sample, and 15{sample predictions. There is no signi�cant
auto{correlation in either case, i.e., FIR predicts indeed noise, as it should.

Figure 3.16 shows histograms of the original data as well as of the
1{sample, 8{sample, and 15{sample predictions. Whereas the original
data are uniformly distributed, the FIR predictions resemble more normal
distributions. The standard deviations decrease with increasing prediction
time.

These results can be easily explained. Since the samples themselves are
random, also the fuzzy membership function values are random. They are
no longer uniformly distributed because of the non{linear map, but they
are certainly random in the range [0:5; 1:0]. The 5{nearest neighbor method
calculates the fuzzy membership value of the output as the mean of �ve
such random samples. Because of the law of great numbers, this mean will
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Figure 3.14: Average errors and accumulated con�dence for Series N.

be almost normally distributed, and will have a reduced standard deviation
because of the e�ect of averaging.

FIR, quite evidently, �lters out noise. This can be seen in Figure 3.17
that shows the 1{sample, 8{sample, and 15{sample predictions.

The 15{sample prediction is almost a straight line. FIR has successfully
�ltered out all the noise, and only predicts the mean value, i.e., behaves just
like the na��ve predictor. Is this bad? There is no easy answer! If Series N is
considered to represent a meaningful signal, then the best prediction would
indeed be the trivial prediction. However, if Series N is considered noise, i.e.,
the only signal underneath the noise is the mean value of 0.5, then the na��ve
prediction is indeed the best there can be.

How does FIR decide what is \signal" and what is \noise"? If a
(deterministic) pattern has been seen before, then FIR will �nd good
neighbors, and will predict what it has seen. In contrast, if there is no
deterministic pattern, or if the pattern is superimposed with noise, then FIR
will not �nd good neighbors, and the e�ects of averaging will set in, with the
consequence that the non{repetitive aspects of the signal will eventually get
�ltered out.

How well does FIR exploit the information provided to it, i.e., when does
it consider a signal a signal, and when will it treat it as noise? The next
section will shed some light on this question.
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Figure 3.15: Comparative auto-correlation analysis of Series N.

3.8 Adding More Information: Time Series I

At this point, it is useful to introduce yet another time series. This time series
is arti�cially constructed from Series L, by subtracting its mean value, and
then integrating the time series over time. Series I is depicted in Figure 3.18.

It was necessary to subtract the mean before integration in order to ensure
that also Series I is stationary over a su�ciently large time frame.

Using exactly the same methodology as earlier, FIR �nds the very same
optimal mask:

mask =

0
BBBBBBBBBBBBB@

tnx y1

t� 7�t �1
t� 6�t 0
t� 5�t 0
t� 4�t 0
t� 3�t 0
t� 2�t 0
t� �t �2
t +1

1
CCCCCCCCCCCCCA

(3.51)

The averaged errors over a 15{sample prediction are shown in Figure 3.19.

The errors are almost identical to those found for Series L. The con�dence
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Figure 3.16: Comparative histogram analysis of Series N.

values are somewhat higher, because it was decided to use 4500 values for
model identi�cation instead of 1000, and therefore, FIR �nds neighbors that
are closer to the data point that it tries to predict, which increases its
con�dence in its prediction (cf. Chapter 5).

Figure 3.20 shows the 1{sample, 8{sample, and 15{sample predictions
over the testing window. As before, the delay in recognizing the switch{over
event is quite evident.

It shall now be investigated, how well FIR makes use of the available
information. Since the system from which the time series was generated is
obviously a higher{order system, it seems reasonable to assume that FIR
would predict the output better, if it would have access to additional state
information.

This is why this time series was constructed using an integrator. The
derivative is available analytically, and it might make sense to o�er this
derivative as additional measurement data, i.e., treat the two signals together
as a multivariate time series.
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Figure 3.17: Simulation results for one-step and multiple-step predictions of
Series N.

The following masks were used for the prediction:

mask1 =

0
BBBBBBBBBBBBB@

tnx y1 y2

t� 7�t �1 0
t� 6�t 0 0
t� 5�t 0 0
t� 4�t 0 0
t� 3�t 0 0
t� 2�t 0 0
t� �t �2 �3
t +1 0

1
CCCCCCCCCCCCCA

mask2 =

0
BBBBBBBBBBBBB@

tnx y1 y2

t� 7�t 0 �1
t� 6�t 0 0
t� 5�t 0 0
t� 4�t 0 0
t� 3�t 0 0
t� 2�t 0 0
t� �t �2 �3
t 0 +1

1
CCCCCCCCCCCCCA

(3.52)

where y1 stands for the output of Series I, and y2 is its derivative.

Figure 3.21 shows the averaged errors over a 15{sample prediction.
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Figure 3.18: Integrated NH3 Laser Time Series (Series I).

For 2, 8, and 9 samples, the errors are indeed smaller. The additional state
information helped FIR improve its forecast. For other lag values, the results
are not as favorable. The con�dence values are lower again, because the
mask now makes use of the additional state information, and the complexity
of the mask is higher. Therefore, FIR no longer �nds neighbors in the input
space that are as close as they had been before, which reduces its con�dence
(cf. Chapter 5).

It is now interesting to compare the previous case with that where
the quantitative (analytical) derivatives have been replaced by qualitative
(numerical) derivatives. These can be obtained simply by subtracting
neighboring samples using the DIFF{operator of SAPS{II. Figure 3.22 shows
the averaged errors over a 15{sample prediction.

The results look now exactly as they had looked originally, i.e., nothing
was gained by adding qualitative derivatives. The reason is that no additional
information has been added. The same information is simply presented in
another form. Since FIR evidently is quite capable of extracting all of the
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Figure 3.19: Mean prediction error and accumulated con�dence of Series I.

information that is given to it, adding another representation of the same
information does not help.

It might be useful to represent yet another experiment, one that is quite a
bit more costly to execute. This time, 3000 samples shall be used for training
the original model, and a prediction will be made over another 3000 samples.

Let y(t) denote the observations, and ŷ(t) represent the predictions. It is
possible to make a model of the error:

e(t) = y(t)� ŷ(t) (3.53)

It is now possible to use 2900 of the 3000 data points of the e(t) trajectory
to make a model of the error, ê(t).

If e(t) were known, it would be possible to reconstruct the observations
without error:

y(t) = ŷ(t) + e(t) (3.54)

Since there now exists a model of the error, one could try to get an improved
prediction using:

~y(t) = ŷ(t) + ê(t) (3.55)
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Figure 3.20: Simulation results for one-step and multiple-step predictions of
Series I.

Figure 3.23 shows the averaged error of three models: the original model
of the output: ŷ, an improved model using the error model as a second
input variable (same idea as with the derivative variable), and �nally, the
superposition model: ~y(t).

Evidently, the approach did not work. The original model is best except
for one data point, where the superposition model gave a slightly smaller
error. Figure 3.24 compares the 1{sample predictions of the three models.

Using the error variable as a second input, was a bad idea. It only
prevented FIR from �nding good neighbors, and distracted it from doing
its job. It needs to be said that FIR did not propose the \optimal" mask
that was used to compute the output variable. FIR proposed exactly the
same optimal mask that was used in the original attempt, i.e., proposed to
ignore the error variable entirely in the prediction of the output. The author
decided to add the error variable into the mask to make the results look
\more interesting."

The superposition idea did improve the forecast slightly. Figure 3.25
shows the averaged errors of the error model, i.e., the errors of the model
that computes the error.

The errors are very large. The error model is di�cult to predict, although
the error trajectory is not free of auto{correlation. Figure 3.26 shows the 1{
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Figure 3.21: Average error and accumulated con�dence of Series I using the
analytical derivative as a second input.

sample, 8{sample, and 15{sample predictions of the error. The 1{sample
prediction is decent. The 15{sample prediction is essentially a straight line.
Once again, FIR has concluded that the data are mostly noise, and has
�ltered the noise out, keeping only the mean value, which is 0.0 in this case.

The error model contains some information that should be exploitable.
Yet, the errors are small in comparison with the real output, and the errors
of the errors are comparatively large. Therefore, the information contained
in the error model gets lost among the noise in the superposition.

It can be concluded that FIR indeed exploits essentially all of the
information that it is provided with. It does so con�dently and reliably.
No special tricks are needed to make FIR do its job. In this sense, the FIR
methodology is quite robust and easy to apply.

3.9 Conclusions

The FIR methodology has been introduced, and in particular, its relevance to
the task of predicting univariate and multivariate time series of single and/or
multiple steps has been discussed. Two time series were initially introduced,
one that is predictable, and one that is not. It was shown that FIR is capable
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Figure 3.22: Average error and accumulated con�dence of Series I using a
�rst-order numerical approximation of the derivative as second input.

of distinguishing between predictable and non{predictable phenomena.
Subsequently, it was shown that FIR �lters out what it considers to be

noise, a feature that may sometimes be quite useful, but that can also be
a nuisance, because the FIR user has little control over what FIR considers
noise, and what it considers a signal. Yet, it is important to know about this
feature of FIR.

Finally, it was shown that FIR indeed exploits all the information that is
given to it in a fairly optimal and robust fashion. To this end, several models
were proposed that should have led to improved forecasts if FIR would not
already have exploited all the information available to it. Neither of these
approaches proved to be useful.

This shows that FIR is indeed a robust modeling methodology that
exploits the information it is provided with con�dently and reliably without
need for much user intervention.
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Figure 3.23: Comparison of multi-step prediction errors of models that use
a model of the error to gather additional information.
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Figure 3.24: Comparison of single-step predictions of di�erent models using
models of the error to gather additional information.

0 5 10 15
0

20

40

60

80
Integrated NH3 Laser Time Series: Error Model

M
ea

n 
E

rr
or

 (
%

)

Samples Prediction

FIR Error Model (−o−) Trivial Error Model (− −)

Figure 3.25: Average errors over multi-step predictions of the model that
predict the error.
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Figure 3.26: Simulation results of single-step and multi-step predictions of
the error prediction.
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Chapter 4

Comparison of Selected

Techniques for Time Series

Prediction

4.1 Introduction

Already in Chapter 1, it was mentioned that one of the primary goals of this
dissertation is to gain an improved understanding of the virtues as well as
shortcomings of the FIR methodology by applying FIR to a problem domain,
to which many other methodologies have been applied previously, namely the
prediction of univariate time series, so that FIR may be compared with the
best among its competitors.

In Chapter 3, FIR was compared to several types of trivial predictors
(sometimes also called \na��ve predictors"). However, it is to be expected
that there exist other techniques that predict much better than these trivial
predictors, and FIR needs to be compared with those techniques as well.
That is the aim of this chapter.

At �rst, some of the more prominent of the competitors will be brie
y
introduced. This discussion is then followed by comparing various of those
techniques with FIR in the prediction of two time series that exhibit quite
di�erent behavioral patterns: Series B, relating to the water demand in the
City of Barcelona (Quevedo et al. 1988; Gri~n�o 1992; Baggelaar 1992), and
Series R, describing the water demand in a region of Rotterdam, called the
Berenplaat (Baggelaar 1992).
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4.2 Classi�cation of Prediction Methods

As was outlined already in Chapter 3, all techniques for forecasting the
behavior of univariate time series somehow make use of their past behavior,
usually in the form of sampled data values dating back over a limited period
of time. Mathematically, the forecast can be expressed as:

yt = ~f(yt�1; yt�2; � � � ; yt�d) (4.1)

where d is referred to as the embedding dimension of the time series. They
di�er in how they approximate the unknown function ~f .

Most techniques are parametric in nature, i.e., they store the knowledge
about the past behavior of the time series in a set of parameter values. FIR
is an exception to the rule. FIR is a non{parametric method, because it
refers, during the forecast, directly to past behavioral patterns that have
been observed during the training period.

Among the parametric methods, many are linear predictors. In a linear
predictor, a linearity assumption is imposed on the unknown function ~f :

yt =
dX

i=1

�i � yt�i (4.2)

where �i are the parameters of the method that themselves can be estimated
in many di�erent ways. Such methods are often classi�ed as auto{
regressive (AR) methods or in�nite impulse response (IIR) �lters (Ljung 1987;
Oppenheim and Schafer 1989; Weigend and Gershenfeld 1994).

If the system from which the time series was observed is non{linear, linear
predictors may not do a good job at characterizing the behavior of these
systems. The reason is that even low{dimensional non{linear systems may
exhibit a broad{band power spectrum (Brockwell and Davis 1996). In order
to deal better with such systems, non{linear predictors were introduced, such
as the non{linear auto{regressive (NAR) methods that are based on Volterra
series approximations. Most NAR methods limit their non{linearities to bi{
linear and quadratic terms:

xt =
dX

i=1

�i � yt�i +
dX

j=1

jX
k=1

�jk � xt�j � xt�k (4.3)

NARmodels are attractive, because, although they are non{linear predictors,
they are still linear in the parameters (LIP). The parameters of methods that
are of the LIP type can still be estimated using regression techniques.

Other parametric methods are completely non{linear, i.e., they are even
non{linear in their parameters. Among those techniques, the most prominent
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are the connectionist methods that are also referred to as arti�cial neural
networks (ANN). The weights (parameters) of neural networks need to be
learned using an iterative learning process, such as backpropagation training
(Narendra and Parthasarathy 1990; Muller et al. 1994; Narendra and Li
1995; Narendra and Mukhopadhyay 1995).

In this chapter, AR, NAR, and ANN models shall be compared to FIR
in their capabilities of predicting univariate time series.

4.3 AR Methods

4.3.1 Least Square Estimation

Given a set of n training records, where n � 2 � d, it is possible to write
Eq.(4.2) in a matrix{vector form as follows:

0
BBB@
yd+1

yd+2

: : :
yn

1
CCCA =

0
BBB@

yd yd�1 : : : y1
yd+1 yd : : : y2
: : : : : : : : : : : :
yn�1 yn�2 : : : yn�d

1
CCCA �

0
BBB@
�1

�2

: : :
�d

1
CCCA (4.4)

If n = 2 � d, Eq.(4.4) represents a set of d linear equations in d unknowns
that can be solved in a unique fashion using any technique suitable for solving
linear systems of equations. If n > 2�d, Eq.(4.4) represents an overdetermined
set of linear equations in d unknowns that can be solved approximately in a
least square sense. Eq.(4.4) can be rewritten as:

y =M � x (4.5)

where y 2 R(n�d), M 2 R(n�d)�d, and x 2 Rd. Therefore:

M0 � y =M0 �M � x (4.6)

where M0 �M 2 Rd�d is a square matrix that is usually of rank d. Thus:

x = (M0 �M)�1 �M0 � y (4.7)

is an approximate solution of the set of equations, where (M0 �M)�1 �M0 is
a pseudo{inverse of M. In Matlab, this solution can be obtained using the
backslash operator:

x =Mny (4.8)
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a notation that, for reasons of convenience, has meanwhile been adopted in
the linear algebra literature throughout.

Once the coe�cient vector x has been found, future predictions can
recursively be obtained using the equation:

yn+k = Y � x (4.9)

where:

Y =
�
yn+k�1 yn+k�2 : : : yn+k�d

�
(4.10)

This concludes the straightforward description of the method.
It is of interest to discuss the stability of an AR model. To this end, it

is useful to represent Eq.(4.2) in the frequency domain. Before doing so, it
is advisable to represent the approximation error as an additive term on the
right{hand side:

y(t) =
dX

i=1

�i � yt�i + e(t) (4.11)

where y(t) is the true value of y at time t, whereas yt (of Eq.(4.2)) is the
approximation of y(t) at time t, thus:

y(t)� yt = e(t) (4.12)

is the error, e(t), committed by the approximation, yt, at time t.
Eq.(4.11) can now be transformed into the frequency domain:

Y (z) =
dX

i=1

�i � z
�i � Y (z) + E(z) (4.13)

where z = eTs is the z{operator of the classical z{transform. Thus:

 
1 �

dX
i=1

�i � z
�i

!
� Y (z) = E(z) (4.14)

or:

Y (z) =
zn

zn �
Pd

i=1 �i � zn�i
� E(z) (4.15)

Hence y(t) is stable i� all the poles of the denominator polynomial: zn �Pd
i=1 �i � zn�i are inside the unit circle of the complex z{plane (Ogata 1970;

Kuo 1991).
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There is no guarantee that the least squares approach to determining the
parameter values of the AR model will satisfy the stability requirement, i.e.,
recursive predictions using Eq.(4.9) may grow beyond all bounds.

4.3.2 Autocorrelation

If the univariate time series is stationary, it seems reasonable to expect that
recursive predictions produce a stationary forecast as well. This means that
the model of Eq.(4.15) should be marginally stable, i.e., the dominant pole
should be at z = 1:0. One way to ensure that there is a pole at z = 1:0 is to
request that:

dX
i=1

�i = 1:0 (4.16)

because, in this case, the denominator of Eq.(4.15) will become zero for
z = 1:0.

Eq.(4.16) makes practical sense. It means that the forecast yt is a linear
blend (a moving average) of the previous d values. Since the expectation value
of any data point yt�i is constant, as the series is assumed to be stationary,
the expectation value of any moving average is also constant and equal to
that of yt�i, i.e.:

Efytg = Efyt�ig 8i (4.17)

The forecast is stationary if all other poles are inside the unit circle, i.e., if
the model is indeed marginally stable.

One way to determine a decent set of parameter values is to make use
of the autocorrelation function �(t) of the time series y(t). The value
�i represents the relative importance of yt�i in the approximation of yt.
Thus, the autocorrelation function can be used to determine the embedding
dimension, d, by ignoring all values of i for which �i has decayed to a value
below signi�cance. The coe�cients can then be estimated using the relative
importance of the remaining �i factors. Let:

s� =
dX

i=1

�i (4.18)

Then:

�i =
�i
s�

(4.19)
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provides a meaningful set of coe�cients satisfying Eq.(4.16). It can be
checked easily whether the coe�cients obtained in this fashion satisfy the
stability condition. Sometimes, this method is referred to as Yule{Walker
method, because the autocorrelation coe�cients are related to the prediction
model by means of the Yule{Walker equations (Yule 1927).

4.3.3 FIR Weights

Both the least squares method and the autocorrelation method have the
disadvantage that they provide linear parameter estimators. If the system
from which the time series was observed is non{linear, a linear estimator may
produce results that are far from optimal.

Another technique that may exploit non{linear characteristics better is
to use FIR to estimate the parameter values of the AR model. To this end,
the following set of masks may be proposed:

m1 =

 
�1
+1

!
; m2 =

0
B@�10
+1

1
CA ; m3 =

0
BBB@
�1
0
0

+1

1
CCCA ; : : : ; md =

0
BBBBBB@

�1
0

: : :
0

+1

1
CCCCCCA

(4.20)
The quality of each of these masks of complexity 2 can be evaluated.
These mask qualities shall be referred to as Q1 . . .Qd. As in the case of
the autocorrelation coe�cients, the quality Qi is a measure of the relative
importance of yt�i in approximating yt. Thus, it makes sense to compute:

sFIR =
dX

i=1

Qi (4.21)

and then:

�i =
Qi

sFIR
(4.22)

which constitute another set of meaningful �i coe�cients that satisfy
Eq.(4.16). As before, the stability condition needs to be veri�ed separately.

4.3.4 Neural Networks

Yet other approaches make use of ANNs to estimate the parameters of an AR
model. The idea is simple. Starting out from an initial set of parameters,
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obtained using any of the aforementioned methods, it is possible to check
how well the so found parameters approximate the training data set or any
other data set that has not been used yet. Then, the parameters can be
modi�ed iteratively in order to optimize the approximation using any given
performance index.

One way to solve this optimization problem is to create a neural network
that exhibits the parameters of the AR model as its outputs, and train the
neural network in a supervised training mode in order to optimize the desired
performance index.

This thesis shall not deal with such hybrid methods. Details can be
found in the open literature (Weigend and Gershenfeld 1994; Zimmermann
and Weigend 1995; Delgado 1998).

4.4 ARMA Methods

Usually, the number of training records of an AR model is much larger than
2�d. Therefore, Eq.(4.8) can only be solved in an approximate fashion. Using:

x =Mny(t) (4.23)

where y(t) is the vector of true measurement values, then inverting Eq.(4.23):

yt =M � x (4.24)

one obtains only an approximation of y(t), denoted as yt. The error of this
approximation is given by Eq.(4.12) rewritten as:

e(t) = y(t)� yt (4.25)

where e(t) is a vector of sampled values of the true error e(t). Thus, Eq.(4.25)
can also be written as an equation between signals, rather than between
samples:

e(t) = y(t)� yt (4.26)

The signal e(t) can also be interpreted as a univariate time series. It is the
time series of the error between the true time series and its approximation
using the AR model.

The same approach that was used to model y(t) resulting in its
approximation yt can also be applied to the time series of the error, e(t):

et =
deX
k=1

�k � et�k (4.27)
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leading to an approximation et of the true error e(t). The embedding
dimension of this model is de, and the coe�cients shall be called �k. de
can be di�erent from d.

Any of the aforementioned methods can be used to estimate the
parameters �k. Notice that the problem of identifying a model of the error is
exactly the same as that of identifying the model of the original time series,
yet it has become customary to refer to this type of model as moving average
(MA) model or �nite impulse response (FIR) �lter, rather than autoregressive
(AR) model or in�nite impulse response (IIR) �lter.

Methodologically, this distinction does not seem justi�ed, and the name
\moving average" is confusing, because both models are in fact moving
average models, but tradition overrules whatever objections there may be.

The two models (RA and MA) can now be combined. Using Eq.(4.11)
once more:

y(t) =
dX

i=1

�i � yt�i + e(t) (4.28)

it is possible to obtain an improved prediction of the original time series by
replacing the true error by its approximation:

ŷt =
dX

i=1

�i � yt�i + et (4.29)

or:

ŷt =
dX

i=1

�i � yt�i +
deX
k=1

�k � et�k (4.30)

Hopefully, the error of the improved prediction, ŷt, is smaller than that of
the original prediction, yt, thus:

ky(t)� ŷtk < ky(t)� ytk (4.31)

The improved model is called ARMA model.

4.5 ARIMA Methods

One problem that has not been addressed yet is the occurrence of periodic
or quasi{periodic behavior as it can be found in some time series. There is
nothing in either AR or ARMAmodels that would guarantee the preservation
of periodic or quasi{periodic behavioral patterns in the predictions. ARIMA
models overcome this de�ciency. Notice that ARIMA models are simply a
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special case of ARMA models that can furthermore only be used in case of
periodic or quasi{periodic time series.

The idea behind the ARIMA models is again quite simple. Assuming
that the time series exhibits a period (or quasi{period) of � , where � is a
multiple of the sampling rate. It is then possible to construct a new time
series:

z(t) = y(t)� y(t� � ) (4.32)

that no longer contains the periodic behavior. In fact, z(t) is an error model
that only re
ects the deviations from the periodic behavior, because, if the
behavior of the time series had been truly periodic in � , z(t) would be 0.0
throughout.

It is now possible to generate an ARMA model of the time series z(t)
using any of the techniques proposed earlier. The approximation zt may
denote the ARMA prediction of z(t). It makes sense to write:

zt = yt � y(t� � ) (4.33)

For simplicity, � is now interpreted as an index of displacement rather than
a true time value. Thus, Eq.(4.32) can be transformed into the frequency
domain as follows:

Z(z) = Y (z)� z�� � Y (z) =
�
1 � z��

�
� Y (z) (4.34)

or:

Y (z) =
z�

z� � 1
� Z(z) (4.35)

Combining Eq.(4.35) with Eq.(4.15), the following ARI model of the original
time series is obtained:

Y (z) =
zn � z�

(zn �
Pd

i=1 �i � zn�i) � (z� � 1)
� E(z) (4.36)

The stability properties of the new model are not modi�ed in an essential
fashion by the additional term z� � 1 in the denominator. The new term
only adds another � marginally stable poles placed at equal angles around
the unit circle of the complex z{domain. However, it now makes sense to
request that all poles of the AR model of z(t) are clearly inside the unit circle
to avoid having to deal with a double pole at z = 1:0, as this can cause drift.
The MA portion of the ARIMA model is harmless, as it only adds another
numerator polynomial to Eq.(4.36).
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The same general approach can also be used to deal with linear non{
stationary behavior. For example, if y(t) has a positive constant trend, then:

z(t) = y(t)� y(t� 1) (4.37)

will have no trend any longer, i.e., will be stationary. If the trend is non{
linear, e.g. describing exponential growth phenomena, stationarity can be
achieved using non{linear transforms. For example, exponential growth can
be eliminated using the transformation:

z(t) =
y(t)� y(t� 1)

y(t)
(4.38)

as shown in (Moorthy et al. 1998).

4.6 NAR and NARMA Methods

As NAR models are of the LIP type, least squares can still be used to identify
the parameters of Eq.(4.3):

xt =
dX

i=1

�i � yt�i +
dX

j=1

jX
k=1

�jk � xt�j � xt�k (4.39)

The equations can be written in matrix{vector form as follows:

0
@ yd+1

yd+2

: : :

yn

1
A =

0
@ yd : : : y1 yd � yd : : : y1 � y1

yd+1 : : : y2 yd+1 � yd+1 : : : y2 � y2
: : : : : : : : : : : : : : : : : :

yn�1 : : : yn�d yn�1 � yn�1 : : : yn�d � yn�d

1
A �

0
BBB@

�1
: : :

�d
�11
: : :

�dd

1
CCCA (4.40)

where n � d�(d+1)
2 +2�d. Although the same least squares method can be used

as in the AR case to identify the d�(d+1)
2 + d parameters of the NAR model,

usually another approach is chosen. The reason is that most researchers
prefer to operate on a model with considerably fewer parameters, as a highly
parameterized model has the tendency to identify the noise. Such a model
leads to excellent results when applied to the training data, but to poor
results when applied to a hitherto unseen set of data.

Several suboptimal search techniques can be employed to identify a
meaningful subset of NAR parameters.

The aggregation method starts out with a full set of parameters identi�ed
from Eq.(4.40). The parameters are identi�ed as follows:
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y =M � x (4.41)

where y 2 R(n�d), M 2 R(n�d)�(
d�(d+1)

2 +d), and x 2 R(
d�(d+1)

2 +d). Therefore:

x =Mny(t) (4.42)

is the set of parameters. The error of the prediction can be computed as
follows:

e = y�M � x (4.43)

with the norm kek. The process can now be repeated, each time leaving
out one of the parameters (one column of M and the corresponding row of
x). The corresponding error norm keik or kejkk, where the index (i or jk)
indicates the omitted parameter, is expected to be larger than kek. However,
the increase in the error should not be large, because the model still contains
many parameters.

The aggregation method eliminates the parameter that least increases
the error permanently, and then continues eliminating one of the remaining
parameters. The process is repeated until the error norm starts growing
rapidly. Plotting the error norm vs. the number of omitted parameters, the
resulting curve usually shows a knee. The optimal set of parameters, k, is
just below the knee of the curve. Figure 4.1 shows a sketch of a typical error
norm function plotted vs. the number of parameters omitted.

The re�nement method starts out with a single parameter. It tries out
one parameter at a time, computing the error norms keik or kejkk. Here, the
index (i or jk) indicates the added parameter.

The re�nement method then keeps the parameter that most decreases
the error permanently, and then continues adding another parameter. The
process is repeated until the error norm stops decreasing rapidly. Plotting
the error norm vs. the number of added parameters, the resulting curve
usually shows a knee. The optimal set of parameters, j, is just beyond the
knee of the curve. Figure 4.2 shows a sketch of a typical error norm function
plotted vs. the number of parameters added.

Once the NAR portion of the model has been found, the error can be
computed, and an AR model of the error (the MA portion) can be added in
just the same way as for the ARMA and ARIMA models. Although it would
be possible to construct also a NAR model of the error, this is hardly ever
done.

Obviously, the neat stability analysis of linear predictors does not apply
to NAR and/or NARMA models. Thus, it is much more di�cult to prove
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Aggregation Method

Number of0 1 2 3 nk

Prediction
Error

Eliminated Parameters

Figure 4.1: Aggregation method.

that a NAR (or NARMA) forecast of a stationary time series is stationary
than was the case for AR (or ARMA) models.

4.7 ANN Methods

Even NARMA models are limited in the types of non{linearities that they
support. Neural networks o�er a way out of this limitation. They start out
with Eq.(4.1):

yt = ~f(yt�1; yt�2; � � � ; yt�d) (4.44)

and try to �t an arbitrarily non{linear model, i.e., the true (unknown)
function ~f to the training data. Since also neural networks are parameterized,
some structural assumption must be made. However, the assumption made is
so general that it �ts any function ~f . There are proofs in the open literature
that show that a feedforward neural network with at least one hidden layer
can �t any arbitrarily non{linear univalued function (Haber and Unbehauen
1990; Connor et al. 1992; Cottrell et al. 1995; Golob et al. 1998).

How feedforward neural networks are constructed is the topic of many
books and articles. It is beyond the scope of this dissertation to even
attempt to review this literature. However, since neural networks have
been rather successful in predicting time series (Ghoshray 1996; Delgado
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Figure 4.2: Re�nement method.

1998), this dissertation would be incomplete without at least a comparison
of the success of FIR vs. ANN when used to predict a few time series of
di�erent characteristics. To this end, an ANN was constructed using Matlab,
a software developed at (MathWorks 1997).

4.8 Time Series B: Barcelona Water Demand

Time Series B represents the water demand of an area of the city of Barcelona
(Aig�ues de Barcelona 1985). The measurement data are shown in Figure 4.3.

The characteristics of this time series are presented in Table 4.1. Series B
is mildly non{stationary. During the observed period, the water consumption
grew slightly, either because the city is still growing, or because the average
household consumes more water (e.g. due to a wider proliferation of dish
washers), or �nally, because newer production facilities require slightly
more water. Although FIRs performance is not a�ected by the mildly
non{stationary nature of this time series, some of the contending methods
are. Series B is de�nitely time varying. On Sundays and public holidays,
Barcelona consumes considerably less water than on regular work days.
Moreover, the month of August is vacation month in Barcelona, which is
re
ected in a signi�cant reduction in the water consumption patterns during
that month. Series B is mildly stochastic, yet the data can be considered
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Figure 4.3: Barcelona water demand: Training and testing data.

fairly clean. Only 700 data points are available, i.e., the time series is
relatively short. 1.5 years worth of daily measurements, from January 1985
to July 1986, were available to generate the model.

The auto{correlation of this time series is shown in Figure 4.4. Even by
naked eye, it is quite easy to discern a strong weekly cycle.

4.8.1 FIR Qualitative Simulation

Due to the cyclic nature of Series B, it was decided to choose a mask depth
of two weeks in constructing the FIR model. The optimal FIR model for this
time series was found to be:
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Table 4.1: Classi�cation of Time Series B.

natural B synthetic
stationary non{stationary B

time invariant time varying B
low dimensional stochastic B

clean B noisy
short B long

dormant active B
documented B blind

linear non{linear B
scalar B vector

single recording B multiple recordings
continuous B discrete

0
BBBBBBBBBBBBBBBBBB@

y

t� 14�t �1
t� 13�t 0
� � � 0
t� 8�t 0
t� 7�t �2
t� 6�t 0
� � � 0
t� 2�t 0
t� �t �3
t +1

1
CCCCCCCCCCCCCCCCCCA

(4.45)

This result is quite reasonable. Due to the strong weekly cycle inherent in this
time series, FIR concludes that the most useful data points to predict today's
water demand are yesterday's water demand, last week's water demand, and
the water demand two weeks ago.

570 days (from January 1, 1985 to July 24, 1986) were used as training
data, whereas 128 days (from July 25, 1986 to November 29, 1986) were used
as testing data. Thanks to the strong auto{correlation of this time series,
570 data points were su�cient to derive a model exhibiting fairly good short{
term prediction capabilities.

A prediction matrix (cf. Matrix (3.29)) with 16 columns was constructed,
i.e., at each time instant, a multi{step prediction over 15 days was performed.
The average error and the average accumulated con�dence are plotted in
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Figure 4.4: Auto{correlation of Barcelona water demand data.

Figure 4.51.

As a gauge, the error is compared to those of the trivial daily prediction
and trivial weekly prediction as introduced in Chapter 3 of this dissertation.

The results are somewhat sobering. Only for the one{step prediction,
which is the most useful in this application as the water company wants to
plan always one day ahead, FIR predicts signi�cantly better than the weekly
trivial predictor. Already FIR's two{step prediction is about equal in quality
to the weekly trivial prediction. Some of the predictions are even slightly
worse, because the FIR prediction, contrary to the trivial predictions, does
not fully preserve the statistical parameters of the series. The FIR prediction
reduces the standard deviation as it �lters out what it considers to be noise.

Figure 4.6 compares the one{day prediction, the eight{day prediction,
and the �fteen{day prediction with the measurement data.

The reduction in forecast quality is quite noticeable, yet even a two{week
forecast is still somewhat meaningful. It is better than both of the trivial
predictors for the same forecasting period.

1The results shown in Figure 4.5 were obtained with an improved FIR algorithm, the
details of which will only be revealed in Chapter 6 of this dissertation.
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Figure 4.5: Barcelona water demand multiple{step simulation using FIR.

4.8.2 AR Predictions

In the sequel, FIR is being compared against three di�erent AR models, one
using least squares, the second using the autocorrelation coe�cients, and the
third using the FIR mask qualities. Although the embedding dimension of
the FIR model had been chosen to be d = 14, it was decided to base the AR
models on a single week only, i.e., the embedding dimension was reduced to
d = 7.

Least Squares Method

Two separate least square AR models were constructed. The �rst model was
based on the equation:

yt =
7X

i=1

�i � yt�i (4.46)

The �i coe�cients were identi�ed using the entire training data set. The
resulting model was:

yt = 0:5278 � yt�1 � 0:1467 � yt�2 + 0:1130 � yt�3
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Figure 4.6: Barcelona water demand multiple{step simulation using FIR.

�0:0237 � yt�4 � 0:0661 � yt�5 + 0:1658 � yt�6

+0:4308 � yt�7 (4.47)

As was to be expected, the coe�cients associated with the previous day
and seven days before are most prominent. This model was then used in a
simulation mode to predict the future behavior of the time series over 15 days.

The sum of the parameters is s� = 1:0009, i.e., although the value is close
to 1.0, it is to be expected that there is at least one pole slightly outside the
unit circle. The poles of the denominator polynomial of Eq.(4.15) are:

r =

0
BBBBBBBBBBB@

1:0002
0:6293 + 0:7143 � i
0:6293 � 0:7143 � i
�0:1809 + 0:8801 � i
�0:1809 � 0:8801 � i
�0:6845 + 0:3467 � i
�0:6845 � 0:3467 � i

1
CCCCCCCCCCCA

(4.48)

with the absolute values:
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rabs =

0
BBBBBBBBBBB@

1:0002
0:9519
0:9519
0:8985
0:8985
0:7673
0:7673

1
CCCCCCCCCCCA

(4.49)

thus indeed, one eigenvalue is slightly outside the unit circle, whereas all
other poles are clearly within the unit circle.

Figure 4.7 compares the one{day prediction, the eight{day prediction,
and the �fteen{day prediction with the measurement data.
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Figure 4.7: Multiple Step Barcelona water demand simulation using least
squares.

In spite of the slightly unstable pole, the periodic variations of the 15{day
prediction seem to be somewhat smaller than those of the 1{day prediction.

The second approach used �fteen di�erent models. The �rst model is
that of Eq.(4.46). However, this model is only used to predict over a single
day. For the second day prediction, a modi�ed model was used:
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yt+1 =
7X

i=1

�i � yt�i (4.50)

i.e., the water consumption of the second day is predicted directly using
measurement data that lie at least two days behind. The coe�cients found
were:

yt+1 = 0:2953 � yt�1 � 0:0149 � yt�2 + 0:0460 � yt�3

�0:0345 � yt�4 + 0:0549 � yt�5 + 0:7737 � yt�6

�0:1204 � yt�7 (4.51)

As was to be expected, the most important days are now two days back, seven
days back, and eight days back. Just by chance, the sum of the parameters
here is s� = 1:0000, with the poles located at:

r =

0
BBBBBBBBBBB@

1:0000
0:5002 + 0:8300 � i
0:5002 � 0:8300 � i
�0:4717 + 0:8284 � i
�0:4717 � 0:8284 � i

�0:9158
0:1541

1
CCCCCCCCCCCA

(4.52)

with the absolute values:

rabs =

0
BBBBBBBBBBB@

1:0000
0:9691
0:9691
0:9532
0:9532
0:9158
0:1541

1
CCCCCCCCCCCA

(4.53)

Similarly for the three{day to �fteen{day predictions. In all these models,
the sums of the coe�cients assume values in the vicinity of 1.0, with the
largest pole being in the vicinity of z = 1:0, either slightly larger or slightly
smaller, and all other poles being clearly inside the unit circle.

Contrary to the previous approach, this forecast is a pure prediction, as
no previously predicted values are ever being used for future forecasts.
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Figure 4.8 compares the one{day prediction, the eight{day prediction,
and the �fteen{day prediction with the measurement data.
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Figure 4.8: Multiple Step Barcelona water demand prediction using least
squares.

The one{day prediction is identical to that of the simulation approach,
but the eight{day and �fteen{day predictions are clearly better.

Figure 4.9 compares the average errors with those of the FIR prediction.
The prediction mode clearly outperforms the simulation mode. The reason
is that subsequent contaminations of future forecasts by using previously
predicted values cause more damage than the larger horizon of the direct
prediction forecasts.

Both techniques are de�nitely inferior to FIR. They are also inferior to
the trivial weekly prediction. The reason is that the AR model compresses
the entire knowledge about the training data into seven parameter values.
This is only meaningful if the time series is truly stationary. Looking at
Figure 4.3, it is quite evident that this assumption does not hold at all.
The water consumption seems to constantly grow over the 1.5 year training
period. Thus, the parameter values contain information that is no longer
truly relevant.

The author tried to pre�lter the data by subtracting a linear regression
line (obtained by looking at the training data only) from the measurement
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Figure 4.9: Comparative analysis of Barcelona water demand predictions:
Least squares vs. FIR.

data, and also by subtracting a \standard" week (consisting of averages over
each weekday of the training data) from the original time series. The reader
will be saved from having to look at the results. They were even worse! The
reason is that, during the testing period, for the �rst time in a long while,
the consumption seems to decrease, i.e., neither the regression line nor the
average week help with detrending the data. Of course, it would have been
possible to use a di�erentiation approach instead, but this would lead to an
ARI model, which shall be discussed later.

FIR did not su�er from the mildly non{stationary characteristics of the
time series. Due to the �ve{nearest neighbor rule, FIR only looks at very
similar patterns in making forecasts, and therefore, variations that lie within
the range of the training data do not cause insurmountable problems to the
FIR methodology.

Autocorrelation Method

The idea behind the autocorrelation method had been explained earlier in
this chapter. Also the autocorrelation method can be implemented either in
a simulation mode or in a prediction mode.

In the simulation mode, the prediction at time t is a linear combination
of the values obtained for the previous seven days. The resulting model is:

yt = 0:3505 � yt�1 + 0:2170 � yt�2 + 0:1008 � yt�3

+0:0659 � yt�4 + 0:0514 � yt�5 + 0:0649 � yt�6

+0:1495 � yt�7 (4.54)

All coe�cients are positive, since the �rst seven autocorrelation coe�cients
are all positive.
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This time, there is certainly one pole at z = 1:0, since the sum of all
coe�cients has been normalized to 1.0. The pole locations are:

r =

0
BBBBBBBBBBB@

1:0000
0:4886 + 0:5698 � i
0:4886 � 0:5698 � i
�0:6480 + 0:3039 � i
�0:6480 � 0:3039 � i
�0:1653 + 0:7004 � i
�0:1653 � 0:7004 � i

1
CCCCCCCCCCCA

(4.55)

with the absolute values:

rabs =

0
BBBBBBBBBBB@

1:0000
0:7506
0:7506
0:7157
0:7157
0:7196
0:7196

1
CCCCCCCCCCCA

(4.56)

Hence all poles are inside the unit circle except for the single marginally{
stable pole at z = 1:0. Multi{step predictions are obtained by reusing
previous predictions in the process of making new predictions.

In the prediction mode, autocorrelation values from earlier days are being
used. For example, the model of the two{day prediction is:

yt+1 = 0:2458 � yt�1 + 0:1142 � yt�2 + 0:0747 � yt�3

+0:0582 � yt�4 + 0:0735 � yt�5 + 0:1693 � yt�6

+0:2644 � yt�7 (4.57)

where the coe�cients are the normalized autocorrelation values of two up to
eight days away from the center.

Figure 4.10 compares the average errors with those of the FIR prediction.
Just as in the least squares case, the prediction mode outperforms the
simulation mode because of data contamination problems. Although the
errors remain below 25% at all times, the results are consistently worse than
those obtained using least squares.
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Figure 4.10: Comparative analysis of Barcelona water demand predictions:
Autocorrelation vs. FIR.

FIR Weight Method

The idea behind the FIR weight method had been explained earlier in this
chapter. Also this method can be implemented either in a simulation mode
or in a prediction mode.

In the simulation mode, the prediction at time t is a linear combination
of the values obtained for the previous seven days. The resulting model is:

yt = 0:2844 � yt�1 + 0:0530 � yt�2 + 0:0330 � yt�3

+0:0210 � yt�4 + 0:0341 � yt�5 + 0:1590 � yt�6

+0:4155 � yt�7 (4.58)

Here, all coe�cients have to be positive, because the mask qualities are always
positive quantities.

There is certainly one pole at z = 1:0, since the sum of all coe�cients has
been normalized to 1.0. The pole locations are:

r =

0
BBBBBBBBBBB@

1:0000
0:5798 + 0:7142 � i
0:5798 � 0:7142 � i
�0:1991 + 0:8338 � i
�0:1991 � 0:8338 � i
�0:7386 + 0:3500 � i
�0:7386 � 0:3500 � i

1
CCCCCCCCCCCA

(4.59)

with the absolute values:
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rabs =

0
BBBBBBBBBBB@

1:0000
0:9199
0:9199
0:8573
0:8573
0:8173
0:8173

1
CCCCCCCCCCCA

(4.60)

All poles are inside the unit circle except for the single marginally{stable
pole at z = 1:0. Multi{step predictions are obtained by reusing previous
predictions in the process of making new predictions.

In the prediction mode, FIR weights from earlier days are being used.

Figure 4.11 compares the average errors with those of the FIR prediction.
Just as in the previous two cases, the prediction mode outperforms the
simulation mode because of data contamination problems. Although the
errors remain below 20% most of the time, the results are worse than those
obtained using least squares.
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Figure 4.11: Comparative analysis of Barcelona water demand predictions:
Fir weights vs. FIR.

Figure 4.12 compares the three AR prediction modes with each other. It is
interesting to notice that the FIR weight technique consistently outperforms
the autocorrelation method. The reason is that the mask qualities are better
measures of the non{linear correlations between di�erent time instants of this
time series than the autocorrelation values. However, the straight{forward
least squares approximation is still slightly superior.
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Figure 4.12: Comparative analysis of the three AR prediction models for the
Barcelona water demand.

4.8.3 FIR Qualitative Prediction

Neither of the AR techniques could measure up to the performance of the
FIR qualitative simulation in spite of the fact that also FIR has to �ght
against data contamination problems. However, it is perfectly feasible to
also program FIR as a prediction code rather than a simulation code.

The single{step prediction proceeds as before. However, for convenience
(explanation follows), an embedding dimension of 21 was chosen instead of 14.
The mask candidate matrix and the resulting mask are:

mcan =

0
BBBBBBBB@

y

t� 21�t �1
t� 20�t �1
� � � �1
t� 2�t �1
t� �t �1
t +1

1
CCCCCCCCA

; mask =

0
BBBBBBBBBBBBBBBBBB@

y

t� 21�t �1
t� 20�t 0
� � � 0
t� 8�t 0
t� 7�t �2
t� 6�t 0
� � � 0
t� 2�t 0
t� �t �3
t +1

1
CCCCCCCCCCCCCCCCCCA

(4.61)

The mask candidate matrix, mcan indicates by �1 elements, where there are
potential m{inputs, whereas the mask indicates by negative elements where
there are the actual m{inputs. Evidently, FIR liked the idea of an enhanced
embedding dimension and chose a deeper mask.

For a two{step prediction, the value at time (t � �t) cannot be used for
predicting the value at time t, because it is not yet known. In FIR, the
corresponding entry must be masked out in the mask candidate matrix:
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mcan =

0
BBBBBBBB@

y

t� 21�t �1
t� 20�t �1
� � � �1
t� 2�t �1
t� �t 0
t +1

1
CCCCCCCCA

; mask =

0
BBBBBBBBBBBBBBBBBBBB@

y

t� 21�t �1
t� 20�t 0
� � � 0
t� 8�t 0
t� 7�t �2
t� 6�t 0
� � � 0
t� 3�t 0
t� 2�t �3
t� �t 0
t +1

1
CCCCCCCCCCCCCCCCCCCCA

(4.62)

The proposed mask is reasonable. FIR chooses the value two steps back and
one week back as the major elements to base the prediction upon.

For a three{step prediction, the another element must be masked out in
the mask candidate matrix :

mcan =

0
BBBBBBBBBBB@

y

t� 21�t �1
t� 20�t �1
� � � �1
t� 3�t �1
t� 2�t 0
t� �t 0
t +1

1
CCCCCCCCCCCA

; mask =

0
BBBBBBBBBBBBBBBBBBBBBBBBB@

y

t� 21�t �1
t� 20�t 0
� � � 0
t� 17�t 0
t� 16�t �2
t� 15�t 0
� � � 0
t� 8�t 0
t� 7�t �3
t� 6�t 0
� � � 0
t� �t 0
t +1

1
CCCCCCCCCCCCCCCCCCCCCCCCCA

(4.63)

Because of the low correlation with the value three steps back, FIR decided
to ignore this value and choose the values one week back, 16 days back, and
21 days back. The choice of the data point at time (t � 16�t) is hard to
explain, but FIR usually knows what it is doing. This seems to be the best
mask for predicting y(t) given that y(t� �t) and y(t� 2�t) may not be used.
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Since nothing prevents this mask from being selected for the four{, �ve{
, six{, and seven{day predictions, the same mask will be used in all these
cases.

For the eight{day prediction, the following mask was found:

mcan =

0
BBBBBBBBBBBBB@

y

t� 21�t �1
t� 20�t �1
� � � �1
t� 8�t �1
t� 7�t 0
� � � 0
t� �t 0
t +1

1
CCCCCCCCCCCCCA

; mask =

0
BBBBBBBBBBBBBBBBBBBBBBBBB@

y

t� 21�t �1
t� 20�t 0
� � � 0
t� 15�t 0
t� 14�t �2
t� 13�t 0
� � � 0
t� 10�t 0
t� 9�t �3
t� 8�t 0
� � � 0
t� �t 0
t +1

1
CCCCCCCCCCCCCCCCCCCCCCCCCA

(4.64)

Since the data point one week ago can no longer be used, FIR selects the
data point two weeks ago as one of its m{inputs. However, now the data
point at time (t� 16�t) is no longer that attractive, because it is too close to
the one at (t�14�t). Instead, it uses the data point at (t�9�t). However, it
is hard to explain why FIR did not choose the data point at (t� 8�t), which
would have been available as well.

Evidently, the same mask will be selected for a nine{day prediction.
For a ten{day prediction, FIR chooses the following mask:

mcan =

0
BBBBBBBBBBBBB@

y

t� 21�t �1
t� 20�t �1
� � � �1
t� 10�t �1
t� 9�t 0
� � � 0
t� �t 0
t +1

1
CCCCCCCCCCCCCA

; mask =

0
BBBBBBBBBBBBBBBBBBBB@

y

t� 21�t �1
t� 20�t 0
� � � 0
t� 17�t 0
t� 16�t �2
t� 15�t 0
t� 14�t �3
t� 13�t 0
� � � 0
t� �t 0
t +1

1
CCCCCCCCCCCCCCCCCCCCA

(4.65)
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The youngest data point at time (t � 10�t) is not attractive because of low
correlation, and therefore, FIR chooses again the value at (t � 16�t) as an
additional m{input.

This mask is acceptable also for 11{, 12{, 13{, and 14{day predictions.
Only the 15{day prediction uses again a di�erent mask:

mcan =

0
BBBBBBBBBBBBB@

y

t� 21�t �1
t� 20�t �1
� � � �1
t� 15�t �1
t� 14�t 0
� � � 0
t� �t 0
t +1

1
CCCCCCCCCCCCCA

; mask =

0
BBBBBBBBBBBBBBBBBBBB@

y

t� 21�t �1
t� 20�t 0
t� 19�t 0
t� 18�t �2
t� 17�t 0
t� 16�t 0
t� 15�t �3
t� 14�t 0
� � � 0
t� �t 0
t +1

1
CCCCCCCCCCCCCCCCCCCCA

(4.66)

Notice that the embedding dimension was chosen identical for all masks,
i.e., the mask could not have selected any values earlier than (t � 21�t).
It was necessary to enhance the embedding dimension to 21, in order to
provide enough �1 elements in the mask candidate matrices for multi{step
predictions.

Notice also that the complexity of the mask (the maximum number of
non{zero elements) was limited to 5 in the optimal mask search, i.e., no
mask could have used more than four m{inputs, but this was not a problem,
as FIR consistently preferred masks of complexity 4, i.e., masks with three
m{inputs.

The forecasting now proceeds exactly as before, however, in multi{step
predictions, the masks are switched in accordance with the above proposed
scheme, in order to prevent FIR from using already contaminated data as
m{inputs.

Figure 4.13 compares the FIR qualitative prediction with the previously
used FIR qualitative simulation. If the lesson learned from the three AR
models extends to FIR as well, the errors would be expected to be yet smaller.

It was not to be. Although the FIR prediction mode generates results
that are still better than those obtained using many of the other approaches,
the FIR simulation method fared signi�cantly better. Because FIR produces
better predictions, the method is less vulnerable to data contamination than
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Figure 4.13: Comparison of FIR prediction and simulation for Barcelona
water demand.

the other approaches. Here, the larger prediction horizon apparently was too
dire a price to pay2.

4.8.4 ARIMA Predictions

Using the approach described earlier in this chapter, the following ARIMA
model was derived for Series B:

Y (z) =
0:9460 � z7

((z7 � 0:5778 � z6 � 0:2093) � (z7 � 1)
�E(z) (4.67)

taking into account the weekly cycle of Series B.
Analyzing the stability of the method, it can be found that the

denominator polynomial to the right, (z7 � 1), has seven roots that are all
marginally stable, equidistantly spaced around the unit circle of the complex
z{plane. The denominator polynomial to the left, (z7� 0:5778 � z6� 0:2093),
has the following seven roots:

r =

0
BBBBBBBBBBB@

0:9209
0:5916 + 0:5962 � i
0:5916 � 0:5962 � i
�0:1068 + 0:7602 � i
�0:1068 � 0:7602 � i
�0:6563 + 0:3406 � i
�0:6563 � 0:3406 � i

1
CCCCCCCCCCCA

(4.68)

2The comparison, as presented here, is unfairly biased in favor of the FIR qualitative
simulation. Details of why this is the case will be provided in Chapter 6 of this dissertation,
where the issue will be resumed.
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with the absolute values:

rabs =

0
BBBBBBBBBBB@

0:9209
0:8399
0:8399
0:7676
0:7676
0:7395
0:7395

1
CCCCCCCCCCCA

(4.69)

Hence the method is indeed marginally stable, as desired.
The model is implemented as follows. Starting with the following initial

errors:

et�1 = yt�1 � yt�8 (4.70)

et�2 = yt�2 � yt�9

et�3 = yt�3 � yt�10

et�4 = yt�4 � yt�11

et�5 = yt�5 � yt�12

et�6 = yt�6 � yt�13

et�7 = yt�7 � yt�14

the following recursive formulae are implemented:

et = 0:9460 � et�7 (4.71)

yt = 0:5778 � yt�1 + 1:2093 � yt�7 � 0:5778 � yt�8

�0:2093 � yt�14 + et

This method �nally led to decent results.
Figure 4.14 compares the ARIMA simulation with the previously obtained

FIR qualitative simulation.
FIR outperformed also the ARIMA prediction, but not by much. The

ARIMA prediction is rather decent. Why did this methodology perform
better than other linear prediction methods? The answer is simple: ARIMA
is the only method that makes explicit use of the time-varying nature of
Series B. It exploits explicitly the weekly cycle. None of the other techniques
(including FIR) paid any attention to this piece of information.
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Figure 4.14: Comparison of ARIMA and FIR simulations for Barcelona water
demand.

Figure 4.15 shows the single{day, eight{day, and 15{day predictions
obtained using the ARIMA model. Contrary to FIR, ARIMA does not �lter
out noise, i.e., the standard deviation does not get reduced in multi{step
predictions.
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Figure 4.15: Multi{day predictions of Barcelona water demand using ARIMA
model.

In (Quevedo et al. 1988), an improved ARIMA (Box{Jenkins) model was
proposed for the same system. That model used interventions to account for
the e�ects of holidays on water consumption, i.e., it paid attention to the
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vacation month of August as well as the most important public holidays in
Barcelona, such as Easter and Christmas. This model was able to reduce
the one{day prediction error to about the same levels as FIR. No multiple{
day predictions were made at that time, because the customer, Aig�ues de
Barcelona, did not require predictions beyond one day.

This model, which is considered the most important reference for
comparison of the forecasting results of the Barcelona water demand series,
is still in use today in the city's water distribution management system.
The model was able to reduce the one{day prediction error signi�cantly as
compared to the simpler ARIMA model presented in this thesis.

Constructing this sophisticated ARIMA model was a rather elaborate
task. The interventions applied to the series by this model are speci�c to this
series, and required a minute understanding and analysis of the phenomena
that dictate the water consumption in Barcelona.

In contrast, the FIR model could be set up within a few hours, and doing
so did not require any analysis of the time series at all. The �ve{nearest{
neighbor rule provides FIR with a feature that is somehow similar in its e�ects
to the interventions of the ARIMA model, at least for holidays that extend
beyond a single day. The fact that FIR was able to produce forecasting
errors that are not signi�cantly di�erent from those obtained by the much
more sophisticated ARIMAmodel, speaks for FIR's ability to extract most of
the information provided in the training data set automatically and reliably.

4.8.5 NAR Predictions

Why did FIR outperform even the ARIMA predictions introduced in
the previous section? Maybe, because the system is non{linear, and all
estimators that were introduced so far, with the exception of FIR, were linear
estimators. In the sequel, two non{linear estimators shall be introduced.

Both the aggregation method and the re�nement method introduced
earlier were used to come up with the best NAR model for Series B. The
resulting model uses the following recursion formula:

yt = 0:6510 � yt�1 + 0:4747 � yt�7 � 0:3036 � yt�8 + 0:3128 � yt�14(4.72)

�0:1763 � 10�6 � y2t�9 � 0:5277 � 10�6 � y2t�15

The quadratic terms have small coe�cients, but they are nevertheless
important, since they get multiplied with y2, rather than y, where ky(t)k �
2 � 105 m3.

Figure 4.16 compares the NAR simulation with the previously obtained
ARIMA and FIR simulations.
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Figure 4.16: Comparison of NAR, ARIMA, and FIR simulations for
Barcelona water demand.

The results are not as good as those obtained for either the ARIMA
or the FIR model. Figure 4.17 shows the single{day, eight{day, and 15{day
predictions obtained using the NARmodel. Although there was no guarantee
for stability, the predictions seem to be stable. Yet, and this is one of the
major drawbacks of the NAR methodology, there is no guarantee that the
predictions will always remain stable.
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Figure 4.17: Multi{day predictions of Barcelona water demand using NAR
model.
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4.8.6 ANN Predictions

Earlier investigations have shown that FIR and ANN are two comparative
techniques in the sense that FIR usually works well, when ANN performs
well, and vice{versa. Thus, it makes sense to also generate an ANN model
of the same series for the purpose of comparing it with the other models.

The ANN constructed to this end is a standard feed{forward network,
trained using backpropagation. The network contains 14 input nodes,
receiving the signals yt�1 . . . yt�14. It contains a single output node, delivering
the estimate yt. It furthermore contains one hidden layer with 20 neurons.
All neurons use sigmoidal activation functions of the hyperbolic tangent (tgh)
type.

The model is based on an earlier model of identical structure (Gri~n�o
1992). Like its predecessor, the model was both trained and simulated in
NeuralWorks (NeuralWare 1993). The weights were re{identi�ed, since full
information about the earlier model was no longer available.

The multi{step prediction errors are presented in Figure 4.18, which
compares the ANN simulation with the previously obtained ARIMA and
FIR simulations.
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Figure 4.18: Comparison of ANN, ARIMA, and FIR simulations for
Barcelona water demand.

The one{day and two{day predictions are almost as good as the ARIMA
predictions, but for longer{term predictions, this ANN model performs
poorly.

Figure 4.19 shows the single{day, eight{day, and 15{day predictions
obtained using the ANN model. As was the case for the NAR model, there
is no guarantee of stability. Contrary to the NAR model, the identi�ed
ANN model is unstable, i.e., if predictions are made over multiple days, the
oscillations grow in amplitude. This is the reason for the poor performance
of the proposed ANN model when applied to multiple{day predictions.
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Figure 4.19: Multi{day predictions of Barcelona water demand using ANN
model.

FIR is the only one among the non{linear modeling technique discussed
in this chapter that is guaranteed to remain stable when used in a simulation
mode. FIR can make incorrect predictions, but never unstable ones. It would
not know how. FIR can only predict patterns that it has seen before.

Of course, it would be possible to program an ANN that can be used in
prediction mode. To this end, one could either program a single ANN with
15 output nodes, one for each of the subsequent 15 days, or alternatively, one
could program 15 separate ANNs with one output node each, each predicting
a di�erent day. In such an approach, stability would not be an issue.

There exist many di�erent types of ANNs: feedforward vs. recurrent
networks, static vs. dynamic networks (Korn 1995). Unfortunately, there
does not exist any theory that could be used to decide, which type of ANN
would work best in any given situation, i.e., the task of �nding the best
possible ANN for any given problem is a very tedious task indeed. In this
chapter, only the simplest, though most widely used, type was discussed.
There is no particular reason why this type of ANN should be the one best
suited for the task at hand. Hence the search for competing methods has
certainly not been exhaustive.
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4.9 Time Series R: RotterdamWater Demand

The second time series discussed in this chapter represents the water demand
of a part of the city of Rotterdam, called the Berenplaat (Europoort 1986).
The measurement data are shown in Figure 4.20. The total water volume
contained in this system is ky(t)k � 2:5 �105 m3, i.e., comparable in size with
that contained in the Barcelona system.
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Figure 4.20: Rotterdam water demand data.

Series R can be classi�ed as shown in Table 4.2. The behavior of Series R
is considerably more stochastic than that of Series B. No explanation has
been found, why this is the case. A smaller subdivision would be expected to
contain more variability in the data, i.e., more \noise." Yet, the subdivision
considered in the Berenplaat system is not smaller than that considered in
the Barcelona system. Yet, Series R must be classi�ed as noisy. Luckily, more
measurement data were available for Rotterdam, namely 10 years worth of
daily measurements, from January 1986 to December 1995.

There is quite a bit of auto{correlation contained in Series R, as shown
in Figure 4.21, which makes it probable that meaningful predictions can be
made. As in the case for Barcelona, also this auto{correlation function shows
a weekly cycle. However, the peaks are much smaller and decay much more
rapidly than in the case of the Barcelona series. There exists a signi�cant
seasonal cycle, but this may be di�cult to exploit, since the peak in the
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Table 4.2: Classi�cation of Time Series R.

natural R synthetic
stationary non{stationary R

time invariant time varying R
low dimensional stochastic R

clean noisy R
short long R

dormant active R
documented R blind

linear non{linear R
scalar R vector

single recording R multiple recordings
continuous R discrete

auto{correlation function reached after 365 days exhibits an amplitude that
is only about as high as that after 50 days.

Due to the more stochastic nature of this time series, more data points
were needed for model identi�cation. Of the available 10 years of data,
9.5 years (corresponding to 3500 data points) were used as training data
(i.e., for model identi�cation), whereas the remaining 0.5 years worth of data
were used as testing data (i.e., for model validation).

4.9.1 FIR Qualitative Simulation

Due to the shape of the autocorrelation function, it was decided to limit the
mask depth to seven days. FIR found the following optimal mask:

0
BBBBBBBBBBBBB@

y

t� 7�t �1
t� 6�t 0
t� 5�t 0
t� 4�t 0
t� 3�t �2
t� 2�t 0
t� �t �3
t +1

1
CCCCCCCCCCCCCA

(4.73)

Again, the model that FIR proposes is quite reasonable. Because of the more
rapid decay of the auto{correlation function, the data point y(t � 14�t) is
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Figure 4.21: Auto{correlation of Rotterdam water demand data.

less relevant than in the previous case. Instead, FIR chose to also use the
data point y(t� 3�t) for the prediction.

Figure 4.22 shows the averaged error, err[j], and the two averaged
accumulated con�dence functions, ca[j], as a function of the number of
sampling periods, j, that the measurement data lag behind the prediction.
Just as in the case of the Barcelona series, the errors are compared to those
of the daily and weekly trivial predictors.

This time, the daily trivial prdictor performed better than the weekly
trivial predictor, which is not surprising, taking into account the weeker
weekly cycle of Series R. Both trivial predictors outperformed FIR by leaps
and bounds, i.e., FIR did not predict anything.

Looking at the con�dence values, they are about equally high for the
Rotterdam series as for the Barcelona series. The reason is that Series R
o�ers considerably more training data, i.e., FIR is able to �nd plenty of
close neighbors in the input space. It simply happens that there is a large
dispersion between predicted outputs for similar neighbors, which makes it
impossible for FIR to know what to predict. The dispersion between outputs
is punished in the con�dence formula (as shall be shown in the next chapter),
but evidently not enough to raise a serious 
ag.

Figure 4.23 compares the one{day prediction, the eight{day prediction,
and the �fteen{day prediction with the measurement data.
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Figure 4.22: Rotterdam water demand multiple{step simulation using FIR.

Essentially, FIR is doing the same as the trivial daily predictor: its
predictions lag one day, eight days, and 15 days behind, simply because
the unknowable cannot be predicted.

Now that FIR has been defeated, it will be interesting to check how the
contending methodologies fare in this case.

4.9.2 AR Predictions

In the sequel, FIR is being compared against three di�erent AR models, one
using least squares, the second using the autocorrelation coe�cients, and the
third using the FIR mask qualities.

Least Squares Method

As in the case of Series B, a simulation model and a prediction model have
been computed. Figure 4.24 compares the average errors of these models
with those of the FIR prediction and with the trivial daily predictor.

The prediction mode and the simulation mode work about equally well.
Both outperform FIR, but neither of them reaches the \quality" of the
trivial predictor, i.e., also these estimators do not accomplish anything. FIR
outsmarts itself trying to make sense out of correlated noise.
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Figure 4.23: Rotterdam water demand multiple{step simulation using FIR.

Autocorrelation Method

In analogy with the Barcelona series, the auto{correlation approach shall now
be tried both in simulation and in prediction mode. Figure 4.25 compares
the average errors with those of the FIR prediction as well as with the trivial
daily predictor.

If there is anyhting exploitable in this series beyond the correlation with
the previous day, this method should �nd it. There simply is no information
in this data set that can be exploited. The auto{correlation method works
as well (and as poorly) as the least squares method. Both outperform FIR,
but neither can measure up to the performance of the trivial predictor.

FIR Weight Method

Figure 4.26 compares the average errors of the FIR weight method with those
of the FIR prediction and with those of the trivial predictor.

The performance is exactly the same as for the previous two methods.
Why does FIR perform more poorly? All of the other techniques preserve the
mean value and standard deviation. FIR recognizes the garbage data as noise
and starts �ltering the noise out, thereby e�ectively reducing the standard
deviation. Over multiple steps, its performance approaches that of the na��ve
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Figure 4.24: Comparative analysis of Rotterdam water demand predictions:
Least squares vs. FIR.
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Figure 4.25: Comparative analysis of Rotterdam water demand predictions:
Autocorrelation vs. FIR.

predictor. This is severely punished in the error formula used. Is this good
or bad? The answer to this question depends on the point of view. If the
unpredictable data are interpreted as valuable information, then the AR
techniques indeed outperform FIR. If, on the other hand, the unpredictable
nature of the data is interpreted as noise, then FIR does exactly what it is
supposed to do: namely try to rid itself of the noise.

In the sequel, the more serious contenders shall be analyzed.

4.9.3 ARIMA Predictions

The following ARIMA model for Series R:

Y (z) =
(z � 0:45) � (z7 � 0:95)

(z � 1) � (z7 � 1)
� E(z) (4.74)

was taken from the open literature (Baggelaar 1992). This was the best
ARIMA model that the researchers in Rotterdam found. As in the case of
Barcelona, the model was only used for single{day predictions.
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Figure 4.26: Comparative analysis of Rotterdam water demand predictions:
Fir weights vs. FIR.

Analyzing the stability of the method, it can be seen that the method
is indeed marginally stable, as desired. However, there is a double pole at
z = 1, which can be potentially harmful, as it acts like an open integrator
on the mean value of the series to be predicted, i.e., it can be expected that,
over multiple{day predictions, the signals will, on average, grow linearly in
magnitude, rather than staying constant.

In accordance with (Baggelaar 1992), the model was implemented using
the following recursion:

et = N(0; 1) (4.75)

yt = yt�1 + yt�7 � yt�8

+et � 0:45 � et�1 � 0:95 � et�7 + 0:4275 � et�8

where N(0; 1) denotes a random number that is normally distributed with a
mean value of 0:0 and a standard deviation of 1:0.

Figure 4.27 compares the ARIMA simulation with the previously obtained
FIR qualitative simulation as well as the trivial predictor.

The method evidently fares about as badly as FIR. Figure 4.28 shows the
single{day, eight{day, and 15{day predictions obtained using the ARIMA
model.

As expected, the predictions grow in amplitude over multiple{day
predictions in spite of the fact that the method is marginally stable. The
model had never been intended for multiple{day predictions, i.e., this
performance may be acceptable. However, even the single{day prediction
is worse than the trivial prediction, at least, when using the error formula
that was proposed in Chapter 3 of this dissertation.
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Figure 4.27: Comparison of ARIMA and FIR simulations for Rotterdam
water demand.

4.9.4 NAR Predictions

Both the aggregation method and the re�nement method introduced earlier
were used to come up with the best NAR model for Series R. The resulting
model uses the following recursion formula:

yt = 0:65753 � yt�1 + 0:06674 � yt�2 + 0:31 � yt�14 (4.76)

+0:0011723 � yt�3 � yt�7 � 0:0009048 � yt�3 � yt�8

�0:0003983 � y2t�15

Figure 4.29 compares the NAR simulation with the previously obtained FIR
simulations as well as the trivial predictor.

NAR performs a little better than FIR, but not as well as the trivial
predictor. Figure 4.17 shows the single{day, eight{day, and 15{day
predictions obtained using the NAR model.

Similarly to FIR, the NAR model here ignores the higher frequency
components of the series, i.e., the noise, and essentially predicts the mean
value.

4.9.5 ANN Predictions

Finally, an ANN model was constructed. It is the same type of ANN that
was used for the Barcelona data. However, the Rotterdam network only
contains seven input nodes, receiving the signals yt�1 . . . yt�7. It contains a
single output node, delivering the estimate yt. It furthermore contains one
hidden layer with 10 neurons. As before, all neurons use sigmoidal activation
functions of the hyperbolic tangent type.

The multi{step prediction errors are presented in Figure 4.31, which
compares the ANN simulation with the previously obtained FIR simulations
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Figure 4.28: Multi{day predictions of Rotterdam water demand using
ARIMA model.

as well as with the trivial predictor. The ANN fares a little better than the
FIR model.

Figure 4.32 shows the single{day, eight{day, and 15{day predictions
obtained using the ANN model. Although there is no guarantee of stability,
this ANN model seems to be stable.

What can be concluded? None of the techniques that were applied to
Series R outperformed the dayly trivial predictor. The fact that a series
contains a signi�cant amount of auto{correlation does not necessarily make it
predictable beyond what the trivial predictor can accomplish. FIR performed
a little worse than all other techniques, in terms of the chosen error function,
because it considers the high{frequency behavior of Series R to be noise and
correspondingly �lters it out.

Looking at the training data, a strong seasonal dependency can be
observed. Clearly, it should be possible to predict the seasonal variation.
However, to this end, a di�erent set of experiments is needed. The series
is seriously oversampled for the purpose of predicting seasonal variations.
In terms of FIR terminology, a mask of considerably larger depth would be
needed in order to predict the seasonal variations. Yet, such a mask would
not help at all for the purpose of predicting the daily water consumption.
There simply is not enough information contained in the data to predict the
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Figure 4.29: Comparison of NAR and FIR simulations for Rotterdam water
demand.

daily consumption better than using the trivial predictor.
Overall, FIR is the most robust of all the techniques applied. It exploits

non{linear system behavior con�dently and reliably, without ever turning
unstable. It is less a�ected than most other techniques by mildly non{
stationary system behavior, and the method can be applied very easily.
Constructing a FIR model is not more complicated than constructing an
AR model.
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Figure 4.30: Multi{day predictions of Rotterdam water demand using NAR
model.
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Figure 4.31: Comparison of ANN and FIR simulations for Rotterdam water
demand.
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Figure 4.32: Multi{day predictions of Rotterdam water demand using ANN
model.



Chapter 5

Con�dence Measures for

Predictions in Fuzzy Inductive

Reasoning

5.1 Introduction

Models never re
ect all facets of reality. They are always reductionistic in
nature, and consequently, simulation results are never totally reliable. Hence
it is important to always interpret simulation results with caution and a
certain degree of scepticism.

The degree of uncertainty associated with a model of a system depends
heavily on the nature of that system. Simple man{made engineering systems,
such as electronic circuits, are characterized by a small degree of uncertainty,
since it is an actual design goal when producing these systems to keep the
degree of uncertainty small. On the other hand, biological or economic
systems are usually characterized by a fairly large degree of uncertainty.

Although the request for scepticism is a good mandate on moral grounds,
it is doubtful whether such a demand is also practical. How should,
for example, medical practitioners know how to judge the reliability of a
prediction made about the status of one of their patients? They have no way
of assessing the reliability of a prediction made by an obscure simulation
model that is driven by measurement data taken from the patient. In all
likelihood, the model underlying this simulation was developed by someone
else, and they may not even know how it works. All they know is how to
interpret the results that come out of the computer. Hence it is important to
instil scepticism into the simulation software itself, rather than demanding
it of its users.
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Assessing the inaccuracy of a simulation result is in itself a modeling task.
Yet, the same methodology that is used to model the output to be predicted
cannot be used to model its error. This would lead to a paradoxical situation.
If it indeed were possible to compute, in a deterministic sense, the inaccuracy
of a prediction made, then one could simply subtract the predicted prediction
error from the prediction itself and obtain the precise value of the output.
Evidently, this cannot be done. The modeling error can only be modeled in
a statistical sense.

In this chapter, two con�dence measures implemented inside the fuzzy
inductive reasoning methodology will be described that assess the error of a
prediction made simultaneously with making the prediction.

In a robust modeling methodology capable of dealing with model
uncertainty (as qualitative modeling techniques should always be), modeling
the modeling error should not be an afterthought. Modeling the output and
modeling its error should be done simultaneously. A modeling and simulation
methodology that does not take the model uncertainty into consideration
from the beginning is not robust when dealing with uncertain situations.

In the next section, the problems behind making decisions under
uncertainty are illuminated. In the subsequent sections, the two con�dence
measures, a proximity measure and a similarity measure, are described in the
context of the Fuzzy Inductive Reasoning (FIR) methodology.

The chapter ends with an analysis of the con�dence measures obtained for
two time series, which help to discuss the e�ectiveness of the two proposed
con�dence measures.

A shorter version of this chapter has meanwhile been accepted for
publication in a special issue on FIR of the International Journal of General
Systems (Cellier et al. 1998).

5.2 Decision Making Under Uncertainty

In Chapter 3, it was shown that FIR uses a normalized defuzzi�cation, the
position value, to determine the �ve nearest neighbors of a new input record in
the experience data base. The same information is also being used to quantify
the relative importance of these neighbors in interpolating the position value
of the data point to be predicted in the output space.

Normalization is important, because the di�erent variables making up a
record in a multivariate time series may represent di�erent physical variables
that can be of vastly di�erent magnitudes. For example, the �rst m{input,
i1, may represent yesterday's water consumption of a rural area of Catalunya,
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whereas i2 may represent yesterday's ambient temperature in the same area,
assuming that the water consumption depends on the temperature, because
orchards will need to be watered only during summer months, i.e., when it
is hot. If i1 is measured in m3=day and i2 is measured in oC, the numerical
values of the two variables will di�er by several orders of magnitude. In
order to be able to compare them to each other, these variables need to be
normalized.

The position values, pi, used by the FIR methodology map each variable
into the range [1; ncl], where ncl denotes the number of classes associated with
the fuzzi�cation of the given variable, usually a number between three and
�ve. Thus, if i1 and i2 are both fuzzi�ed into three classes, kp1k � kp2k � 2:0,
although ki1k � 2 � 105 and ki2k � 20:0.

Figure 5.1 explains the mapping of the input space to the output space.
Each m{input, ij, is represented by its position value pj .

i1 i2 i3 o

p
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p
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p
3
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Output
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p
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3

p
out

p
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Figure 5.1: Mapping of input space to output space.

The variable pj represents the position value of the jth m{input. It also
represents an independent variable (an axis) in the n{dimensional input
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space, where n is the number of m{inputs. The individual pj values are
concatenated to form the input position vector, pin:

pin = [p1; p2; : : : ; pn] (5.1)

Thus, pin is a vector in the n{dimensional input space.

The variable pout represents the scalar output position value in the one{
dimensional output space. The experience data base is a fuzzy metric that
maps input positions in the vector input space to output positions in the
scalar output space.

The map is incomplete, since the experience data base does not contain
records for every possible input position, and it may be inconsistent, since
very similar or even identical input positions can be mapped into quite
di�erent output positions.

A FIR prediction consists of comparing a new input position with its �ve
nearest neighbors in the experience data base (the training data set), and
making a prediction about the corresponding output position by interpolating
among the output positions of the �ve nearest neighbors in the output
space. This is a process of decision making under uncertainty because of
the incompleteness and potential inconsistency of the records contained in
the training data set.

Because of this uncertainty, a con�dence value should be associated with
every prediction made. The con�dence value needs to take into account the
quantity of information contained in the training data set, i.e., the degree of
completeness, as well as its quality, i.e., the degree of consistency.

Table 5.1 explains these two aspects in more detail.

Table 5.1: Decision making under uncertainty.

Quantity of Information Experience Ignorance
Quality of Information Competence Confusion

Decision Con�dence Insecurity

The quantity of information denotes the amount of knowledge (or
experience) contained in the experience data base. It is directly related to
the number of data records contained in the training data set and also to the
richness in excitation.

Figure 5.2 shows the dispersion among the �ve nearest neighbors in the
input space. The new input vector is represented by a square box (actually an
n{dimensional hypercube) drawn into the n{dimensional input space. The
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�ve nearest neighbors are represented by circles (n{dimensional hyperglobes)
drawn into the same space.
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Figure 5.2: Dispersion among neighbors in input space.

The variable dj denotes the \distance" of the jth neighbor from the new
input record. The \distance" value can denote a Euclidean distance or any
other suitable norm:

dj = kpin � pin
jk (5.2)

The dispersion among the �ve nearest neighbors in the input space can
be used as a measure of the quantity of information. For example, when
predicting uncorrelated white noise (an impossible task), the dispersion
among the neighbors in the input space can be fully controlled by adding
more and more data records to the training data set. Thus, it is possible to
gather as much information as one wants about uncorrelated white noise.

Yet, the prediction will not contain any information, because the quality
of information is nil, since the dispersion of ouput positions in the output
space for the �ve nearest neighbors will cover the entire range of possible
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values from 1:0 to ncl. This is shown in Figure 5.3, where the maps for the
�ve nearest neighbors from the input space to the output space are shown.

Input Space

Output Space

1 ncl2 ...

Figure 5.3: Dispersion among neighbors in output space.

Although the �ve nearest neighbors are close to each other in the input
space (small dispersion in the input space), the corresponding observed
output positions cover the entire range of values between 1:0 and ncl (large
dispersion in the output space), i.e., making a prediction is like throwing
a dice, which of course, is the best that can be done when predicting
uncorrelated white noise.

In the sequel, two di�erent quality measures are presented that estimate
the con�dence associated with a prediction. One is based on the concept of
proximity, the other is based on the concept of similarity with and among
the �ve nearest neighbors in the training data set.
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5.3 The Proximity Measure

The idea behind assessing the reliability of a prediction by means of a
proximity measure is related to establishing distance measures between the
testing input state and the training input states of its �ve nearest neighbors
in the experience data base, and to establishing distance measures between
the output states of the �ve nearest neighbors among themselves.

The average distance used to determine the input con�dence measure
is computed as a weighted sum of the relative distances of the �ve nearest
neighbors in the input space:

dconfin =
5X

j=1

wj
rel � d

j (5.3)

where wj
rel are the relative weights, established in Chapter 3 of this thesis,

that are themselves functions of the distances dj between the new input
position and its jth nearest neighbor.

The largest possible input distance value can be calculated as:

dconfinmax
=

vuut nX
i=1

(ni � 1)2 (5.4)

where ni is the number of classes used in the fuzzi�cation of the ith input
variable, assuming that a Euclidean norm is used in the computation of
distances.

Consequently, the con�dence value related to the proximity of the �ve
nearest neighbors in the input space can be de�ned as:

confproxin = 1:0 �
dconfin

dconfinmax

(5.5)

where confproxin is real{valued in the range [0:0; 1:0], and larger values denote
a higher con�dence. Consequently, confproxin can be used as a quality measure
(Cellier 1991).

A position value for the m{output associated with the testing data can
be estimated using a weighted sum of the m{outputs of the �ve nearest
neighbors:

posout =
5X

j=1

wj
rel � pos

j (5.6)

The distance between the estimatedm{output and any one of its �ve nearest
neighbors is:
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disjout = kposout � posjk (5.7)

The average distance used to determine the output con�dence measure is
computed as a weighted sum of the relative distances of the �ve nearest
neighbors in the output space:

dconfout =
5X

j=1

wj
rel � dis

j
out (5.8)

The largest possible output distance value can be calculated as:

dconfoutmax
= nout � 1 (5.9)

where nout is the number of classes of the m{output.
The con�dence value related to the proximity of the �ve nearest neighbors

in the output space can be de�ned as:

confproxout = 1:0�
dconfout

dconfoutmax

(5.10)

where confproxout is real{valued in the range [0:0; 1:0], and larger values denote
a higher con�dence. Consequently, confproxout can also be used as a quality
measure.

Finally, the overall con�dence is evaluated as the product of the individual
con�dence measures in the input and output spaces:

confprox = confproxin � confproxout (5.11)

5.4 The Similarity Measure

Measures of con�dence can also be de�ned without the explicit use of a
distance function. The input distance function is a scalar function over a
vector space. This function throws potentially useful information about the
position vectors away. Similarity measures avoid this problem by de�ning a
similarity function between the position vectors themselves.

The similarity measure proposed in this chapter is a generalization of the
classical set{theoretic equality functions. The generalization relies on the
de�nitions of cardinality and di�erence in fuzzy set theory. The similarity
measure presented in this section is based on intersection, union, and
cardinality. It was originally proposed (in an entirely di�erent context) by
(Dubois and Prad�e 1980).
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S1(A;B) =
kA \ Bk

kA [ Bk
(5.12)

Clearly, when A = B, then S1(A;B) = 1:0, and when A and B are totally
disjoint, then S1(A;B) = 0:0, i.e., the similarity function S1(A;B) can serve
as a quality measure.

Up to this point, the position values pi have been normalized in the range
[1:0; ni], where ni is the number of classes associated with the variable ii.
For the purpose of de�ning a similarity measure, it is more appropriate to
re{normalize the position values into the range [0:0; 1:0]:

qi =
pi � 1

ni � 1
(5.13)

The qi variables assume values in the range [0:0; 1:0]. Similarly, a re{
normalized position value for the ith m{input of the jth nearest neighbor
in the experience data base can be computed as:

qji =
pji � 1

ni � 1
(5.14)

The similarity of the ith m{input of the jth nearest neighbor to the testing
m{input based on intersection can then be de�ned as follows:

simj
i =

min(qi; q
j
i )

max(qi; q
j
i )

(5.15)

The overall similarity of the jth neighbor is de�ned as the average similarity
of all its m{inputs in the input space:

simj
in =

1

n

nX
i=1

simj
i (5.16)

The position value of the m{output of the jth neighbor can be re{normalized
as follows:

qj =
pj � 1

nout � 1
(5.17)

where nout denotes the number of classes associated with the output variable.
A normalized position value for the testing m{output can be estimated using
a weighted sum of the re{normalized position values of the m{outputs of the
�ve nearest neighbors:
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pout =
5X

j=1

wj
rel � p

j (5.18)

Notice that Eq.(5.18) indirectly introduces the concept of distance again,
since the relative weights, wj

rel, are depending on dj .
The similarity of the jth neighbor to the estimated testing m{output

based on intersection can be de�ned as follows:

simj
out =

min(qout; qj)

max(qout; qj)
(5.19)

A con�dence value based on similarity measures can thus be de�ned in the
following fashion:

confsim =
5X

j=1

wj
rel � sim

j
in � sim

j
out (5.20)

Also confsim is a quality measure, i.e., a real{valued quantity in the range
[0:0; 1:0], where values close to 1:0 denote a reliable forecast.

5.5 Applications

In this section, two separate applications are discussed. Both con�dence
measures are computed in parallel, and compared to each other to evaluate
their e�ectiveness at predicting forecasting errors.

Figure 5.4 shows Series L that had been introduced in Chapter 3,
superposing in the top portion of the �gure the actual measurement data
(solid line) with the forecast (dashed line). Underneath, the two con�dence
measures are plotted.

The results obtained are rather interesting. It can be observed that
both con�dence measures produce similar results, whereby the con�dence
values obtained by the similarity measure are, on average, lower than those
obtained by the proximity measure. The similarity measure is somewhat
more sensitive, and therefore more reliable.

In Chapter 3, the L Series had been classi�ed as natural rather than
synthetic, because the data are indeed taken from a laser experiment
(Weigend and Gershenfeld 1994). Yet, the data can be explained easily by
the well{known Lorenz equations:

dX

dt
= � � Y � � �X
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Figure 5.4: FIR con�dence measures for Series L.

dY

dt
= �X � Z + r �X � Y

dZ

dt
= X � Y � b � Z

I = X2 (5.21)

The variable plotted in �gure 5.4 is the laser intensity, I.

Hopf bifurcation occurs as a function of the Rayleigh number, r, keeping
the Prandtl number, �, and the parameter b = 4�2=(�2 + k2), where k is a
dimensionless (normalized) wave number, constant.

The con�dence values are generally much lower in the vicinity of the
peaks of the laser intensity. This is meaningful, since the sensitivity to
parameter variations in the Lorenz equations is indeed largest in the vicinity
of the peaks. FIR detects this sensitivity, and provides considerably lower
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con�dence values in the vicinity of these peaks. It could be thought that
the lower con�dence values are caused by data deprivation. Since there are
less data points available recording the behavior around the peaks, less good
neighbors are available in the input space. However, this is not the major
problem. With 10,000 samples, there are enough data points to �nd good
neighbors also in the vicinity of the peaks. The con�dence values are indeed
reduced due to dispersion among the outputs of the �ve nearest neighbors,
which is a re
ection of the aforementioned increased parameter sensitivity.

Because of the high parameter sensitivity around the peaks, it is
impossible to predict the amplitude of the next peak, although the behavior
in between peaks can be predicted fairly well. Due to the same parameter
sensitivity, also the time of the next switch{over event cannot be predicted
precisely. Yet, as the amplitudes of the peaks grow, the probability of a
switch{over event increases. FIR detects this also. As time progresses, FIR
has less and less con�dence in its predictions of peaks. Only after the next
switch{over event took place, FIR gains renewed con�dence in its predictions.

Yet, the Lorenz equations are even more interesting than that. Although
the precise time of the next switch{over event cannot be predicted, the
average time between switch{over events, i.e., the average switch{over
frequency (ASF), is prefectly predictable. For a given set of parameters
fr; �; bg, the value of ASF is constant. Yet, also ASF depends on r. As
r increases, ASF increases with it. The laser operates at a value of r that
is just below a bifurcation point of ASF , i.e., as r is slightly increased,
ASF doubles. FIR picks even this bifurcation up. In the center between
two neighboring switch{over events, FIR becomes more insecure, because it
senses the onset of a switch{over event that never takes place, because r is a
little too small. Once the danger is over, FIR becomes more con�dent again
in its predictions, until the next switch{over event approaches.

In order to quantitatively test the e�ectiveness of the two con�dence
measures, a local prediction error needs to be de�ned. This can be done in a
similar fashion to the error de�nition provided in Chapter 3, but the formula
must be adjusted, because now, a point{wise error is needed.

The following approach is proposed. First, the observed testing data
(meas) and the predicted testing data (pred) are jointly normalized to a
range of [0:0; 1:0]:

M = max(meas;pred) (5.22)

m = min(meas;pred) (5.23)

mni =
measi �m

M �m
(5.24)
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pni =
predi �m

M �m
(5.25)

The index i represents an individual measurement point, i.e., a point in time,
when both the real data and the prediction were recorded.

Next, the local (point{wise) absolute error between the two normalized
trajectories is computed:

errabsi = jmni � pnij (5.26)

Due to the previous normalization, the so computed absolute error can serve
also as a measure of the relative error. Then, the dissimilarity error between
the two normalized trajectories is computed:

simtyi =
min(mni; pni)

max(mni; pni; �)
(5.27)

errsimi
= 1 � simtyi (5.28)

Finally, the overall error is determined as the mean of the two errors
computed above:

erri =
errabsi + errsimi

2
(5.29)

The local prediction error can be compared with the two \con�dence errors,"
de�ned as:

errconfsim = 1 � confsim (5.30)

errconfprox = 1 � confprox (5.31)

Figure 5.5 shows the true prediction error plotted together with the
similarity error and the proximity error. A strong correlation between the
true error and the estimated errors is visible by naked eye.

Cross{correlations between the true and estimated prediction errors
can be obtained using Matlab's xcov function. The results are shown in
Figure 5.6.

Both curves exhibit strong positive cross{correlations at the center.
However, the numerical value of the largest cross{correlation is �ve times
bigger for the similarity measure than for the proximity measure. This result
con�rms, as had been stipulated before, that the similarity measure does a
better job than the proximity measure at estimating the prediction error.
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Figure 5.5: FIR true and estimated prediction errors for Series L.

Figure 5.7 shows once more Series B representing the water demand in
the city of Barcelona. This time series has been introduced in Chapter 4. As
before, the two con�dence values are plotted underneath the measurement
data that are superposed with the predictions obtained.

Contrary to Series L, the relationship between the prediction error and
the con�dence measures is not immediately evident. Due to the somewhat
stochastic nature of this time series, the con�dence is generally lower than
in the case of Series L. The lower con�dence values are primarily caused by
a larger dispersion among the output values for similar inputs due to the
stochastic nature of the data. In addition, the con�dence is yet lower during
weekends. This additional reduction in con�dence is here an artifact of data
deprivation. There are only about 70 weekends among the training data, and
thus, there are less near neighbors in the input space for weekend days than
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Figure 5.6: Cross{correlations between true and estimated prediction errors
for Series L.
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Figure 5.7: FIR con�dence measures for Series B.

for week days. Hence the additional reduction in con�dence is caused by a
lack of good neighbors in the input space, rather than by dispersion among
the neighbors in the output space.

As before, the true prediction errors are plotted together with the two
estimated prediction errors, using the similarity and proximity con�dence
measures, respectively, are shown in Figure 5.8.

Although the relationship between the prediction error and the two
con�dence measures is not evident to the naked eye, it can be shown
statistically. To this end, the cross{correlations between the true prediction
error and the two estimated prediction errors are computed. They are shown
in Figure 5.9.

As in the case of Series L, the two curves show a positive cross{
correlation at the center. Also in this case, the peak of the cross{correlation
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Figure 5.8: FIR true and estimated prediction errors for Series B.

for the similarity measure is higher than that for the proximity measure,
demonstrating once more the superior performance of the similaritymeasure.

The two examples presented above are useful in analyzing the
characteristics of the two proposed con�dence measures, as well as the
capabilities of FIR for prediction in two very di�erent situations. In the
deterministic case, represented here by Series L, the estimated prediction
error is a true measure of the real prediction error, whereas in the stochastic
case, here represented by Series B, the estimated prediction error is a measure
of the true prediction error only in a statistical sense.

The value of con�dence, using either of the two proposed con�dence
measures, is related to how deterministic the data base is, i.e., how close
or disperse the outputs are for any one input pattern. When the process to
be modeled is mostly deterministic, FIR will have a high level of con�dence
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Figure 5.9: Cross{correlations between true and estimated prediction errors
for Series B.
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in the predictions it makes. A reduction of con�dence, in this situation, is a
re
ection of data deprivation, i.e., FIR does not �nd enough close neighbors
in the experience data base. More training data will cure the problem.

On the other hand, if the system to be modeled is stochastic in nature,
FIR will exhibit a lower con�dence in its predictions overall. The reason
for the reduced con�dence here is the dispersion of outputs among the �ve
nearest neighbors. Additional training data will not be able to cure this
problem.

5.6 Conclusions

When using fuzzy inductive reasoning models in prediction, it is very
important to generate not only forecasts for the output variables, but also
measures of the reliability of each forecast. Two measures of con�dence in the
reliability of FIR predictions have been proposed in this chapter, one being a
proximity measure, the other being a similarity measure. After testing these
measures on the largely deterministic time series L and on the somewhat
stochastic time series B, a few conclusions can be drawn:

� The similarity measure is more sensitive to the prediction error than
the proximity measure. This is reasonable, because the similarity
measure preserves more information than the proximity measure about
the qualitative di�erence between a new input state and its neighbors
in the experience data base.

� Since the models derived by FIR are largely deterministic and
autoregressive, in both the deterministic and the autoregressive
stochastic processes, the proposed measures are useful tools to evaluate
the likelihood of errors. More speci�cally, large proximity or similarity
values indicate that a low prediction error is likely to occur.

� In time series corresponding to stochastic processes that are not entirely
autoregressive, i.e., processes where the errors may be correlated, there
is not necessarily a signi�cant correlation between the prediction error
and (1:0�confi). Therefore, the correlation between these two entities
may, in general, be used as an indicator of how well the series in question
may be �tted by an autoregressive or deterministic model.

A remark of a more philosophical nature is in place as well. The better
the modeling methodology works, the less likely it is that a measure of the
quality of the prediction can be made. If indeed the model were to exploit all
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the information that is available in the measurement data, then the model of
the prediction error would necessarily have to behave like uncorrelated white
noise, because whatever can be said about the prediction error can, at least
in theory, be exploited to improve the model. In practice, this is not a big
problem. As long as the prediction error does not behave like white noise, the
information obtained is useful to assess the quality of the prediction. On the
other hand, once the prediction error starts to behave like white noise, the
modeler can be assured that he or she has exploited every bit of knowledge
available, and has come up with the best possible model already. Hence even
in that case, the error analysis reveals something of value.



Chapter 6

Improving the Forecasting

Capability of Fuzzy Inductive

Reasoning by Means of

Dynamic Mask Allocation

6.1 Introduction

In Chapter 5, a methodology was introduced that enables the FIR user to
assess the quality of a prediction made. However, it was not attempted to
come up with an estimate of the true prediction error directly. Instead, an
indirect assessment was obtained in the form of a con�dence measure.

It was mentioned that a direct attempt at estimating the prediction error
must be futile as long as FIR does its job, because if it were possible to
estimate the prediction error directly, then this estimate could be subtracted
from the prediction, leading to an improved prediction. Such a na��ve scheme
was attempted already in Chapter 3 and shown not to work.

However, Chapter 5 also stipulated that any estimate of the prediction
error, even an indirect one, can in principle, be used to improve the accuracy
of a prediction made. After all, such an estimate does provide additional
information about the prediction, an information that should be exploitable.
This chapter presents one approach to exploit this information for improving
the quality of predictions made.

The same approach can also be used to tackle yet another problem,
namely that of dealing with variable structure systems. Some systems are
time{varying. They change their behavioral patterns over time.

Many such systems operate in a number of di�erent prede�ned regimes,
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i.e., during some period of time, they exhibit similar behavioral patterns,
and then, they suddenly switch from one operational mode to another. A
car may serve as an example. It is in �rst gear during some period of time.
Suddenly, the driver (or an automatic controller) decides to shift into second
gear. The car now behaves di�erently from before.

Other systems are truly time{variant. They exhibit a continuous range
of operational patterns. Here, an approach that classi�es the behavioral
patterns into discrete regimes is only an approximation of the true system
complexity, yet, it may still be an e�ective way of enabling a person to make
predictions of such a system.

In this chapter, it will be shown that FIR, together with the proposed
methodology of dynamic mask allocation, can be used to deal with any and
all of the above scenarios in a robust fashion.

6.2 The Concept of Dynamic Mask Alloca-

tion

The idea behind dynamic mask allocation is straightforward. In Chapter 3, it
was shown that FIR, in its qualitative modeling module, proposes an optimal
mask, i.e., a set ofm{inputs that best characterize the output to be predicted.

Two separate quality measures were used to determine the optimal mask:
the entropy reduction measure, Hr, that e�ectively measures the quality of
information available, and an observation ratio measure,OR, that determines
the quantity of information available. The mask quality was then determined
as the product of the entropy reduction measure and the observation ratio
measure:

Q = Hr �OR (6.1)

The optimal mask is the one that exhibits the largest Q value.
Yet, the selection of the optimal mask is by no means unique. There

usually exist many masks of quite similar mask qualities (with similar Q
values). Any of these masks can be used to make decent predictions. In
fact, the foptmask routine of SAPS{II, the current implementation of FIR,
returns not only the optimal mask, but the best mask of each complexity, in
order to give the user a choice. Furthermore, a mask evaluation report can
be requested that lists each mask that was tried together with its Q value.

It is quite reasonable to make multiple predictions in parallel using
di�erent masks of high quality. Until now, this was never done, because
the user had no means to judge, which of the predictions obtained is the
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best. Using either of the two con�dence measures introduced in Chapter 5,
this is now possible. Each of the predictions made using di�erent masks
comes with its own con�dence estimate. It is then reasonable to accept, in
each step, the one prediction that exhibits the largest con�dence value.

Figure 6.1 demonstrates the algorithm.

Ts

FIR
Mask #1

FIR
Mask #2

FIR
Mask #n

...

max
Selector

switch
Selector

y 2

c 2

c 1

y 1

y n

c n

best
mask

y

Figure 6.1: Dynamic mask allocation.

The switch at the left symbolizes the process of sampling, i.e., the passing
of time. At each time step, n di�erent FIR models (di�erent masks) are used
to make predictions in parallel. The variable yi represents the predicted
output using mask mi, and ci represents the estimated con�dence in the
prediction made. The di�erent con�dence values are then passed on to a
max selector that determined the index, i, of the currently best mask:

i = index of fcig; ci = max! (6.2)

The predicted outputs are fed into a switch selector that also receives the
index of the currently best mask from the max selector. The switch selector
passes through the yi associated with the selected ci:

y = yi (6.3)
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The mask allocation is dynamic, because in each step, a di�erent mask may
be selected.

6.3 DMAFIR and QDMAFIR

The algorithm explained in the previous section has been named DMAFIR,
denoting Dynamic Mask Allocation for FIR. The algorithm does not take
into account the relative quality of the selected mask.

It might make sense to punish the use of masks of lower quality. To this
end, a new quality measure is introduced:

Qreli =
Qi

Qopt
(6.4)

where Qi is the mask quality of the selected mask, mi, and Qopt is the mask
quality of the optimal mask. Clearly, Qreli quali�es as a quality measure,
since the value of Qreli is in the range [0:0; 1:0] with a larger value denoting
the selection of a higher{quality mask. Qreli is a static mask quality measure,
as neither Qi nor Qopt change their values over time for any given mask, mi.

Using this quality measure, the dynamic mask quality can be de�ned as:

Qdyn(t) = Qreli(t) � confsim(t) (6.5)

Here, Qreli(t) is indeed a function of time, because during each step, a
di�erent mask, mi, may be chosen.

The so modi�ed algorithm has been namedQDMAFIR, denotingQuality{
adjusted Dynamic Mask Allocation for FIR.

In the sequel, the two algorithms, DMAFIR and QDMAFIR, shall be
applied to the water demand of the city of Barcelona to check whether
dynamic mask allocation might help in obtaining better predictions. The
rationale behind this experiment is that the water demand is quite di�erent
during weekends than during work days. Thus, if a mask is o�ered to FIR
that makes better predictions for holidays, and another mask is provided that
makes better predictions for working days, then FIR might automatically
and dynamically choose the best mask in each case, o�ering overall better
predictions than either of the individual masks might be able to generate.
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6.4 Dynamic Mask Allocation Applied to

Series B

Unfortunately, there are not enough data points available to train a model
that predicts particularly well during weekends. Hence it was decided to
o�er to DMAFIR and QDMAFIR the top masks of complexities 2, up to 8,
as proposed by the mhis matrix of the foptmask routine of SAPS{II. These
masks, together with their qualities, are listed in Table 6.1.

Table 6.1: Suboptimal Masks and Their Qualities for Barcelona Time Series

Mask Quality of the Mask

y = ~f (y(t� �t); y(t� 7�t); y(t� 14�t)) 0:4539

y = ~f (y(t� �t); y(t� 3�t); y(t� 7�t);
y(t� 12�t)) 0:3997

y = ~f (y(t� �t); y(t� 7�t)) 0:3879

y = ~f (y(t� 7�t)) 0:2993

y = ~f (y(t� �t); y(t� 3�t); y(t� 5�t);
y(t� 11�t); y(t� 14�t)) 0:2280

y = ~f (y(t� �t); y(t� 3�t); y(t� 5�t);
y(t� 7�t); y(t� 11�t)); y(t� 14�t)) 0:0988

y = ~f (y(t� �t); y(t� 3�t); y(t� 5�t);
y(t� 7�t); y(t� 11�t)); y(t� 13�t);
y(t� 14�t)) 0:0374
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The best mask is a mask of complexity 4. It uses the values one day back,
one week back, and two weeks back for its prediction. This is reasonable.
The second best mask is a mask of complexity 5. The masks of yet higher
complexity o�er a considerably lower quality, because the amount of available
data does not justify their use.

The mask quality is a compromise measure between two competing
components. The entropy reduction measure assesses the uncertainty
associated with a prediction, i.e., it is a measure of the quality of information
available. The observation ratiomeasure judges the quality of neighbors, i.e.,
it is a measure of the quantity of information available.

Because of the lack of available training data, FIR cannot justify to always
use a mask of high complexity. However, if at any point in time, there happen
to be good neighbors available, then a mask of high complexity may o�er a
higher local quality, because it is associated with less uncertainty.

Both DMAFIR and QDMAFIR allow to exploit this. At any point in
time, FIR will look for the proximity (or similarity) of its nearest neighbors,
and it will pick the mask of highest complexity that o�ers neighbors that are
su�ciently close.

Figure 6.2 compares the prediction errors of FIR when using only the
optimal mask with that of FIR using the DMAFIR algorithm, once with the
similarity measure, and once with the proximity measure.
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Figure 6.2: Comparison of FIR and DMAFIR for Barcelona time series.

There is a dramatic reduction in prediction errors. The proximity and
similaritymeasures o�er similar error reductions, with the similaritymeasure
being slightly better on average.

Figure 6.3 compares the prediction errors of FIR when using only the
optimal mask with that of FIR using the QDMAFIR algorithm, once with
the similarity measure, and once with the proximity measure.
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Figure 6.3: Comparison of FIR and QDMAFIR for Barcelona time series.

The results are quite similar to those found above. However in this case,
the similarity measure o�ers a consistently larger error reduction than the
proximity measure.

From now on, only the similarity measure will be used, because it was
shown experimentally to be the better overall measure of the two.

Figure 6.4 compares the prediction errors of FIR when using only
the optimal mask with that of FIR using the DMAFIR and QDMAFIR
algorithms together with the similarity measure.
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Figure 6.4: Comparison of FIR, DMAFIR, and QDMAFIR for Barcelona
time series.

It turns out that the DMAFIR algorithm o�ers better results than the
QDMAFIR algorithm. This is understandable. QDMAFIR gives a preference
to masks that are close to the optimal mask in complexity. This hampers the
ability of the algorithm to pick the mask of highest complexity that locally
o�ers good neighbors.

The reader might have noticed by now that the results shown for FIR
with the optimal mask are di�erent from those shown in Chapter 4. The
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reason is that, in Chapter 4, the best results that could be obtained for the
Barcelona water series using a FIR qualitative simulation were compared
with the other techniques. The method by which these results were obtained
made use of dynamic mask allocation. In that method, QDMAFIR was
applied to masks of low complexity, whereas DMAFIR was used for masks
of higher complexity.

The comparisons made in Chapter 4 were generally fair, because most of
the other estimation techniques do not o�er self{assessment capabilities that
would enable us to improve their predictions using a trick similar to that used
in DMAFIR and/or QDMAFIR. This is true for all methods but one: the
FIR qualitative prediction. In Figure 4.13, a comparison was made between
the FIR qualitative simulation with dynamic mask allocation, and the FIR
qualitative prediction without dynamic mask allocation. This comparison
was unfair, because it would be perfectly feasible to apply dynamic mask
allocation also to the FIR qualitative prediction.

In Figure 6.5, Figure 4.13 is repeated once more, this time comparing the
FIR qualitative simulation without dynamic mask allocation with the FIR
qualitative prediction without dynamic mask allocation.
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Figure 6.5: Comparison of FIR qualitative simulation and prediction without
dynamic mask allocation for Barcelona time series.

The errors for the one{day prediction are identical, because the algorithms
are the same for this case. However already in the case of a two{
day prediction, the insecurity associated with the �rst{day prediction
contaminates the available data so much that the FIR qualitative prediction
algorithm outperforms the FIR qualitative simulation, in spite of the longer
time horizon used by this estimator, and this remains true for all multiple{
day predictions. Hence it is reasonable to suspect that an algorithm based
on FIR qualitative prediction with dynamic mask allocation using DMAFIR
together with the similarity con�dence measure might beat even the best
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results obtained so far.
Figure 6.6 compares the FIR qualitative simulation with dynamic mask

allocation with the FIR qualitative prediction with dynamic mask allocation.
Like in Chapter 4, the mask depth was enhanced from 15 to 22 for this
experiment, so that the optimal mask algorithm would have m{inputs to
pick even in the case of a 15{day prediction. Simultaneously, the maximum
mask complexity was reduced from eight to seven, so that the most complex
mask would just exhaust the available m{inputs for a 15{day prediction.
Since the columns of the prediction matrix, Matrix 3.29, are independent of
each other in the case of a qualitative prediction, they can be computed in
parallel, which speeds up the execution time by a factor of 15.
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Figure 6.6: Comparison of FIR qualitative simulation and prediction with
dynamic mask allocation for Barcelona time series.

As expected, the qualitative prediction is indeed somewhat better, on
average, than the qualitative simulation. After two or three days of
prediction, i.e., once the direct auto{correlation has died out, the error of
the qualitative prediction, due to the quasi{stationary nature of Series B,
hovers around 10%. In contrast, the error of the qualitative simulation su�ers
from data contamination, and therefore keeps growing. Because most of the
models in use depend on the data points (t� 1) and (t� 7), the error grows
in a staircase fashion between days t+ 1 and t+ 2, i.e., when the data point
(t� 1) becomes contaminated, and then again between days t+7 and t+ 8,
when also the data point (t � 7) becomes contaminated. The next step in
the staircase occurs after two weeks, etc.

The distance between the qualitative simulation and prediction results
is not as large in Figure 6.6 as it was in Figure 6.5. On the one hand, the
dynamic mask allocation helps somewhat with desensitizing the predictions
with respect to the data contamination problem, because FIR always picks
the mask that o�ers the highest con�dence. Since contaminated data lead
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to a larger dispersion among the neighbors in the output space (re
ecting
their poorer information quality), the con�dence measure is conscious of
data contamination. On the other hand, the predictions obtained, due to
the higher sophistication of the DMAFIR algorithm, is already much closer
to the theoretical limit of predictability1, i.e., any further improvement will
invariably be quite modest.

What are the lessons that can be learned from this exercise?

1. The improvement of the forecasting quality obtainable by using a
dynamic mask allocation algorithm is quite remarkable. Hence the fact
that FIR o�ers a self{assessment capability is pivotal to its success in
making predictions about the future behavior of time series. Prediction
methods that do not o�er a self{assessment capability, which are
essentially all of FIR's contenders, are therefore severely disadvantaged.

2. Data contamination poses a serious threat to successful prediction of
time series by any simulation approach. Consistently, the prediction
methods beat the simulation methods, because they do not su�er from
data contamination.

Can dynamic mask allocation save the day also in the case of Series R, i.e.,
the series describing the water demand of the city of Rotterdam? The author
did apply both DMAFIR and QDMAFIR also to that time series. The reader
will be spared a discussion of these experiments, as the attempts were futile.
The results were as bad as those obtained in Chapter 4. There simply is no
information contained in this time series that can be exploited beyond the
direct auto{correlation between the water consumption of neighboring days,
an auto{correlation that the trivial daily predictor exploits in an optimal
fashion.

6.5 Predicting Time Series that Operate in

Multiple Regimes: Series V

In this section, it will be demonstrated that the DMAFIR algorithm can be
used to predict time series that operate in multiple regimes, i.e., where the
behavioral patterns change between time segments. To this end, a new time
series is introduced: Series V { the Van{der{Pol oscillator series.

1More information on the theoretical limit of predictability can be found in Chapter 8
of this dissertation.
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The Van{der{Pol oscillator is described by the following second{order
di�erential equation:

�x� � � (1� x2) � _x+ x = 0 (6.6)

By choosing the outputs of the two integrators as two state variables:

�1 = x (6.7)

�2 = _x

the following state{space model is obtained:

_�1 = �2 (6.8)
_�2 = � � (1� �21) � �2 � �1

y = �2

The �2 variable is used as output of the time series.
Table 6.2 shows the characterization of Series V.

Table 6.2: Classi�cation of Time Series V

natural synthetic V
stationary V non{stationary

time invariant V time varying
low dimensional V stochastic

clean V noisy
short long V

dormant active V
documented V blind

linear non{linear V
scalar V vector

single recording V multiple recordings
continuous V discrete

Series V is a synthetic time series, generated by a simulation model.
Therefore, the data set can be made as long as needed. The Van{der{
Pol oscillator is characterized by a stable limit cycle, i.e., already after the
transitory period that is caused by the initial conditions imposed on the
model has died down, a single limit cycle (one period of the oscillation) will
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su�ce to characterize the time series completely. The series is thus as active
as it can ever be.

The behavioral patterns of Series V depend on the choice of the parameter
�. A time series operating in multiple regimes can be created by toggling
between di�erent values of � in the course of the simulation.

To start the experiment, three di�erent models were identi�ed using three
di�erent values of �, namely � = 1:5, � = 2:5, and � = 3:5. The �rst 80 data
points of each time series were thrown away, as they represent the transitory
period. The next 800 data points were used to learn the behavior of each
series, and the subsequent 200 data points were used as testing data. With a
sampling rate of 0:05, 200 data points correspond roughly to one oscillation
period, i.e., four limit cycles were used for training the model, and one limit
cycle was used for testing. The mask depth was chosen to be 50. All variables
were classi�ed into �ve classes with the landmarks �7:0, �0:5, �0:25, +0:25,
+0:5, and +7:0. The same landmarks were used for all three time series, such
that the results of the predictions can be more easily compared with each
other.

The models obtained in this way are shown in Table 6.3.

Table 6.3: Optimal Masks and their Qualities for Series V

Regime Optimal Mask Quality of the Mask

� = 1:5 y = ~f(y(t� �t); y(t� 47�t)) 0:9342

� = 2:5 y = ~f(y(t� �t)) 0:9085

� = 3:5 y = ~f(y(t� �t)) 0:9146

The mask qualities are very high because of the strictly deterministic
nature of Series V. The optimal masks for � = 2:5 and � = 3:5 are identical,
yet the input/output behaviors will be di�erent because of the di�erent
training data used by the two models.

Figure 6.7 compares the true time series with their predictions for each
of the three models.

The top graph in Figure 6.7 compares the true Van{der{Pol cycle for
� = 1:5 with the FIR predictions obtained using the model obtained for the
same series. The graph below compares the Van{der{Pol data for � = 2:5
with the FIR predictions obtained using the corresponding FIR model, etc.

Because of the completely deterministic nature of this time series, the
predictions should be perfect. They are not perfect due to data deprivation.
Since 800 data points were used for training, the experience data base



6.5 Predicting Time Series that Operate in Multiple Regimes:
Series V 139

0 1 2 3 4 5 6 7 8 9 10

−5

0

5

Van−der−Pol Time Series − FIR Optimal Mask

µ  = 1.5

y

time

true data (−−−) predicted data (−.−)

0 1 2 3 4 5 6 7 8 9 10

−5

0

5
µ  = 2.5

y

time

true data (−−−) predicted data (−.−)

0 1 2 3 4 5 6 7 8 9 10

−5

0

5
µ  = 3.5

y

time

true data (−−−) predicted data (−.−)

Figure 6.7: One{day predictions of the Van{der{Pol series using FIR without
dynamic mask allocation.

contains only four cycles. Thus, when FIR, during the prediction, looks
for �ve good neighbors, it only encounters four that are truly pertinent.

Figure 6.8 shows the predictions obtained when applying the model
(optimal mask plus training data) obtained for the time series with � = 1:5
to the other two time series.

The model cannot predict the peaks of the time series with � = 2:5 and
� = 3:5 correctly, because it has never seen such tall peaks. FIR can only
predict behaviors that it has seen before.

Figure 6.9 shows the predictions obtained when applying the model
(optimal mask plus training data) obtained for the time series with � = 2:5
to the other two time series.

The model predicts rather well the time series with � = 1:5, but has
problems predicting the peaks of the time series with � = 3:5.

Figure 6.10 shows the predictions obtained when applying the model
(optimal mask plus training data) obtained for the time series with � = 3:5
to the other two time series.

This model predicts all three time series rather well. Table 6.4 summarizes
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Figure 6.8: One{day predictions of the Van{der{Pol series using FIR with
� = 1:5 model.

the errors obtained for all nine predictions.

Table 6.4: Prediction Errors for Series V

Series (� = 1:5) Series (� = 2:5) Series (� = 3:5)

Model (� = 1:5) 2.5760 6.6957 11.5990
Model (� = 2:5) 3.5676 1.2256 3.6179
Model (� = 3:5) 4.1720 2.6618 8.7299

The model derived from the series with � = 3:5 predicts the other two
series better than the series for which it was derived. This is due to the high{
frequency components of this time series. The sharp gradients contribute to
a considerably larger error. Thus, this result is understandable.

More suspicious is the result that the model obtained for � = 2:5 should
be able to predict the time series with � = 3:5 better than the model obtained
for � = 3:5, in spite of the fact that the former model cannot predict the
peaks of this time series correctly. Indeed, if one compares visually the
bottom curve of Figure 6.7 with the bottom curve of Figure 6.9, one would
be inclined to believe that the quality of the former prediction is better than
that of the latter, in spite of the larger numerical value of the error. Hence
this result is a 
uke of the particular error formula used.

What happened in this particular case is the following. The mean value
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Figure 6.9: One{day predictions of the Van{der{Pol series using FIR with
� = 2:5 model.

of the time series is very close to zero (�0:0164). The mean value of the
prediction using the model obtained for � = 3:5 is �0:0232. Thus, the
relative error between these two values that is used by the error formula
proposed in Chapter 3:

errmean =
ky1mean � y2meank

max(ky1meank; ky2meank; ")
(6.9)

obtains a very large numerical value of errmean = 29:44%. This
number dominates the overall error formula by two orders of magnitude.
Unfortunately, no error formula is ever perfect!

Thus, for this example, it makes sense to modify the error formula by
eliminating the contribution of the mean value and dividing the total error
by three rather than by four.

Table 6.5 shows the errors using the modi�ed error formula.

Table 6.5: Prediction Errors for Series V Using Modi�ed Error Formula

Series (� = 1:5) Series (� = 2:5) Series (� = 3:5)

Model (� = 1:5) 2.6292 6.7597 10.3922
Model (� = 2:5) 2.9645 0.9747 4.6463
Model (� = 3:5) 4.2691 2.5744 1.8272
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Figure 6.10: One{day predictions of the Van{der{Pol series using FIR with
� = 3:5 model.

Now, the results are as they would have been expected. The values along
the diagonal are smallest, and the values in the two remaining corners are
largest. It also makes sense that the model obtained for � = 3:5 is more
capable of predicting the series with � = 1:5 than the other way around.

Next, a time series shall be constructed, in which the variable � assumes a
value of 1:5 during one segment, followed by a value of 2:5 during the second
time segment, followed by yet another time segment, in which � = 3:5. The
multiple regimes series consists of 553 samples.

Figure 6.11 shows the results of predicting the multiple regimes series
using the three models independently.

The model obtained for � = 1:5 cannot predict the higher peaks of the
second and third time segment very well, therefore its error must be largest.
The model obtained for � = 3:5 does a decent job at predicting all three
segments. Thus, its error must be smallest.

Figure 6.12 shows the results of predicting the multiple regimes series
using DMAFIR together with the similarity con�dence measure. The three
individual models (optimal masks plus training data sets) are o�ered to the
DMAFIR algorithm to choose from.

The top plot shows the prediction obtained by DMAFIR. The bottom plot
shows, which of the three models was chosen at any point in time. The value
plotted is the �{value of the chosen model. During the �rst time segment,
consisting of the �rst 178 samples, the \average" �{value is �avg = 1:9831.
During the second segment, the average �{value is �avg = 2:4831. Finally,
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Figure 6.11: One{day predictions of the Van{der{Pol multiple regimes series.

during the third time segment, the average �{value is �avg = 3:0871. Thus,
on average, FIR indeed picks more often than not the correct model.

Table 6.6 lists the prediction errors obtained for the di�erent simulations
using the modi�ed error formula.

Table 6.6: Prediction Errors for Multiple Regimes Series V Using Modi�ed
Error Formula

error
Model for � = 1:5 5.8759
Model for � = 2:5 2.2978
Model for � = 3:5 1.9317
DMAFIR 1.1195

As was to be expected, the model obtained for � = 3:5 shows the smallest
of the individual errors. However, the error obtained using DMAFIR is
still considerably smaller. This demonstrates that DMAFIR can indeed be
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Figure 6.12: One{day predictions of the Van{der{Pol multiple regimes series
using DMAFIR.

successfully applied to the problem of predicting time series that operate in
multiple regimes.

6.6 Variable Structure System Prediction Us-

ing FIR With Dynamic Mask Allocation

In this section, it will be shown that the DMAFIR algorithm can be
successfully employed for predicting time{varying systems. Whereas a
system that operates in multiple regimes exhibits a �xed number of di�erent
behavioral patterns, a time{varying system exhibits an entire spectrum of
di�erent behavioral patterns.

To demonstrate DMAFIR's ability of dealing with time{varying systems,
the Van{der{Pol oscillator is used once again. This time, a series was
generated, in which � changes its value constantly in the range [1:0; 3:5].
The time series contains 953 records sampled using a sampling interval of
0:05. The value of � changes once per sample.

Figure 6.13 shows the results of predicting the time{varying series using
the three models independently.

Each peak is of slightly di�erent amplitude, i.e., the time{varying Van{
der{Pol oscillator series is no longer completely deterministic. As expected,
the model obtained for � = 3:5 works best, because it has no di�culty
predicting the high{amplitude peaks. Also the model obtained for � = 2:5
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Figure 6.13: One{day predictions of the Van{der{Pol time{varying series.

works very well, because the system has low{pass characteristics. Although �
varies in the range [1:0; 3:5], the extremely small and extremely large peaks
characteristic of very small and very large � values never show up in the
simulation results. The model obtained for � = 1:5 is least suitable, because
it cannot predict high{amplitude peaks that it has never seen during the
training phase.

Of course, it would have been possible to make the methodology adaptive
by augmenting the training data base with new input/output pairs as they
become known during the testing period. Yet, it was decided to exclude
adaptive schemes from the research presented in this dissertation, since this
would have opened an entirely new dimension to the research. Questions
would need to be answered relating to the monotonicity of the available
knowledge, i.e., while a time{varying system changes its behavior, it may be
appropriate, not only to add new knowledge as it becomes available, but also
to discard previous knowledge that is in contradiction with new knowledge
obtained. This leads into the area of non{monotonic reasoning (Sarjoughian
1995), an extensive research �eld in its own right that the author decided
not to delve into as part of her dissertation.
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Figure 6.14 shows the results of predicting the time{varying Van{der{Pol
series using DMAFIR together with the similarity con�dence measure. The
three individual models (optimal masks plus training data sets) were o�ered
to the DMAFIR algorithm to choose from.
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Figure 6.14: One{day predictions of the Van{der{Pol time{varying series
using DMAFIR.

The prediction is close to perfect. As expected, DMAFIR makes the
prediction more robust, and reduces the prediction error to a level that is
below that obtainable by either of the individual models.

Table 6.7 lists the prediction errors obtained for the di�erent simulations
using the modi�ed error formula.

Table 6.7: Prediction Errors for Time{Varying Series V Using Modi�ed Error
Formula

error
Model for � = 1:5 5.7431
Model for � = 2:5 1.4864
Model for � = 3:5 1.8791
DMAFIR 1.2997

The experiment shows that DMAFIR is indeed capable of dealing with
variable structure system predictions. Although such systems do not have
a �nite set of individual behavioral patterns, it is useful to discretize the
spectrum of behavioral patterns, identify individual models for each of these
patterns, and then let DMAFIR choose among them during the variable
structure system prediction.
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6.7 Conclusions

In this chapter, a methodology was introduced that allows to exploit
the con�dence measure of FIR, an indirect prediction error estimate, for
improving the predictions made.

It was shown in Chapter 3, that a direct error estimate coupled with
an error subtraction scheme does not work. The con�dence measure
was subsequently introduced in Chapter 5 as a means to indirectly assess
the quality of a prediction made. The present chapter showed how this
information can be exploited to improve the quality of predictions made.

It was shown that the self{assessment capability of FIR is pivotal to its
capability of making high{quality predictions of time series. In the case
of Series B, FIR fares better than ARIMA and/or ANN only if a dynamic
mask allocation scheme is used to improve its forecasts. FIR applied in the
traditional fashion relying on the optimal mask alone would not have won
this race.

As a side product, it was shown that the data contamination problem
that haunts any and all time series simulation schemes must indeed be taken
seriously. Time series prediction schemes will generally fare better than their
simulation cousins, because they are not haunted by data contamination.
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Chapter 7

Predicting the Predictability

Horizon

7.1 Introduction

In Chapter 5 of this thesis, the problem of estimating the forecasting error
in time series predictions was discussed. It was shown that, especially in
soft science simulation, it is important to estimate the error of a prediction
together with the prediction itself, since it cannot be expected of the
users that they would be able to assess the reliability of the simulation
results. Scepticism must be instilled in the simulation software, rather than
demanding it of its users.

The present chapter deals with a closely related topic. Since the
simulation results cannot be expected to be totally accurate, errors are likely
to accumulate during iterative predictions of future values of a time series.
It is thus of much interest to the user of such a tool to be able to assess
the quality of predictions made not only locally, but as a function of time,
i.e., the user should be able to obtain a (generally decaying) function of
accumulated con�dence in progressive predictions. During the �rst step of a
multi{step prediction, the predicted value depends entirely on measurement
data, and is therefore more likely to be accurate than in subsequent steps,
when the predictions depend on previously predicted data points that are
by themselves associated with a degree of uncertainty already. The e�ects
of error accumulation due to data contamination have been demonstrated in
Chapters 4 and 6 of this thesis.

There exist many applications for such a technology. For example, model
predictive control uses predictions of future values of measurement data to
provide the controller with an early warning if the system is about to leave
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the zone of safe operation. The earlier such a warning can be provided, the
more time the controller has to prevent this situation from ever taking place.

Yet, there are two types of errors that can occur in such predictions:

1. The predictor foresees that the system will leave its operating zone,
although in reality, this would not take place.

2. The predictor does not foresee any problems, although they do take
place.

Both types of errors can degrade the achievable performance of the controller.
The �rst error type will make the controller overly conservative, preventing
it from making use of the full operating zone. The second error type may
lead to either instability or plant shutdown.

Both error types are closely related to the horizon of predictability. As
the accuracy of forecasts in a multi{step prediction decreases over time, the
likelihood of committing either type of error grows. Hence assessing the
likelihood of these errors to occur is synonymous with being able to assess
the horizon of predictability of each measurement signal used in the predictive
control scheme.

The chapter introduces measures for estimating the horizon of
predictability. It then calculates the prediction errors made when forecasting
three separate time series over multiple steps, and shows the strong positive
correlation between the prediction error on the one hand and the estimated
horizon of predictability on the other.

7.2 Accumulated Con�dence Measures in

Time{Series Prediction

As was shown in Chapter 5, the local prediction error can be indirectly
estimated using either a proximity or a similarity measure. Both types
of estimators lead to satisfactory results when used together with a FIR
algorithm for time{series prediction, although the similarity measure is
usually preferred, as it is slightly more sensitive than the proximity measure.

Both measures only account for uncertainty stemming from a single step
of prediction, i.e., they assume that the data on which the prediction is
based are totally accurate. They measure the local uncertainty associated
with a single prediction, but not the accumulated uncertainty resulting from
multiple predictions, whose premises are themselves uncertain already.

Either measure can easily be extended to become an estimator of
accumulated con�dence. The reader may remember that a FIR model of
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a time{series predictor is characterized by a single{column optimal mask,
e.g.:

0
BBBBBBB@

tn
x y

t� 5�t �1
t� 4�t 0
t� 3�t 0
t� 2�t �2
t� �t �3
t +1

1
CCCCCCCA

(7.1)

denoting the equation:

y(t) = ~f(y(t� 5�t); y(t� 2�t); y(t� �t)) (7.2)

where ~f denotes a function speci�ed through a �nite state machine, rather
than being provided in the form of an analytical expression.

Negative mask elements denote mask inputs (m{inputs), whereas the +1
element, which will always show up in the last row, denotes the mask output
(m{output).

For the above mask, it makes sense to de�ne the accumulated con�dence
in the prediction of y(t) as follows:

ca(t) = cl(t) �
1

3
� (ca(t� 5�t) + ca(t� 2�t) + ca(t� �t)) (7.3)

i.e., the accumulated con�dence in the prediction of y(t), called ca(t), is
de�ned as the product of the local con�dence in that prediction, cl(t), with
the average accumulated con�dence in the three m{inputs. It would have
been equally acceptable to de�ne the joint accumulated con�dence of the
m{inputs in other ways, such as:

cajoint = min(ca(t� 5�t); ca(t� 2�t); ca(t� �t)) (7.4)

or:

cajoint = ca(t� 5�t) � ca(t� 2�t) � ca(t� �t) (7.5)

and then:

ca(t) = cl(t) � cajoint (7.6)

Either of these techniques will work, but the one adopted in this dissertation
is the one proposed in Eq.(7.3).
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Clearly both the local and accumulated con�dence values of measured
data points are 1:0, and therefore, the accumulated con�dence of the �rst
prediction step is always equal to the local con�dence, computed using either
the proximity or the similarity measure, but at later times, the accumulated
con�dence is always lower than the local con�dence. The accumulated
con�dence is usually decaying over time, although it is not necessarily a
monotonically decreasing function.

The multiplication of the local con�dence of the m{output with the
average accumulated con�dence of the m{inputs is only correct, in a strict
sense, if subsequent values of y can be assumed to be uncorrelated, which, of
course, is never the case. However from a practical stand point, the measure
works exceedingly well, as shall be demonstrated by means of three separate
examples. The accumulated con�dence was already informally introduced in
Chapter 3 of this thesis (starting from Figure 3.13), however without going
into any details as to how the accumulated con�dence is actually computed.

Of course, the proposed approach to estimating the accumulated
con�dence in qualitative predictions is not limited to time series. For
example, given a system with two inputs and three outputs characterized
by the following optimal mask:

0
B@

tn
x u1 u2 y1 y2 y3

t � 2�t � 1 0 � 2 0 0
t � �t 0 �3 0 0 � 4
t 0 0 +1 0 0

1
CA (7.7)

denoting that:

y1(t) = ~f(u1(t� 2�t); y1(t� 2�t); u2(t� �t); y3(t� �t)) (7.8)

would lead to the following expression of accumulated con�dence:

ca(y1(t)) = cl(y1(t)) � (0:5+ 0:25 � ca(y1(t� 2�t))+ 0:25 � ca(y3(t� �t))) (7.9)

Since the input variables are always measured and therefore assumed to be
accurate, the accumulated con�dence values associated with u1(t� 2�t) and
u2(t� �t) is always assumed to be 1:0. This time it was necessary to specify
the names of the variables as arguments of the ca and cl functions, since
multiple variables are contributing to the prediction.
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7.3 Simulation Results

Three separate time series were used to investigate the e�ectiveness of the
proposed accumulated con�dence measures as indirect statistical estimators
for the prediction error to be expected.

The �rst time series represents the water demand of the City of Barcelona
(Series B), the second series represents the water demand of the City of
Rotterdam (Series R), and the third time series represents the temperature
of the City of Tucson (Series T). Series T is a time series that is newly
introduced in this chapter.

7.3.1 Water Demand of the City of Barcelona:

Series B

This time series has been introduced in Chapter 4, and was reused in
Chapter 6. Figure 4.5 is repeated once more in Figure 7.1.
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Figure 7.1: Barcelona water demand multiple{step simulation using FIR.

The lower portions of Figure 7.1 were introduced informally in Chapter 4
as an intuitive means to representing the con�dence made in the prediction.
However, no explanation was presented in Chapter 4, how these curves have
been obtained.
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The center curve shows the average accumulated con�dence in the
predictions made as a function of the number of days predicted, using a
formula that corresponds to that of Eq.(7.3). Since dynamic mask allocation
was used, the formula for the accumulated con�dence changes every day in
accordance with the mask being used on that day. On days when the optimal
mask:

y(t) = ~f (y(t� �t); y(t� 7�t); y(t� 14�t)) (7.10)

is being used, the accumulated con�dence is computed using the formula:

ca(t) = cl(t) �
1

3
� (ca(t� �t) + ca(t� 7�t) + ca(t� 14�t)) (7.11)

whereas on days when the next best mask:

y(t) = ~f (y(t� �t); y(t� 3�t); y(t� 7�t); y(t� 12�t)) (7.12)

is being used, the accumulated con�dence is computed using the formula:

ca(t) = cl(t)�
1

4
�(ca(t� �t) + ca(t� 3�t) + ca(t� 7�t) + ca(t� 12�t)) (7.13)

etc.
The results are written into a matrix of accumulated con�dences that has

the same structure as Matrix (3.29):

Ca =

0
BBBBBBBBBBBBB@

: : : : : : : : : : : : : : : : : :

1:0 ca(t� 3�t;1) ca(t� 2�t;2) ca(t� �t; 3) ca(t; 4) : : :

1:0 ca(t� 2�t;1) ca(t� �t;2) ca(t;3) ca(t + �t;4) : : :

1:0 ca(t� �t;1) ca(t;2) ca(t + �t; 3) ca(t + 2�t;4) : : :

1:0 ca(t; 1) ca(t + �t;2) ca(t + 2�t;3) ca(t + 3�t;4) : : :

1:0 ca(t + �t;1) ca(t + 2�t;2) ca(t + 3�t;3) ca(t+ 4�t;4) : : :

1:0 ca(t + 2�t;1) ca(t + 3�t;2) ca(t+ 4�t;3) ca(t + 5�t;4) : : :

1:0 ca(t + 3�t;1) ca(t+ 4�t;2) ca(t + 5�t;3) ca(t + 6�t;4) : : :

1:0 ca(t+ 4�t;1) ca(t + 5�t;2) ca(t + 6�t;3) ca(t + 7�t;4) : : :

1:0 ca(t + 5�t;1) ca(t + 6�t;2) ca(t + 7�t;3) ca(t + 8�t;4) : : :

1:0 ca(t + 6�t;1) ca(t + 7�t;2) ca(t + 8�t;3) ca(t + 9�t;4) : : :

: : : : : : : : : : : : : : : : : :

1
CCCCCCCCCCCCCA

(7.14)

The �rst column contains values of 1:0, because the con�dence of true
measurement data is 1:0. The second column shows the local con�dences
when predicting over a single day only. The third column shows the
accumulated con�dences when predicting over two days, etc. The average
accumulated con�dence values plotted in Figure 7.1 are the mean values of
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each column in Matrix (7.14). The local con�dence values were computed
using the similarity measure.

The bottom curve of Figure 7.1 repeats the analysis, this time using the
proximity measure to compute the local con�dence values.

As the similarity measure is more sensitive, the average accumulated
con�dence values using the similarity measure a a little lower than those
using the proximity measure.

Figure 7.2 shows the true average prediction error obtained using FIR
(the same curve that was shown already in the top graph of Figure 7.1)
plotted together with normalized similarity and proximity errors.

0 5 10 15
0

5

10

15

20

25
Barcelona Water Demand Time Series

T
ru

e 
E

rr
or

 (
%

)

Days Prediction

0 5 10 15
0

5

10

15

20

25

A
dj

. S
im

. E
rr

or

Days Prediction

0 5 10 15
0

5

10

15

20

25

A
dj

. P
ro

x.
 E

rr
or

Days Prediction

Figure 7.2: Error comparison for Barcelona water demand series.

The similarity error is de�ned as:

errsim = 1:0� casim (7.15)

and the proximity error is de�ned as:

errprox = 1:0� caprox (7.16)

The normalization is done in the following way. The mean values of the true
prediction error over the 15 days is computed as:
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erravgtrue =
15X
i=1

errori (7.17)

and similarly, the average similarity and proximity errors are computed as:

erravgsim =
15X
i=1

errsimi
; erravgprox =

15X
i=1

errproxi (7.18)

Two ratio factors are computed as follows:

ksim =
erravgtrue
erravgsim

; kprox =
erravgtrue
erravgprox

(7.19)

The normalized similarity and proximity errors are then de�ned as:

errnormsim = ksim � erravgsim ; errnormprox = kprox � erravgprox (7.20)

Obviously, this approach is 
awed, because the true prediction error that is
to be estimated by the two con�dence errors is used in the computation of the
estimate /dots unless it would be possible to come up with an independent
way to compute the normalization factors, ksim and kprox, an approach that
does not make use of the very data that are to be estimated.

The strong positive correlation between the three curves is evident by
naked eye. Hence either of the two con�dence errors can be used as a
relative estimator for the true prediction error. They could even be used
as absolute estimators, if it were possible to determine the normalization
factors independently.

The numerical values of the two normalization factors for Series B are:

ksim = 24:8598 ; kprox = 36:7448 (7.21)

7.3.2 Water Demand of the City of Rotterdam:

Series R

Series R had also been introduced in Chapter 4. Figure 4.22 is repeated once
more in Figure 7.3.

Dynamic mask allocation was not employed in this case, because the
results obtained with the more complex dynamic mask allocation algorithm
were no better than those obtained using the optimal mask alone.

Using the samemethodology as applied in the case of the Barcelona series,
the normalized error curves shown in Figure 7.4 are obtained. The strong
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Figure 7.3: Rotterdam water demand multiple{step simulation using FIR.

positive correlation between the true prediction errors and the two con�dence
errors is evident.

The normalization factors found for Series R were:

ksim = 50:3449 ; kprox = 77:3699 (7.22)

They are about twice as large as for Series B. In order to be able to use
the con�dence as a quantitative estimate of the true prediction error, the
con�dence errors, i.e., the con�dence reduction, should have been about twice
as large.

7.3.3 Tucson Weather Prediction: Series T

Series T is a recording of 5000 hours (roughly 7 months) worth of temperature
data measured for the City of Tucson. The measurement data are shown in
Figure 7.5.

Series T can be characterized as shown in Table 7.1.
Whether a time series is considered stationary or not may depend on the

point of view. Series T is stationary when observed over a number of years.
It is also stationary, when considered for a small number of days, but it is
non{stationary, when considered for a few hours, or for a few months, or for
several centuries. In the context of the measured data stream, the series must
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Figure 7.4: Error comparison for Rotterdam water demand series.

be considered non{stationary. It could be considered time{varying because
of the trend in the data, but usually, the term \time{varying system" is
reserved to denote a system that undergoes more drastic behavioral changes.

The data exhibit a strong daily cycle. The auto{correlation function is
presented in Figure 7.6. Hourly measurements were available for the entire
year 1995, though only a subset of the available data were used in Series T.

This time series is of particular interest, because there exists a rich
literature about weather prediction and the (usually quantitative) models
used for it. It is well established that a prediction over about �ve days is
feasible from local data, whereas a longer{term prediction will not work due
to the chaotic nature of the underlying physical system. It is to be expected
that the simple FIR model used in this chapter will do a much poorer job than
the sophisticated partial di�erential equation models discussed in the open
literature, as it only takes into account previous ambient temperature values,
ignoring other important factors such as cloud cover, humidity, sky radiation,
and the e�ective temperature of the night sky, for which measurement data
are also available.

As a base line for comparison, two trivial predictors, an hourly trivial
predictor and a daily trivial predictor were simulated in parallel with FIR.

5000 of the available data points were used as training data, whereas
another 128 data points were used for testing. Because of the 24{hour cycle,
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Figure 7.5: Training and testing data for Tucson weather prediction.

it was decided to use a mask depth of 50, so that FIR would �nd two entire
days in the data covered by the mask.

The optimal model proposed by FIR is the following:

0
BBBBBBBBBBBBBBBBBB@

y

t� 48�t �1
t� 47�t 0
� � � 0
t� 25�t 0
t� 24�t �2
t� 23�t 0
� � � 0
t� 2�t 0
t� �t �3
t +1

1
CCCCCCCCCCCCCCCCCCA

(7.23)

Since there exists a strong 24{hour cycle, FIR proposes to use the values
24 and 48 hours back for its predictions. The selection is reasonable.

Hourly predictions over up to 50 hours were performed, i.e., a prediction
table with 51 columns and 128 rows was chosen.

Figure 7.7 compares, in its top portion, the prediction errors resulting
from the use of FIR on the one hand and of the two trivial predictors on the
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Table 7.1: Classi�cation of Time Series T

natural T synthetic
stationary non{stationary T

time invariant T time varying
low dimensional stochastic T

clean noisy T
short long T

dormant active T
documented T blind

linear non{linear T
scalar T vector

single recording T multiple recordings
continuous T discrete

other.
FIR does not accomplish much. For the �rst �ve hours, FIR is

outperformed by the hourly trivial predictor, thereafter it is outperformed
by the daily trivial predictor. Only during a few hours, around the 24 hour
prediction, does FIR slightly outperform its two trivial competitors.

The lower two graphs of Figure 7.7 show the two accumulated con�dence
measures. In spite of the sobering prediction quality, FIR's con�dence in its
own predictions is extremely high.

Using the same methodology as applied in the case of the Barcelona
and Rotterdam series, the normalized error curves shown in Figure 7.8 are
obtained. As before, a strong positive correlation between the true prediction
errors and the two con�dence errors can be observed.

The normalization factors found for Series T were:

ksim = 195:8103 ; kprox = 252:6687 (7.24)

Where does this high con�dence in FIR's predictions originate from? In all
three cases, FIR proposed a mask of complexity 4 as the optimal mask, i.e.,
the optimal masks of each of the three time series are characterized by three
m{inputs that were discretized into three levels. Thus, the minimal number
of records needed for making a model is:

nrec � 5 � 33 = 135 (7.25)

The actual number of training data records used in the three series are shown
in Table 7.2.
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Figure 7.6: Auto{correlation of Tucson weather data.

Table 7.2: Training data for Series B, R, and T

Barcelona 570
Rotterdam 3500
Tucson 5000

Due to the narrow peaks in the Barcelona series, even 570 data records
were not enough to characterize well the weekends. Thus, the theoretical
minimum of 135 data records is clearly insu�cient.

Because of the more stochastic nature of Series R and T, more training
data records were used. In the case of Series T, the data were furthermore
oversampled, which led to the need for a very deep mask.

The abundance of training data led to optimistic con�dence estimates.
The con�dence measures contain two separate parts: a measure of the
distance (or dissimilarity) of the �ve nearest neighbors from the testing data
record in the input space, and a measure of the dispersion among the �ve
nearest neighbors in the output space.

By adding additional training data to the training data set, the former
of these two measures can be made arbitrarily small, leading to a complete
con�dence in the quantity of available training data. This is what happened
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Figure 7.7: Tucson temperature multiple{step simulation using FIR.

both in the case of Series R and in that of Series T.
Oversampling leads to an optimistic estimate of the latter of these two

measures as well. If a time series is oversampled, the �ve \nearest neighbors"
may in fact not be �ve truly di�erent neighbors, but only �ve recordings
of one and the same neighbor. Obviously, if the �ve nearest neighbors
were recorded during neighboring sampling instances, their outputs will be
correlated, which reduces the dispersion among them. This is what happened
in the case of Series T.

It is therefore reasonable to assume that the numerical values of the
normalization factors depend on the ratio of the available training data
records to the minimally required number of training data records, and also
on the ratio of the chosen sampling rate to the optimal sampling rate.

The author stipulates that formulae estimating the values of the two
normalization factors can be found; however, this will require additional
experimentation. Additional time series need to be analyzed, and also,
individual time series, such as the Tucson temperature series, need to be
analyzed under varying experimental conditions:

1. by varying the number of training data records

2. by varying the sampling rate
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Figure 7.8: Error comparison for Tucson temperature series.

3. by varying the number of discretization levels.

However, such an e�ort was not undertaken as part of the research described
in this dissertation.

Figure 7.9 compares the one{hour prediction, the 24{hour prediction, and
the 48{hour prediction of FIR with that of its two trivial competitors.

In the one{hour prediction, the trivial hourly predictor and FIR both
predict well, whereas the trivial daily predictor performs much poorer. In
the 24{ and 48{hour predictions, the hourly and daily trivial predictors are
identical, and the performance of all three predictors is about equal in quality.

Time series relating to weather prediction are a fascinating research
subject, because there exists a wealth of knowledge about weather prediction.
The results shown in this dissertation are only a �rst step in this direction.

A natural next step would be to consider all the measurement data that
have been recorded, namely:

1. temperature

2. humidity

3. cloudiness

4. solar radiation
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Figure 7.9: One{hour, 24{hour, and 48{hour predictions of Tucson
temperature series.

5. radiation of the night sky

to form a multi{variate time series, and predict all of these variables in
parallel. The correlations among these variables should help improve the
forecasts.

A �rst attempt at tackling this problemwas carried out by a senior project
student at the University of Arizona (Chabot 1998). However, due to the
limited time available to the student for her project, the results obtained
are inconclusive. The programs need to be re�ned, and more simulation
experiments need to be performed.

A next step would be to exploit the structural knowledge available from
quantitative weather models to structure the FIR model using the structured
approach proposed by M.Moorthy (Moorthy 1999). Natural state variables
of the weather model are:

1. the amount of sensible heat stored in a unit volume (related to the
temperature)

2. the amount of latent heat stored in a unit volume (related to the
humidity)
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3. the amount of convective 
ow due to wind (kinetic energy)

Natural driving functions are the solar and night{sky radiations. Natural
outputs are the temperature, the humidity, and the barometric pressure.

At any point in time, the extraneous driving functions are estimated
�rst, based on their own past. Luckily, the radiation patterns are highly
regular, and can therefore be predicted well. Then, the current values of the
state variables are predicted based on their own past, on the current and
past values of the driving functions, and on the past values of the outputs.
Finally, the current values of the outputs are estimated based on the current
and past values of the driving functions and state variables, as well as on
their own past.

It would be furthermore interesting to compare these results against the
best results obtainable from quantitative weather models that are simulated
by numerically solving the Navier{Stokes equation for a geographic region
with a given discretization. It would be highly interesting to know how well
FIR can match the numerical simulation results in quality.

7.4 Conclusion

In this chapter, it was shown that the accumulated con�dence measure can be
used as a relative estimator of the magnitude of the average prediction errors.
This means that, for any given time series, larger con�dence values are an
indicator for an increased likelihood of smaller prediction errors. However,
the con�dence values cannot be compared across di�erent time series, or
across di�erent experiments (di�erent number of training data, di�erent
sampling rate, di�erent number of discretization levels) for the same time
series, because the absolute value of the con�dence measures depend on the
experimental setup as much as on the time series itself.

Once the accumulated con�dence plot has been obtained and the
corresponding normalization factor has been estimated, it is possible to
determine how far into the future a prediction can be made. For example in
the case of Series B, testing data can be used to establish a normalization
factor of ksim = 25 for the similarity measure. If a 5% error is tolerated, then
the accumulated con�dence must be limited to 80%. Predictions that carry
an accumulated con�dence value of below 80% must consequently be rejected.
This corresponds, for practical purposes, to a predictability horizon of one
day. On the other hand, if prediction errors of up to 10% are acceptable, then
the accumulated con�dence must be limited to values above 55%. Predictions
with a lower accumulated con�dence value must be rejected. For practical
purposes, this results in a predictability horizon of roughly eight days.
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Chapter 8

Conclusions

The author's involvement with Fuzzy Inductive Reasoning began in the
spring of 1994, when she signed up for a curso de doctorado with
Professor Rafael Huber. She was fascinated with the possibilities that the
methodology seemed to o�er in terms of its ability to make predictions about
the future, in terms of its support for studying and analyzing the unknown,
in its ability to support exploratory research.

During the summer of that year, the author met Professor Fran�cois Cel-
lier who agreed to work with her toward a Ph.D. degree. Dr. Cellier proposed
to look at the self{assessment capabilities of FIR and come up with a formal
analysis and possibly improvement of the quality of predictions made. He
also suggested the analysis of time series, because they would provide for
a framework, where FIR could be compared against other competing fore-
casting methodologies. Because of her earlier involvement with time series
and their prediction, Dr. Gabriela Cembrano was asked whether she would
co{direct the dissertation, a task that she gladly accepted.

The author liked the proposed topic, and was thrilled with the prospect
of being able to improve the forecasting capabilities of the methodology. She
studied carefully how FIR makes its predictions, and devised means for how
the approach could be improved.

Her �rst ideas centered around the introduction of redundancy into the
methodology, in the hope that redundant information would help sharpen the
forecasting power of the methodology. In the spring of 1995, a �rst article had
been written, extending the Fuzzy Inductive Reasoning (FIR) methodology
to the Causal Inductive Reasoning (CIR) approach (Cellier and L�opez 1995).
CIR di�ered from FIR in that it added a fourth piece of information to the
qualitative triple: a qualitative gradient.

The idea was rather straightforward. CIR would make predictions not
only about the value of a variable, but also about its tendency to either
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increase or decrease. The hope was that this would help the methodology
with distinguishing between good and bad forecasts, as good forecasts would
be consistent in their predictions. A forecast that showed e.g. a growth
in value, yet predicted a negative gradient would be �ltered out as a bad
forecast.

It did not work. The predictions made by CIR were not signi�cantly
better than those made by FIR | they were only slower. FIR is so good
at picking out patterns that the introduction of redundancy did not improve
much its forecasting capabilities that are already close to optimal. The author
had to learn the hard way that it sometimes helps to �rst fully understand
the traits of a methodology, before trying to improve upon it.

In the sequel, the author concentrated more on the other part of the
project: the analysis of the self{assessment capabilities of FIR. The formulae
for the con�dence measures were developed that had been introduced in
Chapter 5 of this dissertation, as well as the error formula proposed in
Chapter 3, a formula that had to be modi�ed many times before it became
robust enough to yield meaningful results in most (though still not all)
applications. By the spring of 1996, the next two publications were ready.
These talked about the con�dence measures (Cellier et al. 1996) and their
application to the prediction of time series (L�opez et al. 1996).

The author then continued to work on development and re�nement of the
accumulated con�dence measures needed to estimate the forecasting horizon,
i.e., the horizon of predictability, as presented in Chapter 7.

It was not without irony that a contribution to the forecasting capabilities
of the FIR methodology �nally came, when it was least expected, namely as
a by{product of developing the con�dence measures. By making multiple
predictions in parallel using di�erent suboptimal masks and comparing their
con�dence values, the quality of FIR predictions could indeed signi�cantly
be improved. This aspect of her research has been captured in Chapter 6 of
the dissertation.

The primary contributions of this dissertation are now summarized.
Chapter 3 o�ers two primary contributions: a new formula to assess the

error of predictions of a univariate time series, and the discovery that FIR
�lters out what it considers to be noise.

The new error formula punishes to equal parts: deviations of the mean of
the prediction from the mean of the series, a di�erence between their standard
deviations, di�erences in the absolute errors between the two trajectories
after normalization of their means and standard deviations, and di�erences
in their shape, i.e., the so{called dis{similarity error.

The longest chapter of this dissertation, Chapter 4, provides the backbone
of the analysis of FIR's forecasting capabilities. In this chapter, FIR is
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compared against an extensive, though not exhaustive, number of alternate
approaches in its capability of making forecasts. Two time series, relating
to the prediction of water consumption in the cities of Barcelona and
Rotterdam, were used to make this comparison.

One of these series, Series B, was su�ciently deterministic to make a
meaningful prediction possible. The other series, Series R, was much more
stochastic, and did not contain enough regularity to allow for a meaningful
prediction beyond that provided by the trivial predictor. FIR was among the
best techniques in predicting Series B, and it concluded, with all the other
techniques, that a prediction of Series R was hopeless.

Previous research on Series B (Quevedo et al. 1988) had produced a Box{
Jenkins (ARIMA) model of the water demand, which is currently in use in
the city's water distribution management system. This model is considered
the most important reference for comparison for the forecasting results of
the Barcelona demand series, and the fact that both methodologies, Box{
Jenkins and FIR, produce forecasting errors that do not di�er signi�cantly is
considered an important asset of FIR. FIR provides the model automatically
whereas the Box{Jenkins methodology requires a signi�cant development
e�ort as well as knowledge about the nature of the process from which the
series was derived. Additionally, the need for interventions in the ARIMA
methodology is, to some extent, overcome by the use of the \�ve{nearest{
neighbor" rule that FIR employs in its predictions, at least for interventions
that extend over more than one day in a row.

FIR was found to exploit the available knowledge consistently and reliably,
and does so in a predominantly algorithmic fashion, i.e., setting up a FIR
model is fast and painless in comparison with other sophisticated techniques,
such as the Box{Jenkins and ANN methodologies. Furthermore, its self{
assessment capabilities give FIR an advantage over the competition, the
importance of which cannot be overestimated.

The primary contributions of Chapter 5 are the newly introduced
con�dence measures. Although it is not possible to �nd a deterministic
estimate for the prediction error, as was shown in Chapter 5, the con�dence
measures provide at least a statistical estimate for the quality of the
prediction. The self{assessment capability of FIR is easily its most signi�cant
characteristic. Its importance cannot be overestimated. By developing these
con�dence measures and implementing them in the SAPS{II software, our
current implementation of the FIR methodology, a facet was added to the
methodology that signi�cantly increases the value of the tool.

Chapter 6 demonstrates how the previously introduced con�dence
measures can be used to signi�cantly improve the quality of forecasts made
by FIR. To this end, several suboptimal masks are used to make, in parallel,
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forecasts of the same time series. Each of the forecasts is accompanied by
an estimate of its quality. In each step, the one forecast is kept as the true
forecast to be reported back to the user that shows the highest con�dence
value.

Chapter 7 �nally deals with the e�ects of error accumulation across
multiple steps of prediction in a simulation mode, whereby previous
predictions are being used as data inputs in making subsequent predictions.
The data contamination problem associated with such iterative predictions
is discussed, and a set of formulae has been devised to estimate the e�ects of
data contamination on the accumulated con�dence over multiple prediction
steps.

Has this research e�ort been completed? In the views of this author,
engineering research is always open{ended. It is never complete. Contrary
to the pure sciences, such as mathematics, where it may be possible to prove a
lemma that settles an open question once and for all, in engineering, research
never settles any question permanently, except in a negative sense. If a
hypothesis that has been posited could be disproved by �nding a counter{
example, then this settles the question once and for all. However, positive
contributions are invariably only milestones in an open{ended search. They
are pearls along an in�nite necklace, and each new pearl only opens the
prospect of �nding the next one by proceeding further along the same path.

Two related research e�orts have already been started by the author of
this dissertation. The �ndings, though preliminary in nature, are reported
in Appendices A and B of this dissertation.

Appendix A discusses the use of time{series predictors in the design of
smart sensors with look{ahead capabilities that may in the future be used in
the monitorization of complex engineering processes, such as nuclear power
plants (de Albornoz 1996). The idea behind this application is simple: if
a sensor with look{ahead capability can anticipate the crossing of a critical
threshold, it may issue an early warning that might enable the plant operator
to do something about the problem before it ever occurs.

Appendix B introduces a new class of predictive controllers, coined signal
predictive controllers that make use of smart sensors of the class introduced in
Appendix A to improve the control performance of feedback control systems.

A practical issue that the author has pondered for several years, but
never found the time to pursue, is the following. Most qualitative simulation
engines, such as QSim (Kuipers and Farquhar 1987), do not predict a single
trajectory (or episode). Instead, they predict an envelope of all trajectories
(episodes) that are consistent with the available knowledge. It would be
useful to implement in SAPS{II a tool for pursuing multiple predictions in
parallel, such that an envelop of either the possible or the probable predictions
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can be obtained.
One interesting theoretical question that would be well worth pursuing

is the following. Is it possible to come up with a quantitative analysis
determining how close a prediction algorithm came with respect to exploiting
all of the information available in a given time series?

The question seems a di�cult one, but it is not hopeless. To this end, it
would be interesting to analyze yet another class of competitors, the so{
called general predictors. These predictors are based on a concept that
was developed by Claude Shannon (Shannon 1951). Shannon performed an
experiment, in which a human subject was asked to guess the next letter in
an English text. If the guess was correct, the subject was told so, otherwise,
the subject was allowed to make further guesses, until the next letter had
been guessed correctly. Shannon reported the outcome of the experiment as
shown in Figure 8.1.

Underneath each letter, Shannon recorded the number of guesses it took,
before the subject came up with the correct letter. Suppose that the subject
is highly systematic, and therefore guesses always in a purely algorithmic
manner. In this case, it would not be necessary to record the letters at all.
The numbers underneath them would be equivalent.

This idea leads to a class of data compression algorithms, called general
compressors. General compressors sound outlandish at �rst, but they are
meanwhile widely used as data compressors for images and sounds on a
computer, to reduce the size of �les to be transferred to a minimum.

It is interesting to note that a theoretical limit of data compression can
be computed, i.e., for any real compression, it is possible to know how close
to the theoretical limit it is.

In the limit, the data �le will invariable have to look like uncorrelated
white noise. There is no longer any information contained in the data at all.
The entire information now is in the key, i.e., in the data compression/un{
compression algorithm.

The problem of ideal (general) data compression is related to that of ideal
(general) data encryption. Obviously, an ideally compressed data �le can be
transmitted without risk of ever being deciphered, as long as the key is kept
secret.

How is this problem related to that of prediction? Already the original
work of Shannon hints at a close relationship. After all, the experiment was
about predicting a time series. If a time series has been ideally compressed,
the compressed version will look like uncorrelated white noise. Hence it is
possible to extend the data �le by appending to it any uncorrelated white
noise, then interpret this extension as a compressed signal, and use the key
to un{compress it. This leads to a prediction of the series. By repeating
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the experiment with di�erent noise extensions, di�erent predictions result
that are all feasible in the context of the available knowledge about the time
series.

Finally, the engineering applications of the methodology developed in
this thesis, as described in Appendices A and B, have barely been touched.
Much more research will be needed to bring these ideas to fruition. An entire
Ph.D. dissertation could be written on designing a robust and reliable Signal
Predictive Control algorithm alone.

Luckily, not all things are predictable. As long as there remain open
questions, there is hope. As long as there is hope, the world moves on. As
long as the world moves on, there remains something to be predicted.
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Figure 8.1: Shannon experiment
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Appendix A

Early Warning Using Smart

Sensors with Look{Ahead

Capabilities

A.1 Introduction

The average complexity of engineering systems in use has steadily grown over
the years. Whereas �fty years ago, a homeowner would simply light a �re in
the open �re place when it got too cold in the house, and otherwise control
his body temperature by wearing an extra jacket, modern houses are now
full of elaborate control circuitry. Heating systems are fully automated and
controlled by one or multiple thermostats that regulate the temperature in
the house. These thermostats are furthermore programmable in such a way
that the set point temperature can be reduced during the day time, when
everyone is at work, or during the night, while everyone is asleep.

Modern cars are equipped with computers that control the engine in many
subtle ways. When the computer registers a potential problem, it alerts the
driver and suggests that the car be brought to a mechanic. The mechanic
then connects the computer inside the car across the Internet to the master
computer of the car manufacturer, and receives immediately a printed report
of which parts need to be exchanged.

One of the most complex engineering systems ever built is Biosphere 2,
a closed{ecology environment located 50 km north of Tucson (Mitsch and
Marino 1999). In this system, there are controllers for the temperature,
humidity, and air pressure in each of �ve biomes. The biosphere system
contains 1800 sensors whose values are recorded on the average once every
15 minutes to monitor the state of the biosphere.
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Due to the interconnections of subsystems, the malfunction rate of a
complex engineering system grows at least quadratically in the number of
components that the system is composed of (de Albornoz 1996). The purpose
of the control systems is not only to keep the variables of the system within
prespeci�ed ranges, but also to prevent the system from malfunctioning.

The most critical components of a control system are its sensors. Most
control laws are actually quite simple. However, the success of implementing
such a control law depends heavily on the quality of sensory information
available about the state that the process to be controlled is in.

In order to improve the quality of information available, many modern
control systems employ so{called smart sensors. Smart sensors are sensory
data processing systems that interpret the raw data obtained by the sensors,
and present the control algorithm with pre�ltered rather than raw sensory
information. They operate in part by means of sensor fusion, i.e., they collect
correlated information frommultiple sensors, and make use of the redundancy
contained in these data streams to calculate a single much cleaner signal to be
forwarded to the control algorithm. They may also employ other techniques,
such as look{ahead algorithms, i.e., real{time simulations that predict ahead
of time an expected future value of a sensor on the basis of its current and
past values.

Any control architecture contains essentially three parts:

1. the sensory system that is responsible for recording the current state
of the system to be controlled,

2. the control algorithm that makes use of the sensory information for
determining appropriate control actions, and

3. the actuators that translate the control actions into physical signals
that can be applied to the control inputs of the plant.

Whether \smart sensors" are considered part of the sensory system or part
of the control algorithm is a matter of personal taste. The name \smart
sensor" suggests that traditionally they have been associated with the sensory
system. There is a rationale for this decision: most smart sensors only
concern themselves with the question of where the system to be controlled
currently is, whereas the task of the control algorithm is to determine where
the system is going.

This appendix, however, deals with a class of smart sensors that concern
themselves with the question of where the system is going, by making
predictions of future values of sensory information based on recordings of
their current and past values.
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Humans constantly make use of state predictions when they reach control
decisions. A driver of a car who sees a ball rolling out onto the street from
behind a parked vehicle will hit the brakes at once, not because the ball
would pose any serious obstacle to the car, but because he or she knows that
balls do not move on their own, and therefore expects a small child to follow
the ball out onto the street shortly. A capitalist will sell stocks on the stock
market when he or she expects the value of the stocks to decrease, and will
buy stocks, when it can be expected that the stocks are going to gain value.

Smart sensors with look{ahead capabilities tie neatly into the framework
of this dissertation, since state prediction relates directly to the question of
time{series analysis and forecasting. Previous research published about this
problem made use of either neural networks or statistical approaches, such
as principal component analysis (Qin 1998). In this appendix, FIR will be
o�ered as an alternative technique for such smart{sensor designs.

A.2 Early Threshold Detection

The aim of this appendix is to analyze and discuss the possibilities of
designing smart sensors that can provide a controller with an early warning
about a threshold to be passed in the near future. The rationale behind the
research is straightforward: by the time a sensor detects that a threshold has
been passed, it may be too late to do anything about the problem, because,
due to the inertia in the system, control actions may not take immediate
e�ect. Traditionally, such systems had to set their thresholds more narrowly
in order to provide the controller with an early warning. However in this
way, the entire allowed range of values is not exploited, which may reduce
the performance of the system.

Figure A.1 illustrates the concept of a narrowed{threshold design. Since
all physical systems are characterized by a �nite bandwidth and �nite energy,
state variables can never jump, and therefore, a reduction of the range of
allowed sensor values necessarily o�ers an early warning capability.

Unfortunately, this approach may limit the performance of the system.
For example, if it would be safe to drive along a road with 60 km per hour
(upper limit), the reduction may result in a reduced maximum tolerated
speed of 50 km per hour. If it would be safe to follow another car at a
distance of 100 m (lower limit), it may now be necessary to keep a distance
of 150 m, etc.

To prevent this undesirable reduction in performance, some systems make
the range reduction depend on the gradient with which the threshold is
being approached. For example, the maximum allowed speed may be set
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Figure A.1: Early threshold detection by reduced sensor value range.

to (60 km=h � k � a), where a is the current acceleration of the car, and k
is a proportionality constant. In classical control terminology, this approach
corresponds to introducing a D{term into the control scheme. This technique
shall therefore be coined the PD{approach.

In this dissertation, another route shall be taken. A FIR model predicts
future values of the sensory signal ahead of time. If such a prediction reaches
the true threshold, a warning is issued claiming that the threshold is predicted
to be reached in t time units. By providing the controller with an early
warning, the controller may still have time to calculate a new control action
that will prevent the threshold from ever being reached.

If the prediction is imprecise, two types of errors may occur:

1. The prediction may issue an early warning because it foresees that
the signal will cross the threshold, although in reality, this would not
happen under the current control strategy.

2. The prediction does not foresee any problem, although the signal in
fact will cross the threshold after some time.

The �rst type of error will lead to the use of an overly conservative control
strategy (similarly to a reduced{range approach), whereas the second type of
error leads to a reduction in the early warning time available to the controller
(eventually, as the signal approaches the threshold, a warning will be issued,
but it may arrive too late to still be useful).
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The FIR prediction approach is similar in its e�ects to the aforementioned
PD{approach, but may work a little better, because its prediction of the
signal takes the non{linearity of the system generating the signal into
account, which is outside the capabilities of the PD{approach.

Clearly, it will be important to know how accurate the predictions are,
and how far into the future forecasts can be made. Therefore, the results
presented in Chapters 5 and 7 of this dissertation are highly relevant to the
investigation reported in this appendix.

A.3 Application: The Copper Bar

To validate the proposed approach, the following system was used. A copper
bar of length 1 m and radius 1 cm is connected at one of its ends to a voltage
source of 220 V. The other end is grounded. Hence a current 
ows through
the bar that heats the bar to a certain temperature above the ambient
temperature. If the ambient temperature were constant, the temperature
of the bar would also reach a constant value. However, the bar interacts
with its environments by means of radiation, i.e., if the ambient temperature
rises, so does the temperature of the bar, and vice{versa.

Figure A.2 shows the bond graph model used to describe this system.
The model follows the methodology outlined in Chapter 8 of (Cellier 1991).
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Figure A.2: Bond graph model of a copper bar.

The 0{junctions in the center represent the temperature values at each
of 10 segments. The mC elements attached to each of these junctions
represent the heat capacities associated with these segments. The 1{junctions
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in between these 0{junctions calculate the temperature di�erences between
neighboring segments, which is represented by the 0{junctions just above.
The temperature di�erence �Ti multiplied by the entropy 
ow through the
segment represents the amount of heat 
ow added by means of thermal
conduction. The two mGS elements emanating at the 0{junction storing
�Ti feed this added entropy back into the bar at the 0{junctions to the left
and to the right.

The SE element at the top of Figure A.2 represents the voltage source.
The 1{junctions to its right represent the current 
owing through the bar.
At each segment, the voltage drops by �u Volts. The product �u � i is the
electrical power that gets converted to heat in each of the segments. This
conversion is symbolized by the GS elements. The entropy generated by these
elements is delivered back to the 0{junctions representing the temperature
of each segment.

The SE element at the bottom of Figure A.2 represents the ambient
temperature, which is assumed to be a function of time, i.e., this SE element
is a non{linear e�ort source. The 0{junctions to its right symbolize the fact
that the ambient temperature is the same all along the copper bar. The mGS
elements emanating and ending in these 0{junctions represent the radiative

ow between the copper bar and its environment. The convective 
ow was
neglected in this model as a phenomenon that is of second order small, an
assumption that is correct as long as there is no forced air 
ow around the
copper bar.

The bond graph model was encoded in Dymola (Dynasim 1996). The
Dymola compiler was then used to translate the model into ACSL (MGA
1998) for simulation. The simulation results were then converted to a Matlab
(MathWorks 1997) matrix for use by FIR.

To make the example interesting, a disturbance had to be introduced that
modi�es the ambient temperature as a function of time. In lack of any better
disturbance function and since the example is synthetic anyway, Series T was
used once again, however this time, it was used as a disturbance function,
rather than as a time series to be predicted. Hence the ambient temperature
of the copper bar changes with the same patterns as the temperature in
Tucson. However, in order to make the time constants of the disturbance (the
ambient temperature) commensurate with those of the system (the thermal
time constants of the copper bar), Series T was compressed in time by a
factor of 36. Hence a \daily" temperature cycle is now completed within
40 minutes.

The resulting time series, representing the temperature at the far end of
the copper bar, i.e., where it is grounded, is shown in Figure A.3. This time
series shall be called Series U, denoting the uncontrolled copper bar. 6000 data
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points were collected, corresponding to roughly 7 days of simulated time with
a sampling rate of 100 sec. The �rst 5000 of those data points were used for
model identi�cation, whereas the following 200 data points were used for
model validation.
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Figure A.3: Temperature of the copper bar.

Series U has essentially the same characteristics as Series T, except that
it ought to be classi�ed as \synthetic" rather than \natural."

Table A.1: Classi�cation of Time Series U

natural synthetic U
stationary non{stationary U

time invariant U time varying
low dimensional stochastic U

clean noisy U
short long U

dormant active U
documented U blind

linear non{linear U
scalar U vector

single recording U multiple recordings
continuous U discrete

The model identi�ed by FIR is the same as for Series T, i.e.
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0
BBBBBBBB@

time u

t� 47�t �1
t� 46�t 0
� � � 0
t� 2�t 0
t� 1�t �2
t +1

1
CCCCCCCCA

(A.1)

Figure A.4 shows the one{step and two{step predictions of this time series.
The reader may notice the usual lag of the prediction behind the true value.
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Figure A.4: One{step and two{step predictions of copper bar temperature.

It is interesting to notice that, in Chapter 7, it was shown that the FIR
predictor does not outperform the trivial hourly predictor for the �rst few
hours. Yet for the purpose of an early warning, the trivial predictors are
totally useless, because they do not look ahead at all. Thus, it will be
interesting to see whether the FIR predictor indeed does have a look{ahead
capability.

Figure A.5 shows the same curves once more as Figure A.4. However,
for the task at hand, it is more useful to now plot the prediction at the
time it is made, rather than for the time it is made. Superimposed with the
graph are the upper and lower thresholds, which were set at 58oC and 50oC,
respectively.

Figure A.6 shows a blow{up of Figure A.5 for the �rst hour.
It can be seen that the �rst threshold can indeed be predicted fairly

well. A one{step (100 sec) prediction leads essentially to an early warning of
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Figure A.5: One{step and two{step predictions of copper bar temperature.

100 seconds, and a two{step (200 sec) prediction leads to an early warning
of 200 seconds.

Unfortunately, already the second threshold lies beyond the horizon of
predictability, as the prediction lags behind the true event, i.e., is essentially
useless. The reason for this discrepancy is that the estimator slightly
overestimates the temperature as the previous cycles were a little warmer.
Therefore, the upper threshold can be estimated better than the lower
threshold during the window shown in Figure A.6.

However, this is not always the case. The lower thresholds at 3.1 hours
and 3.8 hours of Figure A.5 are being predicted. The upper threshold at
4.1 hours is an error of type 1, as the predictor predicts a threshold crossing
that, in reality, never takes place.

Figure A.7 shows three{step up to �ve{step predictions.

A �ve{step prediction predicts 500 seconds, i.e., more than 8 minutes
ahead. Yet, it does not predict the �rst threshold passing until about
4 minutes prior to the true event, because the horizon of predictability is
drawing close. The horizon of predictability varies between 0 minutes (when
no early prediction is possible) and about 10 minutes.

It would also be possible to combine the FIR approach with a PD{
approach, and issue an early warning whenever either of the two approaches
indicates a potential problem.
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Figure A.6: One{step and two{step predictions of copper bar temperature.

A.4 Conclusions

In this appendix, it was shown that a FIR predictor can be used to implement
a smart sensor with look{ahead capability to provide early warning of
an impending threshold crossing. Although the FIR predictor did not
outperform the trivial predictor, which is useless as a look{ahead tool, for
the time series under investigation, FIR indeed could be used as a prediction
tool. The reason is that the error measure used in the comparisons of
this dissertation measures a di�erent type of error that is not necessarily
indicative of success or failure for the task at hand.

The results presented in this appendix must be considered preliminary,
because the method was only applied to one single example, moreover a
synthetic one. It would be interesting to apply the proposed approach to
a real system, such as the nuclear reactor discussed in (de Albornoz 1996).
Furthermore, the approach should be compared to the PD{method to verify
that it indeed outperforms the approaches that had been used traditionally
for tackling the early warning problem.
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Figure A.7: Three{step to �ve{step predictions of copper bar temperature.
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Appendix B

Signal Predictive Control

B.1 Introduction

In Appendix A, smart sensors were introduced as a means to improve system
reliability, i.e., for reducing the probability of a complex engineering system
to have to be shut down for safety considerations.

In the present appendix, smart sensors will be advocated as a tool to
improve control performance. To this end, a new class of predictive control
algorithms will be introduced, called Signal Predictive Control (SPC).

The appendix explains the development of a strategy of predictive control
that is based on the evaluation of predictions of the future behavior of the
process to be controlled during a �xed time horizon in function of sequences of
possible input/output behaviors within an umbrella of multiple predictions
that are possible, given the available knowledge about the process and its
feasible dynamics.

In a control process, two di�erent types of input variables exist: control
variables and disturbances. Only control variables can be manipulated by the
controller. Although the disturbances in
uence the behavior of the system,
the controller has no in
uence over them. The disturbances are divided into
those that are measurable and those that are not.

Among the many control strategies that were devised by scientists and
engineers over the past half century, two concepts have had the most profound
impact on today's industrial control systems:

1. the proportional, integral, and derivative (PID) controller; and

2. the model predictive control (MPC) methodology.

The PID controllers and their simpli�ed cousins: the PI, PD, and
P controllers, all operate on the same principle. A measurable system output,
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y, is fed back, and is compared with the desired value that it should attain,
r, i.e., the so{called set value, producing an error signal, e:

e = r � y (B.1)

The error signal is then ampli�ed by a gain factor, kP , to produce the
proportional part of the controller. The error signal may also be integrated
and ampli�ed by another gain factor, kI , to produce the integral part of the
controller. It may �nally be di�erentiated, and ampli�ed with a third gain
factor, kD, to form the derivative portion of the controller. In this way, the
control signal, u, is computed from the error signal, e, using the formula:

u(s) =

 
kP +

kI
s
+ kD � s

!
� e(s) (B.2)

PID controllers have been widely surveyed in the open literature (Ogata 1970;
Dorf 1980; Kuo 1991).

In practice, since numerical di�erentiation is considered harmful, it may
be preferred to feed the derivative of the output, _y(t), back also, and use the
control law:

u(t) = kP � e(t) + kI �
Z t

0
e(� ) � d� � kD �

dy(t)

dt
(B.3)

This is equivalent to Eq.(B.2), because:

de

dt
=

dr

dt
�
dy

dt
= �

dy

dt
(B.4)

as the set value, r(t), is constant.

The proportional part of the controller is responsible for bringing the
output to the vicinity of its desired value; the integral part is responsible for
the elimination of steady{state errors, i.e., for making the true output exactly
equal to the desired output in steady{state; and the derivative portion is
responsible for speed, i.e., for reducing the time that the controller needs to
compensate for the in
uence of disturbances on the controlled output. A PI
controller is a PID controller with kD = 0, a PD controller is a PID controller
with kI = 0, and a P controller is a PID controller with both kD = 0 and
kI = 0.

Figure B.1 shows the conceptual architecture of a PID controller. Its
usual realization, that includes feedback of _y(t), is not shown here, because
this is an implementational detail. It does not change the functionality of
the architecture.
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PID controller Plant
+

-

r(t) e(t) u(t) y(t)

Figure B.1: PID control architecture

The PID controller owes its reputation to its simplicity and its robustness.
The architecture can be applied to a large variety of di�erent plants, including
highly non{linear ones, and modi�cations of the architecture exist that can
be used if either multiple control inputs in
uence the same system output,
or if multiple outputs are being controlled through the same control input,
as shown in Figure B.2.

Figure B.2(a) shows a plant with a single input and two outputs that are
controlled by two separate PID controllers. The control signals produced
by the two controllers are superposed at the single input of the plant.
Figure B.2(b) shows a plant with two separate inputs that both in
uence the
same output. A single error signal is computed that is fed to two separate
PID controllers that control the two control inputs of the plant independently.

For many practical industrial engineering problems, the PID controller is
all that it takes to satisfy the system requirements.

The predictive control methodology was introduced in 1974 in
a doctoral thesis by Mart��n S�anchez (1974), and further developed by
Mart��n S�anchez (1976), de Keyser (1991), Richalet et al. (1978), and
Mart��n S�anchez and Rodellar (1996).

Today, there exist many di�erent dialects of the basic predictive control
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Figure B.2: Multivariable PID control architectures: (a) SIMO plant; (b)
MISO plant

concept. The following architectures have been used to design predictive
controllers:

� Model{based Predictive Control (MPC) (Clarke 1994; Qin 1998).

� Generalized Predictive Control (GPC) (Clarke et al. 1987a; Clarke
et al. 1987b),

� Dynamic Matrix Control (DMC) (Cutler and Ramaker 1980),

� Extended Prediction Self{adaptive Control (de Keyser and van
Cauwenberghe 1985),

� Predictive Functional Control (PFC) (Richalet et al. 1987),

� Extended Horizon Adaptive Control (EHAC) (Ydstie 1984)

� Uni�ed Predictive Control (UPC) (Soeterboek et al. 1990a; Soeterboek
et al. 1990b; Soeterboek 1992).
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Most commonly, predictive controllers are designed in discrete time, but it
is also possible to design them in continuous time (Gawthrop et al. 1996).

Figure B.3 shows the basic predictive control architecture. Predictive
controllers are essentially adaptive controllers. A controller design algorithm
adjusts the parameters of the controller using information provided by a
model of the plant.

w u y

Controller

Parameters

Design
Parameters

Model

Controller Design

Controller Process

Figure B.3: Model{based predictive control architecture

The architecture makes use of a model of the plant in order to predict the
future behavior of the plant given the current control strategy. A controller
design algorithm makes use of that information in modifying the actual
control strategy such that the model behavior approaches the desired plant
behavior.

The di�erent dialects of predictive controllers advocated in the open
literature vary in the ways they implement and use the model in order to
decide on an optimal control strategy.

In this appendix, a di�erent type of predictive control architecture will
be presented, an architecture that does not make use of a true plant model.
It only models the output signal from observations of its own past using FIR.
In this sense, the new architecture, which has been coined Signal Predictive
Control (SPC), is much simpler and more robust than most of the previously
introduced predictive control strategies.

B.2 The Signal Predictive Control Architec-

ture

Starting from the basic PID control architecture of Figure B.1, the modi�ed
PI controller architecture of Figure B.4 can be obtained. It is based on the
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trivial equality:

y(t) = k � y(t) + (1:0 � k) � y(t) (B.5)

which is evidently correct for any value of k.

  PI controller Plant
+

-

r(t) e(t) u(t) y(t)

-

1.0 - k

    k

Figure B.4: A PI controller with redundant feedback loops

Using the control architecture of Figure B.4, the basic architecture of
the new class of signal predictive controllers can be derived as shown in
Figure B.5.

The box shown as FIR in Figure B.5 is a smart sensor with look{ahead
capability. It predicts the value of the output y(t) some �t time units into
the future.

The predictive component of the SPC architecture corresponds essentially
to the introduction of a derivative term into the PI controller. However, it
may have two important advantages over the PID controller:

1. Due to its non{linear nature, the FIR predictor may be able to better
exploit the characteristics of a non{linear plant than the PID controller.

2. If the derivative of the output to be controlled is not a physical
measurable variable, the performance of the PID controller is
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Figure B.5: Basic signal predictive control architecture

signi�cantly reduced. In contrast, FIR does not require measuring a
derivative signal.

If the derivative of the output is not a signal that is available through
measurements, the derivative term of the PID controller:

uD(t) = �kD �
dy

dt
(B.6)

in accordance with Eq.(B.3), must be approximated. This can either be done
in the frequency domain:

uD(s) � �kD �
s+ 0:1

s+ 1
� y(s) (B.7)

or in the time domain:

uD(t) � �kD �
y(t)� y(t��t)

�t
(B.8)

A better approximation in the time domain would be:

uD(t) � �kD �
y(t+�t)� y(t)

�t
(B.9)



194 Signal Predictive Control

Eq(B.9) shows the close relationship with the SPC architecture. Since
y(t + �t) cannot be known precisely at time t, it would be possible to use
FIR to estimate y(t + �t), then plug this approximation into Eq(B.9), in
order to compute a better approximation of the derivative term. However,
the estimate of y(t+ �t) can also be used directly, as proposed in the SPC
architecture.

The SPC architecture is non{intrusive, as it approaches smoothly the
behavior of the PI controller for either k ! 0 or �t! 0. An adaptive SPC
method would start out with small values of k and �t, and then gradually
increase the values of these two parameters, until the control performance is
optimal.

The estimate of y(t + �t) can be improved by providing FIR also with
the control input u as a second input. This modi�ed SPC architecture is
shown in Figure B.6.

  PI controller Plant
+

-

r(t) e(t) u(t) y(t)

-

1.0 - k

    k FIR
y(t+∆t)

Figure B.6: Enhanced signal predictive control architecture

In the enhanced SPC architecture, FIR essentially models the plant, just
like any other predictive controller would. However, the result of this model
is not being used to modify the control strategy. Instead, it is used to modify
the error signal that drives the controller.

However, since the aim of this dissertation is related to time{series
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analysis, the discussion of the capabilities of the enhanced SPC architecture
will be left to future research. This appendix only deals with the basic SPC
architecture.

B.3 Application: The Copper Bar

A PI controller, as shown in Figure B.4, was built around the copper bar that
had been introduced in Appendix A of this dissertation. The set value of
the temperature is 50oC. The PI controller was optimized as to minimize the
deviation of the measured bar temperature from its set value, once steady{
state has been reached.

Whereas it is customary in the control literature to measure the
e�ectiveness of a controller in terms of the integrated square error:

PI =
Z tf

t0

err2(� ) � d�
!
= min (B.10)

in this dissertation, the performance index, PI, shall be de�ned as the total
error:

PI = errtot
!
= min (B.11)

where errtot is de�ned as presented in Eq(3.44).
The two parameters of the PI controller, kP and kI , were optimized as to

make the total error minimal during steady{state.
The controlled temperature of the copper bar is shown in Figure B.7.

0 1 2 3 4 5 6 7
49.95

50

50.05
Controlled Copper Bar

Time (days)

T
em

pe
ra

tu
re

 (
C

)

Figure B.7: Controlled copper bar temperature

The time series of Figure B.7 of the controlled copper bar temperature
has been coined Series C. Series C can be characterized as follows:

Series C is similar to Series U, except that it should be characterized
as stationary, rather than non{stationary. Series C looks treacherously like
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Table B.1: Classi�cation of Time Series C

natural synthetic C
stationary C non{stationary

time invariant C time varying
low dimensional stochastic C

clean noisy C
short long C

dormant active C
documented C blind

linear non{linear C
scalar C vector

single recording C multiple recordings
continuous C discrete

white noise, i.e., it will be di�cult to extract any useful information out of
this series.

Using the �rst 5000 data records, a FIR model was constructed. It has
the structure:

0
BBBBBBBBBBBBBBB@

time u1

t� 48�t �1
� � � 0
t� 24�t �2
� � � 0
t� 9�t �3
� � � 0
t� 2�t �4
t� �t 0
t +1

1
CCCCCCCCCCCCCCCA

(B.12)

Interestingly enough, FIR did not consider the value at time t � �t useful
for predicting the value at time t. This by itself should make us suspicious
about the quality of this data stream.

Since the output of the FIR model is used to drive the controller and plant
models that are simulated in ACSL (MGA 1998), also the FIR simulation had
to be performed in ACSL. This was accomplished using the FIR run{time
kernel of ACSL that had been developed in (Cellier et al. 1992).

Figure B.8 shows the results of a simulation across 27.77 hours,
corresponding to 1000 samples. The top graph of Figure B.8 shows the
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simulation using the optimized PI controller; the center portion of Figure B.8
shows the simulation using an optimized PID controller, where all three
parameters, kP , kI , and kD, were re{optimized to minimize the chosen
performance index; and the bottom part of Figure B.8 shows the simulation
using the signal predictive controller with a look{ahead of one step at a time
(�t = 1 step = 1:66 minutes), whereby the remaining three parameters, kP ,
kI , and k, were re{optimized for minimization of the performance index.
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Figure B.8: Comparison of PI, PID, and SPC architectures for copper bar
temperature control

The three curves look almost indistinguishable by naked eye. One might
be inclined to believe that the PI controller is best, whereas the SPC is worst.
Figure B.9 compares the SPC using a double{step look{ahead, a triple{step
look{ahead, and a quadruple{step look{ahead.

Again, not much is accomplished when looking at the simulation results
by naked eye. Table B.2 summarizes the simulation results in a tabular form.

Although not visible by the naked eye, the performance of the SPC
architecture was indeed slightly better than that of the PID controller (at
least, in a strictly numerical sense), which performed a little better than the
PI controller. The optimal number of steps of look{ahead for this system is
two.

The numerical \improvement" obtained by the SPC approach certainly
does not justify the e�ort for the example at hand. In practice, one should
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Figure B.9: Comparison of SPC architectures for copper bar with multiple
steps look{ahead

Table B.2: Error of the Controller

PI Controller PID Controller SPC Architecture
n - step Prediction

n = 1 n = 2 n = 3 n = 4
29.7422 29.7207 29.6362 29.5589 29.6068 29.6352

not even call this an \improvement" at all. Moreover, the PI controller
satis�es the control performance criteria that can reasonably be expected of
this system. It is much simpler, and therefore better.

The fact that also the PID controller did not bring any signi�cant
improvement shows that the example was not well chosen. The SPC
architecture is hypothesized to work well when applied to systems where
the PID controller shows a signi�cant improvements in performance over
that of the PI controller. In such systems, it may be speculated that the
SPC approach would outperform the PID controller.
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B.4 Conclusion

A new predictive control architecture, called Signal Predictive Control (SPC),
was proposed that has a number of appealing properties:

1. The SPC architecture is non{intrusive, i.e., for small values of its two
parameters, k and �t, it performs essentially like the well{known and
well{liked, highly{robust PI controller.

2. The SPC architecture is simple and logical. It does not call for
additional measurement data, such as measured derivatives.

3. The SPC architecture can be generalized to multivariable systems as
easily as the PID control architecture.

Only a single control system was analyzed to this day using the SPC
architecture. The results of this analysis are somewhat disappointing,
because the example was poorly chosen for the methodology.

Yet, the author is convinced that SPC has a bright and promising future,
and will �nd a proud place among the family of predictive control approaches.

The results presented in the two appendices must certainly be called
preliminary and speculative. A signi�cant e�ort was already spent on
developing the new monitorization and control architecture, and it would
therefore have been a pity to leave the results obtained so far out of the
dissertation altogether. Yet, in the light of the preliminary nature of these
�ndings, it was felt that it would be more appropriate to present them in
two appendices, rather than in the main body of the dissertation.
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