

SYSTEM ANALYSIS THROUGH BOND GRAPH MODELING

by

Robert Thomas McBride

A Dissertation Submitted to the Faculty of the

DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING

In Partial Fulfillment of the Requirements

For the Degree of

DOCTOR OF PHILOSOPHY

In the Graduate College

THE UNIVERSITY OF ARIZONA

2 0 0 5

 2

THE UNIVERSITY OF ARIZONA

GRADUATE COLLEGE

As members of the Dissertation Committee, we certify that we have read the dissertation

prepared by Robert Thomas McBride

entitled System Analysis through Bond Graph Modeling

and recommend that it be accepted as fulfilling the dissertation requirement for the

Degree of Doctor of Philosophy

___ Date: May 3, 2005

Dr. François E. Cellier

___ Date: May 3, 2005

Dr. Malur K. Sundareshan

___ Date: May 3, 2005

Dr. Hal S. Tharp

___ Date: May 3, 2005

Dr. Parviz E. Nikravesh

___ Date: May 3, 2005

Dr. Cho Lik Chan

Final approval and acceptance of this dissertation is contingent upon the candidate’s
submission of the final copies of the dissertation to the Graduate College.

I hereby certify that I have read this dissertation prepared under my direction and
recommend that it be accepted as fulfilling the dissertation requirement.

__ Date: May 3, 2005
Dissertation Director: Dr. François E. Cellier

 3

STATEMENT BY AUTHOR

 This dissertation has been submitted in partial fulfillment of requirements for an
advanced degree at The University of Arizona and is deposited in the University Library
to be made available to borrowers under rules of the Library.

 Brief quotations from this dissertation are allowable without special permission,
provided that accurate acknowledgment of source is made. Requests for permission for
extended quotation from or reproduction of this manuscript in whole or in part may be
granted by the head of the major department or the Dean of the Graduate College when in
his or her judgment the proposed use of the material is in the interests of scholarship. In
all other instances, however, permission must be obtained from the author.

SIGNED: Robert Thomas McBride

 4

ACKNOWLEDGMENTS

 I want to express my gratitude to my advisor Dr. François Cellier. Without his
knowledge and experience in controls, and bond graph modeling, this dissertation would
not have been possible. His knowledge of modeling, simulation, and control theory
advanced my understanding of these topics greatly. Nor could I have accomplished this
goal without his guidance, support, and encouragement. I feel very fortunate to have had
the opportunity to work with him on my degree. Thank you François!

 I want to thank Raytheon for allowing me to pursue this degree by allowing me the
time away from work and for the continuing-education financial support. I want to thank
in particular; Brett Ridgely for his support and encouragement, Curt Mracek for patiently
answering my incessant questions, and Steve Ingle for his input in the review of my
writing and his patience with my time away from work.

 I want to thank my children for their support during this process; Lucia, Ashton,
Anthony, Connor, and Adam. I hope that they will love the university experience as
much as I.

 I want to thank Kristi Brean and Brook Gomez for their help in taking care of my
children during the writing of this dissertation, and while I was away presenting papers. I
was always at ease knowing that Adam was safe when I could not be there.

 I want to thank my parents, Tom and Jan McBride, for instilling the desire to seek out
truth and understanding and allowing me the agency to do so.

 — Robert

5

DEDICATION

To Shannon,

 for her unwavering loyalty,

 encouraging support,

 and lasting friendship . . .

6
TABLE OF CONTENTS

LIST OF FIGURES...9
LIST OF TABLES...15
ABSTRACT..16
CHAPTER 1: Introduction...17

1.1 Problem Statement ... 17
1.2 Plan of Dissertation.. 18
1.3 Summary of Contributions... 20

CHAPTER 2: Related Work ..21
2.1 Introduction.. 21
2.2 System Lagrangian and Bond Graph Construction ... 21
2.3 Object-Oriented Bond Graph Modeling .. 22
2.4 System Efficiency Measurement Through Bond Graph Modeling 23
2.5 Optimal Gain Selection Using the Bond Graph Efficiency Measurement 24

CHAPTER 3: Bond Graph Modeling..26
3.1 Introduction.. 26
3.2 An Introduction to Bond Graph Modeling... 28

3.2.1 Power Bonds and Conjugate Variables.. 28
3.2.2 Bond Graph Junctions... 31
3.2.3 1-Port Elements... 32
3.2.4 Basic 2-Port Elements... 34
3.2.5 Power Flow Diagrams... 35
3.2.6 Causality ... 38
3.2.7 Bond Graph Causal Mark Assignments.. 45
3.2.8 Bond Graph Equation Formulation... 47
3.2.9 Conversion of Bond Graph Variables to Common State Variables 51

3.3 Bond Graph Construction from the Lagrangian .. 53
3.3.1 Lagrangian to Hamiltonian Transformation ... 55
3.3.2 Lagrangian to Bond Graph Development ... 59
3.3.3 Lagrangian to Bond Graph Development: Pendulum Example, One
Degree of Freedom ... 62
3.3.4 Lagrangian to Bond Graph Development: Gyroscope Example 66

3.4 Brown’s Lagrangian Bond Graphs .. 80
3.5 Conclusions.. 82

CHAPTER 4: Object-Oriented Bond Graph Modeling84
4.1 Introduction.. 84
4.2 Dymola... 85

4.2.1 Equation Sorting ... 87
4.2.2 Algebraic Loops.. 92
4.2.3 Structural Singularities: The Higher Index Problem 100

4.3 The Dymola Bond Graph Library.. 108
4.3.1 Connectors .. 108
4.3.2 Bonds .. 110

7
TABLE OF CONTENTS (continued)

4.3.3 Junctions ... 113
4.3.4 Passive Elements... 116
4.3.5 Sources.. 122
4.3.6 Sensors .. 124

4.4 A Gyroscopically Stabilized Platform: An Object-Oriented Bond Graph
Example .. 129

4.4.1 The Gyroscope Model... 129
4.4.2 Inertial Rate Sensor Model ... 133
4.4.3 Platform Model ... 140
4.4.4 Stabilized Platform.. 143
4.4.5 Camera Model... 144
4.4.6 Stabilized Platform with a Two-Gimbal Camera.................................... 147
4.4.7 Simulation and Results ... 149

4.5 Conclusions.. 157
CHAPTER 5: System Efficiency Measurement Using the Power Flow
Information from a Bond Graph Model .. 158

5.1 Introduction... 158
5.2 Servo Positioning System ... 159

5.2.1 Servo Positioning System: Complete, Non-Linear System 161
5.2.2 Servo Positioning System: Complete, Linearized System...................... 167

5.3 Power Flow Considerations .. 180
5.4 Servo Controllers .. 181

5.4.1 Linear Control Schemes.. 181
5.4.2 Non-Linear Control Scheme 1 .. 183
5.4.3 Non-Linear Control Scheme 2 .. 185

5.5 Step Response Comparisons .. 188
5.5.1 Step Response Comparisons of Linear Systems..................................... 188
5.5.2 Step Response Comparisons of Non-Linear Systems............................. 204

5.6 Conclusions.. 214
CHAPTER 6: Optimal Gain Comparison Using the Power Flow
Information of Bond Graph Modeling ... 215

6.1 Introduction.. 215
6.2 Two Degree of Freedom Missile ... 217
6.3 Linear Pitch Autopilot.. 226

6.3.1 Missile Pitch Autopilot: 3-Loop Controller.. 226
6.3.2 Missile Pitch Autopilot with Actuator Dynamics................................... 230

6.4 The Autopilot Gain Selection Process ... 235
6.4.1 The Autopilot Gain Selection Process: The Performance Index 235
6.4.2 Linearized Missile Pitch Dynamics for Gain Optimization.................... 236
6.4.3 Linear Missile Pitch Dynamics: Sample Optimal Gains 245

6.5 Actuator Power Flow Analysis Using Optimal Autopilot Gains................... 251
6.5.1 Actuator Power Flow Efficiency from the Optimal Gain Set................. 251

8
TABLE OF CONTENTS (continued)

6.5.2 Optimal Efficiency Comparisons.. 258
6.6 Nonlinear Pitch Autopilot: An SDRE Approach ... 264

6.6.1 LQR Formulation and General Solution... 264
6.6.2 LQR General Solution for Nonzero Feed-Through 265
6.6.3 LQR Solution for Nonzero Feed-Through and Output Feedback 268
6.6.4 LQR Tracking Solution for Nonzero Feed-Through, Output Feedback and
Zero Steady State Error... 269
6.6.5 Dymola Implementation of the LQR Tracking Solution 271
6.6.6 Nonlinear Autopilot Results ... 279

6.7 Power Flow Analysis with Varying Mass Parameters................................... 286
6.7.1 Center of Gravity Shift.. 286

6.8 Conclusions.. 291
CHAPTER 7: Summary .. 293

7.1 Contributions.. 293
7.1.1 Modeling... 293
7.1.2 Simulation ... 293
7.1.3 System Analysis.. 294
7.1.4 Controller Design.. 295

7.2 Future Work ... 296
7.2.1 Modeling... 296
7.2.2 Simulation ... 296
7.2.3 System Analysis and Controller Design ... 297

APPENDIX A1: Dymola Model, SDRE Code Listing 298
APPENDIX A2: Dymola Model, Riccati4 Code Listing 302
APPENDIX A3: Dymola Model, Heig4 Code Listing 306
APPENDIX A4: Dymola Model, Gen_Eigs Code Listing 310
APPENDIX A5: Dymola Models, Misc. Functions, Code Listing 313

A5.1 QuadRoots... 313
A5.2 Complex_Mult .. 313
A5.3 Complex_Div.. 313

APPENDIX B1: Symmetry of Hamiltonian Eigenvalues 315
B1.1 Eigenvalue Symmetry about the Real Axis .. 315
B1.2 Hamiltonian Eigenvalue Symmetry about the Imaginary Axis 316

APPENDIX B2: Vandermonde Representation of Controller Canonical
Eigenvectors .. 317
APPENDIX C: Glossary of Terms.. 319
REFERENCES ... 320

9

LIST OF FIGURES

Figure 3.1. Power Bond with the Flow of Power from A to B 29
Figure 3.2. Bond Graph Junctions and Conjugate Variable Relationships 31
Figure 3.3. Ideal Sources... 33
Figure 3.4. Basic Bond Graph 1-Port Elements .. 34
Figure 3.5. Basic 2-port Elements ... 34
Figure 3.6. Circuit Example .. 36
Figure 3.7. Simplified Circuit Power flow Diagram... 37
Figure 3.8. Completed Circuit Power flow Diagram .. 38
Figure 3.9. Causal Marks .. 39
Figure 3.10. Necessary Causality .. 40
Figure 3.11. Possible Causal Assignments for 2-Port Elements 41
Figure 3.12. Integral Causal Assignments for 1-Port Elements 41
Figure 3.13. Differential Causal Assignments for 1-Port Elements.............................. 42
Figure 3.14. Possible Causal Assignments for a Resistive Element 43
Figure 3.15. Causal Assignments on Bond Graph Junctions .. 44
Figure 3.16. Completed Circuit Bond Graph .. 47
Figure 3.17. General Bond Graph Structure Developed from the Lagrangian 61
Figure 3.18. Single Degree of Freedom Pendulum... 62
Figure 3.19. Pendulum 1-Junction .. 64
Figure 3.20. Complete Bond Graph of Pendulum... 65
Figure 3.21. Gyroscope Diagram .. 67
Figure 3.22. Gyroscope Integral 1-Junctions .. 70
Figure 3.23. Gyroscope 1-Junctions: I-Element Connections....................................... 71
Figure 3.24. Gyroscope MGY Connections.. 74
Figure 3.25. Complete Gyroscope Bond Graph .. 75
Figure 3.26. Ball Joint Table: Schematic .. 80
Figure 3.27. Ball Joint Table: Brown’s Bond Graph .. 81
Figure 3.28. Ball Joint Table: Bond Graph from Current Method................................ 81
Figure 4.1. Power Sensing Bond Model: Equation Window 85
Figure 4.2. Power Sensing Bond Model: Diagram Window....................................... 86
Figure 4.3. Power Sensing Bond Model: Icon Window.. 87
Figure 4.4. Spring Mass Damper: Example .. 88
Figure 4.5. Spring Mass Damper: Dymola Equation Window 89
Figure 4.6. Wheatstone Bridge Circuit Example: Dymola Diagram Window............ 92
Figure 4.7. Bond Graph of Wheatstone Bridge Circuit... 93
Figure 4.8. Complete Bond Graph of Wheatstone Bridge Circuit 94
Figure 4.9. Gear Train Example.. 101
Figure 4.10. Gear Train Bond Graph .. 103
Figure 4.11. Bond Graph Connector ... 108

10
LIST OF FIGURES (continued)

Figure 4.12. e-Bond Connector ... 109
Figure 4.13. f-Bond Connector.. 110
Figure 4.14. A-Causal Bond.. 111
Figure 4.15. e-Bond... 112
Figure 4.16. f-Bond ... 112
Figure 4.17. 3 Bond 0-Junction... 113
Figure 4.18. Three-Port Zero .. 114
Figure 4.19. Three-Port One ... 115
Figure 4.20. 3 Bond 1-Junction... 115
Figure 4.21. Passive One-Port .. 116
Figure 4.22. R-Element Model.. 117
Figure 4.23. mR-Element Model... 118
Figure 4.24. I-Element Model ... 118
Figure 4.25. C-Element Model.. 119
Figure 4.26. TwoPort... 119
Figure 4.27. Transformer Model ... 120
Figure 4.28. Modulated Transformer Model... 120
Figure 4.29. Gyrator Model... 121
Figure 4.30. Modulated Gyrator Model .. 121
Figure 4.31. Effort Source Model ... 122
Figure 4.32. Modulated Effort Source Model ... 123
Figure 4.33. Flow Source Model... 123
Figure 4.34. Modulated Flow Source Model .. 124
Figure 4.35. Effort Sensor ... 125
Figure 4.36. Flow Sensor .. 125
Figure 4.37. P Sensor .. 126
Figure 4.38. Q Sensor.. 127
Figure 4.39. Power Sensor on an e-Bond.. 127
Figure 4.40. Power Sensor on an e-Bond: Icon Window.. 128
Figure 4.41. Gyroscope Model.. 130
Figure 4.42. Gyroscope Model: Equation Window (A). ... 130
Figure 4.43. Gyroscope Model: Equation Window (B). ... 131
Figure 4.44. Gyroscope Model: Icon Window.. 132
Figure 4.45. Pitch Gyroscope .. 133
Figure 4.46. Effective Inertia .. 134
Figure 4.47. Pitch Gyro Icon Window .. 135
Figure 4.48. Yaw Gyroscope... 136
Figure 4.49. Yaw Gyro Icon Window... 136
Figure 4.50. Roll Gyro .. 137
Figure 4.51. Roll Gyro Icon Window.. 137
Figure 4.52. Inertial Rate Sensor Model ... 138
Figure 4.53. Sensor Delays.. 139
Figure 4.54. Inertial Rate Sensor Model Icon ... 139
Figure 4.55. Platform Channel Bond Graph.. 140

 11
LIST OF FIGURES (continued)

Figure 4.56. Platform Body... 141
Figure 4.57. Platform Body Icon... 142
Figure 4.58. Platform Body Controller ... 142
Figure 4.59. Stabilized Platform.. 143
Figure 4.60. Stabilized Platform Icon ... 144
Figure 4.61. Camera Model... 145
Figure 4.62. Camera Model Icon... 145
Figure 4.63. Camera Controller... 146
Figure 4.64. Platform and Camera .. 147
Figure 4.65. Inertial Commands – Body Motion .. 148
Figure 4.66. Platform and Camera Icon .. 148
Figure 4.67. Platform and Camera Simulation Model .. 149
Figure 4.68. Platform Position Commands (deg).. 151
Figure 4.69. Platform Pitch Response (deg).. 152
Figure 4.70. Platform Yaw Response (deg) .. 152
Figure 4.71. Platform Roll Response (deg)... 153
Figure 4.72. Actual and Sensed Achieved Positions (deg) ... 154
Figure 4.73. Camera Pitch Response (deg) ... 155
Figure 4.74. Camera Yaw Response (deg).. 155
Figure 4.75. Camera Roll Response (deg) .. 156
Figure 5.1. Fin Positioning System ... 160
Figure 5.2. Motor Bond Graph.. 161
Figure 5.3. Motor Bond Graph: Battery .. 162
Figure 5.4. Motor Bond Graph: Coil and Shaft... 163
Figure 5.5. Gear Train and Fin Dynamics... 165
Figure 5.6. Backlash Model .. 166
Figure 5.7. Linear Fin Dynamics Model (Integral Causal Model)............................ 169
Figure 5.8. Linear Fin Dynamics Model (Differential Causal Model) 170
Figure 5.9. Linear Mechanical Fin Model (Integral Causal Model) 171
Figure 5.10. Linear Mechanical Fin Model (Differential Causal Model) 172
Figure 5.11. Bode Comparison for Different Values of KBL..................................... 175
Figure 5.12. Linear Actuator with Fin Dynamics ... 179
Figure 5.13. PID Bode Plots ... 182
Figure 5.14. Linear Controller/Actuator.. 183
Figure 5.15 Non-Linear Controller 1 ... 184
Figure 5.16. Non-Linear Controller 2 ... 185
Figure 5.17. Content of the Y3 Element ... 187
Figure 5.18. Linear Actuator with Power Signal Analysis.. 188
Figure 5.19. Dymola Code for Vector Normalization... 189
Figure 5.20. Three PID Actuators with Power Signal Analysis.................................. 190
Figure 5.21. 5˚ Step Response, No Hinge Moment... 191
Figure 5.22. Power Input: 5˚ Step Response, No Hinge Moment............................... 191
Figure 5.23. Power Output: 5˚ Step Response, No Hinge Moment 192

12
LIST OF FIGURES (continued)

Figure 5.24. |Fin Power|: 5˚ Step Response, No Hinge Moment 193
Figure 5.25. Energy Input: 5˚ Step Response, No Hinge Moment 194
Figure 5.26. Energy Output: 5˚ Step Response, No Hinge Moment........................... 194
Figure 5.27. |Fin Energy|: 5˚ Step Response, No Hinge Moment 196
Figure 5.28. Integral(|Fin Energy|): 5˚ Step Response, No Hinge Moment................ 196
Figure 5.29. Efficiency Worst Case .. 197
Figure 5.30. 5˚ Step Response, Hinge Moment = -0.6 (N*m/deg.) 199
Figure 5.31. η: 5˚ Step Response, Hinge Moment = -0.6 (N*m/deg.) 199
Figure 5.32. 5˚ Step Response, Hinge Moment = -6 (N*m/deg.) 200
Figure 5.33. η: 5˚ Step Response, Hinge Moment = -6 (N*m/deg.) 200
Figure 5.34. 20˚ Step Response, Hinge Moment = 0 (N*m/deg.)............................... 201
Figure 5.35. η: 20˚ Step Response, Hinge Moment = 0 (N*m/deg.) 201
Figure 5.36. 20˚ Step Response, Hinge Moment = -0.6 (N*m/deg.) 202
Figure 5.37. η: 20˚ Step Response, Hinge Moment = -0.6 (N*m/deg.) 202
Figure 5.38. 20˚ Step Response, Hinge Moment = -6 (N*m/deg.) 203
Figure 5.39. η: 20˚ Step Response, Hinge Moment = -6 (N*m/deg.) 203
Figure 5.40. Two Non-Linear Actuators with Power Signal Analysis 205
Figure 5.41. 5˚ Step Response, Hinge Moment = 0 (N*m/deg.)................................. 205
Figure 5.42. Quantizer I/O for 5˚ Step Response, No Hinge Moment........................ 206
Figure 5.43. 5˚ Step Response (zoom), Hinge Moment = 0 (N*m/deg.) 207
Figure 5.44. η: 5˚ Step Response, Hinge Moment = 0 (N*m/deg.) 207
Figure 5.45. 5˚ Step Response, Hinge Moment = -0.6 (N*m/deg.) 208
Figure 5.46. η: 5˚ Step Response, Hinge Moment = -0.6 (N*m/deg.) 208
Figure 5.47. 5˚ Step Response, Hinge Moment = -6 (N*m/deg.) 209
Figure 5.48. η: 5˚ Step Response, Hinge Moment = -6 (N*m/deg.) 209
Figure 5.49. 20˚ Step Response, Hinge Moment = 0 (N*m/deg.)............................... 210
Figure 5.50. 20˚ Step Response (zoom), Hinge Moment = 0 (N*m/deg.) 211
Figure 5.51. η: 20˚ Step Response, Hinge Moment = 0 (N*m/deg.) 211
Figure 5.52. 20˚ Step Response (zoom), Hinge Moment = -0.6 (N*m/deg.).............. 212
Figure 5.53. η: 20˚ Step Response, Hinge Moment = -0.6 (N*m/deg.) 212
Figure 5.54. 20˚ Step Response (zoom), Hinge Moment = -6 (N*m/deg.)................. 213
Figure 5.55. η: 20˚ Step Response, Hinge Moment = -6 (N*m/deg.) 213
Figure 6.1. Autopilot Loop with the Autopilot Design Assumption......................... 215
Figure 6.2. Two Degree of Freedom Missile .. 218
Figure 6.3. Missile Distance Definitions... 220
Figure 6.4. Missile Pitch Plane Dynamics Bond Graph.. 221
Figure 6.5. Dymola Pitch Plane Dynamics: Diagram and Icon Windows 222
Figure 6.6. Dymola Pitch Plane Dynamics: Equation Window................................ 222
Figure 6.7. Dymola Pitch Plane Dynamics: Parameter Values................................. 223
Figure 6.8. Wing and Fin Chord Definitions... 224
Figure 6.9. Dymola Pitch Plane Instantiation.. 224
Figure 6.10. Angle of Attack... 225
Figure 6.11. Missile Body Acceleration.. 225
Figure 6.12. Classic Three Loop Autopilot... 226

 13
LIST OF FIGURES (continued)

Figure 6.13. Classic Three Loop Autopilot: Dymola Model 227
Figure 6.14. Three Loop AP: Closed Loop System .. 227
Figure 6.15. Three Loop AP: Angle of Attack.. 228
Figure 6.16. Three Loop AP: Achieved Acceleration... 229
Figure 6.17. Three Loop AP: Necessary Fin Deflection... 229
Figure 6.18. Three Loop AP: Closed Loop System with Actuator 231
Figure 6.19. Angle of Attack with Actuator Dynamics .. 232
Figure 6.20. Achieved Acceleration with Actuator Dynamics 232
Figure 6.21. Necessary Fin Deflection with Actuator Dynamics................................ 233
Figure 6.22. Angle of Attack with Actuator Dynamics: Zoom................................... 233
Figure 6.23. Achieved Acceleration with Actuator Dynamics: Zoom........................ 234
Figure 6.24. Necessary Fin Deflection with Actuator Dynamics: Zoom.................... 234
Figure 6.25. Linearized Pitch Plane Block Diagram... 239
Figure 6.26. Open Loop Linear and Nonlinear Angle of Attack 240
Figure 6.27. Open Loop Linear and Nonlinear Missile Body Acceleration 241
Figure 6.28. Linear Pitch Plane and Autopilot Block Diagram 242
Figure 6.29. Closed Loop Linear and Nonlinear Angle of Attack 243
Figure 6.30. Closed Loop Linear and Nonlinear Missile Body Acceleration............. 243
Figure 6.31. Closed Loop Linear and Nonlinear Necessary Fin Deflection 244
Figure 6.32. Optimal Gain Selection Angle of Attack .. 248
Figure 6.33. Optimal Gain Selection Missile Body Acceleration............................... 248
Figure 6.34. Optimal Gain Selection Necessary Fin Deflection 249
Figure 6.35. Optimal Gain Selection: (Command – AZ)2... 250
Figure 6.36. Optimal Gain Selection: Performance Index .. 250
Figure 6.37. Nonlinear Missile with Optimal Gains: Angle of Attack 252
Figure 6.38. Nonlinear Missile with Optimal Gains: Body Acceleration 252
Figure 6.39. Nonlinear Missile with Optimal Gains: Fin Deflection.......................... 253
Figure 6.40. Nonlinear Missile with Optimal Gains: Body Acc. (zoom) 253
Figure 6.41. Nonlinear Missile with Optimal Gains: Fin Deflection (zoom) 254
Figure 6.42. Autopilot ηAP: Autopilot Efficiency Signals for Gain Sets 1-3 255
Figure 6.43. Optimal Gain Set 4: Body Acceleration ... 257
Figure 6.44. Optimal Gain Set 4: Body Acceleration (zoom)..................................... 257
Figure 6.45. Optimal Gain Set 4: Autopilot Efficiency ηAP.. 258
Figure 6.46. Body Acceleration: Gain Sets 4-6... 260
Figure 6.47. Autopilot ηAP Gain Sets 4-6.. 261
Figure 6.48 Nonlinear PI for Gain Sets 4-6.. 262
Figure 6.49. Nonlinear PI for Gain Sets 4-6 (zoom) ... 262
Figure 6.50. Autopilot Efficiency ηAP: Gain Sets 4-6 (zoom) 263
Figure 6.51. SDRE Autopilot: Icon and Diagram Window .. 272
Figure 6.52. Algebraic Riccati Equation Solver Riccati4: Diagram Window 273
Figure 6.53. Hamiltonian Eigenvalue Solver Heig4: Diagram Window 275
Figure 6.54. Pitch Plane Dynamics with SDRE Autopilot.. 279
Figure 6.55. Pitch Plane Dynamics with SDRE Autopilot and Actuator.................... 280

14
LIST OF FIGURES (continued)

Figure 6.56. SDRE: Achieved Acceleration ... 281
Figure 6.57. SDRE: Angle of Attack .. 281
Figure 6.58. SDRE: Achieved Fin Deflection... 282
Figure 6.59. SDRE: Steady State Gain Kss... 282
Figure 6.60. SDRE: Performance Index.. 283
Figure 6.61. Achieved Acceleration: SDRE, Set 2, Set 4 ... 284
Figure 6.62. Angle of Attack: SDRE, Set 2, Set 4 .. 284
Figure 6.63. Achieved Fin Deflection: SDRE, Set 2, Set 4 .. 285
Figure 6.64. Autopilot Efficiency ηAP: SDRE, Set 2, Set 4 .. 285
Figure 6.65. Achieved Acceleration: CG Shift ... 287
Figure 6.66. Angle of Attack: CG Shift .. 288
Figure 6.67. Fin Deflection: CG Shift ... 289
Figure 6.68. Performance Index: CG Shift.. 289
Figure 6.69. Unit Step Performance Index: CG Shift (zoom)..................................... 290
Figure 6.70. Autopilot Efficiency ηAP: CG Shift... 290

15

LIST OF TABLES

Table 3.1. Effort and Flow Definitions in Multiple Engineering Domains 30
Table 3.2. Generic State Variable Definitions in Different Domains........................ 48
Table 4.1. Camera and Gyro Values used for Simulation 150
Table 5.1. Model Parameter Values... 167
Table 5.2. Linearized Backlash Modeling Options.. 174
Table 5.3. PID Controllers... 181
Table 6.1. Missile Dynamics Variable Description ... 219
Table 6.2. Optimal Gain Table... 247
Table 6.3. Added Gain Set ... 256
Table 6.4. Suboptimal Gain Sets.. 259

16

ABSTRACT

 Modeling and simulation form an integral role in the engineering design process. An

accurate mathematical description of a system provides the design engineer the flexibility

to perform trade studies quickly and accurately to expedite the design process. Most

often, the mathematical model of the system contains components of different

engineering disciplines. A modeling methodology that can handle these types of systems

might be used in an indirect fashion to extract added information from the model.

 This research examines the ability of a modeling methodology to provide added

insight into system analysis and design. The modeling methodology used is bond graph

modeling. An investigation into the creation of a bond graph model using the Lagrangian

of the system is provided. Upon creation of the bond graph, system analysis is

performed. To aid in the system analysis, an object-oriented approach to bond graph

modeling is introduced. A framework is provided to simulate the bond graph directly.

Through object-oriented simulation of a bond graph, the information contained within the

bond graph can be exploited to create a measurement of system efficiency. A definition

of system efficiency is given. This measurement of efficiency is used in the design of

different controllers of varying architectures. Optimal control of a missile autopilot is

discussed within the framework of the calculated system efficiency.

 17

CHAPTER 1: Introduction

1.1 Problem Statement

 Modeling and simulation form an integral role in the engineering design process. An

accurate mathematical description of a system provides the design engineer the flexibility

to perform trade studies quickly and accurately to expedite the design process. Most

often, the mathematical model of the system contains components of different

engineering disciplines. The ability to accurately model these types of systems is

therefore a necessity among the engineering community.

 Bond graph theory began in the 1960’s at MIT by H. M. Paynter [Cel91]. The basic

idea behind the theory is to create a map of the power flow through a system. Since the

first law of thermodynamics applies to all types of energy in all engineering domains

[War95], mapping the system’s power flow helps the system engineer understand the

transfer of power at the boundary of engineering disciplines. Upon developing the power

flow diagram, further research lead to causal assignments identifying the causal

relationships between state variables [Mon91]. By using the power flow diagram, with

the noted causal relationships, creating system equations becomes a relatively

straightforward task.

 Most often, bond graphs are used to generate system equations. Once the system

equations are obtained the bond graph is usually discarded, along with the power flow

map and the causal relationship indicators. Useful information is often lost as a result.

18

Much potential exists to gain further insight into the system model by keeping the power

flow diagram and causal indicators. The research presented here provides methods of

system analysis by closely monitoring the system power flow through specific bonds of

the bond graph model.

1.2 Plan of Dissertation

 Chapter 2 is a survey of literature related to the research presented in subsequent

chapters. In Chapter 3, a discussion on the creation of bond graphs is given. The

discussion explains bond graph basics and then moves to advanced bond graph creation

using the Lagrangian of a system [McB01, Mei98, Lag1788].

 Upon creation of the bond graph it is usually the modeler’s task to formulate system

equations and then implement these equations in some executable code in order to

perform model simulation. Chapter 4 uses an object-oriented modeling platform called

Dymola [Dym], and introduces a bond graph library within this modeling framework

[Cel93]. This modeling framework allows the user to build a bond graph in Dymola and

simulate the bond graph directly, thus eliminating the need to create further code. Also,

since the system model is a bond graph, and not just a set of state equations obtained

from a bond graph, it is possible to utilize the bond graph’s power flow diagram and

causal map to the modeling engineer’s advantage. A fairly complex system is modeled in

Chapter 4 to demonstrate the flexibility provided by the bond graph library.

 19

 Chapter 5 provides a means of measuring the efficiency of a system by monitoring

the power input to the system and the power delivered as output. The monitoring of

power on any element of the model is a straightforward task when using a bond graph,

since the bond graph itself is a power flow map of the system. The efficiency

measurement is used as a benchmark for comparing controllers of different topologies. It

is shown that this analysis is not limited to linear systems only, but is equally effective

for nonlinear systems. The efficiency measurement of a system is common to

thermostatic problems [Bej97, Cen89, War95]. Bond graph modeling allows this

efficiency analysis to be performed on dynamic systems of all engineering domains

[McB05c].

 Chapter 6 utilizes the efficiency measurement obtained in Chapter 5 to compare the

system efficiencies for a controller with different gain sets [McB05a]. In doing this

comparison the control design engineer obtains a measurement of optimality of the

system. The optimal efficiency signal is created by using a state dependent Riccati

equation approach. This optimal efficiency signal is then compared to efficiency signals

obtained from a linear controller. The usefulness of this analysis is that a limit of

efficiency is obtained such that the control design engineer is alerted to gain sets that

violate linear constraints on nonlinear systems. Also, it is shown that the efficiency

signal can further be used to determine the need for controller gain redesign given that

the original system parameters have changed.

20

1.3 Summary of Contributions

 The main contributions of this thesis are as follows:

• A method for creating a bond graph from the Lagrangian of a system is given.

The method presented here further improves upon methods that have been

presented previously.

• An object-oriented bond graph library is given. The library allows the modeling

engineer to build a bond graph such that the bond graph is an executable code. In

this way potential errors are eliminated in that the bond graph modeler does not

need to generate state equations.

• The bond graph library allows the modeling engineer to use the power flow

diagram directly. The power flow diagram provides a means for measuring the

efficiency of a system. A definition of system efficiency is given.

• It is shown how the system efficiency measurement can be used to compare

control schemes of different architectures. Both linear and nonlinear controllers

are compared.

• It is shown how the system efficiency signal can be used to measure the

optimality of a constrained optimization design.

• It is shown how the efficiency signal can help determine if a nonlinear system

approaches the violation of linear constraints.

• It is shown how the efficiency signal can be used to determine if a controller

redesign is necessary for a system of which the parameter values have changed.

 21

CHAPTER 2: Related Work

2.1 Introduction

 This chapter presents an overview of work related to this research. Bond graph

research is often concerned with the development of system state equations [Kar90,

Kar83]. This research, however, focuses on system analysis that can be done directly

from the bond graph itself.

2.2 System Lagrangian and Bond Graph Construction

 Early on in the development of bond graph theory Karnopp presented a method for

generating a bond graph from the Lagrangian of a system [Kar69]. The Lagrangian bond

graph method shown by Karnopp gives correct but complicated bond graph structures.

The method of Karnopp was later improved upon in Brown’s presentation of Lagrangian

Bond Graphs [Bro72]. Brown’s method also provides a correct bond graph structure but

uses complicated formulae involving inertia terms for transformer and gyrator moduli.

The method presented in this research further improves upon the method of Brown to

reduce the complexity of transformer moduli [McB01]. An in depth discussion is

presented in Sections 3.3 and 3.4.

 Research is being conducted to apply Lagrangian bond graphs with a finite element

discretization scheme to simulate a wide range of high order, solid continuum dynamics

problems [Fah99, Fah94]. Also, Lagrangian bond graphs have been used to develop

22

formalism for modeling kinematic joints [Fav98, Zei95, Mas91]. The applications of

Lagrangian bond graphs are many [Bro72, McB05a, McB05b, McB05c]. This research

provides further insight into the creation of the Lagrangian bond graph by noting natural

gyrator modulations of system I-element.

 A similar research path is currently under investigation. This path is concerned with

the creation of Lagrange equations given a bond graph structure. By obtaining

conservation laws of different energy domains, using bond graphs, Lagrangian-

Hamiltonian mechanics can be extended to deal with dissipative elements and non-

potential fields [Muk05, Muk97, Kar77].

2.3 Object-Oriented Bond Graph Modeling

 The ability to use models in a plug-and-play fashion gives the modeler a great

advantage in the field of design and simulation. Bond graph modeling allows the user to

easily model systems that cross engineering domains. The creation of a bond graph

library, within an object-oriented framework, allows the designer to create models that

cross multiple engineering domains and simultaneously simulate the models [Cel03a,

McB03]. The object-oriented nature of the simulation software allows the reuse of

models, eliminates equation generation errors, and removes the users from the difficulties

of programming the code. The research presented here provides a bond graph library that

can represent electrical, mechanical, hydraulic systems, etc. This library does account for

 23

dissipated energy in the form of heat. However, complete thermodynamic systems

cannot be modeled using this library.

 Current research in this area involves the creation of a thermodynamic bond graph

library. The creation of a bond graph library that deals with thermodynamic systems, in

an object-oriented manner, provides the users with the ability to model convective flows

[Cel03b, Gre01a, Gre01b].

 Similar research in this area is concerned with defining the role of the library designer

and the role of the user. The ability of the user to employ the library’s models with

confidence that the components operate correctly, without knowing their internal

workings, provides the modeler with greater flexibility [Urq03a, Urq03b]. A bond graph

methodology, being based on the first law of thermodynamics, helps provide confidence

in the correctness of the library components.

2.4 System Efficiency Measurement Through Bond Graph Modeling

 Power flow information of a bond graph can be used to develop the state equations

for a given system. However, once the equations of motion are obtained, often the power

flow map and the system’s causal relationships are discarded. As a result, useful

information is lost. This research uses the power flow information of a bond graph to

develop a method for measuring the efficiency of a system. By monitoring the input

power, and the output power, an efficiency measurement can be defined [McB05c].

24

 A similar research path uses the power flow information from a bond graph of a

system to measure the relative value of energy elements in a system. By evaluating the

amount of energy used by a particular branch of the system, it is possible to determine

which system elements are relatively unimportant. The relatively unimportant elements

can then be eliminated, thus reducing the overall size of the system. Thus, a systematic

approach to system order reduction can be formulated [Lou02, Lou99]. This research

path provides a further use for the power flow map, and causal information map, that are

naturally obtained in a bond graph model.

2.5 Optimal Gain Selection Using the Bond Graph Efficiency

Measurement

 The thermodynamic power flow of a system, and the causal relationships among

system variables, provide insight that can be exploited to develop a controller for the

system. Bond graphs naturally provide the power flow through the system and the

system’s internal causal relationships. Extracting information from a bond graph of a

system to aid in the system’s controller design is ongoing research. The research

presented here focuses on the definition of autopilot efficiency. This analysis can be used

to compare different controller designs, or to compare efficiencies of different gain sets,

within the same design [McB05a, McB05b].

 There is current research that utilizes the causal properties of the bond graph to

determine structural control properties of thermo-fluid systems. The causal information

 25

of a thermo-fluid bond graph can be utilized to ultimately design sensor placements for

observability and fault detection isolation [Sar04]. This naturally leads to an

investigation of the relationship between the causal loops/paths in a system and the

system controllability/observability. Research on bond graph based methods for analysis

and design of control systems is ongoing [Jun05].

 Also, a research branch exists that is interested in utilizing the bond graph method of

model reduction to formulate a control law for large-scale systems [Liu02]. The bond

graph model reduction method is a method that can be applied to nonlinear models, as

well as, linear models [Lou02, Lou99].

26

CHAPTER 3: Bond Graph Modeling

3.1 Introduction

 Modeling and simulation form an integral role in all of science and engineering. A

scientist can iterate through the scientific process at a much greater pace by performing

experiments on a model of a system versus experimentation on a full-scale system.

Engineers are able to iterate quickly through the design process by modeling their designs

prior to implementing them in hardware. Control engineers, for example, use modeling

by first attempting to control a model of a system prior to controlling the actual system.

 The process of modeling is one in which a set of cause and effect relationships are

defined between parameters that represent physical characteristics of a system. These

parameters, or variables, are chosen such that the key information for understanding the

system can be extracted from the model through simulation. Simulation is then the

ability to view how the model acts over a period of time. Understanding the cause and

effect relationships between the variables of a system is essential to developing a

meaningful model.

 The modeling process exists in all science and engineering domains. Electrical

engineers use circuit diagrams to represent electrical circuits, mechanical, and civil

engineers use free-body diagrams to represent forces and moments between components

of their respective systems. Thermodynamics and chemical system descriptions yet use

other techniques to help the user develop the necessary cause and effect relationships

 27

between the describing parameters of the system. Each technique of the various domains

differs from one another in that they each describe different aspects of the physical world.

Each technique has meaning only in the engineering domain for which it is intended.

Thus, systems that cross multiple disciplines of science and engineering can, therefore, be

very difficult to model.

 The laws of thermodynamics are relevant to systems in all science and engineering

domains. The first law of thermodynamics states that energy cannot be created nor

destroyed but simply changes from one form to another. By modeling the flow of energy

from one form to another, a methodology that describes systems in multiple energy

domains is obtained. One such methodology is bond graph modeling.

 Bond graph modeling lends itself very well to assisting the user in the organization of

cause and effect information. It is a methodology that maps power flow throughout the

system. Bond graphs also map signal flow throughout the system allowing the user to

define the cause and effect relationships between all describing variables of the system.

Since power flow laws are the same regardless of the energy domain that is being

described, bond graphs are able to connect model sub-systems of different domains

together to form a larger, mixed-domain model, in a concise and meaningful way. The

ability to map power flow across energy domain boundaries, and map signal flow

information across the same boundaries, is an indispensable aid in the user’s quest to

form cause and effect relationships within interdisciplinary systems.

 Bond graph modeling is a graphical modeling technique that preserves the

computational structure and the topological structure of the system being modeled. H.M.

28

Paynter, an MIT professor developed bond graph modeling as an interdisciplinary

modeling technique that simultaneously conveys the topological structure and the

computational structure of a system [Cel91, pp. 258-265].

3.2 An Introduction to Bond Graph Modeling

 The first law of thermodynamics states that energy is neither created nor destroyed,

but is simply transformed from one form to another [Cen89, pp. 23, 80]. Bond graph

modeling maps the flow of power through a system. By keeping track of the power in a

system, the energy is accounted for as well since energy is the time integral of power.

Power is a convenient entity in modeling, since it can be described as the multiplication

of two conjugate variables regardless of the engineering domain of its origin. A bond

graph maps the power flow through a system and simultaneously describes the

relationships between the conjugate variables in each branch of the system. In this way,

an accounting of all the energy of a system, and the conjugate variable relationships, are

used to develop the describing equations of a system.

3.2.1 Power Bonds and Conjugate Variables

 Bond graphs represent the power flow through a system by using a series of

connections called power bonds. Figure 3.1 shows a half arrow power bond symbolizing

the power flow from point A to point B. Each power bond has a set of conjugate

 29

variables associated with it. Naturally, the multiplication of these conjugate variables is

power.

Figure 3.1. Power Bond with the Flow of Power from A to B

 Each conjugate variable pair is made up of one flow variable and one effort variable.

Figure 3.1 represents the effort and flow variables with an e on the harpoon side of the

bond, representing the effort, and an f on the opposite side, representing the flow. The

effort/flow conjugate combination exists regardless of the engineering discipline that the

conjugate pair describes. For example, a conjugate combination found in the electrical

domain is current, as a flow variable, and voltage as the effort variable. Thermodynamics

uses entropy flow, as the flow variable, and temperature as the effort variable. The

multiplication of both sets of conjugate variables is power. By accounting for these

conjugate combinations throughout the system in question, a methodology for deriving

system equations can be established even for systems that cross multiple engineering

disciplines. Table 3.1 lists examples of conjugate variables that are commonly found in

engineering systems.

30

Effort

e

Flow

f

Electrical Voltage

u [V]

Current

i [A]

Translational Motion Force

F [N]

Velocity

v [m/s]

Rotational Motion Torque

T [N*m]

Angular Velocity

ω [rad/sec]

Hydraulic Pressure

p [N/m2]

Volumetric Flow

q [m3/sec]

Chemical Chemical Potential

µ [J/mole]

Molar Flow

ν [mole/sec]

Thermodynamic Temperature

T [K]

Entropy Flow

dS/dt [W/K]

Table 3.1. Effort and Flow Definitions in Multiple Engineering Domains

 Bond graph modeling is able to model systems that cross engineering domains by

keeping track of the effort/flow conjugate combinations throughout a multi-discipline

system. Often, the conjugate combinations in a bond graph are simply expressed with the

generalized variables e and f. The modeling process is simplified considerably by

keeping the conjugate combinations in this generic form.

 31

3.2.2 Bond Graph Junctions

 Power bonds are connected together at junctions. There are two types of junctions in

bond graph modeling. Each of the junction types are set up such that the amount of

power coming into the junction equals the amount of power leaving the junction. No

creation of power, or power storage, is allowed in a bond graph junction.

 The first type of bond graph junction is referred to as a zero-junction (0-junction).

Each of the power bonds connected to a zero junction have equal effort terms. The flow

terms of the power-bonds connected to the zero junction sum to zero, i.e.,

 flowin - flowout = 0, shown in figure 3.2.

Figure 3.2. Bond Graph Junctions and Conjugate Variable Relationships

 The second type of bond graph junction is a one-junction (1-junction). The power

bonds connected to a one junction have equal flow terms. The effort terms of the power-

bonds connected to the one junction sum to zero, i.e., effortin - effortout = 0.

32

 Figure 3.2 shows a zero and a 1-junction and the implied meanings of the effort and

flow variables. The 0-junction of figure 3.2 shows five power bonds connected to the

junction, and the 1-junction of figure 3.2 shows three power bonds connected to the

junction to indicate that each junction may have an unlimited number of power bond

connections. The power bonds, on each of the junctions in figures 3.2, are arbitrarily

numbered to keep track of the conjugate variables associated with them.

 It is clear from figure 3.2 that each type of junction conserves power in that power

into the junction is equal to the power out of the junction. By holding one of the

conjugate variables equal on all bonds connected to the junction, the other conjugate

variable must then sum to zero, i.e., incoming minus outgoing equals zero.

3.2.3 1-Port Elements

 Bond graphs use five types of idealized 1-port elements. Two of these elements are

active and the remaining three are passive. The two active 1-port elements are the

idealized bond graph sources, consisting of an effort source and a flow source. Each of

these elements is shown in figure 3.3. Bond graph sinks are represented by reversing the

direction of the power arrow opposite that shown in figure 3.3.

 Bond graphs use three types of idealized passive 1-port elements. Two of these

elements are energy storage elements and the other is a dissipative element. Each of

these elements exchanges power from one form to another in their own unique way.

These elements are considered to be passive, since they do not contain any sources of

 33

power. They are called 1-port elements, since the exchange of power from one form to

another occurs at a single location or port [Cel91, Kar83, Kar90].

Figure 3.3. Ideal Sources

 The three types of passive 1-port elements are represented by an R, I, and C for

resistive, inductive, and capacitive, respectively. Figure 3.4 shows each of these

elements in bond graph notation. The resistive element represents electrical resistance,

mechanical friction, thermal resistance, etc., depending on the domain in which it is used.

The inductive element represents electrical inductance, mechanical mass, or rotational

mass moment of inertia depending on the domain in which it is used. The capacitive

element represents electrical capacitance, mechanical compliance, thermal capacitance,

hydraulic capacitance, etc., depending on the domain in which it is used. Each of the

passive 1-port elements has a single power bond attached. The single power bond, with

the element at the end of the bond, shows the exchange of power at a single location.

34

Figure 3.4. Basic Bond Graph 1-Port Elements

3.2.4 Basic 2-Port Elements

 Two types of basic 2-port elements exist in bond graph modeling. These elements

are used at the boundaries of different engineering domains. Similar to the passive 1-port

elements the 2-port elements do not contain power sources, thus they are passive. Also,

the 2-port elements, do not store, or dissipate power. For each of the 2-port elements,

power-in equals power-out.

Figure 3.5. Basic 2-port Elements

 The 2-port elements are a transformer, represented by a TF, and a gyrator represented

by a GY. Figure 3.5 shows each of these elements and the implied relationships among

 35

the conjugate variables. As seen in figure 3.5, the transformer relates the effort on one

side of the transformer to the effort on the other side, and the flow on one side to the flow

on the other. The gyrator relates the effort on one side of the gyrator to the flow on the

other. Note that the relationships shown in figure 3.5 satisfy the power-in equals power-

out criterion.

 An example of the use of a transformer is an ideal mechanical gear train. An ideal

gear train does not store or dissipate power. The angular velocity of the output gear is a

multiple of the angular velocity of the input gear. The input torque is the same constant

multiplied by the output torque. This multiple is represented in figure 3.5 by the symbol

m.

 An example of a gyrator is an ideal electric motor. The angular velocity of the motor

shaft is a multiple of the input voltage. The motor current is the same constant multiplied

by the shaft torque. This multiple is represented in figure 3.5 by the symbol d.

 Nonlinear transformers and gyrators use the same relationships as described in figure

3.5. The difference is that the modulus is allowed to vary with time. These elements are

represented by an MTF, for a modulated transformer, and an MGY, for a modulated

gyrator.

3.2.5 Power Flow Diagrams

 At this point, all basic elements of bond graph modeling have been presented. The

first step in creating a bond graph is to create a power flow diagram. The power flow

36

diagram is created by connecting the bond graph elements presented above, such that the

power flow through the system is mapped. This is best presented via an example. Figure

3.6 shows a circuit diagram and the corresponding power flow diagram. The power flow

diagram represents the power flow through the circuit. The bonds shown in the power

flow diagram of figure 3.6 have been arbitrarily numbered to facilitate discussion.

Figure 3.6. Circuit Example

 The sinusoidal input voltage of figure 3.6 is represented as an effort source in the

power flow diagram. The 1-junctions represent locations in the circuit with common

current flow. The 0-junctions of the power flow diagram represent the nodes of the

circuit since, for each node, the voltages (efforts) are the same across each path of the

node. Series circuit elements are connected at 1-junctions since the current flowing

through the elements is the same for each element.

 37

 As seen in figure 3.6 the power flow diagram preserves the topological structure of

the circuit diagram. The power flow diagram is an intuitive representation of the power

flow through the circuit.

 The power flow diagram of figure 3.6 can be simplified, however. The voltage

represented by the 0-junction that connects bonds 8, 10, and 11 is the ground voltage.

Figure 3.7. Simplified Circuit Power flow Diagram

Since this represents zero volts in the circuit, this 0-junction forces bonds 8, 10, and 11 to

have a value of zero for each of their respective effort variables. Thus, the power-bonds

8, 10, and 11 have zero power in them, since power is effort * flow. Bonds with zero

power can be erased from the diagram. The simplified diagram is shown in figure 3.7.

38

Figure 3.8. Completed Circuit Power flow Diagram

 The power flow diagram of figure 3.7 can be simplified yet further. This

simplification comes from noting the 1-junction connecting bonds 4 and 9. The flow

variables of bonds 4 and 9 are equal by definition of a 1- junction. Also, a 1-junction

cannot store or create power so the effort on bond 4 must equal the effort on bond 9.

Thus, this 1-junction can be removed and replaced with a single bond. This is true for all

junctions that have only two bonds connected [Cel91, Bro01, Kar90]. With this

simplification, the power flow diagram is complete and is shown in figure 3.8.

3.2.6 Causality

 The power flow diagrams of figures 3.6 through 3.8 are considered A-causal bond

graphs. They lack one essential bond graph assignment. That is the assignment of bond

graph causality. Causality shows the direction of the effort and flow information for each

bond of the power flow diagram [Kar83]. Upon assigning the direction of the effort/flow

information throughout the power flow diagram, the necessary causal relationships

 39

between all of the variables are defined, thus the term causality. Figure 3.9 shows two

power-bonds with bond graph causal marks, and the implied direction of the effort/flow

information. Two power-bonds are shown to emphasize the fact that the causal mark is

independent of the power flow direction.

Figure 3.9. Causal Marks

 As shown in figure 3.9 the effort information always moves opposite the flow

information. The effort information moves toward the causal mark and the flow

information moves away from the causal mark [Kar83 pp. 85-89].

 Obviously there exists a necessary causal assignment for the bond graph sources. An

effort source defines the effort on its connecting power-bond and a flow source defines

the flow on its connecting power bond. The necessary causal assignments for bond graph

sources are shown in figure 3.10

 The SE element of figure 3.10 shows that the effort information moves from left to

right, as defined by the causal mark. The half arrow shows that the SE element is

40

modeled as a source and not a sink. Similarly, the SF element of figure 3.10 shows that

the flow information moves from left to right as defined by the causal mark, and the half

arrow depicts this element as a source as well.

Figure 3.10. Necessary Causality

 Figure 3.11 shows the possible combinations for the causal assignments for the 2-port

elements. Also shown in figure 3.11 are the implied relationships between the conjugate

variables determined by each set of causal marks. The relationships between the

conjugate variables are defined by the causal mark, since the signal flow information

must remain consistent with the definition of the causal mark shown in figure 3.9. Note;

in figure 3.11, the conjugate variable equations for each case maintain the required

power-in equals power-out relationship.

 The remaining 1-port elements have two possible combinations for causal mark

assignments. Each possibility implies specific relationships between the conjugate

variables. For the I and C elements there exists either an integral relationship or a

differential relationship between the conjugate variables. Figure 3.12 shows the integral

relationship with the proper causal mark for the I and C elements.

 41

Figure 3.11. Possible Causal Assignments for 2-Port Elements

This type of causal mark is often referred to as integral causality. The relationship

between the conjugate variables is shown to the right of the bond graph elements in block

diagram form. The block diagram helps clarify the meaning of the causal mark and the

signal flow information.

Figure 3.12. Integral Causal Assignments for 1-Port Elements

42

 As seen in figure 3.12 the integrators of a system are implied by the integral causal

marks of the system. Thus, for each integral causal mark the order of the system is

incremented by one [Bro01, Cel91, Kar83, Kar90].

 Figure 3.13 shows the differential causal marks for the 1-port I and C elements. The

differential causal mark will occur in a bond graph only when a structural singularity is

present in the system [Cel91 pp. 264-265]. See Section 4.2.3 for further discussion on

structural singularities.

Figure 3.13. Differential Causal Assignments for 1-Port Elements

 The only other 1-port element that has not yet been discussed in terms of causality is

the R element. The causal stroke on the resistive element implies neither an integral nor a

differential relationship between the conjugate variables. The causal stroke implies a

linear relationship between the conjugate variables. In the electrical domain, this linear

relationship is simply Ohm’s law written in terms of voltage or current depending on the

position of the causal stroke. This is easily seen in figure 3.14.

 43

Figure 3.14. Possible Causal Assignments for a Resistive Element

 It was shown in figure 3.2 that all bonds connected to a 0-junction have the same

effort conjugate variable and all bonds connected to a 1-junction have the same flow

conjugate variable. The causal assignments on the bonds of a 0-junction, and 1-junction,

determine the source of the effort information, and flow information, respectively. This

concept is clarified in figure 3.15. Figure 3.15 is the same as figure 3.2 with causality

added to the bonds. Also, the effort equality statement for the 0-junction and the flow

equality statement for the 1-junction have been rearranged slightly to emphasize which

bond is responsible for the effort/flow information. Obviously, only one bond can be

responsible for the source of effort/flow information. Thus, for a 0-junction only one

bond can have a causal mark next to the 0. For a 1-junction only one bond can have a

causal mark away from the 1. The bond that is the odd man out is the bond that defines

the necessary information for the junction. For the purposes of figure 3.15 the defining

bond on each junction has been picked arbitrarily. Typically in a bond graph the causal

assignments around junctions will be obvious.

44

Figure 3.15. Causal Assignments on Bond Graph Junctions

 The 0-junction in figure 3.15 shows that the effort terms are all equal, due to the fact

that it is a 0-junction, and that they are all defined by bond 2. The effort signal

information comes from bond 2 and is then spread to the rest of the bond graph by the

other bonds, as is shown by the full arrows next to the bonds. The full arrows have been

included in figure 3.15 for illustration only. Similarly, the 1-junction shows that all of the

flows are equal, due to the fact that it is a 1-junction, and that all of the flows are defined

by bond 12. The flow information comes from bond 12 and is then communicated to the

rest of the bond graph via the remaining bonds on the 1-junction, as shown again by the

full arrows in figure 3.15.

 45

3.2.7 Bond Graph Causal Mark Assignments

 Figure 3.8 shows a completed power flow diagram for the example circuit of figure

3.6. In order to complete the bond graph this diagram must have causality assignments.

Causal assignments are made using the following steps;

1. Assign required causal marks to all sources. There is no choice on assigning a

causal mark on a source, thus the causal marks are predetermined.

2. If step one provides the defining bond on a junction, then the causal marks for the

bonds of the junction are also defined. Thus far, no choices have been made.

Typically, step one will not determine the causal marks for entire junctions

although this is not always the case.

3. If either step one or step two provides causal marks for any 2-port elements then

the connecting causal marks are also defined. Steps two and three should be

repeated until all bonds are assigned, where there is no choice on their

assignments.

4. Choose an unassigned C or I element. Assign an integral causal mark. Repeat

steps two and three. For the C and I elements, integral causality is preferred.

Differential causality will only be used when steps two or three force the 1-port

element to have differential causality.

5. Repeat step four for all C and I elements.

6. Potentially there may be unassigned R elements. If this is the case, choose an R

element and assign an arbitrary causal mark. Repeat steps two and three as

before.

46

7. Repeat step 6 until all bonds have a causal assignment. Every time there exists an

unassigned R element whose causality is determined by an arbitrary assignment,

there exists one algebraic loop in the resistor network. See Section 4.2.2 for a

discussion on algebraic loops.

Figure 3.16 shows the complete bond graph for the circuit example of figure 3.6. The

causal assignments were made in the following order;

1. Bond 1 was assigned, since this is the only source in the bond graph. This

complies with step one above. Steps two and three are then skipped since no

other causal assignments can be made at this point.

2. Bond 4 was assigned an integral causal mark for the C element. Upon assigning

bond 4, bonds 3 and 5 are also assigned to comply with the causality rules for a 0-

junction. In turn, the assignments for bonds 1 and 3 force the causal mark of bond

2 to follow the causal rules of a 1-junction. This complies with steps four and two

above.

3. Next, bond 7 is assigned an integral causal mark which repeats step four for the I

element. The last causal mark, on bond 6, is then forced to comply with the

causal mark rules of a 1-junction.

Simply by looking at the bond graph of figure 3.16, it is seen that this system is a 2nd

order system and no algebraic loops are present in the equations. The 2nd order system

information is found by counting the number of integral causal 1-port elements. The

algebraic loop information comes from the fact that there were no resistive elements

without a causal mark upon finishing the integral causal assignments. Although this

 47

information is obvious from the simple circuit diagram of figure 3.6, this information

may not be so obvious for larger systems, especially ones that cross multiple engineering

domains.

Figure 3.16. Completed Circuit Bond Graph

3.2.8 Bond Graph Equation Formulation

 Bond graph equation formulation is a straightforward methodology that utilizes the

signal flow information of the causal marks and the addition of efforts/flows on 1-

junctions/0-junctions. Bond graphs use two types of generic state variables to express the

dynamic equations. The first type is represented with the variable p and the second type

is represented by a q. Table 3.2 shows each of these variables and their respective

interpretations within various engineering domains [Bro01, Cel91, Kar83]. The selection

of these state variables, as described by table 3.2, is done for a very specific purpose.

The time derivative of the state variable p is an effort, in all domains, and the time

48

derivative of the state variable q is a flow. Naturally there is no chemical or

thermodynamic momentum [Cel91]. Thus, these entries are left blank.

p

q

Translational Momentum

[kg*m/s]

Displacement

[m]

Rotational Angular Momentum

[kg*m2/s]

Angular Displacement

[rad]

Electrical Flux Linkage

[Wb = H*A]

Charge

[C]

Hydraulic Integral of Pressure

[Pa*s]

Volume

[m3]

Chemical ______ Number of moles

[n]

Thermodynamic ______ Entropy

[S = J/K]

Table 3.2. Generic State Variable Definitions in Different Domains

 The following steps are taken to create the state equations:

1. Select an I or C 1-port element with an integral causal mark.

2. Write the appropriate state equation beginning, =p& , or =q& for an I or C element,

respectively.

 49

3. Use the conjugate variables as intermediate variables in developing the state

equations. The equation is not complete if an intermediate e or f remains in the

equation.

4. Use the signal flow of causality and summation properties in the appropriate

locations.

These steps are best shown by means of an example. The circuit bond graph of figure

3.16 has one p& equation and one q& equation.

534 ffq −=& (3.1)

Starting with the C element of bond 4, equation 3.1 sums the flows around the 0-junction.

The signal flow information of bond 3 leads to

1
2

23 R
e

ff == (3.2)

Subscripts denote bond numbers where non-subscript numbers denote circuit element

values, i.e., L1 is the inductance value found in the circuit diagram, which is the same as

the bond graph value I7.

 In order to solve for 2e in equation 3.2 the efforts are summed around the 1-junction

leading to

1
4

141312 C
qSEeSEeee −=−=−= (3.3)

Equation 3.3 results in an expression that involves no intermediate variables. However

equation 3.1 still involves the intermediate variable 5f .

50

1
7

75 L
p

ff == (3.4)

Substituting the results of equation 3.4, 3.3 into 3.2, and these results into 3.1 creates

111
1 74

14 L
p

C
qSE

R
q −⎥⎦

⎤
⎢⎣
⎡ −=& (3.5)

Repeating the equation generation steps for the I element of bond 7 results in

1
*2

1
*2

1
*2 74

7
4

64657 L
p

R
C
qfR

C
qfReeep −=−=−=−=& (3.6)

Equation 3.6 was written in one continuous statement as shown because, after some

practice, it is possible to write bond graph equations almost by inspection of the bond

graph with a thought process similar to the one shown by equation 3.6. Rather than

writing many small equations and substituting each time, it is usually possible to write

the equation out as is shown by equation 3.6. Equation 3.6 written in a reduced form is

shown by

1
*2

1
74

7 L
p

R
C
qp −=& (3.7)

The two state equations for the circuit diagram are then given by equations 3.5 and 3.7.

Obviously these two equations are not in the common form for electrical circuits where

voltage and current are state variables. Converting bond graph equations to common

equations for each engineering domain is discussed in Section 3.2.9. The two equations

form two, first-order, coupled, differential equations. For a linear system this set is easily

converted into state-space form. This process is the case for any bond graph. The

equations naturally form n coupled, first-order, differential equations.

 51

3.2.9 Conversion of Bond Graph Variables to Common State Variables

 The equations generated by bond graphs result in a set of non-standard state variable

formulations that may be unintuitive to a user that is accustomed to common state

variables. This situation was readily shown by the circuit example with equations 3.5 and

3.7. Obviously, these state variables can be converted into common state variables by

using the proper transformation matrix.

 Bond graph state variables can be converted into common state variables by using a

diagonal transformation matrix. For every p in the electrical domain, the transformation

matrix will have a 1/I on the corresponding diagonal. For every q in the electrical

domain, the transformation matrix will have a 1/C on the corresponding diagonal.

Similarly, in the mechanical domain a p state variable is transformed to a common

mechanical state variable with a 1/I on the transformation matrix diagonal. The

mechanical domain q, however, already defines a displacement and therefore has no need

of transformation. Thus, a mechanical domain q will simply have a 1 on the

corresponding transformation matrix diagonal.

 Equation 3.8 combines equations 3.5 and 3.7 in state-space form. Again, subscripts

denote bond numbers and non-subscript numbers denote circuit diagram values.

1
7

4

7

4

0
1

1

1
2

1
1

1
1

1*1
1

SERp
q

L
R

C

LRC
p
q

⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡
+⎥

⎦

⎤
⎢
⎣

⎡

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−

−−
=⎥

⎦

⎤
⎢
⎣

⎡
&

&
 (3.8)

52

These state variables are strictly electrical, thus the corresponding transformation matrix

is given by

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

=

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

1
10

0
1

1

10

01

7

4

L

C

I

CT (3.9)

The resulting transformed state equations are shown as

1
7

4

7

4

0
R1*C1

1

L1
p
C1
q

1
2

1
1

1
1

1*1
1

L1
p
C1
q

SE

L
R

L

CRC
⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡
+

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−

−−
=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

&

&

 (3.10)

From the definitions of p and q for the electrical domain in table 3.2, the state variables in

equation 3.10 can be rewritten as the voltage across the capacitor and the current through

the inductor, respectively. This variable change is shown with

1
ind

cap

ind

cap

0
R1*C1

1

i
V

1
2

1
1

1
1

1*1
1

i
V

Sinvoltage

L
R

L

CRC
⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡
+⎥

⎦

⎤
⎢
⎣

⎡

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−

−−
=⎥

⎦

⎤
⎢
⎣

⎡
&

&
 (3.11)

Equation 3.11 gives the same state-space representation that is given when classical

methods are used to derive the circuit equations.

 The example shown has been a simple second-order electrical circuit. This simple

system was chosen to illustrate the basic technique of creating a bond graph and

obtaining the dynamic equations. Obviously, it is not necessary to perform such complex

manipulations to obtain the state-space representation for such a simple system when

classical methods suffice. However, for a complex system that crosses multiple

engineering domains, the bond graph technique gives a straight forward approach to

 53

obtaining dynamic equations, and is therefore very useful. The state space equations

obtained through the bond graph method suffice for all modeling purposes as shown in

equation 3.8 with no need to transform them into any other state variable representation.

However, the transformation shown in this section may be necessary when attempting to

communicate the equations of motion from a bond graph to those unfamiliar with this

modeling technique.

3.3 Bond Graph Construction from the Lagrangian

 This section presents a method for developing a bond graph representation of a

system from the Lagrangian of the system. Often the Lagrangian of a system is readily

available from texts or other sources. Although the system equations can be derived

directly from the Lagrangian, there is still benefit in viewing the system in bond graph

representation. Some of these advantages are as follows:

1. Viewing the power flow through the system gives insight into the inter-

relationships of the state variables. This insight may point out the possibility of

simplifying assumptions. The bond graph often makes it clear what the

assumptions need to be and their effects on the overall system.

2. Once a bond graph is obtained, whether from the Lagrangian or by conventional

methods, it is a straight forward operation to connect the bond graph to larger

systems.

54

3. By repeating the second advantage allows one to use bond graphs in an object-

oriented fashion.

Conventionally bond graphs are designed to help the user obtain the system equations.

However, for the reasons listed above, it is sometimes desirable to find the bond graph

representation of a system itself.

 Often systems that have complex mechanical geometries are difficult to model. The

Lagrangian approach is often a preferred method of developing the system equations,

since potential and kinetic energies are easier to account for than forces and moments for

such systems. Since the Lagrangian is the sum of energies in the system, it is an integral

away from the power flow in the system. This fact can be exploited to create a bond

graph model of the system.

 Although the Lagrangian method is a common method of developing the dynamic

equations of a system, it turns out that bond graph theory is more closely related to the

Hamiltonian of a system than the Lagrangian. The distinction between these two

methods is described in the following section. Thus, during the bond graph development

from the Lagrangian elements of the Hamiltonian formulation are used extensively. The

starting point of the bond graph derivation is the Lagrangian, and not the Hamiltonian, for

reasons that become apparent in the mathematical formalism of the Hamiltonian. These

formalisms are explained below.

 55

3.3.1 Lagrangian to Hamiltonian Transformation

 The Lagrangian is defined as the sum of the kinetic energy of the system minus the

sum of the potential energy of the system. For a conservative system, the Lagrangian is

defined by [Mei98 pp. 68, Lag1788]

0=−= VTL (3.12)

Where T is the sum of all kinetic energies of the system and V is the sum of all potential

energies of the system. The kinetic and potential energies of the system are written in

terms of a set of generalized coordinates iq . To obtain the dynamic equations of a

system, given the Lagrangian, the Lagrange equation is applied separately for each of the

generalized coordinates.

0
dt
d

=
∂
∂

−
∂
∂

ii qq
LL

&
 (3.13)

Thus, it is noted that the Lagrangian is a function of the generalized coordinates iq , the

generalized velocity iq& , and time, i.e., ()tqi ,, &iqL . Also, equation 3.13 shows that for

each generalized coordinate, the Lagrange method provides one, second-order equation.

 The Hamiltonian is related to the Lagrangian via a transformation known as a

Legendre transformation [Mei98 pp. 93, 342-343]. This transformation is derived in

equations 3.14 through 3.21.

 A function of two variables, f(x,y), has a derivative, df, given by

dy
y
fdx

x
fdf

∂
∂

+
∂
∂

= (3.14)

Equation 3.14 can be written as

56

vdyudxdf +≡ (3.15)

The Legendre transformation changes the variables from dx and dy to du and dv with the

following transformation:

uxfg −≡ (3.16)

The derivative of equation 3.14, dg, is shown as

xduudxdfdg −−= (3.17)

Substituting equation 3.15 into equation 3.17 yields

xduudxvdyudxdg −−+= (3.18)

Simplifying

xduvdydg −= (3.19)

Equation 3.19 has the same form as equation 3.15, which, by definition of 3.15, leads to

u
gx
∂
∂

−≡ (3.20)

and

y
gv
∂
∂

≡ (3.21)

By applying the Legendre transformation to the Lagrangian of a system, the Hamiltonian

is obtained. The Hamiltonian is defined as a function of the generalized coordinates, the

generalized momentum, and time, i.e., ()tpq ,,H , without loss of generality the

subscripts have been dropped. The Legendre transformation of the Lagrangian is shown

by equations 3.22 through 3.32. The first step, as in the derivation of the Legendre

transformation is to find Ld .

 57

() dt
t

qd
q

dq
q

,tqq,d
∂
∂

+
∂
∂

+
∂
∂

=
LLL

L &
&

& (3.22)

Applying the Legendre transformation to the Lagrangian, in terms of the Hamiltonian,

yields

() (),tqq,qpq,p,t && LH −= (3.23)

Applying the chain rule to equation 3.23, in order to find Hd , yields

LH ddpqqpdd −+= && (3.24)

Substituting equation 3.22 into equation 3.24 gives

dt
t

qd
q

dq
q

dpqqpdd
∂
∂

−
∂
∂

−
∂
∂

−+=
LLL

H &
&

&& (3.25)

The generalized momentum is defined as

q
p

&∂
∂

≡
L (3.26)

Substituting equation 3.26 into equation 3.25 results in

dt
t

dq
q

dpqd
∂
∂

−
∂
∂

−=
LL

H & (3.27)

Also, substituting the definition of the generalized momentum, equation 3.26, into the

Lagrange formulation of equation 3.13 yields

0
dt
d

=
∂
∂

−
q

p L (3.28)

Solving equation 3.28 for p& gives

58

q
p

∂
∂

=
L

& (3.29)

Substituting equation 3.29 into 3.27 yields the final form of Hd .

dt
t

dqpdpqd
∂
∂

−−=
L

H && (3.30)

By noting the final steps of the Legendre transformation, equation 3.30 results in

equations 3.31 through 3.33.

p
q

∂
∂

=
H

& (3.31)

q
p

∂
∂

−=
H

& (3.32)

tt ∂
∂

−=
∂
∂ LH (3.33)

Equation 3.33 is a mathematical formalism and is of little consequence. Equations 3.31

and 3.32, however, form a meaningful result. For each generalized coordinate the

Lagrange equation results in a single, second-order equation. The Hamiltonian method

provides two, first-order, coupled equations for each generalized coordinate.

Furthermore, the form of the equations given by the Hamiltonian formulation is similar to

the form of equations that are derived by the bond graph method. The reason that the

form of the Hamiltonian equations is not identical to the bond graph form is simply a

question of the definition of the generalized momentum. The Hamiltonian formulation

lumps mass terms together where the bond graph formulation does not. Thus, the bond

graph method of equation development and the Hamiltonian are very closely related but

do not form an exact one to one mapping.

 59

 An underlying assumption in the derivation of the Hamiltonian, given above, is that

the system be conservative. Methods have been developed to lift this restriction for the

Hamiltonian formulation but they are somewhat tedious [Tve98]. The Lagrange method

for developing the equations of motion is not restricted to conservative systems only, but

the non-conservative elements also add tedium to the process. The bond graph approach

handles non-conservative systems quite readily. Furthermore, the bond graph approach

allows the user to easily change the thermodynamic boundary of the system and track the

energies of the non-conservative elements (dissipative elements) through to their

transformation into heat and entropy, if so desired. The approach given here focuses on

the creation of the bond graph from the Lagrangian. Also, there is ongoing research into

the reverse approach, i.e., obtaining the Lagrangian for a given bond graph [Muk05,

Muk97, Kar77]. This approach creates the Lagrangian, taking into account the non-

conservative and external forces acting on the system.

3.3.2 Lagrangian to Bond Graph Development

 The method for creating the bond graph from the Lagrangian follows these general

steps:

1. Assume that the system is conservative. Drop the non-conservative elements

from the Lagrangian if the system is non-conservative. The non-conservative

elements will be added back in after the general structure of the bond graph has

been created.

60

2. Note the flow terms in the Lagrangian. The kinetic energy terms in the

Lagrangian will have the form ½ I * f 2 where I is an inertia term and f is a flow

term.

3. Assign bond graph 1-junctions for each distinct flow term in the Lagrangian

found in step 2.

4. Note the generalized momentum terms. The generalized momentum terms are

noted by taking the partial of the Lagrangian with respect to the time derivative of

the generalized coordinate, i.e.,
i

i q
p

&∂
∂

=
L , where pi is the ith generalized

momentum and qi is the ith generalized coordinate. Note that this is the first step

in developing the Hamiltonian as well.

5. For each generalized momentum equation, found in step 4, solve for iq& . This step

determines the form of the I-elements and how they connect to each of their

corresponding 1-junctions. Often a generalized momentum will include a

summation of many inertia elements. One of these inertial elements will have

integral causality while the rest have derivative causality. Inertia elements that

are scaled by some factor should be connected through a transformer, with the

appropriate scale factor, to derivative causal I-elements.

6. Naturally, the equations derived from the Lagrangian show the balance of efforts

around each 1-junction. Thus, the efforts on the 1-junctions are given by the

equations of motion derived from the Lagrangian. Namely, 0
dt
d

=
∂
∂

−
∂
∂

ii qq
LL

&

gives the effort balance around the ith 1-junction.

 61

7. Develop the Hamiltonian for the conservative system by applying equation 3.23.

Obviously this step may be impractical. For many systems the bond graph

structure is apparent from steps 1 through 6. If the structure is not apparent, the

Hamiltonian will add valuable insight due to the Hamiltonian formulation of n

first-order equations.

8. Add non-conservative elements, where needed, on the bond graph structure.

9. Add external forces where needed as bond graph sources.

10. Use bond graph methods to simplify, if desired.

 After completing steps 1-7, the structure of the bond graph will be apparent. The

overall bond graph structure will have the general form shown in figure 3.17.

Figure 3.17. General Bond Graph Structure Developed from the Lagrangian

The process of creating a bond graph from the system Lagrangian is best shown by

means of an example.

62

3.3.3 Lagrangian to Bond Graph Development: Pendulum Example, One Degree

of Freedom

 Figure 3.18 shows a pendulum with a single degree of freedom with mass m and mass

moment of inertia µ. The length L represents the distance from the pivot point to the

center of gravity.

Figure 3.18. Single Degree of Freedom Pendulum

 The Lagrangian is given by

() () 0)cos(
2
1

2
1 22

=−−+= θθµθ LLmgLm &&L (3.34)

By noting the single degree of freedom θ, and by inspection of the Lagrangian, it is

evident that the bond graph must have a single 1-junction to represent the flow term θ& .

 63

The partial of the Lagrangian with respect to θ& gives the generalized momentum shown

by

θµθ
θ

&&
&

+=
∂
∂

= 2mLp L (3.35)

Solving equation 3.35 for θ& yields

µ
θ

+
= 2mL

p& (3.36)

Equation 3.36 shows that the 1-junction has two I-elements attached representing the

mass moment of inertia, µ, and mass m. The L2 term must then be modeled as a

transformer.

 The Hamiltonian is found by applying the Legendre transformation of equation 3.23:

())cos(
2
1

2
1* 22

θθµθθ mgLmgLLmp +++=−= &&& LH (3.37)

Equation 3.37 can be written as

)cos(
)(2

1
2

2

θ
µ

mgLmgL
mL

p
++

+
=H (3.38)

Applying equations 3.31 and 3.32 provides the complete Hamiltonian equations. These

are shown in equations 3.39 and 3.40, respectively. Note that equation 3.39 is a repeat of

equation 3.36, as it should be, since the equation for θ& should be the same regardless of

the method used to obtain it.

µ
θ

+
=

∂
∂

= 2mL
p

p
H& (3.39)

64

)sin(θ
θ

mgLp =
∂
∂

−=
H

& (3.40)

 Equation 3.39 shows the I-elements and how they connect to the 1-junction.

Equation 3.40 shows that there is another bond on the 1-junction with an effort term

equal to the left hand side of equation 3.40. Also, note that eliminating the variable p

gives the same second-order equation that would have been found had the Lagrange

method been used, i.e.,

())sin(2 θθµ mgLmL =+ && (3.41)

The 1-junction of figure 3.19 obviously must have three bonds attached to it, one for each

of the terms in equation 3.41. These three effort terms sum around the 1-junction of

figure 3.19. Also, in figure 3.18, the flow of the 1-junction is explicitly stated for

clarification.

Figure 3.19. Pendulum 1-Junction

The power arrows shown in figure 3.19 reflect the signs of equation 3.41.

 It is clear at this point that the remaining elements of the pendulum bond graph

consist of two I-elements, two transformers and a source of effort. The complete bond

graph is shown in figure 3.20. Again, the bonds have been arbitrarily numbered. The

 65

bond graph shows a single degree of freedom on the integral-causal bond 3, and a

differential causal bond 5. For this bond graph, the user might have chosen bond 5 to be

integral-causal. This choice makes bond 3 differential-causal, and the transformer

constant between bonds 4 and 5 would then be inverted to 1/L.

Figure 3.20. Complete Bond Graph of Pendulum

 The effort source of figure 3.20 has been defined with a –mg. Often in bond graph

representation sinks are modeled by assigning a positive term to the source element but

showing the power-arrow towards the source.

 The MTF in figure 3.20 represents a modulated transformer. This 2-port element is

the same as the transformer element shown in Section 3.2.4, however, the transformer

modulus is allowed to vary with time. A full arrow in bond graph terminology represents

a pure signal. There is no power flow on the full arrows. Common block diagram

algebra is used to describe the mathematics of the signal arrows. As seen in figure 3.20

the modulated transformer relates e2 to e1 by e2 = e1*L*sin(θ). The signal arrows begin

at the 1-junction. Since all bonds connected to the 1-junction have the same flow, the

flow value is the input to the signal arrow.

66

 The equations for the bond graph of figure 3.20 are developed in equation 3.42-3.44.

() 513 *sin* eLLSEp −= θ& (3.42)

Equation 3.43 occurs in this form due to the differential causal assignment on bond 5.

3

3
53545555 ****

I
p

LIfLIfLIfIe
&&&& ==== (3.43)

Plugging equation 3.43 into 3.42 and solving for 3p& yields the final bond graph equation.

()θsin*1 1
3

2
5

3 LSE
I
LIp =⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+& (3.44)

Equation 3.44 and 3.41 are shown to be equivalent by noting that θµ &=3p , I5 = m, I3 = µ,

and SE1 = -mg.

 The single degree of freedom pendulum shows the method for creating the bond

graph from the Lagrangian of a system but the example was simple enough that the bond

graph could have been obtained by inspection of the free-body diagram. The following

section develops the bond graph of a gyroscope using the approach shown here. The

gyroscope model is a complicated system. Developing a bond graph for a gyroscope

model without using a Lagrangian approach would be a much more difficult task.

3.3.4 Lagrangian to Bond Graph Development: Gyroscope Example

 The bond graph formulation of a gyroscope demonstrates the usefulness of the

Lagrangian/Hamiltonian approach. Creating a bond graph of a gyroscope without the aid

 67

of a Lagrangian/Hamiltonian approach would be a difficult task due to the complexity of

the system.

3.3.4.1 Gyroscope Lagrange Equations

 Figure 3.21 shows a diagram of the gyroscope to be modeled. This model has two

gimbals the mass of which will not be neglected in the development of the model.

Figure 3.21. Gyroscope Diagram

The distance l, shown in figure 3.21, however, is set to zero since this is the most

common implementation of a gyroscope model. This minor simplification causes the

potential energy terms in the Lagrangian to disappear.

 The Lagrangian of the gyroscope is given by equation 3.45, whereθ , φ , and ψ , the

three Euler angles, are the generalized coordinates of the system [Mei98 pp. 386-389].

68

() ()[
()]2222

222

coscos

sin
2
1

φθφψθφ

θφθ

&&&&

&&

CCC

BAAATL

′′+′+++

+′++′+==
 (3.45)

The moment of inertia of the rotor about the symmetry axis ζ is denoted as C , and A is

the moment of inertia of the rotor about any transverse axis through the point O. The

moments of inertia of the inner gimbal about the axes ξ, η, and ζ, are denoted by A′ , B′ ,

and C ′ , respectively. The moment of inertia of the outer gimbal about the inertial axis Z

is denoted by C ′′ . The corresponding Lagrange equations are given by equations 3.46

through 3.48.

() ()
()
() .cossin2cossincos

cossincos
cossin2sin

2

2

φθθθφθφθθψθφ

θψθθφθφ

θθθφθφ

φφφ

&&&&&&&&&

&&&&&&

&&&&

&

CCCC
C

BABA

LL
dt
dN

′′+′−′++−

++−+

+′++′+=

=
∂
∂

−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

=

(3.46)

()ψθθφθφ
ψψψ &&&&&&

&
+−=

∂
∂

−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

= sincosCLL
dt
dN (3.47)

() () () θθφθφψθφθ
θθθ

cossinsincos 2&&&&&&

&

CBACAA

LL
dt
dN

′−′+−++′+=

=
∂
∂

−⎟
⎠
⎞

⎜
⎝
⎛
∂
∂

=
 (3.48)

The generalized torques are given by Nφ, Nψ, and Nθ. The Lagrangian equations are

three, second-order, coupled differential equations resulting in a sixth-order system. The

state variables of this system are θ , θ& , φ , φ& , ψ , and ψ& . However, the state variables

φ , and ψ do not show up in the above equations. Thus, the system can be described

entirely by four state equations. The four state equations consist of equations 3.46

 69

through 3.48 and the simple equation ()θθ
dt
d

=& . The resulting system is a fourth-order,

nonlinear system.

3.3.4.2 Gyroscope Bond Graph

 This section builds the bond graph from the Lagrangian of the gyroscope [McB01].

The step by step bond graph creation process is as follows:

1. Step one of the bond graph creation process is not needed since this system is

already a conservative system.

2. In order to note the flow terms of the Lagrangian for this conservative system it is

necessary to rewrite the Lagrangian. The Lagrangian can be rewritten such that

each flow term has the form ½ I * f 2. Equation 3.45 becomes equation 3.49.

Equation 3.49 shows that the bond graph will have three 1-junctions with integral

causality. The three 1-junctions represent the flow terms θ& , φ& , and ψ& .

() ()[]

() θψφψθ

φθθ

cos
2
1

2
1

 cossin
2
1

22

222

&&&&

&

CCAA

CCCBAL

++′++

+′′+′++′+=
 (3.49)

3. The 1-junction assignment is shown in figure 3.22.

70

Figure 3.22. Gyroscope Integral 1-Junctions

4. The ith generalized momentum is found by
i

i q
p

&∂
∂

=
L . The generalized

momentum equations are

() ()[] θψφθθ
φφ coscossin 22 &&
&

CCCCBALp +′′+′++′+=
∂
∂

= (3.50)

()θ
θθ

&
&

AALp ′+=
∂
∂

= (3.51)

θφψ
ψψ cos&&
&

CCLp +=
∂
∂

= (3.52)

5. Solving equations 3.50 through 3.52 for the respective iq& terms yields equations

3.53 through 3.55. Equation 3.53 has a sum of inertia elements in the

denominator. This sum contains sine and cosine terms that are connected by

transformers to the φ& 1-junction. Equation 3.53, and 3.55 both have sums in the

numerators. This indicates that these two flows are connected via a 0-junction,

 71

since flows sum around a 0-junction. Also, the sum of C and C’ cannot be on the

same I-element as are A and B’ due to the zero junction flow addition. Equation

3.54 implies that the θ& 1-junction is a standard junction with a single I-element.

Figure 3.23 reflects these updates to the bond graph.

() ()[]CCCBA
Cp

′′+′++′+

−
=

θθ
θψ

φ φ
22 cossin

cos&
& (3.53)

()AA
p

′+
= θθ& (3.54)

C
Cp θφ

ψ ψ cos&
&

−
= (3.55)

Figure 3.23. Gyroscope 1-Junctions: I-Element Connections

6. Taking the time derivative of equations 3.50 through 3.52 yields equations 3.56

through 3.58. This is a step in developing the Lagrange equations for the

72

gyroscope with the Lagrangian in the form of equation 3.49. This step also shows

iP& equations as a function of jq& and jq .

() ()[]
() ()

θθψθψ

θθθφθθθφ

φθθ
φφ

sincos

cossin2cossin2

cossin 22

&&&&

&&&&

&&
&

&

CC

CCBA

CCCBAL
dt
dp

−+

+′+−′++

+′′+′++′+=
∂
∂

=

 (3.56)

()θ
θθ

&&
&

& AAL
dt
dp ′+=
∂
∂

= (3.57)

θθφθφψ
ψψ sincos &&&&&&
&

& CCCL
dt
dp −+=
∂
∂

= (3.58)

The last step in completing the Lagrange equations for the Lagrangian of 3.49 is shown in

equations 3.59 through 3.61.

0=
∂
∂
φ
L (3.59)

() () θφψθθφθθφ
θ

sincossincossin 22 &&&& CCCBAL
−′+−′+=

∂
∂ (3.60)

0=
∂
∂
ψ
L (3.61)

Two of the three complete Lagrange equations are obtained by setting equations 3.56,

and 3.58 equal to zero. The third complete Lagrange equation is obtained by subtracting

equation 3.57 from equation 3.60 to obtain

 73

() () () 0sincossincossin 22 =+′++′+−′+ θφψθθφθθφθ &&&&&& CCCBAAA (3.62)

Figure 3.23 is beginning to show the general bond graph form shown in figure 3.17. The

modulated gyrator connections can be seen by noting the effort terms of equation 3.62.

Recall that a gyrator provides an effort term by multiplying a flow term with the gyrator

modulus. Three of the effort terms of equation 3.62 are rewritten in equations 3.63 and

3.65 to reflect a flow term multiplied by a gyrator modulus.

()[] MfBAe =′+= θφθφ cossin && (3.63)

()[] MfCCe =′+= θφθφ sincos && (3.64)

[] MfCe == θφψ sin&& (3.65)

Equations 3.64 and 3.65 can be combined to group the C terms together. This is desired

since the C inertia appears only once in the bond graph of figure 3.23.

[] MfCCe =+= θφθφψ sincos &&& (3.66)

[] MfCe =′= θφθφ sincos && (3.67)

The flow terms of equations 3.63, 3.66 and 3.67 are already established in figure 3.23.

The modulus terms are momentum terms. These terms are also established in figure 3.23

as the momentum terms of the derivative causal I-elements, and the integral causal I-

74

element with inertia C. Thus, the bond graph of figure 3.23 becomes the bond graph of

figure 3.24. Note that the 0-junction summation is also reflected in equation 3.66.

Figure 3.24. Gyroscope MGY Connections

 The gyroscope bond graph of figure 3.24 is complete with the exception of the effort

sources. The signal arrows indicate that the MGY elements use momentum signals as

their moduli. The elegance of the bond graph construction method presented here is that

much of the complicated mathematics of the Lagrange equations is provided within a

relatively simple structure. The differential causal elements account for much of the

Lagrange equation complexity. The cross-coupled flow terms of equations 3.56 and 3.62

are accounted for through the differential causal elements connected though modulated

gyrators and transformers. The transformer modulations themselves are natural elements

 75

of the bond graph, i.e., they are not created by over-complicated gyrator and transformer

moduli.

 Input torque sources are added to the Lagrange equations 3.56, 3.58 and 3.62 to

obtain equations 3.68 through 3.70. These equations are identical to those obtained in

equations 3.46 through 3.48, with the sources in bond graph notation.

() ()[]
() () θθψθψθθθφθθθφ

φθθφ

sincoscossin2cossin2

cossin 22

&&&&&&&&

&&

CCCCBA

CCCBASE

−+′+−′++

+′′+′++′+=
 (3.68)

θθφθφψψ sincos &&&&&& CCCSE −+= (3.69)

() () () θφψθθφθθφθθ sincossincossin 22 &&&&&& CCCBAAASE +′++′+−′+= (3.70)

Figure 3.25. Complete Gyroscope Bond Graph

76

Figure 3.25 shows the effort sources added to the gyroscope bond graph. The bonds have

been assigned arbitrary numbers to aid in the bond graph equation derivation. Note,

bonds 1 and 2 can be collapsed into a single bond but have been left as shown to

specifically indicate the ψ& 1-junction.

3.3.4.3 Gyroscope Bond Graph Equations

 The bond graph equations for figure 3.25 are best derived by first defining a few of

the variables that will appear often in the equation derivation. Obviously the flows of the

derivative causal elements will be convenient terms to have predefined. Also, the

momentums used to modulate the gyrators will be used often. These predefinitions are

shown as

θφ cos5
&=f (3.71)

θθφθφ sincos5
&&&&& −=f (3.72)

θφ sin9
&=f (3.73)

θθφθφ cossin9
&&&&& +=f (3.74)

() ()θφψ cos5233
&& +=+== CffCCfP (3.75)

θφ cos51111
&CfCfCP ′=′=′= (3.76)

() () () θφ sin91313
&BAfBAfBAP ′+=′+=′+= (3.77)

() ()θ&AAfAAP ′+=′+= 1818 (3.78)

φ&CfCP ′′=′′= 77 (3.79)

 77

 The simplest bond graph equation is the integral causal I-element on bond 3. This is

because the effort on the 0-junction is defined entirely by the effort source on bond 1.

The result yields

ψSEeeeP ==== 1233
& (3.80)

Naturally, equation 3.75 can be used to write equation 3.80 in terms of the Lagrangian

variables. Equation 3.81 is identical to equation 3.47 and equation 3.69.

() ψθθφθφψ SECP =−+= sincos3
&&&&&&& (3.81)

 The next equation is taken by summing the efforts around the integral causal I-

element on bond 18.

203141110131916151718 fPfPfPSEeeeeP −−+=−−+= θ
& (3.82)

9391151318 fPfPfPSEP −−+= θ
& (3.83)

Using the predefinitions, equation 3.83 becomes

() () θφθφψθθφθθφθ sincoscossincossin 22
18

&&&&&& CCCBASEP +−′−′++= (3.84)

Simplifying

() θφψθθφθ sincossin2
18

&&&& CCCBASEP −′−−′++= (3.85)

Using equation 3.78 to find 18P& , equation 3.85 can be written

() () θθφψθθφθ SECCCBAAA =+′++′−−+′+ sincossin2 &&&&& (3.86)

Equation 3.86 is identical to equations 3.48 and 3.70.

78

 The last equation is the most complex of the three bond graph equations. This

equation relies on both derivative causal elements, both modulated transformers and all

three modulated gyrators.

()θθθθ φφ sincossincos 959586127 eeSEeeSEeeeP +−=−−=−−=& (3.87)

At this point it is much easier to work with 5e and 9e separately and substitute the end

result back into equation 3.87.

ψψ θ SEfCPSEfCfPeeee +′+=+′+=++= 513111513411105
&&& (3.88)

Using predefined equations 3.72 and 3.77, equation 3.88 becomes:

() ψθθφθφθθφ SECCBAe +′−′+′+= sincossin5
&&&&&& (3.89)

Multiplying both sides of equation 3.89 by θcos and substituting equation 3.81 for ψSE ,

equation 3.89 yields

()
() θθθφθφψθθθφ

θφθθθφθ

cossincoscossin

coscossincos 2
5

&&&&&&&&

&&&&

CCCC

CBAe

−++′−

+′+′+=
 (3.90)

Simplifying equation 3.90 gives

() () θψθφθθθφθ coscoscossincos 2
5 &&&&&& CCCCCBAe +′++′−−′+= (3.91)

Similarly for 9e

() () θθ &&&&
31191931611132014139 PPfBAfPfPfBAeeee −−′+=−−′+=−−= (3.92)

Using predefined equation 3.74, 3.75, and 3.76, 9e becomes

()() ()
() () θθφθψθθφθθφθφ

θθφψθθφθθφθφ

coscoscossin

coscoscossin9

&&&&&&&&&&

&&&&&&&&&

CCCBABA

CCBAe

−−′−′++′+=

=+−′−+′+=
 (3.93)

Multiplying both sides of equation 3.93 by θsin

 79

() ()
θθθφθθψθθθφ

θθθφθφθ

cossinsincossin

cossinsinsin 2
9

&&&&&&

&&&&

CCC

BABAe

−−′−

+′++′+=
 (3.94)

Equation 3.95 is a rearrangement of the terms in equation 3.94 in a similar form as

equation 3.91.

() () θθψθφθθθφθ sinsincossinsin 2
9

&&&&&& CBACCBAe −′++′−−′+= (3.95)

Adding equations 3.95 and 3.91 yields

()
() ()[]

θθψθψ

θθφ

θθθφθθ

sincos
cossin

cossin2sincos
22

95

&&&&

&&

&&

CC
CCBA

CCBAee

−+

+′++′++

+′−−′+=+

 (3.96)

Substituting equation 3.96 into 3.87 and using predefined equation 3.79 for 7P& yields

()
() ()[]

θθψθψ

θθφ

θθθφφ φ

sincos
cossin

cossin2
22

&&&&

&&

&&&&

CC
CCBA

CCBASEC

+−

+′++′+−

+′−−′+−=′′

 (3.97)

Solving equation 3.97 for φSE completes the bond graph equation derivation.

() ()[]
()

θθψθψ

θθθφ

θθφφ

sincos
cossin2

cossin 22

&&&&

&&

&&

CC
CCBA

CCCBASE

−+

+′−−′+

+′′+′++′+=

 (3.98)

Equation 3.98 is identical to equations 3.46 and 3.68. Equations 3.81, 3.86 and 3.98 form

the bond graph equations for the gyroscope model in figure 3.25. The simple equation

()θθ
dt
d

=& must be added to the set to complete the state equations of the model.

80

3.4 Brown’s Lagrangian Bond Graphs

 An alternate method for developing a bond graph model from the Lagrangian of a

system was shown by F. Brown [Bro72]. The general method produces bond graphs with

a fairly simple structure. However, in some cases the transformer moduli are overly

complex. An example system, used by Brown is a ball joint table assembly, shown in

figure 3.26.

Figure 3.26. Ball Joint Table: Schematic

The Lagrangian for this system is

θθψθψθψ cos
2
1

2
1cos

2
1sin

2
1 2

3
222

2
22

1 mglIIIIL ++++= &&&& (3.99)

The definitions of 1ω , 2ω , and 3ω in figure 3.26 are as follows:

θψω sin1 &= (3.100)

θψω cos2 &= (3.101)

 81

θω &=3 (3.102)

 The method described by Brown groups the inertia terms of the Lagrangian together

into a symbolic energy term.

()2

2
1 ψ&TIE ′= (3.103)

Where I ′ is arbitrarily set at 1 and T is

() θ2
122 sinIIIIT −−+= (3.104)

The resulting bond graph by Brown is shown in figure 3.27.

Figure 3.27. Ball Joint Table: Brown’s Bond Graph

 As seen in figure 3.27 Brown’s bond graph contains a very complex transformer

structure with a fictitious I-element.

Figure 3.28. Ball Joint Table: Bond Graph from Current Method

82

 The method presented in Section 3.3 produces a similar bond graph structure but

recognizes that the gyrator modulus contains momentum elements. The bond graph is

drawn in figure 3.28 with this detail called out specifically. Naturally, either bond graph

may be converted to the other through inspection. For example, it can easily be seen that

the gyrator structure of figure 3.28 gives the same equation of the gyrator in figure 3.27.

This is due to the fact that they are both correct representations of the same system. The

methods for creating the bond graph from the Lagrangian, however, are different. The

method presented here does not need overly complicated transformer and gyrator moduli.

Each transformer/gyrator modulus is very simple. Also, the method presented here

specifically shows that the gyrator moduli are momentums of differential causal elements

of the bond graph, which is insightful when trying to understand the interrelationships of

the state variables.

3.5 Conclusions

 This chapter introduced bond graph modeling. Bond graph modeling was presented

as a method of system representation that maps the power flow through the system.

Since the bond graph deals with power flow, the modeling method can be used with equal

efficiency in all energy domains. Consequently, this modeling method is very useful

when modeling systems that cross multiple energy domains.

 83

 Also, the bond graph maps the flow of information through a system by assigning

causality to the modeling elements. The causal mapping is done in a consistent and

meaningful manner that gives insight to the model. The causal and power flow

information are used together to determine the state equations of the system.

 This chapter also presented a method for converting the Lagrangian into a bond graph

model. Lagrangian and Hamiltonian elements of the system were used to create the bond

graph model. A pendulum and gyroscope were used as examples of bond graph creation,

given the Lagrangian.

 The method presented here was compared to a method presented previously by F.

Brown. The method presented here shows that, for rigid body systems, gyrators are often

modulated via a momentum signal from another part of the bond graph. This insight is

unclear when using Brown’s method. Also in Brown’s method, although the structure of

the bond graph is very simple and compact, the transformer moduli contain complicated

functions of the inertias of the system.

84

CHAPTER 4: Object-Oriented Bond Graph Modeling

4.1 Introduction

 As seen in Chapter 3, bond graph modeling is a useful tool for generating the

equations of motion of a mechanical system from the power flow map of a physical

system. However, once the equations of motion have been generated it is still necessary

to develop computer code in order to perform simulation and analysis of the system.

Ideally, the computer code would be generated directly from the bond graph model of a

system with the simulation software.

 Modelica [Dym] is a modeling framework used for simulation of complex physical

systems. Within the Modelica framework, models of systems can be included as sub-

models within larger systems. The code for the overall system is then generated

automatically, thus allowing the user to use the sub-models in an object-oriented, plug

and play manner. Dymola [Dym, Brü02] is a software package that enables the user to

use the Modelica framework with a graphical interface.

 Dymola/Modelica, however, have no knowledge of bond graph modeling. For this

reason a bond graph library was developed to combine the object-oriented abilities of

Dymola with the power based system representation of bond graph modeling [Cel03a].

 85

4.2 Dymola

 The Dymola framework allows the user to create system models such that they can be

used in the next upper hierarchical level. Dymola uses four windows to define each

model: an equation window, a diagram window, an icon window, and a documentation

window.

 The lowest level of a model/sub-model resides in the equation window, i.e., when all

sub-models are expanded to the lowest hierarchical level, the code will reside in the

equation window. The equation window contains code written in the Modelica language

[Brü02]. Modelica is a fairly straightforward language to understand and can be read by

anyone possessing basic programming knowledge in FORTRAN or C. The equation

window of a bond graph power sensing bond is shown in figure 4.1.

Figure 4.1. Power Sensing Bond Model: Equation Window

86

 The power sensing bond of figure 4.1 is dependent on other bond graph models as can

be seen by the diagram window of the same model. This window is shown in figure 4.2.

The diagram window allows the user to include sub-models and connect them in a block

diagram fashion. In figure 4.2 the sub-model, fbond1, is included in an object-oriented

fashion. fbond1 is connected to two output ports labeled e and f, such that the model can

later be dropped into larger models. The output signal that is output at the bottom of

figure 4.2 is defined in the equation window, shown in figure 4.1.

Figure 4.2. Power Sensing Bond Model: Diagram Window

 The icon window of the power sensing bond model is shown in figure 4.3. The icon

window contains a graphical description of how the model will be represented at the next

hierarchical level. The text name, shown in figure 4.3, leaves a generic text place holder

 87

such that the user can assign a distinct name at the next hierarchical level. This is

necessary in case multiple instances of the same model are used at the upper level.

 The Power_F_Bond model was used here to show the workings of the three primary

Dymola windows. The internal details of the Power_F_Bond model are discussed in

Section 4.3.

Figure 4.3. Power Sensing Bond Model: Icon Window

4.2.1 Equation Sorting

 In a laboratory setting, a motor may be driven forward such that an input voltage

drives the motor to observe the angular velocity of the motor shaft as the output. Also, it

is possible to hook the motor up backwards and input a torque to the motor shaft and

observe the generated current as the output. Similarly, Dymola allows the user to hook

up models in different configurations. Dymola must then be able to sort the equations

88

such that they can be converted into assignment statements at compilation time. For

example, it is perfectly acceptable to write in the equation window of a Dymola model

the following

FEDCBA ++=++ (4.1)

At the time the model is compiled Dymola must sort through all equations to create

assignment statements for all variables. It is possible that in one instance of a model

containing equation 4.1, the equation is solved for A. And, in another instance, it is

solved for E, depending on the manner in which the model is connected at the upper

hierarchical level. This is a powerful advantage that Dymola has over other modeling

software since the object-oriented capabilities allow the user to plug and play models as

they would in a laboratory setting [Brü02, Cel93].

 As an example of how this is accomplished, consider the system shown in figure 4.4.

Here a 4th order, spring, mass, damper system is shown with gravity neglected and X1 =

0, X2 = 0 are defined as the unloaded spring displacements for K1 and K2, respectively.

Figure 4.4. Spring Mass Damper: Example

 89

 A possible set of equations for this system is

ViiX
XXiX

XXX
VX
VX

VBKXVm
VBKXVBKXVm

VViV
VVV

=

−=
+=

=

=

=−−

=++−−

−=
−=

&

&

&

&

&

22
112

11
22

01*11*11*1
01*11*12*22*22*2

22
121

δ
δ
δδ

δδ

δδ

δδδδ

δ
δ

 (4.2)

Naturally, equation set 4.2 does not represent a minimum set of equations, since a

minimum set of equations would make the example trivial. Dymola does not require that

a set of equations be minimal either.

Figure 4.5. Spring Mass Damper: Dymola Equation Window

90

 The equation window of Dymola is shown in figure 4.5 for this example. The icon

window, and diagram window, for this model have been left blank since this model is

self-contained and not intended to be used at any higher hierarchical level.

 Note the der notation. This is the symbol Dymola uses to show the derivative of a

variable. The notation is somewhat misleading as no numerical derivatives are

calculated. The equation sorter works such that only numerical integration is needed to

perform the simulation. Also note that the equations shown in figure 4.5 are in the exact

same form as those in equation set 4.2.

 In order to represent the sorting algorithm’s functionality, an equation notation is

adopted. A bracket around an entity indicates that the equation is solved for that entity.

An underlined entity indicates that the variable is known from some other source. This

notation was developed by Elmqvist, and Otter [Elm94]. For example, if equation 4.1

were solved for E the equation would be written as shown in equation 4.3 indicating that

the values for A, B, C, D, and F must be obtained from some other source.

[] FEDCBA ++=++ (4.3)

 In order to sort the equations shown in figure 4.5, Dymola first solves any statement

containing a der for this entity. Naturally, if der(Y) is known, then Y is also known as it

is the output of the integration scheme. With this, equation set 4.2 becomes that shown in

equation set 4.4. Vi is known as it is an input to the system.

 91

[]
[]

[]
[]

[] ViiX
XXiX

XXX
VX
VX

VBKXVm
VBKXVBKXVm

VViV
VVV

=

−=
+=

=

=

=−−

=++−−

−=
−=

&

&

&

&

&

22
112

11
22

01*11*11*1
01*11*12*22*22*2

22
121

δ
δ
δδ

δδ

δδ

δδδδ

δ
δ

 (4.4)

All equations containing a single unknown variable are then solved and the information is

extended to the remaining equations. Equation set 4.4 becomes

[]
[]

[]
[]

[]
[]

[]
[]
[] ViiX

XXiX
XXX

VX
VX

VBKXVm
VBKXVBKXVm

VViV
VVV

=

−=
+=

=

=

=−−

=++−−

−=
−=

&

&

&

&

&

22
112

11
22

01*11*11*1
01*11*12*22*22*2

22
121

δ
δ
δδ

δδ

δδ

δδδδ

δ
δ

 (4.5)

For all equations in set 4.5, there exists exactly one bracketed variable with the other

variables underlined. Assignment statements can be generated and this system can then

be solved using an integration scheme.

92

4.2.2 Algebraic Loops

 Obviously, the above sorting system breaks down in the presence of an algebraic

loop. Systems containing algebraic loops are all too common. These systems occur in

resistive networks and are easily shown by a bond graph example.

4.2.2.1 Algebraic Loops within Bond Graph Modeling

 This section discusses the typical bond graph method of eliminating algebraic loops.

As discussed in Chapter 3, after all integral and necessary causal marks are defined, if

there still exists bond graph R-elements with unassigned causality then there is at least

one algebraic loop in the system. There is exactly one algebraic loop for every free-

causal R-element in the system.

 The Wheatstone bridge circuit shown in figure 4.6 is created entirely in the diagram

window. Each element of the circuit is a sub-model from the Electrical Library that is

standard with the Dymola software.

Figure 4.6. Wheatstone Bridge Circuit Example: Dymola Diagram Window

 93

The icon window has been left blank since this model is not intended to be dropped into

higher models. The equation window has been left blank since all the equation

information is found within the sub-models.

Figure 4.7. Bond Graph of Wheatstone Bridge Circuit

 A bond graph model of the Wheatstone bridge circuit is shown in figure 4.7. The nth

bond in figure 4.7 is designated by Bn. All necessary causalities and integral causalities

have been assigned. Notice that not all bonds have causal marks. The unassigned R-

elements make up a network of resistors that contains an algebraic loop. A complete

causal bond graph can be obtained by choosing the causality on bond B9 to define the

94

effort signal on the 0-junction. Alternatively, the model could be completed by choosing

the causality on bond B13 to define the effort on the 0-junction. Either way, the final sets

of equations are identical. The completed model is shown in figure 4.8.

Figure 4.8. Complete Bond Graph of Wheatstone Bridge Circuit

 In order to complete the causal assignments of the bond graph in figure 4.7, a

minimum of one causality choice was made on the unassigned R-elements. This

observation implies that there is a single algebraic loop in the equations [Cel91, Kar90,

Kar83] that needs to be broken with a single tearing variable [Elm94]. The tearing

variable will be the effort signal on R3, since this was the causal assignment choice that

completed the bond graph. A variable used to break an algebraic loop is referred to as a

tearing variable. The tearing variable is then eB9, or the effort on bond B9. In order to

 95

derive the equations for a bond graph containing an algebraic loop, the equation

derivation rules of Chapter 3 are followed. The normal bond graph equation derivation

rules apply up until the tearing variable is encountered. The tearing variable should be

left as an intermediate variable in the equation. However, the tearing variable should be

the only intermediate variable in the equation. After each equation is complete, an extra

equation for the tearing variable is derived. This is best shown via the above example.

The Wheatstone bridge example is a second-order system which can be seen by the

number of integral causal marks on the bond graph. Following the rules of Chapter 3, the

first set of bond graph equations is derived as

15725634 BBBBBBB ffffffq −−=−−=& (4.6)

421
1572

4 R
e

R
e

R
eq BBB

B −−=& (4.7)

⎥⎦
⎤

⎢⎣
⎡ −−⎥⎦

⎤
⎢⎣
⎡ −−⎥⎦

⎤
⎢⎣
⎡ −= 12

4
9

44
4 14

1
12

1
1

1
1

1
B

B
B

BB
B e

C
q

R
e

C
q

RC
qmSE

R
q& (4.8)

⎥
⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛ −−−⎥⎦

⎤
⎢⎣
⎡ −−⎥⎦

⎤
⎢⎣
⎡ −= 9

114
9

44
4 214

1
12

1
1

1
1

1
B

BB
B

BB
B e

C
q

C
q

R
e

C
q

RC
qmSE

R
q& (4.9)

⎥⎦
⎤

⎢⎣
⎡ +−−⎥⎦

⎤
⎢⎣
⎡ −−⎥⎦

⎤
⎢⎣
⎡ −= 9

114
9

44
4 214

1
12

1
1

1
1

1
B

BB
B

BB
B e

C
q

C
q

R
e

C
q

RC
qmSE

R
q& (4.10)

Equation 4.10 is in typical bond graph equation form, with the exception of the

intermediate variable eB9. In equation 4.10, all intermediate variables have been

eliminated with the exception of the tearing variable. Rearranging equation 4.10 to

isolate eB9 yields

96

⎟
⎠
⎞

⎜
⎝
⎛ ++−⎟

⎠
⎞

⎜
⎝
⎛ −++=

4
1

2
1

1
1

14
1

2
1

421
1 4

9
11

4 RRRC
q

RR
e

RC
q

R
mSEq B

B
B

B& (4.11)

Similarly;

54
1315

131513141211 R
e

R
efffffq BB

BBBBBB −=−=−==& (4.12)

⎟
⎠
⎞

⎜
⎝
⎛ −−⎥

⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛ −−=−⎥⎦

⎤
⎢⎣
⎡ −= 9

11
9

11412
12

4
11 25

1
214

1
514

1
B

B
B

BBB
B

B
B e

C
q

R
e

C
q

C
q

RR
ee

C
q

R
q& (4.13)

⎟
⎠
⎞

⎜
⎝
⎛ −−⎥⎦

⎤
⎢⎣
⎡ +−= 9

11
9

114
11 25

1
214

1
B

B
B

BB
B e

C
q

R
e

C
q

C
q

R
q& (4.14)

⎟
⎠
⎞

⎜
⎝
⎛ +−⎟

⎠
⎞

⎜
⎝
⎛ ++=

4
1

5
1

24
1

5
1

14
11

9
4

11 RRC
q

RR
e

CR
qq B

B
B

B& (4.15)

In order to eliminate the tearing variable from equations 4.11 and 4.15, a bond graph

equation is written to express the tearing variable. Since this is a known algebraic loop,

the tearing variable equation will be a function of bond graph states and itself, as shown

in the following equation:

()91149 ,, BBBB eqqFe = (4.16)

The tearing variable equation for the Wheatstone bridge example is derived in equations

4.17-4.20.

[] [] ()[]1314712710899 333*3 BBBBBBBBB fffRffRffRfRe −−=−=−== (4.17)

[] ⎥⎦
⎤

⎢⎣
⎡ +−=+−=

542
33 13157

131579 R
e

R
e

R
eRfffRe BBB

BBBB (4.18)

⎥
⎦

⎤
⎢
⎣

⎡
+⎟

⎠
⎞

⎜
⎝
⎛ −−⎟

⎠
⎞

⎜
⎝
⎛ −=

514
1

12
13 12

12
4

9
4

9 R
ee

C
q

R
e

C
q

R
Re B

B
B

B
B

B (4.19)

 97

⎥
⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛ −+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛ −−−⎟

⎠
⎞

⎜
⎝
⎛ −= 9

11
9

114
9

4
9 25

1
214

1
12

13 B
B

B
BB

B
B

B e
C
q

R
e

C
q

C
q

R
e

C
q

R
Re (4.20)

Equation 4.20 shows the algebraic loop explicitly. If the sorting algorithm does not

recognize how to break an algebraic loop, then the steps taken to derive equation 4.20

repeat for every occurrence of the term eB9, creating indefinite recursion. Obviously, eB9

needs to be determined algebraically in equation 4.20. Equation 4.20 becomes

() ()[]
[]43253254354221

452124523 114
9 RRRRRRRRRRRRCC

RRRCqRRRCqRe BB
B +++

++−
= (4.21)

Upon defining eB9 algebraically, the result can then be plugged into equations 4.11 and

4.15 to completely remove the intermediate variables from the equation set. The

algebraic loop has been broken.

 The bond graph model of the Wheatstone bridge circuit not only predicted that an

algebraic loop exists, but also indicated what variable is needed as a tearing variable.

This information is not included in the circuit diagram of the same model. The causality

information on a bond graph provides added insight that is not readily available through

other types of models.

 As seen in the above example, algebraic loops can appear in relatively simple bond

graph models. Even a simple system containing an algebraic loop, can contain fairly

complex recursion. Obviously, software that is intended to simulate bond graphs models

directly must be able to recognize when an algebraic loop exists, and how to break it.

98

4.2.2.2 Algebraic Loops within Dymola

 Dymola uses an algorithm by Tarjan [Tar72] to sort the equations describing a

system. Naturally the equations need to be sorted horizontally, as described in Section

4.2.1, and also vertically. Vertical sorting simply implies that the algorithm must order

the equations from top to bottom such that all information is available when needed. The

Tarjan algorithm, in order to be robust, must also be able to handle algebraic loops.

 The Tarjan algorithm creates a structure incidence matrix. This matrix has a row for

every equation in the system and a column for every unknown variable. Naturally for the

system to be solvable this matrix must be square, one equation per unknown variable.

The matrix is populated with ones or zeros. In the <i, j> location of the matrix, a zero

indicates that the jth variable does not exist in the ith equation. For example, equation set

4.22 has a structure incidence matrix shown in equation 4.23.

()3211 ,, xxxf = 0

()22 xf = 0 (4.22)

()213 , xxf = 0

S

f
f
f

xxx

=

011:
010:
111:

3

2

1

321

 (4.23)

By interchanging rows and columns of the structure incidence matrix it is possible to

rearrange it into lower-triangular form. Equation 4.23 becomes

 99

S

f
f
f

xxx

=

111:
011:
001:

1

3

2

312

 (4.24)

Equation 4.24 represents a system of equations that are sorted both horizontally and

vertically.

 It is possible that the structure incidence matrix, after row and column permutations,

is not entirely lower-triangular. In this case, it will be lower-triangular with blocks on the

diagonal. This occurs in the presence of algebraic loops. For example, equation set 4.25

has a structure incidence matrix shown in equation 4.26.

()3211 ,, xxxf = 0

()212 , xxf = 0 (4.25)

()213 , xxf = 0

S

f
f
f

xxx

=

011:
011:
111:

3

2

1

321

 (4.26)

Equation 4.26 can be permutated to equation 4.27, which has a 2x2 block on the

diagonal.

S

f
f
f

xxx

=

111:
011:
011:

1

2

3

321

 (4.27)

100

In this case, either x1 or x2 can be used as the tearing variable. Algebraic loops will create

rank deficiency in the structure incidence matrix.

 For dynamic systems, the equations have the form ()tUXfX ,,=& . Here X& is

considered an unknown for the Tarjan algorithm, and X is considered known, since it is

the output of the integration routine.

 The Tarjan algorithm does not solve the algebraic loops. In the Modelica framework,

matrix techniques are used for algebraic loops that are linear and moderate in dimension,

and Newton iteration is used on large and/or nonlinear algebraic loops.

 It is seen here that the Modelica framework using the Tarjan algorithm together with

Newton iteration/matrix techniques is capable of handling bond graph models.

4.2.3 Structural Singularities: The Higher Index Problem

 In a system, a structural singularity occurs when a potential degree of freedom is

constrained such that its dynamics are described entirely as a function of other state

variables. For example, two inertias connected by an ideal gear train create a structural

singularity. Normally, each of these inertias separately has its own degree of freedom.

The ideal gear train, however, constrains them such that they act as a single degree of

freedom.

 101

4.2.3.1 Structural Singularities within Bond Graph Modeling

 The gear train example is described in figure 4.9 between the rotational inertias I1

and I2. The bond graph for this system is shown in figure 4.10. Notice the differential

causal mark on bond B2. Differential causality in a bond graph shows up in the presence

of a structural singularity [Cel91]. Normally the I-elements would have their own

integral causal mark indicating a degree of freedom, but the gear train couples the two

inertias together such that movement by one can be described entirely by the dynamics of

the other.

Figure 4.9. Gear Train Example

102

The number of integral causal marks on the bond graph indicates that the system is a 3rd

order system. The inertia of the small gear between I1 and I2 has been neglected. The

bond graph shows that, even though there are four energy storage elements, two of these

elements are coupled together as one. The transformer constant comes from the gear

ratio of the gear train. The gear train, in figure 4.9, shows the relationship between the

angular velocities of the gears. This relationship must hold true for the transformer in

between the 1-junction representing ω1 and the 1-junction representing ω2. The causal

marks on the 1-junction show that the flow signal moves from the ω2 1-junction to the

ω1 1-junction. Therefore, the transformer constant must be r1/r2 as shown in figure

4.10.

 Also notice that the differential causal mark could have been placed on B1. This

would have caused the dynamics of I1 to be described by I2. As in the last section, a

choice on causality led to an algebraic loop. The same is true here only the loop comes

about in a slightly different manner. If the I1 element were differential causal, then the

causality on the transformer would change as well, which would in turn invert the

direction of the flow signal. Thus, the transformer constant would need to be inverted as

well.

 103

Figure 4.10. Gear Train Bond Graph

 The first equation of the above bond graph is derived as before

[] []8272651 2
1

2
1

2
1

BBBBBBB ee
r
rSEee

r
rSEe

r
rSEeSEP +−=+−=−=−=& (4.28)

⎥⎦

⎤
⎢⎣

⎡ +−=
C

q
e

r
rSEP B

BB
8

21 2
1& (4.29)

Naturally the question is; what to do with eB2? The answer lies back in the definition of

the differential causal elements in figure 3.13.

22 *2 BB fIe &= (4.30)

Now 2Bf& can be followed through the bond graph in the same fashion as 2Bf .

12
1

2
1

2
1 1

1562 I
P

r
rf

r
rf

r
rff B

BBBB

&
&&&& ==== (4.31)

104

Substituting 4.31 and 4.30 into 4.29 yields

⎥⎦

⎤
⎢⎣

⎡ +−=
C

q
P

I
I

r
r

r
rSEP B

BB
8

11 1
2

2
1

2
1 && (4.32)

Equation 4.32 shows an explicit algebraic loop on the derivative of the state variable 1BP& .

Equation 4.32 needs to be solved algebraically for 1BP& . This type of algebraic loop will

always occur in the presence of a differential causal element. Equation 4.32 becomes

()
() ()[] () ()[]22

8
22

2

1 1*22*1
1*2*1*

1*22*1
2*1*

rIrIC
rrIq

rIrI
rISEP B

B
+

−
+

=& (4.33)

 Equation 4.31 shows how the generic acceleration term moves through the

transformer, i.e., 56 2
1

BB f
r
rf && = . In general, one must use the chain rule to develop this

relation, as shown in equation 4.34, since the transformer value may vary with time.

() ()5556 2
1

2
1

2
1

BBBB f
dt
d

r
r

r
r

dt
dff

r
r

dt
df

dt
d

+⎟
⎠
⎞

⎜
⎝
⎛=⎟

⎠
⎞

⎜
⎝
⎛= (4.34)

Naturally r1/r2 is constant, so equation 4.33 reduces to the form shown in equation 4.31.

 The other two equations of the gear train bond graph will not touch the differential

causal bond. For completeness they are

32
1

32
1

3
3

1
3

5
3

6378 I
P

r
rf

I
P

r
rf

I
P

fffq BBB
B −=−=−=−=& (4.35)

32
1

1
31

8 I
P

r
r

I
P

q BB
B −=& (4.36)

C
q

eeP B
BBB

8
333 ===& (4.37)

 105

 This section shows that bond graphs detect structural singularities and provide the

necessary means to solve them. Once the differential causal relationship is determined,

the structural singularity will usually generate an algebraic loop involving one, or more,

of the state derivatives.

4.2.2.2 Algebraic Loops within Dymola

 Dymola uses a different method for handling structural singularities. An algorithm

developed by Pantelides [Pan88] is implemented in the Modelica framework to

accomplish this task. The Pantelides algorithm, like Tarjan, also uses the structure

incidence matrix. When a structural singularity exists in a system, the incidence matrix

will have a row that is empty. Thus, an equation exists that is not dependent on any

unknowns.

 For the gear train example above the typical equations are found by balancing the

torques on the inertia elements. This set of equations is shown as

[]

2*21*1
382

3*3*
8

*2*2
2
11*1

8

8

8

ωω
ωωω
ωφ

ωφ

φωωτ

rr

Ik

kI
r
rIin

=
+=

=
=

++=

&

&

&&

 (4.38)

The unknowns are ordered 1ω& , 2ω& , 3ω& , 8φ& , and 8ω . Note that 8ω is an unknown,

since there is no equation containing 8ω& . Thus, the structure incidence matrix is

106

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

00000
10000
00100
11000
00011

S (4.39)

The last equation does not depend on any unknown variables. This is indicative of a

structural singularity. The equation that is independent of the unknowns is a constraint

equation. Upon finding a constraint equation, the Pantelides algorithm differentiates it

with respect to time. Thus, the constraint equation of the above example becomes

2*21*1 ωω && rr = (4.40)

Equation 4.40 is then added to the list of equations. As a result, there is now one

equation too many. In order to balance out the number of equations with the number of

unknowns, one of the integral relationships is relaxed. For example, for the added

equation 4.40 it is no longer assumed that 1ω is known from the integration of 1ω& .

Thus, 1ω is added to the list of unknowns. The new structure incidence matrix becomes

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

000011
100000
010000
000100
011000
000011

Ŝ (4.41)

The new structure incidence matrix does not have a row of all zeros. The unknowns are

now 1ω& , 2ω& , 3ω& , 8φ& , 8ω , and 1ω . The equations consist of equation set 4.38 and the

added equation 4.40. The added equation, together with the added unknown, increases

the index of the structure incidence matrix, thus the term the higher index problem

 107

[Pan88]. Also, note that the constraint equation 4.40 also comes out of the bond graph

derivation as equation 4.34. Equation 4.41, however, indicates an algebraic loop. Row 1

and row 6 are identical, which creates a block element on the diagonal after the matrix

has been permutated.

 The relaxation of the state from its derivative should not be surprising. The end result

is that this state is not really a state at all. Its dynamics can be described entirely as a

function of the other true states. The fact that the derivative of the variable and the

variable itself, are not determined by an integral equation implies that the relationship

must be dependent upon other parameters. This was seen in the bond graph derivation of

equations in the presence of a structural singularity.

 Upon derivation of the constraint equation, it is possible that new variables are

created. For example the variable ψ& is created from ψ , when there is no instance of the

variable ψ& in the previous set of equations. In this case, there already exists an equation

defining ψ . This equation must also be differentiated. This process continues until no

new variables are created.

 The Modelica framework is capable of handling algebraic loops and structural

singularities; both occur often in physical system modeling.

108

4.3 The Dymola Bond Graph Library

 By creating small, object-oriented models that represent bond graph elements it is

possible to create a bond graph library in the Dymola/Modelica framework [Cel03a,

Cel03b]. A model is created for each of the bond graph elements described in Chapter 3.

4.3.1 Connectors

 The most basic model in the bond graph library is the connector. The connector

defines a 3-tuple [Cur84] signal to pass bond graph information in and out of models at

higher hierarchical levels. The 3-tuple is dfe ,, representing effort and flow, while

d is a direction variable where +1 indicates the signal information is into the connector, -1

indicates the signal information is out of the connector. The equation window and icon

window, for the connector are shown simultaneously in figure 4.11.

Figure 4.11. Bond Graph Connector

 109

The iconic representation of the connector is a grey dot. The equation window does

nothing more than declare the 3-tuple elements.

Figure 4.12. e-Bond Connector

 There are two other bond graph connector models that will be used in causal bond

models. As seen in Section 4.2.1 the Modelica framework assumes all variables to be a-

causal. The equation sorting algorithm assigns causality. However, causality is an

important feature of bond graph modeling. The Dymola models can force causality by

declaring a variable as input or output.

 Figure 4.12 shows an e-bond connector. The e variable is declared as an input and

the other two elements of the 3-tuple are declared as outputs. The iconic representation

of the e-bond is a grey dot with the letter e in the center.

110

Figure 4.13. f-Bond Connector

 Similarly the f-bond connector, shown in figure 4.13, declares the f variable as the

input and the other two variables as outputs. With these connectors, it is now possible to

define bond graph elements.

4.3.2 Bonds

 An a-causal bond is created by dragging two bond graph connectors into the model.

Naturally, since two instances of the same sub-model are used in the a-causal bond

model, it is necessary to give them separate names. They are named BondCon1 and

BondCon2, respectively. Figure 4.14 shows the a-casual bond model. In the icon portion

of figure 4.14, BondCon1 is at the left of the bond and BondCon2 is at the right of the

bond.

 111

Figure 4.14. A-Causal Bond

 As seen in the equation window portion of figure 4.14, the efforts of the two

connectors have been set equal, as well as, the flows. The direction variables have been

set to -1 for BondCon1 and +1 for BondCon2. The iconic representation is a bond graph

half arrow with no causality. The name designation is a generic placeholder for naming

multiple instances of the same model at the higher, hierarchical level. This placeholder is

created by inserting the text “%name” in the icon window.

 Naturally the causal bond models need the e-bond connector and the f-bond

connector. These two sub-models will be used to create the causal relationships needed

in a bond with assigned causality. The first of the two causal bonds is the e-bond. Figure

4.15 shows the e-bond with the f-bond connector to the left of the icon and the e-bond

connector to the right. The input/output definitions of the two connectors are used to

define the causality relationship of this bond. The icon is a bond with the appropriate

causal assignment.

112

Figure 4.15. e-Bond

Notice that the model has been declared as a block in figure 4.15. In blocks, all variables

must have pre-assigned causalities.

 An f-bond is constructed in a similar fashion. Figure 4.16 shows the equation and

icon windows for the f-bond. Here, the location of the connectors has been switched.

Figure 4.16. f-Bond

 113

 The bond models are complete and ready to be dropped into Dymola bond graph

models.

4.3.3 Junctions

 Figure 4.17 shows a 3 bond 0-junction. Dymola provides matrix manipulation syntax

that is similar to that in MATLAB [Mat]. In order to take advantage of this syntax, as seen

in the equation window of figure 4.17, the 0-junction inherits the bond connector

information through another model called ThreePortZero which is shown in figure 4.18.

Figure 4.17. 3 Bond 0-Junction

 Three bond connector models have been dropped into the model ThreePortZero,

named BondCon1, BondCon2, and BondCon3. The purpose of ThreePortZero is to map

114

e and f variables into a vector. Note that the d variable is multiplied by the f variable to

give the proper sign of the f signal for summing around the 0-junction.

Figure 4.18. Three-Port Zero

Figure 4.17 shows the efforts being set equal around the 0-junction and the flows

summing to zero.

 The bond graph junction models will need to have n bond graph connector models

dropped in to connect n bonds. In bond graph modeling, there is no limit to the number

of bonds that can be connected to a junction. However, in order to code a junction

model, it is necessary to know how many bonds will be connected to it a priori. To solve

this, many junction models are created with n ranging from 2 to 6. By using

combinations of these junction models any number of bonds can be connected to a

junction. Similar to the 3 bond 0-junction model shown in figures 4.17 and 4.18, there is

a 0-junction model for 2, 4, 5, and 6 bond connections.

 115

Figure 4.19. Three-Port One

 The 1-junction models are created in a similar fashion. The 3 bond 1-junction model

is shown in figures 4.19 and 4.20. The direction variable is multiplied by the effort

variable for summing around the 1-junction. The efforts sum to zero and the flows are

equated.

Figure 4.20. 3 Bond 1-Junction

116

 Note that no causality information is provided to the junction models. The causality

information will be inherited from the bonds connected to the junctions. The junction

models are now ready to be used in larger models.

4.3.4 Passive Elements

 The passive element models need one bond connector model associated with them.

Similar to the junction models, this is done through an inheritance structure. Using the

inheritance structure makes the creation of these models easier, since the inheritance

commands can be typed into the equation window rather then dragging the bond

connecter model in for each instance. The inheritance model is called PassiveOnePort.

This model is shown in figure 4.21. PassiveOnePort has the bond connector model

dragged into it and a definition of e and f. This code can be inherited by all passive

elements by using a Modelica Extends command in the equation window.

Figure 4.21. Passive One-Port

 117

 Figure 4.22 shows a bond graph R-element. The bond graph resistive equation is

stated in the equation window. The variable R is declared as a parameter, which means

that the user defines the parameter upon dropping it into the model. The parameter will

be constant throughout the simulation. The value for the parameter R defaults to 1. The

parameter value is echoed in the icon of the model by including the text “R=%R” in the

icon window.

Figure 4.22. R-Element Model

 A nonlinear resistive element is shown in figure 4.23. This model does not declare

the R variable as a parameter. The R variable is passed into the model via an input signal

connector. In this way a nonlinear, or modulated, R-element is created.

118

Figure 4.23. mR-Element Model

 The I and C elements are created similar to the R-element. They are shown in figures

4.24 and 4.25, respectively. The I and C elements contain the Modelica der command to

express their relationship with the e and f variables.

Figure 4.24. I-Element Model

 119

Figure 4.25. C-Element Model

Figure 4.26. TwoPort

 The transformer and gyrator models are also passive models. They inherit their

connector information from a model called TwoPort. This model is shown in figure 4.26.

TwoPort is similar to PassiveOnePort in that it is intended to ease the creation of the two-

120

port models. The direction variables are used to define the sign convention of the f

variables.

 Two transformer models are shown in figures 4.27 and 4.28. Figure 4.27 shows the

linear transformer and figure 4.28 shows the modulated transformer.

Figure 4.27. Transformer Model

Figure 4.28. Modulated Transformer Model

 121

 The transformer model defines the transformer constant as a parameter and the

modulated transformer model receives the transformer constant as a signal from outside

the model. The equation window shows the necessary relationships between e and f such

that no power is stored, or created in the transformer.

Figure 4.29. Gyrator Model

Figure 4.30. Modulated Gyrator Model

122

The gyrator models are constructed in a similar fashion. For completeness, the gyrator

model and modulated gyrator model are shown in figure 4.29 and 4.30, respectively.

None of the passive models contain causal information. This information is inherited

from the bonds attached to these elements.

4.3.5 Sources

 The source models inherit their bond connector model information from the model

ActiveOnePort. This model is similar to PassiveOnePort of figure 4.21, but the direction

of the flow variable is negated. Figure 4.31, and 4.32 show an effort source, and

modulated effort source models, respectively.

Figure 4.31. Effort Source Model

 123

Figure 4.32. Modulated Effort Source Model

 For completeness, the flow sources are shown in figures 4.33 and 4.34.

Figure 4.33. Flow Source Model

124

Figure 4.34. Modulated Flow Source Model

 Bond graph source elements have a required causality associated with them. The

source models in the bond graph library inherit their causality from the bond connected to

them, and they define causality by setting either the e variable, or the f variable, for effort

sources, and flow sources, respectively. Thus, if the source element is connected to the

incorrect bond, an error will be generated at the time the model is compiled.

4.3.6 Sensors

 There are a few sensor models in the bond graph library; an effort sensor, flow

sensor, P sensor, and Q sensor. Aside from these four models, additional power sensor

models are used extensively in this dissertation.

 The effort and flow sensor models are similar to passive element models in that they

rely on PassiveOnePort for the connector inheritance. The input to these models comes

 125

from the bond graph 3-tuple, and the output is a signal generated by either the e variable

or f variable. Figures 4.35 and 4.36 show the effort sensor and flow sensor, respectively.

Figure 4.35. Effort Sensor

Figure 4.36. Flow Sensor

126

 The P and Q sensor are constructed in a different manner. Up until now, the models

in the bond graph library have not used the diagram window. All of the information

needed to construct the model was either inherited or explicitly stated in the equation

window. The icon window has been used to show the iconic representation of the model

at higher hierarchical levels. This window usage is not so for the P and Q sensors. These

models are constructed exclusively in the diagram window, with the exception of the

PassiveOnePort inheritance statement in the equation window. The sub-models used to

create the P and Q sensor models all come from the bond graph library and are discussed

above. Figures 4.37 and 4.38 show the P and Q sensor models, respectively. In these

two figures, however, the equation window is replaced with the diagram window. The

integrator, used on the output signal in both models, comes from the

Modelica.Blocks.Continuous library that comes standard with the Dymola software.

Figure 4.37. P Sensor

 127

Figure 4.38. Q Sensor

 Naturally P& is an effort, and Q& is a flow. Thus, an effort sensor and flow sensor

were used in these models. The 0/1-junctions, together with the bonds, ensure that the

sensor models provide the proper causality to the model that they are connected to.

Figure 4.39. Power Sensor on an e-Bond

128

 The power sensor models use all three windows. These models are intended to sense

the power flow through a bond. Thus, there are two power sensor models; one for an e-

bond model and one for an f-bond model. The power sensor for the e-bond model is

shown in figure 4.39.

Figure 4.40. Power Sensor on an e-Bond: Icon Window

Figure 4.39 shows the equation window on the left and the diagram window on the right.

The icon window for this model is shown in figure 4.40. The power sensor for the f-bond

can be seen in figures 4.1-4.3. These figures were introduced earlier, as an example of

the three different windows used by Dymola to describe a model. Naturally, the power

sensor models act the same as the bond models, since the bond model is the only thing

connecting input to output.

 129

 These models can now be used to create large bond graph models. The large bond

graph models themselves can be used in an object-oriented fashion to create very

complex models.

4.4 A Gyroscopically Stabilized Platform: An Object-Oriented Bond Graph

Example

 This section uses the bond graph library to create a model of a gyroscopically

stabilized platform. This model has many levels built up from the bond graph library.

The gyroscopically stabilized platform serves as a good example of how the bond graph

library, used in an object-oriented manner, can create very complex systems [McB03].

4.4.1 The Gyroscope Model

 The bond graph of figure 4.41 is the gyroscope model of Chapter 3. Here the bond

graph has been constructed using the bond graph library of the previous section. Figure

4.41 looks no different than a bond graph generated by any other bond graph drawing

tool. There is a major difference, however. The model can be dropped into larger

models as an object. Also, the Dymola framework used to create the models knows

nothing of bond graph modeling. This independence adds a degree of flexibility to the

modeling environment.

 The gyroscope model of figure 4.41 is a very complicated model. This model takes

signal inputs from outside the model and converts them into effort sources using the

130

modulated effort source model. There are two modulated transformer elements with

modulation signals of ()θsin and ()θcos . The signal θ is calculated by integrating the

flow off of the θ& 1-junction. This detail is done in the equation window since the

diagram window is very busy.

Figure 4.41. Gyroscope Model

Figure 4.42. Gyroscope Model: Equation Window (A).

 131

Figure 4.43. Gyroscope Model: Equation Window (B).

Also done in the equation window is the output vector signal definition. The large

amount of code in the equation window prevents it from being included as a single figure.

Two figures have been created. Figure 4.42 shows the parameter and variable

declarations and figure 4.43 shows the equations. The parameter and variable

declarations simply define all of the variables needed to run the model.

 The code in the when initial() then clause initializes the states of the system. This

section of code is included to add the ability to initialize the states of the gyroscope

model to values other than zero.

 The next section equates the variables theta_dot, phi_dot, and psi_dot to their

appropriate bond graph values. The der function is used to integrate these values to get

132

the variables theta, phi, and psi. The variables phi, and psi are used for outputs only.

The variable theta is an output, but it is also used as in input to the modulated

transformers as mentioned above.

 The variables P_A_Bp, P_Cp, and P_C are the momentums off of the A_Bp, Cp, and

C, I-elements, respectively. These momentums are used as input signals to the modulated

gyrator elements mGY3, mGY2, and mGY1, respectively. The output vector is a 6-tuple

defined as ψψφφθθ &&& ,,,,, . This discussion completes the dynamics of the equation

window. All other gyroscope dynamics are contained in the bond graph model of the

diagram window. The gyroscope model icon is shown in figure 4.44.

Figure 4.44. Gyroscope Model: Icon Window.

 133

4.4.2 Inertial Rate Sensor Model

 Inertial pitch, yaw, and roll rates can be sensed from three gyroscopes by orienting

the gyroscope models in three different directions. The above gyroscope model can be

used in an object-oriented fashion in three different instances to accomplish this task.

4.4.2.1 Pitch Gyro

 Figure 4.45 shows the gyroscope model of figure 4.41 oriented to sense pitch motion.

The signals labeled SE_Roll, SE_Pitch, and SE_Yaw are torques that move the platform

body. The gains scale these torques to the appropriate value such that, after scaling, the

inputs are the effective torques that act on the gyroscope body.

Figure 4.45. Pitch Gyroscope

134

The gain on the SE_Yaw torque is more complicated than just a gain. The formula for

scaling the yaw torque is

() () ()[]CCBA
IPlatform

TorqueYawPlatformTorqueYawGyro
Yaw

′′+′+′+= θθ 22 cossin____ (4.42)

A , B′ , C ′ , and C ′′ are gyroscope inertia values and θ is a gyroscope Euler angle, as

described by Section 3.3.4. Platform_Yaw_Torque is the SE_Yaw input, and

IPlatformYaw is the platform, yaw moment of inertia. This same formula is shown in

figure 4.46 with the icon window to the left and the diagram window to the right.

Figure 4.46. Effective Inertia

The instantiated effective inertia model in figure 4.45 has been flipped about the

horizontal axis, thus the gyroscope variable theta enters nearer the bottom of the icon.

 This scaling of inertias is a byproduct of the simulation environment. In the physical

world, the gyroscope would be strapped to the platform body. Thus, any torques felt by

the gyroscope would naturally have the appropriate magnitude.

 135

 The gyroscope in figure 4.45 is oriented such that the Euler angle rate ψ& is a

measurement of inertial pitch rate. By monitoring this angular rate, and integrating, the

gyroscope can measure the pitch, and pitch rate of the platform body. The icon window

for the pitch gyro model is shown in figure 4.47.

 The model labeled Array_Indexing1 is simply a de-multiplex model. The input to

this block is the 6-tuple ψψφφθθ &&& ,,,,, from the gyro and the output is θ .

Figure 4.47. Pitch Gyro Icon Window

4.4.2.2 Yaw Gyro

 Figure 4.48 shows the gyroscope model oriented such that the platform yaw motion

can be measured by monitoring the angle θ . Figure 4.49 shows the corresponding icon

window. Here, the effective inertia calculations are identical in form to those shown in

Section 4.4.2.1. The appropriate roll, pitch, and yaw platform inertias are associated with

136

the signal values. Thus, the IPlatformYaw value in equation 4.42 becomes IPlatformPitch in

this model.

Figure 4.48. Yaw Gyroscope

Figure 4.49. Yaw Gyro Icon Window

 137

4.4.2.3 Roll Gyro

 Figure 4.50 shows the gyroscope model oriented to sense inertial roll motion of the

platform. The corresponding icon window is shown in figure 4.51.

Figure 4.50. Roll Gyro

Figure 4.51. Roll Gyro Icon Window

138

Similar to the previous gyro orientation models, the form is identical but the inertia

parameters, and the torque signals, are connected in a roll orientation.

 The complete inertial rate sensor model is created by dropping the pitch, yaw, and roll

gyro models into a single model. This model is shown in figure 4.52.

Figure 4.52. Inertial Rate Sensor Model

 The three Array_Indexing models de-multiplex (demux) the gyro 6-tuples to output

the last element, which corresponds to the Euler angle rate ψ& of each gyro. These three

signals are sent through a sensor block. The sensor block simply consists of an integrator

and sensor delays. The model is setup to subtract off initial conditions, if needed. This

model is shown in figure 4.53 with the icon window on the left and diagram window on

the right. As seen in figure 4.53, both the rate and angle are outputs of the sensor delay

model.

 139

Figure 4.53. Sensor Delays

 The output of the inertial rate sensor model is again a 6-tuple. The signals are the

sensed rates and angles of the three gyros, i.e., <sensed roll rate, sensed roll angle, sensed

pitch rate, sensed pitch angle, sensed yaw rate, sensed yaw angle>. The icon for the

inertial rate sensor model of figure 4.52 is shown in figure 4.54.

Figure 4.54. Inertial Rate Sensor Model Icon

140

 The inertial sensor rate model is now ready to be used in a larger model. By attaching

the above model to a platform model it is possible to sense the platform roll, pitch, and

yaw degrees of freedom.

4.4.3 Platform Model

 The platform model for this example is a very simple model. The platform model is

kept very simple, since the focus of the platform example is the use of the gyroscope

model as an object-oriented bond graph.

 The platform model consists of roll dynamics, pitch dynamics and yaw dynamics.

For simplicity, these models are independent of one another. Each of these three

channels is modeled with a simple bond graph consisting of an effort source, and

platform body inertia. This model is shown in figure 4.55

Figure 4.55. Platform Channel Bond Graph

 141

 As seen in figure 4.55, the platform channel bond graph is very simple. The torque

signal is converted to a bond graph value through the mSE model and the output is the

flow off of the 1-junction. The 1-junction flow and position are the outputs of the model.

The icon labeled Concat is a multiplex model that makes a 2-D vector from two 1-D

vectors.

 Three instances of the platform channel bond graph are used to model the complete

platform body. This model is shown in figure 4.56.

Figure 4.56. Platform Body

The outputs of this model consist of a vector of the three body rates and positions, and a

vector of the control efforts used to control the body motion. The control efforts output

from this model are input to the mSE elements of the platform channel bond graphs. As

142

such, the control efforts are the body torques used to move the platform body. The icon

of the platform body model is shown in figure 4.57.

Figure 4.57. Platform Body Icon

Figure 4.58. Platform Body Controller

 143

 The icon labeled Platform_Cntrlr is the body controller. This model is a simple rate

and position, proportional feedback controller to control the body position. This model is

shown in figure 4.58. The platform model is now ready to be connected to the inertial

rate sensor model.

4.4.4 Stabilized Platform

 The platform and rate sensor models are combined to form a stabilized platform

model. This model is shown in figure 4.59.

Figure 4.59. Stabilized Platform

 The inputs to this model are body position commands. The outputs consist of two

vectors: first the true body rates and position, and second the sensed body rates and

positions. As can be seen by the diagram window of figure 4.59, the gyroscope model

144

outputs are used as feedbacks to the platform model to stabilize the position. The icon of

the stabilized platform is shown in figure 4.60.

Figure 4.60. Stabilized Platform Icon

 This completes the stabilized platform model. The stabilized platform uses three

instances of the gyroscope model, and three instances of the platform channel model.

The bond graph library forms the basis for the stabilized platform model. The controller

models, and supporting mathematics models, are built from the Dymola standard

libraries.

4.4.5 Camera Model

 Another layer of complexity is added to the stabilized platform model. A gimbaled

camera is attached to the platform body. The camera sits on gimbals in order to remain

 145

pointed at a fixed inertial point regardless of the platform body motion. The camera

model uses another instantiation of the gyroscope model. The dynamics of the camera

gimbals are identical to the gimbals of the gyroscope. However, the implementation of

these dynamics is very different.

Figure 4.61. Camera Model

Figure 4.62. Camera Model Icon

146

 The camera model is shown in figure 4.61, and the icon in figure 4.62. Figure 4.61

shows that the camera model dynamics are defined by an instantiation of the gyroscope

model. The initial angle on theta is 90˚, due to the definition of theta in the gyroscope

model. The subtraction on the output signal of theta removes this value.

Figure 4.63. Camera Controller

 The camera controller model, inside the Camera_Controller1 icon of figure 4.61, is

shown in figure 4.63. The controller has a simple proportional position and rate control

law. The inputs from the left are the camera roll, pitch and yaw position commands. The

outputs on the right are the theta, psi, and phi torques that will be used in the gyroscope

bond graph. The 90˚ rotation on the variable theta is also seen in the SE theta channel.

The effective mass model is included in this controller to scale the torque on phi

appropriately. From figure 4.63, it is apparent that a roll command induces a psi motion

 147

in the camera, a pitch command induces a theta camera motion, and a yaw command

induces a phi camera motion. With this orientation, and figure 3.20, it is seen that the

camera is oriented in the same fashion as the roll gyro. The camera model is ready to be

attached to the stabilized platform.

4.4.6 Stabilized Platform with a Two-Gimbal Camera

 The model attaching the camera to the stabilized platform is shown in figure 4.64.

Figure 4.64. Platform and Camera

 As seen in figure 4.64, the sensed body motion is fed into a block to subtract the body

motion from the camera position commands. In this way, the effective camera position

commands remain fixed in inertial space. Since the body motion subtracted off of the

camera commands is sensed, it is expected that some error exists between the camera’s

148

idea of an inertial fixed position and true inertial fixed position. This subtraction model

is straight forward and shown in figure 4.65.

Figure 4.65. Inertial Commands – Body Motion

Figure 4.66. Platform and Camera Icon

 149

 The icon of the completed model of figure 4.64 is shown in figure 4.66. This camera

model contains four instances of the gyroscope bond graph model of figure 4.41. The

gyro model is a high fidelity model that includes gimbal inertia effects. Other sub-

models are low fidelity models. One of the advantages of working with object-oriented

models is that improvements to the fidelity of a core sub-model are reflected in every

instance. The camera and stabilized platform model is now complete and ready for

simulation.

4.4.7 Simulation and Results

 The complete model used for the simulation is shown in figure 4.67.

Figure 4.67. Platform and Camera Simulation Model

150

The simulation is setup to run from 0 to 15 seconds. Table 4.1 lists the inertia parameter

values for the camera and gyroscopes used during the simulation. The inertia values

were created arbitrarily for this simulation. The inertia values used for the platform are

Ipitch = 5E4 kg*m2, Iyaw = 4E4 kg*m2, and Iroll = 3.5E4 kg*m2. The sensor delays

were set at 1 kHz.

 Gyros Camera

A 400 kg*m2 1800 kg*m2

C 900 kg*m2 3600 kg*m2

A′ 40 kg*m2 160 kg*m2

B′ 80 kg*m2 320 kg*m2

C ′ 40 kg*m2 160 kg*m2

C ′′ 75 kg*m2 300 kg*m2

0ψ& 1500 rad/sec 0 rad/sec

0θ& 0 rad/sec 0 rad/sec

0φ& 0 rad/sec 0 rad/sec

Table 4.1. Camera and Gyro Values used for Simulation

 The simulation run consisted of commanding the camera to a specified point and then

commanding the platform to move. The camera, initially at 0° about all three inertial

axes, was commanded to maintain a constant inertial position of 57.3° about all three

 151

inertial axes. These inertial camera angles are expected to remain unchanged while the

platform is commanded to oscillate through a series of maneuvers. The platform was

commanded to pitch, yaw, and roll in a sinusoidal motion. This commanded sinusoidal

motion is described in figure 4.68. As seen in figure 4.68, roll, pitch, and yaw were

commanded to react to different magnitude and frequency sine waves. As seen in figure

4.68 the roll, pitch, and yaw command frequencies are .25Hz, .5Hz and 1Hz,

respectively.

0 5 10 15
-15

-10

-5

0

5

10

15

A
ng

le
 (d

eg
.)

Time (sec.)

Platform Commanded Angular Pos.

Roll
Pitch
Yaw

Figure 4.68. Platform Position Commands (deg)

 The pitch achieved response is shown in figure 4.69. The response is shown in the

top portion of the plot and the error is shown in the bottom portion. As seen in the error

portion of figure 4.69, the pitch response matches the command very well with an error

of less than 1˚.

152

0 5 10 15
-6

-4

-2

0

2

4

6

P
itc

h
A

ng
le

 (d
eg

.)

Platform: Pitch

Actual
Commanded

0 5 10 15
0

0.2

0.4

0.6

0.8

P
itc

h
A

ng
le

 E
rro

r (
de

g.
)

Time

|Actual - Commanded|

Figure 4.69. Platform Pitch Response (deg)

0 5 10 15
-20

-10

0

10

20

Y
aw

 A
ng

le
 (d

eg
.)

Platform: Yaw

Actual
Commanded

0 5 10 15
0

0.5

1

1.5

2

2.5

3

Y
aw

 A
ng

le
 E

rro
r (

de
g.

)

Time

|Actual - Commanded|

Figure 4.70. Platform Yaw Response (deg)

 153

 The yaw achieved response is shown in figure 4.70. As seen in the error portion of

figure 4.70, the yaw response generates up to 2.64˚ error. The frequency of the input

command is larger for the yaw response than for the pitch.

 The roll achieved response is shown in figure 4.71. The error portion of figure 4.71

shows the roll response generates just over 7˚ error. The frequency of the roll input

command is the largest of the three channels.

0 5 10 15
-20

-10

0

10

20

R
ol

l A
ng

le
 (d

eg
.)

Platform: Roll

Actual
Commanded

0 5 10 15
0

2

4

6

8

R
ol

l A
ng

le
 E

rro
r (

de
g.

)

Time

|Actual - Commanded|

Figure 4.71. Platform Roll Response (deg)

 Figure 4.72 compares the sensed positions to the achieved positions. This figure

compares all three channels at once to show that the sensed values are very close to the

actual. This result is not surprising considering the simplistic sensor model used. Note

that the error in the sensed and achieved values follows the same trend as the commanded

154

and achieved values, i.e., roll, yaw, and pitch are the order of the channels from greatest

error to least.

0 5 10 15
-20

-10

0

10

20

R
ol

l A
ng

le
 (d

eg
.)

Platform: Roll

0 5 10 15
0

0.05

0.1

0.15

0.2

0.25

R
ol

l A
ng

le
 E

rro
r (

de
g.

)

Time

0 5 10 15
-6

-4

-2

0

2

4

6

P
itc

h
A

ng
le

 (d
eg

.)

Platform: Pitch

Gyro_Sensed
Actual

0 5 10 15
0

0.005

0.01

0.015

0.02

P
itc

h
A

ng
le

 E
rro

r (
de

g.
)

Time

|Gyro_Sensed - Actual|

0 5 10 15
-15

-10

-5

0

5

10

15

Y
aw

 A
ng

le
 (d

eg
.)

Platform: Yaw

0 5 10 15
0

0.02

0.04

0.06

0.08
Y

aw
 A

ng
le

 E
rro

r (
de

g.
)

Time

Figure 4.72. Actual and Sensed Achieved Positions (deg)

 Figures 4.73 through 4.75 show the camera’s response for the three channels. The

top portion of each plot shows three separate signals; camera commanded position,

camera body position, and the platform achieved position. The bottom portion of each

plot shows the camera commanded position minus the camera achieved position minus

the platform body motion. This signal represents the inertial pointing error.

 155

0 5 10 15
-20

0

20

40

60

80

P
itc

h
A

ng
le

 (d
eg

.)

Camera: Pitch

Camera Body Pos.
Camera Commanded
Platform Body Motion

0 5 10 15
-20

0

20

40

60

P
itc

h:
 C

am
er

a
In

er
tia

l E
rro

r (
de

g.
)

Time

Camera Cmnd. - Camera Pos. - Body Mtn.

Figure 4.73. Camera Pitch Response (deg)

0 5 10 15
-50

0

50

100

Y
aw

 A
ng

le
 (d

eg
.)

Camera: Yaw

Camera Body Pos.
Camera Commanded
Platform Body Motion

0 5 10 15
-40

-20

0

20

40

60

Y
aw

: C
am

er
a

In
er

tia
l E

rro
r (

de
g.

)

Time

Camera Cmnd. - Camera Pos. - Body Mtn.

Figure 4.74. Camera Yaw Response (deg)

156

0 5 10 15
-20

0

20

40

60

80

100

R
ol

l A
ng

le
 (d

eg
.)

Camera: Roll

Camera Body Pos.
Camera Commanded
Platform Body Motion

0 5 10 15
-40

-20

0

20

40

60

R
ol

l:
C

am
er

a
In

er
tia

l E
rro

r (
de

g.
)

Time

Camera Cmnd. - Camera Pos. - Body Mtn.

Figure 4.75. Camera Roll Response (deg)

 Figure 4.73 shows that the camera pitch response follows the command and subtracts

out the platform motion very well. The lower portion of figure 4.73 shows the inertial

error which remains close to zero throughout the simulation. Also evident from figure

4.73 is the cross coupling between channels. Camera pitch motion is influenced by yaw

and roll motions.

 Figure 4.74 and 4.75 show that the cross coupling between the roll and yaw motions

is even greater. It is clear from these plots that the simplistic camera control scheme of

figure 4.63 needs to include cross coupling terms in the camera roll and yaw channels.

 The stabilized platform example has shown that object-oriented bond graph modeling

is a useful and powerful technique in the modeling process. The stabilized platform was

developed by using four instances of a complex gyroscope model. The ability to create a

 157

bond graph and drop it into a higher hierarchical level adds a degree of flexibility that, to

the best knowledge of the author, does not exist in any other simulation framework.

4.5 Conclusions

 This chapter has shown that in order to simulate a bond graph model directly, the

software must be able to handle both algebraic loops and structural singularities. The

Tarjan algorithm and the Pantelides algorithm are quite capable of handling these

respective problems. The Dymola software package uses these algorithms to handle

these two issues. Also, Dymola is object-oriented in that sub-models can be dropped into

models at a higher hierarchical level. Thus, Dymola is a prime candidate for creating a

bond graph based simulation environment.

 A bond graph library was presented within the Dymola framework. This library takes

full advantage of Dymola’s ability to sort equations, solve algebraic loops, and handle

structural singularities. Also, the object-oriented nature of Dymola provides the ability to

use bond graph models, created with the bond graph library, in an object-oriented

fashion.

 The design and simulation of a system can be done quickly and meaningfully using

the tools presented in this chapter. As an example of the ability to model meaningful

systems, a complicated gyroscope model, created with the bond graph library, was used

in four separate instances to create a gyroscopically stabilized platform model.

158

CHAPTER 5: System Efficiency Measurement Using the Power Flow
Information from a Bond Graph Model

5.1 Introduction

 Bond graph modeling is a method of modeling a physical system by mapping the

power flow through the system. As shown in Chapter 3, the power flow information of a

bond graph can be used to develop the state equations for a given system. However, once

the equations of motion are obtained, often the power flow map and the system’s causal

relationships are discarded. As a result, useful information is lost.

 In this chapter, the power flow information of a bond graph is used to develop a

method for measuring the efficiency of a system. Here, a method is presented in which

the power flow information can be used to monitor the effectiveness of a control scheme.

The energy output of a system divided by the energy put into the system gives a feel for

the efficiency of the system. Controller effectiveness can be measured by viewing the

system’s energy response to a given input. In this manner, controllers of different

topology can be compared to each other in a meaningful way [McB05c].

 In a given system, limitations exist on the amount of power that the system can use at

any given time. These limitations can be used to determine the theoretical limit of the

system’s response. In the case of a control system, often the performance of the system is

limited by the thermodynamic bounds of the input power supply. A properly designed

controller will make use of the total available energy delivered by the input power

supply. Since bond graphs map the power flow through a system, a bond graph model

 159

can be used to monitor the system’s thermodynamic response as compared to its

theoretical limit. In this way, one can determine if the control system has been properly

designed.

 This chapter shows, by means of an example of a servo positioning system, a method

in which a bond graph model can be used to compare a system’s response to its

theoretical thermodynamic limit. Separate control schemes are shown and the system

responses are compared. A comparison of the effectiveness of the controllers is made, by

observing their ability to utilize the power supplied by the motor. By monitoring the

power flow through the actuator bond graph, for a given controller, one can get an idea of

the controller’s ability to effectively use the energy available to the system.

 This chapter, however, is not concerned with controller stabilization. The control

schemes that are compared by the method presented here are assumed stable. This

analysis is meant to serve as a method of comparing the performance of controllers,

regardless of the control architecture, given that the controllers to be compared are stable.

5.2 Servo Positioning System

 The equations obtained from a bond graph model are identical to equations obtained

through other modeling techniques. However, in this research the power flow map is

used specifically to monitor the used energy in the system and compare it to how much

energy the system could potentially use. Thus, bond graph modeling lends itself

naturally to this analysis.

160

 A controller, motor, and load dynamics are shown in figure 5.1. This system

represents a fin positioning system used in flight control. The model of figure 5.1, and all

models presented in this chapter are created in DYMOLA using the bond graph library as

described in Chapter 4. The motor and fin dynamics are objects that contain bond graphs

within.

Figure 5.1. Fin Positioning System

 Figure 5.1 shows the fin command as an input. The outputs are shown as achieved

fin position, energy and power. The output power vector is the power flow through

selected bond graph elements of the motor and fin dynamics models. The energy vector

is the integral of the power vector.

 161

5.2.1 Servo Positioning System: Complete, Non-Linear System

 Inside the motor block of figure 5.1 is a bond graph model of the motor dynamics.

The bond graph model of the motor dynamics is shown in figure 5.2.

Figure 5.2. Motor Bond Graph

In order to make figure 5.2 more readable, figures 5.3 and 5.4 have been included, which

zoom in on the details of figure 5.2.

162

Figure 5.3. Motor Bond Graph: Battery

The motor dynamics consists of three parts; battery dynamics, motor coils, and shaft

dynamics. The bond graph model of the motor could have been divided at the output of

the coils (at the gyrator), which would have lumped the shaft dynamics into the fin

dynamics model. This partitioning would have been a natural choice, if the models were

broken by energy domain, separating electrical from mechanical. However, the models

were built as shown to represent the physical system. A motor naturally has an electrical

input and shaft dynamics as the output. This small detail will later influence the models

when the fin dynamics model is linearized.

 The battery has two capacitors to keep the voltage near the mTF element as constant

as possible [Ther]. The capacitor nearest the mTF element is cdriver, the remaining

capacitor is cbatt. An inductor is placed between them to avoid a structural singularity.

The resistor between the two capacitors is a model of the resistive loss through the

inductor. The battery has a protective diode that is modeled as a nonlinear resistor. This

 163

diode is seen in figure 5.3 as the modulated resistor element. The logic for this resistance

is as follows:

 if (Voltage of the capacitor cbatt > Input voltage e0) then

 mR1 = rr

 else

 mR1 = rf

 end

In the Modelica language, the above logic is represented by the equivalent statement

 mR1.s = if vbatt > CBATT.e then rf else rr;

Although this detail is not explicitly shown in the bond graph diagram of figure 5.2, it is

stated in the Dymola equation window of the model.

Figure 5.4. Motor Bond Graph: Coil and Shaft

164

 Shown in figure 5.2 is a modulated transformer. This element is used to implement

the pulse width modulated (PWM) signal. As seen by the motor bond graph, the PWM

signal limits the amount of power flow from the battery to the rest of the servo-system.

In this way, the fin can be commanded to a specific position. It is seen in figure 5.2 that

no usable power comes from the controller. All of the power supplied to the motor is

stored in the battery section. The controller simply limits the power flow through the

modulated transformer.

 As seen in figure 5.2 the power signals on some of the bonds are passed to the higher

levels of the Dymola model. This chapter focuses on the analysis that can be performed

by monitoring these power signals. The elements in figure 5.2 labeled concat act to

multiplex the power signals such that they can be passed to the upper levels of the model

through a single vector.

 The fin dynamic equations are modeled in the bond graph of figure 5.5. The output

of the model is the fin position.

 165

Figure 5.5. Gear Train and Fin Dynamics

The fin position is calculated by integrating the flow off of the 1-junction. The model of

figure 5.5 includes a modulated effort source that is used to model the hinge moment

torque. This hinge moment torque represents the aerodynamic load on the fin. For

simplicity, the hinge moment torque is modeled proportional to the fin position.

 Similar to the motor bond graph of figure 5.2, the power signals from specific bonds

have been multiplexed and passed to the upper levels of the model to be used in the

analysis of the model.

 The fin dynamics model of figure 5.5 shows a nonlinear backlash element. The

backlash model is expanded and shown in figure 5.6. As seen in figure 5.6, the gear

positions on both sides of the backlash model are sensed.

166

Figure 5.6. Backlash Model

A specified amount of torque is calculated and sent back through a modulated effort

source depending on whether or not the gears are in contact. Although the bond graph

depicts the torque transmitted as an effort source, it is really modeled as a torsional spring

as follows:

 if (position error > backlash/2) then

 Twist = (position error – backlash/2)

 else if (position error < - backlash/2) then

 Twist = (position error + backlash/2)

 else

 Twist = 0

 end

 167

The modulated effort source is then assigned a value of k*Twist, where k is a torsional

spring constant that is set at a stiff value (340 N*m/deg). This nonlinearity causes

problems in the position control of the fin. The value of k is passed into the backlash

model as KBL denoted in table 5.1. Similarly, the value of backlash is passed in as ABL.

Table 5.1 gives a list of values used in the actuator model.

Variable Parameter Figure Value Description
e0 vbatt 5.3 200 Supply Voltage (Volts)

mR1 rf 5.3 0.001 Forward-Biased Diode (Ohms)
mR1 rr 5.3 500 Reverse-Biased Diode (Ohms)
CB cbatt 5.3 0.002 Supply Capacitor (Farads)
BA battr 5.3 2 Supply Resistance (Ohms)
LB lbatt 5.3 0.001 Supply Inductance (Henrys)
CD cdriver 5.3 1.00E-05 Driver Capacitance (Farads)
LM lmotor 5.4 6.00E-04 Motor Inductance (Henrys)
JM jmotor 5.4 4.50E-07 Motor Inertia (kg*m^2)
KM kmotor 5.4 1.5 Motor Gyrator Value (Volts*Sec/Rad)

CoilR Rcoil 5.4 0.6 Motor Coil Resistance(Ohms)
Fri shaft_friction 5.4 0.3 Shaft Friction (N*m*Sec/Rad)
gr1 gr1 5.5 0.02 Gear 1 Ratio
gr2 gr2 5.5 0.25 Gear 2 Ratio
jfin jfin 5.5 3.00E-04 Fin Inertia (kg*m^2)

Hinge_Gain hm_amount 5.5 -0.6 N*m/(Deg of fin deflection)
FinF fin_fric 5.5 0.04 Fin Friction (N*m*Sec/Rad)

k KBL 5.6 334 Backlash Spring K (N*m/Deg.)
backlash ABL 5.6 0.025 Amount of Play in Backlash (Deg.)

Table 5.1. Model Parameter Values

5.2.2 Servo Positioning System: Complete, Linearized System

 Bond graph models can be linearized by changing the nonlinear bond graph terms to

linear terms. This linearization can help in the analysis of the system in that analysis can

first be applied to the linear system and then extrapolated to the nonlinear system. This

168

section focuses on the linearization of the fin positioning system presented in the

previous section.

5.2.2.1 Linearized Fin Dynamics

 The dominant nonlinearity of the fin positioning system, described above, is the

presence of backlash. By noting the structure of the bond graph in figure 5.6, it is seen

that the backlash nonlinearity can be replaced by a bond graph C element, where the C

element has the value of 1/KBL. The mechanical implication of doing this substitution is

that the gears are always in contact, yet the gear teeth have some compliance in them.

The resulting fin dynamics bond graph is shown in figure 5.7.

 Note that the causal marks on the bond graph of figure 5.5 are essentially the same as

those in figure 5.7. Integral causality is maintained on all elements by choosing this

method of linearizing the gear backlash. A potential drawback of this method, however,

is that the stiff spring constant KBL used to calculate the compliance of the gear teeth

may place a pole far to the left of the rest of the poles in the system creating a stiff

system. Stiff systems cause difficulty in model simulation. “Stiffness occurs when some

components of the solution decay more rapidly than others.”[Lam91] Dymola allows the

user to choose between many integration schemes to help alleviate this difficulty.

 169

Figure 5.7. Linear Fin Dynamics Model (Integral Causal Model)

 Another method of linearizing the backlash would be to remove the BL element of

figure 5.5 entirely. In doing this substitution, the gear train TF elements, gr1, and gr2,

are linked together forcing the user to change the causality of the bond graph. One

possible choice of causality is shown in figure 5.8.

 The backlash element has been replaced by a two-port 0-junction. Since all power is

conserved in a bond graph junction, and the 0-junction of figure 5.8 has only two ports,

the 0-junction has absolutely no effect on any of the bond graph equations. It has been

left in the bond graph of figure 5.8 to aid the reader in comparing the different bond

graph structures of figures 5.5, 5.7 and 5.8.

170

Figure 5.8. Linear Fin Dynamics Model (Differential Causal Model)

 Figure 5.8 shows that the I-element representing the fin inertia has a differential

causal mark. This causes a structural singularity in the bond graph. As discussed in

Chapter 4, Dymola is capable of handling structural singularities, but it does make the

algorithm more numerically intensive.

 An alternative differential causal model is to keep the fin I-element integral causal

and reverse the causalities of the bonds on the gear train transformers. This option,

however, changes the causalities of the elements upstream, forcing the user to change the

bond graphs of two separate Dymola models. Thus, this choice is not used here.

 The bond graphs of figures 5.9 and 5.10 show the complete mechanical dynamics of

the motor and fin of both the integral causal and differential causal models, respectively.

 171

Here the electrical dynamics are represented entirely as an effort source. The purpose of

such an analysis helps to determine if the chosen value of KBL is fine as is, too stiff, or

not stiff enough.

Figure 5.9. Linear Mechanical Fin Model (Integral Causal Model)

 The bond graph state space equations for figure 5.9 are shown in equations 5.1 and

5.2. As seen by the bond graph of figure 5.9, these equations are 4th order linear,

coupled, ODE’s.

172

1

0
0
0
1

0100

*__*20

0201

00*1

mSe

q
P

q
P

jfin

DPRamounthm
jfin

fricfinKBLgr

jfin
gr

jmotor
gr

KBLgr
jmotor

ionshaftFrict

q
P

q
P

FinPos

Fin

GearTrain

shaft

FinPos

Fin

GearTrain

shaft

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

+

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−

−

−
−

=

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

&

&

&

&
 (5.1)

[] [] 10000 mSe

q
P

q
P

DPRFinPos

FinPos

Fin

GearTrain

shaft

+

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

= (5.2)

DPR represents the conversion from radians to degrees.

Figure 5.10. Linear Mechanical Fin Model (Differential Causal Model)

 173

 Similarly, the state space equations of the bond graph, shown in figure 5.10, are given

in equations 5.3 and 5.4. As seen by the bond graph of figure 5.10, these equations are

2nd order, linear, coupled ODE’s. The 2nd order, state space equations are somewhat

more difficult to derive due to the differential causal element of the bond graph.

1

0
gr2
gr1*

0
*2

1
gr2
gr1*

jmotor*DPR*hm_amount*
gr2
gr1

gr2
gr1*

gr2
gr1*fin_frictionshaft_fric

2

22

2

mSejfinjmotor

jmotor

q
P

jmotorgr
gr

jfinjmotorjfinjmotorq
P

FinPos

shaft

FinPos

shaft

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
++

+⎥
⎦

⎤
⎢
⎣

⎡

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

−
=⎥

⎦

⎤
⎢
⎣

⎡
&

&

 (5.3)

[] [] 100 mSe
q
P

DPRFinPos
FinPos

shaft +⎥
⎦

⎤
⎢
⎣

⎡
= (5.4)

 Obviously, equations 5.3 and 5.4 represent the system when the gear tooth stiffness is

infinite. The modeling engineer has to choose among the options described in table 5.2.

174

Option Description Differential
Causality?

Stiff System? Disadvantages

1 A relatively low
value for KBL, e.g.
KBL = 34

No No
The model
diverges from
the others
below .01 Hz

This option, although
numerically desirable,
does not represent the
physical system.

2 A mid-range value
for KBL, e.g. KBL
= 340

No No This model has a low
decrease in magnitude
and phase at low freq.

3 Choose a large
value for KBL, e.g.
KBL = 3400

No Yes This stiff system causes
integration difficulties
yet the freq. response is
not that different from
option 2.

4 Choose the 2nd
order, differential
causality model.

Yes No Dymola can handle the
structural singularity but

the physical system
more then likely does
not have infinite gear

tooth stiffness.
Table 5.2. Linearized Backlash Modeling Options

 175

10-4 10-2 100 102 104 106 108
-200

-150

-100

-50

0

50
Gear Stiffness Comparison

M
ag

ni
tu

de
 (d

B
)

10-4 10-2 100 102 104 106 108
-400
-360

-270

-180

-90

0

Frequency (Hz)

P
ha

se
 (d

eg
)

KBL = 33.4
KBL = 334
KBL = 3340
Diff. Causal. Model

Figure 5.11. Bode Comparison for Different Values of KBL

 Given the options from table 5.2 and viewing the frequency response from figure

5.11, option three will be used as the linearized version of the fin dynamics. This

analysis also helps verify the KBL value used in the nonlinear backlash model.

5.2.2.2 Linearized Motor Dynamics

 There are two nonlinearities in the motor dynamics model of figure 5.2, the

modulated resistor mr1 and the PWM control signal input to the modulated gyrator. The

first nonlinearity is simple enough to change. The linearization is made by simply

assuming that the value of mr1 is constant and set to the forward-bias diode value, rf,

176

which implies that the capacitor voltage cbatt never exceeds the input voltage vbatt. This

set of linearizing assumptions results in the state space matrices shown in equations 5.5

through 5.8. These equations represent both the motor and linearized fin dynamics in

terms of the values defined in table 5.1. The state vector for equations 5.5 is

[]Tposfinjfinbacklashjmotorlmotorcdriverlbattcbatt qpqppqpqX _= .

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−

−

−−

−−

−

−−

−−

=

01000000

**200000

02010000

00*1
_

000

00000

0000010

0000011

0000001
*

1

jfin

amounthmDPR
jfin

fricfinKBLgr

jfin
gr

jmotor
gr

KBLgr
jmotor

frictionshaft
lmotor
kmotor

jmotor
kmotor

lmotor
Rcoil

cdriver
PWM

lmotor
PWM

lbatt

cdriverlbatt
battr

cbatt

lbattcbattrf

A

 (5.5)

T

rf
B ⎥

⎦

⎤
⎢
⎣

⎡
−= 00000001 (5.6)

[]DPRC 0000000= (5.7)

[]0=D (5.8)

The input to this system is the constant voltage vbatt. The system is controlled by

changing the value of the PWM signal, which is an internal element to the A matrix,

 177

showing up on terms (3, 4) and (4, 3). Obviously, for constant values of PWM these state

space matrices are entirely linear. This insight, at first glance, does little to help when

attempting to control the fin’s position. However, if the integration technique is set up

such that the motor/fin dynamics are integrated at a much higher rate than the control

signal is updated, then, in between control signal updates, the above system can be

treated as a linear system.

 Further investigation into the bond graph of figure 5.2 shows that the model can be

broken at the battery/coil, i.e., where the PWM signal enters the model. The causal marks

on the gyrator show that the output of the battery is the effort signal on the capacitor

cdriver and the output of the coils is the current in the inductor lmotor. These outputs

serve as corresponding inputs to the respective models, the capacitor voltage is an input

to the coil model and the inductor current is an input to the shaft model. Breaking the

model in this fashion, converts equations 5.5-5.8 to equations 5.9-5.12. Equations 5.9

and 5.10 represent the battery portion only; equations 5.11 and 5.12 represent the rest of

the system. The single input to equation 5.11 allows the user to perform analysis on the

type of control effort that needs to be generated to position the fin at the desired location

in the desired amount of time. Breaking the model in this fashion aids in the controller

design process. The bond graph modeling approach allows the user to break the state

space matrices in a straight-forward manner.

178

⎥
⎦

⎤
⎢
⎣

⎡

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

−
+

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−−

−

=
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

lmotor
cdriver

lbatt

cbatt

cdriver

lbatt

cbatt

fPWM
vbattrf

q
p
q

lbatt

cdriverlbatt
rbatt

cbatt

rf

q
p
q

*
10

00

01

010

11

001

&

&

&

 (5.9)

[] ⎥
⎦

⎤
⎢
⎣

⎡
+

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⎥⎦
⎤

⎢⎣
⎡=

lmotor
cdriver

lbatt

cbatt

cdriver fPWM
vbatt

q
p
q

cdriver
e

*
00100 (5.10)

[]cdriver

posfin

jfin

backlash

jmotor

lmotor

posfin

jfin

backlash

jmotor

lmotor

ePWM

q
p

q
p
p

jfin

DPRamounthm
jfin

fricfin
KBLgr

jfin
gr

jmotor
gr

KBLgr
jmotor

frictionshaft
lmotor

km
jmotor

km
lmotor
Rcoil

q
p

q
p
p

*

0
0
0
0
1

0
1

000

*_
_

*200

0
2

0
1

0

00*1
_

000

__ ⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

+

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−

−

−−

−−

=

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

&

&

&

&

&
 (5.11)

[]cdriver

posfin

jfin

backlash

jmotor

lmotor

lmotor

ePWM

q
p

q
p
p

lmotor

DPR

f
posfin

*
0
0

00001
0000_

_

⎥
⎦

⎤
⎢
⎣

⎡
+

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡
 (5.12)

Equations 5.11 and 5.12 show that a completely linear model is created when the entire

battery model is collapsed down to an effort source. This insight is obvious from the

bond graph of figure 5.2. This linear reduction is shown in figure 5.12. Inside the block

labeled Linear_Fin is the bond graph of figure 5.9. The input is the control effort and the

 179

outputs are fin position and select power signals from the bond graph, as before. A

significant difference of this motor model compared to those presented above, is that the

controller must output a different control effort, since the control effort is converted

directly into the input effort through the mSe element. For the analysis presented here,

the output voltage of the battery is assumed to remain at 200 volts.

Figure 5.12. Linear Actuator with Fin Dynamics

Thus, including a gain of 200 on the control signal, outside of the controller, the

controller output will more closely resemble the nonlinear PWM control signal.

180

5.3 Power Flow Considerations

 As can be seen in figures 5.1 and 5.2, no usable power comes from the controller of

the nonlinear fin positioning system. The controller simply signals the power flow in the

actuator through the modulated transformer. This signal governs the amount of power

flow throughout the entire system. By monitoring the power flow through the system, a

method can be derived to classify the effectiveness of the controller. A comparison of the

effectiveness of different controllers can be made by observing their ability to utilize the

power supplied by the motor. By monitoring the power flow through the bond graph, one

can get an idea of the effectiveness of any given controller. In order to monitor the power

flow through the bond graph, the bonds connected to sources and passive elements are

special bonds that provide an additional power-signal output, as previously shown in

figures 5.2, 5.5 and 5.6.

 The bond graph of figure 5.2 shows that a power limit exists in the system. It is clear

that the maximum power delivered to the fin cannot be more than exists in the power

supply (battery). In order to monitor the ability of the controller to utilize the power from

the battery, an integrator has been connected to the power-bond of the input source in

figure 5.2. Obviously, the power signals can be integrated to form energy signals. By

dividing the output energy by the input energy, a control designer can get an idea of how

efficient the controller is. Naturally, this analysis must be performed after a control

scheme has been found.

 181

5.4 Servo Controllers

 Separate control schemes are presented in this section. Three linear control schemes

are used for the linearized system and two nonlinear control schemes are used on the

nonlinear system. All control schemes operate under the assumption that fin position is

the only state available for feedback.

5.4.1 Linear Control Schemes

 The linear control schemes to be compared are three separate PID [Fra94] controllers

that are intended to be used to control the linearized fin dynamics model shown in figure

5.12. The three PID controllers are shown in table 5.3.

PID Controller Number Controller Transfer Function

PID1 ()
S

S 0909.0095.0 +

PID2 ()
SS

SS
949.993

4.4872120.47620.8055
2

2

+
++

PID3 ()
SS

SS
3774.100000

485.17574.1018408.67
2

2

+
++

Table 5.3. PID Controllers

Obviously, PID1 is really just a PI controller but can be considered a PID with TD=0.

The Bode plots for each of the three controllers are shown in figure 5.13.

182

10-4 10-2 100 102 104 106
-40

-20

0

20

40

M
ag

ni
tu

de
 (d

B
)

PID Bode Plots

10-4 10-2 100 102 104 106
-90

-45

0

45

90

P
ha

se
 (d

eg
)

Frequency (Hz)

PID1
PID2
PID3

Figure 5.13. PID Bode Plots

The output of the controllers is multiplied by a gain of 200 before it enters the fin

dynamics model. This setup is shown in figure 5.14. The icon labeled Linear_Actuator

contains the bond graph of figure 5.12.

 183

Figure 5.14. Linear Controller/Actuator

5.4.2 Non-Linear Control Scheme 1

 The first nonlinear controller is shown in figure 5.15. This figure represents the

internal workings of the controller block in figure 5.1. The block labeled PI_z contains

the transfer function stated by equation 5.13, which is the Z-transform of the continuous

PID1 [Fra98] presented in the previous section. This discrete transfer function operates

with a sample rate of 6000 Hz.

[]
1

999985.0*095.0)(
−
−

=
z
zZG (5.13)

184

Figure 5.15 Non-Linear Controller 1

The quantizer relationship is shown as

⎟
⎠

⎞
⎜
⎝

⎛
=

015.0
floor *)(sign*015.0

input
inputoutput (5.14)

The 1± limit is to keep the PWM output of the controller within the physical capabilities

of the modulated transformer in figure 5.2. Unlike the PID controllers of the previous

section, there is no gain of 200 on the output since this gain is created when the PWM

signal is multiplied by the output of the battery through the modulated gyrator of figure

5.2.

 185

5.4.3 Non-Linear Control Scheme 2

 Figure 5.16 shows the second controller considered to handle the system of figure 5.1.

The quantizer block and the 1± limit block are the same for the two nonlinear controllers.

Controller 2, however, is designed to operate at 1200 Hz. The delay on the output of

controller 2 accounts for latency between the controller and the actuator.

Figure 5.16. Non-Linear Controller 2

 As seen in figure 5.16, controller 2 has a distinctive anti-backlash element in the

controller to counteract the backlash in the gear train. This backlash element adds a sign-

dependent bias to the control signal to push the gear train through the backlash region,

such that the gears stay in contact as much as possible. As expected, the backlash in the

186

system causes a limit cycle in the steady-state response. The anti-backlash element

works to reduce the effects of the gear train backlash. The anti-backlash bias, denoted

Slide_Delta in figure 5.16, is set at 0.02, which is the amount added to the PWM signal to

counter-act the gear train backlash. The anti-backlash element is setup to add the

Slide_Delta amount only if the input is non-zero.

 The transfer function for the element Y2 is given by equation 5.15 with a sample rate

of 1200 Hz. Y2 provides phase lead at lower frequencies.

[]
453.0

688.0*172.0
)(2

−

−
=

z

z
zY (5.15)

 The Y3 element of figure 5.16 is expanded and shown in Figure 5.17. The Y3 element

serves as a nonlinear limiter, which depending on the conditions shown in figure 5.17,

moves a controller zero between 0 and -1 in the z-plane, which adds conditional phase

shift to the control signal. The value used for Lii is 0.11, and the value of Lio is 0.06.

 187

Figure 5.17. Content of the Y3 Element

 Nonlinear controller 1 (NC1) is a much simpler scheme that does not actively try to

cancel out the backlash of the system. The backlash will then add phase lag to the overall

system. Nonlinear controller 2 (NC2) actively attempts to account for the backlash in the

gear train. The anti-backlash in controller 2 allows for a controller that can run at a

slower rate without significant phase loss.

188

5.5 Step Response Comparisons

5.5.1 Step Response Comparisons of Linear Systems

 Step responses of the system in figure 5.14 for each of the PID controllers are shown

in this section. Both 5˚ and 20˚ fin position commands are used as step inputs. The hinge

moment amount, used to simulate an aerodynamic load on the fin, is set at 0, -.6 and -6

N*m/(Deg of fin deflection). These three settings simulate zero, medium and high fin

loads which will demonstrate each controller’s ability under varying circumstances.

 The Dymola model of figure 5.14 has been modified to include the analysis of the

power signals from the bond graphs. This modification is shown in figure 5.18.

Figure 5.18. Linear Actuator with Power Signal Analysis

 189

The power signal vector is passed through an analysis block labeled Nrm_Pwr. This

block divides the 2nd through the nth element of the input vector by the 1st element. This

normalizes the jth element by the 1st element. The new normalized vector is of dimension

n-1. This n-1 normalized vector is passed as an output. Also, this normalized vector is

passed through an integrator to calculate the integral of the normalization. The Dymola

code for this block is shown below in figure 5.19.

Figure 5.19. Dymola Code for Vector Normalization

 The first element of the power vector is the power on the mSE input bond of figure

5.12. In this fashion, all of the output power signals from the bond graph of figure 5.12

are normalized by the input power. Figure 5.18 shows the power signal passing through

an integrator to create an energy signal. Each element of the vector is integrated

separately. This energy vector is passed through another normalization block, called

190

Nrm_Enrgy, to perform the same analysis on the energy vector as was done on the power

vector. Plots of these vectors are also included in the step response analysis.

 By using the Dymola model of figure 5.18 in an object-oriented fashion, the three

PID controllers can be compared at once. This model is shown in figure 5.20.

Figure 5.20. Three PID Actuators with Power Signal Analysis

 As seen in figure 5.20, the same input is used in all three models. The step starts at

0.1 seconds. Figure 5.21 shows the three step responses for a 5˚ step command with no

hinge moment load. Obviously PID1 gives the best response of the three, since it rises

just as quick, settles faster and has less high frequency oscillation.

 191

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
0

1

2

3

4

5

6

Fi
n

P
os

iti
on

 (d
eg

)

Time (sec)

5 (deg) Step: Hinge Moment = 0 (N*m/deg)

PID1
PID2
PID3

Figure 5.21. 5˚ Step Response, No Hinge Moment

 Figure 5.22 shows the input power for the three controllers. This signal is equivalent

to 200 times the control effort.

0.095 0.1 0.105 0.11 0.115 0.12 0.125 0.13 0.135 0.14 0.145
0

500

1000

1500

2000

2500

3000

3500

4000

4500

In
pu

t P
ow

er
 (N

*m
/s

)

Time (sec)

5 (deg) Step: Hinge Moment = 0 (N*m/deg)

PID1
PID2
PID3

Figure 5.22. Power Input: 5˚ Step Response, No Hinge Moment

192

 Initially a relatively small amount of power is delivered to the system by PID1

compared to the other two controllers. The amount of power delivered to the fin for each

of the controllers is shown in figure 5.23. Similar to the input power, the power delivered

to the fin is smaller for PID1 then the other two controllers.

0.1 0.11 0.12 0.13 0.14 0.15 0.16 0.17 0.18 0.19 0.2
-4

-3

-2

-1

0

1

2

3

4

O
ut

pu
t P

ow
er

 (N
*m

/s
)

Time (sec)

5 (deg) Step: Hinge Moment = 0 (N*m/deg)

PID1
PID2
PID3

Figure 5.23. Power Output: 5˚ Step Response, No Hinge Moment

However, figure 5.23 does not clarify how efficient the controllers are. It simply states

that less power was delivered to the fin for PID1.

 The output power is normalized by the input power to get an idea of the efficiency of

the controller. An efficiency calculation is obtained by dividing the output power signal

by the input power signal for each of the three controllers. This calculation is shown in

figure 5.24.

 193

0.1 0.102 0.104 0.106 0.108 0.11 0.112 0.114 0.116 0.118 0.12
-2

-1.5

-1

-0.5

0

0.5

1

1.5
x 106

|F
in

 P
ow

er
|

Time (sec)

5 (deg) Step: Hinge Moment = 0 (N*m/deg)

PID1
PID2
PID3

Figure 5.24. |Fin Power|: 5˚ Step Response, No Hinge Moment

 The signals of figure 5.24 are impossible to compare. There are very large

differences in the scales of the signals mostly due the input power signal getting close to

zero when the output power signal is non-zero, as seen in figure 5.22 and 5.23. These

large values, caused by division by numbers close to zero, make the comparison useless.

The integration of the normalized power would still not make a fair comparison due to

the integration of the large values shown in figure 5.24.

 Although this analysis proved useless for the power signals, this same analysis can be

used on the energy signals. The input energy signals are shown in figure 5.25. It is not

surprising that PID1 delivers less energy to the system than the other two controllers.

This normalization analysis of the energy signals, at this point, seems more feasible, since

the energy signals do not go to zero after the step input. Obviously, they will not go to

194

zero since a positive amount of power was needed to move the fin to begin with, and

energy is the time integral of power.

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
0

50

100

150

200

250

300

350

400

In
pu

t E
ne

rg
y

(N
*m

)

Time (sec)

5 (deg) Step: Hinge Moment = 0 (N*m/deg)

PID1
PID2
PID3

Figure 5.25. Energy Input: 5˚ Step Response, No Hinge Moment

 Figure 5.26 shows the output energy, i.e., the energy that is used to move the fin.

0.1 0.11 0.12 0.13 0.14 0.15 0.16 0.17 0.18 0.19 0.2
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

O
ut

pu
t E

ne
rg

y
(N

*m
)

Time (sec)

5 (deg) Step: Hinge Moment = 0 (N*m/deg)

PID1
PID2
PID3

Figure 5.26. Energy Output: 5˚ Step Response, No Hinge Moment

 195

PID1 delivers less energy to the fin than the other two controllers. Again, by normalizing

the output energy by the input energy one can create a measurement of efficiency. The

output energy divided by the input energy is shown in figure 5.27. This unitless signal

does not have the divide by zero problems that the normalized power signal had, after the

step input is applied, since the input energy is positive for all time. This is true for all

stable controllers. The input energy is zero before the step input is applied, yet the

normalized energy signals shown in figure 5.27 all have a value of zero up until the step

input is applied at a time equal to 0.1 seconds. This detail is somewhat artificial, but is

not very significant. The way that this is accomplished is through the divide by zero

protection logic shown in figure 5.19. When the divisor is below a certain threshold, 1E-

6 by default, then the divisor is set equal to this value. Thus, the denominator is non-

zero. The numerator, however, is zero. Since no energy has yet been delivered to the

system, the output energy must, by definition, be zero. Thus, the numerator is identically

zero, and therefore the output of the calculation is zero.

196

0.1 0.11 0.12 0.13 0.14 0.15 0.16 0.17 0.18 0.19 0.2
0

1

2

3

4

5

x 10-4

|F
in

 E
ne

rg
y|

Time (sec)

5 (deg) Step: Hinge Moment = 0 (N*m/deg)

PID1
PID2
PID3

Figure 5.27. |Fin Energy|: 5˚ Step Response, No Hinge Moment

 The slightly oscillatory nature of the signals in figure 5.27 still makes them difficult

to compare. One can sum up the values of these signals by integrating them over time.

The integrated signals are shown in figure 5.28.

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
0

1

2

3

4

5

6
x 10-6

In
te

g(
|F

in
 E

ne
rg

y|
)

Time (sec)

5 (deg) Step: Hinge Moment = 0 (N*m/deg)

PID1
PID2
PID3

Figure 5.28. Integral(|Fin Energy|): 5˚ Step Response, No Hinge Moment

 197

 Figure 5.28 shows a clear and concise calculation of efficiency. Therefore a

measurement of controller efficiency can be defined by

()
()∫ ∫

∫
∫ =

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

tf

o

tf

controller dt
yInputEnerg
gyOutputEnerd

dtInputPower

dtrOutputPowe

0

0

0 τη τ

τ

 (5.16)

The symbol η is taken from the thermal dynamic symbol for thermal dynamic 1st law

efficiency [Bej97, War95].

 Figure 5.28 shows PID1 is the most efficient of the three controllers. Obviously, the

worst outcome for any stable system is a zero value for η, where the InputPower is non-

zero. This absolute worst case occurs for trivial systems, which is shown graphically in

figure 5.29.

Figure 5.29. Efficiency Worst Case

Complete System

Stable
Sub-System 1Positive

Power In

Stable
Sub-System 2 Zero

 Power Out

198

Obviously, the complete system of figure 5.29 is stable. The calculation of η is zero for

all time regardless of the input, since the two sub-systems are not connected together.

 Once the power input to a system has moved from zero to a non-zero value, it is

impossible for the InputEnergy term of equation 5.16 to return to zero. This behavior is

true for any single input, physical system. In order for the InputEnergy to return to zero,

the system source would need to become a sink, and the system would need to sink as

much power into that element as it received. This is in violation of the 2nd law of

thermodynamics.

 The efficiency calculation shown in figure 5.28 is for an ideal case. In this case, there

was no external load to the system, so the controller was able to apply zero power to the

system once the fin reached the commanded position. In this case, the efficiency signals

rose sharply and then flattened out. Equation 5.17 shows the efficiency definition

expanded to bond graph generic terms. At t=tf the angular rate of the fin, FlowOut, is

zero, since the fin reached steady state. This condition allows the controller efficiency to

reach a constant value.

()
()

()
()∫

∫
∫

∫
∫
∫

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

tf

o
InIn

OutOuttf

ocontroller d
dtFlowEffort

dtFlowEffort
d

dtInputPower

dtrOutputPowe

0

0

0

0

*

*
ττη τ

τ

τ

τ

 (5.17)

In the case where the output power approaches, but never reaches zero, the efficiency

signal will not reach a constant value. This behavior can be seen by applying an external

load to the linear systems.

 199

 The step responses and efficiency measurements have been provided for different

input commands and external load configurations in figures 5.30 through 5.39. Figures

5.30 and 5.31 correspond to a 5˚ step with -.6 N*m/deg hinge moment.

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5
Fi

n
P

os
iti

on
 (d

eg
)

Time (sec)

5 (deg) Step: Hinge Moment = -0.6 (N*m/deg)

PID1
PID2
PID3

Figure 5.30. 5˚ Step Response, Hinge Moment = -0.6 (N*m/deg.)

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
0

0.2

0.4

0.6

0.8

1

1.2

1.4
x 10-6

In
te

g(
|F

in
 E

ne
rg

y|
)

Time (sec)

5 (deg) Step: Hinge Moment = -0.6 (N*m/deg)

PID1
PID2
PID3

Figure 5.31. η: 5˚ Step Response, Hinge Moment = -0.6 (N*m/deg.)

200

Figures 5.32 and 5.33 correspond to a 5˚ step with -6 N*m/deg hinge moment.

0 1 2 3 4 5 6 7 8 9 10
4

4.2

4.4

4.6

4.8

5

5.2

Fi
n

P
os

iti
on

 (d
eg

)

Time (sec)

5 (deg) Step: Hinge Moment = -6 (N*m/deg)

PID1
PID2
PID3

Figure 5.32. 5˚ Step Response, Hinge Moment = -6 (N*m/deg.)

0 1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

5

6

7
x 10-8

In
te

g(
|F

in
 E

ne
rg

y|
)

Time (sec)

5 (deg) Step: Hinge Moment = -6 (N*m/deg)

PID1
PID2
PID3

Figure 5.33. η: 5˚ Step Response, Hinge Moment = -6 (N*m/deg.)

 201

Figures 5.34 and 5.35 correspond to a 20˚ step with 0 N*m/deg hinge moment.

0.1 0.15 0.2 0.25 0.3 0.35 0.4
0

2

4

6

8

10

12

14

16

18

20

22

Fi
n

P
os

iti
on

 (d
eg

)

Time (sec)

20 (deg) Step: Hinge Moment = 0 (N*m/deg)

PID1
PID2
PID3

Figure 5.34. 20˚ Step Response, Hinge Moment = 0 (N*m/deg.)

0.1 0.15 0.2 0.25 0.3 0.35 0.4
0

1

2

3

4

5

6
x 10-6

In
te

g(
|F

in
 E

ne
rg

y|
)

Time (sec)

20 (deg) Step: Hinge Moment = 0 (N*m/deg)

PID1
PID2
PID3

Figure 5.35. η: 20˚ Step Response, Hinge Moment = 0 (N*m/deg.)

202

Figures 5.36 and 5.37 correspond to a 20˚ step with -.6 N*m/deg hinge moment.

0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6
0

2

4

6

8

10

12

14

16

18

20

22

Fi
n

P
os

iti
on

 (d
eg

)

Time (sec)

20 (deg) Step: Hinge Moment = -0.6 (N*m/deg)

PID1
PID2
PID3

Figure 5.36. 20˚ Step Response, Hinge Moment = -0.6 (N*m/deg.)

0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6
0

0.2

0.4

0.6

0.8

1

1.2

1.4
x 10-6

In
te

g(
|F

in
 E

ne
rg

y|
)

Time (sec)

20 (deg) Step: Hinge Moment = -0.6 (N*m/deg)

PID1
PID2
PID3

Figure 5.37. η: 20˚ Step Response, Hinge Moment = -0.6 (N*m/deg.)

 203

Figures 5.38 and 5.39 correspond to a 20˚ step with -6 N*m/deg hinge moment.

0 1 2 3 4 5 6 7 8 9 10
18

18.5

19

19.5

20

20.5

21

Fi
n

P
os

iti
on

 (d
eg

)

Time (sec)

20 (deg) Step: Hinge Moment = -6 (N*m/deg)

PID1
PID2
PID3

Figure 5.38. 20˚ Step Response, Hinge Moment = -6 (N*m/deg.)

0 1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

5

6

7
x 10-8

In
te

g(
|F

in
 E

ne
rg

y|
)

Time (sec)

20 (deg) Step: Hinge Moment = -6 (N*m/deg)

PID1
PID2
PID3

Figure 5.39. η: 20˚ Step Response, Hinge Moment = -6 (N*m/deg.)

204

As seen in figures 5.30 through 5.39, the value of η must be viewed together with the

overall shape of the curve. In each of the cases presented above, PID1 exhibits the best

response. The plot of η with respect to time for PID1 rises sharply in each case and then

flattens off. This comparison shows that initially the energy put into the system is

delivered directly to the fin, as much as possible. Once the fin is close to the commanded

value, the controller then stops the fin motion.

 For this analysis, no restrictions are made on the architecture of the controller, nor are

there any restrictions on the linearity of the system. The only restriction is that the closed

loop system be stable. Thus, this analysis provides a good method for comparing the

efficiency of control schemes for a given system.

5.5.2 Step Response Comparisons of Non-Linear Systems

 The same analysis is performed in this section for the complete nonlinear system.

Nonlinear controllers 1 and 2, NL1 and NL2 respectively, are connected to the complete

nonlinear motor model of figure 5.2. Similar to the Dymola model of figure 5.20, using

the Dymola model of figure 5.2 in an object-oriented fashion allows the two control

scheme simulations to be performed at once. This model is shown in figure 5.40. The

normalization analysis block has not been included on the power signals, as it was for the

linear systems of figure 5.20. Since the power signal analysis was shown to be of little

use, it is not calculated. The models labeled Fin_Cntrl1 and Fin_Cntrl2 contain the

nonlinear fin dynamics, together with NL1 and NL2, respectively. Analysis for the same

load conditions as the linear systems is performed and the results are shown.

 205

Figure 5.40. Two Non-Linear Actuators with Power Signal Analysis

 Recall, that NL1 is the discretized version of PID1 with a quantization element and an

output limit, shown in figure 5.15. NL2 contains the anti-backlash element and

considerable nonlinear logic as described by figures 5.16 and 5.17. Figure 5.41 shows

the step response for the 5˚ step command with 0(N*m/deg) hinge moment load.

0 0.5 1 1.5
0

1

2

3

4

5

6

Fi
n

P
os

iti
on

 (d
eg

)

Time (sec)

5 (deg) Step: Hinge Moment = 0 (N*m/deg)

NL1
NL2

Figure 5.41. 5˚ Step Response, Hinge Moment = 0 (N*m/deg.)

206

 The backlash effects are most clearly visible in figures 5.41 through 5.43 near 0.15

seconds as NL1 is rising. The stair step, as the fin moves into position, is caused by the

backlash. For zero hinge moment load, the steady state error from NL1 is caused by

quantization of the control effort. The controller NL1 is able to zero out the fin position

within the quantization limit. After that, although the error input into the controller is

non-zero, and the output of the controller is non-zero, it is not big enough to generate a

quantized control effort. Figure 5.42 shows the input to the quantizer together with the

quantized output.

Figure 5.42. Quantizer I/O for 5˚ Step Response, No Hinge Moment

The input to the quantizer is the output of the discretized PID1, as can be seen in figure

5.15. The positive slope on the quantizer input is from the integral term of PID1. The

error is slowly integrating up until it will eventually cause a small output. This small

quantizer output is a very slow limit cycle that will keep the fin from reaching zero steady

state error.

 207

 Figure 5.43 through 5.47 show the step responses and efficiency calculations for 5˚

step command with 0 (N*m/deg), -.6 (N*m/deg) and -6 (N*m/deg) hinge moment load.

The step response plots have been zoomed to view the controller’s response near a 0˚

feedback error.

0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
4

4.2

4.4

4.6

4.8

5

5.2

Fi
n

P
os

iti
on

 (d
eg

)

Time (sec)

5 (deg) Step: Hinge Moment = 0 (N*m/deg)

NL1
NL2

Figure 5.43. 5˚ Step Response (zoom), Hinge Moment = 0 (N*m/deg.)

0 0.5 1 1.5
0

0.5

1

1.5

2

2.5

3

3.5

4
x 10-6

In
te

g(
|F

in
 E

ne
rg

y|
)

Time (sec)

5 (deg) Step: Hinge Moment = 0 (N*m/deg)

NL1
NL2

Figure 5.44. η: 5˚ Step Response, Hinge Moment = 0 (N*m/deg.)

208

0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
4.4

4.5

4.6

4.7

4.8

4.9

5

5.1

5.2

5.3

Fi
n

P
os

iti
on

 (d
eg

)

Time (sec)

5 (deg) Step: Hinge Moment = -0.6 (N*m/deg)

NL1
NL2

Figure 5.45. 5˚ Step Response, Hinge Moment = -0.6 (N*m/deg.)

0 0.5 1 1.5
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
x 10-6

In
te

g(
|F

in
 E

ne
rg

y|
)

Time (sec)

5 (deg) Step: Hinge Moment = -0.6 (N*m/deg)

NL1
NL2

Figure 5.46. η: 5˚ Step Response, Hinge Moment = -0.6 (N*m/deg.)

 209

0.1 0.12 0.14 0.16 0.18 0.2 0.22 0.24 0.26 0.28
4.4

4.5

4.6

4.7

4.8

4.9

5

5.1

5.2

5.3

Fi
n

P
os

iti
on

 (d
eg

)

Time (sec)

5 (deg) Step: Hinge Moment = -6 (N*m/deg)

NL1
NL2

Figure 5.47. 5˚ Step Response, Hinge Moment = -6 (N*m/deg.)

0 0.5 1 1.5
0

0.2

0.4

0.6

0.8

1

1.2

1.4
x 10-6

In
te

g(
|F

in
 E

ne
rg

y|
)

Time (sec)

5 (deg) Step: Hinge Moment = -6 (N*m/deg)

NL1
NL2

Figure 5.48. η: 5˚ Step Response, Hinge Moment = -6 (N*m/deg.)

210

 The oscillation of the NL1 response on the loaded configurations is caused by the

external hinge moment moving the fin away from the commanded value. Thus, the

controller cannot settle with the quantization limit as it does in the unloaded case.

 The nonlinear elements of the NL2 cause the oscillation about the commanded value,

in figure 5.43, 5.45, and 5.47. Figures 5.44, 5.46 and 5.48 show that NL2 makes good

use of the input power initially to achieve a quick rise time, but continually use system

power to sustain the oscillation about the commanded position. NL1 shows more of an

ideal use of input power for low to medium hinge moment load configurations.

However, for large hinge moment load configurations, NL2 is clearly superior, as seen in

figure 5.48.

0 0.5 1 1.5
0

1

2

3

4

5

6

Fi
n

P
os

iti
on

 (d
eg

)

Time (sec)

5 (deg) Step: Hinge Moment = 0 (N*m/deg)

NL1
NL2

Figure 5.49. 20˚ Step Response, Hinge Moment = 0 (N*m/deg.)

 211

 Figures 5.49 through 5.54 show the step responses and efficiency calculations for 20˚

step command with 0 (N*m/deg), -.6 (N*m/deg) and -6 (N*m/deg) hinge moment load.

0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
19.4

19.5

19.6

19.7

19.8

19.9

20

20.1

20.2

20.3
Fi

n
P

os
iti

on
 (d

eg
)

Time (sec)

20 (deg) Step: Hinge Moment = 0 (N*m/deg)

NL1
NL2

Figure 5.50. 20˚ Step Response (zoom), Hinge Moment = 0 (N*m/deg.)

0 0.5 1 1.5
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5
x 10-6

In
te

g(
|F

in
 E

ne
rg

y|
)

Time (sec)

20 (deg) Step: Hinge Moment = 0 (N*m/deg)

NL1
NL2

Figure 5.51. η: 20˚ Step Response, Hinge Moment = 0 (N*m/deg.)

212

0.15 0.2 0.25 0.3
19.4

19.5

19.6

19.7

19.8

19.9

20

20.1

20.2

20.3

Fi
n

P
os

iti
on

 (d
eg

)

Time (sec)

20 (deg) Step: Hinge Moment = -0.6 (N*m/deg)

NL1
NL2

Figure 5.52. 20˚ Step Response (zoom), Hinge Moment = -0.6 (N*m/deg.)

0 0.5 1 1.5
0

0.5

1

1.5

2

2.5

3

3.5
x 10-6

In
te

g(
|F

in
 E

ne
rg

y|
)

Time (sec)

20 (deg) Step: Hinge Moment = -0.6 (N*m/deg)

NL1
NL2

Figure 5.53. η: 20˚ Step Response, Hinge Moment = -0.6 (N*m/deg.)

 213

0.15 0.2 0.25 0.3
19.4

19.5

19.6

19.7

19.8

19.9

20

20.1

20.2

20.3

Fi
n

P
os

iti
on

 (d
eg

)

Time (sec)

20 (deg) Step: Hinge Moment = -6 (N*m/deg)

NL1
NL2

Figure 5.54. 20˚ Step Response (zoom), Hinge Moment = -6 (N*m/deg.)

0 0.5 1 1.5
0

0.5

1

1.5

2

2.5
x 10-6

In
te

g(
|F

in
 E

ne
rg

y|
)

Time (sec)

20 (deg) Step: Hinge Moment = -6 (N*m/deg)

NL1
NL2

Figure 5.55. η: 20˚ Step Response, Hinge Moment = -6 (N*m/deg.)

214

 The results for the 20˚ step inputs are identical to the 5˚ step input results. For large

hinge moment loads, NL2 makes better use of the input power. Also, although the

oscillation about the commanded value is undesirable from a power consumption point of

view, it at least ensures that the achieved fin position passes through the commanded

value periodically, even with the backlash and quantization errors. NL1 has non-zero

steady state error.

5.6 Conclusions

 This chapter presented a nonlinear actuation system that was built in Dymola with the

bond-graph library of Chapter 4. Bond graph methods were used to linearize the system.

 This chapter showed how the power flow through a bond graph model of the plant

can be used to compare the effectiveness of different control schemes regardless of the

architecture of the controller design, and without limiting the analysis to linear systems.

The controller efficiency was defined as ∫ ⎥
⎦

⎤
⎢
⎣

⎡
=

tf

ocontroller dt
yInputEnerg
gyOutputEner

η in equation

5.16. The 2nd law of thermodynamics was used to prove that the InputEnergy cannot be

zero for any single-input physical system after an initial input has been given.

 Separate control schemes were presented for both the linearized actuation system and

the nonlinear system. The system response of each control scheme was compared using

the definition of controller efficiency to show the ability of each controller to utilize the

available energy in the system.

 215

CHAPTER 6: Optimal Gain Comparison Using the Power Flow
Information of Bond Graph Modeling

6.1 Introduction

 This chapter applies the controller efficiency measurement, developed in Chapter 5,

to an autopilot design. Chapter 5 was concerned with comparing two separate controllers

of different architecture to determine which is more efficient. The same analysis can be

applied to comparing two separate autopilots using the power flow through the actuator

to determine the more efficient autopilot design. Also, power flow analysis is used in this

chapter to determine the optimality of controller gains for a classical three loop autopilot.

 Typically in the design of an autopilot, the actuator dynamics are ignored during the

design process. Figure 6.1 shows a block diagram of a missile system. In the design of

an autopilot, the sensor dynamics and actuator dynamics are omitted, as shown in figure

6.1. Often in a missile system, the power flow through the actuator limits the response of

the system, since fin position applies the control effort that influences the body dynamics.

Figure 6.1. Autopilot Loop with the Autopilot Design Assumption

216

 During the autopilot design process, the actuator dynamics are assumed to be ideal in

that the commanded fin position (output from the autopilot) is the achieved fin position

(input to the missile dynamics). Naturally, the system response will only worsen with the

inclusion of the actuator dynamics. The actuator dynamics become a bottleneck for the

system response, since the actuator has limited power flow. The autopilot forms a loop

around these dynamics. Thus, the autopilot control structure will influence the actuator

power flow. This insight provides a means for classifying the efficiency of the autopilot

in the same fashion that was presented in Chapter 5. Autopilot efficiency can be defined

by the actuator efficiency. Autopilot efficiency analysis can be used to compare different

controller designs or to compare efficiencies of different gains within the same design.

 In this chapter, the nonlinear fin positioning system of Chapter 5 is used to measure

the controller efficiency of the autopilot. The nonlinear fin actuator of Section 5.4.3 is

used as the actuation system throughout this chapter. As seen in figure 6.1, the autopilot

loop encompasses the actuator controller/dynamics loop. Thus, the autopilot is another

level removed from the power flow in the actuator.

 In the design of a controller, the selection of controller gains is the most time

consuming and ad hoc of tasks. The difficulty lies in the fact that optimization tools

cannot always find global optima, thus the solution found is more than likely sub-

optimal. However, trying to find a more optimal solution quickly becomes cost

ineffective. The controller gain selection process lacks a method for measuring the

balance between 'good' and 'good enough'. The question of whether the controller gains

 217

need to be optimized further, or re-optimized in the instance of an existing design, often

goes unanswered.

 This chapter uses the efficiency calculation method of Chapter 5 for evaluating the

efficiency of controller gains for a given control system. If the current set of controller

gains makes the most efficient use of the actuator’s available energy, compared to other

controller gain sets, and these gains satisfy classical control criteria, then this set of gains

is as close to the optimal solution as it needs to be. Further optimization would then be a

waste of time and money, since the system performance cannot be improved. On the

other hand, if the current set of gains does not make good use of the system’s available

energy, then the gains need to be optimized further [McB05a].

 This chapter uses the servo-positioning system of Chapter 5 to control a two degree-

of-freedom missile model. The controller discussion of Chapter 5 discussed primarily the

control of the servo-system itself. Here, the controller discussion focuses on autopilot

control of a missile system. The actuator control scheme is buried inside the

missile/autopilot system.

6.2 Two Degree of Freedom Missile

 A two degree of freedom missile is used in this chapter to apply the analysis of

Chapter 5 to a missile/autopilot system. Full blown missile dynamics are not necessary

to demonstrate the usefulness of the methods developed in this chapter. Explanation of

the analysis is better done on a two degree of freedom (2DoF) missile system to keep the

218

complexity at a minimum. In this fashion, the usefulness of the analysis is not clouded

by the complexity of a six degree of freedom (6DoF) system. Although a 2DoF is used

here, this analysis has been tested using a complete missile 6DoF system [McB05b]. It

was found that the 6DoF analysis produces similar results as the 2DoF analysis.

 The missile dynamics model presented here can be found in the book Tactical and

Strategic Missile Guidance by Zarchan [Zar02 pp. 461-465]. Figure 6.2 shows a

schematic of a two degree of freedom missile.

Figure 6.2. Two Degree of Freedom Missile

The two degrees of freedom, as described by figure 6.2, consist of a translational degree-

of-freedom normal to the missile body, and a rotational degree-of-freedom about an axis

coming out of the page. The normal force is described by equations 6.1 through 6.5.

NCrefSQzAm *** = (6.1)

2

2* mV
Q

ρ
= (6.2)

 219

4

2d
refS

π
= (6.3)

()
refS

TS

refS
wS

refS

planS
NC

*

*8

*

**8
2**5.1

2
β

δα

β

αα
α

+
+++= (6.4)

12 −= Machβ (6.5)

A description of the variables is given in table 6.1.

Variable Description Variable Description
m Missile Mass Mach Missile Velocity with Respect to Sound
Az Lateral Acceleration β Normalized Speed
Q Dynamic Pressure d Missile Body Diameter

Sref Reference Area ρ Air Density
CN Normal Force Coefficient δ Tail Defection

Splan Planform Area ≈ LM * d LM Missile Body Length
Sw Wing Area XCPN Dist. from Nose Center of Pressure to Tip
ST Tail Area XCG Dist. from the Center of Gravity to Tip
α Angle of Attack XCPB Dist. from Body Center of Pressure to Tip
θ Missile Body Angle XCPW Dist. from Wing Center of Pressure to Tip

Vm Missile Velocity XHL Dist. from Hinge Line to Tip

Table 6.1. Missile Dynamics Variable Description

Note that Splan is approximated by the length of the missile multiplied by the missile

body diameter. Also note that, although axial motion of the missile is not a degree of

freedom, it is still necessary to define the missile’s velocity in this direction in order to

properly calculate the normal force of the missile.

 The moment is described by

220

MCdrefSQyyI **** =θ&& (6.6)

and

()
⎟
⎠
⎞⎜

⎝
⎛⎟

⎠
⎞⎜

⎝
⎛

⎟
⎠
⎞⎜

⎝
⎛⎟

⎠
⎞⎜

⎝
⎛

−
+

+−+

−+−=

HLXcgX
refS

TS
CPWXcgX

refS
wS

CPBXcgX
refS

planS

CPNXcgXMC

*

*8

*

**8

2**5.1
2

β

δα

β

α

α
α

 (6.7)

The missile distance values are described graphically in figure 6.3.

Figure 6.3. Missile Distance Definitions

The relationship between the angle of attack and the missile body angle is given by

mV
zA

−= θα && (6.8)

As seen by equations 6.1-6.8, the 2 degree-of-freedom missile is described by a set of

non-linear ODE’s. The bond graph representation of this system is shown in figure 6.4.

 221

Figure 6.5 shows a Dymola model of the pitch plane dynamics, diagram window and icon

window.

Figure 6.4. Missile Pitch Plane Dynamics Bond Graph

Note that in figure 6.5 sensors have been added to the bond graph to detect the flows on

the 1-junctions and to detect the effort on missile mass. These values are used in the

equation window to calculate the angle of attack, which is fed back into the effort sources

as described by equations 6.4 and 6.7.

222

Figure 6.5. Dymola Pitch Plane Dynamics: Diagram and Icon Windows

Figure 6.6 shows the equation window. The equation window has been broken into two

sections: the section on the left is the upper portion of the window showing parameter

and variable declarations, the section on the right is the lower portion of the window

showing the equations used to execute the model.

Figure 6.6. Dymola Pitch Plane Dynamics: Equation Window

 223

The equations used to execute the model use the fin deflection input, and body motion

values of the bond graph, to calculate the effort source inputs. The effort source signals

are then sent back into the bond graph. In this fashion, the effort sources are modulated

with the angle of attack value. Also shown in figure 6.6 are a number of outputs. These

output signals are used to pass information to an upper hierarchical level.

 Note the parameters, on the left portion of figure 6.6, are declared using default

values. These default values will not be used in this chapter. The parameter values that

will be used throughout this chapter are shown in figure 6.7. Figure 6.7 is a screen

capture of the parameter assignment window that is activated upon instantiation of the

pitch plane dynamics model.

Figure 6.7. Dymola Pitch Plane Dynamics: Parameter Values

224

The parameter values used in this chapter were also taken from Zarchan [Zar02 pp 465-

466]. Note that in figures 6.6, and 6.7, a parameter for the initial angle of attack is

included. This value is used in the equation window as an initial condition on the

integration of alpha. Also, figure 6.6 and figure 6.7 show that the model uses chord

lengths. These dimensions are described in figure 6.8.

Figure 6.8. Wing and Fin Chord Definitions

 Figure 6.9 shows a Dymola instantiation of the pitch plane dynamics bond graph.

This upper hierarchical level was used to subject the 2DoF model to a fin deflection of 5˚.

Figure 6.9. Dymola Pitch Plane Instantiation

 225

 Angle of attack and body acceleration results for two seconds of simulation are

shown in figures 6.10 and 6.11, respectively.

0 1 2 3 4 5 6 7 8
-9

-8

-7

-6

-5

-4

-3

-2

-1

0
A

lp
ha

: A
ng

le
 o

f A
tta

ck
 (d

eg
)

Time (sec)

5 Deg. Fin Deflection, at Sea Level, Mach 3

Figure 6.10. Angle of Attack

0 1 2 3 4 5 6 7 8
-30

-25

-20

-15

-10

-5

0

5

10

Time (sec)

5 Deg. Fin Deflection, at Sea Level, Mach 3

M
is

si
le

 A
cc

el
er

at
io

n
(G

's
)

Figure 6.11. Missile Body Acceleration

226

 Figures 6.10 and 6.11 show that without an autopilot, a 5˚ fin deflection will

eventually result in -12.92 G’s of body acceleration. The system is stable, but very

oscillatory. The angle of attack settles down to about -4.448˚ degrees after about 2

seconds. The inclusion of an autopilot can improve the response of this system by

reducing the amount of ringing and reducing the settling time.

6.3 Linear Pitch Autopilot

6.3.1 Missile Pitch Autopilot: 3-Loop Controller

 A classic three loop autopilot [Zar02 pp. 507-509] will be used throughout this

chapter. The classic three loop design is shown in figure 6.12 which is drawn in the form

of figure 6.1.

Figure 6.12. Classic Three Loop Autopilot

 227

A Dymola model of the above autopilot is shown in figure 6.13, with the diagram

window on the left and the icon window on the right.

Figure 6.13. Classic Three Loop Autopilot: Dymola Model

Figure 6.14. Three Loop AP: Closed Loop System

228

 The pitch plane dynamics/autopilot connection is shown in figure 6.14. This system

is connected in the form of figure 6.12 in that the actuator and sensor dynamics have been

omitted from the closed loop system. The omission of these dynamics implies that the

system is assumed ideal during the autopilot design. The system in figure 6.14 was

simulated using controller gains KA=0.06493 rad/(G*s), WI = 11.2 rad/s, KR = 0.098 s,

and KDC = 1.165. A 12.92 G step command was used as the input, which allows a

comparison of missile response to figures 6.10 and 6.11. Angle of attack and achieved

G’s are shown in figures 6.15 and 6.16, respectively. Also, the control effort of fin

position is shown in figure 6.17.

0 0.25 0.5 0.75 1 1.25 1.5 1.75 2
-4.5

-4

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

0

A
lp

ha
: A

ng
le

 o
f A

tta
ck

 (d
eg

)

Time (sec)

3-Loop AP: -12.92 G step response

Figure 6.15. Three Loop AP: Angle of Attack

 229

0 0.25 0.5 0.75 1 1.25 1.5 1.75 2
-12.92

-11

-9

-7

-5

-3

-1

0

1

M
is

si
le

 A
cc

el
er

at
io

n
(G

's
)

Time (sec)

3-Loop AP: -12.92 G step response

Figure 6.16. Three Loop AP: Achieved Acceleration

0 0.25 0.5 0.75 1 1.25 1.5 1.75 2
0

1

2

3

4

5

6

N
ec

es
sa

ry
 F

in
 D

ef
le

ct
io

n
(d

eg
)

Time (sec)

3-Loop AP: -12.92 G step response

Figure 6.17. Three Loop AP: Necessary Fin Deflection

230

The achieved acceleration response with the 3-loop autopilot, in figure 6.16, is

considerably better than the open loop response of figure 6.11. The overshoot is removed

and the settling time is reduced considerably with the closed loop system. Figure 6.15

shows that the angle of attack behaves much better than the open loop response of figure

6.10. Figure 6.17 verifies that a 5˚ fin deflection is still necessary to achieve the desired

amount of acceleration with or without the controller.

6.3.2 Missile Pitch Autopilot with Actuator Dynamics

 Naturally the step response shown in Section 6.3.1 will only worsen with the

inclusion of the actuator dynamics. As mentioned previously, the actuator dynamics

become a bottleneck for the system response, since the actuator has limited power flow.

The autopilot forms a loop around these dynamics. Thus, the autopilot control structure,

and choice of gains, influences the actuator power flow.

 Figure 6.18 shows the Dymola model of figure 6.14, including the actuator dynamics.

Note that the vector normalization code of figure 5.19 has been included in the closed

loop autopilot model to calculate the efficiency of the actuator power flow. The gain

between the autopilot and the actuator is to convert the actuator input to degrees. The

gain between the actuator and the body dynamics model is to convert the fin position to

radians. The actuator model is the non-linear controller 2 of figure 5.40 that contains the

anti-backlash element. Recall that this model contains a hinge moment model

proportional to fin deflection. For this simulation, the hinge moments were set at -0.6

N*m/(Deg of fin deflection).

 231

Figure 6.18. Three Loop AP: Closed Loop System with Actuator

 The -12.92 G step response simulation was repeated for the above system. Figure

6.19 through 6.21 show angle of attack, achieved acceleration, and achieved fin position

for the system of figure 6.18. These plots contain the results of the previous section,

included as over plots, for reference. Thus, the influence of the actuator dynamics can be

seen by looking at plots 6.19 through 6.21 without referring to figures 6.15 through 6.17.

232

0 0.25 0.5 0.75 1 1.25 1.5 1.75 2
-4.5

-4

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

0

A
lp

ha
: A

ng
le

 o
f A

tta
ck

 (d
eg

)

Time (sec)

3-Loop AP: -12.92 G step response

With Actuator Dynamics
Without Actuator Dynamics

Figure 6.19. Angle of Attack with Actuator Dynamics

0 0.25 0.5 0.75 1 1.25 1.5 1.75 2
-12.92

-11

-9

-7

-5

-3

-1

0

1

M
is

si
le

 A
cc

el
er

at
io

n
(G

's
)

Time (sec)

3-Loop AP: -12.92 G step response

With Actuator Dynamics
Without Actuator Dynamics

Figure 6.20. Achieved Acceleration with Actuator Dynamics

 233

0 0.25 0.5 0.75 1 1.25 1.5 1.75 2
0

1

2

3

4

5

6

N
ec

es
sa

ry
 F

in
 D

ef
le

ct
io

n
(d

eg
)

Time (sec)

3-Loop AP: -12.92 G step response

With Actuator Dynamics
Without Actuator Dynamics

Figure 6.21. Necessary Fin Deflection with Actuator Dynamics

1 1.25 1.5 1.75
-4.45

-4.448

-4.446

-4.444

-4.442

-4.44

-4.438

A
lp

ha
: A

ng
le

 o
f A

tta
ck

 (d
eg

)

Time (sec)

3-Loop AP: -12.92 G step response

With Actuator Dynamics
Without Actuator Dynamics

Figure 6.22. Angle of Attack with Actuator Dynamics: Zoom

 Figures 6.22 through 6.24 are a repeat of figures 6.19 through 6.21 zoomed in to point

out the detailed difference between the ideal actuator dynamics and the nonlinear actuator

model.

234

1 1.05 1.1 1.15 1.2 1.25
-13.05

-13

-12.95

-12.9

-12.85

-12.8

-12.75

-12.7

M
is

si
le

 A
cc

el
er

at
io

n
(G

's
)

Time (sec)

3-Loop AP: -12.92 G step response

With Actuator Dynamics
Without Actuator Dynamics

Figure 6.23. Achieved Acceleration with Actuator Dynamics: Zoom

1 1.05 1.1 1.15 1.2 1.25
4.85

4.9

4.95

5

5.05

5.1

5.15

5.2

N
ec

es
sa

ry
 F

in
 D

ef
le

ct
io

n
(d

eg
)

Time (sec)

3-Loop AP: -12.92 G step response

With Actuator Dynamics
Without Actuator Dynamics

Figure 6.24. Necessary Fin Deflection with Actuator Dynamics: Zoom

 The ~ 80 Hz frequency, seen in all three plots, is due to the nonlinearities of the

actuator. Obviously, the autopilot gain selection does not drive the actuator near its

power limit since figures 6.22 through 6.24 show the actuator dynamics are much faster

 235

than the missile response. Proper gain selection will bring the missile response time

much closer to the actuator response time.

6.4 The Autopilot Gain Selection Process

 As seen in figure 6.1, during the autopilot design process the dynamics of the actuator

are assumed ideal. Thus, actuator dynamics do not form a part of the gain selection

process.

6.4.1 The Autopilot Gain Selection Process: The Performance Index

 Typically, the autopilot gain selection process involves the minimization of a

constrained performance index. A common performance index, PI, is shown in equation

6.9. This performance index is meant to be minimized [Clo96b].

() ()[]dt
tf

PwYAAYCAwZAAZCAwPI
0

2 3
2 2

2 1∫ +−+−= (6.9)

AYC and AZC are the commanded accelerations in the Y and Z directions, respectively.

Similarly, AYA and AZA are the achieved accelerations in Y and Z directions. P is the

missile roll rate, and w1- w3 are the respective weights. Equation 6.9 shows the

performance index for a 6DoF missile model. For the 2DoF missile model, equation 6.9

reduces to

()[]dt
tf

YAAYCAPI
0

2 ∫ −= (6.10)

236

Typical constraints for this optimization are shown in equations 6.11 through 6.13.

dB3MarginGain > (6.11)

o20Margin Phase > (6.12)

%30Undershoot

%20Overshoot

<

<
 (6.13)

For a step response y, overshoot is defined as (max(y) – step command)/step command,

and undershoot is defined as abs(min(y))/step command.

 Obviously, the constraints of gain and phase margin imply that the system is linear.

Linearization of the missile pitch plane dynamics model is therefore necessary.

6.4.2 Linearized Missile Pitch Dynamics for Gain Optimization

6.4.2.1 Pitch Plane Linearization

 Linearization of the pitch plane dynamics is relatively straightforward. Equation 6.4

can be written as

δα δα
β

δα
ββ

α

NCNC
refS
TS

refS
wS

refS
planS

NC
ref

T

S
S

**
*
*8

*

*8

*

*8**5.1
2 +=+

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
+++= (6.14)

Where

ref

T

ref

w

ref

plan

S
S

S
S

S
S

NC
*
*8

*
*8**5.1

2
ββ

α
α +++= (6.15)

and

ref

T

S
S

NC
*
*8

βδ = (6.16)

 237

Equation 6.15 shows that αNC is not constant but a function of α . The angle γ is

defined as

αθγ −= (6.17)

For a small angle assumption for both angles α and θ , it is seen, from figure 6.2, that

m

Z

V
V

≈≈ γγ sin (6.18)

Therefore, for constant missile velocity, the turning rate γ& can be approximated by

m

Z

V
A

≈γ& (6.19)

Solving equation 6.1 for AZ and substituting the result into equation 6.19 yields

m

ref

Vm
SQ NC

*
**

≈γ& (6.20)

Substituting equation 6.14 into 6.20

[]
δα

δα
γ δα

δα **
*

ZZ

Vm
SQ

m

ref NCNC
−−=

+
≈& (6.21)

Where

m

ref

Vm
SQ

Z NC

*
** α

α −= (6.22)

and

m

ref

Vm
SQ

Z NC

*
** δ

δ −= (6.23)

Rearranging equation 6.17, differentiating with respect to time, and substituting equation

6.21:

238

δαθγθα δα ** ZZ ++=−= &&&& (6.24)

 The moment coefficient equation 6.7 can be written in a similar form as equation

6.14.

δα δα MCMCMC ** += (6.25)

Where

⎟
⎠
⎞⎜

⎝
⎛⎟

⎠
⎞⎜

⎝
⎛

⎟
⎠
⎞⎜

⎝
⎛⎟

⎠
⎞⎜

⎝
⎛

−+−+

−+−=

HLXcgX
refS
TS

CPWXcgX
refS
wS

CPBXcgX
refS

planS

CPNXcgXMC

*

*8

*

*8

**5.1
2

ββ

α

α

 (6.26)

and

⎟
⎠
⎞⎜

⎝
⎛ −= HLXcgX

refS
TS

MC
*

*8

βδ (6.27)

Using equation 6.25, equation 6.6 can be written

[]δα δαθ MM CC
yyI

drefSQ

yyI
MCdrefSQ

**

+==&& (6.28)

Equation 6.28 can be simplified by writing

δα δαθ MM ** +=&& (6.29)

Where

yyI
MCdrefSQ

M α
α

= (6.30)

and

 239

yyI
MCdrefSQ

M δ
δ

= (6.31)

Note that αM and αZ are both functions of α . δM and δZ are constants. However,

equations 6.24 and 6.29 form a linear set of equations only if all four parameters αM ,

δM , αZ , and δZ can be treated as constants. In order to bypass this difficulty, a trim

condition is defined. The missile trim condition is defined as the combination of α and

δ that create zero moment on the missile body. Thus, for a given δ , equation 6.7 is set

to 0 and solved for α . This value of α is used to calculate αM and αZ , which are then

treated as constants, making the equation set linear about the trim condition.

Figure 6.25. Linearized Pitch Plane Block Diagram

 Figure 6.25 shows the linear set of equations in block diagram form. The state space

equations are shown in equation 6.32 and 6.33.

240

δ
α
θ

α
θ

δ

δ

α

α
⎥
⎦

⎤
⎢
⎣

⎡
+⎥

⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡
Z
M

Z
M &

&

&&

1
0

 (6.32)

[] []δ
α
θ

δα MMZ VZVZA −+⎥
⎦

⎤
⎢
⎣

⎡
−=

&
0 (6.33)

Figures 6.26 and 6.27 show a comparison of the open loop, linear system to the open loop

nonlinear system. The nonlinear signals are those presented in figures 6.10 and 6.11,

respectively. αtrim is -4.4489˚, for δ = 5˚, Mach 3, and Altitude 0.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
-10

-9

-8

-7

-6

-5

-4

-3

-2

-1

0

A
lp

ha
: A

ng
le

 o
f A

tta
ck

 (d
eg

)

Time (sec)

5 Deg. Fin Deflection, at Sea Level, Mach 3

Linear
NonLinear

Figure 6.26. Open Loop Linear and Nonlinear Angle of Attack

 241

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
-30

-25

-20

-15

-10

-5

0

5

M
is

si
le

 A
cc

el
er

at
io

n
(G

's
)

Time (sec)

5 Deg. Fin Deflection, at Sea Level, Mach 3

Linear
NonLinear

Figure 6.27. Open Loop Linear and Nonlinear Missile Body Acceleration

 Figures 6.26 and 6.27, show a reasonable match for the linear system versus the

nonlinear system.

6.4.2.2 Linearized Pitch Plane and Three Loop Autopilot

 Figure 6.28 shows the block diagram of the linear system within the three loop

autopilot. This system is a 3rd order system that has state space equations shown in

equations 6.34 and 6.35.

242

Figure 6.28. Linear Pitch Plane and Autopilot Block Diagram

ZC

MMM

A
KDCKAWI

q
a

ZKRZKRZ
MKRMKRM
g

VZKAWI
g

VZKRKAWIWI
g

VKRZKAWI

q
a

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡−
+

+
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

+

−
−

−

=
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

0
0

**

1

1
**

1

αα αδδ

αδδ

αδδ

&

&

&

 (6.34)

[] ZC
MMM

Z Aq
a

g
ZV

g
ZKRV

g
ZKRV

A 0
1

+

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⎥
⎦

⎤
⎢
⎣

⎡ −−−
=

α

αδδ

 (6.35)

The symbol g represents the unit conversion from ft/(sec2) to G’s. The linear and

nonlinear plots, with the inclusion of the three loop autopilot, are shown in figures 6.29

through 6.31. The nonlinear signals are those shown previously, in figures 6.19 through

6.21, without actuator dynamics.

 243

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
-4.5

-4

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

0

A
lp

ha
: A

ng
le

 o
f A

tta
ck

 (d
eg

)

Time (sec)

3 Loop AP: -12.92 G step response

Linear
NonLinear

Figure 6.29. Closed Loop Linear and Nonlinear Angle of Attack

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
-14

-12

-10

-8

-6

-4

-2

0

2
3 Loop AP: -12.92 G step response

M
is

si
le

 A
cc

el
er

at
io

n
(G

's
)

Time (sec)

Linear
NonLinear

Figure 6.30. Closed Loop Linear and Nonlinear Missile Body Acceleration

244

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

N
ec

es
sa

ry
 F

in
 D

ef
le

ct
io

n
(d

eg
)

Time (sec)

3 Loop AP: -12.92 G step response

Linear
NonLinear

Figure 6.31. Closed Loop Linear and Nonlinear Necessary Fin Deflection

 The closed loop transfer function of the state space equations is shown in equations

6.36 through 6.38.

Den
NumDBASICSG =+−= −1)(*)((6.36)

()αδδαδ ZMZMSZ
g

VmKAWIKRKDCNum −+−= 2**** (6.37)

()

() ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+−+

+−++−

+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−+−=

g
VmKAMZMZWIKR

SKRMZKRMZWIKRMM

SZ
g

VmKRKAWIZKRMSDen

*1***

***** 23

δααδ

δααδδα

δαδ

 (6.38)

Equation 6.37 shows that the system zeros are a function of flight condition and not

influenced by the selection of autopilot gains. This of course is expected. The third order

denominator, however, is dependent on the selection of four autopilot gains. This insight

 245

can be exploited to place the closed loop poles as desired and maintain zero steady state

error.

6.4.3 Linear Missile Pitch Dynamics: Sample Optimal Gains

 This section focuses on selecting autopilot gains for the closed loop pitch plane

missile. The previous section developed the closed loop transfer function symbolically

for the linearized pitch plane system.

 A third order denominator can be written in the general form of equation 6.39, for

poles p1, p2, and p3.

()()()
() () 321323121321

321
23 pppSppppppSpppS

pSpSpSDen
−+++++−=

=−−−=
 (6.39)

Equating the terms of equation 6.38 and 6.39, gives three equations to define the

autopilot gains as a function of the system poles.

δαδ Z
g

VmKRKAWIZKRMppp *****321 −+=++ (6.40)

()KRMZKRMZWIKRMMpppppp ****323121 δααδδα −++−=++ (6.41)

() ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+−=−

g
VmKAMZMZWIKRppp *1***321 δααδ (6.42)

The four autopilot gains can be determined explicitly by adding an equation to the set,

which forces zero steady state error. The zero steady state error equation is found by

246

forcing the last terms of equation 6.37 and 6.39, to be equal, thus creating four equations

with four unknowns.

()αδδα ZMZM
g

VmKAWIKRKDCppp −=− ****321 (6.43)

Equations 6.40 through 6.43 form an equation set with four equations and four

unknowns, which can be solved for the four autopilot gains. Obviously, untangling this

set to solve for the autopilot gains is quite computationally intensive. In order to solve

equations 6.40 through 6.43, for the four autopilot gains, the Maple symbolic manipulator

was employed [Map]. The results are shown in equations 6.44 through 6.47.

(6.44)

(6.45)

(6.46)

(6.47)

 247

Although equations 6.44 through 6.47, are lengthy and complicated, they can be used in a

MATLAB script to determine the necessary autopilot gains for a given set of pole

locations. The optimization necessary to minimize the performance index of equation

6.10, while satisfying the constraint equations 6.11 through 6.13, becomes a matter of

selecting pole locations for the system, and calculating the performance index, or

rejecting the pole locations if the constraints are not met. For the flight condition

described by figure 6.7, mach 3, altitude 0, the system zeros are at ±39.0639376644535.

A non-minimum phase zero is a common occurrence for airframe dynamic systems

[Zar02].

Variable Set 1 Set 2 Set 3
KA 0.07836 0.10696 0.06493
KR 0.30587 0.23254 0.09800
WI 36.11504 24.68886 11.20000

KDC 1.13686 1.10027 1.16500
PI 0.06014 0.06105 0.11335

Gain Marg. 3.465 dB 3.000 dB 12.803 dB
Phase Marg. 180˚ 61.535˚ 180˚

Overshoot 0% 0.92% 0%
Undershoot 30.00% 25.60% 4.90%

Pole1 51.51505 (-1 + i) 32.68964 (-1 + i) -22.449 + 21.864i
Pole2 51.51505 (-1 - i) 32.68964 (-1 - i) -22.449 - 21.864i
Pole3 -17.17168 -29.27869 -7.83147

Table 6.2. Optimal Gain Table

 Table 6.2 shows three sets of gains with the performance index, and constraint values,

using αtrim = -4.4489˚. Gain set 1 has the lowest performance index and is limited by the

undershoot constraint. Gain set 2 is limited by the gain margin constraint but has a

slightly higher performance index. Gain set 3 is the original set of gains used to

248

introduce the three loop autopilot in Section 6.3.1. Gain set 3 has almost double the

performance index value than the other two sets. Obviously, gain set 3 is nowhere near

the optimum but has been included for reference. Figures 6.32 and 6.33, show the

relatively slow rise time of gain set 3.

0 0.05 0.1 0.15 0.2 0.25 0.3
-4.5

-4

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

0
Optimal Step Response

Time (sec)

A
lp

ha
: A

ng
le

 o
f A

tta
ck

 (d
eg

).

Set 1
Set 2
Set 3

Figure 6.32. Optimal Gain Selection Angle of Attack

0 0.05 0.1 0.15 0.2 0.25 0.3
-14

-12

-10

-8

-6

-4

-2

0

2

4
Optimal Step Response

Time (sec)

M
is

si
le

 A
cc

el
er

at
io

n
(G

's
).

Set 1
Set 2
Set 3

Figure 6.33. Optimal Gain Selection Missile Body Acceleration

 249

 Figures 6.32 through 6.34, show the step responses for gain sets 1 through 3. Figure

6.32 shows angle of attack, figure 6.33 shows missile acceleration, and figure 6.34 shows

the necessary fin deflection to achieve the response.

0 0.05 0.1 0.15 0.2 0.25 0.3
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5
Optimal Step Response

Time (sec)

N
ec

es
sa

ry
 F

in
 D

ef
le

ct
io

n
(d

eg
).

Set 1
Set 2
Set 3

Figure 6.34. Optimal Gain Selection Necessary Fin Deflection

 Naturally, the optimal gains will have zero steady state error, since this requirement

was factored into the gain selection process. Figure 6.33 shows that gain set 1 achieves

the desired acceleration much faster than set 3. Figure 6.34 shows that gain set 1 requires

much more response from the actuator than gain set 3.

 It is interesting to note that gain set 2 seems more optimal than gain set 1, when

simply viewing the time response of figures 6.32 through 6.34. Gain set 2 does not have

as much non-minimum phase response as gain set 1, gain set 2 has a faster settling time,

which was not considered in the performance index, and gain set 2 does not require as

250

much initial fin dynamics as gain set 1. Regardless, gain set 1 is the optimal set

according to the performance index criteria. Figures 6.35 and 6.36, graphically show the

performance index calculation. Figure 6.35 shows the derivative of the performance

index, and 6.36 is the performance index, with respect to time.

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
0

50

100

150

200

250

300
Optimal Step Response

(-1
2.

92
 -

A
z)

.2

Time (sec)

Set 1
Set 2
Set 3

Figure 6.35. Optimal Gain Selection: (Command – AZ)2

0 0.05 0.1 0.15 0.2
0

2

4

6

8

10

12

14

16

18

20
Optimal Step Response

P
I =

 in
te

g(
(-1

2.
92

 -
A

z)
.2)

Time (sec)

Set 1
Set 2
Set 3

Figure 6.36. Optimal Gain Selection: Performance Index

 251

Figures 6.35 and 6.36, show how the performance index of gain set 1 is lower than the

performance index of gain set 2. During the first 0.025 seconds, gain set 2 has the lower

performance index. However, the slightly wider peak of gain set 2, in figure 6.35, causes

the performance index to increase beyond the performance index of gain set 1.

6.5 Actuator Power Flow Analysis Using Optimal Autopilot Gains

 Naturally, the optimal gain set, developed in the last section, is intended to be used in

the complete nonlinear system with actuator dynamics. The linear assumptions in the

plant, and the idealized omission of actuator dynamics, are simplifications used to

develop the autopilot gain set.

 In this section the nonlinear plant/actuator is tested using the gain sets derived from

the linear plant model. The nonlinear plant is used to determine the optimal gains. The

optimal gains are then used to define autopilot efficiency, ηAP, using the efficiency

calculation method of Chapter 5.

6.5.1 Actuator Power Flow Efficiency from the Optimal Gain Set

 The three sets of gains, from the previous section, are used to control the complete

nonlinear model with actuator dynamics, described in figure 6.18. The step responses for

252

these models are shown in figures 6.37 through 6.39. As before, the three plots

correspond to angle of attack, missile acceleration, and fin deflection, respectively.

0 0.25 0.5 0.75 1
-4.5

-4

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

0
A

lp
ha

: A
ng

le
 o

f A
tta

ck
 (d

eg
)

Time (sec)

Complete System: -12.92 G step response

Set 1
Set 2
Set 3

Figure 6.37. Nonlinear Missile with Optimal Gains: Angle of Attack

0 0.25 0.5 0.75 1
-14

-12

-10

-8

-6

-4

-2

0

2

4

6

M
is

si
le

 A
cc

el
er

at
io

n
(G

's
)

Time (sec)

Complete System: -12.92 G step response

Set 1
Set 2
Set 3

Figure 6.38. Nonlinear Missile with Optimal Gains: Body Acceleration

 253

0 0.25 0.5 0.75 1
-3

-2

-1

0

1

2

3

4

5

6

Fi
n

D
ef

le
ct

io
n

(d
eg

)

Time (sec)

Complete System: -12.92 G step response

Set 1
Set 2
Set 3

Figure 6.39. Nonlinear Missile with Optimal Gains: Fin Deflection

For clarity, figures 6.38 and 6.39 have been zoomed to show the first 0.25 seconds of

activity. These signals are shown in figures 6.40 and 6.41 respectively.

0 0.05 0.1 0.15 0.2 0.25
-14

-12

-10

-8

-6

-4

-2

0

2

4

6

M
is

si
le

 A
cc

el
er

at
io

n
(G

's
)

Time (sec)

Complete System: -12.92 G step response

Set 1
Set 2
Set 3

Figure 6.40. Nonlinear Missile with Optimal Gains: Body Acc. (zoom)

254

0 0.05 0.1 0.15 0.2 0.25
-3

-2

-1

0

1

2

3

4

5

6

Fi
n

D
ef

le
ct

io
n

(d
eg

)

Time (sec)

Complete System: -12.92 G step response

Set 1
Set 2
Set 3

Figure 6.41. Nonlinear Missile with Optimal Gains: Fin Deflection (zoom)

 By looking at figures 6.37 through 6.41, it is not apparent that gain set 1 is the

optimal set of gains. This fact is masked by the nonlinear system dynamics. The optimal

gains have pushed the overall system’s response time closer to the actuator’s response

time. As in the linear case of the previous section, the response shown by gain set 2

looks much more optimal. The efficiency signal is shown in figure 6.42. The actuator

power efficiency measurement reveals that gain set 1 provides the more optimal

response.

 It was shown in Chapter 5 that the desired shape of the efficiency signal is an initial

steep rise and then an abrupt flattened signal. Figure 6.42 shows that gain set 1, clearly is

more optimal than the other two sets. Gain sets 1 and 2 were very close from a

performance index point of view, but are clearly different from an efficiency point of

 255

view. Gain set 1 rises higher initially, and has a flatter slope after the sharp rise. Using

0.25 seconds and 1 second as reference points, the calculated slopes of the three signals

are 4.8952e-007, 7.9617e-007, and 9.9538e-007, for gain sets 1, 2, and 3, respectively.

Gain set 1 has the smaller slope.

0 0.25 0.5 0.75 1
0

0.5

1

1.5

2

2.5

3

3.5
x 10-6

A
ct

ua
to

r E
ffe

ci
en

cy

Time (sec)

Complete System: -12.92 G step response

Set 1
Set 2
Set 3

Figure 6.42. Autopilot ηAP: Autopilot Efficiency Signals for Gain Sets 1-3

 Figure 6.42 clearly shows that gain set 1 is the more optimal, since it rises higher,

initially, and has a flatter slope. Recall that gain set 1 was chosen because it reached the

30% undershoot constraint, identically, in the linear case. Gain set 2 was chosen because

it reached the 3dB gain margin constraint, identically. Figure 6.40 shows that both gain

sets 1 and 2, violate the 30% undershoot criteria in the nonlinear case, since the achieved

acceleration for these sets peak up above 4 g’s (30% of 12.92 g’s is 3.876 g’s). The

nonlinearities of the pitch plane dynamics, and the nonlinear actuator dynamics, cause the

256

complete model to act differently than the linear, ideal system. Due to the performance

difference between linear and nonlinear models, often, gains are optimized using the

complete nonlinear model [Rei93]. The gain and phase margin criteria are calculated

using the linear model, and the overshoot/undershoot criteria are calculated with the time

response of the complete nonlinear model. This works well when the autopilot scheme is

linear, otherwise gain and phase margins are meaningless.

 In order to meet the 30% undershoot criteria, another gain set is added to the list of

table 6.2. Gain set 4 is shown in table 6.3, along with gain sets 1 and 2 for reference.

Gain set 4 is limited by the gain margin constraint. Also, the undershoot of the linear

system is at 24.05%, which will place the nonlinear undershoot right at the 30% limit.

Naturally, the performance index of gain set 4 is higher than that of gain sets 1 and 2,

since the undershoot was further constrained.

Variable Set 1 Set 2 Set 4
KA 0.07836 0.10696 0.11625
KR 0.30587 0.23254 0.21848
WI 36.11504 24.68886 21.86830

KDC 1.13686 1.10027 1.09226
PI 0.06014 0.06105 0.06224

Gain Marg. 3.465 dB 3.000 dB 3.000 dB
Phase Marg. 180˚ 61.535˚ 45.0055˚

Overshoot 0% 0.92% 6%
Undershoot 30.00% 25.60% 24.05%

Pole1 51.51505 (-1 + i) 32.68964 (-1 + i) -26.845 + 28.459i
Pole2 51.51505 (-1 - i) 32.68964 (-1 - i) -26.845 - 28.459i
Pole3 -17.17168 -29.27869 -36.70808

Table 6.3. Added Gain Set

 257

Figures 6.43 and 6.44 show the achieved acceleration for gain set 4. Figure 6.44 zooms

in on the undershoot to show that gain set 4 achieves 30% undershoot, identically, for the

nonlinear system. The amount of undershoot is shown explicitly in the achieved

acceleration plot of figures 6.43 and 6.44.

0 0.05 0.1 0.15 0.2 0.25
-14

-12

-10

-8

-6

-4

-2

0

2

4

6

M
is

si
le

 A
cc

el
er

at
io

n
(G

's
)

Time (sec)

Complete System: -12.92 G step response

Set 1
Set 2
Set 4
30% Undershoot

Figure 6.43. Optimal Gain Set 4: Body Acceleration

0.01 0.012 0.014 0.016 0.018 0.02 0.022 0.024 0.026 0.028 0.03
3

3.5

4

4.5

5

5.5

M
is

si
le

 A
cc

el
er

at
io

n
(G

's
)

Time (sec)

Complete System: -12.92 G step response

Set 1
Set 2
Set 4
30% Undershoot

Figure 6.44. Optimal Gain Set 4: Body Acceleration (zoom)

258

Figure 6.45 shows the autopilot efficiency for gain set 4. Naturally, gain set 4 is not as

efficient as sets 1 and 2. Gain set 4 is the optimal set of gains that meets both linear and

nonlinear design constraints. Since gain set 4 meets all requirements for the constrained

optimum, it is defined as the optimal gain set. The corresponding efficiency signal is

then defined as the optimal autopilot efficiency, for the three loop autopilot. The optimal

efficiency signal can then be used as a benchmark when comparing controllers of

different designs.

0 0.05 0.1 0.15 0.2 0.25
0

0.5

1

1.5

2

2.5

3

3.5
x 10-6

A
ct

ua
to

r E
ffe

ci
en

cy

Time (sec)

Complete System: -12.92 G step response

Set 1
Set 2
Set 4

Figure 6.45. Optimal Gain Set 4: Autopilot Efficiency ηAP

6.5.2 Optimal Efficiency Comparisons

 In the previous section, the optimal efficiency signal for a given controller design was

defined as the actuator efficiency of the optimal gain set. This signal can be used to

 259

compare controller efficiencies of varying architectures. In the design of a nonlinear

controller, for a nonlinear plant, the performance constraints of gain and phase margin are

of no use. However, a ηAP signal, defined with linear tools, can be used to warn the

design engineer when the nonlinear system is beginning to approach areas of low stability

margin. The efficiency of the actuator, for a linear autopilot, can be used as a limit when

considering nonlinear designs. As seen in figure 6.45, controller designs with efficiency

signals that show greater efficiency than the defined optimum, can be discarded with the

assumption that the design violates the design constraints. Unfortunately, it is not true

that if the efficiency of the controller design is less than that of the defined optimum, then

a constraint has not been violated. It is necessary for a design to have an efficiency signal

less than or equal to, the optimal efficiency in order to be a potential candidate.

However, this condition is not sufficient to guarantee that all constraints have not been

violated. In order to illustrate this point, two more gain sets were added to the list in table

6.3. These two gain sets are described in table 6.4.

Variable Set 4 Set 5 Set 6
KA 0.11625 0.11601 0.12330
KR 0.21848 0.21630 0.18061
WI 21.86830 21.68998 21.07446

KDC 1.09226 1.09245 1.08698
PI 0.06224 0.06243 0.06355

Gain Marg. 3.000 dB 3.089 dB 1.949927 dB
Phase Marg. 45.0055˚ 46.3686˚ 24.425˚

Overshoot 6% 6% 9%
Undershoot 24.05% 23.70% 22.92%

Pole1 -26.845 + 28.459i -26.577 + 28.174i -22.429 + 32.989i
Pole2 -26.845 - 28.459i -26.577 - 28.174i -22.429 - 32.989i
Pole3 -36.70808 -36.70808 -29.68812

Table 6.4. Suboptimal Gain Sets

260

Form the previous section, gain set 4 is the gain set that provides the defined optimal

efficiency. Gain set 4 is limited by the gain margin constraint, and undershoot constraint

using the nonlinear actuator/plant. Gain set 5 has been chosen intentionally to meet all

constraints but with a slightly larger performance index than the defined optimum. Gain

sets that have a lower performance index, but violate design constraints, were considered

in the previous section, and shown in figure 6.45. Thus, gain set 6 has been chosen

intentionally to violate the gain margin constraint, but have a higher performance index

than gain set 4, and therefore are not as optimal. Neither gain sets 5, nor 6, will violate

the undershoot constraint for the nonlinear system since they have a linear undershoot of

no more than 23.7%.

 The step responses, shown in figure 6.46, look very similar for each of the three sets

of gains.

0 0.05 0.1 0.15 0.2 0.25
-14

-12

-10

-8

-6

-4

-2

0

2

4

M
is

si
le

 A
cc

el
er

at
io

n
(G

's
)

Time (sec)

Complete System: -12.92 G step response

Set 4
Set 5
Set 6
30% Undershoot

Figure 6.46. Body Acceleration: Gain Sets 4-6

 261

0 0.05 0.1 0.15 0.2 0.25
0

0.2

0.4

0.6

0.8

1

1.2
x 10-6

A
ct

ua
to

r E
ffe

ci
en

cy

Time (sec)

Complete System: -12.92 G step response

Set 4
Set 5
Set 6

Figure 6.47. Autopilot ηAP Gain Sets 4-6

 Figure 6.47 shows the efficiency signals, and that the efficiencies of these three gain

sets are easily compared. Gain set 5 does not violate any constraints and shows a lower

efficiency signal. Gain set 6 violates the constraints yet is not as efficient as gain set 4,

thus showing that a lower efficiency signal does not guarantee that the design (gain sets

in this case) meets all constraints.

 Gain sets 4 and 5, meet all linear and nonlinear criteria. However, if the efficiencies

of gain sets 5 and 6, had been created with a nonlinear design, then the gain margin

information for these sets would not have been known.

 Thus far, all performance index calculations have been done for the linear plant.

Figure 6.48 shows the performance index, as a function of time, calculated using the

achieved acceleration of the nonlinear plant. Figure 6.48 shows these signals for gain

sets 4 through 6, normalized to a unit step.

262

0 0.05 0.1 0.15 0.2 0.25
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

P
er

fo
rm

an
ce

 In
de

x

Time (sec)

Complete System: 1 G step response

Set 4
Set 5
Set 6

Figure 6.48 Nonlinear PI for Gain Sets 4-6

As expected, gain sets 4 and 5 are nearly indistinguishable, since the linear performance

indices were so close. Figure 6.49 zooms in on the details of figure 6.48 in the 0.05

second region.

0.05 0.055 0.06 0.065 0.07 0.075
0.0625

0.0626

0.0627

0.0628

0.0629

0.063

0.0631

0.0632

0.0633

0.0634

0.0635

P
er

fo
rm

an
ce

 In
de

x

Time (sec)

Complete System: 1 G step response

Set 4
Set 5
Set 6

Figure 6.49. Nonlinear PI for Gain Sets 4-6 (zoom)

 263

It is interesting to note, that gain set 5 shows a smaller performance index than gain set 4

up until 0.0678 seconds. Figure 6.47 shows that the efficiency signals clearly

distinguishes gain set 4 as the more optimal set, even prior to 0.0678 seconds, even

though gain set 5 has a smaller performance index during the initial time period. Figure

6.50 zooms in on figure 6.47 using the same time scale as figure 6.49.

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08
0

1

2

3

4

5

6

7

8

x 10-7

A
ct

ua
to

r E
ffe

ci
en

cy

Time (sec)

Complete System: -12.92 G step response

Set 4
Set 5
Set 6

Figure 6.50. Autopilot Efficiency ηAP: Gain Sets 4-6 (zoom)

 It has been shown here, that the autopilot efficiency signal, ηAP, can be used to

measure the efficiency of an autopilot design, and how these efficiencies can be

compared to a predetermined efficiency signal. The predetermined efficiency signal was

calculated by finding a set of gains that satisfies the frequency domain constraints in the

linear case, and the time domain constraints in the nonlinear case. This signal, generated

by gain set 4, is then defined as the optimum. This efficiency signal is then used as a

264

boundary of efficiency, that can be used to benchmark efficiency signals generated by

any other autopilot architecture. If the efficiency is greater than the optimum, the design

can be discarded under the assumption that it violates a constraint. If the efficiency is

less than the optimum, then no conclusion can be made.

6.6 Nonlinear Pitch Autopilot: An SDRE Approach

 This section introduces a nonlinear autopilot design that is based on solving the state

dependent Riccati equation (SDRE) at each time step, to determine feedback gains

[Clo96a]. The basic approach behind the design follows the standard LQR problem.

6.6.1 LQR Formulation and General Solution

 The standard linear quadratic regulator (LQR) problem is described by equations 6.48

through 6.53 [Mra05, Kir98]. The performance index to be minimized is

()dtRuuQzzJ TT

u ∫
∞

+=
0

min (6.48)

Subject to the dynamics

BuAxx +=& (6.49)

Hxy = (6.50)

Q is a positive semi-definite matrix and R is a positive definite matrix. The optimal state

feedback is

Kxu = (6.51)

 265

where

PBRK T1−−= (6.52)

and P is the stabilizing solution to the algebraic Riccati equation

QHHPBPBRPAPA TTT +−+= −10 (6.53)

Rearranging equations 6.32 and 6.33, the missile pitch dynamics can be written as

δ
θ
α

θ
α

δ

δ

α

α
⎥
⎦

⎤
⎢
⎣

⎡
+⎥

⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡
M
Z

M
Z

&&&

&

0
1

 (6.54)

[] []δ
θ
α

δα MMZ VZVZA −+⎥
⎦

⎤
⎢
⎣

⎡
−= &0 (6.55)

Unlike equations 6.32 and 6.33, equations 6.53 and 6.55 allow αZ and αM to be

functions of α , as described by equations 6.15, 6.22, 6.26, and 6.30. Thus, trim

condition is not used for this analysis.

6.6.2 LQR General Solution for Nonzero Feed-Through

 Note, that equations 6.54 and 6.55 are in the form of equations 6.49 and 6.50, with the

exception of the nonzero feed-through term of equation 6.55. Mracek and Ridgely show

how to handle the linear quadratic optimal control problem for a system containing a

nonzero feed-through in the plant equations [Mra05]. The analysis is as follows:

()dtuRuzQzJ TT

u ∫
∞

+=
0

~~min (6.56)

Subject to the dynamics

266

BuAxx +=& (6.57)

LuHxz += (6.58)

Substituting equation 6.58 into 6.56 yields

() ()[]dtuRuLuHxQLuHxJ TT

u
 ~~min

0
∫
∞

+++= (6.59)

Let

HQHQ T ~
= (6.60)

LQHS T ~
= (6.61)

LQLRR T ~~ += (6.62)

The resulting performance index is

[]dtRuuxSuSuxQxxJ TTTTT

u
 min

0
∫
∞

+++= (6.63)

The Hamiltonian is then

[]BuAx
x

JRuuxSuSuxQxxH
T

TTTTT +⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

++++=
*

 (6.64)

Taking the partial of H with respect to u and setting to 0 yields

022
*

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

++=
∂
∂

x
JBRuxS

u
H TT (6.65)

Solving equation 6.65 for u

⎥
⎦

⎤
⎢
⎣

⎡
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
∂
∂

−= − xS
x

JBRu TT
*

1*

2
1 (6.66)

The Hamilton-Jacobi equation is

 267

()

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

−

+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

+−==
∂
∂

−

−−

−

x
JBSRx

x
JBBR

x
J

Ax
x

JxSSRQxH
t

J

TTT
T

T
TT

*
1

*
1

*

*
1*

*

4
1

 (6.67)

Assuming

PxxJ T=* (6.68)

xPx
t

J T &=
∂
∂ *

 (6.69)

Px
x

J 2
*

=
∂
∂ (6.70)

Substituting equations 6.69 and 6.70, into the Hamilton-Jacobi equation, and rearranging

terms yields

() () ()[]xSSRQPBPBRSBRAPPSBRAxxPx TTTTTTT 1111 −−−− −+−−+−=− & (6.71)

For 0→P& the algebraic Riccati equation is

() () ()TTTTT SSRQPBPBRSBRAPPSBRA 11110 −−−− −+−−+−= (6.72)

P is the stabilizing solution to equation 6.72. Using full state feedback, the optimal

control is given by

() KxxSPBRu TT =+−= −1* (6.73)

268

6.6.3 LQR Solution for Nonzero Feed-Through and Output Feedback

 Equation 6.73 assumes full state feedback. In the case of the missile system, output

feedback is desired. Mracek and Ridgely define full state observability as the

requirement that C-1 and [I+K C-1D]-1 exist [Mra05]. The three-loop autopilot uses

missile achieved acceleration Az, and missile pitch rate q, signals as feedback to the

autopilot. Keeping this same standard, the dynamic equations have the form

δ
θ
α

θ
α

δ

δ

α

α
⎥
⎦

⎤
⎢
⎣

⎡
+⎥

⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡
=+=

M
Z

M
Z

BuAxx &&&

&
&

0
1

 (6.74)

[] []δ
θ
α

δα MMZ VZVZALuHxz −+⎥
⎦

⎤
⎢
⎣

⎡
−==+= &0 (6.75)

δ
θ
α δα

⎥
⎦

⎤
⎢
⎣

⎡−
+⎥

⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡−
=⎥

⎦

⎤
⎢
⎣

⎡
=+=

010
0 MMZerror VZVZ

q
A

DuCxy & (6.76)

The following argument eliminates the dependence of full state feedback from equation

6.73

Kxu =* (6.77)

*DuCxy += (6.78)

Solving equation 6.78 for x yields

[]*1 DuyCx −= − (6.79)

Pre-multiplying both sides of equation 6.79 by K

[]*1 DuyKCKx −= − (6.80)

Equating 6.77 and 6.80 yields

 269

[]*1* DuyKCu −= − (6.81)

Solving equation 6.81 for *u

[] yKCDKCIu 111* −−−+= (6.82)

Equation 6.82 shows the optimal control calculation as a function of output feedback.

Using equation 6.73 for K, 6.82 becomes

()[] () yKyCSPBRDCSPBRIu opt
TTTT =++−−= −−−−− 11111* (6.83)

Therefore, Kopt is

()[] () 11111 −−−−− ++−−= CSPBRDCSPBRIK TTTT
opt (6.84)

Equation 6.84 shows the optimal gain set for output feedback, and a nonzero feed-

through term in the plant equations.

6.6.4 LQR Tracking Solution for Nonzero Feed-Through, Output Feedback and

Zero Steady State Error

 The steady state gain must be defined before the optimal control autopilot can be

implemented [Mra05]. The output feedback y, was defined in equation 6.76 as ZerrorA

and q, which can be written

⎥
⎦

⎤
⎢
⎣

⎡
−+=⎥

⎦

⎤
⎢
⎣

⎡ −+
=⎥

⎦

⎤
⎢
⎣

⎡ −
=⎥

⎦

⎤
⎢
⎣

⎡
=

0
ZcssZcssZcssZmZerror AK

DuCx
q

AKLuHx
q

AKA
q

A
y (6.85)

Substituting 6.85 into 6.83 gives

270

[] ⎥
⎦

⎤
⎢
⎣

⎡
−+=

0
Zcss

optopt

AK
KDuCxKu (6.85)

Thus, the optimal control is

[] ⎥
⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡
−−= −

0
1 Zcss

optopt

AK
CxKDKIu (6.86)

Using the control of equation 6.86, in the dynamic equations 6.74 and 6.75, closed loop

state space matrices can be found.

zccc ABxAx +=& (6.87)

ZcccZm ADxCA += (6.88)

Where the state vector is the same as before and the closed loop state space matrices are

[] CKDKIBAA optoptc
1−−+= (6.89)

[] ⎥
⎦

⎤
⎢
⎣

⎡
−−= −

0
1 ss

optoptc

K
KDKIBB (6.90)

[] CKDKILHC optoptc
1−−+= (6.91)

[] ⎥
⎦

⎤
⎢
⎣

⎡
−−= −

0
1 ss

optoptc

K
KDKILD (6.92)

Equations 6.90, and 6.92, can be written such that Kss is not part of the state space

matrices.

[] ⎥
⎦

⎤
⎢
⎣

⎡
−−=′−= −

0
1 ss

optoptsscc

K
KDKIBKBB (6.93)

[] ⎥
⎦

⎤
⎢
⎣

⎡
−−=′−= −

0
1 ss

optoptsscc

K
KDKILKDD (6.94)

 271

Where

[] ⎥
⎦

⎤
⎢
⎣

⎡
−=′ −

0
11

optoptc KDKIBB (6.95)

[] ⎥
⎦

⎤
⎢
⎣

⎡
−=′ −

0
11

optoptc KDKILD (6.96)

For zero steady state error, equation 6.97 must hold.

()[] 1lim 1

0
=+− −

→ ccccs
DBASIC (6.97)

Therefore

[] 111 =′−′=+− −−
sscccccccc KDBACDBAC (6.98)

Solving equation 6.98 for Kss

[] 11 −− ′−′= ccccss DBACK (6.99)

The optimal control autopilot can now be implemented in Dymola.

6.6.5 Dymola Implementation of the LQR Tracking Solution

 The Dymola model used to implement the nonlinear optimal feedback has many

layers. The discussion here uses a top down approach.

272

6.6.5.1 SDRE Autopilot

 The top hierarchical level is shown in figure 6.51, depicting both the icon and

diagram layer. The icon layer shows missile angle of attack α, missile pitch rate q, and

acceleration error as inputs. The outputs are the optimal control and the steady state gain.

The diagram window shows that the autopilot calls a Riccati equation solver. No

connections are shown to the inputs of the Riccati4 block. These connections are made in

the equation layer of the model. The equation window contains the code that calls

Riccati4, calculates the optimal gains, and calculates the steady state gain. A complete

code listing can be found in Appendix A1.

Figure 6.51. SDRE Autopilot: Icon and Diagram Window

For a given value of α, three matrices Ah, Bh, and Ch are defined such that

()TSBRAAh 1−−= (6.100)

TBBRBh 1−= (6.101)

 273

()TSSRQCh 1−−= (6.102)

These three matrices are sent to the Riccati equation solver. These three matrices come

from equation 6.72. The solution of the Riccati equation is used to determine the optimal

control, and the steady state gain, as described in the previous sections.

6.6.5.2 Algebraic Riccati Equation Solver Riccati4

 Unfortunately, Dymola does not have a linear algebra library. Thus, the code to solve

the Riccati equation was done from the ground up. Figure 6.52 shows the diagram

window of the Riccati4 solver.

Figure 6.52. Algebraic Riccati Equation Solver Riccati4: Diagram Window

The Riccati4 solver is set up to receive three, separate, 2x2 matrices A, B, C and find the

stabilizing solution P, such that

274

CPBPPAPAT +−+=0 (6.103)

[Zho96 pp. 328-333]. This algorithm was not set up for the general nxn case since the

intent here is to stabilize the 2nd order pitch dynamics model. Appendix A2 contains a

code listing for the equation window of figure 6.52.

 The Hamiltonian matrix is formed such that

⎥
⎦

⎤
⎢
⎣

⎡
−−
−

= TAC
BA

H (6.104)

The 4x4 Hamiltonian matrix is sent to an eigenvalue/eigenvector solver Heig4. Heig4

passes back the four eigenvalues, and four eigenvectors of H. The eigenvalues of the

Hamiltonian matrix are symmetric about both axes in the complex plain. A proof of this

is found in Appendix B1. Thus, for the 4x4 Hamiltonian, two of the eigenvalues have

negative real parts. The eigenvectors, Vn and Vm, associated with the stable eigenvalues,

λn and λm, are used to form the two 2x2 matrices X1 and X2.

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=⎥
⎦

⎤
⎢
⎣

⎡
=

44

33

22

11

2

1

mn

mn

mn

mn

VV
VV
VV
VV

X
X

X (6.105)

The stabilizing solution of the algebraic Riccati equation [Zho96 pp. 333-341] is then

1
12
−= XXP (6.106)

Dymola does not handle complex numbers directly, so the eigenvalues are passed back

from Heig4 with two variables for each eigenvalue, representing the real and imaginary

parts. The same is true for the elements of the eigenvectors. Thus, Riccati4 passes out a

 275

real matrix, and an imaginary matrix, of the solution P. The imaginary matrix associated

with P should always be zero, but is passed out for debugging purposes.

6.6.5.3 Hamiltonian Eigenvalue Solver Heig4

 Figure 6.53 shows the diagram window of Heig4. This routine receives the

Hamiltonian 4x4 matrix and passes out a 4x4 matrix, for the real part of the eigenvectors,

a 4x4 matrix for the imaginary part of the eigenvectors, and a 1x8 vector containing the

four real parts of the eigenvalues, and four imaginary parts of the eigenvalues. The

Hamiltonian matrix is passed to a generalized eigenvector solver, gen_eigs, internal to

this routine.

Figure 6.53. Hamiltonian Eigenvalue Solver Heig4: Diagram Window

276

 A complete code listing of the equation window can be found in Appendix A3. To

find the eigenvalues of the Hamiltonian matrix, the characteristic polynomial was found

by converting the matrix to controller canonical form [Kai80 pp. 50-51]. A B vector is

defined as

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

1
0
0
0

B (6.107)

The controllability matrix is then

[]BHBHHBBCcon
32= (6.108)

Ccon is then inverted. lr defined as the last row of [] 1−
conC . The transformation matrix

that converts the Hamiltonian into controller canonical form is then

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

3

2

lrH
lrH
lrH
lr

T (6.109)

Thus,

1~ −= THTH (6.110)

is in controller canonical form. The characteristic polynomial is then

)1,4(~)2,4(~)3,4(~)4,4(~ 234 HSHSHSHSCharPoly −−−−= (6.111)

Appendix B1 shows that the eigenvalues of the Hamiltonian matrix are symmetric about

both axes in the complex plain. This symmetry property forces all odd powers of S, of

 277

the characteristic polynomial, to have a coefficient of zero. Thus, both)4,4(~H and

)2,4(~H are zero. The characteristic polynomial can be written

)1,4(~)3,4(~ 24 HSHSCharPoly −−= (6.112)

Also, for a controllable system, H does not have any eigenvalues on the imaginary axis

[Zho96]. The symmetry property forces)1,4(~H− to be positive. Thus, the 4th order

characteristic polynomial can be reduced to two 2nd order polynomials, with real

coefficients

()()2121)1,4(~)3,4(~ 2224 bSbSaSaSHSHSCharPoly ++++=−−= (6.113)

such that

)1,4(~22 Hba −== (6.114)

)3,4(~2*21 Hbb += (6.115)

and

11 ba −= (6.116)

The values of a1, a2, b1 and b2 are all real. Thus, the eigenvalues of H can be found by

using the quadratic equation on each of the 2nd order polynomials. A Dymola function

was written to find the roots of a 2nd order polynomial using the quadratic equation. Two

values are passed back for each root, one for the real part of the root, and one for the

imaginary part. For completeness, a listing of the quadratic equation function is found in

Appendix A5.

278

 The eigenvectors are found using a Vandermonde matrix. Appendix B2 shows that,

for a matrix A~ in controller canonical form, the eigenvectors are

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

−−− 11
2

1
1

11
2

1
1

00
2

0
1

...
....
....
....

...

...

~

n
n

nn

n

n

V

λλλ

λλλ
λλλ

 (6.117)

where jλ is the jth eigenvalue. Thus,

TVVTHVVTHTH 1111 ~~~~~ −−−− Λ=⇒Λ== (6.118)

Therefore, the eigenvector matrix, V , corresponding to the Hamiltonian matrix can be

written

VTV ~1−= (6.119)

It is important to note that the possibility of finding a repeated eigenvalue for the

Hamiltonian is limited to two, i.e., there can be no more than two repeated roots for the

4th order Hamiltonian. Repeated roots occur when the roots sit on the real axis such that

there are two at +λ, and two roots at –λ. Therefore a generalized eigenvector routine,

gen_eigs, is employed to check for a repeated root situation. A complete code listing for

gen_eigs is found in Appendix A4.

 279

6.6.6 Nonlinear Autopilot Results

6.6.6.1 Ideal Actuator

 Figure 6.54 shows the pitch plane bond graph dynamics controlled by the nonlinear

autopilot, without actuator dynamics. The acceleration error is input to the SDRE

autopilot, along with missile states α and q. SDRE calculates the value of Kss and Uopt,

as described by the previous section.

Figure 6.54. Pitch Plane Dynamics with SDRE Autopilot

As before, the input command is a step of -12.92 G’s.

280

6.6.6.2 Nonlinear Actuator Dynamics

 Figure 6.55 shows the SDRE autopilot connected to the pitch plane dynamics model

via the actuator model. The actuator energy normalization logic, developed in Chapter 5,

is included in the model.

Figure 6.55. Pitch Plane Dynamics with SDRE Autopilot and Actuator

6.6.6.3 Nonlinear Autopilot, Ideal and Nonlinear Actuator Dynamics Compared

 Figures 6.56, through 6.60, show the results of the SDRE autopilot simulation with

and without actuator dynamics.

 281

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
-15

-10

-5

0

5

10

15

M
is

si
le

 A
cc

el
er

at
io

n
(G

's
)

Time (sec)

Complete System: -12.92 G step response

SDRE: Act.
SDRE: No Act.
30% Undershoot

Figure 6.56. SDRE: Achieved Acceleration

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
-4.5

-4

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

0

A
lp

ha
: A

ng
le

 o
f A

tta
ck

 (d
eg

)

Time (sec)

Complete System: -12.92 G step response

SDRE: Act.
SDRE: No Act.

Figure 6.57. SDRE: Angle of Attack

282

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
-2

0

2

4

6

8

10

12

14

Fi
n

D
ef

le
ct

io
n

(d
eg

)

Time (sec)

Complete System: -12.92 G step response

SDRE: Act.
SDRE: No Act.

Figure 6.58. SDRE: Achieved Fin Deflection

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
2.5

2.55

2.6

2.65

2.7

2.75

2.8

2.85

2.9

K
ss

Time (sec)

Complete System: -12.92 G step response

SDRE: Act.
SDRE: No Act.

Figure 6.59. SDRE: Steady State Gain Kss

 283

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

P
er

fo
rm

an
ce

 In
de

x

Time (sec)

Complete System: 1 G step response

SDRE: Act.
SDRE: No Act.

Figure 6.60. SDRE: Performance Index

 Figure 6.56 shows the amount of undershoot of the achieved acceleration is greater

than 30%. The undershoot of the SDRE autopilot, with actuator dynamics, is 45.18%.

The amount of undershoot, however, can no longer be adjusted with the SDRE autopilot.

Also seen in figure 6.56, the actuator dynamics cause a steady state oscillation due to the

backlash in the system. Figure 6.57 shows that the fin dynamics do not cause much

difference in the angle of attack response. Figure 6.58 shows the same steady state

oscillation in the fin response. Figure 6.59 shows how the steady-state gain, calculated

by the SDRE autopilot, changes with time. Figure 6.60 shows an increase in the

performance index due to the presence of the fin dynamics.

284

6.6.6.4 Linear and Nonlinear Autopilots Compared

 Figures 6.61 through 6.64 show comparisons of the SDRE autopilot and the linear,

three-loop autopilot, for gain sets 2 and 4.

0 0.05 0.1 0.15 0.2 0.25
-15

-12

-9

-6

-3

0

3

6
M

is
si

le
 A

cc
el

er
at

io
n

(G
's

)

Time (sec)

Complete System: -12.92 G step response

Set 2
Set 4
SDRE
30% Undershoot

Figure 6.61. Achieved Acceleration: SDRE, Set 2, Set 4

0 0.05 0.1 0.15 0.2 0.25
-4.5

-4

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

0

A
lp

ha
: A

ng
le

 o
f A

tta
ck

 (d
eg

)

Time (sec)

Complete System: -12.92 G step response

Set 2
Set 4
SDRE

Figure 6.62. Angle of Attack: SDRE, Set 2, Set 4

 285

0 0.05 0.1 0.15 0.2 0.25
-1

0

1

2

3

4

5

6

7

Fi
n

D
ef

le
ct

io
n

(d
eg

)

Time (sec)

Complete System: -12.92 G step response

Set 2
Set 4
SDRE

Figure 6.63. Achieved Fin Deflection: SDRE, Set 2, Set 4

0 0.05 0.1 0.15 0.2 0.25
0

0.5

1

1.5

2

2.5
x 10-6

A
ct

ua
to

r E
ffe

ci
en

cy

Time (sec)

Complete System: -12.92 G step response

Set 2
Set 4
SDRE

Figure 6.64. Autopilot Efficiency ηAP: SDRE, Set 2, Set 4

The signals are more pronounced for the SDRE autopilot, in each of the plots 6.61

through 6.64. The SDRE autopilot gives the most efficient signal in figure 6.64. It is

286

interesting to note that the three efficiency signals have the same general shape. The

signal with the least efficiency of the three is that of gain set 4, which is the gain set with

the most constraints, at 24.05% undershoot. Obviously, if gain set 4 were held as the

standard of efficiency, the SDRE signal would be rejected under the assumption that

some constraint has been violated. This can be seen by the 45.18% undershoot of the

SDRE response. However, since the SDRE response is optimal, by solving the algebraic

Riccati equation at each time step, the SDRE response may be used to find a set of linear

three-loop autopilot gains by relaxing some of the design constraints.

6.7 Power Flow Analysis with Varying Mass Parameters

 Often, parts procurement becomes an issue for aging systems. The introduction of

new parts over time may eventually lead to the question of whether or not the current

controller design is close to its optimum. If the gains of an existing control scheme are in

doubt, as to whether or not more performance might be obtained in their re-optimization,

or if the existing gains sufficiently control the current system, then this analysis provides

a method in determining the cost benefit of a controller re-design.

6.7.1 Center of Gravity Shift

 For the missile system described in this chapter, the center of gravity (cg) was simply

calculated as half of the missile’s length. This section shows how the autopilot efficiency

signal varies with a changing center of gravity.

 287

 Shifting the cg towards the nose of the missile has a stabilizing effect. Shifting the cg

towards the tail of the missile has a destabilizing effect. Figure 6.3 shows that a smaller

value for the center of gravity represents a shift forward, and larger values shift the center

of gravity aft. Thus, larger values are limited much more than smaller values. For this

analysis the center of gravity is set at Xcg = [8.5, 8.875, 9.25, 9.625, 10, 10.375, 10.75] ft,

where 10 ft is the nominal value used in the previous sections of this chapter. This

section uses the three-loop autopilot, with gain set 4, for the analysis.

 Figure 6.65 shows how the achieved acceleration changes with a shift in cg.

0 0.05 0.1 0.15 0.2 0.25
-20

-15

-10

-5

0

5

M
is

si
le

 A
cc

el
er

at
io

n
(G

's
)

Time (sec)

Complete System: -12.92 G step response

Xcg = 8.5
Xcg = 8.875
Xcg = 9.25
Xcg = 9.625
Xcg = 10 (Nominal)
Xcg = 10.375
Xcg = 10.75
30% Undershoot
20% Overshoot

Figure 6.65. Achieved Acceleration: CG Shift

Recall that gain set 4 was designed to reach the 30% undershoot limit in the nonlinear

case. Thus, a destabilizing cg shift will immediately violate this boundary. A cg shift to

10.375 ft has an undershoot of 30.87%, and a cg shift to 10.75 ft has an undershoot of

31.79%. Obviously, these constraint violations alone may not be sufficient to indicate the

288

need for re-optimization of the controller gains. Also, seen in figure 6.65, is that the rise

times and settling times, with the cg changes, remain essentially unchanged.

0 0.05 0.1 0.15 0.2 0.25
-6

-5

-4

-3

-2

-1

0
A

lp
ha

: A
ng

le
 o

f A
tta

ck
 (d

eg
)

Time (sec)

Complete System: -12.92 G step response

Xcg = 8.5
Xcg = 8.875
Xcg = 9.25
Xcg = 9.625
Xcg = 10 (Nominal)
Xcg = 10.375
Xcg = 10.75

Figure 6.66. Angle of Attack: CG Shift

 Figure 6.66 shows the effect that a cg shift has on the achieved angle of attack. A

stabilizing cg shift requires more angle of attack to achieve the same amount of

acceleration. A destabilizing shift in cg requires less angle of attack to achieve the same

amount of acceleration.

 Figure 6.67 shows the effect that a cg shift has on the required control effort to

achieve the same amount of acceleration. A stabilizing cg shift requires more fin

deflection to achieve the desired missile acceleration, and a destabilizing cg shift requires

less fin deflection.

 289

0 0.05 0.1 0.15 0.2 0.25
-1

0

1

2

3

4

5

6

7

8

Fi
n

D
ef

le
ct

io
n

(d
eg

)

Time (sec)

Complete System: -12.92 G step response

Xcg = 8.5
Xcg = 8.875
Xcg = 9.25
Xcg = 9.625
Xcg = 10 (Nominal)
Xcg = 10.375
Xcg = 10.75

Figure 6.67. Fin Deflection: CG Shift

0 0.05 0.1 0.15 0.2 0.25
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

P
er

fo
rm

an
ce

 In
de

x

Time (sec)

Complete System: 1 G step response

Xcg = 8.5
Xcg = 8.875
Xcg = 9.25
Xcg = 9.625
Xcg = 10 (Nominal)
Xcg = 10.375
Xcg = 10.75

Figure 6.68. Performance Index: CG Shift

 Figure 6.68 shows the effect that a cg shift has on the unit step performance index.

The performance index values do not change in a monotonic fashion with a change in cg.

Figure 6.69 shows the same plot zoomed in to help illustrate this further.

290

0.04 0.06 0.08 0.1 0.12 0.14 0.16
0.06

0.061

0.062

0.063

0.064

0.065

0.066

0.067

P
er

fo
rm

an
ce

 In
de

x

Time (sec)

Complete System: 1 G step response

Xcg = 8.5
Xcg = 8.875
Xcg = 9.25
Xcg = 9.625
Xcg = 10 (Nominal)
Xcg = 10.375
Xcg = 10.75

Figure 6.69. Unit Step Performance Index: CG Shift (zoom)

0 0.05 0.1 0.15 0.2 0.25
0

0.2

0.4

0.6

0.8

1

1.2

1.4
x 10-6

A
ct

ua
to

r E
ffe

ci
en

cy

Time (sec)

Complete System: -12.92 G step response

Xcg = 8.5
Xcg = 8.875
Xcg = 9.25
Xcg = 9.625
Xcg = 10 (Nominal)
Xcg = 10.375
Xcg = 10.75

Figure 6.70. Autopilot Efficiency ηAP: CG Shift

 Figure 6.70 shows that a stabilizing cg shift decreases the efficiency of the autopilot,

and a destabilizing shift increases the efficiency of the autopilot. The efficiency signals

can be used to determine a threshold to signify the need for controller redesign. Too

 291

much increase in efficiency reduces the stability of the missile. Too much decrease in

efficiency signifies the loss of performance. The design engineer can use this

information to determine upper and lower efficiency values to signal the need for gain re-

optimization. In the case of a new controller design, the efficiency signal can be used to

help determine an allowable amount of mass parameter shift.

6.8 Conclusions

 This chapter introduced a two-degree of freedom bond graph of a missile pitch

dynamics model. A linear, three-loop autopilot was given for use in the gain selection

process. Actuator efficiency, developed in Chapter 5, was used to measure the efficiency

of different sets of autopilot gains. It was shown that the efficiency signal, of the

nonlinear system, can be used to set an upper limit of efficiency to determine the

violation of design constraints.

 A nonlinear autopilot was developed, which solves the algebraic Riccati equation at

each time step. This optimal solution was used to determine the efficiency signal of an

optimal autopilot design. The optimal efficiency signal was compared to the efficiency

signals of the linear autopilot with different gain sets. It was shown that the optimal

autopilot produced an efficiency signal that is much more proficient than those of the

linear controller with different gain sets.

 Often the system parameters, such as mass, length, and center of gravity, of aging

systems change over time, due to component changes, parts procurement, etc. Thus, after

292

time, the controller gains used may no longer perform as they did on the original system.

This chapter provides a method for determining the need for a gain redesign using the

efficiency measurement of the autopilot. This analysis was performed on the two-degree

of freedom missile bond graph, using the linear autopilot, for a change in center of

gravity. It was shown that the efficiency signal can be used to set an upper and lower

limit of efficiency to signal the need of a gain redesign.

 293

CHAPTER 7: Summary

7.1 Contributions

 The contributions of this thesis are divided among; modeling, simulation, system

analysis and controller design.

7.1.1 Modeling

 Bond graph modeling was introduced as a means of generating dynamic equations for

systems that cross multiple engineering domains. Since the bond graph deals with power

flow, the modeling method can be used with equal ability in all energy domains.

 A method for converting the Lagrangian of a system into a bond graph model was

presented. Lagrangian and Hamiltonian elements of the system were used to create the

bond graph model. Systems with complex geometries are often described by the

Lagrangian. The Lagrangian can be converted into a bond graph model using the method

presented here.

7.1.2 Simulation

 A method was provided to simulate a bond graph model directly. Simulation

difficulties arising from structural singularities, and algebraic loops were studied. The

ability of the Dymola software to handle these difficulties was investigated.

294

 A bond graph library was presented within the Dymola framework. This library takes

full advantage of Dymola’s ability to sort equations, solve algebraic loops, and handle

structural singularities. Also, the object-oriented nature of Dymola provides the ability to

use bond graph models, created with the bond graph library, in an object-oriented

fashion. Object-oriented bond graph modeling is now possible.

 The design and simulation of a system can be done quickly and meaningfully using

the Dymola object-oriented bond graph framework. As an example of the ability to

model meaningful systems, a complicated gyroscope model, created with the bond graph

library, was used in four separate instances to create a gyroscopically stabilized platform

model.

7.1.3 System Analysis

 A nonlinear actuation system that was built using the bond-graph library was

presented. Bond graph methods were used to linearize the system.

 The power-flow through a bond graph model was used to compare the effectiveness

of different control schemes. The analysis presented can be performed on controllers of

varying architectures, and is not limited to linear systems. The controller efficiency was

defined as ∫ ⎥
⎦

⎤
⎢
⎣

⎡
=

tf

ocontroller dt
yInputEnerg
gyOutputEner

η . The 2nd law of thermodynamics was used

to prove that the InputEnergy cannot be zero for any single input, physical system, after

an initial input has been given.

 295

 Various control schemes were presented for both the linear system and the nonlinear

system. The system response of each control scheme was compared using the definition

of controller efficiency. In this manner, the ability of a controller to utilize the available

energy in the system is observed.

7.1.4 Controller Design

 A two-degree of freedom bond graph model of missile pitch dynamics was

introduced. A linear, three-loop autopilot was given for use in the gain selection process.

Actuator efficiency was used to measure the efficiency of different sets of autopilot gains.

It was shown that the efficiency signal, of the nonlinear system, can be used to set an

upper limit of efficiency to determine the violation of design constraints.

 An SDRE autopilot was developed which must solve the algebraic Riccati equation at

each time step. This optimal solution was used to determine the efficiency signal of an

optimal autopilot design. The optimal efficiency signal was compared to the efficiency

signals of the linear autopilot with different gain sets. It was shown that the optimal

autopilot produced an efficiency signal that is much more proficient than those of the

linear controller with different gain sets. The optimal efficiency provides a benchmark

for the linear design.

 A method is provided for determining the need for a gain redesign using the

efficiency measurement of the autopilot. This analysis was performed on the two-degree

of freedom missile bond graph using the linear autopilot, for a change in center of

296

gravity. It was shown that the efficiency signal can be used to set an upper and lower

limit of efficiency to signal the need of a gain redesign.

7.2 Future Work

7.2.1 Modeling

 Added insight into a model was obtained by viewing it from both Lagrangian and

bond graph modeling view points. Other modeling methodologies exist for dealing with

multibody systems. One such methodology is known as Kane’s method [Kan80]. Kane’s

method is well suited for dealing with spacecraft dynamics. The potential exists for

further insight into spacecraft dynamics modeling by mapping Kane’s method into the

bond graph method. Upon retrieving a bond graph model, bond graph based analysis

would be possible, such as efficiency measurement, and power flow model reduction.

7.2.2 Simulation

 The bond graph library presented here can be further expanded to include bond graph

models of mechanical joints. In this way, a multibody library can be created where each

component contains a bond graph. The advantage of having an underlying bond graph

allows the modeling engineer to monitor power flow in the system.

 297

 Naturally this expansion is not limited to mechanical joints. Chemical reaction

components, hydraulic components, and thermodynamic components would further

expand the applications of object-oriented bond graph modeling.

7.2.3 System Analysis and Controller Design

 This research uses the power flow information of a bond graph to develop a method

for measuring the efficiency of a system. Power flow analysis can further be used to

develop a controller that monitors and limits power flow through certain areas of the

plant. By monitoring the power flow through a specific bond graph branch, and selecting

a control law that keeps the power flow on this branch below a specific threshold, a

control system can be created that is designed to protect specific portions of the plant.

This control scheme can be set up in an observer design fashion where a bond graph

model is used as the observer.

 The efficiency measurement defined in this research was not limited to linear models.

The power flow and causal relationships of a bond graph hold for both linear and

nonlinear bond graph models. Currently, there is continuing research involved in

understanding the relationships between bond graph causal loops/paths and system

controllability/observability [Sar04]. The causal loop techniques developed can be

further extrapolated to nonlinear systems such that controllability and observability of

nonlinear systems can be determined.

298

APPENDIX A1: Dymola Model, SDRE Code Listing

 model EOM_State_Space
// Author: Robert McBride
// EOM_State_Space is also referred to as SDRE
 parameter Real diam=0.5 "Missile Diam. (ft)";
 parameter Real L=7.0 "Missile Length (ft)";
 parameter Real Lp=1.0 "Radome Length (ft)";
 parameter Real Ln=1.0 "Length to wing(ft)";
 parameter Real mass=9.0 "Missile Mass (slugs)";
 parameter Real mach=2.0 "Missile Mach";
 parameter Real Vs=1000.0 "Speed of Sound (ft/s)";
 parameter Real ht=2.0/3.0 "Tail Height (ft)";
 parameter Real ctt=0.0 "Tail Tip Chord (ft)";
 parameter Real crt=2.0/3.0 "Tail Root Chord (ft)";
 parameter Real hw=0.0 "Wing Heigh (ft)";
 parameter Real ctw=0.0 "Wing Tip Chord (ft)";
 parameter Real crw=0.0 "Wing Root Chord (ft)";
 parameter Real altitude=1000.0 "Missile Alt. (ft) assumed < 30kft.";
 parameter Real wric=2.0 "Qh[1,1] weight";
 parameter Real Rric=1.0 "R weight";
 protected
 constant Real DPR=57.2957795130823 "Deg. per rad.";
 constant Real pi=3.14159265358979 "PI";
 Real beta=sqrt(mach^2 - 1.0);
 Real sref=pi*diam^2/4.0;
 Real splan=L*diam;
 Real st=.5*ht*(ctt + crt);
 Real sw=.5*hw*(ctw + crw);
 Real rho=.002378*exp(-altitude/30000.0);
 Real Vm=mach*Vs;
 Real Q=rho*Vm^2/2.0;
 Real Xcpn=.67*Lp;
 Real An=.67*Lp*diam;
 Real Ab=(L - Lp)*diam;
 Real Xcpb=(.67*An*Lp + Ab*(Lp + .5*(L - Lp)))/(An + Ab);
 Real Xhl=L - .5;
 Real Xcg=L/2;
 Real Xcpw=Lp + Ln + .7*crw - .2*ctw;
 Real Iyy=mass*L^2/12;
 Real alpha;
 Real thetad;
 Real Az_err;
 Real a11;
 Real a21;
 Real b1;
 Real b2;
 Real h1;
 Real l1;
 Real I[2, 2];
 Real A[2, 2];
 Real B[2, 1];
 Real C[2, 2];
 Real Ci[2, 2];
 Real D[2, 1];
 Real Qw[1, 1];
 Real Rw[1, 1];
 Real Qh[2, 2];
 Real Rh[1, 1];
 Real Rhi[1, 1];
 Real Sh[2, 1];
 Real Ah[2, 2];
 Real Bh[2, 2];
 Real Ch[2, 2];
 Real Pric[2, 2];

 299

 Real Hric[1, 2];
 Real Lric[1, 1];
 Real Ktemp[1, 2];
 Real Temp[1, 1];
 Real Temp2[1, 1];
 Real Temp2i[1, 1];
 Real Kopt[1, 2];
 Real X[2, 1];
 Real Y[2, 1];
 Real I1[1, 1];
 Real ind[2, 1];
 Real Acc[2, 2];
 Real Acci[2, 2];
 Real Bpc[2, 1];
 Real Ccc[1, 2];
 Real Dpc[1, 1];
 Real KDtmpi[1, 1];
 Real KDtmp[1, 1];
 Real KD[1, 1];
 Real Kssi[1, 1];
 output Real Kss[1, 1](start=[1]);
 output Real Uopt[1, 1];
 public
 Modelica.Blocks.Interfaces.InPort AZ_error_in(n=1) annotation (extent=[-
 10, -100; 10, -80], rotation=90);
 Modelica.Blocks.Interfaces.OutPort Kss_out(n=1) annotation (extent=[100,
 -70; 120, -50]);
 Modelica.Blocks.Interfaces.OutPort U_opt_out(n=1) annotation (extent=[100
 , 50; 120, 70]);
 Modelica.Blocks.Interfaces.InPort alpha_in(n=1) annotation (extent=[-120
 , 50; -100, 70]);
 Modelica.Blocks.Interfaces.InPort q_in(n=1) annotation (extent=[-120, -70
 ; -100, -50]);
 Linear_Algebra.Riccati4 Riccati4 annotation (extent=[-40, -20; 20, 40]);
 equation

//Read in the input signals
 alpha = alpha_in.signal[1];
 thetad = q_in.signal[1];
 Az_err = AZ_error_in.signal[1];
//Fill the state vector and Meas. vector Y
 X[1, 1] = alpha;
 X[2, 1] = thetad;
 Y[1, 1] = Az_err;
 Y[2, 1] = thetad;
//Assign weights
 Qw[1, 1] = wric;
 Rw[1, 1] = Rric;
 I1[1, 1] = 1.0;

//Create the state space matrices A, B, C, D, H, L
 a11 = -Q/(Vm*mass)*(2*sref + 1.5*splan*alpha + 8*sw/beta + 8*st/beta);
 a21 = Q*diam/Iyy*(2*sref*(Xcg - Xcpn) + 1.5*splan*alpha*(Xcg - Xcpb) + (
 Xcg - Xcpw)*8*sw/beta + 8*st*(Xcg - Xhl)/beta);
 b1 = -8*Q*st/(Vm*mass*beta);
 b2 = (Xcg - Xhl)*8*st*Q*diam/(beta*Iyy);
 // D = -8*Q*st/(Vm*mass*beta);
 h1 = -a11*Vm;
 l1 = -b1*Vm;
 A[1, 1] = a11;
 A[1, 2] = 1.0;
 A[2, 1] = a21;
 A[2, 2] = 0.0;
 B[1, 1] = b1;
 B[2, 1] = b2;
 C[1, 1] = h1;

300

 C[1, 2] = 0.0;
 C[2, 1] = 0.0;
 C[2, 2] = 1.0;
 D[1, 1] = l1;
 D[2, 1] = 0.0;
 Hric[1, 1] = h1;
 Hric[1, 2] = 0.0;
 Lric[1, 1] = l1;
//Create the matrix inputs to Riccati4 Ah, Bh, Ch
 Qh = transpose(Hric)*Qw*Hric;
 Sh = transpose(Hric)*Qw*Lric;
 Rh = Rw + transpose(Lric)*Qw*Lric;
 Rhi[1, 1] = 1/(Rh[1, 1]);
 Ah = A - B*Rhi*transpose(Sh);
 Bh = B*Rhi*transpose(B);
 Ch = Qh - Sh*Rhi*transpose(Sh);
//Call Riccati4
 for i in 1:2 loop
 for j in 1:2 loop
 Riccati4.Amat_input.signal[j + (i - 1)*2] = Ah[j, i];
 Riccati4.Bmat_input.signal[j + (i - 1)*2] = Bh[j, i];
 Riccati4.Cmat_input.signal[j + (i - 1)*2] = Ch[j, i];
 I[j, i] = if (j == i) then 1.0 else 0.0;
 end for;
 end for;
//Fill the matrix Pric with the ARE Solution
 for i in 1:2 loop
 for j in 1:2 loop
 Pric[j, i] = Riccati4.RP_output.signal[j + (i - 1)*2];
 end for;
 end for;
//Calculate optimal feedback gain.
 Ktemp = -Rhi*(transpose(B)*Pric + transpose(Sh));
 Ci*C = I;
 Temp = Ktemp*Ci*D;
 Temp2[1, 1] = Temp[1, 1] + 1;
 Temp2i*Temp2 = I1;
 Kopt = Temp2i*Ktemp*Ci;
//Calculate the optimal input Uopt.
 Uopt = Kopt*Y;
 U_opt_out.signal[1] = Uopt[1, 1];
 KDtmp = Kopt*D;
 KDtmpi[1, 1] = 1 - KDtmp[1, 1];
 KD*KDtmpi = I1;

 ind[1, 1] = 1;
 ind[2, 1] = 0;

//Calculate the closed loop matrices
 Acc = A + B*KD*Kopt*C;
 Acci*Acc = I;
 Bpc = B*KD*Kopt*ind;
 Ccc = Hric + Lric*KD*Kopt*C;
 Dpc = Lric*KD*Kopt*ind;
//Calculate Kss
 Kssi = Ccc*Acci*Bpc - Dpc;
 Kss*Kssi = I1;

 Kss_out.signal[1] = Kss[1, 1];

 annotation (Diagram, Icon(
 Rectangle(extent=[-100, 100; 100, -100], style(fillColor=43,
 fillPattern=1)),
 Text(
 extent=[-58, 138; 54, 94],
 style(fillColor=43, fillPattern=1),
 string="SDRE"),

 301

 Text(
 extent=[-16, -62; 18, -80],
 style(fillColor=43, fillPattern=1),
 string="AZ_Err"),
 Text(
 extent=[-94, 68; -60, 50],
 style(fillColor=43, fillPattern=1),
 string="Alpha"),
 Text(
 extent=[-96, -52; -62, -70],
 style(fillColor=43, fillPattern=1),
 string="q"),
 Text(
 extent=[60, 70; 94, 52],
 style(fillColor=43, fillPattern=1),
 string="Uopt"),
 Text(
 extent=[66, -50; 100, -68],
 style(fillColor=43, fillPattern=1),
 string="Kss")));
 end EOM_State_Space;

302

APPENDIX A2: Dymola Model, Riccati4 Code Listing

 model Riccati4
 Linear_Algebra.Hamiltonian_eig4 Heig4 annotation (extent=[-50, -40; 30, 40]);
 // Author: Robert McBride
 // Solve the Algebraic Riccati Eq. A'*X + X*A - X*B*X + C = 0
 input Real A[2, 2];
 input Real R[2, 2];
 input Real mQ[2, 2];
 output Integer indx1;
 output Integer indx2;
 output Real RP[2, 2];
 output Real IP[2, 2];
 protected
 Real mAt[2, 2];
 Real RX1[2, 2];
 Real RX2[2, 2];
 Real IX1[2, 2];
 Real IX2[2, 2];
 Real RX1inv[2, 2];
 Real IX1inv[2, 2];
 Real H[4, 4];
 Real RV1[4, 1];
 Real RV2[4, 1];
 Real RV3[4, 1];
 Real RV4[4, 1];
 Real RV_used[4, 4];
 Real RV_1out[4, 1];
 Real IV_1out[4, 1];
 Real RV_2out[4, 1];
 Real IV_2out[4, 1];
 Real IV1[4, 1];
 Real IV2[4, 1];
 Real IV3[4, 1];
 Real IV4[4, 1];
 Real IV_used[4, 4];
 Real Re1;
 Real Re2;
 Real Re3;
 Real Re4;
 Real tst1;
 Real tst2;
 Real tst3;
 Real tst4;
 Real detX1inv[2];
 Real detX1inv1[2];
 Real detX1inv2[2];
 Real div1[2];
 Real div2[2];
 Real div3[2];
 Real div4[2];
 // constant Integer i1=3;
 // constant Integer i2=4;
 constant Integer n=2;
 public
 Modelica.Blocks.Interfaces.InPort Amat_input(n=4) annotation (extent=[-100
 , 50; -80, 70]);
 public
 Modelica.Blocks.Interfaces.InPort Bmat_input(n=4) annotation (extent=[-100
 , -10; -80, 10]);
 public
 Modelica.Blocks.Interfaces.InPort Cmat_input(n=4) annotation (extent=[-100
 , -70; -80, -50]);
 Modelica.Blocks.Interfaces.OutPort RP_output(n=4) annotation (extent=[80,
 20; 100, 40]);

 303

 Modelica.Blocks.Interfaces.OutPort IP_output(n=4) annotation (extent=[80, -
 40; 100, -20]);
 equation
//Build the Hamiltonain
 for i in 1:n loop
 for j in 1:n loop
 A[j, i] = Amat_input.signal[j + (i - 1)*n];
 R[j, i] = -Bmat_input.signal[j + (i - 1)*n];
 mQ[j, i] = -Cmat_input.signal[j + (i - 1)*n];
 end for;
 end for;
 mAt = -transpose(A);
 H[1, 1] = A[1, 1];
 H[1, 2] = A[1, 2];
 H[2, 1] = A[2, 1];
 H[2, 2] = A[2, 2];
 H[1, 3] = R[1, 1];
 H[1, 4] = R[1, 2];
 H[2, 3] = R[2, 1];
 H[2, 4] = R[2, 2];
 H[3, 1] = mQ[1, 1];
 H[3, 2] = mQ[1, 2];
 H[4, 1] = mQ[2, 1];
 H[4, 2] = mQ[2, 2];
 H[3, 3] = mAt[1, 1];
 H[3, 4] = mAt[1, 2];
 H[4, 3] = mAt[2, 1];
 H[4, 4] = mAt[2, 2];
//Call Hieg4
 for i in 1:4 loop
 for j in 1:4 loop
 Heig4.Amat_input.signal[j + (i - 1)*4] = H[j, i];
 end for;
 end for;
//Collect the eigenvectors output from Heig4
 for i in 1:2*n loop
 RV1[i, 1] = Heig4.Reigvec_output.signal[i];
 RV2[i, 1] = Heig4.Reigvec_output.signal[i + 4];
 RV3[i, 1] = Heig4.Reigvec_output.signal[i + 4 + 4];
 RV4[i, 1] = Heig4.Reigvec_output.signal[i + 4 + 4 + 4];
 IV1[i, 1] = Heig4.Ieigvec_output.signal[i];
 IV2[i, 1] = Heig4.Ieigvec_output.signal[i + 4];
 IV3[i, 1] = Heig4.Ieigvec_output.signal[i + 4 + 4];
 IV4[i, 1] = Heig4.Ieigvec_output.signal[i + 4 + 4 + 4];
 end for;
 Re1 = Heig4.eig_output.signal[1];
 Re2 = Heig4.eig_output.signal[3];
 Re3 = Heig4.eig_output.signal[5];
 Re4 = Heig4.eig_output.signal[7];
//Find eigenvalues with neg. real parts
 tst1 = if (Re1 < 0.0) then 1.0 else 0.0;
 tst2 = if (Re2 < 0.0) then 1.0 else 0.0;
 tst3 = if (Re3 < 0.0) then 1.0 else 0.0;
 tst4 = if (Re4 < 0.0) then 1.0 else 0.0;
//Collect the corresponing eigenvectors
 for j in 1:4 loop
 RV_used[j, 1] = tst1*RV1[j, 1];
 RV_used[j, 2] = tst2*RV2[j, 1];
 RV_used[j, 3] = tst3*RV3[j, 1];
 RV_used[j, 4] = tst4*RV4[j, 1];
 IV_used[j, 1] = tst1*IV1[j, 1];
 IV_used[j, 2] = tst2*IV2[j, 1];
 IV_used[j, 3] = tst3*IV3[j, 1];
 IV_used[j, 4] = tst4*IV4[j, 1];
 end for;
//Find the indices of the stabilizing eigenvectors

304

 indx1 = if (RV_used[1, 1] > .5) then 1 else if (RV_used[1, 2] > .5) then 2
 else 3;
 indx2 = if (indx1 == 1) then if (RV_used[1, 2] > .5) then 2 else if (
 RV_used[1, 3] > .5) then 3 else 4 else if (indx1 == 2) then if (RV_used[1
 , 3] > .5) then 3 else 4 else 4;
 RV_1out[:, 1] = if (indx1 == 1) then RV_used[:, 1] else if (indx1 == 2)
 then RV_used[:, 2] else RV_used[:, 3];
 RV_2out[:, 1] = if (indx2 == 2) then RV_used[:, 2] else if (indx2 == 3)
 then RV_used[:, 3] else RV_used[:, 4];
 IV_1out[:, 1] = if (indx1 == 1) then IV_used[:, 1] else if (indx1 == 2)
 then IV_used[:, 2] else IV_used[:, 3];
 IV_2out[:, 1] = if (indx2 == 2) then IV_used[:, 2] else if (indx2 == 3)
 then IV_used[:, 3] else IV_used[:, 4];
//Create X1 and X2 to solve P = X2*inv(X1)
 RX1[1, 1] = RV_1out[1, 1];
 RX1[1, 2] = RV_2out[1, 1];
 RX1[2, 1] = RV_1out[2, 1];
 RX1[2, 2] = RV_2out[2, 1];
 RX2[1, 1] = RV_1out[3, 1];
 RX2[1, 2] = RV_2out[3, 1];
 RX2[2, 1] = RV_1out[4, 1];
 RX2[2, 2] = RV_2out[4, 1];
 IX1[1, 1] = IV_1out[1, 1];
 IX1[1, 2] = IV_2out[1, 1];
 IX1[2, 1] = IV_1out[2, 1];
 IX1[2, 2] = IV_2out[2, 1];
 IX2[1, 1] = IV_1out[3, 1];
 IX2[1, 2] = IV_2out[3, 1];
 IX2[2, 1] = IV_1out[4, 1];
 IX2[2, 2] = IV_2out[4, 1];
//Calculate inv(X1)
 detX1inv1 = complex_mult(RX1[1, 1], IX1[1, 1], RX1[2, 2], IX1[2, 2]);
 detX1inv2 = complex_mult(RX1[2, 1], IX1[2, 1], RX1[1, 2], IX1[1, 2]);
 detX1inv[1] = detX1inv1[1] - detX1inv2[1];
 detX1inv[2] = detX1inv1[2] - detX1inv2[2];

 //detX1inv = complex_mult(RX1[1, 1], IX1[1, 1], RX1[2, 2], IX1[2, 2])-
complex_mult(RX1[2, 1], IX1[2, 1], RX1[1, 2], IX1[1, 2]);
 div1 = complex_div(RX1[2, 2], IX1[2, 2], detX1inv[1], detX1inv[2]);
 div2 = complex_div(-RX1[1, 2], -IX1[1, 2], detX1inv[1], detX1inv[2]);
 div3 = complex_div(-RX1[2, 1], -IX1[2, 1], detX1inv[1], detX1inv[2]);
 div4 = complex_div(RX1[1, 1], IX1[1, 1], detX1inv[1], detX1inv[2]);

 RX1inv[1, 1] = div1[1];
 RX1inv[1, 2] = div2[1];
 RX1inv[2, 1] = div3[1];
 RX1inv[2, 2] = div4[1];
 IX1inv[1, 1] = div1[2];
 IX1inv[1, 2] = div2[2];
 IX1inv[2, 1] = div3[2];
 IX1inv[2, 2] = div4[2];

//Calculate P = RP+IPi (IP should always be zero)
 RP = RX2*RX1inv - IX2*IX1inv;
 IP = IX2*RX1inv + RX2*IX1inv;
 for i in 1:2 loop
 for j in 1:2 loop
 RP_output.signal[j + (i - 1)*2] = RP[j, i];
 IP_output.signal[j + (i - 1)*2] = IP[j, i];
 end for;
 end for;

 annotation (Diagram(
 Text(extent=[-92, 66; -50, 52], string="A"),
 Text(extent=[-92, 6; -50, -8], string="B"),
 Text(extent=[-92, -54; -50, -68], string="C"),

 305

 Text(extent=[36, 38; 78, 24], string="Real(P)"),
 Text(extent=[38, -22; 80, -36], string="Imag(P)")), Icon(Text(
 extent=[-64, 102; 70, 78],
 style(fillColor=6, fillPattern=1),
 string="%name"), Rectangle(extent=[-80, 80; 80, -80], style(fillColor
 =77, fillPattern=1))));
 end Riccati4;

306

APPENDIX A3: Dymola Model, Heig4 Code Listing

 model Hamiltonian_eig4
//Author: Robert McBride
//This routine is referred to as Heig4
 input Real A[4, 4];
 output Real eig1[4] "Real(e1) imag(e1) Real(e2) imag(e2)";
 output Real eig2[4] "Real(e3) imag(e3) Real(e4) imag(e4)";
 output Real RV[4, 4];
 output Real IV[4, 4];
 protected
 constant Integer n=4;
 Real B[n, 1];
 Real AB1[n, 1];
 Real AB2[n, 1];
 Real AB3[n, 1];
 Real cm[n, n];
 Real icm[n, n];
 Real I[n, n];
 Real cpoly[1, n + 1];
 Real lr[1, n];
 Real lr1[1, n];
 Real lr2[1, n];
 Real lr3[1, n];
 Real T[n, n];
 Real iT[n, n];
 Real Ah[n, n];
 Real a1;
 Real a2;
 Real b1;
 Real b2;
 Real RVh[4, 4];
 Real IVh[4, 4];
 Real e1_2[2];
 Real e2_2[2];
 Real e3_2[2];
 Real e4_2[2];
 Real e1_3[2];
 Real e2_3[2];
 Real e3_3[2];
 Real e4_3[2];
 public
 Modelica.Blocks.Interfaces.InPort Amat_input(n=16) annotation (extent=[-100
 , -10; -80, 10]);
 Modelica.Blocks.Interfaces.OutPort eig_output(n=8) annotation (extent=[80,
 -10; 100, 10]);
 Modelica.Blocks.Interfaces.OutPort Ieigvec_output(n=16) annotation (extent=
 [80, -70; 100, -50]);
 Modelica.Blocks.Interfaces.OutPort Reigvec_output(n=16) annotation (extent=
 [80, 50; 100, 70]);
 Linear_Algebra.gen_eigs gen_eigs annotation (extent=[-20, -30; 40, 30]);
 equation
//Create the A matrix
 for i in 1:n loop
 for j in 1:n loop
 A[j, i] = Amat_input.signal[j + (i - 1)*4];
 end for;
 end for;
//Create B = [0 0 0 1]'
 for i in 1:n - 1 loop
 B[i, 1] = 0.0;
 end for;
 B[4, 1] = 1.0;
//Create the controllability matrix
 AB1 = A*B;

 307

 AB2 = A*AB1;
 AB3 = A*AB2;
 for j in 1:n loop
 cm[j, 1] = B[j, 1];
 end for;
 for j in 1:n loop
 cm[j, 2] = AB1[j, 1];
 end for;
 for j in 1:n loop
 cm[j, 3] = AB2[j, 1];
 end for;
 for j in 1:n loop
 cm[j, 4] = AB3[j, 1];
 end for;
 for i in 1:n loop
 for j in 1:n loop
 I[i, j] = if (i == j) then 1.0 else 0.0;
 end for;
 end for;
//Invert the controllability matrix
 icm*cm = I;
//Retrieve the last row of the inverted controleabilty matrix
 for i in 1:n loop
 lr[1, i] = icm[n, i];
 end for;
//Create the transformation matrix T
 lr1 = lr*A;
 lr2 = lr1*A;
 lr3 = lr2*A;
 for j in 1:n loop
 T[1, j] = lr[1, j];
 end for;
 for j in 1:n loop
 T[2, j] = lr1[1, j];
 end for;
 for j in 1:n loop
 T[3, j] = lr2[1, j];
 end for;
 for j in 1:n loop
 T[4, j] = lr3[1, j];
 end for;
 iT*T = I;
//Transform A to controller canonical form
 Ah = T*A*iT;
//Create the characteristic polynomial
 cpoly[1, 1] = 1;
 for j in 1:n loop
 cpoly[1, j + 1] = -Ah[4, 4 - j + 1];
 end for;
//Break the 4th order char. poly. into two 2nd order char. polys.
 b1 = cpoly[1, 2] - a1;
 a2*b2 = cpoly[1, 5];
 a2 = b2;
 b1 = sqrt(2*b2 - cpoly[1, 3]);

//Find the roots of the two 2nd order char. polys.
// eig1[1]=real(eigval1),eig1[2]=imag(eigval1)
// eig1[3]=real(eigval2),eig1[4]=imag(eigval2)
 eig1 = quadroots(1, a1, a2);
 eig2 = quadroots(1, b1, b2);

//Pass out the eigenvalues
 for i in 1:n loop
 eig_output.signal[i] = eig1[i];
 end for;
 for i in 1:n loop

308

 eig_output.signal[i + 4] = eig2[i];
 end for;

//Create the eigenvector Vandermonde matrix
 for i in 1:n loop
 RVh[1, i] = 1;
 IVh[1, i] = 0;
 end for;
 RVh[2, 1] = eig1[1];
 IVh[2, 1] = eig1[2];
 RVh[2, 2] = eig1[3];
 IVh[2, 2] = eig1[4];
 RVh[2, 3] = eig2[1];
 IVh[2, 3] = eig2[2];
 RVh[2, 4] = eig2[3];
 IVh[2, 4] = eig2[4];
 e1_2 = complex_mult(RVh[2, 1], IVh[2, 1], RVh[2, 1], IVh[2, 1]);
 e2_2 = complex_mult(RVh[2, 2], IVh[2, 2], RVh[2, 2], IVh[2, 2]);
 e3_2 = complex_mult(RVh[2, 3], IVh[2, 3], RVh[2, 3], IVh[2, 3]);
 e4_2 = complex_mult(RVh[2, 4], IVh[2, 4], RVh[2, 4], IVh[2, 4]);
 e1_3 = complex_mult(e1_2[1], e1_2[2], RVh[2, 1], IVh[2, 1]);
 e2_3 = complex_mult(e2_2[1], e2_2[2], RVh[2, 2], IVh[2, 2]);
 e3_3 = complex_mult(e3_2[1], e3_2[2], RVh[2, 3], IVh[2, 3]);
 e4_3 = complex_mult(e4_2[1], e4_2[2], RVh[2, 4], IVh[2, 4]);
 RVh[3, 1] = e1_2[1];
 IVh[3, 1] = e1_2[2];
 RVh[3, 2] = e2_2[1];
 IVh[3, 2] = e2_2[2];
 RVh[3, 3] = e3_2[1];
 IVh[3, 3] = e3_2[2];
 RVh[3, 4] = e4_2[1];
 IVh[3, 4] = e4_2[2];
 RVh[4, 1] = e1_3[1];
 IVh[4, 1] = e1_3[2];
 RVh[4, 2] = e2_3[1];
 IVh[4, 2] = e2_3[2];
 RVh[4, 3] = e3_3[1];
 IVh[4, 3] = e3_3[2];
 RVh[4, 4] = e4_3[1];
 IVh[4, 4] = e4_3[2];

//Call gen_eigs
 gen_eigs.eig_input.signal[1] = eig1[1];
 gen_eigs.eig_input.signal[2] = eig1[3];
 gen_eigs.eig_input.signal[3] = eig2[1];
 gen_eigs.eig_input.signal[4] = eig2[3];
 gen_eigs.eig_input.signal[5] = eig1[2];
 gen_eigs.eig_input.signal[6] = eig1[4];
 gen_eigs.eig_input.signal[7] = eig2[2];
 gen_eigs.eig_input.signal[8] = eig2[4];

//Use inv(T) to calcuate the eigenvectors from the
//control canonical eigenvectors
 RV = iT*RVh;
 IV = iT*IVh;
 for i in 1:4 loop
 gen_eigs.eig_vec_input.signal[i] = RV[i, 1];
 gen_eigs.eig_vec_input.signal[i + 4] = RV[i, 2];
 gen_eigs.eig_vec_input.signal[i + 8] = RV[i, 3];
 gen_eigs.eig_vec_input.signal[i + 12] = RV[i, 4];
 gen_eigs.eig_vec_input.signal[i + 16] = IV[i, 1];
 gen_eigs.eig_vec_input.signal[i + 20] = IV[i, 2];
 gen_eigs.eig_vec_input.signal[i + 24] = IV[i, 3];
 gen_eigs.eig_vec_input.signal[i + 28] = IV[i, 4];
 end for;

//Pass out the eigenvectors

 309

 for j in 1:n loop
 Reigvec_output.signal[j + (i - 1)*4] = RVh[j, i];
 Ieigvec_output.signal[j + (i - 1)*4] = IVh[j, i];
 end for;
 end for;*/
 for i in 1:16 loop
 Reigvec_output.signal[i] = gen_eigs.eig_vec_output.signal[i];
 Ieigvec_output.signal[i] = gen_eigs.eig_vec_output.signal[i + 16];
 end for;

 annotation (Diagram(
 Text(extent=[-98, 36; -30, -2], string="Hamiltonian Matrix (4,4)"),
 Text(extent=[-6, 80; 90, 40], string="Real(Eigen Vectors) 4x4"),
 Text(extent=[-6, -40; 90, -80], string="Imag(Eigen Vectors) 4x4"),
 Text(extent=[60, -6; 124, -32], string="Eigen Values 1x8")), Icon(
 Rectangle(extent=[-80, 80; 80, -80], style(fillColor=45)), Text(
 extent=[-56, 106; 52, 82], string="%name")));
 connect(Amat_input, gen_eigs.Amat_input) annotation (points=[-88, 0; -17, 0
], style(
 color=3,
 fillColor=6,
 fillPattern=1));
 end Hamiltonian_eig4;

310

APPENDIX A4: Dymola Model, Gen_Eigs Code Listing

 model gen_eigs
// Author: Robert McBride
 input Real A[4, 4];
 input Real eig1[4];
 input Real eig2[4];
 input Real RV[4, 4];
 input Real IV[4, 4];
 output Real eig_vecs[32];
 protected
 constant Real tol=0.00001;
 constant Integer n=4;
 Integer tst12;
 Integer tst13;
 Integer tst14;
 Integer tst23;
 Integer tst24;
 Integer tst34;
 Real R1_in[n, 1];
 Real R2_in[n, 1];
 Real R3_in[n, 1];
 Real R4_in[n, 1];
 Real I1_in[n, 1];
 Real I2_in[n, 1];
 Real I3_in[n, 1];
 Real I4_in[n, 1];
 Real R1_out[n, 1];
 Real R2_out[n, 1];
 Real R3_out[n, 1];
 Real R4_out[n, 1];
 Real I1_out[n, 1];
 Real I2_out[n, 1];
 Real I3_out[n, 1];
 Real I4_out[n, 1];
 Real RLam1_I[n, n];
 Real RLam2_I[n, n];
 Real RLam3_I[n, n];
 Real RLam4_I[n, n];
 Real gen_R2[n, 1];
 Real gen_R3[n, 1];
 Real gen_R4[n, 1];
/* public
 Modelica.Blocks.Interfaces.InPort Amat_input(n=16) annotation (extent=[-100
 , -10; -80, 10]);
 Modelica.Blocks.Interfaces.InPort eig_input(n=8) annotation (extent=[-100
 , -70; -80, -50]);
 Modelica.Blocks.Interfaces.InPort eig_vec_input(n=32) annotation (extent=[-100
 , 50; -80, 70]);
 Modelica.Blocks.Interfaces.OutPort eig_vec_output(n=32) annotation (extent=[80,
 -10; 100, 10]);*/
 equation
//Fill the 4x4 A matrix with the elements of the 16x1 input vector Amat_input
 for i in 1:n loop
 for j in 1:n loop
 A[j, i] = Amat_input.signal[j + (i - 1)*4];
 end for;
 end for;
//Fill the 1x2 eig vectors with the elements of the 8x1 input vector eig_input
 eig1[1] = eig_input.signal[1];
 eig2[1] = eig_input.signal[2];
 eig3[1] = eig_input.signal[3];
 eig4[1] = eig_input.signal[4];
 eig1[2] = eig_input.signal[5];
 eig2[2] = eig_input.signal[6];

 311

 eig3[2] = eig_input.signal[7];
 eig4[2] = eig_input.signal[8];
//Fill the 4x4 RV, and IV matrices with the 32x1 input vector eig_vec_input
 for i in 1:n loop
 for j in 1:n loop
 RV[j, i] = eig_vec_input.signal[j + (i - 1)*4];
 IV[j, i] = eig_vec_input.signal[j + (i - 1)*4 + 16];
 end for;
 end for;
//Expand the eigenvector matrix to 4 separate vectors
 for i in 1:n loop
 R1_in[i, 1] = RV[i, 1];
 R2_in[i, 1] = RV[i, 2];
 R3_in[i, 1] = RV[i, 3];
 R4_in[i, 1] = RV[i, 4];
 I1_in[i, 1] = IV[i, 1];
 I2_in[i, 1] = IV[i, 2];
 I3_in[i, 1] = IV[i, 3];
 I4_in[i, 1] = IV[i, 4];
//Make a lambda*I matrix for each eigen value with the real part of the eigen value.
//For the 4th order system if the gen. eigvec. is needed then the imag. part is zero.
 for j in 1:4 loop
 RLam1_I[i, j] = if(i==j) eig1[1] else 0;
 RLam2_I[i, j] = if(i==j) eig2[1] else 0;
 RLam3_I[i, j] = if(i==j) eig3[1] else 0;
 RLam4_I[i, j] = if(i==j) eig4[1] else 0;
 end for;
 end for;

//Calculate an generalized eigenvector, gen_R*, whether its needed or not.
 (RLam2_I - A)*gen_R2 = -R2_in;
 (RLam3_I - A)*gen_R3 = -R3_in;
 (RLam4_I - A)*gen_R4 = -R4_in;

//Test to see if the generalized eigenvectors are needed.
 tst12 = if (abs(eig1[1] - eig2[1]) < tol) then if (abs(eig1[2] - eig2[2])
 < tol) then 1 else 0 else 0;
 tst13 = if (abs(eig1[1] - eig3[1]) < tol) then if (abs(eig1[2] - eig3[2])
 < tol) then 1 else 0 else 0;
 tst14 = if (abs(eig1[1] - eig4[1]) < tol) then if (abs(eig1[2] - eig4[2])
 < tol) then 1 else 0 else 0;
 tst23 = if (abs(eig2[1] - eig3[1]) < tol) then if (abs(eig2[2] - eig3[2])
 < tol) then 1 else 0 else 0;
 tst24 = if (abs(eig2[1] - eig4[1]) < tol) then if (abs(eig2[2] - eig4[2])
 < tol) then 1 else 0 else 0;
 tst34 = if (abs(eig3[1] - eig4[1]) < tol) then if (abs(eig3[2] - eig4[2])
 < tol) then 1 else 0 else 0;

//The first eigenvector is never generalized
 R1_out = R1_in;
 I1_out = I1_in;
 I2_out = I2_in;
 I3_out = I3_in;
 I4_out = I4_in;

//Assign a generalized eigenvector if needed else pass back the vector that was input.
 R2_out = if (tst12 == 1) then gen_R2
 else if (tst23 == 1) then gen_R2
 else if (tst24 == 1) then gen_R2
 else R2_in;
 R3_out = if (tst13 == 1) then gen_R3
 else if (tst34 == 1) then gen_R3
 else R3_in;
 R4_out = if (tst14 == 1) then gen_R4
 else R4_in;
 for i in 1:4 loop

312

 eig_vecs[i] = R1_in[i, 1];
 end for;
 for i in 1:4 loop
 eig_vecs[i + 4] = R2_in[i, 1];
 end for;
 for i in 1:4 loop
 eig_vecs[i + 8] = R3_in[i, 1];
 end for;
 for i in 1:4 loop
 eig_vecs[i + 12] = R4_in[i, 1];
 end for;
 for i in 1:4 loop
 eig_vecs[i + 16] = I1_in[i, 1];
 end for;
 for i in 1:4 loop
 eig_vecs[i + 20] = I2_in[i, 1];
 end for;
 for i in 1:4 loop
 eig_vecs[i + 24] = I3_in[i, 1];
 end for;
 for i in 1:4 loop
 eig_vecs[i + 28] = I4_in[i, 1];
 end for;

 end gen_eigs;

 313

APPENDIX A5: Dymola Models, Misc. Functions, Code Listing

A5.1 QuadRoots

 function quadroots
//Author: Robert McBride
//Solve a*S^2 + b*S + C = 0
 input Real a;
 input Real b;
 input Real c;
 output Real roots[4] "Real(root1) imag(root1) Real(root2) imag(root2)";
 protected
 Real i1;
 Real i2;
 Real r1;
 Real r2;
 algorithm
//Calculate the imaginary part of root 1.
 i1 := if (b^2 > 4*a*c) then 0.0 else sqrt(4*a*c - b^2)/(2*a);
//Calculate the imaginary part of root 2.
 i2 := -i1;
//Calculate the real part of root 1.
 r1 := if (b^2 > 4*a*c) then -b/(2*a) + sqrt(b^2 - 4*a*c)/(2*a) else -b/(2*a);
//Calculate the real part of root 2.
 r2 := if (b^2 > 4*a*c) then -b/(2*a) - sqrt(b^2 - 4*a*c)/(2*a) else -b/(2*a);
 roots[1] := r1;
 roots[2] := i1;
 roots[3] := r2;
 roots[4] := i2;
 end quadroots;

A5.2 Complex_Mult

 function complex_mult
//Author: Robert McBride
//Calculate (r1+i1*i)*(r2+i2*i)
 input Real r1;
 input Real i1;
 input Real r2;
 input Real i2;
 output Real m1[2] "Real((r1+i1*i)*(r2+i2*i)) Imag((r1+i1*i)*(r2+i2*i))";
 algorithm
 m1[1] := r1*r2 - i1*i2;//Real part of the multiplication
 m1[2] := r1*i2 + r2*i1;//Imag part of the multiplication
 end complex_mult;

A5.3 Complex_Div

 function complex_div
//Author: Robert McBride
//Calculate (r1+i1*i)/(r2+i2*i)
 input Real r1;

314

 input Real i1;
 input Real r2;
 input Real i2;
 output Real m1[2] "Real((r1+i1*i)/(r2+i2*i)) Imag((r1+i1*i)/(r2+i2*i))";
 protected
 Real alpha;
 Real beta;
 Real gamma;
 Real delta;
 Real temp_num[2];
 Real temp_den;
 algorithm
 alpha := r1;
 beta := i1;
 gamma := r2;
 delta := i2;
//Multiply num and den by conj(den)
 temp_num := complex_mult(alpha, beta, gamma, -delta);
 temp_den := gamma^2 + delta^2;

//Perform division
 m1[1] := temp_num[1]/temp_den;
 m1[2] := temp_num[2]/temp_den;

 end complex_div;

 315

APPENDIX B1: Symmetry of Hamiltonian Eigenvalues

B1.1 Eigenvalue Symmetry about the Real Axis

 The eigenvalues of any real valued matrix are symmetric about the real axis of the

complex plain. To see this consider a real valued matrix A with an eigenvalue λ and an

eigenvector V. Thus

VAV λ= (B1.1.1)

Taking the conjugate (without transpose) of both sides

() ()VconjAVconj λ= (B1.1.2)

which can be written

() () () ()VconjconjVconjAconj ** λ= (B1.1.3)

Since A is real valued B1.1.3 can be written

() () ()VconjconjVconjA ** λ= (B1.1.4)

Thus, if λ is an eigenvalue then conj(λ) must also be an eigenvalue, QED.

For real valued λ, conj(λ) = λ. No new information is obtained. For complex λ1, an

eigenvalue and eigenvector can be found by λ2 = conj(λ1), and V2 = conj(V1) [Cur84,

Kai80, Zho96].

316

B1.2 Hamiltonian Eigenvalue Symmetry about the Imaginary Axis

 The algebraic Riccati equation (ARE) is

0=+++ QXRXXAAX (B1.2.1)

where A, Q, and R are real n x n matrices with Q and R symmetric. The Hamiltonian

matrix associated with the ARE is

⎥
⎦

⎤
⎢
⎣

⎡
−−

= *:
AQ
RA

H (B1.2.2)

Introducing an n x n transformation matrix J with the property IJ −=2

⎥
⎦

⎤
⎢
⎣

⎡ −
=

0
0

:
I

I
J (B1.2.3)

Note JJ −=−1 . Use this matrix to transform H in the following fashion

*1 HJHJHJJ −=−=− (B1.2.4)

herefore H is similar to –H*. Thus, if λ is an eigenvalue, then ()λconj− is also an

eigenvalue, QED [Zho96 pp.327-328].

 Note that the eigenvalues of H are symmetric about both axes. This implies that the

characteristic polynomial of H does not contain odd powers of S. This insight helps in

finding the eigenvalues of H in that the characteristic polynomial can be broken down

into n, second-order polynomials with real coefficients.

 317

APPENDIX B2: Vandermonde Representation of Controller Canonical
Eigenvectors

 Given a matrix A that can be transformed into controller canonical form A~ , with a

transformation matrix T, such that

1~ −= TATA (B2.1)

where

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

−1210 ...
1...000
.....
.....
.....
0...100
0...010

~

naaaa

A (B2.2)

Let λi be an eigenvalue of A. Then there exists an eigenvector Vhi such that

iii VhVhA λ=
~ (B2.3)

Let Vhi(1) = 1, since the eigenvalue/eigenvector problem is over-determined. Thus, from

B2.2 and B2.3

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

−1

2

.

.

.

1

n
i

i

i

iVh

λ

λ
λ

 (B2.4)

318

The complete eigenvalue/eigenvector problem becomes

Λ=VhVhA~ (B2.5)

where Λ is a diagonal matrix made up of the eigenvalues of A, and Vh is a Vandermonde

matrix formed from the eigenvalues as shown by equation B2.3, QED [Kai80 pp. 54-55].

 Since equation B2.1 can be written

TATA ~1−= (B2.6)

and B2.5 shows

1~ −Λ= VhVhA (B2.7)

Substituting B2.7 into B2.6 gives

TVhVhTA 11 −− Λ= (B2.8)

Therefore VhT 1− form the eigenvector matrix of A.

 319

APPENDIX C: Glossary of Terms

2DoF Two Degree of Freedom

6DoF Six Degree of Freedom

ARE Algebraic Riccati Equation

cg Center of Gravity

LQR Linear Quadratic Regulator

NC1 Nonlinear Controller 1

NC2 Nonlinear Controller 2

PID Proportional Integral Derivative

PWM Pulse Width Modulation

SDRE State Dependent Riccati Equation

320

REFERENCES

Bej97 Bejan, A., Advanced Engineering Thermodynamics. 2nd Edition, 1997, John

Wiley and Sons, Inc.

Bro01 Brown, F. T., Engineering System Dynamics, 2001, Marcel Dekker, Inc.

Bro72 Brown, F. T., “Lagrangian Bond Graphs,” Journal of Dynamic Systems,

Measurement, and Control, Trans. ASME, September 1972, pp. 213-221.

Brü02 Brück, D., Elmqvist, H., Mattsson, S. E., and Olsson, H., “Dymola for Multi-

Engineering Modeling and Simulation,” Proceedings 2nd International
Modelica, Conference, Munich, Germany, 2002, pp. 55:1-9,
http://www.modelica.org/Conference2002/papers/p07_Brueck.pdf.

Cel03a Cellier, F. E., McBride, R. T., “Object-Oriented Modeling of Complex

Physical Systems Using the Dymola Bond-Graph Library,” Proceedings
International Conference on Bond Graph Modeling, Orlando, Florida, 2003,
pp. 157-162.

Cel03b Cellier, F. E., Greifeneder, J., “Object-Oriented Modeling of Convective

Flows using the Dymola Thermo-Bond Graph Library,” Proceedings
International Conference on Bond Graph Modeling, Orlando, Florida, 2003,
pp. 198-204.

Cel93 Cellier, F. E., Elmqvist, H., “Automated Formula Manipulation Supports

Object-Oriented Continuous-System Modeling,” IEEE Control Systems, 1993,
13(2), pp. 28-38.

Cel91 Cellier, F. E., Continuous System Modeling. 1991, New York: Springer-

Verlag.

Cen89 Çengel, Y. A., Boles, M. A., Thermodynamics, an Engineering Approach.

1989, McGraw Hill, Inc.

Clo96a Cloutier, J. R., Mracek, C. P., “Missile Longitudinal Autopilot Design Using

the State-Dependent Riccati Equation Method,” Proceedings Nonlinear
Problems in Aviation and Aerospace, Florida, 1996, pp. 143-176.

Clo96b Cloutier, J. R., D’Souza, C. N., Mracek, C. P., “Nonlinear Regulation and

Nonlinear H∞ Control Via the State-Dependent Riccati Equation Technique,”
Proceedings Nonlinear Problems in Aviation and Aerospace, Florida, 1996,
pp. 117-142.

 321

Cur84 Curtis, C. W., Linear Algebra, an Introductory Approach, 1984, New York:

Springer Verlag.

Dym DYMOLA Dynamic Modeling Laboratory, World Wide Web page

http://www.Dynasim.se.

Elm94 Elmqvist, H., Otter, M., “Methods for Tearing Systems of Equations in

Object-Oriented Modeling,” Proceedings European Simulation
Multiconference, Barcelona, Spain, 1994, pp. 326-332.

Fah99 Fahrenthold, E. P., Koo, J. C., “Discrete Hamilton’s Equations for Viscous

Compressible Fluid Dynamics,” Computer Methods in Applied Mechanics
and Engineering, 1999, 178(1-2), pp. 1-22

Fah94 Fahrenthold, E. P., Wargo, J. D., “Lagrangian Bond Graphs for Solid

Continuum Dynamics Modeling,” Journal of Dynamic Systems, Measurement
and Control, Trans. ASME, June 1994, pp. 178-192.

Fav98 Favre, W., Scavarda, S., “Bond Graph Representation of Multibody Systems

with Kinematic Loops,” Journal of the Franklin Institute of Engineering and
Applied Mathematics, 335B (4), May 1998, pp. 643-660.

Fra98 Franklin, G. F., Powell, J. D., Workman, M., Digital Control of Dynamic

Systems. 3rd Edition, 1998, Addison-Wesley Longman, Inc.

Fra94 Franklin, G. F., Powell, J. D., Emami-Naeini, A., Feedback Control of

Dynamic Systems, 1994, Addison-Wesley Publishing, Inc.

Gre01a Greifeneder, J., Cellier, F. E., “Modeling Convective Flows using Bond

Graphs,” Proceedings International Conference on Bond Graph Modeling,
Phoenix, Arizona, 2001, pp. 276-284.

Gre01b Greifeneder, J., Cellier, F. E., “Modeling Multi-Phase Systems using Bond

Graphs,” Proceedings International Conference on Bond Graph Modeling,
Phoenix, Arizona, 2001, pp. 285-291.

Jun05 Junco, S., Donaire, A., “BG-Supported Synthesis – and Position – Tracking

Controllers for Brushless DC-Motor Drives,” Proceedings International
Conference on Bond Graph Modeling, New Orleans, Louisiana, 2005, pp.
245-251.

322

Kai80 Kailath, T., Linear Systems. 1980, New Jersey: Prentice Hall, Inc.

Kan80 Kane, T. R., Levinson, D. A., “Formulation of Equations of Motion for

Complex Spacecraft,” Journal of Guidance and Control, 1980, 3(2), pp. 99-
112

Kar90 Karnopp, D. C., Margolis, D. L., Rosenberg, R. C., System Dynamics: A

Unified Approach. 1990, John Wiley & Sons, Inc.

Kar83 Karnopp, D. C., Rosenberg, D. L., Introduction to Physical System Dynamics.

1983, McGraw-Hill, Inc.

Kar77 Karnopp, D. C., “Lagranges Equations for Complex Bond Graph Systems,”

Journal of Dynamic Systems, Measurement, and Control, Trans. ASME,
December 1977, pp. 300-306.

Kar69 Karnopp, D. C., “Power-Conserving Transformation: Physical Interpretations

and Applications using Bond Graphs,” Journal of the Franklin Institute, 1969,
288(3), pp. 175-201.

Kir98 Kirk, D. E., Optimal Control Theory, An Introduction, 1998, New York:

Dover Publications, Inc.

Lag1788 Lagrange, J. L., “Mechanique Analytique”. Paris, 1788.

Lam91 Lambert, J. D., Numerical Methods for Ordinary Differential Systems: The

Initial Value Problem, 1991, New York: John Wiley.

Liu02 Liu, Z. Y., Wagner, J., “Nonlinear Model Reduction for Dynamic and

Automotive System Descriptions,” Journal of Dynamic Systems Measurement
and Control, Trans. ASME, December 2002, pp. 637-647.

Lou02 Louca, L. S., Stein, J. L., “Ideal Physical Element Representation from

Reduced Bond Graphs,” Proceedings of the Institution of Mechanical
Engineers, Part I-Journal of Systems and Control Engineering, 2002, 216(I1),
pp. 73-83.

Lou99 Louca, L. S., Stein, J. L., “Energy-Based Model Reduction of Linear

Systems,” Proceedings International Conference on Bond Graph Modeling,
San Francisco, California, 1999.

Map Maple, Maplesoft, World Wide Web page http://www.maplesoft.com.

 323

Mas91 Maschke, B., “Geometrical Formulation of Bond Graph Dynamics with
Applications to Mechanisms,” Journal of the Franklin Institute of Engineering
and Applied Mathematics, 1991, 328(5-6), pp. 723-740.

Mat MATLAB, The Language of Technical Computing, World Wide Web page

http://www.mathworks.com.

McB05a McBride, R. T., Cellier, F. E., “Optimal Controller Gain Selection Using the

Power Flow Information of Bond Graph Modeling,” Proceedings
International Conference on Bond Graph Modeling, New Orleans, Louisiana,
2005, pp. 228-232.

McB05b McBride, R. T., Quality Metric for Controller Design, Internal Raytheon

Document, Raytheon Missile Systems, Tucson AZ 85734, 2005.

McB05c McBride, R. T., Cellier, F. E., “System Efficiency Measurement through Bond

Graph Modeling,” Proceedings International Conference on Bond Graph
Modeling, New Orleans, Louisiana, 2005. pp. 221-227.

McB03 McBride, R. T., Cellier, F. E., “Object-Oriented Bond-Graph Modeling of a

Gyroscopically Stabilized Camera Platform,” Proceedings International
Conference on Bond Graph Modeling, Orlando, Florida, 2003, pp. 157-223.

McB01 McBride, R. T., Cellier, F. E., “A Bond Graph Representation of a Two-

Gimbal Gyroscope,” Proceedings International Conference on Bond Graph
Modeling, Phoenix, Arizona, 2001, pp. 305-312.

Mei98 Meirovitch, L., Methods of Analytical Dynamics, 1998, New York: Dover

Publications Inc.

Mon91 Montbrundifilippo, J., Delgado, M., Brie, C., Paynter, H. M., “A Survey of

Bond Graphs – Theory, Applications and Programs,” Journal of the Franklin
Institute of Engineering and Applied Mathematics, 1991, 328(5-6), pp. 565-
606.

Mra05 Mracek, C. P., Ridgely, D. B., “Missile Longitudinal Autopilots: Connections

Between Optimal Control and Classical Topologies,” Raytheon Missile
Systems, Tucson AZ 85734, April 2005, to be published at AIAA Guidance
and Control Conference, San Francisco, California, Aug. 2005.

324

Muk05 Mukherjee, A., Vikas, R., Dasgupta, A., “A Procedure for Finding Invariants
of Motions for General Class of Unsymmetric Systems with Gauge-variant
Umbra Lagrangian Generated by Bond Graphs,” Proceedings International
Conference on Bond Graph Modeling, New Orleans, Louisiana, 2005, pp. 11-
16.

Muk97 Mukherjee, A., Samantaray, A. K., “Umbra-Lagranges Equations through

Bond Graphs,” Proceedings International Conference on Bond Graph
Modeling, Phoenix, Arizona, 1997, pp. 168-174.

Pan88 Pantelides, C. C., “The Consistent Initialization of Differential-Algebraic

Systems,” SIAM Journal of Scientific Statistical Computation, 1988, 9(2), pp.
213-231.

Rei93 Reichert, R. T., Nichols, R., Rugh, W., Gain Scheduling for H∞ Controllers:

A Flight Control Example, Internal JHU Document, The John Hopkins
University JHU/ECE-92/03, Baltimore Maryland 21218, 1993.

Sar04 Samantaray, A. K., Medjaher, K., Bouamama, B. O., Staroswiecki, M.,

Dauphin-Tanguy, G., “Component-Based Modelling of Thermofluid Systems
for Sensor Placement and Fault Detection,” Simulation-Transactions of the
Society for Modeling and Simulation International, 2004, 80(7-8), pp. 381-
398.

Tar72 Tarjan, R. E., “Depth First Search and Linear Graph Algorithms,” SIAM

Journal on Computing, 1972, 1, pp.146-160.

Ther ThermoAnalytics, Inc., World Wide Web page

http://www.thermoanalytics.com/support/publications/batterymodelsdoc.html

Tve98 Tveter F., “Deriving the Hamilton Equations of Motion for a Non-

conservative System using a Variational Principle,” Journal of Mathematical
Physics, 1998, 39, pp. 1495-1500.

Urq03a Urquia A., Dormido, S., “Object-Oriented Description of Hybrid Dynamic

Systems of Variable Structure,” Simulation Trans. of the Society for Modeling
and Simulation International, 2003, 79(9), pp. 485-493.

Urq03b Urquia A., Dormido, S., “Object-Oriented Design of Reusable Libraries of

Hybrid Dynamic Systems – Part One: A Design Methodology,” Mathematical
and Computer Modeling of Dynamical Systems, 2003, 9(1), pp. 65-90.

War95 Wark, K. Advanced Thermodynamics for Engineers, 1995, McGraw-Hill, Inc.

 325

Zar02 Zarchan, P., Tactical and Strategic Missile Guidance, Fourth Edition.
Virginia: Vol. 199, 2002, Progress in Astronautics and Aeronautics, American
Institute of Aeronautics and Astronautics, Inc.

Zei95 Zeid A. A., Overholt, J. L., “Singularly Perturbed Bond Graph Models for

Simulation of Multibody Systems,” Journal of Dynamic Systems
Measurement and Control, Trans. ASME, Sep 1995, pp. 401-410.

Zho96 Zhou, K., Doyle, J. C., Glover, K., Robust and Optimal Control, 1996, New

Jersey: Prentice Hall, Inc.

	LIST OF FIGURES
	LIST OF TABLES
	ABSTRACT
	CHAPTER 1: Introduction
	1.1 Problem Statement
	1.2 Plan of Dissertation
	1.3 Summary of Contributions

	CHAPTER 2: Related Work
	2.1 Introduction
	2.2 System Lagrangian and Bond Graph Construction
	2.3 Object-Oriented Bond Graph Modeling
	2.4 System Efficiency Measurement Through Bond Graph Modeli
	2.5 Optimal Gain Selection Using the Bond Graph Efficiency

	CHAPTER 3: Bond Graph Modeling
	3.1 Introduction
	3.2 An Introduction to Bond Graph Modeling
	3.2.1 Power Bonds and Conjugate Variables
	3.2.2 Bond Graph Junctions
	3.2.3 1-Port Elements
	3.2.4 Basic 2-Port Elements
	3.2.5 Power Flow Diagrams
	3.2.6 Causality
	3.2.7 Bond Graph Causal Mark Assignments
	3.2.8 Bond Graph Equation Formulation
	3.2.9 Conversion of Bond Graph Variables to Common State Var

	3.3 Bond Graph Construction from the Lagrangian
	3.3.1 Lagrangian to Hamiltonian Transformation
	3.3.2 Lagrangian to Bond Graph Development
	3.3.3 Lagrangian to Bond Graph Development: Pendulum Example
	3.3.4 Lagrangian to Bond Graph Development: Gyroscope Exampl
	3.3.4.1 Gyroscope Lagrange Equations
	3.3.4.2 Gyroscope Bond Graph
	3.3.4.3 Gyroscope Bond Graph Equations

	3.4 Brown’s Lagrangian Bond Graphs
	3.5 Conclusions

	CHAPTER 4: Object-Oriented Bond Graph Modeling
	4.1 Introduction
	4.2 Dymola
	4.2.1 Equation Sorting
	4.2.2 Algebraic Loops
	4.2.2.1 Algebraic Loops within Bond Graph Modeling
	4.2.2.2 Algebraic Loops within Dymola

	4.2.3 Structural Singularities: The Higher Index Problem
	4.2.3.1 Structural Singularities within Bond Graph Modeling
	4.2.2.2 Algebraic Loops within Dymola

	4.3 The Dymola Bond Graph Library
	4.3.1 Connectors
	4.3.2 Bonds
	4.3.3 Junctions
	4.3.4 Passive Elements
	4.3.5 Sources
	4.3.6 Sensors

	4.4 A Gyroscopically Stabilized Platform: An Object-Oriente
	4.4.1 The Gyroscope Model
	4.4.2 Inertial Rate Sensor Model
	4.4.2.1 Pitch Gyro
	4.4.2.2 Yaw Gyro
	4.4.2.3 Roll Gyro

	4.4.3 Platform Model
	4.4.4 Stabilized Platform
	4.4.5 Camera Model
	4.4.6 Stabilized Platform with a Two-Gimbal Camera
	4.4.7 Simulation and Results

	4.5 Conclusions

	CHAPTER 5: System Efficiency Measurement Using the Power Flo
	5.1 Introduction
	5.2 Servo Positioning System
	5.2.1 Servo Positioning System: Complete, Non-Linear System
	5.2.2 Servo Positioning System: Complete, Linearized System
	5.2.2.1 Linearized Fin Dynamics
	5.2.2.2 Linearized Motor Dynamics

	5.3 Power Flow Considerations
	5.4 Servo Controllers
	5.4.1 Linear Control Schemes
	5.4.2 Non-Linear Control Scheme 1
	5.4.3 Non-Linear Control Scheme 2

	5.5 Step Response Comparisons
	5.5.1 Step Response Comparisons of Linear Systems
	5.5.2 Step Response Comparisons of Non-Linear Systems

	5.6 Conclusions

	CHAPTER 6: Optimal Gain Comparison Using the Power Flow Info
	6.1 Introduction
	6.2 Two Degree of Freedom Missile
	6.3 Linear Pitch Autopilot
	6.3.1 Missile Pitch Autopilot: 3-Loop Controller
	6.3.2 Missile Pitch Autopilot with Actuator Dynamics

	6.4 The Autopilot Gain Selection Process
	6.4.1 The Autopilot Gain Selection Process: The Performance
	6.4.2 Linearized Missile Pitch Dynamics for Gain Optimizatio
	6.4.2.1 Pitch Plane Linearization
	6.4.2.2 Linearized Pitch Plane and Three Loop Autopilot

	6.4.3 Linear Missile Pitch Dynamics: Sample Optimal Gains

	6.5 Actuator Power Flow Analysis Using Optimal Autopilot Ga
	6.5.1 Actuator Power Flow Efficiency from the Optimal Gain S
	6.5.2 Optimal Efficiency Comparisons

	6.6 Nonlinear Pitch Autopilot: An SDRE Approach
	6.6.1 LQR Formulation and General Solution
	6.6.2 LQR General Solution for Nonzero Feed-Through
	6.6.3 LQR Solution for Nonzero Feed-Through and Output Feedb
	6.6.4 LQR Tracking Solution for Nonzero Feed-Through, Output
	6.6.5 Dymola Implementation of the LQR Tracking Solution
	6.6.5.1 SDRE Autopilot
	6.6.5.2 Algebraic Riccati Equation Solver Riccati4
	6.6.5.3 Hamiltonian Eigenvalue Solver Heig4

	6.6.6 Nonlinear Autopilot Results
	6.6.6.1 Ideal Actuator
	6.6.6.2 Nonlinear Actuator Dynamics
	6.6.6.3 Nonlinear Autopilot, Ideal and Nonlinear Actuator Dy
	6.6.6.4 Linear and Nonlinear Autopilots Compared

	6.7 Power Flow Analysis with Varying Mass Parameters
	6.7.1 Center of Gravity Shift

	6.8 Conclusions

	CHAPTER 7: Summary
	7.1 Contributions
	7.1.1 Modeling
	7.1.2 Simulation
	7.1.3 System Analysis
	7.1.4 Controller Design

	7.2 Future Work
	7.2.1 Modeling
	7.2.2 Simulation
	7.2.3 System Analysis and Controller Design

	APPENDIX A1: Dymola Model, SDRE Code Listing
	APPENDIX A2: Dymola Model, Riccati4 Code Listing
	APPENDIX A3: Dymola Model, Heig4 Code Listing
	APPENDIX A4: Dymola Model, Gen_Eigs Code Listing
	APPENDIX A5: Dymola Models, Misc. Functions, Code Listing
	A5.1 QuadRoots
	A5.2 Complex_Mult
	A5.3 Complex_Div

	APPENDIX B1: Symmetry of Hamiltonian Eigenvalues
	B1.1 Eigenvalue Symmetry about the Real Axis
	B1.2 Hamiltonian Eigenvalue Symmetry about the Imaginary Axi

	APPENDIX B2: Vandermonde Representation of Controller Canoni
	APPENDIX C: Glossary of Terms
	REFERENCES

