
Equation-Based Modeling

of Variable-Structure Systems

PhD Examination of

Dirk Zimmer 

ETH Zürich, Department of Computer Science

ETH Zürich, March 15, 2010

Presenting

SOL
An Object-Oriented Modeling Language 

for Variable-Structure Systems.

SOL



© Dirk Zimmer, March 2010, Slide 2

Department of Computer Science

ETH Zürich

• Equation-Based Modeling in Sol

• Variable-Structure Systems

• Dynamic Processing of DAEs

• Example: The Trebuchet

• Conclusions

Outline



© Dirk Zimmer, March 2010, Slide 3

Department of Computer Science

ETH Zürich
Equation-Based Modeling

t I

t (1 cos )T

= α

α = ω

ω = ϕ

= + ϕ

&

&

• Physical Models are most
generally and conveniently
expressed by using differential-
algebraic equations (DAEs).

• Equation-based computer lang-
uages like Sol enable the
modeler to formulate his
models directly by terms of
equations.



© Dirk Zimmer, March 2010, Slide 4

Department of Computer Science

ETH Zürich
Equation-Based Modeling

model SimpleMachine

define inertia as 1.0;

interface:

parameter Real meanT;

static Real w; 

implementation:

static Real phi;

static Real t;

static Real a;

t = inertia*z;

z = der(x=w);

w = der(x=phi);

t = (1+cos(x=phi))*meanT;

end SimpleMachine;

• Physical Models are most
generally and conveniently
expressed by using differential-
algebraic equations (DAEs).

• Equation-based computer lang-
uages like Sol enable the
modeler to formulate his
models directly by terms of
equations.

• The Sol model describes an
engine driving a flywheel.

• The resulting modeling file can
then be used for simulation.



© Dirk Zimmer, March 2010, Slide 5

Department of Computer Science

ETH Zürich

• For large systems of equations,
it is inconvenient and error-
prone to write them down as a
whole.

• Instead, the system shall be
composed from reusable sub-
models.

• To this end, each model in Sol
consists in three parts that
enable its generic usage:

– The header

– The interface

– The implementation

Object Orientation

model SimpleMachine

define inertia as 1.0;

interface:

parameter Real meanT;

static Real w;

implementation:

static Real phi;

static Real t;

static Real a;

t = inertia*z;

z = der(x=w);

w = der(x=phi);

t = (1+cos(x=phi))*meanT;

end SimpleMachine;



© Dirk Zimmer, March 2010, Slide 6

Department of Computer Science

ETH Zürich

• Every organizational entity in
Sol represents a model (One-
Component approach).

• For instance, packages are
models that consist solely of a
header

• In this way, we can build a
complete model library using
Sol models.

• The example on the right shows
excerpts from a library for 1D-
rotational mechanics

Object Orientation

package Mechanics […]

model Engine2 

extends Interfaces.OneFlange;

interface:

parameter Real meanTorque;

implementation:

static Real transm;

transm = 1+cos(x = f.phi);

f.t = meanTorque*transm;

end Engine2; 

model FlyWheel 

extends Interfaces.OneFlange; 

interface:

parameter Real inertia;

static Real w; 

implementation:

static Real z;

w = der(x=f.phi);

z = der(x=w);

-f.t = z*inertia;

end FlyWheel;

[…]

end Mechanics; 



© Dirk Zimmer, March 2010, Slide 7

Department of Computer Science

ETH Zürich

• Using these library models, we can now
compose our top-model without the use of
a single equation.

• This highlights the object-oriented aspects of
modern equation-based languages.

Object Orientation

model Machine

implementation:

static Mechanics.FlyWheel F{inertia<<1};

static Mechanics.Gear G{ratio << 1.8};

static Mechanics.Engine2 E{meanTorque<<10}; 

connection{a<<G.f2, b<<F.f};

connection{a<<E.f, b<<G.f1};

end Machine;



© Dirk Zimmer, March 2010, Slide 8

Department of Computer Science

ETH Zürich

• Equation-based modeling languages are declarative languages.

• The modeler can focus on what he wants rather than spending
his time on how to achieve a computational realization.

• This makes the models more self-contained and the knowledge
can be conveniently organized in an object-oriented form.

• Although Sol has been designed from scratch, it builds upon its
predecessor, namely Modelica. It represents the state of art
with respect to the modeling of physical systems in industry.

• So what is new about Sol?

Advantages of EOO-Languages



© Dirk Zimmer, March 2010, Slide 9

Department of Computer Science

ETH Zürich

• Sol supports the modeling of variable-structure systems.

• Variable-structure systems forms a collective term for models,
where equations change during the time of simulation.

• The motivation for such models are manifold:

– Ideal switching processes.

– Variable number of entities or agents.

– Variable level of detail.

– User interaction.

Variable-Structure Systems



© Dirk Zimmer, March 2010, Slide 10

Department of Computer Science

ETH Zürich

• A structural change may cause severe changes in the model

structure. Even the exchange of a single equation may concern

the whole system.

• This is why hardly any simulation environment supports this

class of models in a truly general way.

• Only a few attempts have been made:

MOSILAB, Chi, HYBRSIM, or recently Hydra

Variable-Structure Systems



© Dirk Zimmer, March 2010, Slide 11

Department of Computer Science

ETH Zürich

• Most equation-based languages lack the required

expressiveness to support variable-structure systems. Sol

overcomes this deficiency by generalizing the prevalent

language constructs.

• Thus, Sol enables the creation and removal of equations or

even complete objects anytime during the simulation.

• To this end, the modeler describes the system in a constructive

way, where the structural changes are expressed by

conditionalized declarations.

Advantages of Sol



© Dirk Zimmer, March 2010, Slide 12

Department of Computer Science

ETH Zürich

• Let us look at a very simple
example:

• The library features two
different engine models. One
with a constant torque and one
with a fluctuating torque,
roughly emulating a piston
engine.

• Our intention is to use the
latter, more detailed model at
start and to switch to the
simpler model as soon as the
wheel’s inertia starts to flatten
out the fluctuation of the
torque.

Structural Change: Example

package Mechanics […]

model Engine1

extends Interfaces.OneFlange; 

interface:

parameter Real meanTorque; 

implementation:

f.t = meanTorque;

end Engine1;

model Engine2 

extends Interfaces.OneFlange;

interface:

parameter Real meanTorque;

implementation:

static Real transm;

transm = 1+cos(x = f.phi);

f.t = meanTorque*transm;

end Engine2; 

[…]

end Mechanics; 



© Dirk Zimmer, March 2010, Slide 13

Department of Computer Science

ETH Zürich
Structural Change: Example

• The simulation of the system is
trivial.

• The plot depicts the angular
velocity overtime.



© Dirk Zimmer, March 2010, Slide 14

Department of Computer Science

ETH Zürich
Structural Change: Example

model Machine

implementation:

static Mechanics.FlyWheel F{inertia<<1};

static Mechanics.Gear G{ratio << 1.8};

connection{a<<F.f, b<<G.f2}

static Boolean fast;

if initial() then 

fast << false; 

end;

if fast then

static Mechanics.Engine1 E{meanT<<10};

connection{a<<E.f, b<<G.f1};

else then

static Mechanics.Engine2 E{meanT<<10};

connection{a<<E.f, b<<G.f1};

end;

when F.w > 40 then 

fast << true; 

end;

end Machine;

• The Boolean variable fast
represents the current
mode.



© Dirk Zimmer, March 2010, Slide 15

Department of Computer Science

ETH Zürich
Structural Change: Example

model Machine

implementation:

static Mechanics.FlyWheel F{inertia<<1};

static Mechanics.Gear G{ratio << 1.8};

connection{a<<F.f, b<<G.f2}

static Boolean fast;

if initial() then 

fast << false; 

end;

if fast then

static Mechanics.Engine1 E{meanT<<10};

connection{a<<E.f, b<<G.f1};

else then

static Mechanics.Engine2 E{meanT<<10};

connection{a<<E.f, b<<G.f1};

end;

when F.w > 40 then 

fast << true; 

end;

end Machine;

• The Boolean variable fast
represents the current
mode.

• It is initially set to false



© Dirk Zimmer, March 2010, Slide 16

Department of Computer Science

ETH Zürich
Structural Change: Example

model Machine

implementation:

static Mechanics.FlyWheel F{inertia<<1};

static Mechanics.Gear G{ratio << 1.8};

connection{a<<F.f, b<<G.f2}

static Boolean fast;

if initial() then 

fast << false; 

end;

if fast then

static Mechanics.Engine1 E{meanT<<10};

connection{a<<E.f, b<<G.f1};

else then

static Mechanics.Engine2 E{meanT<<10};

connection{a<<E.f, b<<G.f1};

end;

when F.w > 40 then 

fast << true; 

end;

end Machine;

• The Boolean variable fast
represents the current
mode.

• It is initially set to false

• An if-branch expresses the
two modes.



© Dirk Zimmer, March 2010, Slide 17

Department of Computer Science

ETH Zürich
Structural Change: Example

model Machine

implementation:

static Mechanics.FlyWheel F{inertia<<1};

static Mechanics.Gear G{ratio << 1.8};

connection{a<<F.f, b<<G.f2}

static Boolean fast;

if initial() then 

fast << false; 

end;

if fast then

static Mechanics.Engine1 E{meanT<<10};

connection{a<<E.f, b<<G.f1};

else then

static Mechanics.Engine2 E{meanT<<10};

connection{a<<E.f, b<<G.f1};

end;

when F.w > 40 then 

fast << true; 

end;

end Machine;

• The Boolean variable fast
represents the current
mode.

• It is initially set to false

• An if-branch expresses the
two modes.

• Each mode can declare its
own variables or sub-
models and provide
equations.



© Dirk Zimmer, March 2010, Slide 18

Department of Computer Science

ETH Zürich
Structural Change: Example

model Machine

implementation:

static Mechanics.FlyWheel F{inertia<<1};

static Mechanics.Gear G{ratio << 1.8};

connection{a<<F.f, b<<G.f2}

static Boolean fast;

if initial() then 

fast << false; 

end;

if fast then

static Mechanics.Engine1 E{meanT<<10};

connection{a<<E.f, b<<G.f1};

else then

static Mechanics.Engine2 E{meanT<<10};

connection{a<<E.f, b<<G.f1};

end;

when F.w > 40 then 

fast << true; 

end;

end Machine;

• The Boolean variable fast
represents the current
mode.

• It is initially set to false

• An if-branch expresses the
two modes.

• Each mode can declare its
own variables or sub-
models and provide
equations.

• An Event models the
switch between the
modes.



© Dirk Zimmer, March 2010, Slide 19

Department of Computer Science

ETH Zürich
Solsim: Processing Scheme

• To understand, how such a system is
simulated, let us take a look at the
simulator Solsim.

• It represents an interpreter.

• The main processing loop of the
interpreter contains 3 stages:

– Instantiation and flattening

– Dynamic causalization

– Evaluation

• In a classic Modelica translator these
stages are executed once in
sequential order. In Solsim, they
form a loop.

Parsing

Instantiation 

and Flattening

Preprocessing

Dynamic DAE 

Processing

Evaluation

Time 

Integration

Event 

Handling



© Dirk Zimmer, March 2010, Slide 20

Department of Computer Science

ETH Zürich
Solsim: Processing Scheme

• To understand, how such a system is
simulated, let us take a look at the
simulator Solsim.

• It represents an interpreter.

• The main processing loop of the
interpreter contains 3 stages:

– Instantiation and flattening

– Dynamic causalization

– Evaluation

• In a classic Modelica translator these
stages are executed once in
sequential order. In Solsim, they
form a loop.



© Dirk Zimmer, March 2010, Slide 21

Department of Computer Science

ETH Zürich
Dynamic DAE Processing

• The heart of the processing loop is the dynamic DAE processing
(DDP).

Input:

Remove equation

Add equation

Dynamic DAE

Processing

Output:

Causality Graph



© Dirk Zimmer, March 2010, Slide 22

Department of Computer Science

ETH Zürich
Index Reduction

• The target of this processing stage is to transform the DAE form

F(xp, xp, u(t), t) = 0

into the following state-space form that suits a numerical ODE 
solution

x= f(x, u(t), t)

where the set of state-vector x is a sub-vector of xp.

• The difficulty of this transformation is commonly described by 
the perturbation index of the DAE system.

.

.



© Dirk Zimmer, March 2010, Slide 23

Department of Computer Science

ETH Zürich
Index Reduction

There are three major cases:

• Index-0 systems: The system can be solved by
forward substitution. Hence it is sufficient to
order the equations.

� Causalization, Topological Sorting

• Index-1 systems with algebraic loops: The
system cannot be solved by forward
substitution anymore. It is required to solve
one or several systems of equations.

� Tearing of Loops

• Index-2 systems and higher-index systems:
Again forward substitution is insufficient but
there are algebraic constraints between the
elements of xp. It is required to differentiate a
subset of equations.

� Algorithmic Differentiation x ⊂⊂⊂⊂ xp

x = xp

x = xp

e
q

u
a

ti
o

n
s

e
q

u
a

ti
o

n
s

e
q

u
a

ti
o

n
s

variables

variables

variables



© Dirk Zimmer, March 2010, Slide 24

Department of Computer Science

ETH Zürich
Causality Graph

• The reduced system can be
represented as causality graph

• Each vertex represents an
equation (or relation).

• If the equation is causalized, it
points to all those equations that
are dependent on the variable it
determines.

• The causality graph is cycle-free
and gives rise to a partial order.

F.w = der(x=F.f.phi)F.z = der(x=F.w)

F.inertia << 1

E.transm = 1+cos(x=E.phi)

E.meanT << 10

E.f.t = E.meanT*E.transm

-F.f.t = F.intertia*F.z

F.w > 40

E.f.t + G.f1.t = 0

G.f1.t = G.f2.t/G.ratio

F.f.t + G.f2.t = 0

F.f.phi + G.f2.phi

G.f1.phi=G.ratio*G.f2.phi

E.f.phi = G.f1.phi 

G.ratio << 1.8



© Dirk Zimmer, March 2010, Slide 25

Department of Computer Science

ETH Zürich
Causality Graph

F.w = der(x=F.f.phi)F.z = der(x=F.w)

F.inertia << 1

E.transm = 1+cos(x=E.phi)

E.meanT << 10

E.f.t = E.meanT*E.transm

-F.f.t = F.intertia*F.z

F.w > 40

E.f.t + G.f1.t = 0

G.f1.t = G.f2.t/G.ratio

F.f.t + G.f2.t = 0

F.f.phi + G.f2.phi

G.f1.phi=G.ratio*G.f2.phi

E.f.phi = G.f1.phi 

G.ratio << 1.8

• Each update in the set of
equations is tracked in the graph.



© Dirk Zimmer, March 2010, Slide 26

Department of Computer Science

ETH Zürich
Causality Graph

F.w = der(x=F.f.phi)F.z = der(x=F.w)

F.inertia << 1

E.transm = 1+cos(x=E.phi)

E.meanT << 10

E.f.t = E.meanT*E.transm

-F.f.t = F.intertia*F.z

F.w > 40

E.f.t + G.f1.t = 0

G.f1.t = G.f2.t/G.ratio

F.f.t + G.f2.t = 0

F.f.phi + G.f2.phi

G.f1.phi=G.ratio*G.f2.phi

E.f.phi = G.f1.phi 

G.ratio << 1.8

• Each update in the set of
equations is tracked in the graph.

• When we replace the engine
model, we first remove the old
equations.



© Dirk Zimmer, March 2010, Slide 27

Department of Computer Science

ETH Zürich
Causality Graph

F.w = der(x=F.f.phi)F.z = der(x=F.w)

F.inertia << 1

-F.f.t = F.intertia*F.z

F.w > 40

G.f1.t = G.f2.t/G.ratio

F.f.t + G.f2.t = 0

F.f.phi + G.f2.phi

G.f1.phi=G.ratio*G.f2.phiG.ratio << 1.8

• Each update in the set of
equations is tracked in the graph.

• When we replace the engine
model, we first remove the old
equations.

• The dependent equations re-
main then potentially causalized.



© Dirk Zimmer, March 2010, Slide 28

Department of Computer Science

ETH Zürich
Causality Graph

• Each update in the set of
equations is tracked in the graph.

• When we replace the engine
model, we first remove the old
equations.

• The dependent equations re-
main then potentially causalized.

• By doing so, we attempt to
preserve the existing graph from
overhasty changes.

F.w = der(x=F.f.phi)F.z = der(x=F.w)

F.inertia << 1

-F.f.t = F.intertia*F.z

F.w > 40

G.f1.t = G.f2.t/G.ratio

F.f.t + G.f2.t = 0

F.f.phi + G.f2.phi

G.f1.phi=G.ratio*G.f2.phiG.ratio << 1.8



© Dirk Zimmer, March 2010, Slide 29

Department of Computer Science

ETH Zürich
Causality Graph

F.w = der(x=F.f.phi)F.z = der(x=F.w)

F.inertia << 1

-F.f.t = F.intertia*F.z

F.w > 40

G.f1.t = G.f2.t/G.ratio

F.f.t + G.f2.t = 0

F.f.phi + G.f2.phi

G.f1.phi=G.ratio*G.f2.phiG.ratio << 1.8

E.meanT << 10 E.f.t = E.meanT

E.f.t + G.f1.t = 0

E.f.phi = G.f1.phi 

• When we add the equations of
the new engine model...



© Dirk Zimmer, March 2010, Slide 30

Department of Computer Science

ETH Zürich
Causality Graph

F.w = der(x=F.f.phi)F.z = der(x=F.w)

F.inertia << 1

-F.f.t = F.intertia*F.z

F.w > 40

G.f1.t = G.f2.t/G.ratio

F.f.t + G.f2.t = 0

F.f.phi + G.f2.phi

G.f1.phi=G.ratio*G.f2.phiG.ratio << 1.8

E.meanT << 10 E.f.t = E.meanT

E.f.t + G.f1.t = 0

E.f.phi = G.f1.phi 

• When we add the equations of
the new engine model...

• … they get causalized …



© Dirk Zimmer, March 2010, Slide 31

Department of Computer Science

ETH Zürich
Causality Graph

• When we add the equations of
the new engine model...

• … they get causalized …

• … and the potential causali-
zation gets reinstated.

F.w = der(x=F.f.phi)F.z = der(x=F.w)

F.inertia << 1

-F.f.t = F.intertia*F.z

F.w > 40

G.f1.t = G.f2.t/G.ratio

F.f.t + G.f2.t = 0

F.f.phi + G.f2.phi

G.f1.phi=G.ratio*G.f2.phiG.ratio << 1.8

E.meanT << 10 E.f.t = E.meanT

E.f.t + G.f1.t = 0

E.f.phi = G.f1.phi 



© Dirk Zimmer, March 2010, Slide 32

Department of Computer Science

ETH Zürich
Causality Graph

• This structural change could be handled with minimal effort.

• We can redraw the graph. The left part is solely based on
constant values and needs to be computed only once.



© Dirk Zimmer, March 2010, Slide 33

Department of Computer Science

ETH Zürich
Causality Conflicts

• Unfortunately, not all structural changes are so nice….



© Dirk Zimmer, March 2010, Slide 34

Department of Computer Science

ETH Zürich
Causality Conflicts: Example

• Start



© Dirk Zimmer, March 2010, Slide 35

Department of Computer Science

ETH Zürich
Causality Conflicts: Example

• Remove “a=1”; Add “d=1”

a = 1

b = a

c = b

d = c

x = b

z = x z = x

d = 1



© Dirk Zimmer, March 2010, Slide 36

Department of Computer Science

ETH Zürich
Causality Conflicts: Example

• d is now overdetermined. “d=1” is put into residual form.

• “b=a” remains potentially causalized.

b = a

c = b

d = c

x = b

z = x z = x

Res 

= 

(d – 1)



© Dirk Zimmer, March 2010, Slide 37

Department of Computer Science

ETH Zürich
Causality Conflicts: Example

• We look up the source of overdetermination.



© Dirk Zimmer, March 2010, Slide 38

Department of Computer Science

ETH Zürich
Causality Conflicts: Example

• Remove existing causalities.



© Dirk Zimmer, March 2010, Slide 39

Department of Computer Science

ETH Zürich
Causality Conflicts: Example

• Recausalize.



© Dirk Zimmer, March 2010, Slide 40

Department of Computer Science

ETH Zürich
Causality Conflicts: Example

• Done.

b = a

c = b

d = c

x = b

z = x z = x

d = 1



© Dirk Zimmer, March 2010, Slide 41

Department of Computer Science

ETH Zürich
Sources of Overdetermination

• Each equation can be in four different states:

• Non-causalized

• Causalized

• Potentially causalized

• Causalized in residual form

• Within index-0 systems, potentially causalized equations are
the only source of overdetermination.

• In index-1 systems, tearing variables are another source of
overdetermination.

• In higher-index systems, the selected state variables may also
represent a source of overdetermination.



© Dirk Zimmer, March 2010, Slide 42

Department of Computer Science

ETH Zürich
General Processing Scheme

• For all systems, there is a common approach:

1. Perform forward causalization as much as possible.

2. Forward causalization is supported by potential
causalization, selection of tearing variables, and
selection of state variables.

3. In case of conflicts, generate residuals.

4. Examine potential sources of overdetermination.

5. When the source has been located, take corresponding
action to resolve the conflict.

• Our approach works very well for index-0 system, it is also
good for index-1 systems and represents a practicable
solution for higher-index systems.



© Dirk Zimmer, March 2010, Slide 43

Department of Computer Science

ETH Zürich
The Trebuchet

Let us demonstrate the power of Sol

by means of another example:

• The trebuchet is an old catapult

weapon developed in the Middle

Ages.

• Technically, it is a double pendulum

propelling a projectile in a sling.

• The rope of the sling is released on a

predetermined angle γ when the

projectile is about to overtake the

lever arm.



© Dirk Zimmer, March 2010, Slide 44

Department of Computer Science

ETH Zürich
The Trebuchet

Let us state a few assumptions for the

model:

• All mechanics are planar. The
positional states of any object are x, y
and the orientation angle φ.

• All elements are rigid.

• The sling rope is ideal and weightless.
It exhibits an inelastic impulse when
being stretched to maximum length.

• The revolute joint of the
counterweight is limited to a certain
angle β. It also exhibits an inelastic
impulse when reaching its limit.

• Air resistance or friction is neglected.



© Dirk Zimmer, March 2010, Slide 45

Department of Computer Science

ETH Zürich
The Trebuchet

• Whereas these idealizations
simplify the parameterization of
the model, they pose serious
difficulties for a general
simulation environment.

• Although being fairly simple, the
model can neither be modeled
nor simulated with Modelica yet.
At least not in a truly object-
oriented manner.

• Indeed, the trebuchet represents
a very suitable example for
variable-structure systems since it
puts up a broad set of
requirements.

List of Requirements (incomplete):

− The simulator must provide means for the 

numerical time integration.

− The simulator must provide means for the 

symbolical differentiation.

− The simulator must provide means for the 

numerical solution of linear and nonlinear 

systems of equations.

− The simulator must be able to trigger 

events.

− The simulator must be able to handle 

consecutive, discrete events and to 

synchronize them

− The simulator shall support the runtime 

instantiation and deallocation of arbitrary 

components.

− Changes in the set of DAEs shall be handled 

in an efficient manner that provides a 

general solution.

− …



© Dirk Zimmer, March 2010, Slide 46

Department of Computer Science

ETH Zürich

• For the object-oriented modeling, we decompose the model into
components from a planar mechanical library.

• The total model contains from 246 to 256 variables. The
corresponding systems of DAEs have the perturbation index 3.
They need to be differentiated twice and they contain linear
equation systems.

Object-Oriented Modeling

m=100

rodMass

m=10e3

w eight

a b

r={-10,0}

rod1
a b

r={2,5,0}

rod2

fi
x
e
d

r=
{0

,8
}

a
b

re
v
o
lu

te

a
b

r=
{0

,-3
}

ro
d
3

m=30

tornBody

a b

limitedRev



© Dirk Zimmer, March 2010, Slide 47

Department of Computer Science

ETH Zürich

• Three of these components exhibit structural changes:

• Whereas the top-model can be neatly decomposed into
generally applicable components, the modeling of these
components requires a skilled modeler.

Object-Oriented Modeling

m=100

rodMass

m=10e3

w eight

a b

r={-10,0}

rod1
a b

r={2,5,0}

rod2

fi
x
e
d

r=
{0

,8
}

a
b

re
v
o
lu

te

a
b

r=
{0

,-3
}

ro
d
3

m=30

tornBody

a b

limitedRev



© Dirk Zimmer, March 2010, Slide 48

Department of Computer Science

ETH Zürich

• The classic revolute joint just has one continuous-time mode.

• An intermediate mode is required in order to handle external
impulses that cause a discrete change in angular velocity.

Revolute Joint: Modes



© Dirk Zimmer, March 2010, Slide 49

Department of Computer Science

ETH Zürich

• An elbow is one possible representation of a limited revolute joint.

• The model has two major modes: free and fixated.

• Since the transition between these two states causes a discrete
change in velocity, it involves an inelastic impulse that acts on the
rigidly connected components.

Limited Revolute: Modes

angle 

exceeds 

limit

external 

impulse
fixatedfree

inelastic 

impulse

torque becomes 

negative

contact signal 

triggers



© Dirk Zimmer, March 2010, Slide 50

Department of Computer Science

ETH Zürich

• The torn-body also exhibits structural changes. The model has
three continuous-time modes: resting, pendulum, and free.

• Each mode has its own state variables:

Resting: { }

Pendulum: {φ, ω }

Free: {x, y, φ, vx, vy, ω}

Torn Body: Modes



© Dirk Zimmer, March 2010, Slide 51

Department of Computer Science

ETH Zürich
Simulation Results

• The plots display the result of the simulation for the first 1.5 seconds.



© Dirk Zimmer, March 2010, Slide 52

Department of Computer Science

ETH Zürich
Simulation Results

• The plots display the result of the simulation for the first 1.5 seconds.

• Forward Euler was used for time-integration (fixed step size: 1ms ).

• The simulation of the whole system was performed within one second
on a common PC.



© Dirk Zimmer, March 2010, Slide 53

Department of Computer Science

ETH Zürich
Simulation Result: Modes



© Dirk Zimmer, March 2010, Slide 54

Department of Computer Science

ETH Zürich
Simulation Result: Modes



© Dirk Zimmer, March 2010, Slide 55

Department of Computer Science

ETH Zürich
Simulation Result: Modes



© Dirk Zimmer, March 2010, Slide 56

Department of Computer Science

ETH Zürich
Simulation Result: Modes



© Dirk Zimmer, March 2010, Slide 57

Department of Computer Science

ETH Zürich
Simulation Result: Modes



© Dirk Zimmer, March 2010, Slide 58

Department of Computer Science

ETH Zürich
Simulation Result: Modes



© Dirk Zimmer, March 2010, Slide 59

Department of Computer Science

ETH Zürich
Simulation Result: Modes

• The combination of modes of the components forms the modes of
the complete system.

• In total, there occur 5 modes where only 2 of them are equivalent.

• Furthermore, there are 2 intermediate modes for the inelastic
impulses.



© Dirk Zimmer, March 2010, Slide 60

Department of Computer Science

ETH Zürich
Simulation Result: Modes

• To support object-oriented modeling, the simulation engine must
derive the modes of the total system.

• If the modeler would be forced to model all modes and their
transition on the top level, the modeling would become extremely
laborious. Furthermore, the resulting solution would hardly be
reusable.



© Dirk Zimmer, March 2010, Slide 61

Department of Computer Science

ETH Zürich
The Sol Project: Review

• The motivation of the Sol project is twofold:

• One, Sol is a language experiment. We want to explore the full

power of a declarative modeling approach.

• Two, Sol shall offer a platform for the development of

corresponding technical solutions. This concerns…

• dynamic (re-)causalization

• dynamic treatment of higher index problems

• etc…

• Sol is not a product! We don’t intend to throw another

modeling language or dialect on the market. Sol is primarily a

research tool.



© Dirk Zimmer, March 2010, Slide 62

Department of Computer Science

ETH Zürich
Conclusions

• There are two major contribution resulting from the Sol Project:

• One, the Sol language demonstrates that the object-oriented
modeling paradigm of Modelica can be successfully extended to
variable-structure systems. The power and expressiveness of Sol
originates from the generalizations of successful Modelica
concepts and not from the introduction of new paradigms.

This may help future concerns in language design.

• Two, the simulator Solsim contains a dynamic DAE processor
that can handle arbitrary changes in the set of equations and is
able to cope with higher index systems.

These techniques may be valuable for future, more dynamic
simulation engines.



The End


