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Abstract 

This article offers a general methodology for modeling 
basic chemical reactions and carries forward a series of 
papers on modeling thermodynamic behavior using true 
rather than pseudo-bond graphs. In order to make 
processes of heating and expansion within the mixture 
visible, our approach does not deal with one overall vo-
lume and the overall entropy –as would be normal for 
classical chemistry– but rather with separated entities, one 
for each compound. Furthermore, assumptions of quasi-
stationary or equilibrium conditions are minimized to en-
sure the largest possible degree of generality in the con-
clusions reached. 

 It will be shown, that chemical reactions can be mod-
eled as transformative behavior, which makes their exter-
nal behavior linear and therefore allows for superposing 
several chemical reactions.  

While the mass flows (respectively molar flows) are 
assumed to be determined directly from Arrhenius’ equa-
tion and the underlying stoichiometry, the determination 
of entropy and volume flow processes needed a more ex-
tensive discussion. 

A bondgrapher’s Modelica model of the HBr-synthesis 
based on the assumption of ideal gas serves as an example 
of the presented theory of chemical reaction dynamics. 

1 INTRODUCTION 

Dealing with macroscopic mass flows, the mass that 
flows through the system has to be modeled explicitly, as 
it carries with it its stored internal free energy, which is 
thus transported from one location to another in a non-
dissipative fashion.  In the most general sense, thermody-
namics ought to be described by distributed parameter 
models. Since bond graphs are geared to be used for the 
description of lumped parameter models only, a simplify-
ing assumption will be made, in that the system to be 
modeled is compartmentalized, whereby each compart-
ment is considered to be homogeneous.  

New bond-graphic macro-elements were introduced in 
the previous papers [1][2][3][4] to describe the energy 
storage within a compartment as well as the mass (and 

energy) flows between neighboring compartments. The 
first of them [1] discussed the modeling of conductive as 
well as convective flows of a single homogeneous sub-
stance through a homogeneous medium. The second one 
[2] discussed the phenomena associated with phase 
change, i.e., it discussed –from a bondgrapher’s perspec-
tive– phenomena such as evaporation and condensation, 
solidification, melting, and sublimation. The third paper in 
the series [3] dealt with the difficult problem of modeling 
multi-element systems. Therefore the assumption of ho-
mogeneous, ideally mixed compartments was needed. 
‘Ideally mixed’ here means that the molecules are distri-
buted at random, i.e., a prediction of what molecule be-
comes a neighbor of which other molecules is not possi-
ble. These conceptual systems have been modeled by in-
troducing one energy storage element for each component 
of the mixture and by connecting them using pressure-
volume-exchange and heat-exchange elements. The latest 
of the previous papers [4] introduced the corresponding 
thermal-bond-library for Dymola [5]. 

2 BONDS, MULTI-BONDS, AND 
THERMO-BONDS 

In this section, a short summary of the three types of 
bonds that populate our three bond graph libraries, Bond-
Lib [8], MultiBondLib [9], and ThermoBondLib [4], is 
provided. 

The basic bonds are our regular (black) bonds as 
shown in Fig. 1. 

 
Fig. 1: Regular bonds. 

 
Regular bonds carry two variables, the effort, e, and 

the flow, f.  Their connectors, the gray dots to the left and 
the right of the bond carry a third variable, the directional 
variable, d.  The directional variable is set by the bonds.  It 
assumes a value of +1 at the side of the harpoon, and a 
value of -1 at the opposite end of the bond.  The direction-
al variable is used by the junction models to sum either the 
flows or the efforts up correctly. 
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The efforts and flows of the regular bonds don’t carry 
units in order to make them usable for all application 
areas.  In Dymola, variables not carrying units can be 
connected to variables carrying units.  They then inherit 
(and propagate) the units of their connecting variables.  
Thus, if a bond gets connected to an electrical resistor 
model, the bond inherits units of Volts for the effort varia-
ble and units of Amperes for the flow variable and propa-
gates those units across junctions throughout the bond 
graph.  When two variables get connected, that carry in-
compatible units, the compiler complains. 

MultiBondLib operates on (blue) multi-bonds, i.e., vec-
tors of unit-less efforts and flows as shown in Fig. 2. 

 
Fig. 2: Multi-bonds. 

 
Multi-bonds (or vector-bonds, as they are also some-

times called) represent generalizations of regular bonds.  
Here, the effort and the flow are vectors of length N.  
They are most commonly used for the description of 2D 
and 3D mechanical systems, but the concept is completely 
general.  For this reason, also our multi-bonds don’t carry 
units by themselves, but rather inherit them in connections 
to elements belonging to a particular domain, such as me-
chanics. 

Whereas the dynamics of electrical or mechanical phe-
nomena can be fully captured by two variables each, 
thermodynamic phenomena require three independent 
variables for their description.  Traditionally, physicists 
dealing with thermodynamic models make use of the tem-
perature, T, the pressure, p, and the mass, M as their three 
“state variables.”  From a bond-graphic point of view, this 
approach is a bit inconvenient.  We are used to think in 
terms of power flows. 

The internal energy of matter can be written as: 
                         U = T·S – p·V + g·M  (1) 

where S denotes the entropy, V is the volume, and g 
represents the Gibbs potential. The change of internal 
energy in a transition can be written as: 

                     ΔU = T·ΔS – p·ΔV + g·ΔM (2) 
When matter gets transported from place A to place B, 

it carries with it its internal energy, represented by its en-
tropy S, its volume V, and its mass M.  It thus makes sense 
to represent the transport of matter (convective flow) by 
three parallel bonds, one representing the flow of entropy, 
the second denoting the flow of volume, and the third car-
rying the flow of mass.  This is shown in Fig. 3. 

 
Fig. 3: Thermo-bonds. 

ThermoBondLib  operates  on  (red)  thermo-bonds.  
Although it would have been perfectly possible to 
represent convective flows by multi-bonds (Dymola does 
not impose the restriction that all components of a vector 
must carry the same units), we chose a different route. 

Thermodynamics is such a fundamental field of phys-
ics that it seemed justified to create a special bond to de-
note convective flow.  This bond, contrary to the regular 
and multi-bond, carries units of its own, i.e., the compiler 
will complain immediately if a user by mistake tries to 
connect an entropy flow to a volume port or vice-versa.  
Also it is convenient to be able to carry the state informa-
tion across the bond together with the energy flow va-
riables.  To this end, the red thermo-bond connectors carry 
11 variables instead of only 7.  They carry three scalar 
effort variables (T, p, and g), three scalar flow variables 
(Sdot, q, and Mdot), three scalar state variables (S, V, and 
M), the directional variable, d, and a Boolean variable, 
called Exist, that denotes whether there is still mass at the 
input thermo-port of the bond.  The final variable in the 
set is useful because many models operate on specific 
quantities, such as specific entropy or specific volume, 
and Dymola takes it very odd when we try to compute a 
specific entropy by dividing the entropy by a mass that 
has meanwhile assumed a value of zero. 

The thermo-bond connector model is given in Fig. 4. 
 

 
Fig. 4: Thermo-bond connector model. 

 
The entropy flow variable carries the unit ThermalCon-
ductance instead of the (compatible) unit Entropy-
FlowRate because Modelica so far failed to include  
EntropyFlowRate in its library of physical quantities and 
their units. 

3 SUMMARY OF THERMODY-
NAMIC MACRO-ELEMENTS 

In this section, a short summary of macro-elements in-
troduced in previous papers will be offered.  

To represent the relationship between the three ther-
modynamic dimensions of storage and potential a new 
bond graph element was introduced, called thermodynam-
ic capacitive field, or C-field (cf. Fig. 5). 
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Fig. 5: C-field (Bond graph and iconic representation). 

 
The exchange of heat (by conduction) is modeled us-

ing the Heat-Exchange (HE) element. The exchange of 
volume (to obtain a pressure equilibrium) between neigh-
boring media with a movable membrane in between them 
is modeled using the Pressure-Volume-Exchange (PVE) 
element. Besides these two mass free exchanges there 
exist a couple of different mass-flow types. All of them 
have in common that they are driven by a difference in at 
least one of their potential variables.  It is important to 
note that any kind of mass flow always carries volume and 
entropy, creates mixing entropy within the absorbing C-
field, and does not change the total volume and mass 
present in the system.  This is true even for mixtures con-
taining different components1, as changing the number of 
molecules within a volume or changing the composition 
yields a different internal pressure and not a change in 
volume. The changing pressure may ultimately lead to a 
volume change if the system is open; however, this is a 
consequence of pressure-volume exchange with the envi-
ronment and not an immediate effect caused by the mass 
flow. 

There is a distinction made between (externally) forced 
mass flows and free (not externally forced) mass flows. 
The former are modeled using the RF respectively FMF 
element, whereby we discriminate between RFq and 
FMFq (versus RFm and FMFm), symbolizing R-fields 
driven by an externally specified volume flow (versus 
mass flow).  Modeling a pump would suggest use of a 
RFq element, while modeling stochastically described 
phenomena, such as phase changes, are best described 
using an RFm element. The internal representation of both 
types of models is essentially the same except for the 
place where the external forcing variable enters the model. 
Free mass flows are based on potential differences in at 
least one of the three thermodynamic potentials. This is 
similar to the previously discussed HE and PVE elements, 
however without a membrane within the compartments 
(thereby inducing a mass flow).  Most of the convectional 
processes can be described using free mass-flow elements. 

                                                           
1 To describe mixtures containing different compo-

nents, the concept of the mixture-information (MI) ele-
ment is used [3]. 

These elements have been coined mass exchange (ME) 
and volume exchange (VE)  element, respectively.  There 
could exist a third such element, the entropy exchange 
element.  However, the three potentials are not indepen-
dent of each other, as the Gibbs potential can be expressed 
as a function of temperature and pressure. 

4 MASS FLOW EQUATIONS IN 
CHEMICAL REACTIONS 

4.1 Reaction rate 

Chemical reactions are given in the following form:  

      
k

i i i ia A b B→∑ ∑   (3) 
where ai, and bi are called stoichiometric coefficients and 
Ai and Bi represent the reactants respectively products of 
the reaction. k is called the reaction rate and is of a sto-
chastic nature. It describes the consistency in between the 
intensity of activation, Ea, i.e., the energy required to pro-
duce disintegration of a molecule, the temperature T  
–representing the kinetic energy of the molecule (cf. 
Browns movements)– and the collision frequency, k∞ . 
Arrhenius found, that most reaction rates are exponential 
in temperature with k∞ and Ea being assumed constant: 

           

Ea
R Tk k e

−
⋅

∞= ⋅
  

respect.   0

Ea
m R Tk k T e

−
⋅= ⋅ ⋅  (4) 

While the dependence between temperature and reac-
tion rate could be interpreted using physical knowledge, 
Arrhenius' law still is of empirical nature, i.e. there is no 
physical explanation for the exact formula. Obviously, the 
reaction rate also depends on the pressure, not only on the 
temperature, as increasing the pressure equals increasing 
the density and therefore means increasing the probability 
of two molecules hitting one another. However, this is not 
accounted for within the reaction rate, but within the mo-
lar flow rate (cf. Section 4.3).  

One problem with Arrhenius' law concerns the value of 
the temperature to be used in Eq.(4). While the different 
components involved in the chemical reaction might be at 
different temperatures, Arrhenius' equation references 
only one (medium) temperature, which can e.g. be deter-
mined by calculating the steady-state temperature of the 
reactants – or using a first-order approximation, as vo-
lume-fraction weighted average of the different tempera-
ture values (cf. Section 7).  

4.2 Molar and mass flows 

From Eq.(3) it follows, that for a1 molecules of com-
ponent A1, ai molecules of component Ai, i>1, are needed 
to process the reaction. Furthermore, it follows that ai mo-
lecules of the components Ai, i≥1 lead to bi molecules of 
the components Bi.  For this reason chemists operate on 
numbers of molecules instead of amount of mass, i.e., the 
activity of such a reaction will be specified as a molar 
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flow ν,  rather than as a mass flow .  A molar flow rate 
ν  for an indicated reaction means that ai · ν  molecules of 
component Ai are consumed within one time unit, creating 
bi · ν  molecules of component Bi.  Consequently all flow 
rates will be specified in mol/sec instead of kg/sec. This is 
not as bad as it seems, as there exists a constant relation-
ship between mol and kg for each component, called the 
molar mass.  One mol (L=6.025·1023 molecules) of a spe-
cified component with molar mass M  gram/mol weighs 
M  gram.  L is called Loschmidt’s or Avogadro’s number.  
In bond graph modeling this means that each mass flow 
bond (Gibbs potential g and mass flow ) can be easily 
transformed to a molar flow bond (chemical potential µ 
and molar flow ν) using a transformer with transforming 
factor M  (the molar mass), cf. Fig. 6.  

TF
m

µ
ν

g
M·

 
Fig. 6: Molar Transformer. 

It follows that the mass within the C-fields could be 
replaced by the number of molecules n stored in the C-
field. This transformation might make sense if the whole 
bond graph does only concern chemical reactions, but it is 
impractical if the world around should be included in the 
model also. For this reason, it makes more sense to couple 
chemical reaction to the outside using molar transformers, 
i.e., the chemical reaction network operates on molar flow 
rates, but the C-fields represent mass in kg.  They are con-
nected to the chemical reaction network via molar trans-
formers. 

4.3 Molar flow rate 

For a reaction to take place, it is necessary that the 
reactant molecules hit one another. Assuming independent 
surface probabilities, the probability of such a hit is given 
by: 

 ∏
i

ii

A

a

tot

A

n
n

)(  (5) 

nAi thereby specifies the number of mol of reactant Ai 

within the compartment, whereas ntot gives the total num-
ber of mol (6.025·1023 molecules) present in the compart-
ment, i.e., ntot counts all molecules no matter if they are 
part of a reaction or not. 

Together with the reaction rate, this leads to the reac-
tion's molar flow rate: 

 ∏⋅⋅=
i

ii

A

a

tot

A
tot n

n
Vk )(ν

 
 (6) 

As chemical reactions are determined by their molar 
flow rate and the linear factors ai and bi, it makes sense to 
chose a bondgraphic representation of such a chemical 
reaction that is based on the molar flow rate, a correspond-
ing potential, a 1-junction representing the sums given in 
Eq.(3) and transformers to enforce the multiples given by 

ai and bi. This is exemplarily shown in Fig. 7. The ChR-
Element represents the chemical reaction and is nothing 
else than a modulated transformer element. It will be dis-
cussed in more detail in Subsection 6.2  

 

 
Fig. 7: Chemical Reaction using the molar flow ν as 
bondgraphic flow variable, transformers to enforce the 
coefficients ai and bi and a modulated transformer 
representing the chemical reaction (ChR). 

 

4.4 Parallel reactions 

Normally, chemical reactions do not appear alone. 
That is, there are several chemical reactions in parallel to 
one another. To illustrate this, let us discuss the following 
step reactions of the hydrogen-bromine reaction: 

                         

Br2     → 2Br·
2Br· → Br2

Br· + H2  → HBr + H·
HBr + H· → Br· + H2

Br2 + H· → HBr + Br·

k1

k2

k3

k4

k5

 (7) 

For each of the five reactions, a νi can be determined 
by Eq.(6). On the other hand, it is possible to calculate a 
molar flow for each of the corresponding molecules (i.e. 
C-fields). This leads to the following matrix notation: 

              

νBr2
–1 +1 0     0   −1        νk1

νBr· +2   –2   –1 +1 +1        νk2
νH2       

=     0     0   –1 +1 0    · νk3

νH·            0     0   +1 –1 –1       νk4
νHBr 0     0   +1 –1 +1       νk5  (8) 

In a bondgraphic interpretation this means that we can 
add up linearly all of the flows being created within the 
different reactions towards the different reactants. This is 
shown in Fig. 8. Each reaction is marked using a green 
rectangle. The reactants arrive from the left leading each 
into a 0-junction.  The bonds from the five reactions are 
connected to those five 0-junctions, i.e., the reaction flows 
are superposed in those 0-junctions to form the reactants’ 
molar flow rates νi. Thus the five 0-junctions together 
implement the above matrix of flow rate transformations. 
An additional 0-junction sums up the five reaction enthal-
py flows. 
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Fig. 8: Reaction Network built from the five HBr-Step 
reactions.  

5 REACTION BOND POTENTIALS 

Up to now, we did not answer the question, which va-
riable should be used as adjugate of the molar flow rate. In 
order to decide this question, let us discuss a few special 
cases first that will help us reach a meaningful decision.  

5.1 Rearrangement and tautomerism reactions 

The simplest case of chemical reactions is given by 
one reactant being converted to one product. In practice, 
those kind of chemical reactions can be found e.g. in dis-
sociation processes ( RR 22 → ) or in organic chemistry, 
as exemplarily shown in Fig. 9 (R represents a monovalent 
“rest” molecule). 

If the reaction rate is known, this kind of reaction can 
be modeled as a forced mass flow (specified by the molar 
flow rate) from the C-field of the single reactant to the C-
field of the single product, as shown in Fig. 10.  The cor-
responding volume and entropy flows are thereby deter-
mined as the product of molar flow and molar specific 
volume (i.e., the inverse density) and molar specific en-
tropy, respectively. 

a)

b)

rearragnement

NHR

 
Fig. 9: Wagner-Meerwein rearrangement (a) [6] and 
Enamin-Imin tautomerism (b). 

 

CF

3
0 3 RFm

ν
3

CF

3

0  
Fig. 10: Bond graph of rearrangement and tautomer-
ism reactions (for simplicity, the transformation from 
molar to mass flows is not shown). 

As one can see easily, we do not need any chemical 
network nor a discussion of the reaction enthalpy.  Both, 
the molar as well as the corresponding volume flow enter-
ing on the left hand side must be conserved, i.e., only the 
entropy is changing in accordance with the first law of 
thermodynamics. 

5.2 The basic single-product reaction  

Let us now consider a reaction converting n reactants 
to one single product, with the reverse reaction being neg-
lected:  

 1 1
k

i ia A b B→∑  (9) 

From a bondgrapher’s point of view, this can be de-
scribed as n thermo-bonds being fused into one single 
thermo-bond, i.e., all input flows are summed up and are 
being sent to one destination. We shall see later that the 
most difficult issue is how to correctly distribute volume 
and entropy flows among different products.  Thus, the 
single-product reaction represents a simplified case.  

In this special case, we can use the molar free enthalpy 
as potential variable and obtain the bond graph shown in 
Fig 11.  

 
Fig. 11: Mass-flow  bond  graph  of  single-product 
reaction. 
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The transformer on the left represents the stoichiome-
tric transformation of molar flows of the reactants.  The 
individual molar flows of the reactants were grouped to-
gether into a multi-bond for compactness.  The transfor-
mer to the right represents the stoichiometric coefficient 
of the single product. 

The ChR element represents the chemical reaction.  It 
computes on the primary side the molar flow rate (nonli-
near equation), and, in the case the chemical potential de-
creases (Δμ > 0), it generates on the secondary side reac-
tion enthalpy.  This element is syntactically similar to the 
classical resistive source, but contrary to an electrical or 
mechanical resistor, that always generates entropy (irre-
versible thermodynamics), the ChR element can also con-
sume enthalpy (if the stoichiometrically weighted chemi-
cal potential of the product is bigger than the sum of stoi-
chiometrically weighted chemical potentials of the reac-
tants).  It is thus a thermodynamically reversible element. 

Notice that the bond graph assumes that the reactants 
come with their own potential variables that are being 
determined by the C-field to the left.  A reaction can only 
take place as long as there is reactant mass available in the 
C-field, i.e., as long as the reactant mass exists. 

As the total volume must be preserved and the volume 
flow into the product is a direct consequence of the cor-
responding mass flow, the bond graph for the volumes can 
be given as shown in Fig. 12.  

 
Fig. 12: Volume-flow bond graph of single-product 
reaction. 

The mSf element is an aspect of the chemical reaction.  
It computes the volume flow from the corresponding mo-
lar flow.  The transformer above the mSf element is not 
needed because the volume flow must be preserved.  The 
multiport transformer on the left converts partial volumes 
(primary side) to partial pressures (secondary side).  The 
pressure values, pi, on the leftmost multi-bond are the 
pressures of the individual C-fields.  These may tempora-
rily differ slightly from one another, but they are true 
pressure values, not partial pressures.  In contrast, the 
pressure values on the multi-bond to the right of the mul-
tiport transformer, ppi, are partial pressures.  Enthalpy is 
being generated if the total pressure decreases in the reac-
tion (Δp > 0) and is being consumed if it increases. 

Finally, the entropy needs to be looked at.  The corres-
ponding entropy-flow bond graph is shown in Fig. 13. 

 
 Fig. 13: Entropy-flow bond graph of single-product 
reaction. 

Mass flows evidently carry their heat along.  Thus, 
each mass flow induces a corresponding heat flow.  An 
mSf multiport modulated flow source element is used to 
compute the corresponding entropy flows, such that: 

                           (10) 
where Ti is the temperature of the i th reactant C-field, and 
T p is the temperature of the product C-field. The partial 
heat flows (entropy flows) get summed up in the (blue) 
multiport 0-junction.  At the next 0-junction to the right, 
the enthalpy flows generated (or consumed) by the mass-
flow and volume-flow bond graphs are injected.    

If , with ss the specific entropy of 
the product at (T 

P, p 

p ), the reaction is exothermic. If 
, the reaction is endothermic. 

5.3 Fictitious potentials  

In order to generalize the approach discussed in the 
previous subsection (5.2) towards several products, it is 
necessary to find a method that determines the volume and 
entropy flows to the different products.  

The first approach solving this problem [7] introduced 
fictitious reaction potentials, i.e., it calculated iteratively 
the one temperature and pressure values for which the 
volume flows of the products equal the sum of the volume 
flows of the reactants such that the overall energy balance 
is satisfied. 

Although this technique could be applied successfully 
to small models, the approach suffers from the fact that 
each reaction has to be handled separately, i.e., a reaction 
network, as shown in Fig. 8, had to be split up into sepa-
rate reactions.  

5.4 Molar intrinsic energy 

The main problem in generating reaction networks for 
volume and entropy flows is that each reactant “owns” its 
own specific volume and entropy values (given as func-
tions of temperature and pressure).  

To deal with this issue, another approach has mean-
while been developed. The main ideas behind this new 
approach are as follows:  
 The chemical reaction does not change the overall 

volume, i.e., the volume balance can be imple-
mented outside the reaction core.  

 Inside the reaction system only the energy levels 
matter, i.e., the separation into entropy and free 
Gibbs enthalpy is not really needed. 
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As volume and entropy flows are functions of the cor-
responding (molar) mass flow, it is possible to convert 
both the volume and the entropy flow into equivalent mass 
flows. The corresponding potentials are temperature times 
specific entropy and pressure times specific volume. The 
transformation is shown in Fig. 14. 

 
Fig. 14: TFmol Element. 

The red thermo-bond to the left is a state sensor ele-
ment.  It extracts the state information (S, V, and M) that is 
being carried along with the thermo-bond.  The red/black 
0-junction to its right splits the three flows that are carried 
by the thermo-bond into separate flows of heat, volume, 
and mass. The two division boxes compute the specific 
volume, vs, and the specific entropy, ss. The two mod-
ulated transformers convert the heat and volume flows to 
equivalent mass flows, and the 1-junction in the center 
sums the three potentials up on a combined mass flow. 

The resulting mass flow carries as its potential variable 
the specific intrinsic energy, u. 

 

   (11) 
Unfortunately, Eq.(11) carries a minus sign for the vo-

lume flow.  This problem can be solved in two ways: As 
discussed in [1], it may make sense to define all pressures 
in the systems negative for convenience.  Negative pres-
sures are not physically meaningful, but they simplify the 
construction of the bond graph.  Alternatively, care must 
be taken to turn around the bond representing volume flow 
at the 1-junction.  Thus, when dealing with positive pres-
sure values, the modeler must remember to account for the 
minus sign whenever a coupling between volume- and 
entropy-flow bonds takes place.  This is especially true for 
all types of movements from one pressure level to another 
generating entropy (friction). 

The transformer to the right of Fig. 14 converts abso-
lute mass flows to molar mass flows.  Since the potential 
variable on the primary side has changed, the potential 
variable must also change on the secondary side.  Thus, 
the molar mass flow rate is no longer accompanied by the 
chemical potential, µ, but rather by the molar-specific 
enthalpy, η. 

6 CHEMICAL REACTION         
ELEMENT 

6.1 General principles of chemical reactions 

Discussing chemical reactions, the following principles 
must be observed: 
1. All mass flows can be determined using the Arrhe-

nius law considering their stoichiometric weights.  
2. All incoming flows have the same thermodynamic 

state as the corresponding emitting C-fields, and 
consequently, the inflows are known.  

3. The sum of all incoming energy, volume, and mass 
flows equals the sum of all outgoing corresponding 
flows.  

4. The thermodynamic state of the receiving C-fields 
does not influence the chemical reaction itself, and 
merging flows can create mixture entropy. 

Chemical reactions are reversible, i.e. for each reac-
tion, there exists a reverse reaction, such that: 

  -1R  [ R(x) ] = x    (12) 

In the equilibrium point, the two reaction rates com-
pensate one another.  We can write: 

1 1( ) ( ) ( ) ( ) ( ) ( )i R x j R x i j R x j i R x− −⋅ + ⋅ = − ⋅ = − ⋅    (13) 
The equilibrium point of a chemical reaction depends on 
the reaction condition and is reached when both reactions 
–the forward and the reverse reaction– are showing the 
same molar flow rate, i.e. in the equilibrium, the reactions 
do not stop but are compensated by the reverse reactions. 

This implies that, when either the temperature or the 
pressure changes, a chemical reaction might start “running 
backward.”  

In the example shown in Fig. 8, the reactions k2 and k4 
are the reverse reactions of k1 and k3, respectively. The 
equilibrium point of the reactions k5 and k6 is so close to 
the k5 product side that we neglected the reverse reaction 
k6.  

As the reverse reaction rates superpose additively, it 
would have been possible to only define ChR-Elements 
determining the superposed reaction rates of the reactions 
k1 and k2 as well as k3 and k4.  

 

6.2 ChR Dymola Model 

As shown in Fig. 15, the chemical reaction model ChR 
is a bond graph two-port, as introduced in [8], extended by 
a multidimensional information cut.  The (inflow) bond on 
the left-hand side carries the molar flow rate, ν, and the 
molar intrinsic enthalpy, η.  The (outflow) bond on the 
right-hand side carries an entropy flow together with a 
temperature. 

The amount of power transported through the ChR-
Element is available as information out-port. If the out-
port is connected to an integrator, the reaction enthalpy, 
∆HReac, is being computed. 
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Finally, the model features an information in-port car-
rying the volume, Vtot, of the compartment and the number 
of moles being stored in each C-field.  As discussed in 
Section 4.3, this information is necessary to calculate the 
molar flow rate ν.  To increase readability of the graphical 
model, this information is provided by a single Element, 
called State for all ChR-Elements.  Consequently, State 
features on its left side as many information inputs, as 
there are C-fields present in the compartment.  Additional-
ly to the already discussed information out-port carrying 
the overall volume and molar numbers, the State-element 
provides separately also another out-port vector delivering 
the volume fractions. This second out-port will be used for 
the heat and volume balancing distribution discussed in 
Section 7.  

 
Fig. 15: ChR-Model (general version). 

Unfortunately, it is necessary to build one ChR-
Element for each reaction as the equation for ν  is differ-
ent for each of them. The basic ChR element is therefore a 
partial model.  Thus, we end up with separate ChRk1, 
ChRk2, … models. 

Note: It is possible to connect only parts of the ni vec-
tor carried by the State-Element into the ChR-Element, 
which however requires the State-Element to offer one 
more variable, namely the sum of all ni.    

 

7 ENTROPY AND VOLUME    
DISTRIBUTION 

In this section, we analyze the distribution of entropy 
out-ported by the ChR-Elements as well as the volume 
balance. 

7.1 The mixture 

Let us start by looking at the reactants represented by 
C-fields (cf. Fig. 5). Inputs to a C-field are the three flow 
variables: mass flow, entropy flow, and volumetric flow. 
On this basis, the C-field calculates the three potentials: 
the Gibbs free energy, g, the temperature, T, and the pres-
sure, p. As each reactant is represented by its own C-field, 
each reactant has its own volume, mass, temperature, and 
pressure.  Due to the different thermodynamic behavior of 
different reactants, the same amount of volume or entropy 
flow leads to different temperature and pressure values.  

However in a mixture, the pressure and temperature of 
different reactants will equilibrate as the molecules trans-
porting the corresponding energy are in contact with each 
other. Consequently, the C-Fields (CF) need to be con-
nected via temperature-pressure equilibration (heat-
volume exchange: HVE) elements as shown in Fig. 16. 
The three bonds at the bottom of Fig. 16 (B21, B22 and 
B23) are the connections to the chemical reaction net-
work.  

Note: For larger settings, it may be sufficient to con-
nect each CF to a few other neighboring CF elements for 
equilibration to occur.  There is no need to connect every 
CF element with all other CF elements. 

 
Fig. 16: Temperature-pressure equilibration between 
C-Fields. 

With this setting, it is possible to simulate any adiabat-
ic-isochoric process, as there is no connection to the out-
side. If for example an isothermal or isobaric boundary 
condition is wanted, the outside (represented by an Se-
Element) must be connected to the CF-Elements also, as 
shown in Fig. 17. The conductance values of the HVE-
outside connections (green box) have to be selected de-
pending on the boundary condition and exhibit different 
parameter values from the HVE-inside connections (blue 
box). The internal pressure/temperature equilibration 
normally occurs very fast, whereas the exchange to the 
outside is much slower (at least as far as the temperature is 
concerned).  

 
Fig. 17: Changing the boundary conditions. 
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7.2 Entropy distribution 

The reaction network (e.g. in Fig. 8) together with the 
TFmol Element (cf. Fig. 14) guarantees that the molar flow 
of each reactant is accompanied by the correct volume and 
entropy flows corresponding to the current state. However 
as chemical reactions normally free up or consume ener-
gy, there will be additional entropy (∆HReac = T ⋅ S) to be 
distributed among the C-fields belonging to the system.  

From a conceptual point of view, there are two ap-
proaches possible: 
1. All energy from the reactant compounds moves to-

wards the product compounds, i.e., the product com-
pounds have to absorb the additional entropy (or de-
liver the missing entropy). This situation may apply 
in the case of a continuous stirred tank reaction 
(CSTR), where reactants are constantly added to the 
reaction chamber from the outside and where the 
products are constantly removed from it.  

2. The reaction core radiates the additional entropy to 
its surrounding, i.e. towards all molecules. As radia-
tion only cares about areas and distances, it can be 
assumed that the energy is distributed among all 
compounds in the mixture in proportion to their vo-
lume fraction 

                               (14) 

The latter situation may apply in the case of a batch 
reaction, where the reactants and the products share 
the same space. 

Fig. 18 shows the bond graph model, TFent, for a mix-
ture containing three compounds assuming the latter ap-
proach.  

 
Fig. 18: Entropy distribution. 

The entropy flow coming in on the left is the entropy 
flow shown at the right-hand side of Fig. 8.  The three 
modulated transformers distribute the entropy flow to the 
three compounds (C-fields) in accordance with their vo-
lume fraction, which is computed by the State element of 
Fig. 15.  The thermo-bond 0-junctions on the right-hand 
side of Fig. 18 are connected to the 0-junctions adjacent to 
the CF-Elements representing the three compounds. 

7.3 Volume balance 

From an energy-based point of view, the model is 
ready to be built now. Unfortunately, the volume balance 
may still be violated when doing so, as each compound 
carries its own specific volume, i.e. at a given temperature 
and pressure condition, 1 mol of a compound A1 may oc-
cupy a different amount of volume from 1 mol of a com-
pound B1. Even worse: the amount of moles does not have 
to remain constant if chemical reactions are present. To 
avoid this change in overall volume, it is necessary to de-
termine the difference in volume flows and add (or re-
move) this difference from the overall entity.  

The second step can make use of the same mechanism 
used already for the entropy distribution: Distribute the 
difference volume proportional to the existing volume 
fractions, i.e., just scale to whole system. This algorithm is 
only a first-order approximation as the correct distribution 
would distribute in such a way that the pressure of all C-
Fields would in- or decrease by the same amount. 
However as pressure differences get equilibrated quickly 
by the HVE elements, this approximation error gets 
rectified rapidly.  For ideal gases, the approximation is 
correct anyway, as 1 mol of an ideal gas always occupies 
the same volume (at a given pressure).  

Let us now look at the first step, i.e., determine the vo-
lume difference to be distributed.  This can be accom-
plished easily by connecting all volume bonds to a single 
0-junction that will automatically calculate the remaining 
volume flow.  Fig. 19 shows this procedure exemplarily 
for two compounds.  

 
Fig. 19: Difference volume determination. 

As the blue causality strokes show, the volume flows 
q1 and q2 are determined by the chemical reaction, while 
the pressures p1 and p2 are determined by the correspond-
ing CF-Elements. ∆q then gets calculated automatically, 
we just have to offer p*. 

For the special case of using the ideal gas assumption, 
p* can be calculated as weighted sum of the partial pres-
sures, as described by the law of Boyle-Mariotte: 

                         ∑
∑ ⋅

=
i

ii

V
Vp

p
)(

*
           

  (15) 

Since in practice the different pi values will be nearly 
identical, this formula can be used as a good approxima-
tion for the general case as well.  
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Let us assume that all the C-Fields show the same 
pressure p*, i.e. p1 = p2 = p* and consequently, ∆p1 = ∆p2 
= 0. In this case, the bonds running towards the chemical 
network do not carry any power, but only loop back the 
values of the volume flows. In consequence, this means 
that, even without difference volume determination, there 
is no volume-power passed towards the ChR element, as 
the chemical network is doing a similar job on its own as 
the difference volume determination bond graph does. 

Fig. 20 shows a difference volume determination and 
distribution for a mixture containing three compounds. 
The determination 1-0-junction-combination thereby is 
shown on the right-hand-side, while the mTF-Elements 
for the distribution towards the CF-0-junctions are shown 
towards the left-hand side, i.e. the process runs in opposite 
direction.   

 

 
Fig. 20: Network guaranteeing the volume balance. 

The awkward thing about this implementation is that 
we need to interrupt the connection in between CF and 
chemical reaction network of each compound. This indeed 
becomes quite confusing if a larger number of C-Fields is 
present. 

However, we can do this job mathematically also, as it 
is not necessary to eliminate the volume flows from the 
chemical reaction network, as the latter will just pass them 
through anyway. Consequently, the determination can also 
be done using flow sensors and enforcing the difference 
volume flow independently. This is implemented in the 
model shown in Fig. 21, which uses the mSf-Element, 
shown in Fig. 22. The three thermo-bond 0-junctions in 
Fig. 21 are directly connected to the 0-junctions to which 
the corresponding CF-Elements are connected.  

 
Fig. 21: Model ensuring the volume balance. 

 
Fig. 22: mSf-element used in Fig. 21. 

8 EXAMPLE 

As example we implemented the hydrogen-bromine-
synthesis already introduced.  

8.1 Equations and assumptions 

We used the ideal gas assumption and therefore, the 
equations of the C-Fields became as shown in Eq.(16). vs 
and ss are the mass specific volume and entropy variables 
(volume, respectively entropy divided by the correspond-
ing mass). v0 and s0 are constants, representing the values 
of vs and ss at T0, the temperature toward which the data of 
the molecules was determined. Finally, cp is the heat ca-
pacity (per kg) and ∆Hf0 is the (standard) enthalpy of for-
mation.  

 
       (16) 

Inside the ChR-Elements the following equations got 
implemented: 

 

           ;         
 

              ;         

    ;         

    (17) 
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Fig. 23: Overall model of the hydrogen-bromine-synthesis.  

 
8.2 Model 

Fig. 23 shows the overall model of the hydrogen-
bromine synthesis. Depending on the conductance values 
of the HVE connecting the outside Se with the CF-
elements, different boundary conditions can be simulated, 
such as e.g. adiabatic-isochoric (no exchange with the 
outside) or isothermal-isobaric (open system).  

From left to right:  
Connection to outside 
CF-Elements with HVEs 
Volume and entropy distribution 
Thermo-bond to η/ν−bond transformation 
Chemical reaction network 
Chemical reactors ChR 
Collection of reaction enthalpy 

8.3 Simulation results 

Fig. 24 shows the development of the molar numbers 
over time under isochoric and quasi-isothermal conditions. 
The term quasi-isothermal thereby is used to describe the 
behavior of an endless heat conductivity towards the out-
side, i.e. as shown in Fig. 26, the temperature rises in the 
beginning, but returns to the outside condition after some 
time. While the amount of HBr molecules is increasing, 
the number of Br2 and H2 molecules is decreasing (corres-
pondingly). 

Only small values of the two radicals H and Br are ev-
er observed (Fig. 25). However due to the temporarily 
rising temperature, the reactions producing those radicals 
become temporarily more active and in consequence, 

there is a peak in the trajectories, which is responsible for 
the rapidly changing derivatives observed in the trajecto-
ries of Fig. 24. 

Having in mind the thermodynamic dependencies of 
temperature and pressure, the trajectories of the pressures, 
shown in Fig. 27 do not require too much of an explana-
tion. 

Note: The simulation time is given in msec. 

 
Fig. 24: Molar numbers ni over time (isochoric). 

 
Fig. 25: nH and nBr over time (isochoric). 
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Fig. 26: Temperature over time (isochoric). 

 
Fig. 27: Pressure over time (isochoric). 

9 CONCLUSIONS 

This paper introduced a general approach for modeling 
chemical reactions using bond graphs. To this end, a num-
ber of macro-elements got introduced and implemented in 
Dymola. The latter were used to demonstrate the applica-
bility of this approach by means of a small example. 
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