
Time Windows: An Approach to Automated Abstract ion
of Continuous-Time Models into Discrete-Event Models

Qingsu Wang and Francois E. Cellier

Department of Electrical and Computer Engineering
University of Arizona, Tucson AZ 85721

ABSTRACT

This paper describes the automated generation of time win-
dows from continuous system simulation models. Time
windows can be used to automatically generate equivalent
discrete-event models at a coarser granularity level, and they
are also instrumental to the design of event-based control sys-
tems. The generation of time windows represents one fa-
cility in the knowledge-based multi-facetted modeling and
simulation environment DEVS/Scheme. In this environment,
continuous-time and discrete-event models can co-exist, and
they can be amalgamated with AI techniques. The usefulness
of these concepts will be demonstrated by means of a model of
a robot controlled fluid handling laboratory for Space Station
Freedom to be used for research in life sciences, microgravity
sciences, and Space medicine.*

INTRODUCTION

Current technology has not matured to a point where it
can support human life in Space in a meaningful and economic
manner. For years to come, the presence of humans in Space
will not be justified by a superior technology. On the contrary,
it will be necessitated by an inadequate technology. Humans
are needed in Space because our limited understanding of the
mechanisms of intelligence do not permit us to build intelligent
automated systems which can perform elaborate tasks reliably
and safely under conditions of a partially unknown operating
environment. However, the cost of humans in Space is high.
Crew time is, and will be, a scarce and expensive resource,
and consequently, science experiments in Space are frequently
reduced in scope, and are often cut down to a bare minimum
or below, simply because of a lack of available crew time.

The goal of our research is to develop a technology which
will allow carefully designed and specially constructed labora-
tory robots to perform many routine tasks in a Space labora-
tory under remote supervision from the ground. I t is thereby
important to provide the robots with sufficient local intelli-
gence so that communication with the ground can be kept
within reasonable bounds, and so tha t the unavoidable time
delays in the uplink/downlink loop do not cause any stabil-
ity problems. To this end, the robots must be able to perform
simple tasks autonomously, and communicate with the ground

* Research supported by NASA-Ames Co-operative Agreement
No. NCC 2-525, "A Simulation Environment for Laboratory Management
by Robot Organization.

only at the task level (level 4 in the NASREM telerobot archi-
tecture [l]) and above, but never below.

However, this problem is not easy to solve. The difficulty
stems from the fact that the robots must be able to operate in
a partially unknown environment. Humans can co-operate in
a laboratory without bumping into each other, and they can
share common resources without an explicitly specified proto-
col of communication. If my hammer is not where I put it last,
I conclude that somebody else must have taken it, and I either
look for it, or I ask around who might have it. However, this
requires basic problem solving skills which are not easily cast
into programming language. Previous attempts at solving the
collision avoidance problem and the resource sharing problem
with centralized scheduling techniques are clumsy and unele-
gant, and the complexity of such centralized algorithms grows
exponentially with the number of players involved [9].

If we wish to solve this problem elegantly and with an algo-
rithm tha t grows linearly rather than exponentially with the
inherent structural complexity, we must come up with a de-
centralized scheme in which each robot is responsible for its
own doing, and operates on a limited, yet dynamically chang-
ing knowledge of its own local environment. Such an algo-
rithm will have to be based on prediction mechanisms. The
robot must be able to judge the adequacy of a proposed action
plan on the basis of expectations of the effects of that action
plan being executed. For this purpose, it is important tha t
simulation models at various levels of granularity can be auto-
matically generated at run time from a set of generic master
models. Which portion of the world is included in a simula-
tion model and which is not, and what are the levels of detail
included in the model components must be decided on the
basis of the dynamically changing information from the oper-
ating environment. New models will frequently be generated
to be used only once and for a particular task, and they will
be discarded as soon as they have fulfilled their purpose.

However, even this discussion does not unravel the entire
plot. A model is useless unless it is accompanied by a match-
ing experiment (action plan) to be performed on i t . What
we said about the models above, holds for the experiments
as well: Experiments cannot be completely pre-designed, bu t
they must be generated on the spot out of a set of generic
master experiments.

The question now is: How do we store the knowledge of
the world and its mechanisms in the generic master models
and in the generic master experiments, and what are the tools

204
TH0308-7/90/oooO/0204/$01 .OO 0 1990 IEEE

needed to automatically generate varying simulation models
and accompanying simulation experiments out of these master
models and master experiments? This is the realm of our
research.

In this paper, we shall discuss a small subset of the over-
all research plan, namely the generation of models a t coarse
granularity levels given models developed at finer granularity
levels. One such mechanism is the model pruning algorithm
which was described in [ll]. In model pruning, a decision is
taken which variables and/or equations of the master model
are to be preserved in the simulation model. All others are
simply eliminated. However, model pruning does not provide
for a mechanism of aggregating several variables into one, or
modifying equations such that they take on a simpler form and
execute more efficiently a t the possible cost of a reduced accu-
racy. This is precisely what our new results provide us with:
A tool to aggregate variables and simplify equations. Time
windows are an important component of this tool.

There is yet another facet to this discussion. If we wish to
create an algorithm by which a robot can operate equipment
in a partially unknown environment, this algorithm had bet-
ter be robust with respect to modifications of the environment.
Unfortunately, the robustness and refinement of a control al-
gorithm are usually in competition with each other. While
simple proportional integral (PI) controllers work reasonably
well under varying operating conditions, the more refined con-
trol algorithms, such as multivariable optimal controllers, are
highly sensitive to even small variations in plant parameters
(31. Again, the problem stems from the centralized approach.
If we are able to delegate control intelligence to the local sub-
systems while the higher level co-ordinators’ responsibility is
limited to ensuring the stability of their subsystems, we may
be able to come up with designs that are far more robust to
plant parameter variations at the expense of a slight reduction
in global optimality. It is proposed tha t event-based quali-
tative controllers are good candidates for implementing such
co-ordination schemes. Time windows are instrumental to the
design of event-based control algorithms [2].

THE MODELING AND SIMULATION
ENVIRONMENT

To satisfy the above described requirements, a modeling
and simulation environment was created which comprises a
five-level hierarchy of modeling tools.

At the lowest level of the hierarchy are flat simulation mod-
els, both of the discrete-event type (coded in DEVS/Scheme
[17]) and of the continuous system type (coded in DESIRE
[8]). In order t o run efficiently, simulation models should be
flat. Unfortunately, flat simulation models are hard to read
and difficult to maintain.

At the next higher level of the hierarchy are hierarchically
decomposed modular models of both types. Discrete-event hi-
erarchical models are coded in DEVS/Scheme, while the con-
tinuous systems models are coded in DYMOLA [4]. Level 2
models are easier to maintain since they can reference sub-
models which can be stored in a model library. The transfor-
mation of level 2 models into level 1 models is accomplished
by a hierarchy interpreter. In the case of the discrete-event
models, the hierarchy interpreter is a built in function of the
DEVS/Scheme simulation engine, whereas in the continuous

case, the hierarchy is flattened by the DYMOLA preprocessor.
The continuous case is a little more difficult to handle since
continuous models do not provide for a natural distinction be-
tween component inputs and outputs. E.g., an electrical resis-
tor requires the model U = R*I when connected to a current
source, but it requires the model I = U/R when connected t o a
voltage source. The DYMOLA preprocessor contains formula
manipulation algorithms which enable it to solve equations a t
compile time for the appropriate variable. However, level 2
models are still unwieldy since we must still code one main
program for each model variant.

At the next higher level, models are represented by a pure
system entity structure (SES) [10,21]. A pure system entity
structure is a hierarchical tree that decomposes root entities
(corresponding to the main program) graphically into its com-
ponent models. The leaves of the tree correspond to level 2
atomic models, whereas the interior nodes of the tree corre-
spond to level 2 coupled models. DEVS/Scheme contains a
function (transform) which compiles a pure SES into a set of
level 2 models. Atomic models are retrieved from the model li-
brary, while coupled models are automatically being generated
from the information provided in the pure SES. The transform
routine can generate level 2 models of either the discrete-event
type (coded in DEVS/Scheme) or the continuous system type
(coded in DYMOLA), and it will generate the coupled mod-
els in accordance with their use. Level 3 models are easier to
create, but we still need one pure SES per variant.

At the next higher level, models are represented by gen-
eral system entity structures. General SES’s provide for a
mechanism to describe many variants within one single SES.
DEVS/Scheme provides for a tool, called ESP/Scheme [7],
which can prune a general SES t o generate a pure SES. In
the pruning process, all variants except for one are pruned out
by cutting away all undesired branches of the SES. Level 4
models are much more compact than level 3 models since we
can represent an entire class of models with one single general
SES. The only difficulty left is the need to decide manually
which variant to keep among the many possible variants.

At the highest level of the hierarchy, we find a rule-based
decision support system (DSS) which, on the basis of qualita-
tive rules, can instruct the pruner which branches to cut. This
tool is called FRASES [6].

The world model (which we previously called the set of
master models and master experiments) consists of

I) a library of level 2 leaf models and level 2 unit action
plans,

2) a set of level 4 system entity structures describing the
major master models, and a corresponding set of level 4 system
entity structures describing the major master experiments, and

3) a level 5 rule-based decision support system which pro-
vides for the expert knowledge necessary t o generate simula-
tion models and simulation experiments for a given purpose.

The five level modeling and simulation architecture will be
described in detail in a companion paper which is currently
under preparation [14].

THE CONCEPT O F TIME WINDOWS
IN EVENT-BASED CONTROL

Event-based control is a discrete eventistic form of control
logic, in which the controller expects to receive conforming

205

sensory responses to its control commands within pre-set time
windows which are determined by the discrete-event model of
the system under control [18]. An event-based controller starts
out in a check s ta te , and stays in phase wait for the minimum
allowed processing time, tmin. A sensory input received dur-
ing this period indicates an error, since the (expected) sensory
response arrived too early. Once t m i n has elapsed without
external interrupt, the model changes t o phase window, and
stays in this phase for a duration specified by the time win-
dow. A sensory input is expected to arrive during this period.
If the input is received and it tests valid, an appropriate con-
trol command is issued. The check state is updated, and the
model changes to state wait again for another appropriate du-
ration, tmin. If the test fails, an error is reported. Finally,
if the window period has elapsed without receiving the ex-
pected sensory input, another, error will be processed. The
event-based controller moves through its check states in con-
cert with the received inputs, as long as all input signals arrive
within their expected time windows.

(a) The evolution of the process (b) For the same process,
is shown by diverging lines; the threshold level level1
the sensor window at time T determines the first
is Smax - Smin time-window tmax - unin

Fig. 1 Comparison of conventional and event-based control

Contrary to the conventional sampled da ta logic, event-
based controllers demand less precision from their sensors.
These sensors can have threshold-like characteristics. The
burden of the precision is placed on the time windows rather
than on the sensors. Consequently, event-based controllers are
less sensitive t o the received sensory input, and they can there-
fore be made more robust. Figure 1 compares the two different
logic forms of the conventional sampled da ta control versus the
event-based control. Another important advantage of event-
based control is tha t the error messages that are issued by the
controller contain information that can be directly used for
diagnostic purposes. With the event-based control paradigm,
the control process can be readily interfaced with rule-based
symbolic reasoning logic in an advanced robotic and intelligent
automation setup.

The key to event-based control is the idea of time windows.
Time windows describe the time durations from the minimum
allowed process time to the maximum allowed process time.
Time windows of non-zero duration are necessitated by pa-
rameter variations and by external disturbances of a process
under normal operating conditions.

Time windows can be obtained from DEVS discrete-event
models of the process. This feature has been discussed in
[IS] . However, time windows can also be directly obtained
from a series of continuous system simulation runs by vary-
ing the disturbances and plant parameters of a process model
in accordance with normal operating conditions. This paper
introduces an approach supporting the determination of time

windows directly from continuous system simulation models.

A U T O M A T E D A B S T R A C T I O N OF
TIME W I N D O W S

DEVS/Scheme is an implementation of the DEVS formal-
ism [I51 coded in PC/Scheme [IZ], a LISP dialect developed
for P C compatibles. DEVS/Scheme supports truly modu-
lar hierarchical model specification of discrete-event models.
The simulation of discrete-event models is achieved by imple-
menting the abstract simulator principles developed as part
of the theory [15]. The ESP/Scheme software, underlying
DEVS/Scheme, realizes the System Entity Structure (SES)
[21] concept. DEVS/Scheme is implemented as a shell in such
a way tha t all underlying LISP-based and object-oriented pro-
gramming language features of PC/Scheme are available to the
user. The result is a powerful tool for combining symbolic rea-
soning with hierarchical modular discrete-event modeling [17].

DEVS/Scheme and ESP/Scheme have been extended to
manage continuous system models [13]. For this purpose, the
continuous system models are accompanied by corresponding
DEVS shell models. These models, written in the DEVS for-
malism, provide a knowledge level description of the continu-
ous systems, and serve as pointers to their counterparts, the
continuous system models, which are coded as sets of differ-
ential equations, and which are stored in a continuous system
model base.

The modular hierarchical modeling scheme is preserved in
the continuous models by using DYMOLA [4], a continuous
system modeling language. DYMOLA acts as a bridge be-
tween the abstracted DEVS models and the continuous system
simulation language code (DESIRE [8]). The SES is employed
for the organization of all models a t different levels of granu-
larity. Management of these models is carried out by opera-
tions on the SES. Simulation trajectories can be produced to
form the time information, which can then be automatically
mapped into DEVS discrete-event models for future reference.

M o d e l Bases

The knowledge base includes the following model bases.
1. ENBASE : the entity structure base. All entity

structure files are in this da ta base.
2. MBASE: the model base. The DEVS models are

stored in this da ta base.
3. DYMOBASE: the DYMOLA model base. I t stores the

DYMOLA models.
4. DEBASE: the DESIRE model base. The executable

DESIRE files are saved in this da ta base.
5. TRAJECT: the trajectory base. The simulation

trajectories are saved in this da ta base.
These knowledge bases are all subdirectories of a directory
named DEVS.

T h e S v s t e m E n t i t y S t r u c t u r e AEproach

With the existence of the atomic component models in
MBASE and DYMOBASE, effective management and manip-
ulation of these models supports their use in a variety of differ-
ent system configurations. Operations performed on an SES
provide means of organizing information among these model
bases as well as to synthesizing, managing, and manipulating
(re)usable models in the model bases.

206

The SES is a labeled tree with attached variables. It holds
the structural knowledge of a system. An SES tree is built
by construction operations, such as: create a root, add nodes,
attach variables, and specify the coupling relations. Once an
SES tree file has been set up, it is stored in ENBASE. DEVS
models for all the leaf nodes of the SES tree are required to be
resident in MBASE, and their continuous counterpart models
must be resident in DYMOBASE. An operation called prune
can be applied to an SES to generate alternatives. This prun-
ing algorithm traverses the SES in a depth-first fashion, in-
teractively querying the user to select one entity if there are
several choices under a specialization. The querying process
can be answered by the DSS instead of the user. Querying
continues until all leaf entities have been visited. The re-
sult of the pruning algorithm is a pure SES. The operation
transform can be applied only to a pure SES. nansform tra-
verses the pure entity structure starting at the root of the
tree, and calls upon a retrieve processor t o search for a cor-
responding model of the current entity in one of the model
bases. If a model has been found, the transformation of its
subtree is aborted. Otherwise, the transformation continues.
The construct-continuous-systems procedure is invoked if the
model of an intermediate node cannot be found in cithcr the
working memory, the MBASE, or the ENBASE. It constructs a
hierarchical DEVS coupled model, and stores it in the working
memory. Simultaneously, the corresponding DYMOLA cou-
pled model is also constructed and is saved into DYMOBASE.
If the user wants t o continue the transformation to obtain an
executable DESIRE program, transform automatically calls
upon the DYMOLA preprocessor which operates on a DY-
MOLA batch file tha t was previously generated during the
transformation. DYMOLA generates an executable DESIRE
program, and the transform procedure stores it automatically
in DEBASE. After all these preparatory tasks have been com-
pleted, the restart command starts the simulation of the con-
tinuous system in DEVS, while the run command starts the
corresponding simulation of the continuous system in DESIRE.
The run command can be invoked from within a DEVS model.
By assigning appropriate transition functions to the DEVS
models, the resulting trajectories of the DESIRE simulation
can be mapped into DEVS models, or they can be stored in
the TRAJECT base for future reference.

This enables the user to switch back and forth between the
discrete-event and the continuous system modeling concepts,
exploit the advantages of both, and ensure the consistency of
his modeling efforts across the barrier between the two model-
ing methodologies. Figure 2 visualizes the entire knowledge-
based modeling and simulation environment.

Some useful macros have been created to facilitate the gen-
eration of DEVS models which incorporate the continuous sim-
ulation results. These macros operate on a pure SES. With a
pure SES tree residing in ENBASE and models for all its leaf
nodes residing in MBASE and DYMOBASE, these macros can
be called upon to automatically transform the pruned tree, t o
perform series of continuous simulation runs from the tree, and
to return the simulation execution times and/or the time win-
dows. Thc table of parameter lists and simulation times can
be saved as states of the DEVS model.

Simulation runs of a continuous system model can be per-
formed under the control of several different experiments.

I
retrieve

WORKING MEMORY

ENTSTR w" RUNE ran,;,, -)il

ENTITY STRUCTURE 1 I MODEL BASES

t3:
run

1
WORKING MODELS:

atomic-models
continuous -models

-

restart

get-p- windo w
or

ontiquous-systems- I
L

I I I ESP-SCHEME - DEUS-SCHEME

Fig. 2 The knowledge-based modeling
and simulation environment

Each simulation rriodel may have several different control mod-
els (experiments) associated with it, while one control rriodel
may be used to drive various simulation models. The simula-
tion model and the experiment to be performed on i t can be
selected directly from within the DEVS macro. This enablcs
the corresponding DEVS model to influence the execution of
the continuous system simulation (coded in DESIRE).

The time windows information generated by use of the
macros can then be fed back into the DEVS models to al-
low DEVS to perform a qualitatively similar, yet more highly
aggregated, discrete-event simulation of the formerly contin-
uous model. Such a simulation can be executed using the
restart command once the transition functions of the atomic
discrete-event models have been defined.

THE SPACE ADAPTED
FLUID HANDLING SYSTEM

Our task was to design a modeling and simulation environ-
ment capable of supporting the investigation of robot organi-
zations for managing chemical, or similar, laboratories aboard
Space Station Freedom or other Space platforms. The model-
ing environment enables us to thoroughly study the problems
to be encountered in assigning responsibilities to an organized
group of robots.

Handling fluids in orbit will be essential to many experi-
ments that are currently being planned for execution in the
life sciences, microgravity sciences, and Space medicine mod-
ules. These research projects will involve many routine ma-

207

nipulations of fluids. Many of these experiments will not
be executable without the incorporation of robot technology
since sufficient crew time for manual operation will simply not
be available. In the beginning, the robots assigned to such
tasks will be small dedicated machines which will operate com-
pletely inside a rack, i.e., they will not a t all interfere with the
workspace of the astronauts. They can be viewed as movable
parts of a science instrument or a set of neighboring science
instruments.

In one of the considered scenarios, we envision such a robot
to move along an x-z spindle in front of a set of rack-mounted
instruments similar to a fork lifter in a warehouse. The robot
can extract liquids from one instrument and pass it along t o
the next for further analysis. The robot can be considered a
part of the rack, and i t can be integrated into the rack in such
a way that an airlock is between the instruments (including
the robot) and the working area of the astronauts. In this
way, we can guarantee tha t the safety of the astronauts will
not be jeopardized by the laboratory robot.

In longer terms, our research may also be useful for au-
tomation of portions of the environmental control and life sup-
port system (ECLSS) aboard Space Station Freedom. In a
closed pressurized Space environment, such as the Space Sta-
tion, the growth of bacteria and funghi is inevitable. In long
term missions, such as the Space Station project, this causes
all kinds of health problems, such as allergies. A small robot
could eventually be used to walk around in the Space Station,
and analyze and remove bacterial and other contaminations,
similar t o a cleaning robot in a swimming pool.

In our project, a robot model consists of three parts: a
motion-system, a sensory-system, and a cognition-system
[20]. The cognition-system contains one selector and several
Model-Plan-Units (MPUs). The selector is a controller which
controls MPUs. MPUs are task specialists which are activated
under appropriate circumstances 1201. For instance, one MPU
may be specialized for the task of fluid handling.

The instruments considered in our current prototype setup
are a pressurized bladder bottle and a syringe. Under micro-
gravity conditions, all liquid containers must always be full.
No air/liquid interfaces are allowed unless they are controlled
by surface tension (e.g., in a capillary). Consequently, we can-
not use standard equipment such as beakers or erlenmeiers.
Instead, we use a bottle which is sealed by a septum, and
which contains an inflatable bag. The air volume between the
bag and the bottle walls is pressurized. Liquid is injected into
or extracted from the bottle using either a syringe or a motor-
ized pipette. The air pressure will squeeze the bag such tha t
i t remains constantly full.

To monitor and thus control the process, the robot has
to have knowledge about certain states of the models of the
bottle (and of the syringe). In order to model the robot’s
cognition of the process, several models of the same bottle are
needed. These models are related to each other by abstraction
[19]. In order to guarantee the integrity of the da ta system,
i t is important tha t all models of the bottle are automatically
generated from the same master model, and tha t any manual
modifications of the bottle perception are implemented at the
level of the master model rather than directly a t the level of
any derived model.

Figure 3 shows tha t there exist three different models of

the bottle: “btl-e”, “btl-o’,’ and “btl-d”. “btl-e” is the model
of the bottle which is external to the MPU. “btl-e” represents

t e s t - d e c
I

I
MPU

I
m p u r d e c

I
b l t - e

I

, dld$;c ,
b t l -

”‘I”‘

operrdec
c o n t r o l b t l - o diagn

Fig. 3 SES for testing a bottle handling mpu

the real bottle. In a true laboratory setup, this model would be
replaced by real hardware. Since the physical world is continu-
ous, we chose to make “btl-e” a continuous system simulation
model. “btl-e” is thus an abstraction of the real bottle stored
in DYMOBASE. “btl-o” is the operational model of the bottle
which the robot uses to control the bottle. I t has been con-
ceptualized similar to the way in which humans might view
a bottle being operated on. Humans are bad a t solving dif-
ferential equations in their heads, and thus, “btl-o” is a much
coarser model of the bottle than “btl-e”. Mental models em-
ployed by humans operate on the “what-if” paradigm, i.e.,
humans envision a (coarse) action, and consider the (coarse)
consequences of such an action being executed. This is exactly
how “btl-o” works. A coarse action (i.e., a discrete event) is
scheduled, and a reaction (another discrete event) is expected
to occur sometime in the future, not earlier than a given mini-
mum time, but not later than a given maximum time. “btl-o”
is used by the event-based controller inside the MPU. “btl-
d” is the model of the bottle used for diagnostic purposes. It
mimics the way in which a human checks the states of a system
when something abnormal happens. “btl-o” and “btl-d” are
different abstractions of “btl-e”, and as explained earlier, it is
essential that “btl-o” and “btl-d” can be automatically gen-
erated either from “btl-e” directly or from a common master
model through experimentation. In our setup, this is accom-
plished by simulation experiments, but in a real laboratory
setup, this could be achieved through hardware experiments.
In our scenario, time windows were automatically generated
from series of continuous system simulations of “btl-e”.

Notice that the above description contains a slight simpli-
fication since even “btl-e” contains a second counterpart resid-
ing in MBASE, i.e., there exists a “btl-e” DEVS model beside
of the “btl-e” DYMOLA model. The “btl-e” DEVS model con-
tains knowledge about some of the variables used in the “btl-e”
DYMOLA model, and how they interrelate with the outside
world. If the “btl-e” DYMOLA model were to be replaced by
a real bottle, somebody would still need to tell DEVS what
a bottle is, what variables can be observed, and how they fit
into the rest of the world. This is the type of generic models
(preconceived notions) tha t all humans carry around about
the items tha t populate their everday lives. These models lack
the detailed information about the specifics of a particular
item. Consequently, the “btl-e” DEVS model is just a shell.
It references the externally available variables of the “btl-e”

208

DYMOLA model, and states how they are connected with the
environment of the bottle, but it does not contain any tran-
sition functions tha t describe the internal relations between
these variables.

The simulation model of the overall fluid handling system
“fh” contains, beside of the model of the physical equipment,
a description of the ezperimentalframe which operates on that
equipment. The experimental frame [16] consists of a gener-
ator and a transducer. The robot pushes the plunger of the
syringe with velocity V during the filling, and pulls the plunger
with velocity -V during emptying. The generator generates
this input, i.e., the velocity of the system, and the transducer
gathers the outputs and analyzes the results. Different gener-
ators and transducers can be used for different experimental
conditions.

To simplify the modeling process, it is assumed that the
input, the nominal velocity V of the syringe plunger, is con-
stant (model “sa” is chosen). Accordingly, the nominal flow
rate of the syringe is also constant. To demonstrate the flexi-
bility of the modeling scheme of extracting time windows from
continuous simulation runs which represent variations in sim-
ulation time due t o parameter changes of a model, the model
allows the actual flow rate into the bladder t o vary in a non-
linear fashion with other extraneous influencing factors. Three
specific extraneous effects were considered. One was that the
bladder could have a leakage. The second effect involved the
angle at which the needle of the syringe penetrates the di-
aphragm that covers the opening of the bottle. I t was thought
tha t if this angle were very obtuse (the needle of the syringe is
almost parallel t o the diaphragm), the needle would not pene-
trate the diaphragm completely, and therefore, a fraction of the
fluid ejected from the syringe would not be injected into the
bottle, but would escape. The third consideration was that
the flow rate of the liquid into the bottle would slow down
when the bladder was almost full. These assumptions may or
may not be realistic; they were included to show the ability
of the modeling scheme to handle situations of this kind. For
simplicity, all these effects were included in the bottle model
rather than in the syringe model. The models of these effects
are activated by changing the parameters of the bottle model.

GENERATING TIME WINDOWS
FOR THE FLUID HANDLING SYSTEM

A system entity structure of the overall fluid handling sys-
tem “fh” is stored in ENBASE (Figure 4). It can be seen

FH
I

phy-dec
I

, SYJnge , , b o i l e , ,gen;at;;. LL;aniduce;k

sa sb ba bb sa

Fig. 4 The system entity structure of system fh

that all component models in the system have two special-
izations (of course, they could have more). For instance, the
generator “ga” generates a constant input t o the system while
the generator “gsa” generates a sine wave input. All the eight
leaf models of the SES tree are resident in MBASE and in
DYMOBASE. Figure 5 shows the model bottle in MBASE,
Figure 6 shows its counterpart model bottle in DYMOBASE.
Figure 7 shows the pruned SES of “fh”, i.e., one alternative
among all the possible choices. This pruned SES is also saved
in ENBASE.

(make-pair continuous-models ’ b o t t l e)
(send b o t t l e valid? #t ’0)
(send b o t t l e set-s (make-state ’sigma ’-

’phase #t
’ t f l a g #t
’tname ’ b o t t l e
’cut ’ ((PPORT ’ (PI

(IOLET 8 iwj j)
’parameter ’ ((R 8.314) (M 0.00224)

’ l o c a l ‘((VOL1 0) (VOL2 ’0) (FA ’0)
(TEMP 273.15) (VOL 50.24)
(SC 1) (ANGLE 90) (LR 0))

(FVF ’0) (FVE ’0) (RATE ’0)))
)

;-- MODEL BA --
(i f (unbound? b o t t l e)

(send bot t le make-new ’ba)
(load (string-append m l “bott1e.m”)))

Fig. 5 Model bottle in MBASE

< MODEL BOTTLE >
model type b o t t l e

cut IOLET(W /.)
cut PPORT(P /.)
local VOLl VOL2
l o c a l FA FVF FVE RATE IREAL
I. SC = 1 : Fi l l ing >
.C SC = 0 : Empty >
parameter R=8.314 M=0.00224 TEMP=273.15 VOL=50.24
parameter ANGLE=BO LR=O SC=l
RATE = VOLI/VOL

func FVF = TABZ(RATE)
func FVE = TABJ(RATE)
W E A L = W*FA*(SC*FVF + (l-SC)*FVE) - LR
der(VOL1) = WREAL
VOL2 = VOL - VOLl
P = R*M*TF,MP/VOL2*100000O

func FA = TABI(ANGLE)

end

Fig. 6 Model bottle in DYMOBASE

-ENT : FH
--ASP : PHY-DEC

, : : : : : coupl ing ->

, : : : : : v a r i a b l e ->
---ENT : SYS

ASP : SYS-DEC _ _ _ _
f :coupling ->

, : : : : : v a r i a b l e ->
ENT : SA
ENT : BA

_ _ _ _ _
_ _ _ _ _
---ENT : EF

ASP : EF-DEC ----
, : c o u p l i n g ->

, : : : : : v a r i a b l e ->

ENT : GA
ENT : TAA

end of d i s p l a y

_ _ _ _ -
- _ _ _ _

((EF FH (OUT2 . OUT) (Y2 . Y))
(SYS EF (OUT . IN) 0) (EF SYS
(OUT1 . I N) 0))
((OUTPUT Y 0))

((BA SYS (PPORT . OUT) (P . Y))
(SYS SA (IN . VPORT) (U . V))
(SA BA (IOLET . IOLET) 0))
((CUT OUT (Y / .)) (CUT IN (U / .)))

((TAA EF (OUT . OUT2) (U . YZ)) (GA
EF (OUT . OUT1) (U . Y1)) (EF TAA
(IN . IN) (U . U)))
((CUT OUT2 (Y2 / .)) (CUT OUT1

(Y1 / .) I (CUT IN (U / .)) I

Fig. 7 Screen output of the pruned SES of fh

209

In this paper, we only discuss the filling process. Generat-
ing time windows for emptying is just a matter of changing the
initial states of the components and the input of the system.

cmodel
simutime 10
step 0.01
commupoints 100

ctblock
connect 'fh.tr' as output 2
dimension TAB1 Cl21 , TABZClOl , TAB3 Cl01
data 0, 25 , 45, 80, 85, 90
data 0, 0, 0.2, 0.8, 1, 1
data 0, 0.9, 0.95, 0.99, 1
data 1, 1, 0.9, 0.1, 0
data 0. 0.01, 0.05, 0.1, 1
data 0, 0.1, 0.9, 1, 1
read TAB1
read TAB2
read TAB3
dimension lraC51
data 0, 0.1, 0.04, 0.06, 0.08
read Ira
dimension angler51
anglecl] = 90
angleLa] = 65
for i=3 to 5

next
for i=l to 5

angle [i] =abs (ranCO)) *30+70

ANGLE=angle [i]
LR=lra[il
drun
write #2,ANGLE,LR,t
reset
next
disconnect 2
ctend

outblock
OUT

Fig. 8 Simulation control model fh .1

In the DYMOLA model "bottle", i t is shown that the ports
of the bottle are declared as cuts 141. Variable VOLl denotes
the volume of the bladder, and VOL2 denotes the volume be-
tween the bladder and the wall of the bottle. VOL, a constant,
denotes the total volume of the bottle. Fluid can flow in or
out through the port I O L E T . The input/output variable a t
port IOLET is the nominal flow rate W . The actual flow rate
W R E A L is influenced by the factors mentioned above. The
effect of the injection angle on the flow rate is described as a
tabular function T A B 1 , and that of the fluid volume in the
bladder is a tabular function TAB2 for filling, and another
tabular function TABS for emptying. The effect of leakage is
described through the variable LR. Values for these tabular
functions are declared in the simulation control model (Figure
8). According to the gas law, the variable P , i.e., pressure, a t
port P P O R T indicates the pressure between the bladder and
the wall which is related to the volume of the fluid in the blad-
der [5]. The generator "gen" generates the nominal velocity
of the syringe plunger. The nominal flow rate of the syringe
is the product of its cross-sectional area and the velocity of
its plunger. The transducer "transdu" in our example simply
rescales the input variable, i.e., the pressure P .

A more detailed study of these models could be performed.
Modifications can be made to the individual models, and dif-
ferent types of models can be chosen without changing the
system entity structure.

With the existence of a pruned entity structure in ENBASE

, . -- Get filling time window

(define (example-1)
; loading the model into working memory

(if (unbound? ba)

(if (unbound? sa)

(if (unbound? pa)

(load (string-append ml "ba.m")))

(load (string-append ml '*3a.m")))

(load (string-append ml "ga.m")))
; for filling the generator generates V > 0

(send ga change-parameter ' ((SC 1.5)))
; set the initial volume of liquid in syringe full

(send sa change-ic '((VOL 50.24)))
; set the parameter SC of bottle to be 1 for filling

(send ba change-parameter '((SC 1)))

; set the initial condition for VOLl of bottle to

(eval ' (get-p-window p:fh-a ba ' ((voll 0))
be zero and get time window

'(ad lr) 1 5 "fh$Y-2.14E+6")))

Fig. 9 Procedure to obtain the filling time window

C21 (example-1)

(FH ROOT-ASP)
(SYS PHY-DEC FH ROOT-ASP)
(SA SYS-DEC SYS PHY-DEC FH ROOT-ASP)
(BA SYS-DEC SYS PHY-DEC FH ROOT-ASP)
(EF PHY-DEC FH ROOT-ASP)
(GA EF-DEC EF PHY-DEC FH ROOT-ASP)
(TAA EF-DEC EF PHY-DEC FH ROOT-ASP)
-- Do you want to continue the transformation of
-- the models to get the executable continuous
-- system simulation files? (y/n)
Y

root-co-ordinator: R:FH
-model: FH---> processor: C:FH
--model: SYS---> processor: C:SYS
---model: SA---> processor: S:SA
---model: BA---> processor: S:BA
--model: EF---> processor: C:EF
---model: GA---> processor: S:GA
---model: TAA---> processor: S:TAA
________===== _______

-- Do you want to save another trajectory
-- besides the basic one ?

n

(3.64 6.97)

[31 (send ba get-sv 'p-table)

(y/n)

(((ANGLE 9.00000E+01) (LR 0.00000E+00) 3.64000E+00)
((ANGLE 6.50000E+01) (LR 0.1) 6.97000E+00)
((ANGLE 7.00000E+01) (LR 0.04) 5.86000E+00)
((ANGLE 7.00010E+Oi) (LR 0.06) 5.96000E+00)
((ANGLE 7.66445E+01) (LR 0.08) 5.06000E+00)

1

Fig. 10 Result from extracting the filling time window

and the component models in MBASE and DYMOBASE,
DEVS macros can be used to execute continuous simulation
runs and to obtain the desired time trajectories.

In this application, different parameter values within the
range of normal operating conditions were assigned t o the
model "syringe" and the model "bottle". Time windows are
then determined by the maximum and minimum simulation
times recorded for various values of a model parameter.

To make the simulations more efficient, i.e., save the time
needed for the transformation of the pruned SES, the param-
eter changes were specified directly in the simulation control

210

model rather than as attached variables in the SES. When
calling the macro get-p-window, a test number is specified t o
indicate the particular simulation control model to be used.

Figure 9 shows tha t macro get-p-window sets the initial vol-
ume of the bladder to zero, i t sets the test number t o 1, and
it executes five separate simulation runs with different param-
eter values. The simulations are terminated when the system
output reaches a value of 2.14 IO6. The system output is the
output of “transdu”, which is the rescaled pressure of bottle
“ba”. The value 2 .14 . 10‘ of the rescaled pressure indicates
tha t the bladder in “ba” is full.

R u n “(example-I)” calls upon the macro. The macro trans-
forms the pure SES, performs the required simulations, and
finally returns the desired time windows. The result is shown
in Figure 10. To get the parameter values of the model and
the simulation t ime for every simulation, method get-sv can
be sent t o model bottle. Besides from returning the time win-
dows, the macro also produces the continuous model files, the
simulation program, and the trajectory files in DYMOBASE,
DEBASE, and TRAJECT.

CONCLUSION

This paper presents an approach to automatically gener-
ating time windows for intelligent event-based control in a
knowledge-based modeling and simulation environment. Our
approach has been exemplified a t hand of a robot controlled
fluid handling system designed for Space Station Freedom.
Other methods of automatically mapping continuous-time
models into equivalent discrete-event models can be readily ex-
ploited in our modeling and simulation environment. Thereby,
continuous process control can b e interfaced with a symbolic
reasoning system. Continuous system models and discrete-
event models can co-exist in the environment, and they can
be amalgamated with more classical AI techniques such as
rule-based expert systems.

REFERENCES
Albus, J.S., H.G. McCain, and R. Lumia (1987), NASA/NBS
Standard Reference Model for Telerobot Control System Archi-
tecture (NASREM), NBS Technical Note 1235, Robot Sys-
tems Division, Center for Manufacturing Engineering, Na-
tional Technical Information Service, Gaithersburg, MD.
Chi, S.D., and B.P. Zeigler (1990), “DEVS-based Intelligent
Control of Space Adapted Mixing Process”, (accepted for pre-
sentation at Fifth Conference on Artificial Intelligence fo r S p a c e
Applications, Huntsville, AL).

D’Azzo, J., and C.H. Houpis (1988), Linear Control System
Analysis and Design: Conventional and Modern - 3rd Ed., Mc-
Graw Hill, New York.
Elmqvist, H. (1978), A Structured Model Language f o r Large
Continuous Systems, Ph.D. Dissertation, Report CODEN:
LUTFDZ/(TFRT-1015), Dept. of Automatic Control, Lund
Institute of Technology, Lund, Sweden.
Franks, R.G.E. (1972) Modelling and Simulaiion in Chemical
Engineering, John Wiley and Sons, Inc., New York.
Hu, J., J.W. Rozenblit, and Y.-M. Huang (1989), “FRASES
- A Knowledge Representation Scheme for Engineering De-
sign”, Proc. SCS MultiConjerence on Advances in A.I. and
Simulation, Tampa, FL, pp. 141-146.
Kim, T.G. (1988), A Knowledge-Based Environment for Hier-
archical Modelling and Simulation, Ph.D Dissertation., Dept.

of Electrical and Computer Engineering, University of Ari-
zona, Tucson, AZ 85721.

181 Korn, G.A. (1989), Interactive Dynamic-System Simulation,
McGraw-Hill, New York.

191 O’Donnell, P.A., and T. Lozano-Perez (1989), “Deadlock-Free
and Collision-Free Coordination of Two Robot Manipulators”,
Proc. IEEE International Conference on Robotics and Automa-
tion, Vol. 1, Scottsdale, AZ, pp. 484-489.

[IO] Rozenblit, J.W., e t al (1989), “An Integrated, Entity-Based
Knowledge Representation Scheme for System Design”, Proc.
o f NSF Engineering Design Research Conference, Amherst, pp.
393-408.

[ll] Rozenblit, J .W., and Y . Huang (1989), “Rule-Based Genera-
tion of Model Structures in Multifacetted Modeling and Sys-
tem Design, ORSA Journal on Computing, (in review).

1121 Texas Instrument (1985), TI Scheme Language Reference Man-
ual, Dallas, TX.

1131 Wang, Q. (1989), Management of Continuous System Models an
DEVS-Scheme: Time Windows f o r Event Based Control, MS
Thesis, Department of Electrical and Computer Engineering,
University of Arizona, Tucson, AZ 85721.

[14] Wang, Q., F.E. Cellier, and B.P. Zeigler (1990), “A Five-
Level Hierarchy for the Management of Simulation Models”,
in preparation.

[l5] Zeigler, B.P. (1984), Multifacetted Modelling and Discrete Event
Simulation, Academic Press, London, U.K. and Orlando, FL.

[16] Zeigler, B.P. (1985), Theory of Modelling and Simulation, John
Wiley, New York, 1976; reissued by Krieger, Malabar, FL.

[171 Zeigler, B.P. (1987), ‘Hierarchical, Modular Discrete-Event
Modelling in an Object-Oriented Environment”, Simulation,
50(5), pp. 219-230.

I181 Zeigler, B.P. (1989), “DEVS Representation of Dynamical Sys-
tems: Event-Based Intelligent Control,” Proceedings of the
IEEE, 77(1), pp. 72-80.

1191 Zeigler, B.P. (1990), Object-Oriented Simulation with Hierar-
chical Modular Models: Intelligent Agents and Endomorphic
Systems, Academic Press, Orlando, FL, and London, U.K.

(201 Zeigler, B.P., F.E. Cellier, and J.W. Rozenblit, (1988), “Design
of a Simulation Environment for Laboratory Management by
Robot Organizations”, J . Intelligent and Robotic Systems, 1,
pp. 299-309.

[2 l] Zeigler, B.P., and G. Zhang (1988), “The System Entity Struc-
ture: Knowledge Representation for Simulation Modelling and
Design”, Artificial Intelligence, Modelling and Simulation, (L.E.
Widman e t al., eds.), John Wiley and Sons, New York.

21 I

