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ABSTRACT 

This paper describes the automated generation of time win- 
dows from continuous system simulation models. Time 
windows can be used to automatically generate equivalent 
discrete-event models at  a coarser granularity level, and they 
are also instrumental to the design of event-based control sys- 
tems. The generation of time windows represents one fa- 
cility in the knowledge-based multi-facetted modeling and 
simulation environment DEVS/Scheme. In this environment, 
continuous-time and discrete-event models can co-exist, and 
they can be amalgamated with AI techniques. The usefulness 
of these concepts will be demonstrated by means of a model of 
a robot controlled fluid handling laboratory for Space Station 
Freedom to  be used for research in life sciences, microgravity 
sciences, and Space medicine.* 

INTRODUCTION 

Current technology has not matured to a point where it 
can support human life in Space in a meaningful and economic 
manner. For years to  come, the presence of humans in Space 
will not be justified by a superior technology. On the contrary, 
it will be necessitated by an inadequate technology. Humans 
are needed in Space because our limited understanding of the 
mechanisms of intelligence do not permit us to build intelligent 
automated systems which can perform elaborate tasks reliably 
and safely under conditions of a partially unknown operating 
environment. However, the cost of humans in Space is high. 
Crew time is, and will be, a scarce and expensive resource, 
and consequently, science experiments in Space are frequently 
reduced in scope, and are often cut down to a bare minimum 
or below, simply because of a lack of available crew time. 

The goal of our research is to  develop a technology which 
will allow carefully designed and specially constructed labora- 
tory robots to  perform many routine tasks in a Space labora- 
tory under remote supervision from the ground. I t  is thereby 
important to  provide the robots with sufficient local intelli- 
gence so that communication with the ground can be kept 
within reasonable bounds, and so tha t  the unavoidable time 
delays in the uplink/downlink loop do not cause any stabil- 
ity problems. To this end, the robots must be able to perform 
simple tasks autonomously, and communicate with the ground 

* Research supported by NASA-Ames Co-operative Agreement 
No. NCC 2-525, "A Simulation Environment for Laboratory Management 
by Robot Organization. 

only at  the task level (level 4 in the NASREM telerobot archi- 
tecture [l]) and above, but never below. 

However, this problem is not easy to  solve. The difficulty 
stems from the fact that  the robots must be able to operate in 
a partially unknown environment. Humans can co-operate in 
a laboratory without bumping into each other, and they can 
share common resources without an explicitly specified proto- 
col of communication. If my hammer is not where I put it last, 
I conclude that somebody else must have taken it, and I either 
look for it, or I ask around who might have it. However, this 
requires basic problem solving skills which are not easily cast 
into programming language. Previous attempts at  solving the 
collision avoidance problem and the resource sharing problem 
with centralized scheduling techniques are clumsy and unele- 
gant, and the complexity of such centralized algorithms grows 
exponentially with the number of players involved [9]. 

If we wish to solve this problem elegantly and with an algo- 
rithm tha t  grows linearly rather than exponentially with the 
inherent structural complexity, we must come up with a de- 
centralized scheme in which each robot is responsible for its 
own doing, and operates on a limited, yet dynamically chang- 
ing knowledge of its own local environment. Such an algo- 
rithm will have to  be based on prediction mechanisms. The 
robot must be able to judge the adequacy of a proposed action 
plan on the basis of expectations of the effects of that  action 
plan being executed. For this purpose, it is important tha t  
simulation models at  various levels of granularity can be auto- 
matically generated at  run time from a set of generic master 
models. Which portion of the world is included in a simula- 
tion model and which is not, and what are the levels of detail 
included in the model components must be decided on the 
basis of the dynamically changing information from the oper- 
ating environment. New models will frequently be generated 
to  be used only once and for a particular task, and they will 
be discarded as soon as they have fulfilled their purpose. 

However, even this discussion does not unravel the entire 
plot. A model is useless unless it is accompanied by a match- 
ing experiment (action plan) to  be performed on i t .  What 
we said about the models above, holds for the experiments 
as well: Experiments cannot be completely pre-designed, bu t  
they must be generated on the spot out of a set of generic 
master experiments. 

The question now is: How do we store the knowledge of 
the world and its mechanisms in the generic master models 
and in the generic master experiments, and what are the tools 
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needed to  automatically generate varying simulation models 
and accompanying simulation experiments out of these master 
models and master experiments? This is the realm of our 
research. 

In this paper, we shall discuss a small subset of the over- 
all research plan, namely the generation of models a t  coarse 
granularity levels given models developed at  finer granularity 
levels. One such mechanism is the model pruning algorithm 
which was described in [ll].  In model pruning, a decision is 
taken which variables and/or equations of the master model 
are to be preserved in the simulation model. All others are 
simply eliminated. However, model pruning does not provide 
for a mechanism of aggregating several variables into one, or 
modifying equations such that they take on a simpler form and 
execute more efficiently a t  the possible cost of a reduced accu- 
racy. This is precisely what our new results provide us with: 
A tool to  aggregate variables and simplify equations. Time 
windows are an important component of this tool. 

There is yet another facet to  this discussion. If we wish to  
create an algorithm by which a robot can operate equipment 
in a partially unknown environment, this algorithm had bet- 
ter be robust with respect to modifications of the environment. 
Unfortunately, the robustness and refinement of a control al- 
gorithm are usually in competition with each other. While 
simple proportional integral (PI) controllers work reasonably 
well under varying operating conditions, the more refined con- 
trol algorithms, such as multivariable optimal controllers, are 
highly sensitive to  even small variations in plant parameters 
(31. Again, the problem stems from the centralized approach. 
If we are able to  delegate control intelligence to  the local sub- 
systems while the higher level co-ordinators’ responsibility is 
limited to ensuring the stability of their subsystems, we may 
be able to come up with designs that are far more robust to  
plant parameter variations at  the expense of a slight reduction 
in global optimality. It is proposed tha t  event-based quali- 
tative controllers are good candidates for implementing such 
co-ordination schemes. Time windows are instrumental to the 
design of event-based control algorithms [2]. 

THE MODELING AND SIMULATION 
ENVIRONMENT 

To satisfy the above described requirements, a modeling 
and simulation environment was created which comprises a 
five-level hierarchy of modeling tools. 

At the lowest level of the hierarchy are flat simulation mod- 
els, both of the discrete-event type (coded in DEVS/Scheme 
[17]) and of the continuous system type (coded in DESIRE 
[8]). In order t o  run efficiently, simulation models should be 
flat. Unfortunately, flat simulation models are hard to read 
and difficult to  maintain. 

At the next higher level of the hierarchy are hierarchically 
decomposed modular models of both types. Discrete-event hi- 
erarchical models are coded in DEVS/Scheme, while the con- 
tinuous systems models are coded in DYMOLA [4]. Level 2 
models are easier to  maintain since they can reference sub- 
models which can be stored in a model library. The transfor- 
mation of level 2 models into level 1 models is accomplished 
by a hierarchy interpreter. In the case of the discrete-event 
models, the hierarchy interpreter is a built in function of the 
DEVS/Scheme simulation engine, whereas in the continuous 

case, the hierarchy is flattened by the DYMOLA preprocessor. 
The continuous case is a little more difficult to handle since 
continuous models do not provide for a natural distinction be- 
tween component inputs and outputs. E.g., an electrical resis- 
tor requires the model U = R*I when connected to  a current 
source, but it requires the model I = U/R when connected t o  a 
voltage source. The DYMOLA preprocessor contains formula 
manipulation algorithms which enable it to solve equations a t  
compile time for the appropriate variable. However, level 2 
models are still unwieldy since we must still code one main 
program for each model variant. 

At the next higher level, models are represented by a pure 
system entity structure (SES) [10,21]. A pure system entity 
structure is a hierarchical tree that decomposes root entities 
(corresponding to  the main program) graphically into its com- 
ponent models. The leaves of the tree correspond to  level 2 
atomic models, whereas the interior nodes of the tree corre- 
spond to level 2 coupled models. DEVS/Scheme contains a 
function (transform) which compiles a pure SES into a set of 
level 2 models. Atomic models are retrieved from the model li- 
brary, while coupled models are automatically being generated 
from the information provided in the pure SES. The transform 
routine can generate level 2 models of either the discrete-event 
type (coded in DEVS/Scheme) or the continuous system type 
(coded in DYMOLA), and it will generate the coupled mod- 
els in accordance with their use. Level 3 models are easier to  
create, but we still need one pure SES per variant. 

At the next higher level, models are represented by gen- 
eral system entity structures. General SES’s provide for a 
mechanism to  describe many variants within one single SES. 
DEVS/Scheme provides for a tool, called ESP/Scheme [7], 
which can prune a general SES t o  generate a pure SES. In 
the pruning process, all variants except for one are pruned out 
by cutting away all undesired branches of the SES. Level 4 
models are much more compact than level 3 models since we 
can represent an entire class of models with one single general 
SES. The only difficulty left is the need to decide manually 
which variant to  keep among the many possible variants. 

At the highest level of the hierarchy, we find a rule-based 
decision support system (DSS) which, on the basis of qualita- 
tive rules, can instruct the pruner which branches to  cut. This 
tool is called FRASES [6]. 

The world model (which we previously called the set of 
master models and master experiments) consists of 

I) a library of level 2 leaf models and level 2 unit action 
plans, 

2) a set of level 4 system entity structures describing the 
major master models, and a corresponding set of level 4 system 
entity structures describing the major master experiments, and 

3) a level 5 rule-based decision support system which pro- 
vides for the expert knowledge necessary t o  generate simula- 
tion models and simulation experiments for a given purpose. 

The five level modeling and simulation architecture will be 
described in detail in a companion paper which is currently 
under preparation [14]. 

THE CONCEPT O F  TIME WINDOWS 
IN EVENT-BASED CONTROL 

Event-based control is a discrete eventistic form of control 
logic, in which the controller expects to  receive conforming 
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sensory responses to its control commands within pre-set time 
windows which are determined by the discrete-event model of 
the system under control [18]. An event-based controller starts 
out in a check s ta te ,  and stays in phase wait for the minimum 
allowed processing time, tmin. A sensory input received dur- 
ing this period indicates an error, since the (expected) sensory 
response arrived too early. Once t m i n  has elapsed without 
external interrupt, the model changes t o  phase window, and 
stays in this phase for a duration specified by the time win- 
dow. A sensory input is expected to  arrive during this period. 
If the input is received and it tests valid, an appropriate con- 
trol command is issued. The check state is updated, and the 
model changes to  state wait again for another appropriate du- 
ration, tmin. If the test fails, an error is reported. Finally, 
if the window period has elapsed without receiving the ex- 
pected sensory input, another, error will be processed. The 
event-based controller moves through its check states in con- 
cert with the received inputs, as long as all input signals arrive 
within their expected time windows. 

(a) The evolution of the process (b) For the same process, 
is shown by diverging lines; the threshold level level1 
the sensor window at time T determines the first 
is Smax - Smin time-window tmax - unin 

Fig. 1 Comparison of conventional and event-based control 

Contrary to the conventional sampled da ta  logic, event- 
based controllers demand less precision from their sensors. 
These sensors can have threshold-like characteristics. The 
burden of the precision is placed on the time windows rather 
than on the sensors. Consequently, event-based controllers are 
less sensitive t o  the received sensory input, and they can there- 
fore be made more robust. Figure 1 compares the two different 
logic forms of the conventional sampled da ta  control versus the 
event-based control. Another important advantage of event- 
based control is tha t  the error messages that are issued by the 
controller contain information that can be directly used for 
diagnostic purposes. With the event-based control paradigm, 
the control process can be readily interfaced with rule-based 
symbolic reasoning logic in an advanced robotic and intelligent 
automation setup. 

The key to  event-based control is the idea of time windows. 
Time windows describe the time durations from the minimum 
allowed process time to  the maximum allowed process time. 
Time windows of non-zero duration are necessitated by pa- 
rameter variations and by external disturbances of a process 
under normal operating conditions. 

Time windows can be obtained from DEVS discrete-event 
models of the process. This feature has been discussed in 
[IS] .  However, time windows can also be directly obtained 
from a series of continuous system simulation runs by vary- 
ing the disturbances and plant parameters of a process model 
in accordance with normal operating conditions. This paper 
introduces an approach supporting the determination of time 

windows directly from continuous system simulation models. 

A U T O M A T E D  A B S T R A C T I O N  OF 
TIME W I N D O W S  

DEVS/Scheme is an implementation of the DEVS formal- 
ism [I51 coded in PC/Scheme [IZ], a LISP dialect developed 
for P C  compatibles. DEVS/Scheme supports truly modu- 
lar hierarchical model specification of discrete-event models. 
The simulation of discrete-event models is achieved by imple- 
menting the abstract simulator principles developed as part 
of the theory [15]. The ESP/Scheme software, underlying 
DEVS/Scheme, realizes the System Entity Structure (SES) 
[21] concept. DEVS/Scheme is implemented as a shell in such 
a way tha t  all underlying LISP-based and object-oriented pro- 
gramming language features of PC/Scheme are available to the 
user. The result is a powerful tool for combining symbolic rea- 
soning with hierarchical modular discrete-event modeling [17]. 

DEVS/Scheme and ESP/Scheme have been extended to  
manage continuous system models [13]. For this purpose, the 
continuous system models are accompanied by corresponding 
DEVS shell models. These models, written in the DEVS for- 
malism, provide a knowledge level description of the  continu- 
ous systems, and serve as pointers to their counterparts, the 
continuous system models, which are coded as sets of differ- 
ential equations, and which are stored in a continuous system 
model base. 

The modular hierarchical modeling scheme is preserved in 
the continuous models by using DYMOLA [4], a continuous 
system modeling language. DYMOLA acts as a bridge be- 
tween the abstracted DEVS models and the continuous system 
simulation language code (DESIRE [8]). The SES is employed 
for the organization of all models a t  different levels of granu- 
larity. Management of these models is carried out by opera- 
tions on the SES. Simulation trajectories can be produced to  
form the time information, which can then be automatically 
mapped into DEVS discrete-event models for future reference. 

M o d e l  Bases  

The knowledge base includes the following model bases. 
1. ENBASE : the entity structure base. All entity 

structure files are in this da ta  base. 
2. MBASE: the model base. The DEVS models are 

stored in this da ta  base. 
3. DYMOBASE: the DYMOLA model base. I t  stores the 

DYMOLA models. 
4. DEBASE: the DESIRE model base. The executable 

DESIRE files are saved in this da ta  base. 
5. TRAJECT: the trajectory base. The simulation 

trajectories are saved in this da ta  base. 
These knowledge bases are all subdirectories of a directory 
named DEVS. 

T h e  S v s t e m  E n t i t y  S t r u c t u r e  AEproach  

With the existence of the atomic component models in 
MBASE and DYMOBASE, effective management and manip- 
ulation of these models supports their use in a variety of differ- 
ent system configurations. Operations performed on an SES 
provide means of organizing information among these model 
bases as well as to  synthesizing, managing, and manipulating 
(re)usable models in the model bases. 
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The SES is a labeled tree with attached variables. It holds 
the structural knowledge of a system. An SES tree is built 
by construction operations, such as: create a root, add nodes, 
attach variables, and specify the coupling relations. Once an 
SES tree file has been set up,  it is stored in ENBASE. DEVS 
models for all the leaf nodes of the SES tree are required to  be 
resident in MBASE, and their continuous counterpart models 
must be resident in DYMOBASE. An operation called prune 
can be applied to an SES to generate alternatives. This prun- 
ing algorithm traverses the SES in a depth-first fashion, in- 
teractively querying the user to select one entity if there are 
several choices under a specialization. The querying process 
can be answered by the DSS instead of the user. Querying 
continues until all leaf entities have been visited. The re- 
sult of the pruning algorithm is a pure SES. The operation 
transform can be applied only to  a pure SES. nansform tra- 
verses the pure entity structure starting at  the root of the 
tree, and calls upon a retrieve processor t o  search for a cor- 
responding model of the current entity in one of the model 
bases. If a model has been found, the transformation of its 
subtree is aborted. Otherwise, the transformation continues. 
The construct-continuous-systems procedure is invoked if the 
model of an intermediate node cannot be found in cithcr the 
working memory, the MBASE, or the ENBASE. It constructs a 
hierarchical DEVS coupled model, and stores it in the working 
memory. Simultaneously, the corresponding DYMOLA cou- 
pled model is also constructed and is saved into DYMOBASE. 
If the user wants t o  continue the transformation to  obtain an 
executable DESIRE program, transform automatically calls 
upon the DYMOLA preprocessor which operates on a DY- 
MOLA batch file tha t  was previously generated during the 
transformation. DYMOLA generates an executable DESIRE 
program, and the transform procedure stores it automatically 
in DEBASE. After all these preparatory tasks have been com- 
pleted, the restart command starts the simulation of the con- 
tinuous system in DEVS, while the run command starts the 
corresponding simulation of the continuous system in DESIRE. 
The run command can be invoked from within a DEVS model. 
By assigning appropriate transition functions to  the DEVS 
models, the resulting trajectories of the DESIRE simulation 
can be mapped into DEVS models, or they can be stored in 
the TRAJECT base for future reference. 

This enables the user to switch back and forth between the 
discrete-event and the continuous system modeling concepts, 
exploit the advantages of both, and ensure the consistency of 
his modeling efforts across the barrier between the two model- 
ing methodologies. Figure 2 visualizes the entire knowledge- 
based modeling and simulation environment. 

Some useful macros have been created to  facilitate the gen- 
eration of DEVS models which incorporate the continuous sim- 
ulation results. These macros operate on a pure SES. With a 
pure SES tree residing in ENBASE and models for all its leaf 
nodes residing in MBASE and DYMOBASE, these macros can 
be called upon to  automatically transform the pruned tree, t o  
perform series of continuous simulation runs from the tree, and 
to  return the simulation execution times and/or the time win- 
dows. Thc table of parameter lists and simulation times can 
be saved as states of the DEVS model. 

Simulation runs of a continuous system model can be per- 
formed under the control of several different experiments. 

I 
retrieve 

WORKING MEMORY 

ENTSTR w" RUNE ran,;,, -)il 

ENTITY STRUCTURE 1 I MODEL BASES 

t3: 
run 

1 
WORKING MODELS: 

atomic-models 
continuous -models 

- 

restart 

get-p- windo w 
or 

ontiquous-systems- I 
L 

I I I ESP-SCHEME - DEUS-SCHEME 

Fig. 2 The knowledge-based modeling 
and simulation environment 

Each simulation rriodel may have several different control mod- 
els (experiments) associated with it, while one control rriodel 
may be used to  drive various simulation models. The simula- 
tion model and the experiment to be performed on i t  can be 
selected directly from within the DEVS macro. This enablcs 
the corresponding DEVS model to influence the execution of 
the continuous system simulation (coded in DESIRE). 

The time windows information generated by use of the 
macros can then be fed back into the DEVS models to  al- 
low DEVS to  perform a qualitatively similar, yet more highly 
aggregated, discrete-event simulation of the formerly contin- 
uous model. Such a simulation can be executed using the 
restart command once the transition functions of the atomic 
discrete-event models have been defined. 

THE SPACE ADAPTED 
FLUID HANDLING SYSTEM 

Our task was to  design a modeling and simulation environ- 
ment capable of supporting the investigation of robot organi- 
zations for managing chemical, or similar, laboratories aboard 
Space Station Freedom or other Space platforms. The model- 
ing environment enables us to  thoroughly study the problems 
to  be encountered in assigning responsibilities to  an  organized 
group of robots. 

Handling fluids in orbit will be essential to many experi- 
ments that  are currently being planned for execution in the 
life sciences, microgravity sciences, and Space medicine mod- 
ules. These research projects will involve many routine ma- 
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nipulations of fluids. Many of these experiments will not 
be executable without the incorporation of robot technology 
since sufficient crew time for manual operation will simply not 
be available. In the beginning, the robots assigned to such 
tasks will be small dedicated machines which will operate com- 
pletely inside a rack, i.e., they will not a t  all interfere with the 
workspace of the astronauts. They can be viewed as movable 
parts of a science instrument or a set of neighboring science 
instruments. 

In one of the considered scenarios, we envision such a robot 
to move along an x-z spindle in front of a set of rack-mounted 
instruments similar to  a fork lifter in a warehouse. The robot 
can extract liquids from one instrument and pass it along t o  
the next for further analysis. The robot can be considered a 
part of the rack, and i t  can be integrated into the rack in such 
a way that an airlock is between the instruments (including 
the robot) and the working area of the astronauts. In this 
way, we can guarantee tha t  the safety of the astronauts will 
not be jeopardized by the laboratory robot. 

In longer terms, our research may also be useful for au- 
tomation of portions of the environmental control and life sup- 
port system (ECLSS) aboard Space Station Freedom. In a 
closed pressurized Space environment, such as the Space Sta- 
tion, the growth of bacteria and funghi is inevitable. In long 
term missions, such as the Space Station project, this causes 
all kinds of health problems, such as allergies. A small robot 
could eventually be used to  walk around in the Space Station, 
and analyze and remove bacterial and other contaminations, 
similar t o  a cleaning robot in a swimming pool. 

In our project, a robot model consists of three parts: a 
motion-system, a sensory-system, and a cognition-system 
[20]. The cognition-system contains one selector and several 
Model-Plan-Units (MPUs). The selector is a controller which 
controls MPUs. MPUs are task specialists which are activated 
under appropriate circumstances 1201. For instance, one MPU 
may be specialized for the task of fluid handling. 

The instruments considered in our current prototype setup 
are a pressurized bladder bottle and a syringe. Under micro- 
gravity conditions, all liquid containers must always be full. 
No air/liquid interfaces are allowed unless they are controlled 
by surface tension (e.g., in a capillary). Consequently, we can- 
not use standard equipment such as beakers or erlenmeiers. 
Instead, we use a bottle which is sealed by a septum, and 
which contains an inflatable bag. The air volume between the 
bag and the bottle walls is pressurized. Liquid is injected into 
or extracted from the bottle using either a syringe or a motor- 
ized pipette. The air pressure will squeeze the bag such tha t  
i t  remains constantly full. 

To monitor and thus control the process, the robot has 
to have knowledge about certain states of the models of the 
bottle (and of the syringe). In order to  model the robot’s 
cognition of the process, several models of the same bottle are 
needed. These models are related to  each other by abstraction 
[19]. In order to  guarantee the integrity of the da ta  system, 
i t  is important tha t  all models of the bottle are automatically 
generated from the same master model, and tha t  any manual 
modifications of the bottle perception are implemented at  the 
level of the master model rather than directly a t  the level of 
any derived model. 

Figure 3 shows tha t  there exist three different models of 

the bottle: “btl-e”, “btl-o’,’ and “btl-d”. “btl-e” is the model 
of the bottle which is external to the MPU. “btl-e” represents 
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I 
m p u r d e c  

I 
b l t - e  
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, dld$;c , 
b t l -  
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c o n t r o l  b t l - o  diagn 

Fig. 3 SES for testing a bottle handling mpu 

the real bottle. In a true laboratory setup, this model would be 
replaced by real hardware. Since the physical world is continu- 
ous, we chose to  make “btl-e” a continuous system simulation 
model. “btl-e” is thus an abstraction of the real bottle stored 
in DYMOBASE. “btl-o” is the operational model of the bottle 
which the robot uses to  control the bottle. I t  has been con- 
ceptualized similar to  the way in which humans might view 
a bottle being operated on. Humans are bad a t  solving dif- 
ferential equations in their heads, and thus, “btl-o” is a much 
coarser model of the bottle than “btl-e”. Mental models em- 
ployed by humans operate on the “what-if” paradigm, i.e., 
humans envision a (coarse) action, and consider the (coarse) 
consequences of such an action being executed. This is exactly 
how “btl-o” works. A coarse action (i.e., a discrete event) is 
scheduled, and a reaction (another discrete event) is expected 
to occur sometime in the future, not earlier than a given mini- 
mum time, but not later than a given maximum time. “btl-o” 
is used by the event-based controller inside the MPU. “btl- 
d” is the model of the bottle used for diagnostic purposes. It 
mimics the way in which a human checks the states of a system 
when something abnormal happens. “btl-o” and “btl-d” are 
different abstractions of “btl-e”, and as explained earlier, it is 
essential that  “btl-o” and “btl-d” can be automatically gen- 
erated either from “btl-e” directly or from a common master 
model through experimentation. In our setup, this is accom- 
plished by simulation experiments, but in a real laboratory 
setup, this could be achieved through hardware experiments. 
In our scenario, time windows were automatically generated 
from series of continuous system simulations of “btl-e”. 

Notice that the above description contains a slight simpli- 
fication since even “btl-e” contains a second counterpart resid- 
ing in MBASE, i.e., there exists a “btl-e” DEVS model beside 
of the “btl-e” DYMOLA model. The “btl-e” DEVS model con- 
tains knowledge about some of the variables used in the “btl-e” 
DYMOLA model, and how they interrelate with the outside 
world. If the “btl-e” DYMOLA model were to be replaced by 
a real bottle, somebody would still need to tell DEVS what 
a bottle is, what variables can be observed, and how they fit 
into the rest of the world. This is the type of generic models 
(preconceived notions) tha t  all humans carry around about 
the items tha t  populate their everday lives. These models lack 
the detailed information about the specifics of a particular 
item. Consequently, the “btl-e” DEVS model is just a shell. 
It references the externally available variables of the “btl-e” 
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DYMOLA model, and states how they are connected with the 
environment of the bottle, but it does not contain any tran- 
sition functions tha t  describe the internal relations between 
these variables. 

The simulation model of the overall fluid handling system 
“fh” contains, beside of the model of the physical equipment, 
a description of the ezperimentalframe which operates on that 
equipment. The experimental frame [16] consists of a gener- 
ator and a transducer. The robot pushes the plunger of the 
syringe with velocity V during the filling, and pulls the plunger 
with velocity -V during emptying. The generator generates 
this input, i.e., the velocity of the system, and the transducer 
gathers the outputs and analyzes the results. Different gener- 
ators and transducers can be used for different experimental 
conditions. 

To simplify the modeling process, it is assumed that the 
input, the nominal velocity V of the syringe plunger, is con- 
stant (model “sa” is chosen). Accordingly, the nominal flow 
rate of the syringe is also constant. To demonstrate the flexi- 
bility of the modeling scheme of extracting time windows from 
continuous simulation runs which represent variations in sim- 
ulation time due t o  parameter changes of a model, the model 
allows the actual flow rate into the bladder t o  vary in a non- 
linear fashion with other extraneous influencing factors. Three 
specific extraneous effects were considered. One was that the 
bladder could have a leakage. The  second effect involved the 
angle at which the needle of the syringe penetrates the di- 
aphragm that covers the opening of the bottle. I t  was thought 
tha t  if this angle were very obtuse (the needle of the syringe is 
almost parallel t o  the diaphragm), the needle would not pene- 
trate the diaphragm completely, and therefore, a fraction of the 
fluid ejected from the syringe would not be injected into the 
bottle, but would escape. The third consideration was that 
the flow rate of the liquid into the bottle would slow down 
when the bladder was almost full. These assumptions may or 
may not be realistic; they were included to show the ability 
of the modeling scheme to handle situations of this kind. For 
simplicity, all these effects were included in the bottle model 
rather than in the syringe model. The models of these effects 
are activated by changing the parameters of the bottle model. 

GENERATING TIME WINDOWS 
FOR THE FLUID HANDLING SYSTEM 

A system entity structure of the overall fluid handling sys- 
tem “fh” is stored in ENBASE (Figure 4). It can be seen 

FH 
I 

phy-dec 
I 

, SYJnge , , b o i l e  , ,gen;at;;. LL;aniduce;k 

sa sb  ba  bb sa  

Fig. 4 The system entity structure of system fh 

that  all component models in the system have two special- 
izations (of course, they could have more). For instance, the 
generator “ga” generates a constant input t o  the system while 
the generator “gsa” generates a sine wave input. All the eight 
leaf models of the SES tree are resident in MBASE and in 
DYMOBASE. Figure 5 shows the model bottle in MBASE, 
Figure 6 shows its counterpart model bottle in DYMOBASE. 
Figure 7 shows the pruned SES of “fh”,  i.e., one alternative 
among all the possible choices. This pruned SES is also saved 
in ENBASE. 

(make-pair continuous-models ’ b o t t l e )  
(send b o t t l e  valid? #t ’0) 
(send b o t t l e  set-s (make-state ’sigma ’- 

’phase #t 
’ t f l a g  #t 
’tname ’ b o t t l e  
’cut ’ ((PPORT ’ (PI 

(IOLET 8 iwj j )  
’parameter ’ ( ( R  8.314) (M 0.00224) 

’ l o c a l  ‘((VOL1 0) (VOL2 ’0) (FA ’0) 
(TEMP 273.15) (VOL 50.24) 
(SC 1) (ANGLE 90) (LR 0 ) )  

(FVF ’0) (FVE ’0) (RATE ’0))) 
) 

;-- MODEL BA -- 
( i f  (unbound? b o t t l e )  

(send bot t le  make-new ’ba) 
( load  (string-append m l  “bott1e.m”))) 

Fig. 5 Model bottle in MBASE 

< MODEL BOTTLE > 
model type b o t t l e  

cut IOLET(W /.) 
cut PPORT(P /.) 
local VOLl VOL2 
l o c a l  FA FVF FVE RATE IREAL 
I. SC = 1 : Fi l l ing  > 
.C SC = 0 : Empty > 
parameter R=8.314 M=0.00224 TEMP=273.15 VOL=50.24 
parameter ANGLE=BO LR=O SC=l 
RATE = VOLI/VOL 

func FVF = TABZ(RATE) 
func FVE = TABJ(RATE) 
W E A L  = W*FA*(SC*FVF + (l-SC)*FVE) - LR 
der(VOL1) = WREAL 
VOL2 = VOL - VOLl 
P = R*M*TF,MP/VOL2*100000O 

func FA = TABI(ANGLE) 

end 

Fig. 6 Model bottle in DYMOBASE 

-ENT : FH 
--ASP : PHY-DEC 

, : : : : : coupl ing  -> 

, : : : : : v a r i a b l e  -> 
---ENT : SYS 

ASP : SYS-DEC _ _ _ _  
f . . .  . . . . .  :coupling -> 

, : : : : : v a r i a b l e  -> 
ENT : SA 
ENT : BA 

_ _ _ _ _  
_ _ _ _ _  
---ENT : EF 

ASP : EF-DEC ---- 
, . . . . : c o u p l i n g  . . . .  -> 

, : : : : : v a r i a b l e  -> 

ENT : GA 
ENT : TAA 

end of d i s p l a y  

_ _ _ _ -  
- _ _ _ _  

((EF FH (OUT2 . OUT) (Y2 . Y)) 
(SYS EF (OUT . IN) 0) (EF SYS 
(OUT1 . I N )  0)) 
((OUTPUT Y 0)) 

((BA SYS (PPORT . OUT) (P . Y)) 
(SYS SA (IN . VPORT) (U . V)) 
(SA BA (IOLET . IOLET) 0)) 
((CUT OUT (Y / .)) (CUT IN (U / .))) 

((TAA EF (OUT . OUT2) (U . YZ)) (GA 
EF (OUT . OUT1) (U . Y1)) (EF TAA 
(IN . IN) (U . U))) 
((CUT OUT2 (Y2 / .)) (CUT OUT1 

(Y1 / . ) I  (CUT IN (U / . ) ) I  

Fig. 7 Screen output of the pruned SES of fh 
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In this paper, we only discuss the filling process. Generat- 
ing time windows for emptying is just a matter of changing the 
initial states of the components and the input of the system. 

cmodel 
simutime 10 
step 0.01 
commupoints 100 

ctblock 
connect 'fh.tr' as output 2 
dimension TAB1 Cl21 , TABZClOl , TAB3 Cl01 
data 0, 25 ,  45, 80, 85, 90 
data 0, 0, 0.2, 0.8, 1, 1 
data 0, 0.9, 0.95, 0.99, 1 
data 1, 1, 0.9, 0.1, 0 
data 0. 0.01, 0.05, 0.1, 1 
data 0, 0.1, 0.9, 1, 1 
read TAB1 
read TAB2 
read TAB3 
dimension lraC51 
data 0, 0.1, 0.04, 0.06, 0.08 
read Ira 
dimension angler51 
anglecl] = 90 
angleLa] = 65 
for i=3 to 5 

next 
for i=l to 5 

angle [i] =abs (ranCO)) *30+70 

ANGLE=angle [i] 
LR=lra[il 
drun 
write #2,ANGLE,LR,t 
reset 
next 
disconnect 2 
ctend 

outblock 
OUT 

Fig. 8 Simulation control model fh .1  

In the DYMOLA model "bottle", i t  is shown that the ports 
of the bottle are declared as cuts 141. Variable VOLl  denotes 
the volume of the bladder, and VOL2 denotes the volume be- 
tween the bladder and the wall of the bottle. VOL, a constant, 
denotes the total volume of the bottle. Fluid can flow in or 
out through the port I O L E T .  The input/output variable a t  
port IOLET is the nominal flow rate W .  The actual flow rate 
W R E A L  is influenced by the factors mentioned above. The 
effect of the injection angle on the flow rate is described as a 
tabular function T A B 1 ,  and that of the fluid volume in the 
bladder is a tabular function TAB2 for filling, and another 
tabular function TABS for emptying. The effect of leakage is 
described through the variable LR. Values for these tabular 
functions are declared in the simulation control model (Figure 
8). According to  the gas law, the variable P ,  i.e., pressure, a t  
port P P O R T  indicates the pressure between the bladder and 
the wall which is related to the volume of the fluid in the blad- 
der [5]. The generator "gen" generates the nominal velocity 
of the syringe plunger. The nominal flow rate of the syringe 
is the product of its cross-sectional area and the velocity of 
its plunger. The transducer "transdu" in our example simply 
rescales the input variable, i.e., the pressure P .  

A more detailed study of these models could be performed. 
Modifications can be made to  the individual models, and dif- 
ferent types of models can be chosen without changing the 
system entity structure. 

With the existence of a pruned entity structure in ENBASE 

, . -- Get filling time window 

(define (example-1) 
; loading the model into working memory 

(if (unbound? ba) 

(if (unbound? sa) 

(if (unbound? pa) 

(load (string-append ml "ba.m"))) 

(load (string-append ml '*3a.m"))) 

(load (string-append ml "ga.m"))) 
; for filling the generator generates V > 0 

(send ga change-parameter ' ((SC 1.5))) 
; set the initial volume of liquid in syringe full 

(send sa change-ic '((VOL 50.24)) )  
; set the parameter SC of bottle to be 1 for filling 

(send ba change-parameter '((SC 1))) 

; set the initial condition for VOLl of bottle to 

(eval ' (get-p-window p:fh-a ba ' ((voll 0)) 
be zero and get time window 

'(ad lr) 1 5  "fh$Y-2.14E+6"))) 

Fig. 9 Procedure to obtain the filling time window 

C21 (example-1) 

(FH ROOT-ASP) 
(SYS PHY-DEC FH ROOT-ASP) 
(SA SYS-DEC SYS PHY-DEC FH ROOT-ASP) 
(BA SYS-DEC SYS PHY-DEC FH ROOT-ASP) 
(EF PHY-DEC FH ROOT-ASP) 
(GA EF-DEC EF PHY-DEC FH ROOT-ASP) 
(TAA EF-DEC EF PHY-DEC FH ROOT-ASP) 
-- Do you want to continue the transformation of 
-- the models to get the executable continuous 
-- system simulation files? (y/n) 
Y 

root-co-ordinator: R:FH 
-model: FH---> processor: C:FH 
--model: SYS---> processor: C:SYS 
---model: SA---> processor: S:SA 
---model: BA---> processor: S:BA 
--model: EF---> processor: C:EF 
---model: GA---> processor: S:GA 
---model: TAA---> processor: S:TAA 
________===== _______ 

-- Do you want to save another trajectory 
-- besides the basic one ? 

n 

(3.64 6.97) 

[31 (send ba get-sv 'p-table) 

(y/n) 

( ( (ANGLE 9.00000E+01) (LR 0.00000E+00) 3.64000E+00) 
( (ANGLE 6.50000E+01) (LR 0.1) 6.97000E+00) 
( (ANGLE 7.00000E+01) (LR 0.04) 5.86000E+00) 
((ANGLE 7.00010E+Oi) (LR 0.06) 5.96000E+00) 
((ANGLE 7.66445E+01) (LR 0.08) 5.06000E+00) 

1 

Fig. 10 Result from extracting the filling time window 

and the component models in MBASE and DYMOBASE, 
DEVS macros can be used to execute continuous simulation 
runs and to obtain the desired time trajectories. 

In this application, different parameter values within the 
range of normal operating conditions were assigned t o  the 
model "syringe" and the model "bottle". Time windows are 
then determined by the maximum and minimum simulation 
times recorded for various values of a model parameter. 

To make the simulations more efficient, i.e., save the time 
needed for the transformation of the pruned SES, the param- 
eter changes were specified directly in the simulation control 
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model rather than as  attached variables in the SES. When 
calling the macro get-p-window, a test number is specified t o  
indicate the particular simulation control model to  be used. 

Figure 9 shows tha t  macro get-p-window sets the initial vol- 
ume of the  bladder to  zero, i t  sets the test number t o  1, and 
it executes five separate simulation runs with different param- 
eter values. The  simulations are terminated when the system 
output reaches a value of 2.14 IO6. The system output is the 
output of “transdu”, which is the rescaled pressure of bottle 
“ba”. The  value 2 .14 .  10‘ of the rescaled pressure indicates 
tha t  the bladder in “ba” is full. 

R u n  “(example-I)” calls upon the macro. The  macro trans- 
forms the  pure SES, performs the required simulations, and 
finally returns the  desired time windows. The result is shown 
in Figure 10. To get the parameter values of the  model and 
the simulation t ime for every simulation, method get-sv can 
be sent t o  model bottle. Besides from returning the  time win- 
dows, the macro also produces the continuous model files, the 
simulation program, and the  trajectory files in DYMOBASE, 
DEBASE, and TRAJECT.  

CONCLUSION 

This paper presents an approach to  automatically gener- 
ating time windows for intelligent event-based control in a 
knowledge-based modeling and simulation environment. Our 
approach has been exemplified a t  hand of a robot controlled 
fluid handling system designed for Space Station Freedom. 
Other methods of automatically mapping continuous-time 
models into equivalent discrete-event models can be readily ex- 
ploited in our modeling and simulation environment. Thereby, 
continuous process control can b e  interfaced with a symbolic 
reasoning system. Continuous system models and discrete- 
event models can co-exist in the  environment, and they can 
be amalgamated with more classical AI techniques such as 
rule-based expert systems. 
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