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Introduction

This thesis deals with variational approaches to the segmentation of images,

with a particular emphasis on efficient geometry-based algorithms.

More specifically, we consider the problem of computing segmentations of an

image f : S → R by minimizing certain functionals. Let us first introduce

the notion of segmentation. A segmentation consists of a partition P of the

image domain into connected regions, and for each such region R ∈ P a

function fR : R → R from a prescribed set of functions, the local regression

model. Piecing the functions fR together, we obtain an approximation of f ,

which is denoted by fP . For the sake of concreteness, let us mention constant

functions as a possible choice for the local regression model. In this setting,

we are considering the problem of first partitioning the image domain into

connected regions and then approximating the image by a constant on each

single region.

Criteria for a choice of segmentation are usually given in the form of a vari-

ational problem, by minimization of a suitable functional

H(f, (P , fP)) = U(P , fP) +D(f, (P , fP))

in (P , fP), ranging over a certain prescribed segmentation class. The term

D measures the distance of segmentations (P , fP) to image data f , and U is

a penalty or regularization term. There are various motives for considering

such a problem. One could be denoising: Here we assume that the image

f originated from an element of the segmentation class by some distortion

or noise effect and we want to recover the original image. In this setting, U

codes prior information on the original, whereas D incorporates knowledge

about the noise. Another application could be compression: Here, U is the

coding cost for storing the segmentation, and D is a measure of distortion

arising from compression. Finally, segmentations contain information about

the image, which makes them useful tools for image analysis purposes. For

instance the constant model is clearly related to the problem of edge detec-

tion.

While such functionals provide an elegant method to single out particularly

useful segmentations, the arising minimization problems very often turn out
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to be intractable. The predominant approaches can be grouped roughly as

follows:

• Stochastic optimization methods like simulated annealing or other Me-

tropolis-Hastings type algorithms, see Gilks et al. (1996), Winkler (2002),

Casella and Robert (1999). Such methods never give exact results, since

they spend a lot of simulation time in local minima and do not provide

decision rules to decide if they are already in a global minimum; even

quality estimates by convergence diagnostics or related techniques –

albeit frequently used in practice – are questionable.

• Deterministic minimization in a restricted search space. The motiva-

tion behind this approach is the desire to obtain efficient algorithms

that solve the restricted problem in an exact manner. In this setting

we are in a conflict between feasibility of algorithms and sufficient rich-

ness of the search space. A further criterion for the design of the search

space is given by the desire to mathematically analyze the results of

the minimization procedure.

In this thesis we subscribe to the second approach. More precisely, we pro-

pose two classes of partitions, whose structures permit fast minimization

algorithms. Hierarchic partitions are formed by subsequent division of the

image domain in the horizontal and vertical directions. By their recursive

structure, they admit a minimization algorithm that consists of an iterative

application of a dynamic programming approach in one dimension, see Win-

kler and Liebscher (2002). Dyadic partitions are generated by recursively

applying a quad-split to the image domain. The tree structure induced this

way will be utilized for the development of a minimization algorithm. Both

dyadic and hierarchic partitions consist of rectangles. By additionally split-

ting the rectangles along straight lines, we arrive at the set of wedges, designed

to better approximate the geometric fine structure of the image. We control

the angular resolution of the arising partitions by a priori fixing the set of

lines. The resulting partitions will be called wedge- or wedgelet-partitions.

For local regression models, we use the restrictions of elements of a fixed

finite dimensional function space over the image domain S to the respective

region. This includes as special case the locally constant model.

The functional under consideration will be

Hγ : (f, (P , fP)) 7−→ γ · |P|+ ‖f − fP‖22, γ ≥ 0.
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In this thesis, functionals of this form will be called Potts functionals with

parameter γ. We chose this name since a similar penalty was first used in

Potts (1952) as the energy function of a Gibbsian model in statistical me-

chanics, generalizing the Ising model (from Ising (1925)) from binary random

fields to those with a finite number of spins. The parameter γ weighing the

distance versus the penalty term can be interpreted as inverse smoothness

or scale parameter. For γ = 0 the minimizer will in general be given by

the finest possible segmentation, whereas for γ → ∞ the segmentation will

consist of a single region. As a consequence of taking the squared L2-norm

for the distance term, we obtain that a segmentation (P , fP) is uniquely de-

scribed by the partition P ; fP is obtained from P by orthogonally projecting

f onto suitable function spaces. In the following we call the computation of

these projections the local regression problem.

In the one-dimensional case the Potts functional and its minimizers have been

thoroughly investigated, e.g. in Kempe (2003), and Winkler and Liebscher

(2002). In particular, dynamic programming techniques have been derived

and implemented, that allow the rapid computation of exact minimizers with-

out any restriction on the search space. These techniques are the basis for

our treatment of the hierarchic model. Observe that there is a one-to-one

and onto correspondence between one-dimensional signals f and locally con-

stant segmentations (P , fP) (provided that the segmentations are minimal

in the sense that no two adjacent intervals carry the same value). In higher

dimensions, the number of jumps in a signal and the cardinality of partitions

are no more related in the simple way as they are in one dimension. The

increase in complexity in the two-dimensional case necessitates restrictions

on the search space like the ones we propose in this thesis.

A special case of the dyadic partition scheme are the wedgelets originally

proposed by Donoho (1999), designed to overcome certain shortcomings of

two-dimensional wavelets. It is well-known that nonlinear approximation,

with respect to a wavelet orthonormal basis, achieved by a simple sorting

and truncation of coefficients, yields optimal approximation rates for one-

dimensional piecewise smooth signals. The deeper reason is that the van-

ishing moments of the wavelets imply a fast decay of wavelet coefficients

away from the singularities. In view of the wide success of wavelets, in par-

ticular in the domain of image compression, it is somewhat surprising that

this approximation behavior does not pertain in the two-dimensional case:

The usual tensor product construction of a two-dimensional multiresolution

analysis results in a wavelet orthonormal basis that has – provably– subopti-
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mal nonlinear approximation rates, see e.g. the discussion in Mallat (1998).

This fact motivated various researchers to develop alternative systems and

approximation schemes. In particular Donoho is responsible for the creation

of two main branches of this development, namely curvelets [Starck et al.

(2000)] – and their relatives, called ridgelets [Candès (1999); Candès and

Donoho (1999)] and contourlets [Do and Vetterli (to appear.)] –, as well as

wedgelets (which spawned, amongst other constructions, platelets, compare

Willett and Nowak (2003)). Roughly speaking, the first group is based on

methods from harmonic analysis, sometimes using group-theoretic language.

These tools are employed for the construction of a suitable system of building

blocks, usually forming a tight frame of the image space, and approximation

is achieved by truncating the expansion of an image with respect to this

frame. By contrast, the second group incorporates geometric image domain

partitioning with local regression. Intermediate constructions were also de-

veloped, such as the bandelets due to Pennec and Mallat (to appear), which

are based on a combination of partitioning and (warped) wavelet analysis.

Already in the initial paper [Donoho (1999)], Donoho noted the need for the

fast computation of local regressions, which in the wedgelet case amounts to

computing mean values over wedge-shaped domains of varying shapes and

sizes. His algorithms were based on the assumption that these values were

computable in reasonable time, but judging from the literature and the few

existing freely available implementations available at Donoho et al. (2004)

and Willet (2004), no solution to this problem has so far been presented.

Some indication was given in the paper Romberg et al. (2002), which used

two-scale relations between wedges of different scales, the idea being that a

wedge of size 2j could be pieced together from wedges of size 2j−1. How-

ever, the exposition is far from complete and is hardly a base for an efficient

implementation. Greedy algorithms for wedgelet type approximation were

developed by Willett et al. (2004). In terms of computing times these rou-

tines come near our algorithms, at the cost of yielding only local minima of

the cost function. Besides being undesirable for image processing purposes,

this suboptimal behavior also poses severe problems for the mathematical

analysis of the algorithm.

The main contribution of this thesis can be summarized by the following two

points:

• The design of fast and flexible algorithms for the computation of wedgelet-

type approximations, based on a particularly efficient solution of a local

regression problem. Here, the angular resolution can be prescribed in
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an arbitrary manner. Moreover, for dyadic partitions, the implementa-

tion gives fast access to the entire scale of minimizers.

• The formulation and proof of consistency results for the wedgelet es-

timators. These results describe the asymptotic behavior of wedgelet-

minimizers of discretized continuous images, as the pixel size tends to

zero. They provide heuristics for the choice of the parameter γ and

yield convergence rates that, for certain regression models, are close to

theoretically optimal.

On the algorithmic side, we present a methodology which allows the flexible

design of wedgelet-like systems, along with powerful algorithms for efficient

approximation in these systems. It allows to treat wedgelets as well as the

platelets developed by Willett and Nowak, which use piecewise affine instead

of piecewise constant images. It is one of the main achievements of this thesis

to make fast algorithms for the precise computation of wedgelet approxima-

tions available. A careful treatment of digital lines turns out to be a key

feature. It allows the development of rapid summation methods for polyg-

onal domains with a prescribed angular resolution. The angular resolution

can be prescribed in a direct and convenient way, allowing a more or less ar-

bitrary control of the tradeoff between geometric accuracy and computation

time.

The dramatic savings in computing time, which result from the new tech-

niques, open new fields of applications for wedgelet approximations. It is

safe to say that before this speedup, wedgelet decompositions were mainly of

theoretical interest. With existing packages, it has been impossible to com-

pute wedgelet approximations for average-sized images in reasonable time;

the numerical experiments presented in Chapter 6 would have taken years

with BeamLab. By contrast, it is now possible to compute the wedgelet

decomposition of a 500 x 500 pixel image in less than a minute, and to inves-

tigate the influence of the regularization parameter in real time. Thus, the

full range of approximations is directly accessible.

The gain in speed could be invested into more complex – and thus, more re-

alistic – local models. Also, the fact that the whole scale of approximations,

ranging from coarse (for large hyperparameters) to fine, is available at neg-

ligible extra computational cost, turns wedgelet approximation into a useful

tool for image analysis purposes. Thus, wedgelet approximations can be used

as a means of extracting (and processing) multiscale information contained

in an image. In Section 6.4, we sketch a sample application using this feature
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of our wedgelet implementation in the context of denoising.

On the theoretical side, we discuss the method of deriving wedge segmenta-

tions by minimizing Potts functionals with respect to statistical consistency

and rates of convergence. Our assumptions on the noise are clearly beyond

standard assumptions: we generalize them in two ways. First, independent

gaussian random variables are replaced by independent subgaussian random

variables. Second, we permit heterogeneity of the scale of the noise, whereas

random variables are typically required to be identically distributed. For a

minimizer (P̂ , f̂γ) of the Potts functional, we give an a priori estimate of

‖f − f̂γ‖22 consisting of a sum of a deterministic approximation error of the

true signal and a contribution of the segmented noise. The former leads to

approximation spaces, which are at the basis of nonlinear approximation the-

ory, in a natural way. The latter, stochastic, contribution is easily controlled

by maximal inequalities for subgaussian random fields. Due to this abstract

formulation, this result applies to a much wider class of segmentations than

the studied hierarchic and dyadic wedge segmentations. For horizon functions

and smooth functions, this yields near optimal rates of convergence.

We will now give a detailed overview of this thesis.

In Chapter 1, we provide a detailed introduction of the notion ‘segmenta-

tion’ and of the associated functionals. We present the so called reduction

principle that will turn out to be the key for the development of efficient al-

gorithms. In fact it provides conditions for a generalization of the minimiza-

tion algorithms developed in this thesis to other functionals than the Potts

functional. We display a naive minimization procedure in the arbitrarily-

dimensional case, and we comment on a dynamic programming algorithm

for the minimization of Potts functionals in one dimension that will be a

fundamental component in the minimization algorithm for hierarchic seg-

mentations.

In Chapter 2, two partition classes are presented that permit an efficient

minimization algorithm: hierarchic and dyadic partitions. Hierarchic parti-

tions are formed by subsequent division of the image domain in the horizontal

and vertical directions. Dyadic partitions are introduced by way of a restric-

tion of their fragments to dyadic squares. We establish that they carry a

quad-tree structure. In both cases we comment on the relationship between

partitions over continuous and discrete image domains. Algorithms for effi-

cient traversing of both partition classes for the purpose of minimizing Potts

functionals are presented together with their complexity properties. These
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algorithms are based on the recursive structure of the partition classes.

Chapter 3 deals with the refinement of hierarchic and dyadic partitions by

introducing wedges. The (local) regression problem is also addressed. We

start with general remarks about existence and uniqueness of minimizers of

different functionals. In particular, the least squares regression problem is

addressed. We show that for an efficient computation of the respective pro-

jections, a fast computation of certain moments of the image is essential.

Then we introduce and characterize wedges, formed by division of rectan-

gles by intersection with a line. We investigate digital lines for the purpose

of a detailed treatment of the relationship between discrete and continuous

wedges, and we characterize the set of discrete wedges by a detailed discus-

sion of the geometric features of linear dichotomies. As a byproduct of this

discussion, an algorithm for the determination of ordered pairs associated to

a linear dichotomy is presented. In the third part of Chapter 3, we present a

method for efficient regression over polygonal image domain. Such a method

is a crucial ingredient for the implementation of efficient algorithms for a

minimization of the Potts functional over wedge segmentations. We derive

properties of two intersecting Jordan curves in the plane and utilize them

for an integration formula over polygonal domain on the lattice. We show

that an integration of a function over polygonal domains can be performed

with a complexity of number of vertices, provided that certain matrices have

been precomputed for each direction of the edges contained in the respec-

tive polygon. This leads us to an efficient integration algorithm for a known

prescribed class of polygonal domains.

At the center of this thesis, in Chapter 4, we combine and exploit the

results about partitions and local regression of the previous chapters, and we

present an algorithm for an efficient minimization of the Potts functional for

wedge segmentations. For that purpose, we introduce wedge segmentations

where an angular resolution is prescribed by the specification of an arbitrary

finite set of angles. We present an algorithm for the determination of the

best approximating wedge division of a rectangle corresponding to a given

set of angles. By using this algorithm as a ‘plug-in’ in the fast traversing

algorithms for dyadic and hierarchic partitions, we present the algorithms for

efficient minimization of the Potts functional together with their complexity

estimates.

In Chapter 5, segmentation classes are investigated with respect to sta-

tistical consistency. We start with a set-up borrowed from nonparametric

regression. There we assume that an observation is given as an erroneous,
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discrete measurement of some unknown, continuous ‘truth’. We derive the

needed results concerning the relation between continuous and discrete sig-

nals, in particular with respect to the evaluation of Potts functionals. The

requirement on the noise to be subgaussian is devised, and some consequences

are derived. We present the main results of this chapter formulated as general

as possible in a second part. There we present the crucial tool for controlling

the effect of noise on the segmentation, a maximal inequality for subgaus-

sian noise. We state conditions on classes of segmentations, for which the

consistency results are formulated. Then we derive the main result of this

chapter: We show that if a certain approximation rate is given on the con-

tinuous side and if the discretization error is bounded in a given way, then

consistency and even a rate of convergence holds for a wide class of segmen-

tations. In the third part of Chapter 5, we apply this result to dyadic and

hierarchic wedge segmentations. Two scenarios from the literature, piecewise

polynomial approximation of smooth functions and constant approximations

of horizon functions, will also be investigated. For piecewise polynomial ap-

proximations we obtain consistency for the hierarchic wedge segmentations

and additionally a rate of convergence for dyadic wedge segmentations and

sufficiently smooth original image. For constant approximations, we can solve

the problem of discretization and approximation separately and formulate re-

sults for horizon functions. In this special case for hierarchic segmentations

we prove a convergence rate that is superior to that of dyadic segmentations.

Chapter 6 contains mainly experimental results. Features and structure of a

software implementation of the provided algorithms are described. Runtime

measurements support the high efficiency of both the algorithms and the

implementation and experimentally verify the complexity results presented

in previous chapters. We comment on suitable scaling of the parameter γ

for comparability of images with different resolution and grey-value range.

Typical outcomes of the algorithms for different types of image data are pre-

sented for a purely phenomenological analysis. By strict separation of the

regression part of the algorithm and the minimization routine, we have pro-

vided a method to access a segmentation minimizing the Potts functional to

different parameters γ more or less immediately. This gives rise to further

experiments on a multiresolution scale. Plots of the Peak to Signal Noise

Ratio (PSNR) versus the number of pieces provide hints for image compres-

sion and the choice of angular resolution. We provide a reasoning for an

adaptive scheme for the angular resolution leading to even faster algorithms.

A simple experiment with horizon functions reveals the problematic nature

of asymptotic results, which is caused by discretization effects. In the last
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part of this chapter, we present experiments for denoising of images. We

show an interesting effect that occurs, when segmentations are displayed for

increasing values of γ on a logarithmic scale. Simulations of noisy images and

a noisy flat for different distributions and different variances reveal that the

noise and the corresponding resolution parameter γ can be robustly identi-

fied by a certain slope in the corresponding curves displaying log number of

segments against log γ.

We close this thesis with the Discussion and Outlook on page 221.

The most important symbols used in this thesis are summarized in a nomen-

clature on page 224.
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1. Segmentations and the

Reduction Principle
In this first chapter, we introduce the basic notion used in this thesis: seg-

mentations. Then we present the reduction principle that is one of the keys

for the development of efficient algorithms. At last we comment on a naive

algorithm for arbitrary dimensions and on a dynamic programming approach

in the one-dimensional case.

1.1 Segmentations

In this section, we introduce segmentations. Although the algorithms pro-

posed in this thesis operate on finite data, we introduce them for both a

finite (discrete) and a continuous index set. This has been done for the fol-

lowing reasons: First, the geometrical restrictions that are imposed on the

class of admissible partitions can be formulated much easier on the contin-

uous domain. Shapes such as triangles, curves and wedges can be naturally

defined on – say, R2. The discretization, namely the identification of regions

belonging to such shapes in some discrete domain, for example Z2, is then

solely understood as being that process needed to make these objects acces-

sible in the discrete domain. Second, we might assume that data originate

from some continuous resource. The observed signal shall then be deemed

a discretized (and possibly distorted) version of some continuous (unknown)

‘truth’. In this context a typical question is: Will increasing resolution of the

measurement result in better approximations of the ‘truth’? We need the

parallel formulation for continuous and discrete image domain as preparation

for Chapter 5, where questions of this kind will be answered.

1.1.1 Partitions

A segmentation will consist of a partition of the image domain into mutually

disjoint and connected regions, and the specification of a real valued function

for each region. Before we define the first ingredients, namely partitions, we
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need some notation:

A neighborhood system ∂ in a countable set S is a set ∂ = {∂(s) : s ∈ S} of

subsets of S with s 6∈ ∂(s) and s ∈ ∂(t) if and only if t ∈ ∂(s) for all pairs

s 6= t, s, t ∈ S. S is said to be endowed with the neighborhood structure

∂. A set A ⊂ S is called connected, if for each s, t ∈ A, there is some path

(pi)1≤i≤n, n ∈ N, with p1 = s, pn = t, pi ∈ A and pi ∈ ∂(pi+1) for all

1 ≤ i < n. Recall that a set B in a topological space is called connected if

there are no two open disjoint subsets B1 and B2 of B such that B1∪B2 = B.

Signals are real valued functions living on an image domain S. Image domains

can be either continuous, e.g. S = [0, 1)d (d ∈ N), or discrete, e.g. S =∏d
i=1{1, . . . , di} (di ∈ N for all 1 ≤ i ≤ d, d ∈ N). In the following, notions

such as connectedness depend on the context. In the continuous setting we

refer to the usual metric topology on Rd, in the discrete case it is defined by

a neighborhood structure.

Let us now introduce the partitions.

Definition 1.1.1 (Partition, Fragment): Let S be an image domain and R
a family of subsets of S. A finite set P ⊂ R is called a partition of S if the

following three conditions hold:

(A1) S =
⋃
p∈P p.

(A2) r ∩ q = ∅ for all r, q ∈ P with r 6= q.

(A3) All r ∈ P are connected.

An element r of a partition P will be called a fragment; the set R is called

the set of admissible fragments.

In the following, the family of all partitions with elements from R will be

denoted by P = P(R).

Remark 1.1.2: The canonical discretization δ that maps subsets A of the

continuous domain I = [0, 1)2 to subsets δ(A) of S = {1, . . . , N1}×{1, . . . , N2},
given by

δ(p) = {(N1s1 +
1

2
, N2s2 +

1

2
) : (s1, s2) ∈ p} ∩ Z2,
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applied to each element of a partition separately, does not necessarily trans-

form a partition of I into a partition of S because in general, it does not

preserve connectedness (even not necessarily for convex sets, see illustration

in Figure 1.1). This is another reason why Definition 1.1.1 is formulated for

both continuous and discrete image domains.

Fig. 1.1: The discretization of a connected, convex set is not necessarily connected

(here: with respect to nearest (4-)neighborhood).

However, the partitions used in this thesis for an efficient minimization of the

Potts functional are designed in such a way that the discretization δ maps a

set of partitions into a set of partitions.

Example 1.1.3: Consider the one-dimensional continuous interval S = [0, 1).

Since the only connected sets of the real line are intervals, the partitions

of [0, 1) are given by disjoint division of [0, 1) into intervals. Moreover, the

discretization operation δ : [0, 1)→ {1, . . . , N} preserves connectedness since

it maps intervals (a, b) to discrete intervals (aN + 1
2
, bN + 1

2
) ∩ Z. Choosing

R to be the set of intervals in [0, 1) leads to a family P(F) consisting of all

possible partitions of [0, 1).

Fig. 1.2: Partitions of the interval [0, 1), right: dyadic partition

To mention a meaningful restriction on the class of admissible fragments (and

thus the class of partitions) considerR = {[(k−1)2−n, k2−n), 1 ≤ k ≤ 2n, n ∈
N}, the set of dyadic intervals. The set P(R) of partitions of [0, 1) are then

the so called dyadic partitions. These will be generalized in Chapter 2 for

two dimensions.
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1.1.2 Segmentations

Now we introduce segmentations: Partitions that are additionally provided

with real valued functions on each fragment. A segmentation class is given by

a partition class together with function spaces for each admissible fragment.

A segmentation class does not only determine the permitted geometry of the

image domain, but also the admissible form of the image data.

Definition 1.1.4 (Admissible Functions, Segmentations): Let R be a set

of admissible fragments, as defined above. Let F denote a family of function

spaces, F = (Fp)p∈R, where Fp is a set of functions from p to the real line R

for each p ∈ R. We will call F the class of admissible functions. Consider

a partition P ∈ P(R) of S. A Segmentation P is the pair of a partition

P ∈ P(R) and a function vector

fP := (fp)p∈P ∈×
r∈P
Fr,

i.e. for each p, the function fp is admissible. We write

P = (P , fP).

A family S of segmentations will be called a segmentation class. An

element p = (p, fp) ∈ P of a segmentation P, that is a fragment p together

with its function fp will be called a segment.

We denote a segmentation class with partitions P and functions F by S =

S(P,F).

Usually, special notions of smoothness are captured by the function class. To

exemplify that, we continue with the one-dimensional case in the following

example.

Example 1.1.5: Let S = [0, 1) and P be the class of all partitions over [0, 1).

• Let F be the class of constant functions over fragments, Fp = {f ∈
map(p,R) : f(x) = µ ∀x ∈ p, µ ∈ R} for each p ∈ R. The class of

segmentations S(P,F) can then be identified with piecewise constant

functions on [0, 1).
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• Let F be the affine functions over fragments, F(p) = {f ∈ map(p,R) :

f(x) = µ + λx, µ, λ ∈ R} for each p ∈ R. The class of segmentations

S(P,F) can be identified with piecewise affine functions on [0, 1).

Fig. 1.3: Piecewise constant and piecewise affine segmentation over [0, 1).

If, more generally, F is the class of polynomial functions over fragments,

then the class of segmentations S(P,F) can be identified with piecewise

polynomial functions on [0, 1).

A segmentation P = (P , fP) generates a function g from the index set S to

the real line R in the following canonical way:

g(s) = fp(s), s ∈ p, p ∈ P .

We use the suggestive notation g = fP and the symbol fP for both the family

of functions (fp)p∈P and the function g.

Now fix a segmentation class S = S(P,F), i.e. a class of admissible par-

titions and functions. Assume, conversely, a real valued function g on S is

given. If there is some P ∈ P such that g|r ∈ Fr for all r ∈ P, then we say

that the partition P F-segments the function g. Note that for such a fixed

partition P the functions fr = g|r ∈ Fr (r ∈ P) are unique. Nevertheless,

neither existence nor – in case of existence – uniqueness of the so induced

segmentation can be taken for granted, as the following example shows.

Example 1.1.6: Let a set S = {1, 2, 3} and data z = (0, 1, 0) be given. Let

the class of admissible functions F be affine functions on intervals of S. If

the partition class is given by P = {S}, then since g 6∈ FS, there is no

segmentation with fP = g. If the partition class is given by all admissible

partitions of {1, 2, 3}, then the following solutions are possible:
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Fig. 1.4: Three different piecewise linear segmentations for z = (0, 1, 0).

We will call a partition P coarser than Q, if for each p ∈ P there is a subset

A of Q such that A is a partition of p. The example shows also that even

the requirement of maximality of the partitions with respect to coarseness

does not imply uniqueness of the segmentation fulfilling fP = g. The reason

is that the partitions that are admitted by the classes P and F with fP = g

are no lattice (although the set of all partitions P is a lattice).

1.2 The Reduction Principle

The reduction principle is very much at the heart of this thesis. If it applies,

then the minimization of a functional over segmentations can be separated

into a subsequent minimization over the two components. First, a minimizing

family of functions is determined for each partition, and second, the minimum

is taken over all partitions. This has two relevant consequences:

1. It is the key to the development of fast algorithms;

2. It allows to restrict minimization over partitions to subclasses of all the

partitions, in cases where minimization over all partitions is computa-

tionally not feasible.

Thus, a discussion of the feasible partitions can and must be separated from

a discussion of the general minimization problem. This text is mainly about

the Potts functional. However, the following abstract introduction of the

reduction principle shows that concepts and algorithms can be applied in

quite general situations.

1.2.1 The Reduction Principle for Segmentations

As introduced in Section 1.1, the symbol R stands for a family of admissible

fragments of the index set S, and F = (Fr)r∈R is a class of real valued
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functions. Recall that P = P(R) denotes a family of partitions, and S =

S(P,F) is a family of segmentations.

Definition 1.2.1 (The Reduction Principle): Let H be some real valued

functional on the class of segmentations S(P,F). Consider the minimization

problem

H(P , f)
!−→ min

(P,f)∈S
H(P , f). (1.1)

We say that the Reduction Principle holds for the minimization problem

(1.1), if and only if there are functions hr ∈ map(Fr,R), r ∈ R, and if

for each P ∈ P there is a function ϕP : RP → R such that H(P , fP) =

ϕP((hr(fr))r∈P) and such that the (global) minimum of H is given with

h∗r = min
fr∈Fr

hr(fr), r ∈ R

by

min
(P,f)∈S

H(P , f) = min
P∈P

ϕP((h∗r)r∈P).

The reduction principle implies that the function H contains no explicit in-

teraction between different segments in a segmentation. The value of H on

the different fragments of P is separable in the sense that minimization over

S(P,F) splits up into a minimization over Fr within each fragment r of any

partition, and a minimization over all partitions afterwards.

Remark 1.2.2: The reduction principle is a statement about the functional

H, and not about the segmentation class S. By the separation of parti-

tions and functions in this thesis, the design of a segmentation class with

explicit interaction between function classes on different fragments within

one partition is impossible a priori. The set of segmentations minimizing

some functional H however might contain such interactions if the reduction

principle does not hold for H.

We illustrate the preceding remark and the reduction principle with the fol-

lowing counterexamples. They show that interactions between segments of a

partition can neither be modelled with the chosen segmentation class nor –

if the reduction principle applies – with the minimization of a functional H.
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Example 1.2.3: Consider the index set S = [0, 1), R the set of intervals in

S and P(R) the class of all partitions of S.

(1.) The set S = {(P , fP) : fr affine for all r ∈ P , fP continuous ,P ∈ P} is

not a segmentation class. If it was, then defining the sets Fr = {fP |r : r ∈
P , (P , fP) ∈ S} (r ∈ R) and S = {(P , fP) : fP ∈

∏
r∈P Fr,P ∈ P} would

yield S = S, but S is strictly larger than S.

(2.) Let now Fr be the family of affine functions for each interval r ⊂ [0, 1),

and let the segmentation class be given by S = S(P,R) (inducing piecewise

affine functions). Consider the functional G : S→ R given by

G(P , fP) =

0 if fP is continuous,

1 otherwise.

The reduction principle does not hold for the minimization of G: Fix P =

{[0, 1
2
), [1

2
, 1)} and define functions f1, g1 : [0, 1

2
) → R and f2, g2 : [1

2
, 1) → R

by f1(x) = 1
2
x, f2(x) = 1− 1

2
x, g1(x) = −1

2
x and g2(x) = 1

2
x− 1. Clearly the

function pairs (f1, f2) and (g1, g2) induce continuous functions and are thus

minimizers of G.

Fig. 1.5: f1, f2, g1 and g2.

If the reduction principle held, then there would be some function hr : Fr →
R such that

f̂P ∈ argmin
fP∈FP

G(P , fP)

is equivalent with

f̂r ∈ argmin
f∈Fr

hr(fr)

for each r ∈ P. But then the pair (f1, g2) would also be a minimizer of G –

a contradiction.

(3.) An example of a functional where the reduction principle applies is the

Potts model, which will be introduced in the next section.
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Note that even if the reduction principle holds for some functional H, the

minimization can still be a serious problem. On the one hand, the local

minimization may itself be a complex task, on the other hand, the set of ad-

missible partitions is, in general, very large. A carefully chosen, large enough

segmentation class can be a way out of this misery. This text addresses such

partition classes.

Now on Rn (n ∈ N), let the half order ≺ be given by v ≺ w (v, w ∈ Rn) if

and only if vi < wi for all 1 ≤ i ≤ n. A wide class of functionals fulfilling the

reduction principle consists of functionals that are of the form ϕP((hr)r∈P),

where for all P ∈ P the real valued function ϕP is strictly monotonically

increasing, i.e. ϕP(v) < ϕP(w) if v ≺ w (v, w ∈ RP).

Theorem 1.2.4: Let a functional H : S(P,R) → R be given. If for all

r ∈ R there are functions hr ∈ map(Fr,R), and if for each P ∈ P there is a

strictly monotonically increasing function ϕP : RP → R such that

H(P , fP) = ϕP((hr(fr))r∈P),

then the reduction principle applies to the minimization of H.

Proof. From monotonicity, ϕP((minfr hr(fr))r∈P) ≤ ϕP ((hr(fr))r∈P) for all

functions fr, r ∈ P for all partitions P , we obtain

min
(P,fP )

H(P , fP) = min
(P,fP )

ϕP((hr(fr))r∈P)

= min
(P,fP )

ϕP((min
fr

hr(fr))r∈P)

= min
P
ϕP((h∗r)r∈P).

�

1.2.2 Application to Potts Functionals

In this paragraph we introduce the Potts functional on segmentations and

show that the reduction principle applies.

Definition 1.2.5 (Potts functional): Let a class S of segmentations on the

image domain S and data g ∈ RS be given. A Potts functional Hγ with
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parameter γ ≥ 0 is given by

Hγ(·, ·) : RS ×S −→ R,

H(g, (P , fP)) = γ · |P|+ ‖g − fP‖22.

The minimization of the Potts functional to data g means finding a γ-

weighted balance between the cardinality of the partition P and the approx-

imation quality ‖fF − g‖22 of fF . An important observation is the following

Theorem 1.2.6: Let S be a segmentation class. The reduction principle

applies to the minimization of the Potts functional Hγ(g, ·) over S.

Proof. With ϕP(v) =
∑|P|

i=1 γ+vi (v ∈ RP) and hr(fr) = ‖g|r−fr‖22 (r ∈ P),

the Potts functional has the form H(g, (P , fP)) = ϕP,γ((hr(fr))r∈P). Because

ϕP is strictly monotone, the reduction principle applies by Theorem 1.2.4. �

Theorem 1.2.6 tells us: If we fix the partition P , then a minimizer of the

Potts functional Hγ(g, (P , ·)) is given by a family of local minimizers f̂P =

(argminfr∈Fr
‖g|r− fr‖22)r∈P . In the sequel we will write ΠFrg for the projec-

tion f̂r of g|r onto Fr.

1.3 Minimization Algorithms for Potts

Functionals

Because the reduction principle applies to Potts functionals Hγ, the com-

plexity of algorithms for a (global) minimization of Hγ is a function of the

complexity of the local projections ΠFr (r ∈ R) and the complexity of the

traversing through all admissible partitions. Thus, global minimization al-

gorithms can be developed if, on the one hand, efficient local approximation

algorithms are known and if, on the other hand, there is some efficient way

to enumerate all possible partitions. For more than one dimension, no such

traversing scheme is known for the set of general partitions. Therefore two

partition classes that allow an efficient enumeration are introduced in the

next chapter.
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The algorithmic results in this section will be formulated only for the Potts

functional. This permits a shorter notation and a clearer illustration of the

basic concepts. Nevertheless the results and proposed algorithms may be

easily extended for any functionals fulfilling the reduction principle.

1.3.1 The General Case

Let the image domain S be finite and a segmentation class S(P,F) on S

be given. Assume that the set of admissible fragments is the set of ‘used’

fragments, R =
⋃
P∈PP . We present an algorithm for naive minimization of

the Potts functional H using the reduction principle.

Algorithm 1.1: Naive Minimization of the Potts functional

input : data z, segmentation class S, function class F , parameter γ ≥ 0

output: minimizer (P̂, f̂) of H

begin
— preparation —

foreach r ∈ R do

σ2
r ←− ‖ΠFrz − zr‖22;

end

— minimization —

min←−∞;

foreach P ∈ S do
ssq ←− 0;

foreach r ∈ P do

ssq ←− ssq + σ2
r ;

end

h←− ssq + γ · |P|;
if h < min then

P̂ ←− P; min←− h
end

end

— reconstruction —

foreach r ∈ P̂ do

f̂r ←− ΠFrz;

end

end

Notation 1.3.1: We use the common notation O(g(n)) for the order of some

function f , i.e. f(n) = O(g(n)) implies that there are positive constants

c ∈ R+ and k ∈ N such that 0 ≤ |f(n)| ≤ cg(n) for all n ≥ k.

Remark 1.3.2: In this thesis we will discuss algorithms both in terms of

their spatial and temporal complexity. The latter describes the number of

necessary basic computational operations to get the result for an input of
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length N . Similarly, the former stands for the number of memory units

necessary during the course of the computation. It is common sense that the

order of both functionals does not depend on the used computational model.

Compare Wagner and Wechsung (1986).

Let Cr be the complexity of the computation of ‖ΠFrz − zr‖22, and let C ′r be

the complexity of the projection operation ΠFr (r ∈ R). In this general form

the time complexity of the algorithm is given by

O(
∑
r∈R

Cr +
∑
r∈P̂

C ′r +
∑
P∈P

|P|).

The algorithm has a spatial complexity – a consumption of memory – of

O(|R|).

1.3.2 The One-Dimensional Case

In this paragraph we consider a one-dimensional domain S = {1, . . . , n} and

subsets Sk := {1, . . . , k}, 1 ≤ k ≤ n. Winkler and Liebscher (2002) propose

a dynamic programming algorithm minimizing a Potts functional H with

constant regression. We present a slight generalization to larger function

spaces.

Let S be a set of segmentations of S and Tk = {(P , fP) ∈ S : {k, . . . , n} ∈
P} for each 1 ≤ k ≤ n. The key observation is the following:

S =
⋃n
k=1 Tk and thus for any functional H : S→ R the following is true

inf
(P,fP )∈S

H(z, (P , fP)) = min
1≤k≤n

inf
(P,fP )∈Tk

H(z, (P , fP)). (1.2)

If the reduction principle holds for H, then the minimization can additionally

be split into global minimization over partitions and local projections onto

function spaces. To avoid a bloat in notation, we illustrate this with the Potts

functional in the following Lemma, although a more general result could be

formulated. We use the short notation z[k,l] := z|[k,l]∩N for restricted data

and f[k,l] := f[k,l]∩N for functions in the function spaces F[k,l] := F[k,l]∩N.

Lemma 1.3.3: Let F be a class of admissible functions on the image domain

S, R the set of intervals in S, and Sk the corresponding segmentations of Sk

(1 ≤ k ≤ n). Assume that H is the Potts functional and set

Bz,γ(k) := inf
(P,fP )∈Sk

Hγ(z|Sk
, (P , fP)) (1 ≤ k ≤ n),
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Bz,γ(0) := 0 and f̂[k,n] := ΠF[k,n]
z. Then the following holds:

Bz,γ(j) = min
1≤k≤j

(
Bz,γ(k − 1) + γ + ‖f̂[k,j] − z[k,n]‖22

)
for all 1 ≤ j ≤ n.

Proof. Let a partition P = Pk−1 ∪ {{k, . . . , n}} be given, then

Hγ(z, (P , fP)) = γ · |P|+ ‖z − fP‖22
= γ · (|Pk−1|+ 1) + ‖z|Sk−1

− fPk−1
‖22 + ‖z[k,n] − f[k,n]‖22

= Hγ(z|Sk−1
, (Pk−1, fPk−1

)) + γ + ‖z[k,n] − f[k,n]‖22.

Because the reduction principle holds for a Potts functional by Theorem

1.2.6, applying equation 1.2 completes the proof. �

The previous Lemma allows one to write down the algorithm immediately.

The data structure used for storing one-dimensional partitions in Algorithm

1.2 is an array p with length n + 1 starting at 0. At position 1 ≤ l ≤ n, the

array p contains the best previous position: pl = argmin1≤k≤l(Bz,γ(k − 1) +

γ+‖f̂[k,n]−z[k,n]‖22), p0 := −1 is used as a sentinel for stopping the projection

loop.

Fig. 1.6: Data structure for one-dimensional partitions used in Algorithm 1.2

The preparation loop used in Algorithm 1.1 for storing the L2 distance of

the projections to the signal is not necessary in Algorithm 1.2. The compu-

tation can be done in the minimization loop because therein each interval is

processed only once.
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Algorithm 1.2: Minimization of the one-dimensional Potts functional

Hγ for fixed γ ≥ 0

input : data z, function class F , parameter γ ≥ 0

output: minimizer (p, f̂) of H

begin

— minimization—

ĥ0 := 0; p0 := −1;

for k ← 1 to n do

ĥk ←∞;

for l← 1 to k do

σ2 ← ‖ΠF[l,k]z − z[l,k]‖22;

h← ĥl−1 + σ2;

if h < ĥk then

ĥk ← h;

pk ← l − 1;
end

end

end

— reconstruction —

k ← n; l← pk;

while l ≥ 0 do

f̂[l+1,k] ← ΠF[l+1,k]z;

k ← l; l← pk;
end

end

For Algorithm 1.2 the following complexity result holds:

Lemma 1.3.4: Assume for an interval r = [l, k] ∩ N (1 ≤ k ≤ l ≤ n) in S

that the complexity of the computation of ‖ΠFrz − zr‖22 is given by C1(|r|),
and let C2(|r|) be the complexity for the projection operation f̂r ← ΠFrz.

Then the time complexity of Algorithm 1.2 is given by

O

 n∑
m=1

m · C1(n−m+ 1) +
∑
r∈P̂

C2(|r|)

 .

Proof. It only has to be shown that
∑n

k=1

∑k
l=1C1(k − l + 1) =

∑n
m=1m ·

C1(n−m+ 1):

n∑
k=1

k∑
l=1

C1(k − l + 1) =
n∑
k=1

k∑
l′=1

C1(l
′) =

n∑
m=1

|{k : k ≥ m}| · C1(m)

=
n∑

m=1

(n−m+ 1)C1(m) =
n∑

m=1

mC1(n−m+ 1),
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which completes the proof by identification of these sums with the nested

loop in the algorithm. �

The following is a consequence of the previous lemma.

Corollary 1.3.5: If, with the assumptions of the previous Lemma, C1(·) is

constant and C2(·) is linear, then Algorithm 1.2 has a time complexity of

O(n2). The spatial complexity of Algorithm 1.2 is of O(n).

Proof. Let C1(m) = c1 for all m, and let C2(m) = m · c2 for all 1 ≤ m ≤ n,

then
∑n

m=1mc1 +
∑

r∈P̂ |r|c2 = c1
n(n+1)

2
+ c2n. For storing the minimizing

partition in Algorithm 1.2, an array ĥ of length n and an array p of length

n+ 1 is used. �

There is a very similar algorithm performing the minimization of the Potts

functional in one dimension for all γ ∈ R simultaneously. Because its analy-

sis does not reveal anything concerning the geometric structure of the mini-

mization problem, we do not comment on it here. See Winkler and Liebscher

(2002) and Kempe (2003).
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2. Partitions allowing Efficient

Recursion
In the previous chapter, the following two features were needed for an ef-

ficient minimization of the Potts functional. First, fast algorithms for the

local regressions are fundamental for the efficiency of the minimization oper-

ation (‘inner loop’). This vital point will be addressed in Chapter 3. Second,

schemes for a rapid traversing through all partitions in a partition class are

required (‘outer loop’). In the one-dimensional case there is such a proce-

dure for the most general partition class, which processes each interval of

S exactly once. Because the number of (discrete) intervals of {1, . . . , N}
is N(N + 1)/2, algorithms of this kind are reasonable. For more than one

dimension, however, this does not make any sense. There is no procedure

known to us that traverses the full class of partitions of the two-dimensional

image domain S = {1, . . . , N1}×{1, . . . , N2} where each partition element is

processed only once. Moreover, the set of fragments of S is huge. The class

of partitions has to be restricted in such a way that it allows traversing it

with acceptable complexity while – together with the local projections – still

producing reasonable approximations.

In Section 2.1, a partition class is presented that allows the use of Algorithm

1.2 proposed in Subsection 1.3.2 for more than one dimension. This partition

class has a structure that allows Algorithm 1.2 to be applied recursively.

In Section 2.2, a partition class with a quad-tree structure is introduced,

which permits very fast traversing.

The partitions presented in this chapter will be defined for two dimensions.

In the continuous case for the two-dimensional image domain, we take the

half open square [0, 1)2. It is only notational simplicity not to take [0, 1]2 as

image domain in that partitions consisting of rectangles can be introduced

much easier when all rectangles have the same shape.
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2.1 Hierarchic Partitions

In this section, we propose a class of partitions that are formed by recursion

over the dimensions of the image domain S. The minimization of a functional

fulfilling the reduction principle can be performed by recursively applying a

dynamic programming algorithm, as proposed in Subsection 1.3.2. Although

the proposed partition class could be defined in any dimension, for notational

simplicity we give a definition for an index set with dimension two.

2.1.1 Definition of the Partition Class

In the following, the image domains are either given by

1. S1 = {1, . . . , N1}, S2 = {1, . . . , N2} and S = S1 × S2, or by

2. S1 = S2 = [0, 1) and S = [0, 1)2.

Lemma 2.1.1: Let (Ii)1≤i≤n be a partition of S1 with n ∈ N elements, and

let for each 1 ≤ i ≤ n the family (Iij)1≤j≤mi
(mi ∈ N) be a partition of S2.

Assume

rij := Ii × Iij, 1 ≤ j ≤ mi, 1 ≤ i ≤ n.

Then the set

P = {rij : 1 ≤ j ≤ mi, 1 ≤ i ≤ n} (2.1)

is a partition of S1 × S2. Moreover, the set

Pi := {rij : 1 ≤ j ≤ mi} (2.2)

is a partition of Ii × S2 for each 1 ≤ i ≤ n.

Proof. Conditions (A1) - (A3) from Definition 1.1.1 are easily verified:

Firstly, ⋃
(i,j)

Ii × Iij =
n⋃
i=1

mi⋃
j=1

Ii × Iij =
n⋃
i=1

Ii × S2 = S1 × S2.

Secondly,

Ii × Iij ∩ Ii′ × Ii′j′ = ∅ if i 6= i′ or j 6= j′.

And thirdly, rectangles (in Z2 and R2) are connected. �



2.1. Hierarchic Partitions 37

Fig. 2.1: Hierarchic Partition

Lemma 2.1.1 justifies the following definition.

Definition 2.1.2 (Hierarchic Partition): A partition of the form (2.1) is

called a hierarchic partition of S.

A hierarchic partition of an image domain is generated by the specification

of a partition P(1) of the – say – x-axis, and then partitioning the other

direction for each of the fragments of P(1).

2.1.2 Continuous versus Discrete Domain

In the previous paragraph, hierarchic partitions have been defined simul-

taneously for both continuous and discrete image domains. To establish a

link between the continuous and discrete cases, we introduce a canonical dis-

cretization of subsets of [0, 1)2 to subsets of S = {1, . . . , N1} × {1, . . . , N2}.
With a view towards discretization of signals (real valued functions) over

[0, 1)2, a natural choice to discretize [0, 1)2 is the division of [0, 1)2 into N1 ·N2

tiles of size 1
N1
× 1

N2
. Taking the midpoints of these tiles as reference points

results in the following discretization of subsets of [0, 1)2 to subsets of S.

Notation 2.1.3: Consider a discrete rectangle R = [s1, s1 + n1) × [s2, s2 +

n2) ∩ Z2, s1, s2 ∈ Z, n1, n2 ∈ N, and a set A ⊂ [0, 1)2. By δR(A) we denote

the discretization of A in R defined by

δR(A) = {(s1 −
1

2
+ n1 · a1, s2 −

1

2
+ n2 · a2) : (a1, a2) ∈ A} ∩ Z2.
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Let P be a partition of [0, 1)2. For notational convenience we use the same

symbol δR for the discretization of a partition:

δR(P) := {δR(A) : A ∈ P}.

Note that δR(P) is not necessarily a partition (see Remark 1.1.2).

Fig. 2.2: Partition of [0, 1)2 (left) and canonical discretization δR with R =
{1, . . . , 8} × {1, . . . , 4} (right).

Assume that s, t ∈ [0, 1), s ≤ t and N ∈ N. The discrete set

{N · x+
1

2
: x ∈ [s, t)} ∩ Z = [N · s+

1

2
, N · t+

1

2
) ∩ Z

is either connected or empty. This observation (which is also true for the

intervals (s, t), (s, t] and [s, t]) leads to the following:

Lemma 2.1.4: If a partition P of [0, 1)2 consists of rectangles, the discretiza-

tion δS(P) of P is a partition of S.

Proof. Firstly, S =
⋃
r∈P δS(r). Secondly, if subsets r and q of [0, 1)2 are

disjoint, then δS(r) and δS(q) are also disjoint. Thirdly, let, without loss of

generality, the rectangle r be of the form r = [s1, t1)× [s2, t2), then the set

δS(r) = {(N1s1 +
1

2
, N2s2 +

1

2
) : (s1, s2) ∈ r} ∩ Z2

= [N1s1 +
1

2
, N1t1 +

1

2
)× [N2s2 +

1

2
, N2t2 +

1

2
) ∩ Z2

is either connected or empty. �

The canonical discretization even preserves some more structure. With δS,

hierarchic partitions are transformed into hierarchic partitions:
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Lemma 2.1.5: The discretization δS(P) of a hierarchic partition P of [0, 1)2

is a hierarchic partition of S = {1, . . . , N1} × {1, . . . , N2}.

Proof. Let with the assumptions of Lemma 2.1.1 (for a continuous image

domain) rij = Ii × Iij ⊂ [0, 1)2, then

δS(rij) = δS(Ii × Iij)

= {N1s1 +
1

2
: s1 ∈ Ii} ∩ Z× {N2s2 +

1

2
: s2 ∈ Iij} ∩ Z

=: I ′i × I ′ij.

The family {I ′i : 1 ≤ i ≤ n} is a partition of {1, . . . , N1}, and {I ′ij : 1 ≤
j ≤ mi} is a partition of {1, . . . , N2} for each 1 ≤ i ≤ n. Thus, the set

δS(P) = {δS(rij), 1 ≤ j ≤ mi, 1 ≤ i ≤ n} is a hierarchic partition. �

Remark 2.1.6: Hierarchic partitions can be defined for an arbitrary number

of dimensions in the following way. Assume the (discrete) index set S is a

cuboid with d ∈ N dimensions and side lengths Ni ∈ N, 1 ≤ i ≤ n. Let, for

all 1 ≤ k ≤ d, the symbol Ik denote the set of all partitions of {1, . . . , Nk}.
The class of recursive partitions Pd of S is recursively defined by

P1 = I1

Pk = {{r × q : q ∈ Pr, r ∈ Q} : Pr ∈ Pk−1 ∀ r ∈ Q,Q ∈ Ik}, 1 < k ≤ d.

Fig. 2.3: Elements of P1, P2 and P3

2.1.3 Recursion

We make use of the recursive structure of the hierarchic partitions and present

an algorithm for minimizing the two-dimensional Potts model. First we de-
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velop the recursion formulas.

Consider S1 = {1, . . . , N1}, S2 = {1, . . . , N2}, S = S1 × S2, and let P be the

class of partitions of S, F the class of admissible functions and S the resulting

class of segmentations. Assume data z ∈ RS and h∗r = inffr∈Fr ‖z|r − fr‖22.
We define a functional

KP := γ|P|+
∑
p∈P

h∗r, P ∈ P.

Then for the Potts functional Hγ with fixed data z and γ ∈ R the following

holds:

inf
(P,fP )∈S

Hγ(z, (P , fP)) = min
P∈P

KP .

Let, with the assumptions of Lemma 2.1.1, P be a partition of the form (2.1).

Observe that

KP = γ|
n⋃
i=1

mi⋃
j=1

rij|+
n∑
i=1

mi∑
j=1

h∗rij =
n∑
i=1

KIi×Pi
.

Assume that P(n) is the set of partitions of {1, . . . , n}, n ∈ N. Then for the

minimization of K we have

min
P∈P

KP = min
I∈P(N1)

nI∑
i=1

min
Pi∈P(N2)

KIi×Pi
.

For each interval I of S2 consider K∗I = minP∈P(N2)KI×P . We therefore have

a recursion formula similar to that of Lemma 2.1.1:

min
I∈P(n)

nI∑
i=1

K∗Ii = min
1≤k≤n

min
I∈P(k)

nI∑
i=1

K∗Ii +K∗{k,...,n}, 1 ≤ n ≤ N1. (2.3)

Moreover, for the computation of K∗I we have

min
P∈P(n)

KI×P = min
1≤k≤n

min
P∈P(k)

KI×P + h∗I×{k,...,n}, 1 ≤ n ≤ N2. (2.4)

Formulas (2.3) and (2.4) give rise to the following algorithm.

The algorithm consists of nested loops for dimension 1 and 2. To permit

a concise display of the algorithm, the inner loop corresponding to (2.3) is

presented as a procedure that is called from within the outer loop according

to equation (2.4) in the algorithm. To avoid an overhead of technical de-

tails, we wrap the global parameters used in both the inner and outer loop

in an abstract reference object Ref of generic type OBJECT. In a com-

puter language this is typically implemented with composite types such as
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records, structs, sets, classes or objects, together with a pointer mechanism

that locates a potentially repository for large data. The abstract entry ‘func-

tion class F ’ could be realized by fixed procedures, type bound procedures

(methods), procedure variables, etc. We access the content of the reference

object by the common ‘Ref.entry’ notation.

Consider an interval I = [f, t] ∩ Z of S1. Let P2 be the set of partitions

of S2. Now we present a procedure that does the minimization of the Potts

functional H for all partitions of the form {I × r : r ∈ P2}, P2 ∈ P2.

Procedure StripeMin(f, t ∈ N; Ref: OBJECT)

input : function class F , z ∈ RS and γ ∈ R stored in reference object Ref

output: minimum of H and minimizing partition P̂ of H stored in Ref

begin

z ← Ref.z; γ ← Ref.γ; F ← Ref.F ;

ĥ0 := 0; P̂0 := −1; n := N2;

for k ← 1 to n do

ĥk ←∞;

for l← 1 to k do

σ2 ← ‖ΠF[f,t]×[l,k]z − z[f,t]×[l,k]‖22;

h← ĥl−1 + σ2;

if h < ĥk then

ĥk ← h;

P̂k ← l − 1;
end

end

end

Ref.P̂ ← P̂; Ref.ĥ← ĥn; Ref.from← f ; Ref.to← t;
end

Assume that the minimization procedure above has been performed, and Ref

contains the best partition for some interval I = [Ref.from,Ref.to]. The

following procedure can then be used to do the resulting local projections.

Procedure StripeReconstruction(Ref: OBJECT)

input : function class F , from, to ∈ N, z ∈ RS and γ ∈ R stored in reference object Ref

output: Projection f̂ according to Ref.P̂ stored in Ref

begin

z ← Ref.z; f ← Ref.from; t← Ref.to; n := N2; p← Ref.P̂;

k ← n; l← pk;

while l ≥ 0 do

f̂[l+1,k] ← ΠF[f,t]×[l+1,k]z;

k ← l; l← pk;
end

Ref.f̂ ← f̂ ;
end
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Algorithm 2.3: Minimization of the two-dimensional Potts functional

Hγ over hierarchic partitions for fixed γ ≥ 0

input : data z, function class F , parameter γ ≥ 0

output: minimizer f̂ of H

begin

— preparation —

Ref.γ ← γ; Ref.z ← z; Ref.F ← F ;

— minimization—

ĥ0 := 0; P0 := −1; n := N1;

for k ← 1 to n do

ĥk ←∞;

for l← 1 to k do
StripeMin (k,l,Ref);

σ2 ← Ref.h;

h← ĥl−1 + σ2;

if h < ĥk then

ĥk ← h;

pk ← l − 1;
end

end

end

— reconstruction —

k ← n; l← pk;

while l ≥ 0 do
StripeMin (l+1,k,Ref);

StripeReconstruction(Ref);

f̂[l+1,k] ← Ref.f̂ ;

k ← l; l← pk;
end

end

The repeated call of StripeMin in the reconstruction loop is due to the

fact that the partitions of the local reconstructions are not stored in the

minimization loop. This way the algorithm has a memory consumption of

O(N1 + N2). A storage of the local minimizing partitions would mean a

memory usage of O(N1 ·N2), and a bit more administrative overhead. In the

following, by P̂(1) we denote the result of the outer minimization loop.

For Algorithm 2.3, the following complexity result holds:

Lemma 2.1.7: Assume for a rectangle r in S with side lengths w and h that

the complexity of the computation of ‖ΠFrz− zr‖22 is given by C1(w, h), and

let C2(|r|) be the complexity for the projection operation f̂r ← ΠFrz. Then
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the complexity of the minimization part of Algorithm 1.2 is given by

O

(
N1∑
l=1

N2∑
n=1

l · n · C1((N1 − l + 1), (N2 − n+ 1))

)
,

and the reconstruction loop has a complexity of

O

 ∑
p∈P̂(1)

 N2∑
n=1

n · C1(|p|, (N2 − n+ 1)) +
∑
p′∈P̂r

C2(|p| · |p′|)

 .

Proof. For the statement concerning the minimization part, we need the

following equality derived in the same way as in the proof of Lemma 1.3.4:

N1∑
k=1

k∑
l=1

N2∑
m=1

m∑
n=1

C1((k − l + 1), (m− n+ 1)) =

N1∑
k=1

k∑
l=1

N2∑
m=1

m∑
n=1

C1(l, n)

=

N1∑
l=1

N2∑
n=1

l · n · C1((N1 − l + 1), (N2 − n+ 1)).

The following equality is required for the statement regarding the reconstruc-

tion loop:

∑
p∈P̂(1)

 N2∑
k=1

k∑
n=1

C1(|p|, (N2 − n+ 1)) +
∑
p′∈P̂r

C2(|p| · |p′|)


=
∑
r∈P̂(1)

 N2∑
n=1

n · C1(|p|, (N2 − n+ 1)) +
∑
p′∈P̂r

C2(|p| · |p′|)

 .

The different terms of the above sum correspond to the decomposition of the

algorithm into its nested loops, which completes the proof. �

Lemma 2.1.7 indicates that the complexity of the minimization process is

crucially dependent on the efficiency of the local projections. The complex-

ity of Algorithm 2.3 for projections with maximal efficiency is given in the

following

Corollary 2.1.8: If, with the assumptions of the previous Lemma, there is

some c1 > 0, which may depend on other variables than the size, such that

C1(w, h) = c1(w + h) and C2(·) is linear, then Algorithm 2.3 has complexity

O(c1 · |S|2(N1 +N2)).
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Proof. Let C2(m) = m · c2 for all m ∈ N. Then, by

N1∑
l=1

N2∑
n=1

l · n · c1(N1 − l +N2 − n+ 2)

≤ c1(2 +N1 +N2)(
N1(N1 + 1)

2
+
N2(N2 + 1)

2
)

the minimization loop has complexity O(c1N
2
1N

2
2 (N1 +N2)), and by

∑
p∈P̂(1)

 N2∑
n=1

c1n(|p|+N2 − n+ 1) +
∑
p′∈P̂r

|p| · |p′| · c2


≤ (N1 +N2 + 1)

N2(N2 + 1)

2
c1 +N1 ·N2 · c2

the reconstruction has complexity O(c1(N1 +N2)N
2
2 ). �

2.2 Dyadic Partitions

In this section we define another class of partitions with a different kind of

recursive structure. Dyadic partitions will be introduced by a restriction on

the set of admissible fragments R. At a first glance, the recursive structure

of dyadic partitions will not be readily identifiable; therefore, it will need to

be devised subsequently. At last an efficient algorithm for traversing each

element in the partition class is given.

2.2.1 Continuous Image Domain

A unified approach to both the discrete and continuous domains cannot be

acquired as easily as in the last section. The reason for this is that, unlike the

hierarchic case, we cannot directly utilize an analogy of the form of discrete

and continuous partitions in one dimension. Therefore, until further notice,

let the image domain be continuous, S = [0, 1)2. We start with the definition

of dyadic partitions straightaway.

Definition 2.2.1 (Dyadic Square, Dyadic Partition, Depth): Consider for

each n ∈ N the set

D−n = {[(i− 1) · 2−n, i · 2−n)× [(j − 1) · 2−n, j · 2−n) : 1 ≤ i, j ≤ 2n}.
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An element of the family D =
⋃
n∈ND−n will be called a dyadic square.

A partition P ⊂ D of S (consisting of dyadic squares) is called a dyadic

partition.

We will say that a dyadic partition P has depth n ∈ N if n is the smallest

integer such that P ⊂
⋃n
k=0D−n.

Before we can reveal the recursive structure of dyadic partitions we need

some preparation. In the following definition for finite sets A and B, the

notation A�B = {a× b : a ∈ A, b ∈ B} is used.

Definition 2.2.2: Let r = [s1, t1) × [s2, t2) be a rectangle in S, and let

(m1,m2) be the midpoint (m1 = t1+s1
2

, m2 = t2+s2
2

). A quad split of r

is the following set of four rectangles

qsplit(r) = {[s1,m1), [m1, t1)}� {[s2,m2), [m2, t2)}.

Fig. 2.4: quad split

Remark 2.2.3: Let P be a partition of S. For q ∈ P, let the set Q be a

partition of q. Then the family P ′ = P ∪ Q \ q generated by replacing q in

P by Q is also a partition of S. Moreover, the quad split of a rectangle r is

a partition of r. Therefore, replacing some rectangle q in a partition by the

quad split of q results in a partition.

Now we define a recursive structure.

Definition 2.2.4: Fix a number n ∈ N. The pair (Vn, En) defined recursively

by V0 = {S}, E0 = ∅ and

Vk = Vk−1 ∪ qsplit(rk−1),

Ek = Ek−1 ∪ {(rk−1, q) : q ∈ qsplit(rk−1)},

for 1 ≤ k ≤ n with rk−1 ∈ Vk−1, is a tree. We will call such a tree a quad-tree

induced by (rk)0≤k<n.
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The link to partitions becomes clear with the following statement:

Lemma 2.2.5: The set of terminal nodes of a quad-tree (Vn, En),

L(Vn) = {v ∈ Vn : qsplit(v) 6⊂ V }, (2.5)

is a partition of S.

Proof. We prove the statement by induction: V0 = L(V0) is a partition of S.

Assume L(Vk) is a partition of S, then L(Vk+1) = L(Vk) \ rk ∪ qsplit(rk) is

also a partition by Remark 2.2.3. �

We will denote a partition consisting of the terminal nodes of a quad-tree a

quad-tree partition.

Fig. 2.5: Illustration of a quad-tree

With the following preparation it is easy to prove that quad-tree partitions

consist of dyadic squares.

Lemma 2.2.6: Let r be a dyadic square. Then qsplit(r) consists of dyadic

squares.

Proof. Assume r = [(i − 1)2−l, i2−l) × [(j − 1)2−l, j2−l) (1 ≤ i, j ≤ 2l,

l ∈ N), then the midpoint of r is given by ((2i − 1)2−l−1, (2j − 1)2−l−1).
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With r = [(2i−2)2−l−1, 2i ·2−l−1)× [(2j−2)2−l−1, 2j ·2−l−1), the rest is clear

by definition. �

Lemma 2.2.7: A quad-tree partition P consists of dyadic squares.

Proof. We prove the statement by induction. V0 = [0, 1)2 is a dyadic square.

Let Vk consist of dyadic squares. Then Vk+1 = Vk∪qsplit(r) for some dyadic

square r ∈ Vk. By Lemma 2.2.6, qsplit(r) consists of dyadic squares, and

because L(Vk+1) ⊂ Vk+1 the proof is complete. �

It will become clear that not only quad-tree partitions are dyadic square

partitions, but that also the converse is true: dyadic partitions are quad-tree

partitions. For the proof we need the following observation:

Lemma 2.2.8: For any dyadic square r there is a number n ∈ N and a

sequence of dyadic squares (ri)1≤i≤n such that r0 = [0, 1)2, rn = r and rk ∈
qsplit(rk−1) for all 1 ≤ k ≤ n.

Proof. We start with proving the analogous result for one dimension by

induction. Let a dyadic interval I = [(i − 1)2−k, i2−k), 1 ≤ i ≤ k, k ∈ N
be given. Consider the case i = 2j for some j ∈ N. Then 1 ≤ j ≤ 2k−1

and I = [(j − 1)2−(k−1) + 2−(k−1)

2
, j2−(k−1)), the right half of the interval be-

ing [(j − 1)2−(k−1), j2−(k−1)). Now consider i = 2j − 1 for some j ∈ N.

Again, 1 ≤ j ≤ 2k−1 and I = [(j − 1)2−(k−1), j2−(k−1) − 2−(k−1)

2
), and the

left half of the interval is [(j − 1)2−(k−1), j2−(k−1)). Carried forward to the

two-dimensional case, this means that for each dyadic rectangle r there is

some dyadic rectangle r′ with doubled side length such that r ∈ qsplit(r).

If the side length of r is 2−k, then n = k. �

Lemma 2.2.9: Let P be a dyadic partition of [0, 1)2, then P is a quad-tree

partition of [0, 1)2.

Proof. By the previous lemma, for each p ∈ P there exists a sequence

(rpk)0≤k≤np such that rp0 = [0, 1)2, rpn = r and rpk ∈ qsplit(rpk−1) for all

1 ≤ k ≤ np. Let (pi)1≤i≤|P| be an enumeration of the elements of P . The

sequence (rpi

k )0≤k<npi ,1≤i≤|P| induces a quad-tree (VN , EN) with P ⊂ VN . The
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fact that rk ∈ Vk for all 0 ≤ k < N is immediate. We show that P is the

set of terminal nodes L(VN) of (VN , EN). Assume there is some q ∈ P such

that q 6∈ L(VN). Then the quad split qsplit(q) is a subset of VN , i.e. q = rpk
for some p ∈ P and 0 ≤ k < np, but then q ( p for q, p ∈ P, which is a

contradiction. It remains to show that each p ∈ L(VN) is also element of

P . Because P and L(VN) are partitions, P ( L(VN) is impossible, therefore

P = L(VN). �

Lemma 2.2.7 and Lemma 2.2.9 give a supplementary justification for the

notion of ‘depth’ in Definition 2.2.1. The depth of a dyadic partition is the

maximal number of edges leading from the root S to the terminal nodes of

the associated quad-tree. The Lemmas add up to the following important

result:

Theorem 2.2.10: The class of dyadic partitions of [0, 1)2 is the class of quad-

tree partitions of [0, 1)2.

Theorem 2.2.10 is a meaningful characterization of the set of dyadic par-

titions. It shows that dyadic partitions have a tree structure that can be

utilized in the development of algorithms: Traversing the set of quad-trees

is obviously equivalent to traversing the set of dyadic partitions. Before we

provide an algorithm, we need to comment on dyadic partitions on a discrete

image domain.

2.2.2 Discrete Image Domain

To be able to define dyadic partitions on a discrete index set, let the image

domain now be given by a square S = {0, . . . , 2N − 1}2 = [0, 2N)2 ∩ Z2,

N ∈ N. We take the interval bounds 0 and 2N − 1 instead of 1 and 2N ,

because this allows us to carry over the notions dyadic square and quad split

from the continuous case in a natural way.

Definition 2.2.11 (Dyadic Square, Dyadic Partition): Consider a discrete

image domain S = {0, . . . , 2N −1}2 and for each 0 ≤ n ≤ N let the following

set be given:

Dn = {[(i− 1)2n, i2n)× [(j − 1)2n, j2n) ∩ Z2 : 1 ≤ i, j ≤ 2N−n}

Each element of D =
⋃N
n=0Dn will be called a (discrete) dyadic square.
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A partition P of S with P ⊂ D will be called a (discrete) dyadic partition.

We will omit the word ‘discrete’ when a discrete context is obvious.

At first glance, Definition 2.2.11 provides a canonical extension of the parti-

tions introduced in Definition 2.2.1 to an image domain larger than [0, 1)2.

Nevertheless, the redefinition of partitions and dyadic square for the discrete

image domain could not be avoided. The following observation establishes

another link between continuous and discrete partitions.

Lemma 2.2.12: Let S = [0, 2N)2∩Z2, and let a dyadic partition P of [0, 1)2

with a depth less than or equal to N ∈ N be given. Then the discretization

δS(P) is a discrete dyadic partition of S. Moreover, for each dyadic partition

Q of S there is one and only one dyadic partition P of [0, 1)2 such that

Q = δS(P).

Proof. By Lemma 2.1.4, the discretization δS transforms a partition of [0, 1)2

consisting of rectangles into a partition of S. Now consider a dyadic square

r in [0, 1)2,

r = [(i− 1)2−k, i2−k)× [(j − 1)2−k, j2−k), 1 ≤ i, j ≤ 2k, 0 ≤ k ≤ N.

Then

δS(r) = [(i− 1)2N−k − 1

2
, i2Nk − 1

2
)× [(j − 1)2N−k − 1

2
, j2N−k − 1

2
) ∩ Z2

= [(i− 1)2N−k, i2Nk)× [(j − 1)2N−k, j2N−k) ∩ Z2

is a dyadic square. Thus, if δ is a dyadic partition of [0, 1)2, then δS(P) is a

dyadic partition of S. Let now a dyadic partition Q of S be given. For each

q ∈ Q there are numbers 0 ≤ kq ≤ N and 1 ≤ iq, jq ≤ 2kq such that

r′ = [(iq − 1)2N−kq , iq2
N−kq)× [(jq − 1)2N−kq , jq2

N−kq) ∩ Z2.

Let

rq = 2−Nr′ = [(iq − 1)2−kq , iq2
−kq)× [(jq − 1)2−kq , jq2

−kq)

for all q ∈ Q. Then q = δS(rq) for all q ∈ Q and P = {rq : q ∈ Q} is a

dyadic partition of [0, 1)2. Let r and r′ be dyadic squares with r 6= r′. Then

δS(r) 6= δS(r′). Therefore, P is unique. �
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By virtue of the link between continuous and discrete partitions given in the

previous Lemma, discrete dyadic partitions also have a quad-tree structure.

We do not repeat all the results from the previous section. For the discrete

case we only redefine the notion quad split, and show that it is one to one

with the continuous case.

Definition 2.2.13: Let r be a dyadic square in S with side length 2n > 1,n ∈
N, r = [(i−1)2n, i2n)× [(j−1)2n, j2n)∩Z2 (1 ≤ i ≤ j ≤ n), and let (m1,m2)

be the ‘midpoint’ (m1 = (2i − 1)2n−1, m2 = (2j − 1)2n−1). A (discrete)

quad split of r is the following set of rectangles:

qsplit(r) = {[s1,m1) ∩ Z, [m1, t1) ∩ Z}� {[s2,m2) ∩ Z, [m2, t2) ∩ Z}.

For a square r with side length 1 we define qsplit(r) = ∅.

Note that the quad split of a dyadic square consists of four dyadic squares

with side lengths 2n−1.

Lemma 2.2.14: Let S = [0, 2N)2 ∩ Z2, and let r be a continuous dyadic

square with side length greater than or equal to 2−N . Then δS(qsplit(r)) =

qsplit(δS(r)).

Proof. We adopt the notation used in proof of Lemma 2.2.12: δ(r) =

2Nr ∩ Z2. The result follows due to the analogy of Definition 2.2.13 and

Definition 2.2.2. �

It would now be possible to redefine the notions quad-tree and quad-tree

partition for the discrete case, and to give exactly the same results as already

developed in the previous section for the continuous case. Instead, we argue

by analogy and point out that discrete dyadic partitions have a recursive

(quad) tree structure with a production rule, as in the continuous case. Using

this analogy we repeat the statement of Theorem 2.2.10 for the discrete case

in the following:

Theorem 2.2.15: Let S be dyadic, S = [0, 2N)2 ∩ Z2. For each dyadic

partition P of S there is one and only one quad-tree inducing P .
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Remark 2.2.16: If the (discrete) image domain is not a dyadic square, then

a dyadic partition does not exist. Nevertheless, a quad-tree partition can

also be defined with a quad split on rectangles on S. For a rectangle r =

{st, . . . , t1} × {s2, . . . , t2}, a quad split is defined as the discretization of

δS(qsplit([s1, t1)× [s2, t2))) \ ∅. By the rounding involved in the quad split

process, the rectangles do have different sizes, in general. This leads to

the following effects: First, the quad split may (depending on the stopping

criteria in the tree) consist of only two rectangles (see Figure 2.6). And

second, the partition induced by the quad-tree is, in general, not equivalent

to the partition induced with the ‘same’ quad-tree on a continuous domain.

Fig. 2.6: Recursive quad splits of a discrete rectangle

2.2.3 Recursion

The tree structure of (discrete) dyadic partitions will now be exploited for

developing an efficient algorithm that traverses the family of dyadic partitions

for the purpose of minimizing the Potts functional. By Theorem 2.2.15, a

dyadic partition of S is one to one with a quad-tree.

Before we can show how the recursive structure of the partitions can be used

to minimize the Potts functional, we need some definitions. Consider a finite

set Q and a family of sets {Aq : q ∈ Q}. We define⋃
×
q∈Q

Aq := {
⋃
q∈Q

aq : aq ∈ Aq ∀ q ∈ Q}.

Now for a dyadic square r let the following recursion formula

Qr = {{r},
⋃
×

q∈qsplit(r)

Qq}

be given. Then, according to Definition 2.2.4, the set of quad-tree partitions

of S is QS. Moreover, for each dyadic square r, assume h∗r := inffr∈Fr ‖fr −
z|r‖22. Then, with the definition KP = γ|P| +

∑
s∈P h

∗
s for fixed γ ∈ R and

data z, the following holds

inf
(P,fP )∈S

Hγ(z, (P , fP)) = min
P∈QS

KP .
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Assume that Q = qsplit(r), and consider for each q ∈ Q a partition Pq of

q, then

K⋃
q∈Q Pq = γ|

⋃
q∈Q

Pq|+
∑

p∈
⋃

q∈Q Pq

h∗p =
∑
q∈Q

γ|Pq|+
∑
q∈Q

∑
r∈Pq

h∗r =
∑
q∈Q

KPq .

This leads to the recursion rule

min
P∈Qr

KP =

{
min{γ + h∗r,

∑
q∈qsplit(r) minP∈Qq KP}, if qsplit(r) 6= ∅,

γ + h∗r otherwise.

(2.6)

used for the minimization algorithm.

Remark 2.2.17: Crucial in the development of recursion equation (2.6) was

the fact that the Potts functional fulfills the reduction principle. But a little

bit more was needed: If a functional fulfills the reduction principle, then it can

be written in the form ϕP((hr(fr))r∈P). For the breakup of the functional into

functionals on sub-partitions of P a kind of separability of ϕP is additionally

necessary. In the case of the Potts functional this is ϕP∪Q = ϕP + ϕQ.

The algorithm for traversing all quad-trees of S will consist of four steps.

First, the definition and creation of an abstract tree object for storage of

projection results. Second, a traversal for doing the local minimization at

each node. The third step is the minimization of the Potts functional using

this resulting tree. In the last step, the projections are performed on the

minimizing quad-tree.

As in Subsection 2.1.3, we use some abstract data types for the passing of

parameters in the algorithms. Again we make use of an abstract reference

object Ref of generic type OBJECT for accessing global data within proce-

dures. For the representation of the quad-tree we introduce a dynamic object

Node of abstract type NodeOBJECT. A Node contains references to four

subnodes viz. Node.ll, Node.lr, Node.ul and Node.ur, the corresponding

rectangle Node.r ⊂ S, and more entries for the data. If a node Node is

empty then we denote this by Node = Nil. The creation of a node will be

denoted by New(Node).

The following procedures and the algorithm are designed such that a quad-

tree is applicable to a rectangular finite image domain S = {0, . . . , N1−1}×
{0, . . . , N2−1}, which does not have to be a dyadic square, see Remark 2.2.16.

Applied to a dyadic square, however, they correspond to dyadic partitions.
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We start with the creation of the quad-tree. A call of Create(x, y, w, h)

creates an empty quad-tree over the rectangle {x, . . . , x+w}×{y, . . . , y+h}
(y, x, w, h ∈ N).

Procedure CreateTree(x,y,w,h: INTEGER): NodeOBJECT

input : geometry of rectangle x, y, w, h

output: instance of node Node and subtree if geometry permits that, Nil otherwise

begin

if h > 0 and w > 0 then
New(Node);

Node.r ← [x, x+ w)× [y, y + h) ∩ Z2;

w2 ← bw
2
c; h2 ← bh

2
c;

Node.ll← CreateTree(x, y, w2, h2);

Node.lr ← CreateTree(x+ w2, y, w − w2, h2);

Node.ul← CreateTree(x, y + h2, w2, h− h2);

Node.ur ← CreateTree(x+ w2, y + h2, w − w2, h− h2);
else

Node← Nil
end

return Node;
end

Given a node Node, the following procedure computes the local minima for

the complete subtree attached to Node.

Procedure LocalMin(Node: NodeOBJECT; Ref:OBJECT)

input : Node and data z stored in Ref

output: the local projection associated to Node.r stored in Node.h

begin
r ← Node.r;

if Node 6= Nil then

Node.h← ‖ΠFrz − zr‖2;

foreach snode ∈ {Node.ll,Node.lr,Node.ul,Node.ur} do
LocalMin (snode,Ref)

end

end

end

Procedure MinTree minimizes the Potts functional, and accordingly sets the

nodes to status ‘isterminal=TRUE’ or ‘isterminal=FALSE’. The return value

is the minimizer of the Potts functional restricted to the domain associated

to the given node.
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Procedure MinTree(Node: NodeOBJECT; γ ∈ R): REAL

input : Node and parameter γ ∈ R
output: Potts functional minimum, minizing partition by setting tag Node.isterminal to TRUE

or FALSE

begin
r ← Node.r;

if Node 6= Nil then

this← Node.h+ γ;

subnodepresent ← FALSE; sub← 0;

foreach snode ∈ {Node.ll,Node.lr,Node.ul,Node.ur} \Nil do

subnodepresent ← TRUE;

sub← sub+ MinTree(snode, γ);
end

if subnodepresent= FALSE then
sub←∞

end

if this ≤ sub then
Node.isterminal ← TRUE;

return this
else

Node.isterminal ← FALSE;

return sub
end

else
return ∞

end

end

Procedure TreeProjection performs the local projections after the global

minimization is done.

Procedure TreeProjection(Node:NodeOBJECT; Ref:OBJECT)

input : Node and parameter γ ∈ R
output: Minimizer of the Potts functional in Ref.f

begin
r ← Node.r; z ← Ref.z;

if (Node.isterminal) then
Ref.f |r ← ΠFrz;

else

foreach snode ∈ {Node.ll,Node.lr,Node.ul,Node.ur} \Nil do
TreeProjection (snode,Ref)

end

end

end

The four components, tree creation, local minimization, global minimization

and projection have been arranged and we can now formulate an algorithm

for minimizing the Potts functional over dyadic partitions.
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Algorithm 2.8: Minimizing the Potts Functional over Dyadic Parti-

tions.
input : Data z over image domain S = {0, . . . , N1 − 1} × {0, . . . , N2 − 1}, parameter γ ∈ R
output: Minimizer f

begin
Ref.z ← z;

Node← CreateTree(0, 0, N1, N2);

LocalMin(Node,Ref);

min← MinTree(Node, γ);

TreeProjection(Node,Ref);

f ← Ref.f ;
end

For Algorithm 2.8, the following complexity result holds:

Lemma 2.2.18: Let S = {0, . . . , N1−1}×{0, . . . , N2−1}. Assume for a rect-

angle r in S with side lengths w and h that the complexity of the computation

of ‖ΠFrz − zr‖22 is given by C1(w, h), and let C2(|r|) be the complexity for

the projection operation f̂r ← ΠFrz. Let d = min{blog2(N1)c, blog2(N2)c}.
Then the complexity of Algorithm 2.8 is given by

O

 d∑
i=0

4iC1(
N1

2i
,
N2

2i
) +

∑
r∈P̂

C2(|r|)

 .

Proof. Let C(d) be the complexity of recursion step d. Let Cloc(d) be

the complexity of local operations in step d. Then the recursion formula

C(k) = Cloc(k) + 4C(k + 1), 0 ≤ k ≤ d leads to C(d) =
∑d

k=0 4k · Cloc(k).
The complexities of node creation and comparisons in the minimization and

reconstruction procedures are assumed to be constant. In recursion step k

the side lengths of the rectangles are given by w = N1

2k and h = N2

2k . In the

projection step operations on sets not in P̂ have constant complexity. Setting

these values in the recursion formula yields the result. �

Lemma 2.2.18 indicates that the complexity of the minimization process is

crucially dependent on the efficiency of the local projections. The complex-

ity of Algorithm 2.8 for projections with maximal efficiency is given in the

following

Corollary 2.2.19: Let the assumptions of the previous Lemma be fulfilled.

Assume that for some constant c1 > 0, which may depend on other vari-

ables than the size, the local minimization complexity is given by C1(w, h) =
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c1(w + h) and that the local reconstruction complexity C2(·) is linear. Then

Algorithm 2.8 has complexity O(c1|S|).

Proof. Let C2(m) = m · c2 for all m ∈ N, then

d∑
i=0

4iC1(
N1

2d
,
N2

4d
) +

∑
r∈P̂

C2(|r|) =
d∑
i=0

c1 · 2i(N1 +N2) +
∑
r∈P̂

C2(|r|)

= c1 · (N1 +N2) · (2d+1 − 1) + c2|S| ≤ (c1 + c2)|S|
≤ c1 · (N1 +N2) · 2 min{N1, N2}+ c2|S|
≤ c1 · 4N1 ·N2 + c2|S| = (4c1 + c2)|S|.

�

2.3 Synopsis

In this chapter we have introduced two classes of partitions: hierarchic and

dyadic partitions. Hierarchic partitions have a recursive structure in the

dimension, while dyadic partitions are one to one with quad-trees and thus

have a tree structure. For both partition types the discrete and continuous

cases have to be treated separately, but a canonical discretization provides a

useful connection between these cases.

We have provided algorithms that traverse the set of partitions for the pur-

pose of minimizing the Potts functional. In an optimal case, when the local

approximations can be done in constant time and the projections can be per-

formed with linear complexity, the Potts functional can be minimized with

complexity O(|S|2) for hierarchic partitions, while for dyadic partitions the

minimization complexity is O(|S|). In the next chapter, we will deal with

efficient local minimizations and projections.

The recursion rules and resulting algorithms have been developed for the

minimization of the Potts functional. However, with some more notational

overhead it is possible to do that for quite a large class of functionals. A

necessary condition is that the functionals fulfill the reduction principle. An-

other condition is a sort of separability of the function ϕP associated to a

functional f .

There are other kinds of partitions allowing a manageable recursion. We cite

as an example the tree serial dynamic programming approach originating
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from V. Mottl, see Mottl and Muchnik (2002) and Mottl et al. (1998). More-

over both dyadic and hierarchic partitions may be refined in various ways.

For example, each rectangle may additionally be divided into two parts with

a straight line resulting in two wedges. This refinement can be formulated

as a property of the partition, but it can also be formulated as an addi-

tional feature of the local regression model. We follow up with the second

approach because we want to keep a clear structure of the hierarchic and

dyadic partitions. We prefer to treat the notationally expensive description

of non-rectangular divisions of the fragments in a separate section.
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3. Local Models
In the previous chapter we have introduced two different approaches to par-

tition a two-dimensional image domain, both of them allowing an efficient

enumeration of the partition class. We have given algorithms for the mini-

mization of the Potts functional for an arbitrary class of admissible functions.

The efficiency of these algorithms crucially depends on the complexity of the

local projections on the space of admissible functions over rectangles, com-

pare Lemma 2.1.7 and Lemma 2.2.18.

This chapter is about local models over a domain that is not necessarily

rectangular. In Section 3.1 we make some general remarks concerning the

minimization of certain functionals such as existence and uniqueness of mini-

mizers. In Section 3.2 we comment on wedge intersection, the division of the

image domain into two parts by a line. In Section 3.3 we present a highly

efficient scheme to compute local minimizers and projections on a polygonal

domain. This rule will permit a fast minimization of the Potts functional.

3.1 Local Regression

Let the image domain be finite, S = {1, . . . , N1} × {1, . . . , N2}, N1, N2 ∈ N.

Let R be the set of connected subsets of S, and let F = (Fr)r∈R be a class

of admissible functions. Assume that data z ∈ RS is observed.

With zr := z|r and % : R→ R, %(x) = x2 for all r ∈ R, the Potts functional

has the form

Hγ,z(P , fP) = γ|P|+
∑
r∈P

∑
i∈r

%(zi − fP(i)).

This thesis is mainly about the minimization of a Potts functional with L2

distance, i.e. %(x) = x2. Nevertheless, we want to comment on the mini-

mization of

hr(fr, z) :=
∑
i∈r

%(zi − fr(i))

with a general choice of the function %. Interesting examples are robust

functions such as the so called Hampel cup function, see Winkler (2002),
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pp. 31-41 and Winkler and Liebscher (2002). For the one-dimensional case

efficient algorithms for the minimization of Hγ,z with a replacement of %(·) =

‖ · ‖22 by some robust functions have already been developed, see Brandt and

Hutzenthaler (2004). There may be ways to extend the results that will be

presented in Section 3.3 from the L2 distance to more robust functions.

In this section we consider the minimization problem

hr(fr, z)
!−→ min

fr∈Fr

hr(fr, z). (3.1)

3.1.1 Existence of Minimizers

In this paragraph sufficient conditions on % and the class of admissible func-

tions F for the existence of solutions of the minimization problem (3.1) are

given.

We start with two definitions: A function F : Rn → R̄ is called level

bounded, if the set lev≤α F := {x ∈ R
n : F (x) ≤ α} is bounded or

empty for all α ∈ R. A function G : Rn → R̄ is called proper, if the set

{x ∈ Rn : G(x) <∞} is nonempty and closed.

Lemma 3.1.1: Let % : R→ R be a positive, lower semicontinuous and level

bounded function. Assume Fr = R
r or F is a closed subset of Rr. Then the

set

argmin
fr∈Fr

∑
i∈r

%(zi − fr(i))

is nonempty and compact.

Proof. By Theorem 1.9 in Rockafellar and Wets (2004), p.11, the set of

minima of a lower semicontinuous level-bounded proper function g : R→ R̄

is nonempty and compact. Thus, it has only to be proved that the function

fr 7→
∑

i∈r %(fr−zi) is lower semicontinuous and level bounded. Now consider

the two positive, symmetric, lower semicontinuous functions g1, g2 : R →
R. Then the sum g1 + g2 : (x1, x2) 7→ g1(x1) + g2(x2) is also symmetric,

positive and lower semicontinuous. Moreover, for all α > 0 the set {(x1, x2) :

g1(x1) + g2(x2) ≤ α} is bounded because by the positivity of g1 and g2, it

is contained in the set {(x1, x2) : g1(x1) ≤ α, g2(x2) ≤ α} which is bounded.

For the existence of a minimum on a closed subset Fr of Rr, consider the

minimization of fr 7→ h̄r(fr) with the proper function h̄r : Rr → R̄ defined
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by

h̄r(fr) :=

{
hr(fr) if fr ∈ Fr,
∞ otherwise.

Note that level boundedness is hereditary: The set lev≤α hr|Fr is trivially

empty or bounded for each α if the same is true for the whole space Rr. �

Conditions of Lemma 3.1.1 are only sufficient; they are not necessary condi-

tions for existence of minima. Consider, for example, ρ ≡ 1. Nevertheless,

none of them can be omitted in the Lemma. This will be demonstrated with

the following three counter-examples.

Example 3.1.2: Consider a fragment r with two elements, r = {1, 2}, con-

stant data z1 = z2, quadratic distance %(x) = x2 and the (open) set of non

constant functions Fr := {f : {1, 2} → R : f(1) 6= f(2)}. Then the set

argminfr∈Fr
hr(fr, z) is empty since hr attains it unconstrained minimum at

f(1) = f(2) = z1 on the boundary of the open set Fr.

The lower semicontinuouity of % is also crucial:

Example 3.1.3: Consider the (upper semicontinuous) function

%(x) =

|x| if |x| < 1,

2|x| otherwise,

data z = {−1, 1} over r := {1, 2} and constant regression Fr = {f : {1, 2} →
R : f(1) = f(2) = µ, µ ∈ R}.

Fig. 3.1: % and hr(·, zr)
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Then

hr(µ, zr) =


4|µ| if |µ| > 2,

2 + 2|µ| if 1 ≤ |µ| < 2,

3 + |µ| if 0 < |µ| < 1,

4 if x = 0,

which does not attain its infimum.

Example 3.1.4: That lev≤α % is bounded for all α ∈ R is a necessary con-

dition in Lemma 3.1.1 and cannot be replaced by the weaker requirement of

existence of some α ∈ R such that lev≤α % is bounded (even though lev≤α is

compact). Consider the function

%(x) =


1 + 1

|x| if |x| > 1,

2(2x+ 1)2 if −1 ≤ x ≤ 0,

4− 2(2x− 1)2 if 0 < x ≤ 1,

which has a compact lower level set lev≤α % for all 0 ≤ α < 1 and empty

lower level sets for α < 0. Assume data z = {0, 0} over r = {1, 2} and the

set of antisymmetric functions Fr = {f : {1, 2} → R : f(1) = −f(2) = µ}.

Fig. 3.2: % and hr(·, zr)

Then

hr(µ, zr) =

2 + 2
|µ| if |µ| > 1,

4 otherwise,

with an infimum at infinity.

The previous example shows an important fact about the existence of minima,

which is stated in the following
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Remark 3.1.5: Level boundedness is hereditary, i.e. the restrictions of level

bounded functions to closed subsets, in particular to subspaces, are level

bounded. In the following we will call the property that there is one α ∈ R
such that lev≤α % is bounded local level boundedness. The crucial point

is that local level boundedness is not hereditary, i.e. it does not imply local

level boundedness on closed subsets.

Nevertheless, if there is no restriction on the function space Fr for each r ∈ R,

local level boundedness of % implies local level boundedness of hr. This is

due to the fact that

{x ∈ Rr :
∑
i∈r

%(xi − zi) ≤ α} ⊂
∏
i∈r

{xi ∈ R : %(xi − zi) ≤ α}

=
∏
i∈r

({xi : %(xi) ≤ α}+ zi)

which is a bounded set. Because in most cases we assume that %(·) has a

minimum at x = 0, this result is not particularly exciting: Minimizing hr

over Fr = R
r would result in data z: fr(i) = zi for all i ∈ r and all r ∈ R.

The reason why local level boundedness of % does not necessarily imply local

level boundedness of hr over subspaces of Rr is that the local (existing!)

bounded level set of hr does not have to intersect a given subspace at all, see

the following figure.

Fig. 3.3: Local level boundedness does not imply level boundedness on subspaces.

As a consequence, for robust distances such as the cup shaped Huber func-



64 3. Local Models

tion, which does not satisfy the assumption of (global) level boundedness, we

have to find other criteria or – in the worst case – examine them bit-by-bit.

As a direct consequence of Lemma 3.1.1 we can state the following:

Corollary 3.1.6: Let hr(fr, z) :=
∑

i∈r(fr(i)−zi)2. Assume Fr = R
r or Fr is

a closed subset of Rr. Then the set argminfr∈Fr
hr is nonempty and compact.

Proof. The function % : R→ R, %(x) = x2, is positive, lower semicountinu-

ous and level bounded. Apply Lemma 3.1.1. �

3.1.2 Uniqueness of Minimizers

We still consider the minimization problem (3.1)

hr(fr, z)
!−→ min

fr∈Fr

hr(fr, z)

with hr(fr, z) =
∑

i∈r %(fr(i) − zi) and give a sufficient condition for the

uniqueness of a minimizer of hr.

We cite the following theorem from Hirzebruch and Scharlau (1996), p.74.

Recall that a space X is called strictly normed, if for all x, z ∈ X \ 0 with

‖x+ z‖ = ‖x‖+ ‖z‖ there is some λ > 0 such that x = λz.

Theorem 3.1.7 (Approximation Theorem): LetX be a real, normed space.

Let a ∈ X, and let W be a convex, closed subset of X.

If X is strictly normed, then there is at most one x ∈ W such that

‖a− x‖ = inf
z∈W
‖a− z‖. (3.2)

Remark 3.1.8: Hirzebruch and Scharlau (1996) give a class of functions, for

which the approximation problem 3.2 has a unique solution. These are the

so called uniformly convex Banach spaces, thereunder the spaces Lp(Rn, ϕ)

for all 1 < p <∞. See Hirzebruch and Scharlau (1996), pp. 74-75.

From Theorem 3.1.7 we deduce the following important result:
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Theorem 3.1.9: Let % = |x|p, 1 < p <∞, and let Fr be (a subspace of) Rr.

Then the minimization problem hr(·, z)
!−→ argminfr∈Fr

∑
i∈r %(fr − zi) has

a unique solution.

Proof. Observe that argminfr∈F(r)

∑
i∈r |zi − fr(i)|p = argmin(

∑
i∈r |zi −

fr(i)|p)1/p = argmin ||zr−fr||p. Subspaces are closed and convex. Minkowski’s

Inequality for Sums states that if p > 1 and xk, zk > 0 for all k then

‖x + z‖p ≤ ‖x‖ + ‖z‖ with equality if and only if there is some λ > 0

such that x = λz, see Abramovitz and Stegun (1972), p. 11. �

As a counter-example for the not uniformly convex space L2, consider the

following

Example 3.1.10: Let %(x) = |x| corresponding to the L1 distance hr. Let

data z = {−1, 1} over r = {1, 2} be given, and consider constant regression

Fr := {f : {1, 2} → R : f(1) = f(2) = µ, µ ∈ R}.

Fig. 3.4: % = ‖ · ‖L1 and hr(·, zr)

Then

hr(µ, x) =

2|µ| if |µ| > 1,

2 otherwise.

Thus hr does not have a unique minimum. Note that the minimizers are the

median values of the data zr.

3.1.3 Least Squares Regression

We consider a finite subset r of S ⊂ Z
2 and data z ∈ Rr. Now we focus

on the minimization of the data term hr(fr, z) = ‖fr − z|r‖22 of the Potts
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functional. Applied to this least squares regression problem, Theorem 3.1.9

immediately leads to the following

Corollary 3.1.11: Let Fr be (a subspace of) Rr. Then for each z ∈ Rr the

functional hr(fr, z) =
∑

i∈r(fr(i)− zi)2 has a unique minimizer in Fr.

Now we consider the regression problem. Let n ∈ N, a family of (discrete)

functions ϕi ∈ Rr, 1 ≤ i ≤ n, and the linear space of functions

Fr := {
n∑
i=1

aiϕi : ai ∈ R ∀ 1 ≤ i ≤ n}

be given. The minimization of

hr(fr, z) =
∑
s∈r

(zs −
n∑
i=1

aiϕi(s))
2

in a ∈ Rn leads to the normal equations∑
s∈r

zsϕj(s) =
∑
s∈r

n∑
i=1

aiϕi(s)ϕj(s) , 1 ≤ j ≤ n,

⇐⇒
∑
s∈r

zsϕj(s) =
n∑
i=1

ai
∑
s∈r

ϕi(s)ϕj(s) , 1 ≤ j ≤ n.

With the n-element vectors Y and a given by

Y :=

(∑
s∈r

zsϕj(s)

)
1≤j≤n

and a := (ai)1≤i≤n, and the n× n matrix M defined by

M :=

(∑
s∈r

ϕi(s)ϕj(s)

)
1≤i,j≤n

,

this can be written as the linear equation system

Y = Ma. (3.3)

Let â be a solution of the equation system (3.3). For the computation of the

approximation error, the following holds.

min
fr∈Fr

∑
s∈r

(zs − fr(s))2 =
∑
s∈r

(zs −
n∑
i=1

âiϕi(s))
2
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=
∑
s∈r

z2
s − 2

n∑
i=1

âiYi +
n∑
i=1

â2
iMii. (3.4)

In the following we denote a minimizer of ‖fr − z|r‖22 by ΠFrzr. Equations

(3.3) and (3.4) lead to the following important observation.

Remark 3.1.12: For efficient computation of a projection ΠFrzr, a fast cal-

culation of the n(n+1)
2

+ n ‘moments’
∑

s ϕi(s)ϕj(s) and
∑

s∈r zsϕj(s), 1 ≤
i, j ≤ n, is essential! A computation of the approximation error requires an

additional computation of the sum
∑

s z
2
s . A scheme for a fast computation

of these sums for polygonal domain r will be given in Section 3.3.

Nothing has been said about the uniqueness of the solution of the equation

system 3.3. This in general depends on the shape of r. In applications it is

sufficient to compute an arbitrary minimizer using a pseudoinverse of M .

Lemma 3.1.13: Assume that the ‘moments’
∑

s ϕi(s)ϕj(s) and
∑

s∈r zsϕj(s),

1 ≤ i, j ≤ n, are known. Then a minimization of the functional

hr(fr, z) =
∑
s∈r

(zs −
n∑
i=1

aiϕi(s))
2

in a ∈ Rn can be done with a time complexity of O(n3) and a spatial com-

plexity of O(n2).

Proof. The computation of a pseudoinverse M− of M can be done in O(n3),

compare Trefethen and Bau (1997), pp. 83-85. The solution a = M−Y takes

another n2 steps. Because for the computation of M− a fixed number of

matrices with maximal size n2 are needed, the spatial complexity is O(n2).

�

In practice any kind of functions ϕi, 1 ≤ i ≤ n, can be used to generate Fr.
Closing this section we give three standard examples of regression.

Example 3.1.14: Let the function class Fr be generated by constant func-

tions on r. Then n = 1, ϕ1 ≡ 1 and

Fr := {f ∈ Rr : f(s) = a ∀ s ∈ r, a ∈ R}.
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The minimizer is f ≡ µr := 1
|r|
∑

s∈r zi, the empirical mean of z over r. The

minimum of hr is thus given by hr(µr, z) = 1
|r|
∑

s∈r(zs − µr)
2 =: σ2

r , the

empirical variance of z over r.

Example 3.1.15: Now we consider affine regression. With n = 3, ϕ1 ≡ 1,

ϕ2(s) = s1 and ϕ3(s) = s2, s ∈ r, we get

Fr := {f ∈ Rr : f(s) = c+ as2 + bs2 ∀s ∈ r, a, b, c ∈ R}.

Minimization of hr((a, b, c), z) is equivalent with solving the linear system of

equations (all sums are over s ∈ r)
∑

1
∑
s1

∑
s2∑

s1

∑
s2
1

∑
s1s2∑

s2

∑
s1s2

∑
s2
2


ca
b

 =


∑
zss1∑
zss2∑
zs

. (3.5)

For a fast computation of the projection ΠFrzr and the approximation error,

10 ‘moments’ have to be computed.

Example 3.1.16: Quadratic regression is obtained with n = 6, ϕ1 ≡ 1,

ϕ2(s) = s1, ϕ3(s) = s2, ϕ4(s) = s1s2, ϕ5(s) = s2
1 and ϕ6(s) = s2

2, s ∈ r.

Thus the function space consists of functions of the form f(s) = a + bs1 +

cs2 + ds1s2 + es2
1 + fs2

2, a, b, c, d, e, f ∈ R. For a fast computation of the pro-

jection ΠFrzr and the approximation error, only 21 < n(n+3)
2

+ 1 ‘moments’

have to be computed. This is due to identities like ϕ2ϕ4 = ϕ5ϕ3, compare

the following equation system



∑
1

∑
s1

∑
s2

∑
s1s2

∑
s21

∑
s22∑

s1
∑
s21

∑
s1s2

∑
s21s2

∑
s31

∑
s1s22∑

s2
∑
s1s2

∑
s22

∑
s1s22

∑
s21s2

∑
s32∑

s1s2
∑
s21s2

∑
s1s22

∑
s21s

2
2

∑
s31s2

∑
s1s32∑

s21
∑
s31

∑
s21s2

∑
s31s2

∑
s41

∑
s21s

2
2∑

s22
∑
s1s22

∑
s32

∑
s1s32

∑
s21s

2
2

∑
s42





c

a

b

d

e

f


=



∑
zs∑
zss1∑
zss2∑
zss1sz∑
zss21∑
zss22


.

3.2 Wedge Segmentation

In this section we introduce and characterize the division of rectangles by

intersection with a line. This division will be used to split the local min-

imization on a rectangle into two parts – so called wedges – leading to a
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nonlinear approximation. If the minimization on each part is a projection on

an n-dimensional space, then the nonlinear approximation can be described

with 2n + 2 parameters. Localized phenomena, such as edges or jumps in a

two-dimensional signal, may in general be better approximated with a sep-

aration of the local minimization into two separate projections than with a

significant increase of the dimension for the linear regression. The division of

the rectangles will be applied to the fragments of the partitions introduced in

Chapter 2. It may be understood as a more generic form of the local approx-

imation, or as a refinement of the partitions. Both points of view have their

own benefit. The former is mainly advantageous for the study of algorithms,

as in Chapter 2 and in Chapter 4. The latter is better suited for theoretical

analysis such as consistency, see Chapter 5.

We start with the definition of wedges, and comment on the interrelation of

these divisions on continuous and discrete image domains. Then we introduce

digital lines used for a purely discrete specification of wedge divisions on the

discrete domain. In Subsection 3.2.3 we introduce the notion of dichotomy,

binary functions on the image domain, which we will use to obtain some more

characterizations of wedge partitions.

3.2.1 Wedges

In the following let S be either the continuous image domain S = [0, 1)2 or a

discrete domain S = {s1, . . . , s1 +N1− 1}×{s2, . . . , s2 +N2− 1}, s1, s2 ∈ N,

N1, N2 ∈ N+.

Consider a rectangle r ⊂ S. In the sequel, let, for each point x ∈ R2 and

angle α ∈ [0, 2π), the sets Ax,α(r) and Bx,α(r) be defined by

Ax,α(r) = {(u1, u2) ∈ r : (u2 − x2) cosα ≥ (u1 − x1) sinα},
Bx,α(r) = {(u1, u2) ∈ r : (u2 − x2) cosα < (u1 − x1) sinα}.

The sets Ax,α(r) and Bx,α(r) are disjoint, connected, and their union is the

rectangle r for each x ∈ R2 and α ∈ [0, 2π). This leads to the following

definition:

Definition 3.2.1: For all x ∈ R and α ∈ [0, 2π) the set

Tx,α(r) := {Ax,α(r), Bx,α(r)} (3.6)

will be called a wedge division of r, and elements of Tx,α(r) will be called

wedges.
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Note that Ax,α(r) and Bx,α(r) are the points left and right, respectively, of

the vector defined by point x and angle α. Compare figure 3.5.

Fig. 3.5: A wedge division of rectangle r.

Remark 3.2.2: Donoho (1999) introduces wedgelets by splitting rectangles

into two pieces by edgels. Edgels are lines connecting the finitely many

vertices on the boundary of a given discrete rectangle. We do not make

any restrictions now, but will follow up with a different idea of rather global

restrictions later on.

Recall that for a rectangle R = [s1, s1 + n1) × [s2, s2 + n2) ∩ Z2, s1, s2 ∈ Z,

n1, n2 ∈ N and a set A ⊂ [0, 1)2, the discretization of A in R has been defined

by δR(A) = {(s1 − 1
2

+ n1 · a1, s2 − 1
2

+ n2 · a2) : (a1, a2) ∈ A} ∩ Z2. As in

Sections 2.1 and 2.2, we check if the canonical discretization δS maps wedge

divisions to wedge divisions.

Lemma 3.2.3: Let S = [s1, s1 + N1) × [s2, s2 + N2) ∩ Z2. For each x ∈ R2

and α ∈ [0, 2π) there are x′ ∈ R2 and α′ ∈ [0, 2π) such that for all rectangles

r ⊂ [0, 1)2 the following holds:

δS(Tx,α(r)) = Tx′,α′(δS(r)).

Proof.

A short calculation shows that with the replacements u′1 = N1u1 + s1 − 1
2
,

u′2 = N2u2 + s2− 1
2
, x′1 = s1 +N1x1− 1

2
and x′2 = s2 +N2x2− 1

2
the following

equation holds:

δS(Ax,α(r)) = {(N1u1 + s1 −
1

2
, N2u2 + s2 −

1

2
) : (u1, u2) ∈ Ax,α(r)}
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= {(u′1, u′2) ∈ δS(r) : (u′2 − x′2)
cosα

N2

≥ (u′1 − x′1)
sinα

N1

}

If cosα = 0, then immediately δS(Ax,α(r) = Ax,α(δ
S(r)). If cosα > 0, then

δS(Ax,α(r)) = {(u′1, u′2) ∈ δS(r) : (u′2 − x′2) ≥ (u′1 − x′1)
N2

N1

tanα}.

The equation holds with ‘≤’, if cosα < 0.

The existence of α′ ∈ [0, 2π) with tanα = c tanα′ for every c > 0 and

sgn(cosα) = sgn(cosα′) is immediate from tan((π
2
, 3π

2
)) = R, cos((π

2
, 3π

2
)) =

[−1, 0), tan([0, pi
2
) ∪ (3π

2
, 2π)) = R and cos([0, pi

2
) ∪ (3π

2
, 2π)) = (0, 1], see

Figure 3.6.

The same arguments work for Bx,α(r). Together, this leads to δS(Tx,α(r)) =

Tx′,α′(δS(r)) for appropriate α′ ∈ [0, 2π).

Fig. 3.6: cos and tan

�

In the following we will call a partition that consists of rectangles and wedge

divisions of rectangles a wedge (decorated) partition. The previous

lemma implies that the discretization of a wedge partition is a wedge parti-

tion.

Before we comment on the number of wedge divisions of a discrete rectangle,

we first consider digital lines for a purely discrete specification of discrete

wedges.

3.2.2 Digital Lines

In this subsection we comment on discretization of continuous lines for two

reasons. On the one hand, it is a useful preparation for a digital specifica-
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tion of wedge divisions. On the other hand, we provide another part of the

mathematical background for algorithms doing regression over a polygonal

domain. We assume a discrete image domain S = {1, . . . , N1}×{1, . . . , N2},
N1, N2 ∈ N.

For a number d ∈ R and an angle α ∈ [0, 2π) consider the following line in

R
2:

ld,α =

{(
x

y

)
∈ R2 :

〈(
x

y

)
,

(
− sinα

cosα

)〉
= d

}
.

Obviously the parameter d is the Euclidean distance of the line to the origin.

A natural choice for a discretization of ld,α is a set of points in the grid Z2

with a given maximal distance δ to the line ld,α:

Lδd,α =

{(
x

y

)
∈ Z2 : d− δ ≤

〈(
x

y

)
,

(
− sinα

cosα

)〉
< d+ δ

}
.

Observe that Lδd,α is the set of all points in Z2 within a tube around ld,α of

width δ where one of the two borders of the tube is included. We will now

and then refer to a line of this form as a digital line.

The 8-neighborhood of some point (x0, y0) ∈ Z2 is defined as the set of points

N8(x0, y0) := {(x, y) ∈ Z2 \ (x0, y0) : |x− x0| ≤ 1 and |y − y0| ≤ 1}.

Reasonable requirements on the discretization of lines are:

• For each point (x, y) ∈ L either (x′, y) 6∈ L for each x′ 6= x or (x, y′) 6∈ L
for each y′ 6= y. The lines should thus have a digital thickness of 1 in

the horizontal or vertical directions. This is a reasonable assumption

for lines that border some area such as a wedge.

• A line should be connected with respect to 8-Neighborhood.

We call a connected set Lminimally connected, if L\a is not connected for

each a ∈ L. The following Lemma contains a choice of δ ∈ R depending on

α ∈ [0, 2π) such that Lδd,α fulfills the aforementioned requirements. Note that

the first requirement is fulfilled if an 8-connected line is minimally connected.

Lemma 3.2.4: Let d ∈ R and α ∈ [0, 2π) and δ = max{| sinα|/2, | cosα|/2}.
Then the line Lδd,α is minimally connected with respect to 8-neighborhood.

Proof. Assume, without loss of generality, that α ∈ [0, π/4]. The other cases

result from reflection on the four axes y = x, y = −x, y = 0 and x = 0. Then
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cosα ≥ sinα ≥ 0 and

Lδd,α = {(x, y) ∈ Z2 : d− 1

2
cosα ≤ y cosα− x sinα < d+

1

2
cosα}

= {(x, y) ∈ Z2 : d′ − 1

2
≤ y − cx < d′ +

1

2
}

with d′ = d/| cosα| and 0 ≤ c = tanα ≤ 1. For each x ∈ Z there is

one and only one y ∈ Z such that d′ + cx − 1
2
≤ y < d′ + cx + 1

2
which

is equivalent with (x, y) ∈ Lδd,α. Therefore we write y = y(x). Now let

(x0, y(x0)) ∈ Lδd,α. We show that |y(x0)−y(x0 +1)| ≤ 1. From d′+ cx0− 1
2
≤

y(x0) < d′ + cx0 + 1
2

and d′ + cx + c − 1
2
≤ y(x0 + 1) < d′ + cx + c + 1

2
one

deduces |y(x0)− y(x0 +1)| < c+1 ≤ 2 which implies |y(x0)− y(x0 +1)| ≤ 1.

Thus (x0 + 1, y(x0 + 1)) ∈ N8(x0, y(x0)). Now choose two points (x0, y(x0))

and (x1, y(x1)), such that without loss of generality x1 − x0 = n ∈ N. Then

the path (x0 +k, y(x0 +k))0≤k≤n is a connected path between the two points.

Consider (x2, y(x2)) ∈ Lδd,α. Then Lδd,α \ (x2, y(x2)) is not connected because

|x1 − x3| > 1 for all x1 < x2 and x3 > x2. �

δ = 1 δ = max{| sinα|, | cosα|}

Fig. 3.7: Different choices of δ for the discretization Lδ0,α of lines l0,α.

In the following we assume that δ = max{| sinα|/2, | cosα|/2} and write Ld,α
instead of Lδd,α.

Remark 3.2.5: The discrete set Ld,α is the set of points that are chosen by

the famous Bresenham algorithm, a fast algorithm used for drawing lines in

computer graphics, see Bresenham (1965) and Rosenfeld and Klette (2001).

The somewhat ambiguous choice of tubes for Lδd,α that are closed on the
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‘left’ boundary and open on the ‘right’ corresponds to choosing one of the

two possible directions when drawing a line with the Bresenham algorithm.

This just specified dependency of the direction is a property that, if unnoted,

may cause hard-to-find bugs in computer programs.

Remark 3.2.6: Assume that α ∈ [0, π/4). Then cosα > sinα > 0. Let

d ∈ R and the function g : R → R be defined by g(x) = d
cosα

+ x sinα
cosα

. A

short calculation shows that

Ld,α = {(x, y) ∈ Z2 : g(x)− 1

2
≤ y < g(x) +

1

2
} = {(x, dg(x)− 1

2
e) : x ∈ Z}.

Similar equations apply for the remaining angles α ∈ [π/4, 2π): For ‘flat’

lines (| sinα| ≤ | cosα|) the digital line is thus a set of points in Z2 within a

tube with ‘vertical diameter’ 1. For ‘steep’ lines (| sinα| ≥ | cosα|) it is a set

of points with ‘horizontal diameter’ 1.

Now we establish the link between digital lines and wedges.

Notation 3.2.7: Let M be a subset of Z2. The symbols VO(M) and VN(M)

will in the following denote the following subsets of Z2:

VH(M) =
⋃
n∈N0

{(x, y) ∈ Z2 : (x, y + n) ∈M},

VM(M) =
⋃
n∈N

{(x, y) ∈ Z2 : (x, y − n) ∈M, (x, y) 6∈M}.

Thus by VH(M) we denote the set of points vertically below or in M , and by

VM(M) we denote the points strictly above M .

Lemma 3.2.8: Let δ > 0, u ∈ R2 and α ∈ [0, π/2) ∪ (3π/2, 2π) be given.

Let a wedge division Tu,α(r) = {Au,α(r), Bu,α(r)} of a rectangle r be given.

Then with

d = u2 cosα− u1 sinα− δ

the equalities Au,α(r) = r ∩ VH(Lδd,α) and Bu,α(r) = r ∩ VM(Lδd,α) hold.

Proof. We prove Au,α(r) = r ∩ VH(Lδd,α), the second equation can be shown

analogously. By assumption cosα > 0 and therefore

VH(Lδd,α) =
⋃
n∈N0

{(x, y) ∈ Z2 : d− δ < (y + n) cosα− x sinα ≤ d+ δ}
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= {(x, y) ∈ Z2 : ∃n ∈ N : d− δ < (y + n) cosα− x sinα ≤ d+ δ}
= {(x, y) ∈ Z2 : y cosα− x sinα ≤ u2 cosα− u1 sinα}
= {(x, y) ∈ Z2 : (y − u2) cosα ≤ (x− u1) sinα}.

Thus VH(Lδd,α) ∩ r = Au,α(r). �

Remark 3.2.9: The previous lemma is very useful for algorithms. It implies

that for each wedge division Tu,α of a rectangle there is a discrete line Ld,α

inducing the division. Moreover, if α is chosen such that cosα > 0, the two

parts of a wedge division can be determined by taking points on or below a

specified digital line and above it. If cosα < 0, then the same is true but

the points on the line are then affiliated to the upper part of the division.

Because a vertical translation of the digital line by +1 makes these points

belong to the lower part, the assumption cosα ≥ 0 is no restriction with

respect to the set of wedge divisions generated by the lines Lδd,α, d ∈ R, see

Figure 3.8.

Fig. 3.8: Wedges generated by the line ld,α and the line ld,α+π in opposite direction.

For algorithms it is useful to have a partition of the discrete set S into disjoint

digital lines with the same angle α. This can be achieved with the following

definition of lines with angle α and δ > 0:

Lδδ·d,α =

{(
x

y

)
∈ Z2 : δ · (d− 1

2
) ≤

〈(
x

y

)
,

(
− sinα

cosα

)〉
< δ · (d+

1

2
)

}
.

With δ(α) := max{| sinα|/2, | cosα|/2} we define L̄n,α := L
δ(α)
δ(α)n,α, n ∈ Z.

Lemma 3.2.10: The lines L̄n,α, n ∈ Z, fulfill the following conditions:

(1)
⋃
n∈Z L̄n,α = Z

2 for each α ∈ [0, 2π),

(2) L̄n,α ∩ L̄m,α = ∅ for n,m ∈ Z with n 6= m,
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(3) L̄n,α is minimally connected with respect to 8-neighborhood for all n ∈
N and

(4) L̄n,α =

L̄0,α + ( n0 ) if | cosα| ≥ | sinα|

L̄0,α + ( 0
n ) if | cosα| ≤ | sinα|

for all n ∈ N.

Remark 3.2.11: The conditions in Lemma 3.2.10 have the following implica-

tions: For fixed α ∈ [0, 2π) and a rectangle S ⊂ Z2, the set {Ln,α∩S, n ∈ Z}
is a disjoint division of S into 8-connected lines of the same direction. The

key feature of this division is that, for fixed α, each point in S belongs to

exactly one digital line. This feature will be crucial for the fast integration

algorithm introduced in Section 3.3.

For some α ∈ [0, 2π) the set {Ln,α, n ∈ Z} is a strict subset of the set of all

digital lines with angle α. We will consider only the digital lines Ln,α, n ∈ N.

This will be the first kind of restriction announced in Remark 3.2.2 that we

impose on the set of wedge divisions of rectangles in S.

Proof of Lemma 3.2.10. Conditions (1) and (2) are immediate from the

definition of L̄n,α. Condition (3) is true by Lemma 3.2.4. We prove condition

(4): if | cosα| ≥ | sinα| then

L̄n,α =

{
{(x, y) : −1

2
≤ (y − n)− x tanα < 1

2
} if cosα > 0,

{(x, y) : −1
2
< (y + n)− x tanα ≤ 1

2
} otherwise

=

{
{(x, y + n) : −1

2
≤ y − x tanα < 1

2
} if cosα > 0,

{(x, y + n) : −1
2
< y − x tanα ≤ 1

2
} otherwise

= L̄0,α +

(
0

n

)
.

The case | cosα| ≤ | sinα| can be proved analogously. �

Lemma 3.2.12: For a pair of points s, t ∈ Z
2, s 6= t, there is an angle

α ∈ [0, 2π) and a number n ∈ Z such that s, t ∈ L̄n,α.

Proof. Assume, without loss of generality, that 0 < t2 − s2 < t1 − s1. The

other cases result from reflection on the four axes y = x, y = −x, y = 0 and
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x = 0. Then there is some angle α ∈ [0, π/4) and a value d ∈ R such that

for the line

g : R→ R, g(x) =
d

cosα
+ x

sinα

cosα

the following is true: g(s1) = s2 and g(t1) = t2. By Remark 3.2.6 it holds

that Lδd,α = {(x, y) ∈ Z2 : g(x) − 1
2
≤ y < g(x) + 1

2
}. A vertical translation

of the line g by −1
2
≤ v < 1

2
results in s, t ∈ Ld+v·cosα,α. Choose v ∈ [−1

2
, 1

2
)

such that d
cosα

+ v ∈ Z. �

3.2.3 Dichotomies

As there are only finitely many partitions of a finite set S, there are also only

finitely many wedge partitions of S. A continuous line specified by d ∈ R and

α ∈ [0, 2π) induces one and only one partition. In the previous paragraph we

showed that for each wedge partition generated by a line in R2 there is also

one discrete line inducing this partition. In this subsection we will show that

to each wedge division of S corresponds exactly one pair of points in S. We

will utilize this to give an estimate of the number of wedge divisions of S,

which is important for the considerations regarding consistency in Chapter

5.

Koplowitz et al. (1990) have already proved that the number of wedge di-

visions of a n × n grid is given by 3n4/π2 + O(n3 log n). In Rosenfeld and

Klette (2001) a similar result is stated for a m×n grid, m ≥ n: the number of

partitions can be estimated by 3/π2m2n2 +O(m2n log n) +O(mn2 log log n).

They have also developed the correspondence of wedge divisions and pair of

points. Their arguments are abstract and do not give a deep insight into

details of the discrete geometrical problem. Our constructive derivation will

reveal some more structure, and will even yield an algorithm to determine

the unique pair of points assigned to the dichotomy.

We start with some notation and a definition.

Notation 3.2.13: Let two points a, b ∈ R2 be given. With ( xy )⊥ := ( −yx ),

x, y ∈ R, we define the following function

dab : S → R,

s 7→
〈
(s− a), (b− a)⊥

〉
.
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The function dab measures the signed, weighted distance of points s ∈ R2 to

the line through a and b. For dab the following holds: dab(s) > 0 if s is on the

‘left’ of
−→
ab, dab(s) = 0 if s is on the line, i.e. there is some λ ∈ R such that

s = a+ λ(b− a), and dab(s) < 0 if s is on the ‘right’ of
−→
ab, see Figure 3.9.

From now on we refer to the case dab(s) > 0 as ‘strictly on the left of
−→
ab’ and

to dab(s) ≤ 0 as ‘on the right of
−→
ab’.

Note that dab = −dba and dab(s) = dsa(b) = dsb(a) and dab(a) = dab(b) = 0.

Fig. 3.9: The signed distance function dab from Notation 3.2.13.

This definition of a dichotomy is a slightly modified version of that of Ko-

plowitz et al. (1990).

Definition 3.2.14 (Dichotomy, Linear Dichotomy, Adjacent Points):

A Dichotomy D on a set S is a mapping that assigns each of the points

to one of the two values 0 or 1, D : S → {0, 1}. A dichotomy D is called

linear, if there are points a, b ∈ R2 such that

D(s) = Dab(s) :=

0 if dab(s) ≤ 0,

1 if dab(s) > 0,

for all s ∈ S. A dichotomy D is called nontrivial, if D−1(1) 6= S and

D−1(1) 6= ∅. Two points p, q ∈ S, p 6= q, are called adjacent with respect to

S, if {λp+ (1− λ)q, λ ∈ (0, 1)} ∩ S = ∅.

Obviously, a dichotomy is linear if it can be achieved by a straight line through

some a, b ∈ R2, and two points are adjacent with respect to S if on the line

joining them there is no other point of S. Assume Dab is a linear dichotomy

of a rectangle r. Then the set {D−1
ab (1), D−1

ab (0)} is a wedge division of r.
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Thus linear dichotomies on some rectangle r correspond to wedge divisions

of r.

Before we state the main result about the number of nontrivial linear di-

chotomies, we need some preparation:

Lemma 3.2.15: Consider the points a, b, p, q ∈ R
2 with dab(p) ≤ 0 and

dab(q) > 0.

1. Let Q ∈ R2 such that dpq(Q) > 0 and dab(Q) > 0. Then the following

inclusion holds for all s ∈ R2:

dab(s) > 0 ∧ dpq(s) ≤ 0 =⇒ dpQ(s) < 0.

2. Let additionally r ∈ R2 such that dab(r) ≤ 0 and dpq(r) > 0 and dpQ(r) <

0, then there is some R ∈ R2 with drQ(R) = 0, dpq(R) = 0 and dab(R) ≤ 0.

Remark 3.2.16: More vividly the previous lemma states the following, also

observe Figure 3.10: Let two pairs of points a, b and p, q in R2 be given with

q strictly on the left and p on the right of
−→
ab.

1. If a point Q is strictly on the left of both,
−→
ab and −→pq, then all points on

the right of −→pq and strictly on the left of
−→
ab are strictly on the right of

−→
pQ.

2. If moreover, a point r is given on the right of
−→
ab, strictly on the left of −→pq

and strictly on the right of
−→
pQ, then the line

−→
rQ intersects the line −→pq in

some point R on the right of
−→
ab.

Fig. 3.10: Illustration for Lemma 3.2.15, case 1 (left) and 2 (right).



80 3. Local Models

Proof of Lemma 3.2.15. Let l ∈ R2 such that dab(l) > 0 and dpq(l) ≤ 0.

We show that this implies dpQ(l) < 0. Because dpq(Q) > 0 and dpq(l) ≤ 0 by

continuity of L, there is some 0 < κ ≤ 1 with dpq(Q + κ(l − Q)) = 0. Thus

there is some λ ∈ R such thatQ+κ(l−Q) = p+λ(q−p). We show that λ ≥ 0:

By dab(p) ≤ 0 and dab(q) > 0 there is some λ0 ≥ 0 with dab(p+λ0(q−p)) = 0,

i.e. dab(p) = dab(−λ0(q−p)). From 0 < dab(Q+κ(l−Q)) = dab(p+λ(q−p)) =

dab((λ− λ0)(q − p)) = (λ− λ0)dab(q − p) we deduce that λ > λ0 ≥ 0.

Combined there are λ > 0 and κ ≥ 0 such that l−Q = 1
κ
(λ(q−p)+(p−Q)),

and thus

dpr(l) =
1

κ

〈
(λ(q − p) + (p−Q)), (Q− p)⊥

〉
=
λ

κ

〈
q − p, (Q− p)⊥

〉
+

1

κ

〈
p−Q, (Q− p)⊥

〉
= −λ

κ

〈
q − p, (Q− p)⊥

〉
= −λ

κ
dpq(Q) < 0,

and the first statement is proved.

Now we prove the second statement: Because dab(Q) > 0, dab(p) ≤ 0,

dab(r) ≤ 0 and dab(q) > 0 there are 0 ≤ λ0 < 1, 0 ≤ µ < 1 and 0 ≤ ν < 1 such

that dab(p+λ0(q−p)) = 0, dab(p+µ(Q−p)) = 0 and dab(r+ν(Q−r)) = 0. De-

fine r′ := r+ν(Q−r). As p+λ0(q−p) and p+µ(Q−p) and r′ are on the line
−→
ab,

there is some γ ∈ R such that r′ = p+λ0(p−q)+γ(µ(Q−p)−λ0(q−p))). First

we show that γ < 1: dpQ(r′) = dpQ(r + ν(Q− r)) = dpQ((1− ν)(r)) < 0 and

thus dpQ(r′) = dpQ(p+λ0(p−q)+γ(µ(Q−p)−λ0(q−p))) = dpQ(λ0q−γλ0q) =

(1 − γ)λ0dpQ(q) < 0 and because dpQ(q) > 0 thus γ < 1. We compute

dpq(r
′−Q) = dpq(p−Q+λ0(p−q)+γ(µ(Q−p)−λ0(q−p))) = (γµ−1)dpq(Q) <

0. From that and dpq(r
′) > 0 it is immediate that there is some ϑ > 0 such

that dpq(r
′ + ϑ(r′ − Q)) = 0. With dab(r

′ + ϑ(r′ − Q)) = −ϑdab(Q) < 0 the

proof is complete. �

Now we are ready to state and prove the central result of this subsection:

Theorem 3.2.17: The set of nontrivial linear dichotomies of a finite set S ⊂
R

2 is one to one with the set of adjacent pairs of S.

Proof. Let p, q be a pair of adjacent points. The mapping D(p, q) defined

by

D(p, q)(s) :=

{
0 if dpq(s) < 0 or s ∈ {p− λ(q − p), λ ≥ 0},
1 if dpq(s) > 0 or s ∈ {q + λ(q − p), λ ≥ 0},
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assigns each s in S strictly to the right of −→pq the value 0, while points strictly

to the left of −→pq are assigned the value 1. If s is on the line, then it gets 1 if

it is on the q side and 0 if it is on the p side, see Figure 3.11.

Fig. 3.11: Dichotomy induced by two points p and q.

We show that {D(p, q) : p, q ∈ S, p, q adjacent} is isomorphic to the set of

dichotomies of S, i.e. D(·, ·) is injective and onto. First we prove that D is

injective.

Assume that D(p, q) = D(r, s). Because the relevant expressions are invariant

under coordinate transformation, it is sufficient to consider r = ( r1r2 ) = ( 0
0 )

and s = ( s1s2 ) = ( a0 ), a > 0. A short calculation yields

D(r, s)(t) =

{
0 if t2 < 0 or (t2 = 0 ∧ t1 ≤ 0),

1 if t2 > 0 or (t2 = 0 ∧ t1 ≥ a).
(3.7)

The equations D(r, s)(p) = D(p, q)(p) = 0, D(r, s)(q) = D(p, q)(q) = 1,

D(p, q)(r) = D(r, s)(r) = 0 and D(p, q)(s) = D(r, s)(s) = 1 lead to the

following conditions:

p2 > 0 ∨ (p2 = 0 ∧ p1 ≥ a) =⇒ p2 ≥ 0,

q2 < 0 ∨ (q2 = 0 ∧ q1 ≤ 0) =⇒ q2 ≤ 0,

p1q2 − p2q1 > 0 ∨ r ∈ p−R+(q − p) =⇒ p1q2 − p2q1 ≥ 0,

p1q2 − p2q1 < a(q2 − p2) ∨ s ∈ q +R+(q − p) =⇒ p1q2 − p2q1 ≤ a(q2 − p2).

From the last two conditions we get q2 ≥ p2, that together with the first two

conditions yields p2 = q2 = 0 and therefore p1 ≤ 0, q1 ≥ a. From the second

part of the last two conditions we get p1 = 0 and q1 = a. Therefore p = r

and q = s and thus the injectivity has been proved.
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Now we prove that D is onto by induction over a sequence (Si)i=0,...,|S−2|

of increasing subsets of S. Let, as in Definition 3.2.14, a nontrivial linear

dichotomy Dab induced by a line through a ∈ R2 and b ∈ R2 be given. There

is a subset S0 := {s1, s2} ⊂ S with Dab(s1) = 0 and Dab(s2) = 1. On S0 the

dichotomy D(s1, s2) coincides with Dab.

Assume that for a strict subset Sk of S there are points p and q inducing

the dichotomy Dab over Sk, i.e. D(p, q)|Sk
= Dab|Sk

. Now let another point

Q ∈ S \ Sk be given such that, without loss of generality, Dab(Q) = 0, then

three cases are possible: Either D(p, q)(Q) = 0, or D(p, q)(Q) is undefined,

or D(p, q)(Q) = 1. The cases are treated separately:

If D(p, q)(Q) = 0, then already D(p, q)|Sk+1
= Dab|Sk+1

, i.e. p and q induce

the dichotomy D over Sk+1 := Sk ∪ {Q}.
If D(p, q)(Q) is undefined, then Q is on the line between p and q, i.e. there

is some 0 < λ < 1 such that Q = p+ λ(p− q). Then short calculations show

that dpQ ≶ 0 ⇔ dpq ≶ 0 , {q + λ(q − p), λ ≥ 0} ⊂ {Q + µ(Q − p), µ ≥ 0}
and {p− λ(q− p), λ ≥ 0} ⊂ {p− µ(Q− p), µ ≥ 0} and thus D(p,Q) has the

desired property D(p,Q)|Sk+1
= Dab|Sk+1

.

If D(p, q)(Q) = 1, then, because dab(Q) > 0 and dpq(Q) > 0, we can apply

Lemma 3.2.15, and by the finiteness of Sk there is some P ∈ Sk with dpq(P ) <

0 such that D(P,Q)|Sk+1
= Dab|Sk+1

. This can be seen as follows: by Lemma

3.2.15 {s ∈ Sk : dpq(s) ≤ 0} ⊂ {s ∈ Sk : dP,Q(s) ≤ 0} for all points P such

that dab(Q) ≤ 0, dpq(Q) > 0 and dpQ(P ) ≤ 0. Now applying the first part of

lemma 3.2.15 to P0 = p, we can successively choose P1, P2, . . . , Pn until there

is no point s ∈ S such that dab(Q) ≤ 0, dpq(s) > 0 and dpQ(Pn) ≤ 0.

�

A consequence of Theorem 3.2.17 is the following raw estimate of the number

of linear dichotomies.

Corollary 3.2.18: The number of linear dichotomies of a grid with n points

is bounded from above by n(n − 1). The number of digital lines in the grid

is bounded from above by 1
2
n(n− 1).

Proof. Since by Theorem 3.2.17 the number of linear dichotomies of a grid

S is given by the number of adjacent pairs p, q ∈ S, the result is immediate. �

Remark 3.2.19: For a better estimate, the number of adjacent pairs needs
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to be estimated for which some number theory is required, compare with

Koplowitz et al. (1990) and Acketa and Žunić (1991).

The constructive proof of Theorem 3.2.17 yields an algorithm to determine

the unique pair of points (p, q) in S inducing a nontrivial linear dichotomy

Dab, see Algorithm 3.1. The algorithm has a complexity of O(|S|2).

Fig. 3.12: Steps of Algorithm 3.1.
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Algorithm 3.1: Determining the Ordered Pair of Points Associated to

a Linear Dichotomy

input : set S = {si, 1 ≤ i ≤ n} ⊂ Z2 with n ∈ N elements, linear dichotomy Dab on S

output: pair p, q ∈ R2, if p = inval or q = inval then line out of bounds

begin

p← inval; q ← inval; i← 1;

while i ≤ n and (p = inval or q = inval) do

if Dab(si) = 0 then
p = si

else
q = si

end

i← i+ 1
end

if p = inval or q = inval then
return

end

for i = 1 to n do
d← Dab(si);

r⊥ ←
〈
si − a, (p− q)⊥

〉
; r ← 〈si − a, p− q〉;

if r⊥ > 0 or r⊥ = 0 and r > 0 then z ← 0;

else if r⊥ < 0 or r⊥ = 0 and r ≤ 0 then z ← 1;

else z ← 2;

end ;

if z 6= d then

if d = 1 then

for j = 1 to i do

if Dab(sj) > 0 then

r⊥ ←
〈
si − p, (q − p)⊥

〉
;r ← 〈si − p, (q − p)〉;

if r⊥ < 0 or r⊥ = 0 and r > 0 then
q ← sj

end

end

end

else

for j = 1 to i do

if Dab(sj) ≤ 0 then

r⊥ ←
〈
si − p, (q − p)⊥

〉
;r ← 〈si − p, (q − p)〉;

if r < 0 or r = 0 and 〈si − q, q − p〉 < 0 then
p← sj

end

end

end

end

end

end

end
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3.3 Efficient Regression over Polygonal

Domains

We continue with the least squares regression problem introduced in para-

graph 3.1.3. Consider a finite subset r of the discrete image domain S ⊂ Z2,

data z ∈ Rr and a space Fr of real valued functions over r defined as the

linear hull of functions ϕi : r → R, 1 ≤ i ≤ n, n ∈ N. In Subsection 3.1.3 we

showed that an efficient computation of the least squares regression given by

the minimization problem z
!−→ minfr∈Fr

∑
i∈r(fr(i) − zi)2 is feasible if the

‘moments’
∑

s∈r ϕi(s)ϕj(s) and
∑

s∈r zsϕj(s), 1 ≤ i, j ≤ n can be computed

rapidly, compare with Remark 3.1.12.

This section is devoted to the development of an efficient algorithm to in-

tegrate any function f : S → R over a polygonal domain r ⊂ S. Wedges

introduced in Subsection 3.2.1 are polygonal domains. Therefore, in addi-

tion to Algorithms 2.3 and 2.8, this algorithm will be another component

on the way to efficiently minimize the Potts functional over wedge decorated

hierarchical or dyadic partitions.

In Subsection 3.3.1 we start with continuous domain and present some results

concerning properties of Jordan curves. Then, utilizing these properties, we

comment on efficient integration over the inside of polygons on the continuous

domain. After that we carry the results forward to the discrete domain and

present an algorithm to efficiently sum up the values of discrete points located

in the inside of a polygon.

3.3.1 Jordan Curves

In this paragraph we consider curves in the plane R2. In the sequel, by the

symbol T we denote the unit circle, T := {(x, y) ∈ R2 : x2 + y2 = 1}. Recall

that a homeomorphism is a bijective and bicontinuous mapping. We need

some general results before we can focus on the integration problem.

The following theorem is taken from Dugundi (1974), p.362.

Theorem 3.3.1 (Jordan Curve Theorem): Let ϕ be a homeomorphism from

T to ϕ(T) ⊂ R2. Then R2\ϕ(T) has exactly two components, each of which

has ϕ(T) as its complete boundary.
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Fig. 3.13: A Jordan Curve

Theorem 3.3.1 leads to the following common definitions.

Definition 3.3.2 (Jordan Curve, Inside and Outside): Let ϕ be a homeo-

morphism from T to ϕ(T) ⊂ R2. The image ϕ(T) of T is a Jordan Curve

in R2. We call the bounded component of R2 \ ϕ(T) the inside and the

unbounded component the outside of ϕ(T).

We will denote the inside of ϕ(T) by I(ϕ) and the outside by O(ϕ). An

extension of the Jordan Curve Theorem is the affirmative solution of the

so-called Schoenflies Problem, which reads:

Theorem 3.3.3 (Schoenflies Theorem): Let ϕ : T → ϕ(T) ⊂ R
2 be a

homeomorphism. Then I(ϕ)∪ϕ(T) is homeomorphic to the two-dimensional

disc {(x, y) ∈ R2 : x2 + y2 ≤ 1}.

Proof. The statement follows immediately from the Riemann mapping the-

orem of complex analysis. See Dugundi (1974), p. 363 and Rudin (1987),

p. 283. �

Fig. 3.14: Illustration of the Schoenflies Property

Now we turn to intersections of two Jordan curves. First we give an exact

definition of what we mean by ‘crossing’, ‘succeeding crossing’ and ‘crossing

direction’. After that we will present important properties of succeeding

crossings of two Jordan curves. These are crucial for an accurate proof of the

integration formula.
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The circle T can be identified with the quotient space R/Z. Thus a homeo-

morphism ϕ : T → ϕ(T) ⊂ R2 can be identified with a 1-periodic function

from R to R2. By virtue of this identification we will in the sequel use real

values as parameters for homeomorphisms.

Lemma 3.3.4: Consider two homeomorphisms ϕ : T → ϕ(T) ⊂ R
2 and

ψ : T→ ψ(T) ⊂ R2. Assume that the set

Kϕ,ψ =
⋃
t∈T

{s ∈ T : ϕ(s) = ψ(t)}

is finite. Let M1 := I(ψ) and M2 := O(ψ), and for all 1 ≤ i, j ≤ 2 let the

sets

Kij
ϕ,ψ =

⋃
ε>0

{s ∈ Kϕ,ψ : ϕ((s− ε, s)) ⊂Mi ∧ ϕ((s, s+ ε)) ⊂Mj}

be given. Then the sets Kij
ϕ,ψ, 1 ≤ i, j ≤ 2 are disjoint and

⋃
1≤i,j≤2K

ij
ϕ,ψ =

Kϕ,ψ.

Proof. Because Kϕ,ψ is finite, for all s ∈ Kϕ,ψ there is some ε0 > 0 such

that (s− ε0, s)∩Kϕ,ψ = ∅. The set A := ϕ((s− ε0, s)) does thus not contain

a point on ψ(T). By continuity of ϕ, A is connected and therefore either

A ⊂ I(ψ) or A ⊂ O(ψ) holds. The same argument holds for an interval of

the form (s, s+ ε). �

s ∈ K11
ϕ,ψ s ∈ K12

ϕ,ψ s ∈ K21
ϕ,ψ s ∈ K22

ϕ,ψ

Fig. 3.15: Illustration of Lemma 3.3.4: all possible kinds of intersection of two
Jordan curves.

The previous Lemma justifies the following

Notation 3.3.5: With the assumptions of Lemma 3.3.4 we define the func-

tion Nϕ,ψ : T→ {−1, 0, 1} by

Nϕ,ψ(s) =


+1 if s ∈ K21

ϕ,ψ, (‘enter’)

−1 if s ∈ K12
ϕ,ψ, (‘leave’)

0 otherwise.
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The function Nϕ,ψ admits the following interpretation. At positions s ∈ T
with Nϕ,ψ(s) = 0 the Jordan curve ϕ(T) does not leave the inside or outside

of ψ(T). The curves ϕ(T) and ψ(T) may at most be in contact in s. If

Nϕ,ψ(s) = +1, then the curve ϕ(T) crosses ψ(T) and enters its inside. On

points s with Nϕ,ψ(s) = +1 the curve ϕ(T) crosses ψ(T) and leaves the inside

of ψ(T).

We call points s ∈ T with Nϕ,ψ(s) 6= 0 crossings. The following lemma

states that each crossing of ϕ(T) with respect to ψ(T) is a crossing of ψ(T)

with respect to ϕ(T).

Lemma 3.3.6: Consider two homeomorphisms ϕ : T → ϕ(T) ⊂ R
2 and

ψ : T → ψ(T) ⊂ R2 with |ϕ(T) ∩ ψ(T)| < ∞. Let s, t ∈ T be such that

ϕ(s) = ψ(t) and Nϕ,ψ(s) 6= 0. Then Nψ,ϕ(t) 6= 0.

Proof. We show that the following scenario is impossible: Assume s, t ∈ T
and δ, ε > 0 such that ϕ((s−ε, s)) ∈ I(ψ), ϕ((s, s+ε)) ∈ O(ψ), ϕ(s) = ψ(t),

ψ((t− δ, t)) ∈ O(ϕ) and ψ((t, t+ δ)) ∈ O(ϕ).

Fig. 3.16: Impossible scenario: ϕ(T) crosses ψ(T) but ψ(T) does not cross ϕ(T).

By continuity of ϕ and ψ there is some (connected) neighborhood U of

ϕ(s) = ψ(t), such that ψ((s− ε, s+ ε)) ∪ ϕ((t− δ, t+ δ)) ⊂ U . By Theorem

3.3.3 there is a homeomorphism Ψ : {x ∈ R2 : ‖x‖ ≤ 1} → ϕ(T) ∪ I(ϕ).

Let t′ := Ψ−1(ψ(t)), then by continuity of Ψ a ball B around t ∈ S1 can be

chosen such that Ψ({x ∈ B : ‖x‖ ≤ 1}) =: U ′ ⊂ U . Moreover, U ′∩O(ϕ) 6= ∅,
U ′ ∩ I(ϕ) 6= ∅ and U ′ ⊂ O(ϕ) and U ′ is connected, that is U ′ contains points

of ϕ(T), i.e. U contains points of ψ(T) ∩ I(ϕ), which is a contradiction to

the assumptions. The case ϕ((s− ε, s)) ∈ O(ψ) and ϕ((s, s+ ε)) ∈ I(ψ) can

be treated analogously. �
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Before we can state the main theorem of this subsection we need some more

preparation:

Lemma 3.3.7: Consider two homeomorphisms ϕ : T → ϕ(T) ⊂ R
2 and

ψ : T → ψ(T) ⊂ R2 and values s1, s2, t1, t2 ∈ R, s1 < s2 and t1 < t2 such

that ϕ(s1) = ψ(t1), ϕ(s2) = ψ(t2) and ϕ((s1, s2)) ∩ ψ((t1, t2)) = ∅. Then

ϕ([s1, s2)) ∪ ψ((t1, t2]) is a Jordan curve.

Fig. 3.17: Composition of Jordan curves

Proof. The mapping κ : [0, 1)→ R
2 defined by

κ(z) =

{
ϕ((1− 2z) · s1 + 2z · s2) if 0 ≤ z < 1

2
,

ψ((2− 2z) · t1 + (2z − 1) · t2) if 1
2
≤ z < 1,

is bijective and bicontinuous on [0, 1/2) and [1/2, 1) since ϕ and ψ are home-

omorphisms. Because ϕ(s1) = ψ(t1) and ϕ(s2) = ψ(t2), the left and right

limits of κ on 1/2 and 0 ∼= 1 coincide. As κ((0, 1/2)) ∩ κ((1/2, 1)) = ∅, the

same argument holds for the (existing) inverse of κ. The mapping κ can thus

be identified with a homeomorphism from T to R2, shortly κ : T → R
2.

Thus κ(T) is a Jordan curve. �

Lemma 3.3.8: Consider two homeomorphisms ϕ : T→ ϕ(T) ⊂ R2 and ψ :

T→ ψ(T) ⊂ R2 with |ϕ(T)∩ψ(T)| <∞. Let s ∈ T such that ϕ(s) ∈ ψ(T)

and Nϕ,ψ(s) = 0. Then there is a real value ε > 0 and a homeomorphism

ϕ′ : T→ ϕ(T) ⊂ R2 such that ϕ′(u) = ϕ(u) for all u ∈ T \ (s− ε, s+ ε) and

ϕ′((s− ε, s+ ε)) ∩ ψ(T) = ∅.
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Fig. 3.18: Removal of a non crossing intersection

Proof. Let t ∈ T such that ϕ(s) = ψ(t). By Lemma 3.3.6 there is some ε > 0

such that ϕ((s−ε, s)) and ϕ((s, s+ε)) are subsets of the same connected com-

ponent of ψ, and ψ((t−ε, t)) and ψ((t, t+ε)) are subsets of the same connected

component of ϕ. Moreover, as ϕ(T) and ψ(T) are not self-intersecting, there

is some δ > 0 such that for the ball U = {z ∈ R2 : ‖z−ϕ(t)‖ ≤ δ} the follow-

ing holds: ϕ(T)∩U ⊂ ϕ((s− ε, s+ ε)) and ψ(T)∩U ⊂ ψ((t− ε, t+ ε)). The

boundary ∂U of U is a circle and thus a Jordan curve. There are 0 < ε1, ε2 < ε

such that ϕ(s− ε1) ∈ ∂U and ϕ(s+ ε2) ∈ ∂U . By intersection with ϕ(T) the

circle ∂U is divided into two connected parts. The part ∂U1 of ∂U that is not

in the same connected component of ϕ(T) as ψ((t−ε, t)) and ψ((t, t+ε)) does

not intersect ϕ(T). Therefore we can apply Lemma 3.3.7, and for a suitable

parameterization ϕ′ of the Jordan curve ∂U1 ∪ϕ(T \ (s− ε1, s+ ε2)) it holds

that ϕ′(u) = ϕ(u) for all u ∈ T\(s−ε, s+ε) and ϕ′((s−ε, s+ε))∩ψ(T) = ∅. �

Now we state the main theorem of this subsection:

Theorem 3.3.9: Consider two homeomorphisms ϕ : T → ϕ(T) ⊂ R2 and

ψ : T → ψ(T) ⊂ R2 with |ϕ(T) ∩ ψ(T)| < ∞. Let s1, s2, t1, t2 ∈ R such

that s1 < s2, ϕ(s1) = ψ(t1), ϕ(s2) = ψ(t2), Nϕ,ψ(s1) 6= 0, Nϕ,ψ(s2) 6= 0 and

Nϕ,ψ(s) = 0 for all s1 < s < s2. Then

(a) Nϕ,ψ(s1) = −Nϕ,ψ(s2) ∈ {−1, 1},

(b) Nψ,ϕ(t1) = −Nψ,ϕ(t2) ∈ {−1, 1}.

Remark 3.3.10: Theorem 3.3.9 permits the following interpretation: if two

Jordan curves defined by the homeomorphisms ϕ and ψ have finitely many

intersections, then ‘enter’ and ‘leave’ the inside of ψ toggles on succeeding

crossings on ϕ(T) and – less intuitively – the orientation of the curve ψ also

toggles on succeeding crossings on ϕ(T), see Figure 3.19.
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(a) (b)

Fig. 3.19: Illustration of Theorem 3.3.9

Proof of Theorem 3.3.9.

(a): Without loss of generality, let Nϕ,ψ(s1) = +1. Then there is some ε > 0

such that ϕ((s1, s1 + ε)) ⊂ I(ψ). By continuity of ϕ, the set ϕ((s1, s2)) is

connected and thus ϕ((s1, s2)) ⊂ I(ψ) and therefore Nϕ(s2) = −1.

(b): Now we show that succeeding crossings in ϕ have converse directions on

ψ. Because on ϕ((s1, s2)) there are only finitely many (non-crossing) inter-

sections with ψ(T), by Lemma 3.3.8 there is a homeomorphism ϕ′ such that

ϕ′((s1, s2)) ∩ ψ(T) = ∅, and ϕ′ coincides with ϕ up to small neighborhoods

of the intersection points ϕ((s1, s2)) ∩ ψ(T). The mapping κ : [0, 1) → R
2

defined by

κ(z) =

{
ϕ′((1− 2z) · s1 + 2z · s2) if 0 ≤ s < 1

2
,

ψ((2− 2z) · t1 + (2z − 1) · t2) if 1
2
≤ s < 1,

is a homeomorphism from T to κ(T) ⊂ R2, compare Lemma 3.3.7. There is

some ε > 0 such that ϕ′([s1 − ε, s1 + ε])∩ ψ(T) = ϕ′(s1) and ϕ′([s2 − ε, s2 +

ε]) ∩ ψ(T) = ϕ′(s2). Now let a = s1 − ε and b = s2 + ε, a′ = s1 + ε and

b′ = s2 − ε.

Fig. 3.20: The Jordan curve κ (red, fat)

If a and b are in the same connected component with respect to the Jordan

curve κ(T), the continuous path between a and b on ϕ′(T \ [s1, s2]) = ϕ(T \
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[s1, s2]) has by (a) at most an even number of crossings with κ(T). Because

ϕ′ is not self intersecting, these crossings must be on ψ((t1, t2)) and, as there

is an even number of such crossings, we have Nψ(t1) = −Nψ(t2).

In the remainder of the proof we show that, if a and b are in the same con-

nected component with respect to ψ, then a and b are in the same connected

component with respect to κ. By assumption ψ(T) does not cross κ(T) and

thus ψ(T)∩O(κ) = ∅ or ψ(T)∩ I(κ) = ∅. Therefore only the following cases

have to be treated.

1. O(κ) ⊂ I(ψ): This case is impossible since I(ψ) is bounded while O(κ)

is not.

2. O(κ) ⊂ O(ψ) =⇒ I(ψ) ⊂ I(κ): If a, b ∈ I(ψ) then a, b ∈ I(κ). If

a, b ∈ O(ψ) then a′, b′ ∈ I(ψ) and therefore a′, b′ ∈ I(κ) which is

impossible since a′, b′ ∈ κ(T).

3. I(κ) ⊂ I(ψ) =⇒ O(ψ) ⊂ O(κ): If a, b ∈ O(ψ) then a, b ∈ O(κ). If

a, b ∈ I(ψ) then a′, b′ ∈ O(ψ) and therefore a′, b′ ∈ O(κ) which is

impossible since a′, b′ ∈ κ(T).

4. I(κ) ⊂ O(ψ) =⇒ I(ψ) ⊂ O(κ): If a, b ∈ I(ψ) then a, b ∈ O(κ). If

a, b ∈ O(ψ) then a′, b′ ∈ I(ψ) and therefore a′, b′ ∈ O(κ) which is

impossible since a′, b′ ∈ κ(T).

The points a and b are thus in the same component of κ which completes the

proof. �

Now we apply the statement of the previous theorem to the case when a

vertical line intersects a Jordan curve. Consider a homeomorphism ϕ : T→
ϕ(T) ⊂ R

2. For points s ∈ R2 by s(1) and s(2) we denote the horizontal

and vertical component, respectively. Let the horizontal direction function

dirϕ : T→ {−1, 0, 1} be defined as

dirϕ(s) :=


+1 if ∃ ε > 0 : ϕ(s− δ)(1) < ϕ(s)(1) < ϕ(s+ δ)(1) ∀ 0 < δ < ε,

−1 if ∃ ε > 0 : ϕ(s− δ)(1) > ϕ(s)(1) > ϕ(s+ δ)(1) ∀ 0 < δ < ε,

0 otherwise.

We will use the following results to determine pieces on a vertical line that

are in the inside of the Jordan curve.
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Corollary 3.3.11: Let a homeomorphism ϕ : T → ϕ(T) ⊂ R
2 and a real

value l ∈ R be given. Assume the set L = {s ∈ T : ϕ(s)(1) = l} is finite. Let

(si)1≤i≤|L| such that L =
⋃|L|
i=1 si and s

(2)
i > s

(2)
i+1 for all 1 ≤ i < |L|.

Then dir(si) = −dir(si+1) for all 1 ≤ i < |L|. Moreover {(l, y) : y ∈ R} ∩
I(ϕ) = {{l} × (s

(2)
i+1, s

(2)
i ) : dir(si) = dir(s1), 1 ≤ i < |L|}.

Fig. 3.21: Jordan curve intersecting a vertical line.

Proof. Because ϕ(T)∪I(ϕ) is bounded, there are points b, t, r ∈ R such that

t > ϕ(s)(2), b < ϕ(s)(2) and r > ϕ(s)(1) for all s ∈ T. The rectangle with

vertices (l, b), (l, t), (r, t), (r, b) is a Jordan curve and intersects the curve

ϕ(T) only on the line between (l, b) and (l, t). The inside of the rectangle is

on the right of this line. Apply Theorem 3.3.9. Because the points vertically

above (l, s1) are in the unbounded component of ϕ, the second statement is

an immediate consequence of the former. �

Now we show that all vertical lines intersecting a Jordan curve have the same

directions on the curve indicating whether a vertical line enters or leaves the

inside of the Jordan curve.

Corollary 3.3.12: Let a homeomorphism ϕ : T → ϕ(T) ⊂ R
2 and real

values l, r ∈ R, l < r, be given. Assume the sets L = {s ∈ T : ϕ(s)(1) = l}
and R = {s ∈ T : ϕ(s)(1) = r} are finite. Let s1 ∈ L such that s

(2)
1 > s(2) for

all s ∈ L \ {s1} and t1 ∈ R such that t
(2)
1 > t(2) for all t ∈ R \ {t1}. Then

dir(s1) = dir(t1).
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Fig. 3.22: Two vertical lines intersecting a Jordan curve.

Proof. As in the proof of Corollary 3.3.11, we choose b, t ∈ R such that

b < ϕ(2)(s) < t for all s ∈ T. The rectangle with vertices (l, b), (l, t), (r, t),

(r, b) is a Jordan curve and intersects the curve ϕ(T) only on the lines be-

tween (l, b) and (l, t) and between (r, b) and (r, t). The intersection points

ϕ(s1) and ϕ(t1) are neighbored on the rectangle. Because the inside of the

rectangle is on the right of (l, b)− (l, t) and on the left of (r, b)− (r, t), then

applying Theorem 3.3.9 yields the result. �

3.3.2 Polygons on the Lattice

In this subsection we apply the results of the previous paragraph to polygons

on the lattice. Recall that for a real number x the symbol bxc denotes the

largest integer less than or equal to x, and dxe is the smallest integer greater

than or equal to x.

Definition 3.3.13 (Polygon, Simple Polygon): Let n ∈ N and a family of

points pi ∈ R2, 1 ≤ i ≤ n, be given. Additionally define pn+1 := p1. Consider

for all 1 ≤ i ≤ n the functions

%i : [0, 1)→ R
2

t 7→ (1− t) · pi + t · pi+1.
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A polygon with vertices (pi)1≤i≤n is the image of the mapping

% : [0, 1)→ R
2

s 7→ %dn·se(n · s− bn · sc).

A polygon is called simple, if %(s) 6= %(t) for all s, t ∈ [0, 1) with s 6= t.

In the following we only consider simple polygons, and sometimes denote

both the mapping % and its image a polygon.

Remark 3.3.14 (Inner and outside of a Polygon): From the definition of

a simple polygon, it is immediate that its canonical parameterization % :

[0, 1) → %([0, 1)) ⊂ R
2 is bijective and bicontinuous, i.e. simple polygons

are Jordan curves. Therefore we can use the Jordan curve definition of the

inside and the outside for polygons, and again denote them by I(%) and O(%),

respectively.

Because a simple polygon is a Jordan curve, the results of the previous para-

graph can be immediately applied to simple polygons. For a straightforward

use for integration over the inside of the polygons we need some more prepa-

ration.

Consider the discrete image domain S = {1, . . . , N1}×{1, . . . , N2}, N1, N2 ∈
N and data z ∈ RS. Let n ∈ N and a polygon % with vertices pi and edges

%i, 1 ≤ i ≤ n, be given.

Notation 3.3.15: Similar to Notation 3.2.7 on page 74, we define the sub-

graphs of the sets %i((0, 1)), 1 ≤ i ≤ n, by

%O
i ((0, 1)) = {s ∈ S : s(1) = %

(1)
i (λ), s(2) < %

(2)
i (λ), λ ∈ (0, 1)},

%H
i ((0, 1)) = {s ∈ S : s(1) = %

(1)
i (λ), s(2) ≤ %

(2)
i (λ), λ ∈ (0, 1)},

and subgraphs of the points p ∈ R2 by

pO = {s ∈ S : s(1) = p(1), s(2) < p(2)},
pH = {s ∈ S : s(1) = p(1), s(2) ≤ p(2)}.

Let p0 := pn and pn+1 := p1 and z ∈ RS. For each 1 ≤ i ≤ n we define

Ȳi(%, z) :=



∑
s∈%O

i ((0,1))

zs if p
(1)
i < p

(1)
i+1,

−
∑

s∈%H
i ((0,1))

zs if p
(1)
i > p

(1)
i+1,

0 otherwise,
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and

Yi(%, z) :=



∑
s∈pO

i

zs if p
(1)
i−1 < p

(1)
i < p

(1)
i+1,

−
∑
s∈pH

i

zs if p
(1)
i−1 > p

(1)
i > p

(1)
i+1,

0 otherwise.

We are now ready to state the following

Theorem 3.3.16: Let n ∈ N and a simple polygon % with vertices pi, 1 ≤
i ≤ n, be given. Assume that p

(1)
1 < p

(1)
2 and that p

(2)
1 ≥ p

(2)
i for all 1 < i ≤ n.

Then ∑
s∈S∩I(%)

zs =
n∑
i=1

(
Yi(%) + Ȳi(%)

)
. (3.8)

Remark 3.3.17: Theorem 3.3.16 implies that summing data over the inside

of a polygon can be performed efficiently if the vertical sums Yi(%) and Ȳi(%)
can be computed rapidly, or if they are known from some preliminary cal-

culation. Values of edges with a left-right direction are getting added, while

edges with opposite direction have to be subtracted. The assumption that

p
(1)
1 < p

(1)
2 and p

(2)
1 ≥ p

(2)
i for all 1 < i ≤ n is not very restrictive. For each

polygon this can be achieved by a suitable permutation of the vertices. The

separate treatment of vertices and edges however is crucial. It is for example

wrong to consider half closed edges %i([0, 1)), 1 ≤ i ≤ n, and remove the

vertices in the formula in Theorem 3.3.16.

Fig. 3.23: Illustration:
∑

s∈S∩I(%) zs =
∑n

i=1 Yi(%) + Ȳi(%).

Proof of Theorem 3.3.16. The proof has the following structure: We

divide S into vertical lines on the integers. Then we apply Corollary 3.3.11

to determine the pieces of each line that is in the inside of %. We show

that summing up z on all such pieces on all vertical lines can be done by a

subtraction formula, and is equivalent with summing up over lines and points

as suggested.
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Fig. 3.24: Determining the inside of a polygon with vertical lines

Let for each x ∈ Z the crossings of the vertical line at horizontal position x

with % be given by ωx,i, 1 ≤ i ≤ nx such that ω
(2)
x,i > ω

(2)
x,i+1 for all 1 ≤ i < nx.

Consider Ωx := {ωx,i : 1 ≤ i ≤ nx} and Ω :=
⋃
x∈ZΩx. By assumption and

by Corollary 3.3.12 it holds that if nx > 0 then dir%(ωx,1) = +1. We apply

Corollary 3.3.11 and get

∑
s∈S∩I(%)

zs =
∑
x∈Z

nx/2∑
i=1

∑
u∈(ω

(2)
x,2i+1,ω

(2)
x,2i)

zx,u =
∑
x∈Z

nx/2∑
i=1

 ∑
u<ω

(2)
x,2i

zx,u −
∑

v≤ω(2)
x,2i+1

zx,v



=
∑
x∈Z

 ∑
ω∈Ωx:

dir%(ω)=+1

∑
u<ω(2)

zx,u −
∑
ω∈Ωx:

dir%(ω)=−1

∑
v≤ω(2)

zx,v


=

∑
ω∈Ω:

dir%(ω)=+1

∑
u<ω(2)

zx,u −
∑
ω∈Ω:

dir%(ω)=−1

∑
v≤ω(2)

zx,v.

Because for each ω ∈ Ω there is one 1 ≤ i ≤ n such that ω ∈ %i((0, 1)) or

ω = pi, the following holds:

{ω ∈ Ω : dir%(ω) = +1} ={s ∈ %i((0, 1)) : s(1) ∈ Z, pi < pi+1, 1 ≤ i ≤ n}

∪ {pi : p
(1)
i ∈ Z, pi−1 < pi < pi+1, 1 ≤ i ≤ n}.

An analogous result holds for {ω ∈ Ω : dir%(ω) = −1}. Therefore∑
s∈S∩I(%)

zs =
∑

1≤i≤n:

p
(1)
i <p

(1)
i+1

∑
s∈%O

i ((0,1))

zs −
∑

1≤i≤n:

p
(1)
i >p

(1)
i+1

∑
s∈%H

i ((0,1))

zs

+
∑

1≤i≤n:

p
(1)
i−1<p

(1)
i <p

(1)
i+1

∑
s∈pO

i

zs −
∑

1≤i≤n:

p
(1)
i−1>p

(1)
i >p

(1)
i+1

∑
s∈pH

i

zs

=
n∑
i=1

Yi(%) + Ȳi(%).



98 3. Local Models

The proof is complete. �

3.3.3 Efficient Integration over Polygonal Domain

The integration formula (3.8) in Theorem 3.3.16 can be applied to sum up

values on the lattice Z2 over the inside of polygons consisting of straight

lines in the plane R2. In this subsection we give a very efficient algorithm

to integrate values on the lattice over the inside of polygons. Throughout

this paragraph we consider the discrete image domain S := {1, . . . , N1} ×
{1, . . . , N2}, N1, N2 ∈ N, and data z ∈ RS. Additionally we make frequent

use of the symbols R = (0, N1 + 1) × (0, N2 + 1) and S ′ := {0, . . . , N1} ×
{0, . . . , N2}. Before we state the main theorem of this subsection, a weaker

result is given.

Notation 3.3.18: Recall the definitions S = {1, . . . , N1} × {1, . . . , N2} and

S ′ = {0, . . . , N1}× {0, . . . , N2}. Let f be some function from S to R. In the

sequel the symbol I(f) will stand for the array (Ip(f))p∈S′ given by

Ip(f) :=
∑

s∈pH∩S

f(s), p ∈ S ′.

Lemma 3.3.19: Let a function f ∈ RS be given. The array I(f) can be

computed with a time complexity of O(N1 ·N2).

Proof. I(f) can be computed with the recursive formula

I(x,y)(f) =

{
f((x, y)) + I(x,y−1)(f) if (x > 0) and (y > 0),

0 otherwise
, (x, y) ∈ S ′.

�

Recall the definition R = (0, N1 + 1)× (0, N2 + 1).

Lemma 3.3.20: Let a function f ∈ RS be given. Assume that I(f) has

already been computed. Then for each simple polygon % with n ∈ N vertices

pi ∈ R, 1 ≤ i ≤ n, the sum
∑

s∈I(%) f(s) can be computed with a time

complexity of O(
∑n

i=1 |p
(1)
i − p

(1)
i+1|) and a space complexity of O(1).
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Proof. Consider the following definitions:

%HM
i ((0, 1)) := {s ∈ S : s(1) = %

(1)
i (λ), %

(2)
i (λ)− 1 < s(2) ≤ %

(2)
i (λ), λ ∈ (0, 1)},

%ON
i ((0, 1)) := {s ∈ S : s(1) = %

(1)
i (λ), %

(2)
i (λ)− 1 ≤ s(2) < %

(2)
i (λ), λ ∈ (0, 1)}.

The sets %HM
i (0, 1) [%ON

i (0, 1)] are the sets of points vertically [strictly] be-

low %i(0, 1) with a maximal vertical distance less than [or equal] 1. By the

following observation

%H
i ((0, 1)) =

⋃
p∈%HM

i ((0,1))

pH, %O
i ((0, 1)) =

⋃
p∈%ON

i ((0,1))

pH,

and as %ON
i ((0, 1)) ⊂ S ′ and %HM

i ((0, 1)) ⊂ S ′, the values of Yi(%, f), 1 ≤ i ≤ n,

defined in Notation 3.3.15 and used in Theorem 3.3.16 can be computed with

the formula

Ȳi(%, f) =


∑

p∈%ON
i ((0,1)) Ip(f) if p

(1)
i < p

(1)
i+1,

−
∑

p∈%HM
i ((0,1)) Ip(f) if p

(1)
i > p

(1)
i+1,

0 otherwise .

Because |%ON
i | ≤ |p

(1)
i −p

(1)
i+1| and |%HM

i | ≤ |p
(1)
i −p

(1)
i+1|, Theorem 3.3.16 together

with this formula provides a scheme for summing up values in the inside of

a polygon % with a time complexity of O(
∑n

i=1 |p
(1)
i − p

(1)
i+1|) �

An analogous scheme can also be performed to compute the sum of points

in the inside including the boundary of %, see Figure 3.25.

Fig. 3.25: Inside (left) and inside including boundary (right) of a continuous poly-
gon using digital lines ‘below’ the polygon.

A summary of the two previous Lemmas reads:



100 3. Local Models

Corollary 3.3.21: Let a function f ∈ RS be given. After a computational

preprocessing with a time- and space-complexity of O(N1 ·N2) the following

is possible: For each simple polygon % with n ∈ N vertices pi ∈ R, 1 ≤
i ≤ n, the sum

∑
s∈I(%) f(s) can be computed with a time complexity of

O(
∑n

i=1 |p
(1)
i − p

(1)
i+1|) and a space complexity of O(1).

Notation 3.3.22: For α ∈ (−π, π) and k ∈ Z, the symbol gk,α will denote

the mapping

gk,α : R→ R,

x 7→ (k +
1

2
) max{1, | tanα|}+ x tanα.

Additionally, for each set M ⊂ R we define the subgraphs of gk,α(M) by

gH
k,α(M) = {(x, y) ∈ S : y ≤ gk,α(x), x ∈M},
gO
k,α(M) = {(x, y) ∈ S : y < gk,α(x), x ∈M}.

For each α ∈ (−π/2, π/2] and k ∈ Z the graph Gk,α ⊂ R2 is defined as

Gk,α =

{(k, y) : y ∈ R} if α = π,

{(x, gk,α(x)) : x ∈ R} if α 6= π.

For a finite set of angles ∆ ⊂ (−π/2, π/2], n ∈ N and R ⊂ R
2, let in

the following Λn(∆, R) denote the set of simple polygons with n vertices

p1, . . . , pn and pn+1 := p1 for which for all 1 ≤ i ≤ n there is some α ∈ ∆ and

k ∈ Z such that pi, pi+1 ∈ Gk,α. Additionally let Λ(∆, R) :=
⋃
k∈N Λk(∆, R).

The set Λn(∆, R) consists of all simple polygons with vertices in R that arise

from an intersection of lines with angles from the set ∆, where each line has

an offset of one half on the y-axis plus some integer on the y- or the x-axis,

if it is flat (| cosα| ≥ | sinα|) or steep (| sinα| ≥ | cosα|), respectively. An

example is displayed in Figure 3.26.
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Fig. 3.26: A polygon % ∈ Λ5({α1, . . . , α5}, R).

Before the necessary components for the main theorem are displayed, we

motivate the idea of the fast integration scheme with the following:

Remark 3.3.23: Let a function f ∈ RS, an angle α ∈ (−π/2, π/2) and a

number k ∈ Z be given . Recall the array I(f) = (Ip(f))p∈S′ containing the

vertical sums of values of f . Consider the array r = (rx)0≤x≤N1 with

rx =
∑

s∈S∩gH
k,α([0,x])

f(s), 0 ≤ x ≤ N1.

Recall that

bxc = max{y ∈ Z : y ≤ x}, bxc+ 1 = min{y ∈ Z : y > x},
dxe = min{y ∈ Z : y ≥ x}, dxe − 1 = max{y ∈ Z : y < x}.

The array (rx)0≤x≤N1 can be computed recursively for each 1 ≤ x ≤ N1 by

rx =


0 if x = 0,

rx−1 + I(x,bgk,α(x)c)(f) if gk,α(x) ∈ [0, N2 + 1),

rx−1 + I(x,N2)(f) if gk,α(x) ≥ N2 + 1,

rx−1 otherwise.

Now assume real values a, b ∈ (0, N1 +1) with a < b. Then the sum of values

of the array z in the subgraph gH
k,α((a, b)) can be computed with the following

formula ∑
s∈gH

k,α((a,b))

f(s) =
∑

s∈gH
k,α([0,b))

f(s)−
∑

s∈gH
k,α([0,a])

f(s).
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Because gH
k,α([0, b)) = gH

k,α([0, dbe− 1)) and gH
k,α([0, a]) = gH

k,α([0, bac)) ,and as

dbe − 1 ∈ [0, N1] and bac ∈ [0, N1], this can be written as∑
s∈gH

k,α((a,b))

f(s) = rdbe−1 − rbac.

For a single line the sum
∑

s∈gH
pq([0,x]) f(s) can thus be computed in O(1) if

the corresponding array r has been computed beforehand. See also Figure

3.27.

Fig. 3.27: Illustration of the summation trick
∑

s∈gH
k,α((a,b)) f(s) = rdbe−1 − rbac.

Yellow filled points correspond to the storage array r. The red filled

point corresponds to dbe − 1, the green one to bac.

Now we define the cumulative sum arrays for arbitrary angles α ∈ (−π/2, π/2):

Notation 3.3.24: Let α ∈ (−π/2, π/2) and f ∈ RS. For each k ∈ Z consider

the numbers

lk,α = min{x ∈ {1, . . . , N1} : gk,α(x) ∈ (0, N2 + 1)},
rk,α = max{x ∈ {1, . . . , N1} : gk,α(x) ∈ (0, N2 + 1)}.

In the sequel the arrays I(α)(f) = (I
(α)
s (f))s∈S and J (α)(f) = (J

(α)
s (f))s∈S

are defined as follows: For each k ∈ Z and x ∈ Z with lk,α ≤ x ≤ rk,α let

I
(α)
(x,bgk,α(x)c)(f) =

∑
s∈gH

k,α([lk,α,x])

f(s), J
(α)
(x,bgk,α(x)c)(f) =

∑
s∈gO

k,α([lk,α,x])

f(s).

Additionally let I(π/2)(f) = J (π/2)(f) = I(f).

Lemma 3.3.25: Let α ∈ (−π/2, π/2) and f ∈ RS. The arrays I(α)(f) and

J (α)(f) can be computed with a time complexity of O(|S|).
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Proof. The following recursive formulas apply for x ∈ Z with lk,α ≤ x ≤ rk,α.

We omit the parameter f .

I
(α)
(x,bgk,α(x)c) =

{
I(x,bgk,α(x)c) if x = lk,α,

I(x,bgk,α(x)c) + I
(α)
(x−1,bgk,α(x−1)c) otherwise,

J
(α)
(x,bgk,α(x)c) =

{
I(x,dgk,α(x)e−1) if x = lk,α,

I(x,dgk,α(x)e−1) + J
(α)
(x−1,bgk,α(x−1)c) otherwise.

Therefore traversing S in an appropriate way yields |S| operations to com-

pute I(α) and J (α). �

Lemma 3.3.26: Let ∆ ⊂ (−π/2, π/2] be finite, R = (0, N1 +1)× (0, N2 +1)

and f ∈ RS. Assume that for all α ∈ ∆ the cumulative sum arrays Iα(f) and

J (α)(f) have already been computed. Then for all n ∈ N and each polygon

% ∈ Λn(∆, R) the sum
∑

s∈I(%) zs can be computed with a time complexity of

O(n) and a space complexity of O(1).

Proof. We continue with the idea displayed in Remark 3.3.23. For each k ∈ Z
the line Gk,α is an upper boundary of the line L̄k,α defined in Subsection 3.2.2.

With δ′ = max{1, | tanα|} the formula

L̄k,α = {(x, y) ∈ Z2 : (k − 1

2
)δ′ < y − x tanα ≤ (k +

1

2
)δ′}

= {(x, y) ∈ Z2 : gk,α(x)− δ′ < y ≤ gk,α(x)}
⊇ {(x, y) ∈ Z2 : y = bgk,α(x)c}
= gHM

k,α(R)

implies by Lemma 3.2.10 that the sets gHM
g,α(R), k ∈ Z, are pairwise disjoint.

Therefore for each line number k the digital sets gHM
k,α(R)∩R are a good place

to store the information needed for fast computation of sums of f within

subgraphs of the corresponding line gk,α. We thus use the same summation

trick as in Remark 3.3.23, but use the corresponding values stored in the

arrays I(α)(f) = (I
(α)
s (f))s∈S′ and J (α)(f) = (J

(α)
s (f))s∈S′ .

Recall the definition

lk,α = min{x ∈ {1, . . . , N1} : gk,α(x) ∈ (0, N2 + 1)},
rk,α = max{x ∈ {1, . . . , N1} : gk,α(x) ∈ (0, N2 + 1)}.



104 3. Local Models

Let (x1, y1), (x2, y2) ∈ Gk,α ∩ R. Assume that x1 < x2. Then x1, x2 ∈
(lk,α − 1, rk,α + 1) and the following holds: Let X1 = bx1c, Y1 = bgk,α(X1)c,
X2 = dx2 − 1e and Y2 = bgk,α(X2)c. If X2 ≤ x1 then X2 = X1 and there

are no integers between x1 and x2. But if X2 > x1 then lk,α ≤ X2 ≤ rk,α
and therefore 0 ≤ Y2 ≤ N2. If lk,α ≤ X1 ≤ rk,α then 0 ≤ Y1 ≤ N2 and thus

X1 < lk,α if Y1 6∈ [0, N2]. Let Z%(a, b) :=
∑

s∈gO
k,α((a,b)) f(s) and Z ′%(a, b) :=∑

s∈gH
k,α((a,b)) f(s). Then

Z%(a, b) =


0 if X2 = X1,

I
(α)
(X2,X2)(f)− I(α)

(X1,Y1)(f) if X2 6= X1 and 0 ≤ Y1 ≤ N2,

I
(α)
(X2,Y2)(f) otherwise,

Z ′%(a, b) =


0 if X2 = X1,

J
(α)
(X2,X2)(f)− J (α)

(X1,Y1)(f) if X2 6= X1 and 0 ≤ Y1 ≤ N2,

J
(α)
(X2,Y2)(f) otherwise.

Let now a polygon % ∈ Λn(∆, R) be given. Assume that the corresponding

angles αi ∈ [−π/2, π/2), the line offsets ki ∈ Z, 1 ≤ i ≤ n and vertices

pi, 1 ≤ i ≤ n, pn+1 := p1, p0 := pn, are given such that pi ∈ gki,αi
and

pi+1 ∈ gki,αi
. Let xi := p

(1)
i for all 1 ≤ i ≤ n. Then with

Ȳi(%) =


Z%(xi, xi+1) if xi < xi+1,

−Z ′%(xi+1, xi) if xi > xi+1,

0 otherwise,

and

Yi(%) =


Ixi,bgki,αi

(xi)c if xi ∈ Z and xi−1 < xi < xi+1,

Ixi,dgki,αi
(xi)e−1 if xi ∈ Z and xi−1 > xi > xi+1,

0 otherwise,

by Theorem 3.3.16 the sum of values of z in the inside of % is given by

∑
s∈S∩I(%)

zs =
n∑
i=1

(
Yi(%) + Ȳi(%)

)
. (3.9)

Because the |∆| matrices Iα and Jα, α ∈ ∆, can be computed in O(N1 ·N2),

and because the computation of Yi and Ȳi can be done in O(1) for each

1 ≤ i ≤ n the lemma is proved. �
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Fig. 3.28: Illustration of the summation formula (3.9), black filled points (red
underneath) correspond to the ‘+’ part of Yi(%) and Ȳi(%) and white
points (green underneath) correspond to ‘-’.

The following Theorem is an immediate consequence of the previous two

lemmas and is the main result of this Section:

Theorem 3.3.27: Let ∆ ⊂ (−π/2, π/2] be finite, f ∈ RS and R = (0, N1 +

1)× (0, N2 + 1). After a computational preprocessing with time- and space-

complexity of O(N1 ·N2 · |∆|) the following is possible:

For all n ∈ N and each polygon % ∈ Λn(∆, R) the sum
∑

s∈I(%) f(s) can be

computed with a time complexity of O(n) and a spatial complexity of O(1).

The construction used in Remark 3.3.23 and the proof of Lemma 3.3.26

leads to an algorithm to determine the sum of values of some data z ∈ RS

in the inside of some polygon % ∈ Λn(∆, R). For simplicity of the displayed

algorithm, we include points on the upper boundaries of % and thus treat

them as if they were in the inside. Then it suffices to compute the arrays

I(α) for all α ∈ ∆ and the case differentiation in the formula for Yi and Ȳi is

easier to handle.

We first give a procedure to compute the matrices I and Iα for each α ∈ ∆

which will be used in the algorithm. In the following we will call these

matrices the cumulative sum arrays. As in subsection 2.1.3, we use some

abstract data types for the passing of parameters in the algorithms. Again

we make use of an abstract reference object Ref of generic type OBJECT

for accessing global data, such as the cumulative sum arrays, within different

procedures.
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Procedure VerticalSum(z ∈ RS, N1, N2 ∈ N, Ref: OBJECT)

input : data z ∈ RS , dimensions N1, N2 ∈ N of S

output: array I holding vertical sums of values of z, I and dimensions N1, N2 are stored in Ref

begin

New(I,N1 + 1, N2 + 1);

for x← 0 to N1 do
I(x,0) ← 0;

end

for y ← 1 to N2 do
I(0,y) ← 0;

for x← 1 to N1 do
I(x,y) ← z(x,y) + I(x,y−1);

end

end

Ref.I ← I; Ref.N1 ← N1; Ref.N2 ← N2;
end

Provided that the vertical sum array I has been computed with procedure

VerticalSum, the following procedure can be used to compute the arrays I(α)

and J (α) for a given angle α ∈ (−π/2, π/2). Note that the set K of numbers

k ∈ Z such thatGk,α intersects the rectangle [0, N1]×[0, N2] is given as follows

(for a detailed derivation compare Proof of Lemma 4.2.1). If sinα ≥ 0, then

K =

{
k ∈ Z :

−N1 sinα

max{cosα, sinα}
≤ (k +

1

2
) ≤ N2 cosα

max{cosα, sinα}

}
,

and if sinα < 0, then

K =

{
k ∈ Z : 0 ≤ (k +

1

2
) ≤ N2 cosα−N1 sinα

max{cosα, | sinα|}

}
.

Let now k be such that Gk,α intersects the rectangle [0, N1]× [0, N2]. Let δ =

max{| cosα|, | sinα|} Denote the set of numbers x ∈ Z such that Gk,α(x) ∈
[0, N1]× [0, N2] by Rk, then Rk = [0, N1] ∩ Z, if sinα = 0,

Rk =

{
x ∈ [0, N1] ∩ Z : −(k +

1

2
)
δ

sinα
≤ x ≤

N2 cosα− (k + 1
2
)δ

sinα

}
,

if sinα > 0, and

Rk =

{
x ∈ [0, N1] ∩ Z : −(k +

1

2
)
δ

sinα
≥ x ≥

N2 cosα− (k + 1
2
)δ

sinα

}
,

if sinα < 0.
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Procedure CumulativeSum(α ∈ (−π/2, π/2), Ref: OBJECT)

input : array I holding vertical sums of values, dimensions N1, N2, both in Ref

output: array I(α) stored in Ref

begin

I ← Ref.I; N1 ← Ref.N1; N2 ← Ref.N2;

New(I(α), N1 + 1, N2 + 1);

δ ← max{| sinα|, | cosα|};
if sinα ≥ 0 then

kmin ← d−N1 sin α
δ

− 1
2
e; kmax ← b−N2 cos α

δ
− 1

2
c;

(— run through all potentially intersecting lines —)

for k ← kmin to kmax do
xmin ← 0; xmax ← N1;

if sinα 6= 0 then

xmin ← max{xmin, d−(k + 1
2
) δ
sin α
e};

xmax ← min{xmax, bN2 cos α
sin α

− (k + 1
2
) δ
sin α
c}

end

s← 0;

(— run through all positions on the line and in the rect —)

for x← xmin to xmax do

y ← bgk,α(x)c; s← s+ Ix,y ; I
(α)
x,y ← s;

end

end

else

kmin ← 0; kmax ← bN2 cos α−N1 sin α
δ

− 1
2
c;

(— run through all potentially intersecting lines —)

for k ← kmin to kmax do

xmin ← max{0, dN2 cos α
sin α

− (k + 1
2
) δ
sin α
e};

xmax ← min{N1, b−(k + 1
2
) δ
sin α
c};

s← 0;

(— run through all positions on the line and in the rect —)

for x← xmin to xmax do

y ← bgk,α(x)c; s← s+ Ix,y ; I
(α)
x,y ← s;

end

end

end

Ref.I(α) ← I(α);
end

The following algorithm computes the sum of values of the array z in the

inside plus the upper boundary of a polygon % ∈ Λn(∆, R) provided that for

each α ∈ ∆ the array I(α) has been computed with the previous procedure.
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Algorithm 3.4: Determining the sum over the inside of a polygon

input : cumulative sum arrays I and Iα for each α ∈ ∆ in Ref, n ∈ N and polygon

% ∈ Λn(∆, R) specified by points pi ∈ R2, 1 ≤ i ≤ n
output: sum Z of values of array corresponding to I and I(α) in the inside plus upper boundary

of % ∈ Λn(∆, R)

begin

p0 ← pn; pn+1 ← p1;

Z ← 0;

for k ← 0 to n do

x1 ← p
(1)
k ; x2 ← p

(1)
k+1;

(— check if vertical line —)

if x1 6= x2 then

x0 ← p
(1)
k−1; y0 ← p

(2)
k−1; y1 ← p

(2)
k ; y2 ← p

(2)
k+1;

if x1 < x2 then
a← x1; b← x2; y′1 ← x1; y′2 ← x2;

else
a← x2; b← x1; y′1 ← x2; y′2 ← x1;

end

(— determine line parameters —)

α = arctan
y′2−y′1

b−a
; (*if not known a priori*)

k ← (ay′2 − by′1)/max{b− a, |y′2 − y′1|}; (* dito *)

(— determine corresponding integer positions —)

X1 ← bac; Y1 ← bgk,α(bac)c; X2 ← db− 1e; Y2 ← bgk,α(db− 1e)c;

— Y2 in range ? —

if X2 6= X1 then

(— Y1 in range ? —)

if 0 ≤ Y1 ≤ N2 then

Z ← I
(α)
(X2,Y2)

− I(α)
(X1,Y1)

else

Z ← I
(α)
(X2,Y2)

end

(— left-right or right-left ? —)

if X1 < X2 then
s← s+ Z

else
s← s− Z

end

end

(— now check if machine-arithmetically x1 ∈ Z —)

if dx1e = bx1c then

(— maintains direction ? —)

if x0 < x1 < x2 then s← s+ I(X1,Y1);

else if x0 > x1 > x2 then s← s− I(X1,Y1) end ;

end

end

end

end
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Remark 3.3.28: In Algorithm 3.4 and Procedure CumulativeSum, floating

point computations are performed to determine the correct positions on the

arrays for the computation of the cumulative sums corresponding to a poly-

gon. To each polygon specified by edges in the plane R2 there corresponds

a digital polygon, a subset of digital lines in the discrete domain Z2. Con-

versely, to each digital polygon there is some set of continuous lines that

correspond to the digital edges. However, the summation trick developed in

the proof of Lemma 3.3.20 and in that of Theorem 3.3.27 can not be carried

forward to digitally specified polygons in a straightforward way. Digital lines

with different directions do not necessarily intersect and – even worse – two

different digital lines might have more than one point in common. Assume

we want to compute the sum of values of z in the inside of a digital polygon.

If digital edges from left to right are understood as upper boundary and lines

from right to left as lower boundary, then they correspond to (not unique)

continuous edges that are located directly under and over the digital lines,

respectively. But then in general the continuous edges do not form a polygon,

compare Figure 3.29. The same occurs if the respective computation for the

inside plus boundary is performed. If upper edges are contained but lower

ones are not, then still the corresponding continuous edges do not necessar-

ily form a polygon, but interestingly, on the ‘problematic’ regions near the

vertices the differences between the lower and upper boundaries vanish.

Fig. 3.29: Situations occurring when the summation trick is applied on digital

edges. Left: upper and lower boundary not included. Middle: up-

per and lower edges included. Right: Upper boundary included, lower

boundary not included. Black lines are corresponding continuous edges.

We claim that for each digital polygon there is some continuous polygon such

that the latter summation scheme corresponds to the continuous case. This

would mean that Algorithm 3.4 could be modified such that it produced the

same result as it does now while exclusively using integer arithmetics. For
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special cases such as the wedge intersection of a rectangle, this can be easily

shown to be the case. Algorithms for the relevant cases of this thesis have

therefore been implemented using integer arithmetics. There basically for

each angle a reference line is stored, as used and computed in Procedure

CumulativeSum, and the values corresponding to wedge intersections are

then computed using shifted versions of this reference lines.

3.4 Synopsis

In this chapter we have provided what is necessary to perform a minimization

of Potts functionals on wedge divided rectangles.

Section 3.1 was devoted to the minimization of the functional
∑

s∈r %(zs −
fr(s)) over fr ∈ Fr. In Subsection 3.1.3 it was shown that an efficient com-

putation of the projection ΠFrzr and the approximation error ‖zr − ΠFrzr‖22
is possible, if Fr is a linear function space spanned by a finite family of

functions ϕi ∈ Rr, 1 ≤ i ≤ n, (n ∈ N) , and if the (n+1)(n+2)
2

‘moments’∑
s∈r ϕi(s)ϕj(s),

∑
s∈r ϕi(s)zs and

∑
s∈r z

2
s , 1 ≤ i, j ≤ n, can be computed

rapidly.

In Section 3.2 we commented on the partition of rectangles by intersection

with a line, into a partition of wedges. To get the link between wedges on

the continuous domain [0, 1)2, and on the discrete domain S = {1, . . . , N1}×
{1, . . . , N2}, N1, N2 ∈ N, a short survey on digital lines was given. In Subsec-

tion 3.2.3 we demonstrated that each linear dichotomy on the discrete domain

corresponds to one and only one pair of points in S and therefore an estima-

tion of the number of wedges could be given. Additionally, an algorithm was

derived for an efficient determination of the pair of points corresponding to

a linear dichotomy.

In Section 3.3 we developed an algorithm for efficient regression over polygo-

nal domain. We have started with results concerning the intersection of two

Jordan curves over continuous domain. Utilizing these results, we have de-

rived a rule to integrate a function over discrete domain within a continuous

Jordan curve. We have carried the results forward to the discrete domain and

have presented an algorithm to efficiently integrate a function over polygo-

nal domain, provided that certain cumulative matrices have been computed

beforehand.

Generally in this thesis we are interested in segmentations that allow an
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efficient minimization of the Potts functional. In Chapter 2 we have presented

two partition classes that allow a fast traversing. As already indicated in

Paragraph 2.3 we are interested in regression on some comprehensive function

space over each element of such a partition that is generated by an additional

intersection of each fragment by a line. Now because wedges are of polygonal

form, we can use the results and algorithms of Section 3.3 to rapidly compute

the minimizers of the Potts functional for a certain segmentation class. This

will be discussed in detail in the next chapter.
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4. Efficient Minimization of Potts

Functionals
In this chapter we will merge the results of Chapters 2 and 3 and derive

the basic object of this thesis: A segmentation class for which an efficient

minimization of the Potts functional is possible. For the development of

a fast regression scheme we will make use of the recursion Algorithms 2.3

and 2.8 displayed in Subsections 2.1.3 and 2.2.3, and of the fast integration

Algorithm 3.4 presented in Section 3.3.

Let N1, N2 ∈ N. We take on the notation from Chapter 1 and let S =

{1, . . . , N1} × {1, . . . , N2} and let R denote a set of subsets of S, P = P(R)

a set of partitions of S and F = (Fr)r∈R a family of functions, Fr ∈ Rr for

each r ∈ R. The symbol S = S(P,F) stands for the family of segmentations

that is induced by the partition class P together with the class of admissible

functions F .

Recall that the Potts functional with parameter γ ≥ 0 is the mapping

Hγ(·, ·) : RS ×S −→ R

H(z, (P , fP)) = γ|P|+ ‖z − fP‖22.

In Section 1.3 we have presented a generic minimization algorithm for the

Potts functional. The structure of this algorithm demonstrates an appli-

cation of the reduction principle. But it has a very large time complexity

depending on the class of fragments and the function spaces, and is therefore

unusable in realistic situations. Moreover, this algorithm does not contain a

strategy to treat the local regression problem, and does not tell what kind of

partitions are well suited for applications. We will now introduce a class of

segmentations that allow an efficient minimization of the Potts functional.

4.1 Wedge Segmentations

In Chapter 2 two different partition classes have been displayed that – by

different kinds of recursive structure – allow an efficient enumeration of its
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elements. Both classes contain partitions that exclusively consist of rectan-

gles. We presented algorithms that efficiently traverse the class of partitions

for the purpose of minimization of the Potts functional. The problem of local

minimization of ‖z|r−fr‖22 over fr ∈ Fr for each fragment r had been left for

Chapter 3. There it has been shown that for a linear function space spanned

by a finite family of functions ϕi ∈ Rr, 1 ≤ i ≤ n, (n ∈ N) an efficient

computation of the local minimizers is possible if the (n+1)(n+2)
2

‘moments’∑
s∈r ϕi(s)ϕj(s),

∑
s∈r ϕi(s)zs and

∑
s∈r z

2
s , 1 ≤ i, j ≤ n, could be computed

rapidly. This in turn has been proved to be the case if r is a polygonal domain

for a polygon % stemming from the class Λ(∆, R) with a finite set of angles

∆ ⊂ (−π/2, π/2]. For that reason we will now consider wedge segmenta-

tions, two-dimensional dyadic or hierarchic partitions where the fragments

additionally are divided by intersections with lines. But in order that the

fast integration algorithm can be applied we impose certain restrictions on

the set of admitted lines.

Let k ∈ Z and α ∈ (−π, π] and a rectangle r ⊂ S be given. Consider the

wedge division Tk,α of r given with δα = max{| sinα|, | cosα|} by the two sets

Ak,α(r) := {(x, y) ∈ r : x sinα+ δα(k +
1

2
) > y cosα}, (4.1)

Bk,α(r) := {(x, y) ∈ r : x sinα+ δα(k +
1

2
) ≤ y cosα}, (4.2)

i.e. Tk,α := {Ak,α(r), Bk,α(r)}. We are now ready for the following

Definition 4.1.1 (Dyadic/Hierarchic Wedge Partition): Let P be a dyadic

or hierarchic partition of S and assume a finite set of angles ∆ ⊂ (−π/2, π/2]

is given. For each r ∈ R let kr ∈ Z and αr ∈ ∆ be given. A partition W of

the form

W =
⋃
r∈P

Tkr,αr \ ∅

will be called a dyadic or hierarchic wedge partition, respectively, with

angles ∆.
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Fig. 4.1: Dyadic (left) and hierarchic (right) wedge partition.

We will now define the main objects of this thesis. Recall that for a function

f ∈ RS and a subset r ⊂ S, the symbol f |r denotes the function f restricted

to r.

Definition 4.1.2 (Dyadic/Hierarchic Wedge Segmentation): Let W be a

dyadic or hierarchic wedge partition and a function space F ⊂ RS be given.

For each r ∈ R consider the function space defined by Fr = span{f |r : f ∈
F} and let fr ∈ Fr. A segmentation of the form

(P , fP) = (P , (fr)r∈P)

will then be called a dyadic or hierarchic wedge F−segmentation, re-

spectively, with angles ∆ and function space F = span{ϕi : 1 ≤ i ≤ n}.

In the following we denote the class of dyadic and hierarchic wedge segmen-

tations with angles ∆ and function space F by Wd(∆,F) and Wh(∆,F),

respectively.

4.2 Traversing the Wedges and Local Models

In Paragraphs 2.1.3 and 2.2.3 we showed how to efficiently traverse the class

of dyadic and hierarchic partitions. We will now extend the corresponding

recursion schemes to the wedge segmentations defined in the previous section.

We assume the set ∆ ⊂ (−π/2, π/2] to be finite.

For α ∈ (−π, π] and k ∈ Z recall the notation

Gk,α = {(x, y) ∈ R2 : y cosα = (k +
1

2
) max{| cosα|, | sinα|}+ x sinα}.

The number of such lines intersecting a rectangle can be estimated by the

following
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Lemma 4.2.1: Let α ∈ [−π/2, π/2) and a rectangleR = [l, r]×[b, t], l, r, b, t ∈
R, l < r, b < t, be given. Then

|{k ∈ Z : Gk,α ∩R 6= ∅}| ≤ (r − l) + (t− b)

Proof. Let K = {k ∈ Z : Gk,α ∩R 6= ∅}. Then

K =
⋃

(x,y)∈R

{
k ∈ Z : (k +

1

2
) =

y cosα− x sinα

max{cosα, | sinα|}

}

The assumption α ∈ [−π/2, π/2) implies cosα ≥ 0. Let additionally sinα ≥
0. Then

K =

{
k ∈ Z :

b cosα− r sinα

max{cosα, sinα}
≤ (k +

1

2
) ≤ t cosα− l sinα

max{cosα, sinα}

}
. (4.3)

Therefore

|K| ≤ (t− b) cosα+ (r − l) sinα

max{cosα, sinα}
≤ (t− b) + (r − l).

If sinα < 0, then

K =

{
k ∈ Z :

b cosα− l sinα
max{cosα, | sinα|}

≤ (k +
1

2
) ≤ t cosα− r sinα

max{cosα, | sinα|}

}
(4.4)

and thus

|K| ≤ (t− b) cosα+ (l − r) sinα

max{cosα, | sinα|}
≤ (t− b) + (r − l).

�

For two functions f, g ∈ RS we let in the following f · g : S → R, (f · g)(s) =

f(s) · g(s). Moreover, we identify data z ∈ RS with the mapping z : S → R.

Recall the definitions for symbols Ak,α and Bk,α on page 114 and the definition

of the cumulative sum arrays in Notations 3.3.18 and 3.3.24.

Lemma 4.2.2: Consider a function space F ⊂ R
S that is spanned by a

family of n ∈ N functions ϕi ∈ RS, 1 ≤ i ≤ n. Let an angle α ∈ (−π/2, π/2]

and a rectangle R ⊂ R2 with side lengths w > 0 and h > 0 be given. Assume

F = {ϕi · ϕj : 1 ≤ i, j ≤ n} ∪ {ϕi · z : 1 ≤ i ≤ n} ∪ {z2} and suppose that

for each f ∈ F the cumulative sums I(f), I(α)(f) and J (α)(f) have already
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been computed.

Then the minimization problem

(k, λ, µ) −→ min
k∈Z,λ,µ∈Rn

‖1Ak,α(R)(z −
n∑
i=1

λiϕi)‖22 + ‖1Bk,α(R)(z −
n∑
i=1

µiϕi)‖22

can be solved with a time complexity of O((w+h)·n3) and a space complexity

of O(n2).

Proof. By Lemma 4.2.1 the number of integers k such that the rectangle R

has non-empty intersection with the line Gk,α is less or equal w + h. In the

remaining cases the line has empty intersection with R and does therefore

induce the segmentation Tk,α(R) = {R}. Let ∆ = {0, π/2, α}. Because the

sets Ak,α(R) and Bk,α(R) are specified by bordering polygons % with 3, 4 or

5 vertices on lines Gk,β with k ∈ Z and β ∈ ∆, they are elements of the sets

Λi(∆, [0, N1]× [0, N2]). By Lemma 3.3.26, for each function f ∈ RS the val-

ues
∑

s∈I(%) f(s) can be determined with a time complexity of O(5) = O(1)

and a space complexity of O(1). By Lemma 3.1.13, for fixed k ∈ Z the

minimization of ‖1Ak,α(R)(z −
∑n

i=1 λiϕi)‖22 in λ is possible with a time com-

plexity of O(n3) and a space complexity of O(n2). The same holds for the

minimization of ‖1Bk,α(R)(z −
∑n

i=1 λiϕi)‖22. The traversing of all wedges in

R implies a maximal factor of (w + h). �

Now we present an algorithm to do the local minimization of the Potts func-

tional, as displayed in Lemma 4.2.2. Therefore we need to know where each

line intersects the rectangle R = [l, r] × [b, t]. Let α ∈ [−π/2, π/2). First,

the set of integers k ∈ Z such that line Gk,α intersects rectangle R is given

by equation (4.3) for sinα ≥ 0 and by (4.4) for sinα < 0. Provided that

gk,α ∩ R 6= ∅, the intersection parameters x1, x2 ∈ R2 with (x1, gk,α(x1)) ∈
∂(R), (x2, gk,α(x2)) ∈ ∂(R) are given with δk := (k+ 1

2
) max{| cosα|, | sinα|}

by

(x1, x2) =


(l, r) if sinα = 0,

(k + 1
2
, k + 1

2
) if sinα = 1,

(max{l, b·cosα−δk
sinα

},min{r, t·cosα−δk
sinα

}) if sinα > 0,

(max{l, t·cosα−δk
sinα

},min{r, b·cosα−δk
sinα

}) if sinα < 0.

The vertical coordinates of the intersection points are given by

(y1, y2)←

{
(b, t) if sinα = 1,

(gk,α(x1), gk,α(x2)) otherwise.
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The intersection points determine two simple polygons that have the line

from (x1, y1) to (x2, y2) in common. These are the boundaries of the wedges

Ak,α(R) and Bk,α(R).

Fig. 4.2: Different wedges Ak,α(R) and Bk,α(R) for fixed angle α.
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Algorithm 4.1: Minimize (k, λ, µ) −→ ‖1Ak,α(R)(z −
∑n

i=1 λiϕi)‖22 +

‖1Bk,α(R)(z −
∑n

i=1 µiϕi)‖22
input : n ∈ N,α ∈ (−π/2, π/2], cumulative sum arrays I(f) and Iα(f) and I(0)(f) for all

f ∈ {ϕi · ϕj : 1 ≤ i, j ≤ n} ∪ {ϕi · z : 1 ≤ i ≤ n} ∪ {z2}, rectangle R = [l, r]× [b, t]

output: extremal points k̂ ∈ Z, λ, µ ∈ Rn and approximation error m

begin

(— determine intersecting lines —)

δ ← max{cosα, sinα}

(kmin, kmax)←


(dle, brc) if sinα = 1

( b cos α−r sin α
δ

− 1
2
, t cos α−l sin α

δ
− 1

2
) if 0 ≤ sinα < 1

( b cos α−l sin α
δ

− 1
2
, t cos α−r sin α

δ
) if sinα < 0

;

m←∞;

for k ← kmin to kmax do

δk ← (k + 1
2
)δ;

(— determine intersection points —)

(x1, x2)←


(l, r) if sinα = 0,

(k + 1
2
, k + 1

2
) if sinα = 1

(max{l, b·cos α−δk
sin α

},min{r, t·cos α−δk
sin α

}) if 0 < sinα < 1,

(max{l, t·cos α−δk
sin α

},min{r, b·cos α−δk
sin α

}) if sinα < 0.

;

(y1, y2)←

(b, t) if sinα = 1

(gk,α(x1), gk,α(x2)) otherwise
;

determine polygons % and %′ corresponding to the rectangle r and intersection points

(x1, y1) and (x2, y2).

(— compute all ‘moments’ —)

foreach f ∈ {ϕi · ϕj : 1 ≤ i, j ≤ n} ∪ {ϕi · z : 1 ≤ i ≤ n} ∪ {z2} do

call Algorithm 3.4 with % and %′ and f ;

Store result in Af,% and Af,%′

end

(— set up linear equation system (Subsection 3.1.3) —)

fill arrays M := (Aϕi·ϕj ,%)1≤i,j≤n, Y := (Azs·ϕj(s),%)1≤j≤n, M ′ := (Aϕi·ϕj ,%′ )1≤i,j≤n

and Y ′ := (Azs·ϕj(s),%′ )1≤j≤n;

(— solve linear equation system , Trefethen and Bau (1997), pp. 83-85 —)

compute solutions â and b̂ of Y = M · a and Y ′ = M ′ · b;

(— compute approximation error (Subsection 3.1.3) —)

m1 ← Az2
s ,% − 2

∑n
i=1 âiYi +

∑n
i=1 â

2
iMii;

m2 ← A′
z2

s ,%′
− 2

∑n
i=1 b̂iY

′
i +

∑n
i=1 b̂

2
iM

′
ii;

(— check if minimal —)

if m1 +m2 < m then
m← m1 +m2;

λ← â; µ← â′;

k̂ ← k;
end

end

end
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4.3 The Main Theorem and Algorithm

We can now present a central result of this thesis. It embraces the main

statements of the Chapters 2 and 3.

Theorem 4.3.1: Consider a function space F ⊂ R
S that is spanned by a

family of n ∈ N functions ϕi ∈ RS, 1 ≤ i ≤ n. Let ∆ ⊂ (−π/2, π/2] be finite

and z ∈ RS. The Potts functional

H(z, (P , fP)) = γ|P|+ ‖z − fP‖22

can be minimized with

1. a time complexity of O(|S| · |∆| ·n3) and a spatial complexity of O(|∆| ·
|S| ·n2) over the class of dyadic wedge F -segmentations with angles ∆,

2. a time complexity of O(|S|2(N1 +N2) · |∆| ·n3) and a spatial complexity

of O(|∆| · |S| ·n) ·n2 over the class of hierarchic wedge F -segmentations

with angles ∆.

Proof. By Lemma 4.2.2, the local minimization complexity for each rectan-

gular fragment and each angle α ∈ ∆ is given by O((w + h) · n3). Corollary

2.2.19 states that the global minimization has a complexity of O(|S|c1) if the

local minimization complexity for a rectangle with side lengths w and h is

given by O(c1(w + h)). Because the local minimization can be performed

by successively comparing best results for different angles α ∈ ∆, we get a

global minimization complexity of O(|S| · |∆| · n3). For the hierarchic par-

titions we use Corollary 2.1.8 and get a global minimization complexity of

O(|S|2(N1 + N2) · |∆| · n3). In both cases, by Lemma 4.2.2 the space com-

plexity for the local minimization process is for each angle α ∈ ∆ given by

O(|S| · n2), and therefore a global memory of O(|S| · n2 · |∆|) has to be allo-

cated. For the reconstruction part of Algorithms 2.3 and 2.8 there is a global

time complexity of O(|S| · n) because for each rectangle R the approxima-

tion can be done by evaluating the sum
∑n

i=1 ϕi(s) for each s in R and it is

therefore linear and thus Corollaries 2.1.8 and 2.2.19 can be applied. �

Now we display the algorithm to do the minimization of the Potts model for

the hierarchic and the dyadic wedge segmentations.



4.3. The Main Theorem and Algorithm 121

Algorithm 4.2: Minimize the Potts functional over hierarchic or

dyadic wedge partitions

input : S = {1, . . . , N1} × {1, . . . , N2}, ∆ ⊂ (−π/2, π/2] with |∆| = n, Functions ϕi, 1 ≤ i ≤ n,

data z ∈ RS

output: Minimizer M = (Ms)s∈S of the Potts functional

begin
(— check that 0 degree is contained in the set of angles —)

∆← ∆ ∪ {0};
(— create the result matrix —)

New(M,N1, N1);

(— create, compute and store cumulative matrices —)

foreach f ∈ {ϕi · ϕj : 1 ≤ i, j ≤ n} ∪ {ϕi · z : 1 ≤ i ≤ n} ∪ {z2} do
VerticalSum(z,N1, N2,Ref);

I(f)← Ref.I;

foreach α ∈ ∆ do
CumulativeSum(α,Ref);

I(α)(f)← Ref.I;
end

end

Call Algorithm 2.3 or Algorithm 2.8 with the following local minimization and

approximation rules: ;

Computation of ‖ΠF[l,r]×[b,t]z − z[l,r]×[b,t]‖22:

begin
(— local minimization rule, known: rectangle R = [l, r]× [b, t] —)

m̂←∞;

foreach α ∈ ∆ do

Call Algorithm 4.1 with n, α, ϕi (1 ≤ i ≤ n), Iα(f), I(0)(f) and I(f) for all

f ∈ {ϕi · ϕj : 1 ≤ i, j ≤ n} ∪ {ϕi · z : 1 ≤ i ≤ n} ∪ {z2} and

R′ = [l − 1
2
, r + 1

2
]× [b− 1

2
, t+ 1

2
]. Result: λ, µ, k̂,m;

if M > m then

m̂← m; α̂← α; λ̂← λ; µ̂← µ; K̂ ← k̂;
end

end

Return values m̂, α̂, λ̂, µ̂, K̂;
end

Computation M[l,r]×[b,t] ← ΠF[l,r]×[b,t]z:

begin

(— local approximation rule, known: rectangle R = [l, r]× [b, t], m̂, α̂, λ̂, µ̂, K̂ —)

for x← l to r do

for y ← r to r do

if x sin α̂+ (K̂ + 1
2
) ·max{| sin α̂|, cos α̂} > y cos α̂ then

(— In AK̂,α(R)—)

Mx,y ← 0;

for i← 1 to n do

Mx,y ←Mx,y + λ̂iϕi(x, y)

end

else
(— In BK̂,α(R)—)

Mx,y ← 0 for i← 1 to n do
Mx,y ←Mx,y + µ̂iϕi(x, y)

end

end

end

end

end

end
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Remark 4.3.2: Since for a dyadic partition, minimization results can be

stored in the quad tree with a space complexity of O(|S| · n), the algorithm

can also be formulated such that a memory consumption of O(|S| ·n) is used.

Then the local minimizers are computed successively for each angle over the

whole quad tree, where at each fragment the ‘current’ minimization result is

compared with the best previous one. Another, even more important, point

is this memorizing of the local minimization results for each rectangle in a

tree can be used for a very fast access to minimizers of Hγ for different values

of γ, compare the runtime discussion in Paragraph 6.2.2.



5. Consistency
This chapter is devoted to the exploration of (wedge) segmentations resulting

from minimizing Potts functionals with respect to consistency in a nonpara-

metric regression model. The verification of consistency is often the mathe-

matical justification for the application of estimation procedures to real data.

Asymptotic features are sometimes also taken for lack of assertions in the fi-

nite case (often, for example, used in testing theory). Above all, asymptotic

features, such as consistency, reveal basic structure behind the objects con-

sidered. Consistency is neither the beginning nor the end of an analysis of

the studied procedure. It is rather a minimal requirement and provides the

valuable indication that the estimation is in line with the ‘truth’ for large

enough data sets.

In statistics one is additionally interested in statements about optimality.

Concerning nonparametric regression this refers to the specification of the

rate of convergence for estimators.

5.1 A Nonparametric Regression Model

In this section, we display what kind of data we consider for the analysis

of consistency. We will start with the model and describe how we think

that discrete data are collected from some continuous source. Then we will

present discretization- and embedding-operators and derive some properties.

Finally, we will specify postulations about the noise of the observed data.

5.1.1 Specification of the Model

We start with the following basic postulates:

• First, we assume that there is unrevealed ‘truth’ given as a real valued

signal f over the continuous domain [0, 1)2. We look upon such a signal

as an image which we additionally presume to stem from the subclass

L2([0, 1)2).
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• Second, we assume that images f ∈ L2([0, 1)2) are observed as erro-

neous measurements on rectangular n× n - grids over [0, 1)2.

More precisely, we consider in the sequel a grid size n ∈ N, a function

f ∈ L2((0, 1]2), a discrete index set Sn := {1, . . . , n}2 and the following

continuous ( 1
n
× 1

n
)-cells:

I
(n)
ij :=

[
i− 1

n
,
i

n

)
×
[
j − 1

n
,
j

n

)
, i, j ∈ N, 1 ≤ i, j ≤ n.

Moreover, let ξ(n) = (ξ
(n)
ij )1≤i,j≤n be a matrix of independent random vari-

ables. We will give an exact definition of the admitted random variables

later on. A measurement z(n) of f ∈ L2([0, 1)2) is then given by a matrix

z(n) ∈ RSn with

z
(n)
ij = |Sn|

∫
I
(n)
ij

f(r) dr + ξ
(n)
ij , 1 ≤ i, j ≤ n. (5.1)

Thus, for us, a measurement is an averaging over the cells and the error is

produced by the process of measurement.

In the following, we use the notation f (n) := (f
(n)
ij )1≤i,j≤n for the averaged

version of f defined by

f
(n)
ij := |Sn|

∫
I
(n)
ij

f dλ, 1 ≤ i, j ≤ n,

and can thus write shortly

z(n) = f (n) + ξ(n) (5.2)

for equation (5.1). Note, that f (n) is the conditional expectation of f with

respect to the σ-field generated by the sets I
(n)
ij , i.e.

f (n) = E(f |σ({I(n)
ij , 1 ≤ i, j ≤ n})).

Recall that for a segmentation (P(n), g
(n)
P ) over Sn the squared Euclidean

distance to z(n) is given by

‖z(n) − g(n)
P ‖

2
2 =

∑
r∈P

∑
s∈r

(z(n)
s − g(n)

r (s))2.

In this chapter we will consider a Potts functional with parameter γ > 0

where the data term is additionally weighted with |Sn|−1, i.e.

H(n)
γ (z(n), (P(n), g

(n)
P )) = γ|P(n)|+ 1

|Sn|
‖z(n) − g(n)

P ‖
2.



5.1. A Nonparametric Regression Model 125

We will show that this functional is invariant with respect to a whole-numbered

scaling of Sn. In the sequel, we omit the indices (n) and γ every now and

then if it is appropriate. Moreover, we identify g
(n)
P with its values on the

index set Sn and write shortly g
(n)
s (s ∈ Sn) for the value g

(n)
r (s) where the

partition element r ∈ P is chosen such that s ∈ r.

We consider sequences (γn)n∈N of parameters and wedgelet segmentations

(P̂(n), ĝ(n)) that minimize the Potts functional H
(n)
γn (z(n), ·) for n ∈ N. We

ask, whether, depending on the function f and the parameter sequence, the

limit of ĝ(n) for n → ∞ has something to do with the original signal f , or

if there is even some sort of convergence. This will be made more precise in

the next paragraph.

5.1.2 Discrete and Continuous Domains

Because, for the analysis of consistency, discrete data has to be compared

with continuous results, and vice versa, operators for discretization and em-

bedding are introduced and examined in this Paragraph.

Notation 5.1.1: Let in the following for each n ∈ N the symbols ιn and δn

denote the following operators:

ιn : RSn −→ L2([0, 1)2), z 7→
∑
s∈Sn

zs · 1I(n)
s
, (5.3)

δn : L2([0, 1)2)→ R
Sn , g 7−→

(
1

λ(I
(n)
s )

∫
I
(n)
s

g dλ

)
s∈Sn

. (5.4)

The operator ιn maps a real valued signal z on the discrete rectangle Sn to a

real valued function on the continuous rectangle [0, 1)2, while conversely by

δn a function g ∈ L2([0, 1)2) is transformed to a real valued image on Sn. We

will omit the index n in ιn and write ι where convenient.

Let P(n) be a partition of Sn. It is immediate from the definition, that the

set (of sets) P = {
⋃
t∈r
⋃
s∈I(n)

t
s : r ∈ P(n)} is a partition of [0, 1)2. This

leads to the following extension of Notation 5.1.1.

Notation 5.1.2: We will apply ιn also to segmentations (P(n), g
(n)
P ) of Sn

with the definitions

ιn(P(n)) = {
⋃
t∈r

⋃
s∈I(n)

t

s : r ∈ P(n)}
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and

ιn(P(n), g
(n)
P ) = (ιn(P(n)), ιn(g

(n)
P )).

Fig. 5.1: Illustration of the embedding operator ιn from Notation 5.1.1

Fig. 5.2: Illustration of the discretization operator δn from Notation 5.1.1

Before we particularize the consistency problem, some results concerning the

embedding and discretization are given.

Lemma 5.1.3: Let n ∈ N and x(n), y(n) ∈ RSn . Then〈
ιn(x(n)), ιn(y(n))

〉
=

1

|Sn|
〈
x(n), y(n)

〉
.

Proof.〈
ι(x(n)), ι(y(n))

〉
=

∫
(
∑
s∈Sn

1
I
(n)
s
x(n)
s )(

∑
t∈Sn

1
I
(n)
t
y

(n)
t ) dλ =

∑
s∈Sn

x(n)
s y(n)

s λ(I(n)
s )

=
1

|Sn|
∑
s∈Sn

x(n)
s y(n)

s =
1

|Sn|
〈
x(n), y(n)

〉
�

An immediate consequence is the subsequent

Corollary 5.1.4: Let n ∈ N and x(n), y(n) ∈ RSn . Then

‖ιn(x(n))‖22 =
1

|Sn|
‖x(n)‖2.
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In the following the symbol S will stand for a segmentation class over the im-

age domain [0, 1)2 and the symbols S(n), 1 ≤ i ≤ n, will denote segmentation

classes over the index sets Sn. For the moment one may have in mind the

wedgelet segmentations W and W(n) with, for example, constant regression

over the segments.

Note that in general neither for a segmentation (P(n), g
(n)
P ) ∈ S(n) the em-

bedding ιn(P(n), g
(n)
P ) has to be contained in S, nor is the discretization

δn(P , gP) of a segmentation (P , gP) ∈ S necessarily contained in S(n). We

repeat and extend the notation of the Potts functional:

Notation 5.1.5: Let γ > 0 and Fn = {ιn(g(n)) : (P(n), g(n)) ∈ S(n)}, n ∈ N.

Let in the sequel the functionals H
(n)
γ : RSn ×S(n) → R, H̄γ : L2((0, 1]2) ×

S→ R and H̃(n) : L2([0, 1)2)×S→ R be defined by

H(n)
γ (z, (P(n), g

(n)

P(n))) = γ · |P(n)|+ 1

|Sn|
‖z − g(n)

P(n)‖22,

H̄γ(f, (P , gP)) = γ · |P|+ ‖f − gP‖22 and

H̃(n)
γ (f, (P , gP)) =

γ|P|+ ‖f − gP‖22 if gP ∈ F(n),

∞ otherwise.

In the following the relationship of the functionals H, H̄ and H̃ will be

investigated. Natural candidates for discrete wedgelet segmentations that

potentially minimize H
(n)
γ (z, ·) in the limit n → ∞ are continuous segmen-

tations (P , gP) ∈ S (for convenient S) minimizing the Potts functional

H̄γ(f, (P , gP)). An intermediate case is the embedding of the discrete seg-

mentations into the continuous set [0, 1)2 corresponding to the functional

H̃
(n)
γ (f, (P , gP)).

The following two results show how the different cases of continuous and

discrete domains can be pulled together.

Lemma 5.1.6: Let n ∈ N and (P(n), g
(n)
P ) ∈ S(n). Then for each z(n) ∈ RSn

it holds that

H(n)
γ (z(n), (P(n), g

(n)
P )) = H̃(n)

γ (ιn(z(n)), ιn(P(n), g
(n)
P )).
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Proof. Since ιn(z(n)) − ιn(g
(n)
P ) = ιn(z(n) − g

(n)
P ), by Corollary 5.1.4 the

following holds:

H̃(n)
γ (ι(z(n)), ι(P(n), g

(n)
P )) = |ι(P(n))|+ ‖ι(z(n))− ι(g

(n)
P )‖22

= |P(n)|+ 1

|Sn|
‖z(n) − g(n)

P ‖
2
2 = H(n)

γ (z(n), (P(n), g
(n)
P )).

�
Lemma 5.1.6 implies that the functional H

(n)
γ is invariant with respect to a

scaling of the image domain.

Lemma 5.1.7: Let n ∈ N, f ∈ L2([0, 1)2) and (P(n), g
(n)
P ) ∈ S(n). Then

(P(n), g
(n)
P ) ∈ argminHn

γ (δ(n)(f), ·)

if and only if

ι(n)(P(n), g
(n)
P ) ∈ argmin H̃n

γ (f, ·).

Proof. First,

H̃(n)
γ (f, ι(P(n), g(n))) = γ|ι(P(n))|+ ‖f − ι(g(n))‖22

= γ|P(n)|+
∫

(f −
∑
s∈Sn

1
I
(n)
s
g(n)
s )2 dλ

= γ|P(n)|+ ‖f‖22 +
‖g(n)‖22
|Sn|

− 2
∑
s

g(n)
s

∫
I
(n)
s

f dλ.

Second,

H(n)
γ (δ(n)(f), (P(n), g(n))) = γ|P(n)|+ 1

|Sn|
‖δ(n)(f)− g(n)‖2

= γ|P(n)|+ 1

|Sn|
∑
s∈Sn

(|Sn|
∫
I
(n)
s

f dλ− g(n)
s )2

= γ|P(n)|+ |Sn| · ‖f‖22 +
‖g(n)‖22
|Sn|

− 2
∑
s

g(n)
s

∫
I
(n)
s

f dλ.

Therefore H̃
(n)
γ (f, ι(n)(P(n), g(n)))−H(n)

γ (δ(n)(f), (P(n), g(n))) = (1−|Sn|)‖f‖22
is independent of (P(n), g

(n)
P ) and the proof is complete. �

Lemma 5.1.7 states that the functional H̃
(n)
γ is a good candidate for a con-

tinuous version of the Potts functional H
(n)
γ . This functional will therefore

be used later on to compare the minimizers of H̄γ with the limit of the min-

imizers of H
(n)
γ .
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5.1.3 Subgaussian Noise

In this paragraph the basic requirements on the noise and some consequences

are formulated.

Hypothesis 5.1.8: The triangular array (ξ
(n)
s )s∈Sn,n∈N of random variables

obeys the following properties:

(B1) For all n ∈ N the random variables (ξ
(n)
s )s∈Sn are independent.

(B2) There is a universal constant β > 0 such that for all n ∈ N and each

s ∈ Sn the following inequality holds:

E(eνξ
(n)
s ) ≤ eβν

2 ∀ ν ∈ R.

In the following, random variables fulfilling condition (B2) will be called

subgaussian. Now some characterizations of subgaussian random variables

are presented:

Lemma 5.1.9: Subgaussian random variables have mean zero.

Proof. Let X be subgaussian. Then E(eνX) ≤ eβν
2

for all ν ∈ R. A Taylor

series expansion yields

1 + νE(X) + ν2
E(X2) +O(ν3) ≤ 1 + ν2β +O(ν3).

Thus there is some c > 0 such that for all ν > 0 the inequality

E(X) ≤ ν(β −E(X2)) + cν2

holds which implies that E(X) = 0. �

Lemma 5.1.10: A gaussian random variable X with variance σ2 and mean

µ = 0 is subgaussian with constant β = σ2

2
.

Proof.

E(eνX) =
1

σ
√

2π

∫
eνxe−

x2

2σ2 dx =
1

σ
√

2π

∫
e−

1
2σ2 (x2−2νσ2x+ν2σ4−ν2σ4) dx

= e
ν2σ2

2
1

σ
√

2π

∫
e−

1
2σ2 (x−νσ2)2 dx = e

ν2σ2

2

�
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Lemma 5.1.11: Let X be a linear combination of n ∈ N independent sub-

gaussian random variables Xi with subgaussianity constants βi, 1 ≤ i ≤ n

and let λi ∈ R, 1 ≤ i ≤ n. Then the random variable X =
∑n

i=1 λiXi is

subgaussian with constant β =
∑n

i=1 λ
2
iβi.

Proof.

E(eνX) = E(eν
∑n

i=1 λiXi) =
n∏
i=1

E(eνλiXi) ≤
n∏
i=1

eν
2λ2

i βi = eν
2

∑n
i=1 λ

2
i βi = eν

2β

�

Lemma 5.1.11 in particular implies that if the random variable X is sub-

gaussian, then also its negative, −X, is subgaussian. An important property

of the proposed noise is the following estimation of the tail probability of

subgaussian random variables.

Lemma 5.1.12: Let n ∈ N and a family of real values µs ∈ R, s ∈ Sn, be

given. Then for all c ∈ R the following inequality holds:

P(|
∑
s∈Sn

µsξ
(n)
s | ≥ c) ≤ 2e

− c2

4β
∑

s µ2
s .

Proof. Since

P(
∑
x∈Sn

µsξ
(n)
s ≥ c) = P(eλ

∑
s∈Sn

µsξ
(n)
s ≥ eλc)

holds for all λ > 0 we can apply the Markov Inequality and obtain

P(
∑
s∈Sn

µsξ
(n)
s ≥ c) ≤ E(eλ

∑
s µsξ

(n)
s )

eλc
.

Condition (B2) together with Lemma 5.1.11 yields

E(eλ
∑

s∈Sn
µsξ

(n)
s ) ≤ eβλ

2
∑

s µ
2
s ,

and therefore

P(
∑
s∈Sn

µsξ
(n)
s ≥ c) ≤ eβµ

2
sλ

2−λc. (5.5)
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From λµ2β−λc = β
(
(λµ− c

2βµ
)2 − ( c

2βµ
)2
)

it is deduced that λ = c
2βµ2

s
gives

an optimal estimate. Using this estimate in equation (5.5) yields

P(
∑
s∈Sn

µsξ
(n)
s ≥ c) ≤ e

− c2

4β
∑

s µ2
s .

Replacing µs by −µs for all s ∈ Sn yields

P(−
∑
s∈Sn

µsξ
(n)
s ≥ c) = P(

∑
s∈Sn

µsξ
(n)
s ≤ −c).

Together we obtain

P(|
∑
s∈Sn

µsξ
(n)
s | ≥ c) ≤ 2 · e−

c2

4β
∑

s µ2
s . (5.6)

This completes the proof. �

5.2 The Main Theorem

In this section consistency is presented from an abstract point of view. This

implies that nothing is assumed about the underlying segmentations a priori

but particular conditions are given as the case arises. This result provides

the basis for the treatment of wedge segmentations in the next section. We

derive the theorems by a generalization of the methods developed in Boysen

et al. (2004).

5.2.1 Maximal Inequality for Projections of Noise

In this paragraph we explore the performance of the noise depending on n ∈
N for segmentations over index sets Sn that are embedded into L2([0, 1)2).

The following observation is the key tool for estimates on wedgelet partitions.

Recall that for some subspace H ⊂ Rk (k ∈ N) the symbol ΠH denotes the

projection onto H.

Theorem 5.2.1: Let for each n ∈ N the symbol Sn denote an arbitrary finite

index set. Assume that the triangular array ξ(n) = (ξ
(n)
s )s∈Sn of random

variables fulfills conditions (B1) and (B2) on page 129. Consider for each
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n ∈ N a set Hn of subspaces of RSn .

If there is a number D ∈ N such that dimF ≤ D for all F ∈
⋃
n∈NHn and

if 1
|Hn| = O(n−α) for some α > 0 then

sup
n∈N

sup
F∈Hn

‖ΠFξ(n)‖22
log |Hn|

<∞ a.s. (5.7)

Remark 5.2.2: Theorem 5.2.1 admits the following interpretation with re-

spect to a segmentation class: Assume that each subspace F ∈ Hn corre-

sponds to a local regression over a subset of Sn using dimF parameters.

Moreover, assume that these subsets are exactly the fragments of all par-

titions of Sn. A solution of the local regression problem (3.1) is given by

the projection onto the space F and – say – corresponds to the family of

admissible functions over the respective subspace. If the dimensions of the

particular local regression models are globally bounded, and if there are at

least polynomially (in n) many subspaces, i.e. at least polynomially many

fragments, then the inequality (5.7) holds for the noise. This inequality im-

plies that there is some random variable M such that almost surely for all

n ∈ N and subspaces F ∈ Hn the inequality

‖ΠFξ(n)‖22 ≤M · log |Hn|

holds. Roughly spoken this means: If the segmentation class is rich enough

then the norm of the projection of the noise on any segment can be uniformly

estimated by the logarithm of the number of fragments.

Proof of Theorem 5.2.1. Fix n ∈ N and F ∈ Hn. Let (ei)1≤i≤dimF be a

basis of F . Observe that

dimF∑
i=1

|
〈
ξ(n), ei

〉
|2 > z2 log |Hn|

implies, for at least one 1 ≤ i ≤ dimF , the inequality

|
〈
ξ(n), ei

〉
|2 > z2 log

|Hn|
dimF

.

We use this (at inequality (∗) in the following lines) to derive the inequality

P
(
‖ΠFξ(n)‖2 > z2 log |Hn|

)
= P

(
dimF∑
i=1

|
〈
ξ(n), ei

〉
|2 > z2 log |Hn|

)
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(∗)
≤ P

(
dimF⋃
i=1

{|
〈
ξ(n), ei

〉
|2 > z2 log |Hn|

dimF
}

)
≤

dimF∑
i=1

P

(
|
〈
ξ(n), ei

〉
|2 > z2 log |Hn|

dimF

)

=
dimF∑
i=1

P

(
|
∑
s∈Sn

ξ(n)
s ei,s| > z

√
log |Hn|
dimF

)
(∗∗)
≤ 2

dimF∑
i=1

exp
−z2 log |Hn|

4β · dimF ·
∑

s e
2
i,s

= 2 · dimF · |Hn|
−z2

4β dimF ≤ 2 ·D|Hn|
−z2

4β dimF ,

where inequality (∗∗) in the previous formula is due to Lemma 5.1.12. There-

fore ∑
n∈N

∑
F∈Hn

P(‖ΠFξn‖2 > z2 log |Hn|) ≤
∑
n∈N

∑
F∈Hn

2 ·D · |Hn|
−z2

4β·dimF

≤ 2D
∑
n∈N

|Hn| · |Hn|
−z2

4βD = 2D
∑
n∈N

|Hn|1−
z2

4βD ≤ 2D
∑
n∈N

n−α( z2

4βD
−1).

For large enough z > 0 that implies∑
n∈N

∑
F∈Hn

P(‖ΠFξn‖2 > z2 log |Hn|) <∞

and thus the Borel Cantelli Lemma can be applied resulting in

P(
‖ΠFξn‖2

log |Hn|
> z2 infinitely often) = 0.

Therefore

sup
n∈N

sup
F∈Hn

‖ΠFξn‖22
log |Hn|

<∞ a.s.

which completes the proof. �

An immediate consequence of the previous theorem is the following

Corollary 5.2.3: Let the assumptions of Theorem 5.2.1 be fulfilled. If it holds

that

• O(|Hn|) = O(nτ ) for some τ > 0 and all n ∈ N then

sup
n∈N

sup
F∈Hn

‖ΠFξn‖22
log n

<∞ a.s.

• O(|Hn|) = O(τn) for some τ > 0 and all n ∈ N then

sup
n∈N

sup
F∈Hn

‖ΠFξn‖22
n

<∞ a.s.
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In the next paragraph we will provide the link between segmentations and

the relatively abstract result of Theorem 5.2.1.

Before we can apply the results to a segmentation class, we need some prepa-

ration. Let a partition P(n) of Sn be given and a family of function spaces

F (n)
r , r ∈ P, such that supp f ⊂ r for each f ∈ F (n)

r and each r ∈ P. Then

F (n)
r ⊥ F (n)

r′ for all r, r′ ∈ P(n) with r 6= r′. This observation justifies the

following

Notation 5.2.4: Consider the direct orthogonal sum F (n)

P(n) =
⊕

r∈P(n) F (n)
r .

We denote the projection to F (n)

P(n) in the following shortly by ΠP(n) .

Now we can make precise what was suggested in Remark 5.2.2 and apply

Theorem 5.2.1 to a segmentation class.

Lemma 5.2.5: For each n ∈ N, let a class P(n) of partitions of Sn be given

and let R(n) ⊇
⋃
P∈P(n) P . Consider for each n ∈ N and each r ∈ R(n) a

class of function spaces F (n)
r ⊂ RSn such that supp f ⊂ r for all f ∈ F (n)

r . If

there is a global constant D ∈ N+ with dimF (n)
r ≤ D for all r ∈ R(n) and

all n ∈ N, and if there is some α > 0 such that |R(n)|−1 = O(n−α) for all

n ∈ N, then there is a random variable M such that for all n ∈ N and all

partitions P(n) ∈ P(n) of Sn the following inequality holds:

‖ΠP(n)ξ(n)‖2 ≤M · |P(n)| · log |R(n)|. (5.8)

Proof. Let f ∈ RSn . The identity

ΠP(n)f =
∑
r∈P(n)

ΠF(n)
r
f

implies that

‖ΠP(n)f‖2 =
∑
r∈P(n)

‖ΠF(n)
r
f‖2.

We set Hn := {F (n)
r : r ∈ R(n)} and apply Theorem 5.2.1: There is a random

variable M such that for each r ∈ P(n):

‖ΠF(n)
r
f‖2 ≤M · log |Hn| = M · log |R(n)|.

Therefore

‖ΠP(n)ξ(n)‖2 ≤
∑
r∈P(n)

M · log |R(n)| = M · |P(n)| · log |R(n)|
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which completes the proof. �

Note that interestingly the inequality (5.8) in Lemma 5.2.5 does not contain

the cardinality |P(n)| of the set of partitions, but only the number of possible

fragments |R(n)| of partitions.

5.2.2 Projective Segmentation Classes

After the short excursion to the properties of the projection of the noise we

come back to (global) estimations for the minimization of the Potts func-

tional. We first need some preparation.

Definition 5.2.6 (Projective Segmentation Class): Let a finite set Sn, a

set R(n) of subsets of Sn, a partition class P(n) with P(n) ⊂ R(n) for each

P(n) ∈ P(n) and a finite-dimensional function space G ⊂ L2([0, 1)2) be given.

Let δ(n)G := {δ(n)f : f ∈ G}. Assume that for each r ⊂ Sn the function space

F (n)
r is given by F (n)

r = {1rf : f ∈ δ(n)G}. Then the class of segmentations

S = (P(n),F (n)) will be called a projective F−segmentation class of Sn

with fragments R(n).

One difference to the class of segmentations introduced in Chapter 1 is that

the functions f ∈ F here have full domain S but restricted support. Since

a function space F ′ ⊂ Rr can be identified with a space of functions on RS

with support on r, it is only a different representation we deal with. The

other difference is that the function spaces Fr, r ⊂ S, result from a global

function space G by discretization and restriction.

With the definition

P ∧Q := {p ∩ q : p ∈ P , q ∈ Q}, P ,Q ∈ P,

we get the following structural result:

Lemma 5.2.7: Let (P,F) be a projective segmentation class. Let P ,Q ∈ P.

Let f ∈
⊕

r∈P Fr and g ∈
⊕

r∈QFr. Then any linear combination of f and

g is contained in
⊕

r∈P∧QFr.

Proof. Let λ, µ ∈ R. Since P and Q are partitions the following holds:

λf + µg =
∑
r∈P

λfr +
∑
q∈Q

µgq =
∑
r∈P

∑
q∈Q:
q∩r 6=∅

λ · 1r∩qfr +
∑
q∈Q

∑
r∈P:
q∩r 6=∅

µ · 1r∩qgq
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=
∑

r∈P,q∈Q:
r∩q 6=∅

1r∩q(λfr + µgq)

By the definition of a projective segmentation class for each r ∈ P and

q ∈ Q with r ∩ q 6= ∅ it holds that 1q∩rfr ∈ Fr∩q and 1q∩rgq ∈ Fr∩q. There-

fore λ · 1q∩rfr + µ · 1q∩rgq ∈ Fr∩q and thus λf + µg ∈
⊕

r∈P∧QFr. �

Lemma 5.2.8: Let n ∈ N, a projective segmentation class Sn of Sn, a signal

f ∈ L∞([0, 1)2) and a vector ξ(n) ∈ RSn be given. Consider

(P̂(n), f̂ (n)) ∈ argmin
(P(n),f

(n)
P )∈Sn

H(n)
γ (δn(f) + ξ(n), (P(n), f

(n)
P )) (5.9)

and let (Q(n), g
(n)
Q ) ∈ Sn. Then the following holds:

‖ι(f̂ (n)
P )− f‖22 ≤ 2γ(|Q(n)| − |P̂(n)|) + 3‖ι(g(n)

Q )− f‖22 + 8
‖ΠP̂(n)∧Q(n)ξ(n)‖2

|Sn|
.

(5.10)

Proof. By assumption (5.9) and Lemma 5.1.7 the embedded segmentation

ι(P̂(n), f̂
(n)
P ) is a minimizer of H̃

(n)
γ (f + ι(ξ(n)), · ) and therefore

H̃(n)
γ (f + ι(ξ(n)), ι(P(n), f̂

(n)
P )) = γ|P(n)|+

∫
(ι(f̂

(n)
P )− (f + ι(ξ(n))))2 dλ

≤ H̃(n)
γ (f + ι(ξ(n)), ι(P(n), g

(n)
P )) = γ|Q(n)|+

∫
(ι(g

(n)
Q )− (f + ι(ξ(n))))2 dλ

which implies

γ|P̂(n)|+ ‖ι(f̂ (n)
P )− f − ι(ξ(n))‖22 ≤ γ|Q(n)|+ ‖ι(g(n)

Q )− f − ι(ξ(n))‖22
⇐⇒γ|P̂(n)|+ ‖ι(f̂ (n)

P )− f‖22 + 2
〈
ι(f̂

(n)
P )− f, ι(ξ(n))

〉
+ ‖ι(ξ(n))‖22

≤ γ|Q(n)|+ ‖ι(g(n)
Q )− f‖22 + 2

〈
ι(g

(n)
Q )− f, ι(ξ(n))

〉
+ ‖ι(ξ(n))‖22

⇐⇒‖ι(f̂ (n)
P )− f‖22
≤ γ(|Q(n)| − |P̂(n)|) + ‖ι(g(n)

Q )− f‖2 + 2
〈
ι(g

(n)
Q )− ι(f̂

(n)
P ), ι(ξ(n))

〉
.

Observe that, as Sn is a projective segmentation class, Lemma 5.2.7 can

be applied and f (n) − g(n) ∈
⊕

r∈P̂(n)∧Q(n) Fr and therefore ΠP̂(n)∧Q(n)(f (n) −
g(n)) = f (n) − g(n), thus by Lemma 5.1.3 we obtain〈

ι(g
(n)
Q )− ι(f̂

(n)
P ), ι(ξ(n))

〉
=

1

|Sn|
〈
ΠP̂(n)∧Q(n)(f

(n) − g(n)), ξ(n)
〉
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=
1

|Sn|
〈
f (n) − g(n),ΠP̂(n)∧Q(n)(ξ

(n))
〉

≤ ‖ι(f̂ (n)
P )− ι(g

(n)
Q )‖ · |Sn|−1/2‖ΠP̂(n)∧Q(n)(ξ

(n))‖

≤
‖ΠP̂(n)∧Q(n)(ξ(n))‖

|Sn|1/2
· ‖ι(f̂ (n)

P )− f‖+
‖ΠP̂(n)∧Q(n)(ξ(n))‖

|Sn|1/2
‖f − ι(g

(n)
Q )‖.

We use the inequality ab ≤ a2+(1/4)b2, a, b ∈ R, derived from (a−b/2)2 ≥ 0

and get 〈
ι(g

(n)
Q )− ι(f̂

(n)
P ), ι(ξ(n))

〉
≤‖ι(f̂

(n)
P )− f‖22

4
+
‖f − ι(g

(n)
Q )‖22

4

+ 2
‖ΠP̂(n)∧Q(n)(ξ(n))‖2

|Sn|
.

Putting the two inequalities together yields

‖ι(f̂ (n)
P )− f‖2 ≤ γ(|Q(n)| − |P̂(n)|) + ‖ι(g(n)

Q )− f‖2 +
1

2
‖ι(f̂ (n)

P )− f‖2

+
1

2
‖f − ι(g

(n)
Q )‖2 + 4|Sn|−1‖ΠP̂(n)∧Q(n)(ξ

(n))‖2

1

2
‖ι(f̂ (n)

P )− f‖2 ≤ γ(|Q(n)| − |P̂(n)|) +
3

2
‖ι(g(n)

Q )− f‖2 + 4
‖ΠP̂(n)∧Q(n)(ξ(n))‖22

|Sn|

‖ι(f̂ (n)
P )− f‖2 ≤ 2γ(|Q(n)| − |P̂(n)|) + 3‖ι(g(n)

Q )− f‖2 + 8
‖ΠP̂(n)∧Q(n)(ξ(n))‖22

|Sn|
.

This completes the proof. �

5.2.3 The Main Theorems

We can now formulate the first consistency result:

Theorem 5.2.9: Let a finite-dimensional function space G ⊂ L2([0, 1)2) and

for each n ∈ N a finite set Sn and a projective G−segmentation class Sn =

(P(n),F (n)) with fragments R(n) over Sn be given. Assume that

• |Sn| → ∞ for n→∞,

• there is a real number % > 0 such that |R(n)|−1 = O(n−%) for all n ∈ N,

• (γn)n∈N is a sequence of real numbers with γn → 0 and γn|Sn|
log |R(n)| → ∞

for n→∞.
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Let f ∈ L2([0, 1)2) with

inf
k∈N

lim sup
n→∞

inf
(Q,g′)∈S(n),
|Q|≤k

‖ι(g′)− f‖22 = 0

and let the triangular array (ξ(n))n∈N of random variables obey conditions

(B1) and (B2). Consider

(P̂(n), f̂ (n)) ∈ argmin
(P ′,f ′P )∈Sn

H(n)
γn

(
δn(f) + ξ(n), (P ′, f ′P)

)
for each n ∈ N. Then almost surely

‖ιn(f̂ (n))− f‖22 −→ 0 for n→∞.

Proof. We consider some (Q(n), g
(n)
Q ) ∈ Sn. By Lemma 5.2.8

‖ι(f̂ (n)
P )− f‖22 ≤ 2γn(|Q(n)| − |P̂(n)|) + 3‖ι(g(n)

Q )− f‖22 + 8
‖ΠP̂(n)∧Q(n)ξ(n)‖22

|Sn|
.

Let V(n) := {r ∩ q : r, q ∈ R(n)}. Then |R(n)| ≤ |V(n)| ≤ |R(n)|2. Therefore

|V(n)|−1 = O(n−%) and log |V(n)| ≤ 2 log |R(n)|. For two partitions P and Q
it holds that |P ∧Q| ≤ |Q| · |P|. By Lemma 5.2.5, there is a random variable

M such that almost surely

‖ΠP̂(n)∧Q(n)ξ
(n)‖22 ≤M · |P̂(n) ∧Q(n)| · log |V(n)|

≤M · (|P̂(n)| · |Q(n)|) log |R(n)|

Putting the two inequalities together with C ′ = 8 ·M yields the following:

‖ι(f̂ (n)
P )− f‖22 ≤|P̂(n)|(−2γn + C ′|Q(n)| log |R(n)|

|Sn|
) + 2γn|Q(n)|

+ 3‖ι(g(n)
Q )− f‖22.

Now fix k ∈ N and let Q(n) = k for all n ∈ N large enough. Letting
γn|Sn|

log |R(n)| → ∞ for n → ∞ implies that 2γn ≥ C ′k log |R(n)|
|Sn| for large enough

n ∈ N. Therefore for large enough n ∈ N:

‖ι(f̂ (n)
P )− f‖22 ≤ 2γn · k + 3‖ι(g(n)

Q )− f‖22. (5.11)

Because (Q(n), g
(n)
Q ) can be chosen freely, we have

lim sup
n→∞

‖ι(f̂ (n)
P )− f‖22 ≤ inf

k∈N
lim sup
n→∞

inf
(Q,g′)∈S(n),
|Q|≤k

(
2γn · k + 3‖ι(g(n)

Q )− f‖22
)
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= inf
k∈N

lim sup
n→∞

4γnk + inf
k∈N

lim sup
n→∞

inf
(Q,g′)∈S(n),
|Q|≤k

3‖ι(g(n)
Q )− f‖22 = 0

This completes the proof. �

Hypothesis 5.2.10: Consider for each n ∈ N a class P(n) of partitions. We

will use the following condition frequently:

(C1) There is some constant C > 0 such that for each n ∈ N and all

P(n),Q(n) ∈ P(n) it holds that

|P(n) ∧Q(n)| ≤ C(|P(n)|+ |Q(n)|).

Now we state a result for the almost sure rate of convergence.

Theorem 5.2.11: Let a finite-dimensional function space G ⊂ L2([0, 1)2),

and for each n ∈ N a finite set Sn and a projective G−segmentation class

Sn = (P(n),F (n)) with fragments R(n) over Sn be given. Assume that

• |Sn| → ∞ for n→∞,

• P(n) fulfills condition (C1),

• there is a real number % > 0 such that |R(n)|−1 = O(n−%) for all n ∈ N.

Let f ∈ L2([0, 1)2) and assume that there are some real values α > 0, θ ≥ 0,

a real valued function F : R → R with limx→∞ F (x) = ∞ and a constant

C > 0 such that

inf
(Q,g′)∈Sn:
|Q|≤k

‖ι(g′)− f‖ ≤ C ·
(

kθ

F (n)
+

1

kα

)
(5.12)

for all n ∈ N. Let the triangular array (ξ(n))n∈N of random variables obey

conditions (B1) and (B2). Assume (γn)n∈N is a sequence of real numbers

with γn|Sn|
log |R(n)| →∞ for n→∞. Consider

(P̂(n), f̂ (n)) ∈ argmin
(P ′,f ′P )∈Sn

H(n)
γn

(
δn(f) + ξ(n), (P ′, f ′P)

)
.
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for each n ∈ N. Then almost surely

‖ι(f̂ (n)
P )− f‖22 = O

(
min

{
γ

2α
2α+1
n , γnF (n)

1
θ+α

})
. (5.13)

Remark 5.2.12: The previous theorem admits the following interpretation:

The inequality (5.12) is an estimate for the approximation of the signal f

by a segmentation. The second term 1/kα on the right-hand side of the

inequality stands for the error of a best approximation of f within a class

of continuous segmentations corresponding to the segmentation classes S(n),

n ∈ N. The first term kθ/F (n) stands for the error that arises from the

discretization of the aforementioned best approximation. If the parameter

γn is not decreasing too fast, then the convergence rate is given by equation

(5.13). In equation (5.13) again the interplay between the approximation

error and the discretization error can be observed.

Proof of Theorem 5.2.11. We consider some (Q(n), g
(n)
Q ) ∈ Sn. By Lemma

5.2.8

‖ι(f̂ (n)
P )− f‖22 ≤ 2γn(|Q(n)| − |P̂(n)|) + 3‖ι(g(n)

Q )− f‖22 + 8
‖ΠP̂(n)∧Q(n)ξ(n)‖22

|Sn|
.

Let V(n) := {r ∩ q : r, q ∈ R(n)}. Then |R(n)| ≤ |V(n)| ≤ |R(n)|2. Therefore

|V(n)|−1 = O(n−%) and log |V(n)| ≤ 2 log |R(n)|. By Lemma 5.2.5 there is a

random variable M and by Hypothesis 5.2.10 there is a constant C such that

almost surely

‖ΠP̂(n)∧Q(n)ξ
(n)‖22 ≤M · |P̂(n) ∧Q(n)| · log |V(n)|

≤ 2C ·M · (|P̂(n)|+ |Q(n)|) log |R(n)|

Putting the two inequalities together with C ′ = 16·C ·M yields the following:

‖ι(f̂ (n)
P )− f‖22 ≤|P̂(n)|(−2γn + C ′

log |R(n)|
|Sn|

) + |Q(n)|(2γn + C ′
log |R(n)|
|Sn|

)

+ 3‖ι(g(n)
Q )− f‖22.

γn|Sn|
log |R(n)| → ∞ for n → ∞ implies that 2γn ≥ C ′ log |R

(n)|
|Sn| for large enough

n ∈ N. Therefore for large enough n ∈ N:

‖ι(f̂ (n)
P )− f‖22 ≤ 4γn · |Q(n)|+ 3‖ι(g(n)

Q )− f‖22. (5.14)
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By these assumptions, there is a constant C such that for any sequence

(kn)n∈N the inequality

inf
(g′,Q)∈Sn:
|Q|≤kn

‖ι(g′)− f‖ ≤ C ·
(

kθn
F (n)

+
1

kαn

)
holds for each n ∈ N. Because (a+ b)2 ≤ (a+ b)2 + (a− b)2 = 2a2 + 2b2 this

implies

‖ι(f̂ (n)
P )− f‖22 ≤ 4γnkn + 6C

(
k2θ
n

F (n)2
+

1

k2α
n

)
.

Thus there is a constant C ′ such that

‖ι(f̂ (n)
P )− f‖22 ≤ C ′

(
γnkn +

k2θ
n

F (n)2
+

1

k2α
n

)
.

Setting γnkn = 1
k2α

n
yields kn = γ

− 1
2α+1

n and

‖ι(f̂ (n)
P )− f‖22 ≤ C ′

2γ
2α

2α+1
n +

γ
− 2θ

2α+1
n

F (n)2

 .

Setting k2θ
n

F (n)2
= 1

k2α
n

yields kn = (F (n))
1

θ+α and

‖ι(f̂ (n)
P )− f‖22 ≤ C ′

(
γnF (n)

1
θ+α + 2F (n)

−2α
α+θ

)
.

Using the last two inequalities we obtain

‖ι(f̂ (n)
P )− f‖22 = O

(
min

{
γ

2α
2α+1
n , γnF (n)

1
θ+α

})
.

The proof is thus complete. �

5.3 Applications

In this section we apply the results of the previous section to the segmen-

tations that have been developed in this thesis. In the first two paragraphs

we present relatively abstract results concering consistency and rate of con-

vergence for dyadic wedge segmentations and hierarchic wedge segmenta-

tions. These results still postulate certain approximation properties of the

segmentation space and the signal. Then we focus on piecewise polynomial

approximation and display the corresponding consistency result. In the last

subsection we comment on constant approximation and give a prominent

example, the so called horizon functions.
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5.3.1 Dyadic Wedge Segmentations

Let in this paragraph for each n ∈ N the index sets Sn = {1, . . . , n} ×
{1, . . . , n} be given and let for each dyadic n ∈ N the symbols P(n) and W(n)

denote the class of dyadic square partitions and dyadic wedge partitions over

Sn, respectively.

To apply the Theorems 5.2.9 and 5.2.11 to dyadic wedge partitions we need

the following result concerning the superposition Q ∧ P of dyadic wedgelet

partitions.

Lemma 5.3.1: For each d ∈ N, let the set of fragments

R(2d) =
⋃

P∈W(2d)

P

be given. Then for each d ∈ N the following holds:

22d < |R(2d)| < 24d+1.

Proof. There are 4d = 22d dyadic squares with side length 1. This implies

that 22d < |R(2d)|. Each of the dyadic squares of a partition is at most

divided by an intersection with a line. The number of lines in a square with

side length 2d is due to Corollary 3.2.18 bounded from above by 24d. The

number of total possible fragments in R(2d) can thus be estimated by

|R(2d)| ≤
d∑
i=0

4d−i · 24i = 22d ·
d∑
i=0

22i = 22d · 2
2(d+1) − 1

22 − 1

<
24d+2 − 1

2
< 24d+1.

�

An immediate consequence of the previous lemma is:

Corollary 5.3.2: With the assumptions of Lemma 5.3.1, first, for all θ > 0 it

holds that |R(2d)|−1 = O(d−θ), and second, log |R(2d)| = O(d).

Proof. For the first statement observe that for all θ > 0 there is some d ∈ N
such that 2a ≥ aθ implying 2−a ≤ a−θ for all a ≥ d. �
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Lemma 5.3.3: Let r1 and r2 be two dyadic squares, r1 6= r2. If r1 ∩ r2 6= ∅
then either r1 ⊂ r2 or r2 ⊂ r1. In particular, r1 ∩ r2 is a dyadic square.

Proof. It suffices to prove the statement in one dimension. Let I1 = [(i −
1)2−k1 , i2−k1) and I2 = [(j − 1)2−k2 , j2−k2) (k1, k2 ∈ N, i, j ∈ N, 1 ≤ i ≤
k1,1 ≤ j ≤ k2). I1 ∩ I2 = ∅ is equivalent with

(i− 1)2−k1 ≥ j2−k2 ∨ (j − 1)2−k2 ≥ i2−k1 .

Let without loss of generality, k1 ≥ k2. Then with l = k1 − k2 the fact

I1 ∩ I2 6= ∅ is equivalent with

(i− 1) < j2l ∧ (j − 1)2l < i.

Since i, j ∈ N and 2l ≥ 1, also i ≤ j2l and (j − 1)2l ≤ i− 1. Hence

(j − 1)2−k2 ≤ (i− 1)2−k1 < i2−k1 ≤ j2−k2 ,

that is I2 ⊂ I1. And because k1 6= k2 then I1 6⊂ I2. �

The next lemma provides the confirmation of Hypothesis 5.2.10 for dyadic

wedge segmentations.

Lemma 5.3.4: Let d ∈ N and P ,Q ∈W(2d). Then

|P ∧ Q| ≤ 4(|P|+ |Q|).

Proof. By Lemma 5.3.3 for the intersection of two dyadic subsets r1, r2 of

S2d it holds that r1 ∩ r2 ∈ {r1, r2, ∅}. For two dyadic partitions D1 and D2

we thus obtain the inequality |D1 ∩ D2| ≤ |D1| + |D2|. Two dyadic wedge

partitions therefore consist of less or equal |P| + |Q| dyadic squares that

can each be intersected by a maximum of two lines yielding a maximum of 4

fragments per dyadic square. Altogether we obtain |P ∧Q| ≤ 4(|P|+ |Q|). �

Theorem 5.3.5: Let a finite-dimensional function space G ⊂ L2([0, 1)2) and

for each d ∈ N the finite set S2d = {1, . . . , 2d}2 and a projective dyadic

wedge G−segmentation class S(d) = (P(d),F (d)) with fragments R(d) over

S2d be given. Let (γd)d∈N be a sequence of real numbers with γd → 0 and
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γd4d

d
→ ∞ for d → ∞. Let f ∈ L2([0, 1)2) and let the triangular array

(ξ(n))n∈N of random variables obey conditions (B1) and (B2). Consider

(P̂(d), f̂ (d)) ∈ argmin
(P ′,f ′P )∈S(d)

H(2d)
γd

(
δ2d

(f) + ξ(2d), (P ′, f ′P)
)
.

Then the following two statements are true:

(a) If the relation

inf
k∈N

lim sup
d→∞

inf
(Q,g′)∈S(d),
|Q|≤k

‖ι2d

(g′)− f‖22 = 0

holds then almost surely

‖ι2d

(f̂ (d))− f‖22 −→ 0 for d→∞.

(b) If there are real values α > 0, θ ≥ 0, a real valued function F : R → R

with limx→∞ F (x) =∞ and a constant C > 0 such that

inf
(Q,g′)∈S(d):
|Q|≤k

‖ι2d

(g′)− f‖ ≤ C ·
(

kθ

F (d)
+

1

kα

)

for all d ∈ N, then almost surely

‖ι2d

(f̂
(d)
P )− f‖22 = O

(
min

{
γ

2α
2α+1

d , γdF (d)
1

θ+α

})
.

Proof. The theorem relies on Theorems 5.2.9 and 5.2.11. We check the re-

maining assumptions. First, S2d →∞ for d→∞. Second, condition (C1) of

Hypothesis 5.2.10 is fulfilled by Lemma 5.3.4. And third, |R(d)|−1 = O(d−θ)

for all θ > 0 and γd|S2d |/|R(d)| → ∞ if γd4
d/d→∞ by Corollary 5.3.2. �

In this paragraph we considered wedgelet partitions with local projections on

each of the wedgelets. We did not consider quad-tree partitions and treat the

wedges as attributes of the local approximation over the dyadic squares. The

reason is that then the local approximation would not have been a projection

to a linear function space.

5.3.2 Hierarchic Wedge Segmentations

Now we repeat the steps done in the previous paragraph for the hierar-

chic wedge partitions. Let in this paragraph for each n ∈ N the index sets
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Sn = {1, . . . , n} × {1, . . . , n} be given, and let for each n ∈ N the symbols

P(n) and W(n) denote the class of hierarchic square partitions and hierarchic

wedge partitions over Sn, respectively. Furthermore, we define the following

restriction of the hierarchic square and wedge partitions: For n ∈ N and

1 ≤ k ≤ ∞ by P
(n)
≤k we denote the set of hierarchic partitions P that are

of the form P = {rij, 1 ≤ i ≤ r, 1 ≤ j ≤ mj} as defined in (2.1) where

additionally mj ≤ k for all 1 ≤ j ≤ k. P
(n)
≤k is thus the set of partitions

where the number of vertical divisions is bounded by k. By W
(n)
≤k we denote

the hierarchic wedge partitions that are developed from the hierarchic wedge

partitions P
(n)
≤k .

To apply the Theorems 5.2.9 and 5.2.11 to dyadic wedge partitions we need

the following result concerning the superposition Q ∧ P of dyadic wedgelet

partitions.

Lemma 5.3.6: Let 2 < a ≤ ∞ and for each n ∈ N the set of fragments

R(n) =
⋃

P∈W
(n)
≤a

P

be given. Then for each n ∈ N the following holds:

n4 < |R(n)| < (n+ 2)6.

Proof. There are
∑n

k=1 n−k+1 = n2/2+n/2 intervals of the form {k, . . . , k+

l}, 0 ≤ l ≤ n−k, 1 ≤ k ≤ n. Because the number of vertical intervals allowed

in a hierarchic partition is greater or equal 3, any interval can be formed in

horizontal and vertical directions. Therefore R(n) > n4. The number of lines

in a rectangle with side lengths l1 and l2 is, due to Corollary 3.2.18, bounded

from above by l1 · l2. We use this to estimate the number of total wedges

with the following formula:

|R(n)
≤k | ≤

n∑
k=1

n−k+1∑
l1=1

n∑
m=1

n−m+1∑
l2=1

l1 · l2 = (
n∑
k=1

n−k+1∑
l=1

l)2

= (
n∑
k=1

(n− k + 1)(n− k + 2)

2
)2 < (n(n+ 1)(n+ 2))2 < (n+ 2)6.

�

An immediate consequence of the previous lemma is:
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Corollary 5.3.7: With the assumptions of Lemma 5.3.6, first it holds that

|R(n)|−1 = O(n−4), and second log |R(n)| = O(log n).

The next lemma provides the confirmation of Hypothesis 5.2.10 for hierarchic

wedge segmentations with bounded vertical division.

Lemma 5.3.8: Let a ∈ N, n ∈ N and P ,Q ∈W
(n)
≤a . Then

|P ∧ Q| ≤ 2a(|P|+ |Q|)

Proof. The fragments of a partition of {1, . . . , n} are intervals. Such a

partition with m fragments is thus determined by m− 1 numbers. Let I1, I2
be two such partitions with m1 and m2 fragments. Then |I1 ∧ I2| ≤ (m1 −
1)+(m2−1)+1 < m1 +m2 = |I1|+ |I2|. Now let I1 and I2 be the horizontal

partitions corresponding to P and Q. Then

|P ∧ Q| ≤ 2a(|I1|+ |I2|) ≤ 2a(|P|+ |Q|),

which completes the proof. �

Theorem 5.3.9: Let a finite-dimensional function space G ⊂ L2([0, 1)2), and

for each n ∈ N the finite set Sn = {1, . . . , n}2 and a projective hierarchic

wedge G−segmentation class S(n) = (P
(n)
≤a ,F (n)), 2 < a ≤ ∞, with fragments

R(n) over Sn be given. Let (γn)n∈N be a sequence of real numbers with γn → 0

and γnn2

logn
→ ∞ for n → ∞. Let f ∈ L2([0, 1)2) and let the triangular array

(ξ(n))n∈N of random variables obey conditions (B1) and (B2). Consider

(P̂(n), f̂ (n)) ∈ argmin
(P ′,f ′P )∈S(n)

H(n)
γn

(
δn(f) + ξ(n), (P ′, f ′P)

)
.

Then the following statements are true:

(a) If the relation

inf
k∈N

lim sup
n→∞

inf
(Q,g′)∈S(n),
|Q|≤k

‖ιn(g′)− f‖22 = 0

holds then almost surely

‖ιn(f̂ (n))− f‖22 −→ 0 for n→∞.
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(b) If a < ∞ and if there are real values α > 0, θ ≥ 0 and if, furthermore,

there are a real valued function F : R → R with limx→∞ F (x) = ∞ and a

constant C > 0 such that

inf
(Q,g′)∈S(n):
|Q|≤k

‖ιn(g′)− f‖ ≤ C ·
(

kθ

F (n)
+

1

kα

)

for all n ∈ N, then almost surely

‖ιn(f̂ (n)
P )− f‖22 = O

(
min

{
γ

2α
2α+1
n , γnF (n)

1
θ+α

})
.

Proof. The theorem relies on Theorems 5.2.9 and 5.2.11. We check the re-

maining assumptions. First, Sn →∞ for n→∞. Second, condition (C1) of

Hypothesis 5.2.10 is fulfilled by Lemma 5.3.8. And third, |R(n)|−1 = O(n−4)

and γn|Sn|/|R(n)| → ∞ if γnn
2/ log n→∞ by Corollary 5.3.7. �

5.3.3 Piecewise Polynomial Approximations

LetR andR(n) be the set of rectangles in S = [0, 1)2 and in Sn = {1, . . . , n}2,
n ∈ N, respectively. In this paragraph we consider segmentations of [0, 1)2

and of Sn with a regression on the classes of admissible functions F = (Fp)p∈R
and F (n) = (F (n)

p )p∈R(n) , where Fp ⊂ Rp, p ∈ R, and F (n)
p ⊂ Rp, p ∈ R(n),

are spaces of polynomial functions of order m− 1, m ∈ N+.

Let Pk and P
(n)
k be the classes of either dyadic or hierarchic square partitions

of [0, 1)2 and Sn with maximal k elements. In the following the symbols Sk

and S
(n)
k denote the space of segmentations with partitions Pk and P

(n)
k and

regression over the function spaces F and F (n).

Recall that Cm is the space of m times continuously differentiable functions.

Lemma 5.3.10: Let f be Cm. Then there are constants c, c′ such that

inf{‖f − f̃‖2 : (P , f̃) ∈ Sk} ≤ ck−m/2

and

inf{‖f − ι(n)(f̃)‖2 : (P , f̃) ∈ S
(n)
k } ≤ c′(k−m/2 +

1

n
)
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Proof. Let d be such that 4d ≤ k < 4d+1. Then a best approximation with

4d pieces is worse or as good as a best approximation with k pieces. We show

the result in uniform norm which is stronger than the L2-norm.

Divide the square into 4d subsquares each of length 2−d. This yields a

partition that is hierarchical and dyadic at the same time. On each sub-

square, approximate f by its Taylor polynomial of order m− 1. Let for each

s ∈ {((r1 − 1/2)/2d, (r2 − 1/2)/2d), 1 ≤ r1, r2 ≤ 2d} the symbol Tsf denote

the Taylor approximation of f around s. This gives an approximation error

of

‖f − Tsf‖∞ ≤
1

m!
(
√

2 · 2−d−1)m sup
x∈[0,1)2,l≤m

‖f (m)(x)‖ = O(2−d·m)

≤ O(k−m/2).

for all s.

For the second part, we estimate the difference between the approximating

Taylor polynomial and its discretized version. We apply now the above ar-

gument for piecewise constant approximation on a finer n × n-grid to each

summand of the Taylor polynomial. Denoting by Pm the collection of all

monomials of order less than m we derive a uniform bound of

‖ιn(δn(Tsf))− Tsf‖∞ ≤
∑
p∈Pm

(
√

2
1

n
) sup
x∈[0,1)2

‖p(1)(x)‖ sup
x∈[0,1)2,l≤m

‖f (l)(x)‖

= O(n−1)

�

Corollary 5.3.11: Let f ∈ L2([0, 1)2). Then

inf
k∈N

lim sup
n→∞

inf
(Q,g′)∈S(n),
|Q|≤k

‖ιn(g′)− f‖22 = 0

Proof. For all f ∈ L2 and for all ε > 0 there is a function f0 ∈ C1 such that

‖f0 − f‖2 ≤ ε. Therefore by Lemma 5.3.10 there is some constant c such

that for all k and all ε > 0 the following holds

inf
(Q,g′)∈S(n),
|Q|≤k

‖ιn(g′)− f‖2 ≤ ε+ inf
(Q,g′)∈S(n),
|Q|≤k

‖ιn(g′)− f0‖2

≤ ε+ ck−1/2 +
1

n
.
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This yields

inf
k∈N

lim sup
n→∞

inf
(Q,g′)∈S(n),
|Q|≤k

‖ιn(g′)− f‖22 = inf
k∈N

ck−1/2 = 0.

�

Now we formulate the results regarding consistency for dyadic and hierarchic

wedge segmentations separately. We start with the hierarchic segmentations.

Theorem 5.3.12: Let the function space G ⊂ L2([0, 1)2) consist of polyno-

mials and for each n ∈ N let the finite set Sn = {1, . . . , n}2 and a projective

hierarchic wedge G−segmentation class S(n) = (P(n),F (n)), 2 < a ≤ ∞ with

fragments R(n) over Sn be given. Let (γn)n∈N be a sequence of real numbers

with γn → 0 and γnn2

logn
→ ∞ for n → ∞. Let f ∈ L2([0, 1)2) and let the tri-

angular array (ξ(n))n∈N of random variables obey conditions (B1) and (B2).

Consider

(P̂(n), f̂ (n)) ∈ argmin
(P ′,f ′P )∈S(n)

H(n)
γn

(
δn(f) + ξ(n), (P ′, f ′P)

)
.

Then almost surely

‖ιn(f̂ (n))− f‖22 −→ 0 for n→∞.

Proof. The statement is based on the first part of Theorem 5.3.9. By

Corollary 5.3.11 it holds that

inf
k∈N

lim sup
n→∞

inf
(Q,g′)∈S(n),
|Q|≤k

‖ιn(g′)− f‖22 = inf
k∈N

ck−m/2 = 0.

This is the only condition missing in comparison with Theorem 5.3.9 and the

proof is thus complete. �

For dyadic segmentations even a statement about the rate can be included.

Theorem 5.3.13: Let the function space G ⊂ L2([0, 1)2) consist of polyno-

mials of degree m ∈ N and let for each d ∈ N the finite set S2d = {1, . . . , 2d}2

and a projective dyadic wedge G−segmentation class S(d) = (P(d),F (d)) with

fragments R(d) over S2d be given. Let (γd)d∈N be a sequence of real numbers
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with γd → 0 and γd4d

d
→ ∞ for d → ∞. Let f ∈ L2([0, 1)2) and let the tri-

angular array (ξ(n))n∈N of random variables obey conditions (B1) and (B2).

Consider

(P̂(d), f̂ (d)) ∈ argmin
(P ′,f ′P )∈S(d)

H(2d)
γd

(
δ2d

(f) + ξ(2d), (P ′, f ′P)
)
.

Then almost surely

‖ιn(f̂ (n))− f‖22 −→ 0 for n→∞.

If additionally f ∈ Cm′
, m′ ∈ N, then

‖ι2d

(f̂
(d)
P )− f‖22 = O(γ

min{m+1,m′}
min{m+2,m′+1}
d ).

In particular ‖ι2d
(f̂

(d)
P )− f‖22 = O

(
(d2/4d)

min{m+1,m′}
min{m+2,m′+1}

)
.

Proof. The statement is based on the first part of Theorem 5.3.5. By

Corollary 5.3.11 it holds that

inf
k∈N

lim sup
n→∞

inf
(Q,g′)∈S(n),
|Q|≤k

‖ιn(g′)− f‖22 = inf
k∈N

ck−m/2 = 0.

This is the only condition missing in comparison with Theorem 5.3.9 and the

first part of the statement is proven.

By Lemma 5.3.10 there is some constant c > 0 such that for all k the following

holds

inf
(Q,g′)∈S(n),
|Q|≤k

‖ιn(g′)− f‖2 ≤ ck−(min{m,m′−1}+1)/2 +
1

n
.

Therefore we can set θ = 0, α = min{m,m′−1}/2 and F (d) = 4d in Theorem

5.3.5 yielding

‖ι2d

(f̂
(d)
P )− f‖22 = O

(
min

{
γ

2α
2α+1

d , γdF (d)
1

θ+α

})
= O(γ

min{m,m′−1}+1

min{m,m′−1}+2

d ).

Setting γd = d2/4d yields the last statement which completes the proof. �

Remark 5.3.14: The rate given in Theorem 5.3.13 is very close at the theo-

retical best rate of convergence. The best rate is given as ‖ιn(f̂ (n)
P )− f‖22 =

O(n−(m′/(m′+1))), see Stone (1982), compared with our rate ‖ιn(f̂ (n)
P )− f‖22 =

O((n/log2n)−(m′/(m′+1))) for dyadic n and m ≥ m′ − 1.
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5.3.4 Piecewise Constant Approximations

For piecewise polynomial segmentations we could show consistency and even

a rate of convergence for the dyadic wedge model. In this section we will focus

on piecewise constant functions and present some results for the prominent

horizon functions. We will treat the discretization and the approximation

separately in this paragraph.

Consider the space of constant functions G = {f ∈ L2([0, 1)2) : f(x) =

µ ∀ x ∈ [0, 1)2, µ ∈ R}. In this paragraph we consider projective G-
segmentation classes.

The Discretization Errors

We start with a result that is crucial for the estimation of the discretization

error of wedge segmentations. In the sequel for two sets A and B we use the

notation A	B = (A \B) ∪ (B \ A).

Lemma 5.3.15: Consider f ∈ L∞([0, 1)2) and for each subset r ⊂ [0, 1)2 let

the space Fr := {1rg : g ∈ G} of constant functions be given. Then for two

sets r, r′ ∈ B([0, 1)2) the following holds:

‖ΠFrf − ΠFr′
f‖22 ≤ 2λ(r 	 r′) sup

x∈[0,1)2
|f(x)|2.

Proof. Let µC :=
∫
C
f dλ for all C ∈ B([0, 1)2. With this notation we obtain

‖ΠFrf − ΠFr′
f‖ =

∫ (
1r

∫
r

f dλ− 1r′
∫
r′
f dλ

)2

dλ

=

∫
r∩r′

(µr − µr′)2 dλ+

∫
r\r′

µ2
r dλ+

∫
r′\r

µ2
r′ dλ

= λ(r ∩ r′)µ2
r	r′ + λ(r \ r′)µ2

r + λ(r′ \ r)µ2
r′

≤
(
λ(r ∩ r′)λ(r 	 r′)2 + λ(r \ r′)λ(r)2 + λ(r′ \ r)λ(r′)2

)
sup

x∈[0,1)2
|f(x)|2

≤
(
λ(r ∩ r′)λ(r 	 r′)2 + λ(r 	 r′)λ(r ∪ r′)2

)
sup

x∈[0,1)2
|f(x)|2

≤ 2λ(r 	 r′) sup
x∈[0,1)2

|f(x)|2.

The proof is complete. �
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We will use the previous theorem to estimate the discretization error of

segmentations. Therefore we introduce the discretization and the discrete

boundary of some subset of [0, 1)2. Recall for each n ∈ N the set Sn =

{1, . . . , n}2 and for each s ∈ Sn the sets I
(n)
s := [(s1 − 1)/n, s1/n) × [(s2 −

1)/n, s2/n). The discretization of a set r ⊂ [0, 1)2 will in the following be

defined using

r(n) =

{
s ∈ Sn :

(
s1 − 1

2

n
,
s2 − 1

2

n

)
∈ r
}

by

r̄(n) =
⋃

s∈r(n)

I(n)
s .

The discrete boundary will be denoted by

bd(n)(r) := {s ∈ r(n) : ∅ 6= I(n)
s ∩ r 6= I(n)

s }.

Fig. 5.3: Set r and discretization r̄(n) (left), r(n) and discrete boundary bd(n)(r)
(right).

Corollary 5.3.16: Let f ∈ L∞([0, 1)2) and let for each subset r ⊂ [0, 1)2 the

space Fr := {1rg : g ∈ G} of constant functions be given. Then there is a

constant c > 0 such that for all n ∈ N and each subset r ∈ B([0, 1)2) the

inequality

‖ΠFrf − ΠF
r̄(n)

f‖22 ≤ c
|bd(n)(r)|
|Sn|

holds.

Proof. By the previous lemma we only have to show that λ(r 	 r̄(n)) ≤
|bd(n)(r)|/|Sn|. We define u = {s ∈ Sn : I

(n)
n ∩ r 6= ∅} and l = {s ∈ Sn :
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I
(n)
s ⊂ r}. Then l ⊆ r(n) ⊆ u and therefore

⋃
s∈l I

(n)
s ⊆ r̄(n) ⊆

⋃
s∈u I

(n)
s .

Moreover,
⋃
s∈l I

(n)
s ⊆ r ⊆

⋃
s∈u I

(n)
s and bd(n)(r) = u \ l. This yields

r 	 r̄(n) = (r \ r̄(n)) ∪ (r̄(n) \ r) ⊂
⋃
s∈u

I(n)
s \

⋃
s∈l

I(n)
s =

⋃
s∈bd(n)(r)

I(n)
s .

Since λ(I
(n)
s ) = 1

|Sn| for each s ∈ Sn we obtain

λ(r 	 r̄(n)) ≤
∑

s∈bd(n)(r)

λ(I(n)
s ) =

|bd(n)(r)|
|Sn|

.

�

Now we comment on a projective G-segmentation class with partitions con-

sisting of rectangles and line-divided rectangles. Recall the notation ΠFPf =∑
r∈P ΠFrf and that Sn = {1, . . . , n}2. We will use the following result for

the hierarchic segmentation classes.

Lemma 5.3.17: Let G be the space of constant functions on [0, 1)2. Let for

each r ⊂ [0, 1)2 the class of functions Fr = {1rg : g ∈ G} be given. Let P
be a partition of [0, 1)2 with cardinality k = |P|, which consists of rectangles

and wedges. Let for each n ∈ N the discretized version of P be given by

P(n) = {r̄(n) : r ∈ P}. Then

‖ΠFPf − ΠFP(n)
f‖22 = O

(
k

n

)
.

Proof. Since a line in a square with side length 0 < l ≤ 1 can intersect

at most (n · l + 2) plates of the form I
(n)
s , s ∈ Sn, in horizontal and the

same number in vertical direction, its discrete length can be estimated by

2n · l+4. Since the wedges (and rectangles) have at most 5 edges, the length

of the longest possible discrete boundary of r ∈ P can thus be estimated by

max{bd(n)(r) : r ∈ P} ≤ 10n + 20. By Corollary 5.3.16 there is constant

c > 0 such that

‖ΠFPf − ΠFP(n)
f‖22 = ‖

∑
r∈P

ΠFrf − ΠF
r̄(n)

f‖22 ≤
∑
r∈P

‖ΠFrf − ΠF
r̄(n)

f‖22

≤ |P|c · 10n/n2 +O(1/n2).

Thus the discretization error is given as O(k/n). �
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For dyadic wedge partitions the discretization error can be estimated even

with a better rate.

Lemma 5.3.18: Let G be the space of constant functions on [0, 1)2. Let for

each r ⊂ [0, 1)2 the class of functions Fr = {1rg : g ∈ G} be given. Let P
be a dyadic wedge partition of [0, 1)2 with cardinality k = |P| . Let for each

d ∈ N the discretized version of P be given by P(2d) = {r̄(2d) : r ∈ P}. Then

‖ΠFPf − ΠF
P(2d)

f‖22 = O

(√
k

2d

)
.

Proof. Recall the definition of the depth of a dyadic partition P on page 44.

Firstly we estimate the length of the discrete boundary of a partition P(2d)

with depth d. Each rectangle of the form [(i−1)2−l, i2−l)× [(j−1)2−l, j2−l),

1 ≤ i, j ≤ d, has by Lemma 5.3.3 an empty discrete boundary bd(2d)(r).

Therefore the only boundaries that have to be counted are given by the lines

intersecting such rectangles. Let l be the side length of a rectangle. The

length of the boundary of a wedge dividing the rectangle can be estimated

by bd(2d)(r) ≤ 2·l·2d. Let k = |P(d)| and let k′ ∈ N such that 4k
′−1 < k ≤ 4k

′
.

We estimate the length L
(2d)
P by enumerating the fragments as dyadic squares

ordered by size and count each dyadic square as two wedges:

L
(2d)
P =

∑
r∈P

bd(2d)(r) ≤ 2
k′∑
m=0

4m · 2 · 2−m · 2d ≤ 16 · 2d · 2k′−1 < 16 · 2d ·
√
k.

Thus by Corollary 5.3.16 there is a constant c > 0 such that

‖ΠFPf − ΠFP(n)
f‖22 = ‖

∑
r∈P

ΠFrf − ΠF
r̄(n)

f‖22 ≤
∑
r∈P

‖ΠFrf − ΠF
r̄(n)

f‖22

≤ c2d
√
k

1

4d
= c ·

√
k

2d
.

Therefore the discretization error is given as O(
√
k/2d). �

Horizon Functions

Now we explore (continuous) wedgelet segmentations with respect to suit-

ability for approximation of real valued functions over [0, 1)2. For a fun-

damental analysis of the approximation quality of these segmentations we
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consider functions that can be easily specified and characterized: so called

horizon functions, two-dimensional functions arising from segmentation of

[0, 1)2 by a one-dimensional function (horizon). We will exploit that one di-

mensional projections P̃ of the quad tree partition P can be used to estimate

the approximation quality of a wedgelet partition over P by the quality of a

piecewise (over fragments of P̃ ) affine approximation of the one dimensional

horizon. Before we can state the main result in more detail we have to devise

the needed background.

We consider horizon functions and start with their definition.

Definition 5.3.19: A horizon is a one dimensional function F : [0, 1) →
[0, 1]. The two dimensional associated function f defined by

f : [0, 1)× [0, 1)→ R, f(x, y) =

1 if y ≤ F (x)

0 otherwise

is called (two dimensional) horizon function.

Fig. 5.4: Horizon F with associated horizon function hF

Lemma 5.3.20: Consider two horizon functions f, g : [0, 1)2 → {0, 1} asso-

ciated to horizons F,G : [0, 1)→ [0, 1). Then

‖F −G‖1 = ‖f − g‖22.

Proof. Using Fubinis Theorem we obtain:

‖f − g‖22 =

∫
[0,1)2

(f(u)− g(u))2 dλ2(u)

=

∫
[0,1)

λ({x : f(x, y) 6= g(x, y)}) dx
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=

∫
[0,1)

|F (x)−G(x)| dx = ‖F −G‖1

and the proof is complete. �

Hierarchic Segmentations of Horizon Functions

Fig. 5.5: Piecewise affine approximation of horizon F and corresponding hierarchic
partition.

Lemma 5.3.21: Let for each k ∈ N the symbol Ak denote the class of piece-

wise affine functions from [0, 1) to [0, 1) with less or equal k pieces. Consider

α > 0 and let f be a horizon function with horizon F such that

inf
G∈Ak

‖F −G‖ = O(k−α).

Let G be a function class that contains the constant functions over [0, 1)2.

Consider the the projective hierarchic wedge G-segmentation class S = (P≤2,F).

Then

inf
(P,gP )∈S:
|P|≤k

‖f − gP‖22 = O(k−α).

Proof. For each piecewise affine function G : [0, 1) → [0, 1) with k pieces

there is a partition P ′ of [0, 1) such that G|r : r → [0, 1) is an affine function

for each r ∈ P ′. Thus for each r the two sets {(x, y) ∈ r × [0, 1) : y ≤ G(x)}
and {(x, y) ∈ r × [0, 1) : y > G(x)} form a wedge division of the rectangle

r× [0, 1). Since the constant functions are contained in G there is a hierarchic

wedge segmentation (P , gP) ∈ S with |P| ≤ 2k and gP = hG. Therefore by

Lemma 5.3.20

inf
(P,gP )∈S:
|P|≤k

‖hF − gP‖22 ≤ inf
G∈Ak/2

‖F −G‖ = O((k/2)−α) = O(k−α).
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�

Now we can present the statement concerning the rate convergence for piece-

wise constant hierarchic segmentations of horizon functions.

Theorem 5.3.22: Let the function space G ⊂ L2([0, 1)2) consist of constant

functions and let for each n ∈ N the finite set Sn = {1, . . . , n}2 and a

projective hierarchic wedge G−segmentation class S(n) = (P(n),F (n)), 2 <

a ≤ ∞, with fragments R(n) over Sn be given. Let (γn)n∈N be a sequence of

real numbers with γn → 0 and γnn2

logn
→∞ for n→∞. Let α > 0 and f be a

two dimensional horizon function with horizon F with

inf{‖F −H‖1 : H piecewise affine with k pieces} = O(k−α)

Let the triangular array (ξ(n))n∈N of random variables obey conditions (B1)

and (B2). Consider

(P̂(n), f̂ (n)) ∈ argmin
(P ′,f ′P )∈S(n)

H(n)
γn

(
δn(f) + ξ(n), (P ′, f ′P)

)
.

Then almost surely

‖ιn(f̂ (n)
P )− f‖22 = O

(
γ

2α
2α+1
n

)
.

In particular ‖ιn(f̂ (n)
P )− f‖22 = O(log2 n/n2)

2α
2α+1 .

Proof. The statement is based on Theorem 5.3.9. By Lemma 5.3.17 and

Lemma 5.3.21 it holds that

inf
(Q,g′)∈S(n),
|Q|≤k

‖ιn(g′)− f‖2 ≤ inf
(Q,g′)∈S(n),
|Q|≤k

inf
(P,fP )∈S,
|P|≤k

‖ιn(g′)− fP‖22 + ‖fP − f‖22

≤ O(k/n) +O(k−α).

Therefore we can set θ = 1 and F (n) = n in Theorem 5.3.9 yielding

‖ιn(f̂ (n)
P )− f‖22 = O

(
min

{
γ

2α
2α+1
n , γn · n

1
1+α

})
.

Setting γn = (log2 n)/n2 yields the particular statement which completes the

proof. �
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Dyadic Segmentations of Horizon Functions

Fig. 5.6: Affine approximation of F over a dyadic partition P̃ and a dyadic
wedgelet segmentation.

Theorem 5.3.23: Let the function space G ⊂ L2([0, 1)2) consist of constant

functions and let for each d ∈ N the finite set Sd = {1, . . . , 2d}2 and a pro-

jective dyadic wedge G−segmentation class S(d) = (P(d),F (d)), with frag-

ments R(d) over S2d be given. Let S be the corresponding projective wedge

G−segmentation class over [0, 1)2. Let (γd)d∈N be a sequence of real numbers

with γd → 0 and γd4d

d
→∞ for d→∞. Let α > 0 and f ∈ L2([0, 1)2) with

inf{‖f − g‖22 : (P , g) ∈ S : |P| ≤ k} = O(k−α). (5.15)

Let the triangular array (ξ(n))n∈N of random variables obey conditions (B1)

and (B2). Consider

(P̂(d), f̂ (d)) ∈ argmin
(P ′,f ′P )∈S(d)

H(2d)
γd

(
δ2d

(f) + ξ(2d), (P ′, f ′P)
)
.

Then almost surely

‖ι2d

(f̂
(d)
P )− f‖22 = O

(
γ

2α
2α+1

d

)
.

In particular, ‖ι2d
(f̂

(d)
P )− f‖22 = O(d2/4d)

2α
2α+1 .

Proof. The statement is based on Theorem 5.3.5. By Lemma 5.3.18 and the

assumptions it holds that

inf
(Q,g′)∈S(d),
|Q|≤k

‖ι2d

(g′)− f‖2 ≤ inf
(Q,g′)∈S(d),
|Q|≤k

inf
(P,fP )∈S,
|P|≤k

‖ι2d

(g′)− fP‖22 + ‖fP − f‖22

≤ O(
√
k/2d) +O(k−α).
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Therefore we can set θ = 1/2 and F (d) = 2d in Theorem 5.3.5 yielding

‖ι2d

(f̂
(2d)
P )− f‖22 = O

(
min

{
γ

2α
2α+1

d , γd · 2d·
1

α+1/2

})
.

Setting γd = d2/4d yields the particular statement which completes the proof.

�

Remark 5.3.24: The assumption (5.15) in the previous theorem has been

validated for a class of horizon functions induced by certain Hölder functions

by Donoho, see Donoho (1999), p. 871. In particular, if for a function F in

C1 there are a constant c and a real value 1 < α ≤ 2 such that

| d
dx
F (x)− d

dx
F (y)| ≤ c · |x− y|α−1, x, y ∈ [0, 1)2, (5.16)

then assumption (5.15) holds for the corresponding horizon function f .

We expect that there is a wider class of functions leading to the same or a

better result for the following reasons. Firstly, Donoho uses an equidistant

dyadic one-dimensional grid for the approximation of a function [0, 1)→ [0, 1)

by piecewise affine functions and argues by ‘back projection’ to a correspond-

ing dyadic wedge segmentation. It is known that the adaptivity of dyadic

segmentations would yield a better result. Secondly – and this is rather a

limitation of the consideration of horizons – functions and their inverse are

treated differently although the two dimensional horizon functions are in-

variant up to reflection. For example the function x 7→ x2 is a function with

α = 2 in (5.16) above but x 7→ x
1
2 is not at all contained in the class.

The result for the hierarchic segmentations is better than that for the dyadic

segmentations because the considered class of approximated functions is

much richer. This had to be expected since the hierarchic segmentations

exactly provide affine horizons. Nevertheless, the computational effort for

this model makes it less usable in practice, compare the runtime measure-

ments in the next chapter.
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5.4 Synopsis

In this chapter we have explored wedge segmentations resulting from mini-

mizing Potts functionals with respect to consistency and rates of convergence.

We have started with the set up borrowed from nonparametric regression.

Then we have devised the needed background concerning discretization and

embedding of data and segmentations and have specified the basic require-

ment on the noise. One crucial ingredient for the consistency and rates of

convergence is the maximal inequality (5.7) for the projection of the noise.

This result is valid under very broad conditions and it implies that if a seg-

mentation class is rich enough then the projection of the noise on any segment

can be uniformly estimated by the logarithm of the number of segments. On

the other side, also estimates of the approximation speed of the underlying

signal f by the used projective segmentation class are indispensable. These

ingredients are basic to the estimate provided by Lemma 5.2.8. Balancing

these two terms leads directly to the main theorems. Firstly, Theorem 5.2.9

provides consistency of the wedge segmentations. Here it was assumed that

the signal f may be perfectly approximated for the signal size tending to

infinity. Secondly, Theorem 5.2.11 included a rate of convergence. For this

result we had to assume that the segmentation class was given such that

the cardinality of a superposition of two partitions P and Q was given by

less than a constant factor of |P| + |Q|. Additionally, this theorem con-

tains explicit separate assumptions concerning the discretization error and

the approximation rate of the segmentation.

These results have been applied to the two crucial segmentation classes of

this thesis, the dyadic and hierarchic wedge segmentations. The result has

been formulated separately for these two classes. For both classes the number

of fragments of a segmentation had to be estimated. For the hierarchic model

the superposition of two segmentations is not subadditive in the aforemen-

tioned sense. Therefore a result concerning the convergence rate can only

be formulated with the restriction that hierarchic partitions have a globally

bounded number of vertical divisions of each horizontal stripe.

For piecewise polynomial approximations of a signal f ∈ L2([0, 1)2) consis-

tency has been displayed in Theorems 5.3.12 and 5.3.13. A result concerning

the convergence rate could only be formulated for the hierarchic model in

cause of the restriction just mentioned. Moreover, this result is formulated

for dyadic segmentations under the assumption that f is sufficiently smooth,

i.e. f ∈ Cm. There a rate near to the theoretical optimal rate could be
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presented.

For piecewise constant approximation of a signal f ∈ L2([0, 1)2) we treated

the discretization error separately from the projection properties. For a spe-

cial class of functions – the horizon functions – there are results providing

a convergence rate. The result for the hierarchic model is insofar better as

the class of horizon functions could be chosen much larger than it has been

done for the dyadic model in the literature. However, the result concerning

complexity, Theorem 4.3.1, and runtime measurements in the next Chapter

(pages 169 -174) show that the hierarchic model is of use in real applications

only with certain modifications.
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6. Experimental Results
In this chapter we will illustrate the theoretical results and algorithms of the

previous chapters by way of simulation results.

6.1 Implementation

The algorithms presented in the Chapters 1- 4 have all been implemented.

A software package is available together with a graphical user interface. We

will firstly comment on the framework the software has been developed in

and display some details of its structure. Then we will present results of a

runtime analysis.

6.1.1 Platform

The algorithms for the computation of wedge segmentations have been im-

plemented in Oberon. Oberon is the name for both an operating system

and a programming language in the Pascal/Modula tradition. The Oberon

project was launched in 1985 by N. Wirth and J. Gutknecht, see Wirth

and Gutknecht (1992), Gutknecht (1994) and http://www.oberon.ethz.ch.

The operating system Oberon is a single user, multi-tasking system that runs

on bare hardware or on top of a host operating system like Windows, MacOS

and Linux.

The software uses functionalities of the packages Voyager and AntsInFields.

Voyager is a project to explore the feasibility of a portable and extensible

system for simulation and data analysis systems. The Voyager project is

carried out by StatLab Heidelberg and was launched in 1993 by G. Sawitzki,

M. Diller, F. Friedrich et al, see Sawitzki (1996). AntsInFields is a software

package for simulation and statistical inference on Gibbs Fields. It has been

developed since 1997 by F. Friedrich, see Friedrich (2002), Friedrich (2003)

and http://www.antsinfields.de. Although the main focus of AntsInFields

is on stochastic simulation of Gibbs fields, the basic tools for handling and for

the visualization of one and more dimensional data supplied with AntsInFields

have proved to be very helpful for the implementation of the wedge segmen-
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tations.

By use of the framework Oberon the software is portable between different

operating systems. The sources of all components, from the system core

up to the high level mathematics routines, are contained and accessible.

Therefore, the software provides insight into its internal structure at any

level. Currently there are versions of the software for Linux, Windows, Blue-

bottle and NativeOberon provided. They will be made available online on

http://www.antsinfields.de.
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Fig. 6.1: Wedge segmentation with Oberon/Voyager/Ants on Windows (top) and
Linux(bottom).
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6.1.2 Details

Parts of the algorithms, in particular those concerning the constant models,

have been implemented by K. Wicker, see Wicker (2004). The linear regres-

sion plug-in has been written by L. Demaret and an extension to quadratic

models has been coded by P. Poongpiyapaiboon.

We have separated the implementation of the local regression from the (global)

minimization part of the algorithms. In order to achieve this, we provided

object definitions with a well defined interface for both, the local regression

part and the structures corresponding to the hierarchic partitions and the

quad-tree structure, see Figures 6.2 and 6.3.

LocalApproximation = OBJECT

penalty, distance: LONGREAL;

model: Model;

END;

Model = OBJECT ( . . . )

penalty: LONGREAL;

. . .

PROCEDURE Init; (* constructor *)

PROCEDURE PrepareApproximation (data: antsArrays.X2d);

PROCEDURE Approximate (x, y, w, h: LONGINT; VAR approx: LocalApproximation);

PROCEDURE FinishApproximation;

PROCEDURE Reconstruct (x, y, w, h: LONGINT; approx: LocalApproximation; reco: antsArrays.X2d);

. . .

END;

Fig. 6.2: Interface of the local regression model. The object LocalApproximation
acts as the container for the results of the local regression object.
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Segmentation = POINTER TO RECORD ( . . . )

PROCEDURE Init; (* constructor *)

PROCEDURE Create (data: antsArrayObjects.tLONGREALObject; maxdepth: LONGINT);

PROCEDURE PlugIn (model: Model; name: ARRAY OF CHAR; maxdepth: LONGINT);

PROCEDURE Minimize (gamma: LONGREAL): LONGREAL;

PROCEDURE Reconstruct (VAR reco: antsArrays.X2d);

PROCEDURE Remove (model: Model);

PROCEDURE RemoveAll;

PROCEDURE Stats (): StatisticObject;

. . .

END;

Fig. 6.3: Interface of the segmentation object. Regression models can be ‘plugged’
into the segmentation object.

We have made use of the local approximation objects in the modules for the

hierarchic model and the quad tree approach with a ‘plug-in’ mechanism.

This has many advantages. Firstly, debugging and testing the code could

be done in little separable parts. We tried to follow a component based ap-

proach as described in Szyperski (1998). Secondly, new regression models

can be programmed and inserted at any time (even at runtime). Equiva-

lently, new kinds of partitions can be implemented and one may make use

of the present local approximation models. Thirdly, the strongly object ori-

ented implementation led to a good modeling of the mathematical structure.

We could therefore provide a very fast implementation of the dyadic wedge

model by applying several models with different angles one after the other.

Compare the time measurements in the next section and the comparison

with BeamLab. We could even improve the efficiency of the approach of K.

Wicker with a speed up factor of about 3, see Wicker (2004), pp. 90-91 and

the time measurements below.

Currently provided are modules for regression on rectangles and wedge di-

vided rectangles with an arbitrary set of angles. For constant, linear and

quadratic regression, optimized code is implemented. Additionally, there is

a module that can do a generic regression on rectangles and wedges as dis-

cussed in Subsection 3.1.3. The set of angles can be used in an adaptive

way where it is chosen dependent on the depth of the corresponding rectan-

gle. This provides even faster algorithms, compare the time measurements

in Subsection 6.2.2 below.

The hierarchic partitions and the dyadic partitions are provided as objects

where the local regression models can be inserted by the aforementioned plug-
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in mechanism. It is possible to use different models with different penalties

in one segmentation. For instance, this may be used to get a lower number

of parameters when a constant regression is nearly as good as a linear one.

This might be useful for compression.

Both, hierarchic and dyadic segmentations, can be applied to images with

arbitrary not necessarily dyadic dimensions. Images can be loaded and stored

in a 16 Bit portable greymap format. Additionally, various formats can be

imported. The segmentation algorithms use mainly floating point arithmetics

with double precision (64 bit). This is also used for the cumulative sum

matrices.

The software has an object oriented design, it is modular, portable and con-

sists of readable and reusable code. There is a textual command based and

a graphical user interface.

Besides the plots that are already provided by the software packages Voy-

ager and AntsInFields, we have provided consistent interactive visualizations

of the hierarchic and the dyadic partitions. This implies that the user gets

immediate feedback for all computations. We believe in general that interac-

tive visualization is one of the essential tools for the illustration of complex

mathematical implications.

All objects implemented are fully persistent, which in the case of the dyadic

segmentations has an interesting effect: When a quad tree plot is stored

to disk, the relevant information contained in the complete tree is written.

Opening the stored data from disk results in opening the tree plot, and all

necessary information to reveal the image data for each parameter value γ is

already contained. Large image data can be processed and regression results

can be stored to disk in a first step. In a second step, the user may go on

processing the minimization results for the whole stack of images provided

by using different values of γ ≥ 0. One application would be a presentation

in a lecture: Demonstration panels, like the one displayed in Figure 6.4, can

be prefabricated, opened and results are then displayed in realtime, compare

Subsection 6.2.2.
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Fig. 6.4: Example of a persistent demonstration Panel. Minima are computed and
visualized in realtime.

6.2 Runtime Analysis

Consider a set of angles ∆, data z ∈ RS over a rectangle S = {1, . . . , N1} ×
{1, . . . , N2}, a finite dimensional function space F ⊂ R

S and a parameter

γ ≥ 0. According to Algorithm 4.2 the minimization of the Potts functional

over wedge segmentations is performed in two steps:

(1) Allocation and computation of the cumulative sum matrices I(α)(y) for

all angles α ∈ ∆.

(2) Fast computation of a minimum (P̂ , f̂P) of ‖fP−z‖22 +γ|P| over wedge

segmentations.

The following simulations have been carried out on a Windows variant of

Oberon/Bluebottle (WinAos 1.04a). They were performed on a Pentium

IV machine with 2.8 GHz and 1GB of memory. Test runtime measurements

showed an increase in speed of the algorithms on the Linux variant of Oberon

with a global speed-up factor of about 5/4. Native Oberon would be probably

even a bit faster. The time resolution was about 15 ms.

6.2.1 Hierarchic Segmentation

For an analysis of the runtime, images with different sizes have been created,

different models have been adopted, and the run times of steps (1)-(2) have

been measured for each image and different models. Since the contents of

the arrays do not influence the runtime, the images have been created with a

uniform random grey value content. We have randomized the image sizes to

prevent the runtime to be too dependent from a specific simulation scheme.
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For example the garbage collection of a previous run could provide a system-

atic effect. Other side effects are the cache management depending on the

underlying operating system, swap spaces in the memory etc. All simulations

have been performed on a freshly started, clean environment.

Runtime versus Number of Pixels

For each model we have drawn 100 sample images with size w × w, where

w was drawn from a uniform distribution over {1, . . . , 128} for the rectan-

gle models and {1, . . . , 16} for the wedge model. The following run times,

corresponding to the minimization scheme in the previous paragraph, are

displayed:

(1): Allocation of the cumulative sum matrices (blue circles)

(2): Minimization of the Potts functional (green crosses).

Fig. 6.5: Runtime (ms) versus number of pixels for a hierarchic rectangle segmen-
tation with constant regression.



6.2. Runtime Analysis 171

Fig. 6.6: Runtime (ms) versus number of pixels for a hierarchic rectangle segmen-
tation with linear regression.

Fig. 6.7: Runtime (ms) versus number of pixels for a hierarchic rectangle segmen-
tation with quadratic regression.

Fig. 6.8: Runtime (ms) versus number of pixels for a hierarchic wedge segmenta-
tion (4 angles) with constant regression.
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Because the runtimes for the hierarchic model are very long for large images,

we provided a mechanism to restrict the lengths of the segments in each

dimension to a given set of lengths. For example, it is possible to perform

the hierarchic wedge segmentation with dyadic lengths only. This results in

reasonable runtimes for larger images. We have therefore performed runtime

measurements with restriction to dyadic interval lengths as well. For each

model, we have drawn 100 sample images with size w×w where w was drawn

from a uniform distribution over {1, . . . , 256} and {1, . . . , 128}.

Fig. 6.9: Runtime (ms) versus number of pixels for a hierarchic rectangle segmen-
tation with constant regression, restriction to dyadic interval lengths.

Fig. 6.10: Runtime (ms) versus number of pixels for a hierarchic rectangle seg-
mentation with linear regression, restriction to dyadic interval lengths.
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Fig. 6.11: Runtime (ms) versus number of pixels for a hierarchic rectangle segmen-
tation with quadratic regression, restriction to dyadic interval lengths.

Fig. 6.12: Runtime (ms) versus number of pixels for a hierarchic wedge segmen-
tation (4 angles) with constant regression, restriction to dyadic interval
lengths.

Runtime versus Number of Angles

For a fixed image with dimensions 48×48 we have drawn 100 sample numbers

n from a uniform distribution over {0, . . . , 90}. For each number n a wedge

segmentation with n angles has been computed. This runtime measurement

has only been performed with restriction to dyadic interval lengths.



174 6. Experimental Results

Fig. 6.13: Runtime (ms) versus number of angles for a hierarchic wedge segmen-
tation with constant regression, restriction to dyadic interval lengths,
image size 48× 48.

6.2.2 Dyadic Segmentation

For dyadic wedge segmentations step (2) can be split into three steps since,

by their tree structure, the local minimization results on each dyadic square

can be stored in O(|S|). Additionally the cumulative sum matrices have to

be allocated for one angle only. This leads to the following minimization

scheme.

(a) Allocate the cumulative sum matrices for one angle.

(b) Create a tree data structure according to Procedure CreateTree (p. 53).

(c) Repeat the following steps for all angles α ∈ ∆

- Compute the cumulative sum matrices for angle α.

- Perform the local minimization of ‖fr− z‖22 in f ∈ Fr for each dyadic

rectangle r according to Procedure LocalMin (p. 53). Keep the result

in the tree if it is better than for the previous angles.

(d) Perform the minimization of the Potts functional with parameter γ by

recursive minimization according to Procedure MinTree (p. 54).

The great advantages of this scheme are that firstly there is only a mem-

ory consumption of O(|S| · dimF), which is crucial for large data, see next

paragraph, and secondly after performing the preparation steps (1)-(3) the

minimization of the Potts functional can be performed in realtime

for each γ ≥ 0. Once the preparation steps (a)-(c) have been performed
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each result can be accessed more or less immediately. Therefore the result of

the previous scheme can rather be seen as a set of images than one image

for one parameter γ. We will make use of this result in the next section.

For an analysis of the runtime, images with different sizes have been created,

different models have been adopted and the run times of steps (1)-(4) have

been measured for each image and different models. All simulations have

been performed on a freshly started, clean environment.

Runtime versus Number of Pixels

For each model we have drawn 1000 sample images with size w×w where w

was drawn from a uniform distribution.

The following run times, corresponding to the minimization scheme in the

previous paragraph, are displayed:

(a): Allocation of the cumulative sum matrices (blue framed rectangles)

(b): Allocation of the tree structure (black filled rectangles)

(c): Local minimization for all nodes in the tree (red crosses)

(d): Minimization of the Potts functional for γ ≥ 0 (green filled rectangles).

Fig. 6.14: Runtime (ms) versus number of pixels for a dyadic square segmentation
with constant regression. 1000 sample images from {1 × 1, . . . , 512 ×
512}.
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Fig. 6.15: Runtime (ms) versus number of pixels for a dyadic square segmentation
with linear regression. 1000 sample images from {1× 1, . . . , 512× 512}

Fig. 6.16: Runtime (ms) versus number of pixels for a dyadic square segmentation
with quadratic regression. 1000 sample images from {1 × 1, . . . , 512 ×
512}
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Fig. 6.17: Runtime (ms) versus number of pixels for a dyadic wedge segmentation
(10 angles) with constant regression. 1000 sample images from {1 ×
1, . . . , 512× 512}

Fig. 6.18: Runtime (ms) versus number of pixels for a dyadic wedge segmen-
tation (10 angles) with linear regression. 1000 sample images from
{1× 1, . . . , 512× 512}
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Fig. 6.19: Runtime (ms) versus number of pixels for a dyadic wedge segmentation
(10 angles) with quadratic regression. 1000 sample images from {1 ×
1, . . . , 256× 256}

Runtime versus Number of Angles

For images with fixed dimensions we have drawn sample numbers n from a

uniform distribution over {0, . . . , 359}. For each number n a wedge segmen-

tation with n angles has been computed.

Displayed are the following run times corresponding to the minimization

scheme:

(1): Allocation of the cumulative sum matrices (blue framed rectangles)

(2): Allocation of the tree structure (black)

(3): Local minimization for all nodes in the tree (red crosses)

(4): Minimization of the Potts functional for γ ≥ 0 (green).

Fig. 6.20: Runtime (ms) versus number of angles for a piecewise constant dyadic
wedge segmentation. 100 samples, image size 128× 128.



6.2. Runtime Analysis 179

Fig. 6.21: Runtime (ms) versus number of angles for a piecewise linear dyadic
wedge segmentation. 100 samples, image size 128× 128.

Fig. 6.22: Runtime (ms) versus number of angles for a piecewise quadratic dyadic
wedge segmentation. 100 samples, image size 128× 128.

The set of angles can be adaptively used: Half of the set of angles is used for

each increasing depth of the corresponding quad tree. A motivation for this

procedure is presented in Paragraph 6.3.3 below. Using this adaptive scheme

provides the following runtime measurements.
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Fig. 6.23: Runtime (ms) versus number of angles for a piecewise constant dyadic
wedge segmentation. 1000 samples, image size 128 × 128, adaptive
angles.

Fig. 6.24: Runtime (ms) versus number of angles for a piecewise linear dyadic
wedge segmentation. 1000 samples, image size 128 × 128, adaptive
angles.
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Fig. 6.25: Runtime (ms) versus number of angles for a piecewise quadratic dyadic
wedge segmentation. 1000 samples, image size 128 × 128, adaptive
angles.

6.2.3 Comparison with ‘BeamLab’

The extraordinary fast runtimes of our software can be shown by comparison

with another library for computation of wedge segmentations, ‘BeamLab’.

BeamLab is a package running on MatLab. It contains routines for constant

wedgelet segmentations of images with exclusively dyadic dimensions. We

used MatLab version 6 and BeamLab as loaded from the webpage on the

8.6.2004, see Donoho et al. (2004). For a wedgelet segmentation BeamLab

needed on a 2.8 GHz Pentium IV machine the following runtimes dependent

on the image sizes. For a comparison we append approximate runtimes for a

wedgelet model in our approach with different number of angles. An adaptive

model removes half of the angles when entering the next depth in the quad

tree. The ‘equivalent’ model is an adaptive model with a number of 1024,

512, . . . , 32 angles corresponding to image sizes 512 × 512, 256 × 256, . . . ,

16. This should be roughly equivalent with considering every wedgelet in the

image.
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Image size 16× 16 32× 32 64× 64 128× 128 256× 256 512× 512

BeamLab 6.72s 45.34s 330.41s 2676.3s 27918s > 12h

≈ 5.5min ≈ 44.6min ≈ 7h45min

dyadic wedge < 0.02s 0.05s 0.2s 1.2s 8s 59s

equivalent

dyadic wedge 1s 2s 8s 37s 140s 722s

1024 angles

dyadic wedge 0.2s 0.3s 1.6s 6s 24s 120s

180 angles

dyadic wedge < 0.01s < 0.01s 0.04s 0.2s 1s 10s

4 angles

dyadic square < 0.01s < 0.01s < 0.01s 0.04s 0.5s 6s

6.2.4 Synopsis

The computation of hierarchic segmentations is in general much slower than

the computation of dyadic partitions.

The simulations have experimentally validated Theorem 4.3.1. The runtime

is linear in the number of angles. It is quadratic in the number of pixels

in the case of the hierarchic model, and it is linear in the number of pixels

for the dyadic segmentations. If only dyadic interval lengths are permitted

in the hierarchic model, it shows a runtime behavior that is close to linear.

Concerning the number n of functions in the constant, linear and quadratic

model, n = 1, n = 3 and n = 6, the runtime simulation showed a much

less than n3 behavior. This was expected since the computational overhead

for the tree traversal and the computation of moments with the cumulative

sum matrices, which is O(n2), dominates the procedure for relatively small

dimensions of the local regression model.

The hierarchical model has a good theoretical performance in special cases

such as the approximation of horizon functions, compare Paragraph 5.3.4.

However, its large runtimes for reasonable image data makes it unsuitable

in practical applications. A restriction of the considered stripe widths and

heights to, for instance, dyadic values makes its performance more tolera-

ble. However, since the method seems in most cases to be inferior to the

dyadic approach, we content ourselves to show one or two results in the next

paragraph and will then stop to address the hierarchic segmentations.

For dyadic square segmentations the main part of the runtime was needed for

the allocation and computation of the cumulative sum matrices. For dyadic

wedge segmentations the runtime consisted mainly of the computation time

of the local regression part. The time for the allocation of the tree and the
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global minimization can be neglected in comparison with the other parts.

Once the preparation steps (1)-(3) have been performed, the minimization

of the Potts functional can be done more or less immediately, the plots show

that this time is about the time resolution (0-30 ms). Interestingly the dyadic

wedge segmentations became faster the longer the simulation ran (not visible

in the plots). We suppose that this is due to a reorganization of the mem-

ory structure resulting in a faster access to local variables in the recursive

procedures.

Compared to an old version of our software (as cited in Wicker (2004)) we

could increase the speed by a factor of about 3. A comparison to the package

BeamLab yields a speed-up factor of about 3500.

6.3 First Experiments: Phenomenological

Description

In this section we will comment on the properties of wedge segmentations

when applied to natural images or phantoms. We start with an analysis of

comparability when sizes or grey-value ranges of images are scaled. Then

we present a collection of concrete examples with different types of image

data. We close this section with some experimental results concerning the

angular resolution of wedge segmentations and a short experiment for horizon

functions.

6.3.1 Scaling of γ

In order to compare segmentations of images with different size or grey-value

range the segmentations should be ‘nearly invariant’ under the respective

scaling operations. We make this more precise in this paragraph. Recall that

we consider the minimization of the functional

H(z, (P , fP)) = γ · |P|+ ‖fP − z‖22

for segmentations (P , fP) from some segmentation class S over an image

domain S.

For notational simplicity we consider squares Sn = {1, . . . , n}2, n ∈ N. Recall

the scaling operators ι(n), n ∈ N, defined in Chapter 5 on page 125 that

embed segmentations over Sn into the continuous square [0, 1)2.
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Lemma 6.3.1: Consider for each n ∈ N a class of segmentations Sn over

Sn. Let for each n ∈ N

Fn = {ι(n)(P , fP) : (P , fP) ∈ Sn}.

Let n1, n2 ∈ N, z1 ∈ RSn1 , z2 ∈ RSn2 and assume that ι(n1)(z1) = ι(n2)(z2)

and that there is a segmentation class S over [0, 1)2 such that S = Fn1 and

simultaneously S = Fn2 . Let γ > 0. Then, with γ1 = |S1| ·γ and γ2 = |S2| ·γ,
the following holds:

ι(n1)

(
argmin

(P,fP )∈S1

Hγ1(z1, (P , fP))

)
= ι(n2)

(
argmin

(Q,fQ)∈S2

Hγ2(z2, (Q, fQ))

)
.

Proof. Since by definition of ι(n) and δ(n) it holds that δ(n)(ιn(z)) for all

z ∈ RSn , we can apply Lemma 5.1.7 and get

(P , fP) ∈ argmin
S1

H(n1)
γ (z1, ·)

if and only if

ιn1(P , fP) ∈ argmin
S

H̃(n1)
γ (ι(n1)(z1), ·)

and the respective result for S2. Since the minimizers of Hn
γ (z, ·) are the

minimizers of H|Sn|·γ(z, ·) the proof is complete. �

Lemma 6.3.1 implies that differently sized versions of the same data gener-

ate the same segmentations up to size, if γ is scaled by the size, provided

that the segmentation classes are the same up to a scaling. In practice this

assumption about the segmentation classes is hardly ever fulfilled but it is

a good approximation and experiments showed that the segmentations look

very similar. See Wicker (2004), page 94. It is easy to see that the statement

of the previous lemma is also true for arbitrary rectangular image domains.

Lemma 6.3.2: Consider an image domain S, data z ∈ RS and a real value

γ > 0. Let a class of segmentations S over S be given such that (P , fP) ∈ S

implies (P , µ · fP) ∈ S for all µ > 0. Let γ > 0. Then

(P̂ , f̂P) ∈ argmin
S

Hλ2γ(z, ·)

implies for all λ > 0 that

(P̂ , f̂P/λ) ∈ argmin
S

Hγ(z/λ, ·).
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Proof. It holds that ‖z − fP‖22/λ2 = ‖z/λ − fP/λ‖22. Therefore a location

of a minimum (P̂ , f̂P) of (P , fP) 7→ γ · λ2|P| + ‖z − fP‖22 is a minimizer of

(P , fP) 7→ γ|P|+ ‖z/λ− fP/λ‖ and therefore (P̂ , f̂P/λ) minimizes

(P , fP) 7→ γ|P|+ ‖z/λ− fP‖.

�

The previous lemma implies that different (grey-)value-scaled versions of one

image produce the same segmentation up to a scaling of the function values if

γ is scaled with the squared scaling factor. In practice this scaling parameter

λ is the number of grey-values.

We conclude that for a good comparison of outcomes of the minimization

for data z with different geometries and (grey-)value range, the parameter γ

has to be scaled with the size of image data and with the square of numbers

of greyvalues λ. All images and experimental data in this thesis have been

created with the scaled parameter

γscaled := γ · |S| · λ2/(256)2.

6.3.2 Visual Inspection

In this section we present a collection of concrete examples produced by

the methods developed in this thesis. We selected the examples in order to

illustrate what kind of result the algorithms produce with different types of

image data. The data are representative for some important image features,

like texture structure, boundaries, contrast, edges etc. There is no rigorous

treatment but only a phenomenological analysis. We evaluate the estimates

by visual inspection. Nevertheless this should give us valuable hints for the

performance of the algorithms.

Example 6.3.3 (‘new york’): In Figure 6.26 various outcomes of the hierar-

chic model are displayed. Since the hierarchic segmentation is much slower

than the dyadic segmentation, for complex models the outcome was restricted

to dyadic lengths only.

Example 6.3.4 (‘patterns’): In Figure 6.27 a collection of Brodatz textures

is displayed. The figure shows that a wedge segmentation cannot resolve
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patterns. The relatively good reconstruction of parts of the image comes

from the quadratic regression model.

Example 6.3.5 (‘bird’): Figure 6.28 demonstrates the adaptivity of the quad

tree model. The relevant large scale structures in the image are well detected.

Example 6.3.6 (‘barbara’): Figure 6.29 demonstrates that the dyadic wedge

model with linear regression is well suited to detect fine structure with high

contrast. Observe how the black and white stripes in the image are well

approximated by the model.

Example 6.3.7 (‘contrast’): Figure 6.30 shows that the L2-distance of the

Potts functional leads to different treatment of same geometric structures

with different contrast to the background in the image.

Example 6.3.8 (‘chess’): In Figure 6.31 a 5 × 5- chess board is segmented

with a dyadic square partition. Since the board is not dyadic, the dyadic

partition shows artefacts while the hierarchic partition does a perfect re-

construction with far less segments. The artefacts arise since the quad tree

structure is not shift invariant. The double lines on the hierarchic partition

are caused by grey-values in the original image.

Example 6.3.9 (‘K’): In Figure 6.32 a typical artefact of the linear model

is displayed. It appears already in usual one-dimensional linear regression.

Strong contrasts in image data lead to big gradients in the rectangle. Because

of linearity, they are balanced by an overdrawing at the smooth edge of a

wedge and new discontinuities are produced.

Example 6.3.10 (‘rotation’): Figure 6.33 displays a typical case where a

wedge model is superior to the dyadic model. Additionally it shows that the

wedge model provides quad tree artefacts where an angle of some edge in the

image does not exactly fit to the model.

Example 6.3.11 (‘ibb’): In Figure 6.34 it can be observed that the linear

wedge model is well suited for smooth color transitions. The corresponding

edge plot shows that the linear model needs less squares to represent more

or less the same result.
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Example 6.3.12 (‘slope’): Figure 6.35 displays the difference between a seg-

mentation with constant and one with linear regression. Smooth color tran-

sitions are well recognized by the linear model. Additionally one can see

that the linear model has a direction and therefore performs well with less

wedge intersection than in the constant case. Again quad tree artefacts and

different contrast levels lead to irregular approximation.

Example 6.3.13 (‘splash’): Figure 6.36 shows that dependent on the pa-

rameter γ structures with very little contrast such as noise and the mirroring

of the splash in the water are removed. This indicates that the segmentation

might be useful for denoising of images.

Example 6.3.14 (‘zebra’): In Figure 6.37 the dyadic wedge model is com-

pared with a sophisticated edge detection algorithm from stochastic image

analysis. It has been performed using AntsInFields and is explained in Winkler

(2002), p. 223. Interestingly the relatively simple dyadic wedge segmentation

extracts similar features as the stochastic algorithm.

Example 6.3.15 (‘goldhill’ and ‘boat’): In Figures 6.38 and 6.39 the pa-

rameter dependence of the outcome of the algorithm is displayed. A low

value of γ obviously corresponds to a lot of structure and many segments

while larger values result in smoother images with less information needed

for a specification.
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Fig. 6.26: Image ‘nyc’, 256 × 168 (top), segmentations with a hierarchic model.
Constant regression with no limitations, γ = 1; constant regression with
dyadic lengths, γ = 0.1; wedge model with constant regression, dyadic
lengths, 10 angles, γ = 1; linear regression, dyadic lengths (from top to
bottom).
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Fig. 6.27: Image ‘patterns’, 512 × 256 (top), segmentation with a dyadic square
and a dyadic wedge model (5 angles) with quadratic regression. γ = 0.2
(middle and bottom).
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Fig. 6.28: Image ‘bird’, 256× 256, segmentation with a dyadic square model with
constant regression. γ = 0.01



6.3. First Experiments: Phenomenological Description 191

Fig. 6.29: Image ‘barbara’, 256 × 256, segmentation with a dyadic square model
and a wedge model (180 angles) with linear regression. γ = 0.002



192 6. Experimental Results

Fig. 6.30: Image ‘contrast’, 256× 256, segmentation with a dyadic square model
and dyadic wedge model (180 angles, adaptive with offset 2) with con-
stant regression and linear regression. γ = 0.34
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Fig. 6.31: Image ‘chess’, 256 × 256, segmentation with a dyadic square model
with constant regression and with a hierarchic model with constant
regression. γ = 0.01

Fig. 6.32: Image ‘K’, 128 × 128, segmentation with a dyadic square model with
linear regression. γ = 0.27
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Fig. 6.33: Image ‘rotation’, 256 × 256, segmentation with a dyadic square model
and dyadic wedge model (180 angles) with constant regression. γ = 0.1
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Fig. 6.34: Image ‘ibb north’, 324x240, segmentation with a dyadic square model
with constant regression (middle) and linear regression (bottom). γ =
0.01
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Fig. 6.35: Image ‘slope’, 256×256, segmentation with a dyadic wedge model (180
angles) with constant regression, γ = 0.25 (middle) and linear regres-
sion (bottom), γ = 0.17.
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Fig. 6.36: Image ‘splash’, 256 × 256, segmentation with a dyadic square model
with constant regression, γ = 0.001 (middle) and γ = 0.03 (bottom).
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Fig. 6.37: Image ‘zebra’, 210 × 142, pixel edge process sampled with a Gibbs
sampler (middle), segmentation with a dyadic square model and wedge
Model (180 angles) with constant regression, γ = 0.26 (bottom). For a
better comparability only wedges are displayed in the partition plot.
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Fig. 6.38: Image ‘goldhill’, 256× 256, segmentations with a dyadic square model
and wedge Model (180 angles) with constant regression, γ = 0.001,
γ = 0.01, γ = 0.1 and γ = 1 (from top to bottom).
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Fig. 6.39: Image ‘boat’, 256 × 256, segmentations with a dyadic square model
and wedge Model (180 angles) with quadratic regression, γ = 0.001,
γ = 0.01, γ = 0.1 and γ = 1 (from top to bottom).
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6.3.3 Angular Resolution

A well known measure to rate the quality of approximations of images is

the Peak to Signal Noise Ratio (PSNR). It is a logarithmic scaling of the

normalized inverse of the mean square error: Let d ∈ N and S be a finite

set of pixels. Then the PSNR value rating the distance of two images x, y ∈
{1, . . . , d}S is given by

PSNR(x, y) = 10 · log10

(
|S| · d2

‖x− y‖22

)
.

We use this function to rate segmentations because

• it is frequently used in image processing,

• it includes the same distance measure that has been used in the func-

tional,

• it is very fast to compute (in fact it is computed as a by-product in

Algorithm 4.2).

In this paragraph we present rate-distortion curves for a collection of images.

The PSNR of a segmentation is plotted against the number of pieces for a

segmentation class S. A pair (k, %) on such a curve can be interpreted in

the following way: The minimization algorithm computes for k the segmen-

tation yielding the maximal PSNR with at most k pieces in the segmentation

class S. Therefore the curve measures the approximation behavior of S. A

comparison of rate distortion curves for different angles therefore allows to

assess the impact of the angular resolution of an approximation. The x-axis

of the plots can be understood as a resolution parameter of the wedgelet ap-

proximation. Low PSNR values correspond to coarse approximation of the

image.

Although our focus is not on image compression we start with an interpre-

tation of the curves via compression. The left end of the curve corresponds

to low bit rate compression. A steep ascent of the rate distortion curve for

a given image points to a good compression potential of wedgelets for this

particular image. Similarly the right end of the curve indicates a lower bound

for achievable compression rates, compare the curves for images ‘sticks’ and

‘camera’ in Figures 6.41 and 6.40. For instance, the PSNR curves for im-

age ‘camera’ show an immediate rise to a PSNR value of 25 dB for very
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small numbers of pieces. Hence the use of wedgelets for very low bitrate ap-

proximation of the camera image seems realistic. This is in accordance with

the fact that the camera image consists of large uniform areas with smooth

boundaries, i.e. locally the camera image looks like a smooth horizon func-

tion. Quite the opposite effect can be witnessed in the plot of image ‘sticks’

which has extremely poor PSNR values even for a substantial number of

pieces. This is an indicator of the poor approximation powers of wedgelets

with respect to textures. Similarly the presence of textures in image ‘bar-

bara’ in Figure 6.43 accounts for a lower ascent of the curve in intermediate

regions between 5000 and 20000. By contrast, for artifical geometrical exam-

ples such as the image ‘circles’, a very good approximation is already possible

for a small number of segments.

The plots reveal that the gain of incorporating wedge splits over mere quad

tree approximations already amounts to several decibels of PSNR. The varia-

tions due to angular resolution are on a similar scale, excepting the extremal

example ‘circles’. Increasing the number of angles has a limited effect. In

general one expects an increase of angular resolution to result in a better

approximation behavior. This intuition is correct whenever there is an inclu-

sion relation between the respective sets of angles. If this is not the case the

opposite can occur. To name an example, for high resolution six angles can

be worse than only four. The reason is a discretization effect; for four angles,

the set of high resolution wedgelets provides a better fit of image structures.

For coarse resolution this is in general not the case, compare the extract in

Figure 6.42 for image ‘Obelix’.
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Fig. 6.40: Image ‘camera’, 256 × 256. PSNR against number of segments for
different number of angles: black 0, green 2, yellow 4, blue 6, turquoise
32, red 512.

Fig. 6.41: Image ‘sticks’, 256× 256. PSNR against number of segments for differ-
ent number of angles: black 0, green 2, yellow 4, blue 6, turquoise 32,
red 512.
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Fig. 6.42: Image ‘obelix’, 253 × 341. PSNR against number of segments for dif-
ferent number of angles: black 0, green 2, yellow 4, blue 6, turquoise
32, red 512.

Fig. 6.43: Image ‘barbara’, 256 × 256. PSNR against number of segments for
different number of angles: black 0, green 2, yellow 4, blue 6, turquoise
32, red 512.
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Fig. 6.44: Image ‘peppers’, 256 × 256. PSNR against number of segments for
different number of angles: black 0, green 2, yellow 4, blue 6, turquoise
32, red 512.

Fig. 6.45: Image ‘tree’, 256×256. PSNR against number of segments for different
number of angles: black 0, green 2, yellow 4, blue 6, turquoise 32, red
512.
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Fig. 6.46: Image ‘circles’, 256 × 256. PSNR against number of segments for dif-
ferent number of angles: black 0, green 2, yellow 4, blue 6, turquoise
32, lightblue 256, red 512.

Adaptive Angles

Now we motivate the adaptive choice for the set of angles that can be op-

tionally switched on in our software. Let l ∈ N denote the number of angles

and let the set of angles be given by

∆l :=
{
−π

2
,−π

2
+
π

l
, . . . ,

π

2
− π

l

}
.

Consider an image domain S = {1, . . . , n}2, n ∈ N. By Corollary 3.2.18 the

number of linear partitions in a grid is bounded from above by n4. We will

not take this number for an estimate of the needed lines but rather consider

the lines that connect pixels located on the boundary of S. In fact we will

parameterize wedge splits by pairs of points on the boundary and angles.

This is motivated by the continuous model where each wedge can be described

either by two points on the boundary or by one point on the boundary plus an

angle. In the discrete case we are faced with the ambiguities arising from the

varying pixelizations of straight lines, compare Paragraph 3.2.2. Nevertheless

it is reasonable to assume that the same geometric variety can be generated

by using the latter approach, where the number of angles in a given dyadic

square scales with the number of boundary points. This reasoning suggests

taking O(2j) angles for dyadic intervals of size 2j. The PSNR plots below
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provide evidence that this procedure yields the same results as taking the

full set of n angles in every dyadic scale, for an image of size n× n.

Fig. 6.47: PSNR against number of segments for a wedge model (black) and an
adaptive wedge model (red) for image ‘barbara’, size 256 × 256, left:
128 angles, right: 256 angles.

Fig. 6.48: PSNR against number of segments for a wedge model (black) and an
adaptive wedge model (red) for image ‘barbara’, size 128×128, left: 64
angles, right: 128 angles.

Fig. 6.49: PSNR against number of segments for a wedge model (black) and an
adaptive wedge model (red) for image ‘circles’, size 128× 128, left: 64
angles, right: 128 angles.
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6.3.4 Horizon Functions

Recall from Theorem 5.3.23 that for a certain class of horizon functions we

derived a rate of convergence. Remark 5.3.24 provides a subclass of horizons

for which the aforementioned theorem can be applied. In particular for the

class of wedge segmentations S over [0, 1)2 it holds that

inf{‖g − f‖22 : (P , g) ∈ S, |P| ≤ k} = O(k−2),

if f is the horizon function corresponding to the horizon x 7→ x2. We have

created a horizon function from this horizon for various resolutions and have

plotted log ‖f − f̂‖22 against number of segments of the associated wedge

segmentation, see Figure 6.50. One expects a slope of 2 for this curve at high

resolution scales. This cannot be validated with this experiment. A reason is

definitely the discretization effect when dealing with too small segments. For

a high resolution scale the algorithm approximates the signal much better

than in a continuous setting. Even for bigger image sizes the expected slope

could not be reasonably extracted from the plot. In the derivation of the rate

of the convergence in Donoho (1999), a number of O(2j) angles is required for

squares of size 2−j, i.e. the smaller the rectangles is, the higher the angular

resolution is assumed to be. For discrete images, this is obviously not a

reasonable assumption and is not in line with the statements of Paragraph

6.3.3.

Fig. 6.50: log ‖f − f̂‖22 against log number of segments for images horizon x 7→ x2

(black) and x 7→ x1/2 (red), both 512× 512.
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6.4 Denoising Experiments

In this section wedge segmentations are investigated with respect to denois-

ing. In Paragraph 6.4.1 some experiments with a collection of noisy images

are presented. It will turn out that the presence of noise can be traced in

the plot of number of pieces against the parameter γ of a segmentation. In

Paragraph 6.4.2 simulations are performed that indicate that the variance of

the noise can be estimated from these curves for a large class of distributions.

6.4.1 The Effect

In this paragraph some experiments with noisy images are presented. In

the sequel the symbol f will stand for image data, and g will stand for

a noisy version of the same image. The symbols f̂γ and ĝγ will stand for

segmentations of f and g, respectively, with parameter γ ≥ 0. The following

observation can be made frequently: When wedge segmentations of noisy

image data g are displayed for different values of γ increasing on a logarithmic

scale, then there is a relatively small range of (logarithmic) values of γ where

the noise on the resulting image ĝγ suddenly vanishes over the whole image

domain, see Figure 6.51. It is desirable to have a reasonable estimator of this

breakpoint of regularity.

This resolution parameter of the noise is clearly visible as a minimum on plots

displaying the distance ‖f− ĝγ‖22 of the segmented noisy image to the original

image against the logarithm of the parameter γ. It can also be detected when

plotting ‖f̂γ − ĝγ‖22 against log γ roughly at the steep descent of the curve,

see Figure 6.53. This observation is not particularly surprising. Moreover, it

cannot be used in real applications since the original image is unknown.

Interestingly the plot of the number of pieces of a segmentation of noisy data

against the logarithm of the corresponding parameter γ reveals a similar

behavior as ‖f̂γ − ĝγ‖22 against log γ for small values of γ. In Figures 6.53-

6.59 the resolution parameter can be roughly estimated by means of these

curves. For a priori smooth images the difference between the plots for noisy

images and those for the original image is visible more clearly than for images

with many details on the high resolution scale, compare Figure 6.57 and 6.55.

Moreover, the effect gets stronger for increasing noise, see Figures 6.57 and

6.59. The last two figures do also suggest that for varying noise the curve

is translated horizontally. In the next paragraph, we will experimentally

investigate this dependency of the noise in more detail.
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γ = 0.001 γ = 0.003 γ = 0.01

γ = 0.03 γ = 0.1 γ = 0.3

γ = 1 γ = 3 γ = 10

Fig. 6.51: Wedge segmentations of noisy image ‘bird’. Original image distorted by
Gaussian noise with variance 1000 (top). Dyadic wedge segmentations
with 512 adaptive angles and constant regression for different parameter
values of γ on a logarithmic scale. Observe the sudden vanishing of noise
roughly at γ = 0.03.
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Fig. 6.52: Image ‘bird’, original f (left) and distorted version g, Gaussian noise
with variance 1000 (right).

Fig. 6.53: Plots to image ‘bird’. Thin lines: dyadic square model, thick lines:
dyadic wedge model with 512 adaptive angles. Upper plot: ‖f̂γ − ĝγ‖22
(black) and ‖ĝγ − f‖22 (red) versus log γ. Lower plot: number of pieces
of ĝγ (blue) and of f̂γ (black) versus log γ.
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Fig. 6.54: Image ‘circles’, original f (left) and distorted version g, Gaussian noise
with variance 1000 (right).

Fig. 6.55: Plots to image ‘circles’. Thin lines: dyadic square model, thick lines:
dyadic wedge model with 512 adaptive angles. Upper plot: ‖f̂γ − ĝγ‖22
(black) and ‖ĝγ − f‖22 (red) versus log γ. Lower plot: number of pieces
of ĝγ (blue) and of f̂γ (black) versus log γ.
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Fig. 6.56: Image ‘mandrill’, original f (left) and distorted version g, Gaussian
noise with variance 1000 (right).

Fig. 6.57: Plots to image ‘mandrill’. Thin lines: dyadic square model, thick lines:
dyadic wedge model with 512 adaptive angles. Upper plot: ‖f̂γ − ĝγ‖22
(black) and ‖ĝγ − f‖22 (red) versus log γ. Lower plot: number of pieces
of ĝγ (blue) and of f̂γ (black) versus log γ.
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Fig. 6.58: Image ‘mandrill’, original f (left) and distorted version g, Gaussian
noise with variance 5000 (right).

Fig. 6.59: Plots to image ‘mandrill’. Thin lines: dyadic square model, thick lines:
dyadic wedge model with 512 adaptive angles. Upper plot: ‖f̂γ − ĝγ‖22
(black) and ‖ĝγ − f‖22 (red) versus log γ. Lower plot: number of pieces
of ĝγ (blue) and of f̂γ (black) versus log γ.
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6.4.2 Detecting the Noise Level

In this paragraph curves displaying the log of number of segments against

log γ are investigated. A comparison of these plots for the original data, the

noisy image and a noisy flat distorted with the same distribution show that

the curves for noisy data are in fact given as a superposition of the ones for

the noise and the original data. They roughly consist of two components.

One for the noise in the high resolution part and one for the signal in the

lower resolution part. This division can be made out the clearer the smoother

the original image is.

The plots below display the number of segments against log γ for segmen-

tations on the original image, a noisy version and a noisy flat, both noised

with the same distribution. Thin lines correspond to a dyadic square model

while thick lines correspond to a wedge adaptive model with 512 angles. All

images are of size 256× 256.

Fig. 6.60: Plots for image ‘bird’. Log number of segments against log γ for segmen-
tations on the original image, a noisy version and a noisy flat, variance
1000. Lower right: Overlay of the curves.
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Fig. 6.61: Plots for image ‘circles’. Log number of segments against log γ for
segmentations on the original image, a noisy version and a noisy flat,
variance 1000. Lower right: Overlay of the curves.

Fig. 6.62: Plots for image ‘mandrill’. Log number of segments against log γ for
segmentations on the original image, a noisy version and a noisy flat,
variance 1000. Lower right: Overlay of the curves.
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Fig. 6.63: Plots for image ‘mandrill’. Log number of segments against log γ for
segmentations on the original image, a noisy version and a noisy flat,
variance 1000. Lower right: Overlay of the curves.

A comparison of the Figures 6.62 and 6.63 suggests that a change of the vari-

ance of the noise yields a horizontal translation of the noise curve. Addition-

ally, if the variance remains unchanged this curve seems to be independent

of the underlying noise for a large class of distributions. We have simulated

a noisy flat for a normal distribution, a uniform distribution and a Laplace

(double exponential) distribution, all of them with different variances. Figure

6.64 shows that the plots are nearly independent of the underlying distribu-

tions, which provides a hint to the robustness of corresponding estimators of

the variance or the noise resolution parameter.
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Gauss, variance =10 Gauss, variance =10000

Uniform, variance =10 Uniform, variance =10000

Laplace, variance =10 Laplace, variance =10000

Gauss, variances =1, 10, . . . , 1000000 Uniform, variances =1, 10, . . . , 1000000

Laplace, variances =1, 10, . . . , 1000000 Gauss, Uniform, Laplace, variance=10000

Fig. 6.64: Plots for a noisy flat. Thin lines: dyadic square model, thick lines:
dyadic wedge model with 512 adaptive angles. Displayed are log num-
ber of segments agains log γ.
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Figure 6.64 also suggests that the translation of the curves is log linear de-

pendent of log of the variance. In the following plots we have displayed the

left most point on the noise curves with |P̂γ| ≤ 10 as an estimator of the

horizontal translation of the curve, and obtained the log log linear depen-

dency displayed in Figure 6.65. This can be used to estimate the variance

in a noisy image. Experiments where the curves of a noisy flat are adjusted

to the curves of a noisy image in an interactive environment, showed that

indeed the variance of the added noise can be determined quite accurately.

An automatic determination should thus not be very difficult.

Gauss Uniform

Laplace Gauss, Uniform, Laplace

Fig. 6.65: Plots for a noisy flat. Thin lines: dyadic square model, thick
lines: dyadic wedge model with 512 adaptive angles. Displayed are
log(inf{γ > 0 : |P̂γ | ≤ 10}) against log variance of the noise.

6.5 Synopsis

This chapter includes experiments that have been performed with the algo-

rithms presented in this thesis. All algorithms have been implemented in an

interactive environment and will be made available online. A runtime analy-

sis experimentally verified the statements about complexity in Theorem 4.3.1

and made clear that dyadic wedge segmentations can be computed quickly

for reasonable image dimensions. Hierarchic segmentations can be computed
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in bearable time only with certain restrictions and are therefore rather of

theoretical relevance.

We have strictly separated the local regression part from the minimization

and reconstruction part of the algorithms, both in theory and in the imple-

mentation. This yielded the following striking feature: Once some precom-

putation steps have been performed, the Potts functional can be minimized

more or less immediately for each resolution parameter γ for reasonable im-

age sizes. A consequence is that we consider the result of the algorithm to

be rather the set of images for all parameters γ than only a single mini-

mization result. This gave rise to experiments that take advantage of this

multiresolution approach.

Plots of the PSNR values against the number of segments of a segmentation

for different natural and artifical images, reveal features of wedge segmen-

tations with respect to potential compression rates. It turned out that in-

corporating wedge splits gains already some decibel in comparison to mere

quad tree segmentations. For natural images an increase of the number of

angles beyond an amount of 32 does not radically improve the approxima-

tion in terms of PSNR. For geometric images this limit can be identified at

about an amount of 256 − 512 angles. For even faster performance of the

precomputation steps, we proposed an adaptive choice of the angular resolu-

tion. There the number of angles is chosen to be O(2j) for dyadic intervals

with side lengths 2j. Comparisons of this adaptive scheme with taking the

full angle set for all resolutions reveal a nearly unchanged PSNR curve, if an

initial amount of l angles for images with size l × l is taken.

In experiments with noisy images an interesting effect can be observed. When

wedge segmentations are displayed for values of γ on a logarithmically in-

creasing scale, then there is a small range of γ where the noise suddenly

vanishes. This breakpoint of γ can be identified on plots displaying the (log)

number of segments against log γ. Simulations of noisy images and a noisy

flat for different distributions and different variances have revealed that the

noise can be identified by a certain slope in the corresponding curves. This

suggests a method for estimation of both the variance and the noise resolution

parameter for the purpose of denoising images.
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Discussion and Outlook

In this discussion, we display desirable future work in italics.

We have considered minimization of functionals of the form

Hγ : S→ R, (P , fP) 7→ γ · |P|+ ‖fP − f‖22, γ ≥ 0,

on the set of wedge segmentations S over image domain S.

For these particular functionals and for two classes of wedge segmentations

we have presented efficient minimization schemes. These are based on an

efficient recursion scheme over partitions and a fast computation of the lo-

cal regressions on each fragment of a partition. We have provided efficient

algorithms performing the local regression for any finite dimensional func-

tion space over polygonal domain that require a precomputation of certain

matrices for all directions within the respective polygon. Thereby we have

presented an algorithm for efficient minimization of Potts functionals over

wedge segmentations with arbitrarily adjustable angular resolution.

As already mentioned in Chapter 1, efficient minimization algorithms are

possible for a wider class of functionals by means of the reduction princi-

ple. If it holds, then a minimization of the functional can be performed

by separate computation of the local minimization for each fragment and

the minimization over the set of partitions, i.e. the recursion schemes for

dyadic and hierarchic partitions remain valid. For example, the algorithms

can be (and have already been) applied to a functional of the form (P , fP) 7→
γ ·
∑

r∈P Edge Length(r)+ ‖fP − f‖22 with minor modifications. (In this case

the immediate accessibility of minimizers for each γ after some precompu-

tation steps for the dyadic model would be lost.) However, a modification

of the data term ‖fP − f‖22 to other distances, such as the more robust L1

distance, does not allow for an easy generalization of the results of this thesis

concerning the local regression part. The problem is, that the computation

of moments such as the mean over regions of the image must then be replaced

by nonlinear functions of the data, such as, for instance, segmentwise medi-

ans. It would be of high interest to find similar fast computation methods for

other distances than L2. Willett and Nowak (2003) suggest a modification of

the functional that is intended as an approximate solution to this problem.

A straightforward extension of the minimization algorithms to problems,

where an explicit interaction between different fragments of a partitions is of

importance, is not possible, since this would violate the reduction principle.

However, the statements about efficient regression over polygonal domain are
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self contained and might be of use for the solution of other minimization prob-

lems. There, for instance, we think also on more complex partition schemes.

Since the local regression part of the minimization algorithms has already

been formulated and implemented for basically any class of function spaces,

namely finite dimensional function spaces, an analysis using completely dif-

ferent function spaces would be interesting. A use for better resolution of

patterns is imaginable.

Completely new geometries could be adopted. The summation trick used for

the computation of moments in polygons works in similar form for lines,

curves and other shapes.

We have investigated segmentation classes with respect to consistency. The

requirement on the noise to be subgaussian is quite mild and it would not

make much sense to invest additional effort into generalizations. We showed

that, if a certain approximation rate is given on the continuous side and if

the discretization error is bounded in a given way, then consistency and even

a rate of convergence hold for a wide class of segmentations. We have ap-

plied this result to dyadic and hierarchic wedge segmentations. Two scenar-

ios from literature, piecewise polynomial approximation of smooth functions

and constant approximations of horizon functions, have also be investigated.

We expect, that the results hold for more general regression models. For

piecewise polynomial approximations we obtained consistency for the hierar-

chic wedge segmentations and additionally a rate of convergence for dyadic

wedge segmentations and sufficiently smooth original image. For constant

approximations, we address the problem of discretization and approximation

separately and formulate results for horizon functions. In this special case for

hierarchic segmentations we have proved a convergence rate that is superior

to that of dyadic segmentations. In the one-dimensional case, the nonlinear

approximation spaces of functions approached at a given rate are well known

for a great variety of function spaces, compare DeVore (1998). For wedgelets

and derivatives, in the two-dimensional set up, only few, partial results exist,

e.g. for horizon functions with Hölder-regular boundaries, compare Donoho

(1999), pp. 866-873. Since horizon functions are one dimensional in nature,

these results are usually based on one-dimensional approximation results ap-

plied to the boundary. It should be stressed that the existing results do not

fully exhaust the adaptivity of dyadic partitions. A related open problem is the

development of sharp results, such as the characterization of function spaces

by their approximation behavior.
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In applications, the parameter γ has to be chosen in an adequate way. The

asymptotics derived in Chapter 5 do not provide sufficient information in this

respect, since only the optimal asymptotics for γ were determined. Even for

the case of one-dimensional signals, this problem is not solved in a satisfac-

tory manner. The non-asymptotic estimate derived in Paragraph 5.2.2 gives

additional information that could be used for the choice of the parameter γ.

All algorithms presented in this thesis have been implemented in an inter-

active environment and will be made available online. A runtime analysis

experimentally verified the statements about runtime and memory consump-

tion of the algorithms. By a strict separation of the local regression part from

the minimization and reconstruction part of the algorithms, both in theory

and in the implementation, we obtained, that, once some precomputation

steps have been performed, the Potts functional can be minimized in real

time for each resolution parameter γ. This gave rise to experiments that

take advantage of a multiresolution approach.

Plots of the PSNR value against the number of segments of a segmentations

for different natural and artifical images have given hints that wedge seg-

mentations are well suited for compression. This was not in the focus of

this thesis. Thus, a detailed analysis of wedge segmentations with respect to

compression would clearly be of interest. For this purpose, an adaption of the

functional, incorporating coding cost, will be instrumental.

It turned out, that for natural images an increase of the number of angles

beyond an amount of 32 does not radically improve the approximation in

terms of PSNR. For geometric images this limit could be identified at about

an amount of 256−512 angles. For even faster performance of the precompu-

tation steps, we proposed an adaptive choice of the angular resolution leading

to further speed-up. Comparisons of this adaptive scheme with taking the

full angle set for all resolutions revealed a nearly unchanged PSNR curve, if

an initial amount of l angles for images with size l × l is taken.

Experiments showed a great potential of the methods provided here for the

purpose of image denoising. When wedge segmentations are displayed for

values of γ on a logarithmically increasing scale, then there is a small range

of γ where the noise suddenly vanishes. This breakpoint of γ can be identified

on plots displaying the (log) number of segments against log γ. Simulations

of noisy images and a noisy flat for different distributions and different vari-

ances have revealed that the noise can be identified by a certain slope in the

corresponding curves. This suggests a method for estimation of both the vari-
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ance and the noise resolution parameter for the purpose of denoising images.

Since it is both easy to implement and important for practical application,

further studies of this method will be done in near future. Beside that, theo-

retical results are desirable.

The development of multiscale techniques employing the whole range of mini-

mizers seems to be a rather promising and rich field for new research. In par-

ticular, the directional information coded in wedgelet approximation should

be of use.

Fields of possible applications include segmentation, denoising, compression,

image resampling and edge detection of images.
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Greek

β universal constant of subgaussian noise 129

∆ set of angles 103

δ canonical discretization 20

δn discretization of continuous function to function over Sn 125

δR(P), discretization of partition P of [0, 1)2 in R 37

ιn embedding of a function over Sn to a function over [0, 1)2 125

Λn(∆, R) set of simple polygons in R with n vertices and angles ∆ 100

ξ(n) matrix of independent random variables 124

ΠP orthogonal sum of projections
⊕

r∈P Fr 134

ΠFr projection onto function space Fr, r ∈ R 28

%H
i ((0, 1)) subgraph of the edge %i of polygon % 96

%O
i ((0, 1)) strict subgraph of the edge %i of polygon % 96

Roman

bd(n)(r) discrete boundary of r ⊂ [0, 1)2 152

Cm Space of m times continuously differentiable functions. 147

dirϕ horizontal direction functions for homeomorphism ϕ 92

D mapping from adjacent points p, q to a linear dichotomy 80

D dichotomy 78

F class of admissible functions 22

f (n) averaged version of f : [0, 1)2 → R over n× n grid 124
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fP family of functions fr, r ∈ P 23

H̄γ Potts functional on continuous domain [0, 1)2 127

H̃
(n)
γ discrete Potts functional embedded into [0, 1)2 127

Hγ Potts functional to parameter γ 28

H
(n)
γ Potts functional with normalized data term 127

I(ϕ) inside of Jordan curve ϕ(T) 86

Iα(f) cumulative sum arrays with angle α to function f 102

I
(n)
s 1/n× 1/n cells of [0, 1)2, s ∈ Sn 124

dab(s) signed weighted distance of s ∈ R2 to line through a, b ∈ R2 78

L(Vn) set of terminal nodes of quad tree (Vn, En) 46

Ld,α discrete line with intercept d and angle α 73

map(A,B) set of functions from set A to set B 22

N set of integers greater or equal zero 19

Nϕ,ψ(s) crossing direction function for two jordan curves ϕ, ψ 87

O(ϕ) outside of Jordan curve ϕ(T) 86

O(g(n)) order of g(n) 29

(P , fP) segmentation 22

P , Q partition 20

P partition class 20

P
(n)
≤k class of hierarchic square partitions with bounded vertical divi-

sions 145

W
(n)
≤k class of hierarchic wedge partitions with bounded vertical divi-

sions 145

pH subgraph of point p 96

pO strict subgraph of point p 96
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R set of admissible fragments 20

R set of real numbers 19

r(n) discretization of set r ⊂ [0, 1)2 152

S segmentation class 22

S image domain 20

Sn domain {1, . . . , n}2, n ∈ N 124

Tx,α(r) division of a rectangle by a line with offset x and angle α into

wedges Ax,α(r), Bx,α(r) 69

T unit circle, T = {(x, y) ∈ R2 : x2 + y2 = 1} 85

(Vn, En) (quad) tree with nodes Vn and edges En, n ∈ N number of quad

split operations. 45

VH(M) points vertically below or in M 74

VM(M) points strictly above M 74

W wedge segmentation class 115

Ȳi(%, z),Yi(%, z) sum of values of z below line %i of polygon % 96

Z set of integers 19

Other Symbols

P ∧Q superposition of partitions P and Q 135

dxe smallest integer greater than or equal to x 101

bxc largest integer less than or equal to x 101

≺ half order on Rn, n ∈ N 27

A�B {a× b : a ∈ A, b ∈ B} 45

A	B symmetrical difference of set A and B 151

∂ neighborhood relation 20
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