Array-Structured Object Types for
Mathematical Programming

Felix Friedrich and Jirg Gutknecht

Computer Systems Institute, ETH Ziirich, Switzerland
{felix.friedrich,gutknecht}@inf.ethz.ch

Abstract. In this paper a concept for structured mathematical pro-
gramming within an object-oriented language is presented. It leads to
better readable, more natural and more compact code in typical linear
algebra applications and provides options for optimized implementation.
We also discuss the realization of this concept as an extension of the
programming language Active Oberon.

We define new built-in array types that provide a slight modification of
classical arrays in Oberon. By introducing range-valued indices as array
designators, we permit the use of regular sub-domains of arrays as para-
meters of operators and procedures. The built-in types are complemented
by custom array structured object types. The latter can be specified by
the programmer and are designed to be syntactically compatible with
the former. They provide the needed flexibility for the language.

1 Introduction

There are already concepts for mathematical programming proposed both in
multi-purpose languages, such as Fortran, Zpl and Chapel, and in special purpose
packages like Matlab, Mathematica and R, just to mention a few. Concepts
in common mathematical languages are too specific and functionality is too
complex for a general purpose language. However, these approaches must not be
ignored but rather be used for inspiration.

Besides other advantages of the programming language Oberon, its clarity and
readability is undoubtedly a good reason to go for it. Because it is more abstract
and closer to mathematics than system near languages such as C/C++, Java etc.,
it permits to implement mathematical algorithms in very clear and structured
form. However, by experience and inspection of code, in particular for linear
algebra and imaging applications, we discovered that a small extension of the
language can significantly increase efficiency and readability.

We cannot present a solution that satisfies all possible needs. Although it is
tempting to implement as much functionality as possible, we aim at a coherent,
self-contained concept that avoids redundant language constructs and program-
ming pitfalls. To achieve such a lean model, we attach equally much importance
to constructs that we provide and to functionality that we deliberately omit.

We believe that a programmer can enhance an implementation considerably
without having to deal with system near constructs: The ideal case is of course
the development of theoretically better algorithms providing lower complexity
and lower run-times. But also using the structure inherent to a problem in the
implementation can be of high value. For instance, in the context of array op-
erations, existing code can be made considerably clearer and more efficient by
exploiting that certain operations can be performed block-wise. We are not aim-
ing at an automatic enhancement on the code generation level (as, for instance,
in ATLAS, cf. [2]) but want to give the programmer tools at hand with which
he can incorporate his expert knowledge about the structure of the matter.
The objective of this paper is to establish an object oriented concept of (multi-
dimensional) array-structured types. Purpose is intuitive and efficient mathemat-
ical programming. The paper is organized as follows: Section 2 has a motivating
nature. It provides some preliminary examples of our language extensions and
contains conceptional considerations. The new language constructs are then pre-
sented in Section 3 in detail. This last part comprises the formal specification
of built-in and custom array types, of operators on and between them, of range-
valued indices used as array designators and some implementation specific notes.
The paper ends with a conclusion.

2 Preliminary Conceptual Considerations

The first part of this section contains examples providing a quick insight to our
new language constructs. In the second part we will give reasons for the design
that is then particularized in Section 3. The current state of the art in Oberon
is recapitulated in the third part.

2.1 Illustration

In this paragraph, we examine code from a typical Oberon linear algebra imple-
mentation and illustrate our approach by ways of these examples. The examples
are not exhaustive and anticipate notions that will be explained in Section 3.

Operators: Matrix Multiplication The most prominent example of a linear
algebra operation is certainly the multiplication of two matrices. A naive Oberon
version is displayed in Fig. 1 and a version with elimination of the inner loop is
depicted in Fig. 2. It is obvious that, having readability in mind, this construct
in general has to be replaced by a call to a procedure or better by a language-
integrated multiplication operator as displayed in Fig. 3. But not only this can
be learned from the displayed algorithm: If L and R are large matrices then
cache misses are highly probable in the inner loop, since R is processed column-
wise. Operators between arrays and dimensions-permuted storage formats are of
benefit here and possible in the new approach.

VAR A,B,Res: POINTER TO ARRAY OF ARRAY OF REAL;
i,j,k: LONGINT;
temp: REAL;

(GRS

(* check shapes *)

FOR i := 0 TO LEN(L,0)-1 DO

FOR j := 0 TO LEN(R,1)-1 DO

temp := 0;
FOR k := 0 TO LEN(R,0)-1 DO
temp := temp + L[i,k]*R[k,jl;
END;
Res[i,j] := temp;

END;

END;

Fig. 1. Naive matrix multiplication

VAR A,B,Res: POINTER TO ARRAY OF ARRAY OF REAL;
i,j: LONGINT;

(x ... %)
(* check shapes *)
FOR i := 0 TO LEN(L,0)-1 DO

FOR j := 0 TO LEN(R,1)-1 DO

Res[i,j] := L[i,..]1+*R[..,j]; (* pseudo scalar product *)
END;

END;
Fig. 2. Naive matrix multiplication,inner loop eliminated
VAR A,B,Res: ARRAY [..,..] OF REAL;
(C)
Res := AxB;

Fig. 3. Matrix multiplication with natural notation

Sub-array Structures Very often operations are not performed on the com-
plete array but rather on sub-array structures, such as (parts of) columns or rows
of a matrix. A first example with operation on rows and columns of a matrix

has already been displayed in Fig. 2.

The singular value decomposition algorithm provided by LAPACK is one promi-
nent example consisting of many such operations. In Fig.4 a small portion of
the code is displayed. Our approach includes range-valued indices that, applied

to an array, form a designator of certain substructures, see Fig. 5.

VAR u: POINTER TO ARRAY OF ARRAY OF REAL;
s,h,f: REAL; i,j,k,1,m,n: LONGINT;

(x ... %)
FOR j := 1 TO n DO
s := 0.0;
FOR k := i TO m DO
s := s + ulk, i] * ulk, j]
END;
f :=s / h;

FOR k := i TO m DO
ulk, jl1 := ulk, jl + £ * ulk, il

END;
END;
Fig. 4. Small part of SVD in classical notation
VAR u: ARRAY [..,..] OF REAL; s,h: REAL; i,j,1,m,n: LONGINT;
(x ... %)
FOR j := 1 TO n DO
S :=uli..m,il+*uli..m,j]; (* scalar product *)
uli..m,j] := uli..m,j]l + s/h* uli..m,i]; (* element-wise operations *)
END;

Fig. 5. Code from Fig. 4 using new approach

Custom Array Types Since not all possible features can be implemented in
a built-in array type, we have made provision for the implementation of custom
array types. Figure 7 contains a sample implementation of a sparse matrix, i.e. a
two dimensional array that only has a small number of nonzero elements. In
Fig. 6 it is shown how such a new type harmonizes with the concept of ‘normal’
arrays. Note that the two dimensional array structure and the element type is
constituted in the (array) type declaration of SparseMatrix.

VAR A: ARRAY [10,10] OF REAL; B: SparseMatrix; i: LONGINT;

(x ... %)

A :=1; (* fill matrix A with ones *)

NEW (B, 1000,1000) ; (* sparse matrix of size 1000x1000 *)
FOR i := 0 TO 999 BY 10 DO

Bli..i+9,i..i+9] := A; (* £ill blocks along diagonal *)

END;

Fig. 6. Using custom array types. Implementation of SparseMatrix suggested
in Fig. 7

TYPE
SparseMatrix*= ARRAY [..,..] OF REAL (* 2d array structure with element type real *)
VAR d: Data; lenO,lenl: LONGINT; (* assume type Data is defined elsewhere *)

PROCEDURE NEW(i,j: LONGINT); (* allocation *)
BEGIN

(* create data structure *)

len0 := i; lenl := j;
END NEW;

PROCEDURE LEN(i: LONGINT): LONGINT; (* sizes, shape *)
[CRPLY)]
END LEN;

PROCEDURE "[]"(i,j: LONGINT): REAL;
BEGIN

(* range check *)

RETURN Get(d,i,j)
END "[1";

PROCEDURE "[]"(i,j: LONGINT; r: REAL);

BEGIN
(* range check *)
Put(d,i,j,r);

END "[]";

(* matrix extraction *)

PROCEDURE "[]"(al..bl BY c1,a2..b2 BY c2: LONGINT): ARRAY [..,..] OF REAL;
VAR A: ARRAY [..,..] OF REAL; (* in this implementation: extract block as built-in array *)
BEGIN

IF al = MIN(LONGINT) THEN al := O END; (* defaults *)

IF bl = MAX(LONGINT) THEN bl := lenO-1 END; (* defaults *)
(x same for a2,b2 *)

(* range check *)

NEW(A, (bl1-al) DIV ci,(b2-va2) DIV c2);

Extract(d,A,al..bl BY c1; a2..b2 BY c2);

RETURN A;
END "[1";

(* submatrix assignment *)
PROCEDURE "[]"(al..bl BY c1,a2..b2 BY c2: LONGINT; VAR A:ARRAY [..,..] OF REAL);
BEGIN
(* defaults, range check *)
Insert(A,d,al..bl BY ci1, a2..b2 BY c2);
END "[1";

END SparseMatrix;

(* Get, Set, Extract, Insert routines skipped *)

(* operator overloading *)

PROCEDURE ’#*’ (A,B: SparseMatrix): SparseMatrix;

(x oo

END ’%’;

PROCEDURE ’*’ (A: SparseMatrix; VAR B: ARRAY [..,..] OF REAL): ARRAY [..,..] OF REAL;
(x ... %)

END ’*’;

(x ... %)

Fig. 7. Draft of a sparse matrix implementation

2.2 Design Objectives

In this paragraph we state basic conditions and establish a concept that is in
compliance with them.

Requisites Our goal is an approach that, in particular for arrays, supports the
following general key requirements.

1. Efficiency. It should be possible that expert knowledge about the structure
of an algorithm is incorporated into an implementation to achieve efficiency.

2. Notational simplicity. Mathematical programs must well be readable and
notation should conform with usual mathematical conventions.

3. Structural simplicity. A programmer must not need to handle system matters
like complicated pointer arithmetics and memory management.

4. Extensibility. The built-in features of a language cannot satisfy all possi-
ble needs. It should thus be possible to add arbitrary functionality on an
implementation level if it agrees with stipulated syntax and semantics.

5. Safety. Typical safety features, such as range- and type-checking must be
preserved by the extension of the language.

To achieve efficient implementations of array-based algorithms, fast single ele-
ment accesses are obviously necessary in the first place. Also the availability of
optimized block-wise operations on sub-array configurations can improve speed
considerably in many cases. The most prominent example is the generalized
matrix multiplication identified to be the main performance kernel of the Basic
Linear Algebra Subprograms (BLAS), cf. [2], p. 10. Figure 8 illustrates the gain of
speed reached by using an optimized matrix multiplication using Intel’s Stream-
ing SIMD extensions (SSE), which add vector-oriented capabilities to general
purpose processors. The displayed measurements refer to inline assembler code
within an optimized Oberon module. Optimizations of this and similar kind will
be done by the compiler and can in principle be applied to any type of regular
array substructure. A discussion of optimization techniques in detail is beyond
the scope of this paper.

Another important issue for efficiency is the avoidance of cache missing and cache
trashing when dealing with large data, cf. [7]. Notational simplicity implies that
block-wise operations have to be denoted in a common form and that specific
optimizations, such as the avoidance of cache missing, must happen behind the
scene and should not affect the notation. In the context of array handling, exten-
sibility implies the implementation facility of arrays that cannot be represented
as a linear piece of memory. Typical examples are sparse matrices or images with
special boundary conditions such as ‘periodic’, ‘mirrored’ etc. Regarding safety,
array range checks are indispensable as they are substantial for debugging and
vital for system safety.

4e+07

3.5e+07 |- B
C++ unoptimized
3e+07

2.5e+07 b

2e+07 q
Plain Oberon
1.5e+07 - / // 4

1e+07 |- SSE enhanced Obercn7

C++ optimized
Ses08 | = / -
// IR g

0 - L
0 10 20 30 40 50 60 70 80 90 100
Matrices’ Rows and Columns

Processor Cycles

Fig. 8. Processor cycles of matrix multiplication. Oberon vs. C4++ vs. optimized C++
vs. Oberon using SSE instructions, source: [14]

2.3 Concepts of the New Array Types

To comply with the aforementioned requisites, we decided to extend the function-
ality of Oberon built-in arrays and complement them by compatible (programmer-
definable) custom array-structured types. To explicitly discriminate the newly
proposed built-in arrays from the classical array types in Oberon, we will in
this text now and then denote them as special arrays. Special arrays permit the
use of ranged indices as array designators. This construct allows to pass regular
sub-domains of arrays to procedures and to use them as operands in expressions.
This, together with the availability of efficient operators, leads to more readable
and efficient code in linear algebra applications. Moreover, it allows the identi-
fication of independent pieces of code that can be optimized, for example being
executed in parallel. As a further positive side effect, the needed array memory
representation permits a dimension-permuted storage scheme that can be uti-
lized for the avoidance of cache missing. Range checks are performed for each
single element access and can be optimized to one single check for the access to
an entire sub-structure. Safety is thus preserved while efficiency can be achieved
by using the concept of ranges and operators.

For mathematical programming we generally prefer value semantics to refer-
ence semantics as it assures unambiguity of operations, in particular assignment
and test for equality. Consequently, special arrays are value types (like records),
rather than reference types (like objects). Memory allocation and pointer mech-
anisms are performed on behalf of the programmer behind the scenes. The pro-
grammer is only confronted with the definition and usage of fix- or variable-sized
arrays. As a consequence, dynamic arrays are not exposed as pointers to an array
structure: an array may well be of length zero but physically it invariably consists
at least of the descriptor containing information about its shape. The decision

for value semantics does not imply a severe restriction since arrays may still
be wrapped into records or objects. For shared access this would be necessary
anyway since concurrent access is managed by mutual exclusion on an object
level in Oberon. Value semantics can also be regarded as additional protection
against unintentional concurrent access to an array.

Custom array types can be specified by the programmer and are designed to
be syntactically compatible with the built-in arrays. They provide the needed
flexibility for the language. For operations on and between array types we use
the already implemented operator concept of Oberon together with the facility
of overloading. Internally, a custom array type is designed like a wvalue object
type whose signature explicitly contains the array structure. In this respect it
is not regarded as an extension of a built-in array, but merely as a custom
type that mimics the behavior of an array. Custom array types are abstract
data types that may contain variables and procedures, but cannot be extended.
The most important difference to the indexer concept of C# is that the array
access structure of a custom array type is provided and fixed by its signature.
We regard array structure as not only a property but merely as very immanent
feature that must be statically tied to the respective object. In particular it
allows to define substructures of object types in a clean way and prevents the
misuse of mathematical ‘indexers’ for general purposes.

The dimension of an array is statically determined, i.e. cannot be changed at
runtime, neither for built-in types nor in the programmer-definable form.

We repeat the main achievements of this concept. It permits

1. notational compactness in linear algebra applications,
2. optimizations by utilizing block-wise operations while preserving safety,
3. a clean implementation of (non-contiguous) custom array structures.

Discarded Ideas Arrays in general stand for data of the form E, where F
is a set of possible single states and S is a subset of Z?. Thus the specification
of an array type A requires the definition of an element type B (referring to the
set of single states F), a specification of the index set S and access patterns
for elements of A. Although it somehow reflects the mathematical nature of E¥,
for the sake of simplicity we do not introduce a separate type for the domain S
as for example done in the programming language Chapel [4] and (partially) in
ZPL [5].

The following features are of interest in some applications and can be im-
plemented with custom array types. For built-in types, however, we decided
against them: Customizable lower bounds for arrays provide potential pitfalls in
programming, therefore built-in arrays have a fixed lower bound of zero. Free
boundary conditions, such as “mirrored”, “wrapped” etc., cannot be set for the
built-in arrays, because it would generally prohibit efficiency for single element
access. Built-in arrays do not permit the appending, insertion and deletion of
elements since this requires a complex data type. (A reasonable implementa-
tion is provided by the software package Voyager, cf.[16]). The same holds for a

built-in type of a sparse array representation. Having a common type for both
‘normal’ and sparse arrays would represent a dilemma for efficiency. Moreover,
there are various forms of matrix storage schemes, such as Compressed Row /-
Column Storage, Jagged Diagonal Storage etc., cf. [8]. We therefore decided to
provide the flexible and efficient sparse matrix specification according to [3] as
sample implementation using custom array-structured types.

Another approach that we discussed was the support of properties (built-in at-
tributes) of arrays / matrices such as ‘diagonal’; ‘symmetric’ etc. on a language
level. For example, the (dynamic) array structure could be taken into account to
optimize the execution speed of operators like multiplication. On a static level
this is already possible using custom array types. However we decided that the
rare cases where a dynamic optimization would be possible are not worth the
enormous computational effort and discarded this idea.

We also discarded the uses of indexers, as for instance provided by C#, because
taking substructures would not be possible in a clean way, compare previous
paragraph.

3 Specification of the Language Extension

In this section the syntax of the new built-in arrays and custom array types
in Oberon is provided. Further some implementation specific notes are stated.
We first recapitulate the status quo of Oberon: In classical Oberon it is not
possible to address sub-arrays that do not form a contiguous block. New array
types with different element access rules, such as sparse matrices, cannot be
added to the system. The dimension order in memory coincides with that of
the notation. From the view of mathematical programming the pointer notation
used in Oberon for dynamic arrays is somewhat unnatural.

3.1 Built-in Arrays

Special arrays do not replace the classical arrays of Oberon but are added to the
language. A special array type is determined by a statement that is compliant
with the EBNF rule

ARRAY "[" Length{"," Length} "1" OF Type ";". (1)
where Length is either given by an expression or two periods:
Length = ".." | Expression. (2)

The index set of an array is a rectangular d-dimensional set. The lower bound is
zero in each dimension. Special arrays can be defined statically, semi-dynamically,
dynamically and open. They are regarded as value types. Unallocated dynamic
arrays have zero length dimensions. Constant arrays can also be specified like
displayed in Fig. 9.

A: ARRAY [..,..] OF REAL (* declaration of dynamic size matrix *)
B: ARRAY [3,5] OF REAL (* declaration of static size matrix *)

LEN(B,i) (* length of dimension i, LEN(B)=LEN(B,0) *)
NEW(A,3,5) (* allocation of dynamic size matrix *)
[[1,2,3],[4,5,6]1] (* constant array *)

r := A[i,j] (* element read access *)

Ali,j] :=r (* element write access *)

Fig. 9. Some examples regarding the notation of special arrays

Operators There are unary and binary operators predefined. Binary operators
apply to two arrays or an array and a base type. Most important is the opera-
tor ‘:=": Special arrays may be assigned to each other. Since they are of value
type, assignment infers copy of content. For any operation on two arrays with
a compatibility requirement, such as assignment, the shape of the arrays must
match, that is dim(A)=dim(B) and LEN(A,i)=LEN(B,i) for all 0 < i < dim(A),
and the element types must be compatible w.r.t.the operation. The predefined
operators on and between arrays are displayed in Fig. 10 and 11. With respect
to efficiency, the objective of having operators is to leave open the possibility
of fast (potentially parallel) execution of operations that usually require many
single element accesses. The displayed operators (together with the special cases
for matrices, see below) are chosen from typical applications in linear algebra
and are promising with respect to significant speed-up of most frequently used
routines. The notation is deliberately designed to be near to that of MatLab.

operator operand result meaning

’=7 array of number array element-wise negation

P~ array of boolean array element-wise inversion

’ABS’ array of number array element-wise absolute value
PMIN’ , °MAX’ array of number scalar minimal and maximal element
’SUM’ array of number scalar sum of elements

’PRODUCT” array of number scalar product of elements

Fig.10. Unary array operators

operator operands result meaning

1= scalar,array array assignment of value to each element
ri=2 array,array array assignment of same sized arrays

& TR S & array,scalar array element-wise scalar operation

>/’ , °MOD’ , ’DIV’

T array,array array element-wise operation

’ /0 , ’MOD’ , ’DIV’

Tk array,array scalar pseudo scalar product

)= array,array boolean test of equality

Fig. 11. Binary array operators

VAR A,B: ARRAY [..,..] OF REAL; r: REAL; b: BOOLEAN;

(x ... %)
B:= -A; (* element wise negative of A *)
B:= ABS(A); (* element wise absolute value of A *)

MIN(CA), MAX(A) (* minimal / maximal element of A *)
A+ B, A-B (* sum and difference *)

A .x B, A./ B (* element-wise product and quotient *)
A +x B (* (pseudo) scalar product *)

b := A=B; (* equality *)

Fig. 12. Operators on and between special arrays

For arrays of non-arithmetic types, the operators are still undefined (but can be
overloaded). The definition of the (pseudo-) scalar product A +* B is necessary
for performance reasons: SUM(A .* B) requires array allocation while A +* B
does not. Examples regarding notation of operators are displayed in Fig. 12

Special Case: Matrix Operators According to [1] and [2], the most important
and time-critical operation in the Basic Linear Algebra Subroutines (BLAS)
package is the one for generalized matrix multiplication. Moreover, the solution
of matrix equations as displayed below is also a prominent example, again the
notation follows MatLab. The following operators are defined for two dimensional
arrays. The unary operator ”’” does not create a copy of the data but only a
designator to the same array with toggled dimensions. This is possible due to the
internal format of the array references, cf. paragraph 3.3. Examples are given in
Fig. 14

Remark: "/" and "\" will not necessarily be provided as built-in operators.

operator operands result meaning

’ (postfix) 2d array 2d array transposed of matrix

* 2d array,2d array 2d array matrix product

/ 2d array,2d array 2d array solution of equation system
\ 2d array,2d array 2d array solution of equation system

Fig. 13. Operators on two dimensional arrays.

VAR A,B,C,X: ARRAY [..,..] OF REAL;

C := A * B; (% matrix product *)

X := B/ A; (* solution of equation X*A=B, read: B*A~(-1) *)

X := A\ B; (% solution of equation A*X=B, read: A~ (-1)*B *)

A B’; (* B’ is reference to transposed of B, copy by ":=" x)

Fig. 14. Operators on and between two dimensional arrays

Ranges A range is denoted by an expression of the form
[Expression] .. [Expression] [BY Expression]. (3)

Consider the range a..b BY c. Here the symbols a, b and ¢ (c > 0) must be
integer valued constants or integer variables. The range a..b BY c stands for
the set

{a+i-c:ieN,0<i-c<b—a}.

The usage of this notation is limited to the call and declaration of procedures and
of the index operators ’ []1°. If ¢ is not specified, then a value of 1 is assumed.
If a or b is not given, then — depending on the context — the smallest or largest
appropriate value is imputed. If not specified but explicitly referred to, a value
of MIN(LONGINT) and MAX(LONGINT) is presumed on a or b, respectively. For
instance the call TestRange(. .) of the procedure

PROCEDURE TestRange(a..b BY c: LONGINT)

results in a=MIN(LONGINT), b=MAX(LONGINT), c=1 in the procedure body.

Ranges on Arrays Ranges can be applied to special arrays. A variable specified
by the expression

Identifier [Range|ConstExpr{,Range|ConstExpr}] (4)

is formally of array type with dimension equal to the number of ranges given.
It is a designator and is therefore not necessarily materialized but only stands
for a certain part of the array. As in the case of ordinary indices, a designator is
applicable for read and write access.

LEN(A,1)-1

© L e
A[a..b BY c,d..e BY f]

A[a..b,c..d] ® ° °

® [] i)
a
A If
® e d
A ! b
(0,0) LEN(A,0)-1 —

Fig. 15. Illustrations of domain extraction.

Note that there is a substantial difference between a number i and a range
a..b BY c in the specification of a sub-domain. A[a..b,c..d] stands for a

two dimensional array, even if a=b or c=d, while A[a..b,i] stands for a one
dimensional array and A[i,j] stands for a number.
Sub-domain specifications, such as A[a..b,c..d] refer to the same data as the
referenced object (A4). So referring to Ala. .b,c..d] in the procedure declaration
with a VAR parameter allows to modify the content of A. However, the statement
sequence

B :=A[..,..]; B[2,2]:=

does not modify the content of A since the assignment operator ’:=’ stands for
copy operation. More examples are displayed in Fig. 16.

VAR V: ARRAY [..] OF REAL; A: ARRAY [..,..] OF REAL;

V[..10] (* stands for V[0..10], is of type ARRAY [..] OF REAL *)

V[3..] (* stands for V[3..LEN(A)-1] *)

V[.. BY 2] (* stands for V[0..LEN(A)-1 BY 2] *)

Alal..b1 BY c1, a2..b2 BY c2] (* two dimensional subdomain of A *)
Afal..pb1,a2..b2] := [[1,2,3],[4,5,6],[7,8,9]1]; (* assignment of const *)
V := Afal..bl,a2]; (* copy of piece of column *)

V := Alal,a2..b2]; (* copy of piece of row *)

(* assume PROCEDURE MyProc(v: ARRAY [..] OR REAL); *)

MyProc(A[..,5]); (* call procedure, pass 6th column of A as parameter *)

Fig. 16. Examples regarding use of ranges

3.2 Custom Array Types

Besides the built-in functionalities, provision is made for the free specification of
structured array types and operators. In this paragraph the syntax and semantics
are defined.

Definition of Custom Array-Structured Types A custom array type may
be defined by the programmer like an object type. Inheritance and polymorphism
is not supported. Moreover, custom array types cannot have an (active) body in
Active Oberon. The reason for this decision is clearness of the language defini-
tion: built-in array types and custom array types must be handled equivalently
and the atomic evaluation of operators is not guaranteed for the first. Synchro-
nization has to be done on an object level if references are used for the arrays. As
mentioned previously, this is additionally ensured by the value semantics used.

A custom array is specified with the pattern

TYPE ident "=" ARRAY "[" ..{,..} "]" OF Type DeclSeq END ident.

()
The minimal ingredients that are usually implemented are the procedures NEW,
LEN and read- and write-access methods " [1" as displayed in Fig. 17.

TYPE SparseMatrix = ARRAY [..,..] OF REAL

VAR (* ... *) (¥ allocation variables etc. *)
PROCEDURE NEW(i,j: LONGINT); (* initialization, allocation *)
PROCEDURE "[]"(i,j: LONGINT): REAL; (* read access *)
PROCEDURE "[]"(i,j: LONGINT; r: REAL) (* write access *)
PROCEDURE LEN(i: LONGINT): LONGINT; (* shape *)

END SparseMatrix;

Fig. 17. Custom array type definition I

Ranges on Custom Array Types For custom array-structured types, typi-
cally the procedures depicted in Fig. 18 would be implemented to obtain range
accesses. The compiler discriminates between different forms of ’ [1’ by their
different signatures. Generally, only the array specific operators LEN and the in-
dex operators are directly declared within array scope whereas other operators
have to be declared outside in module scope.

TYPE
Matrix= ARRAY [..,..] OF REAL;
Vector= ARRAY [..] OF REAL;

SparseMatrix = ARRAY [..,..] OF REAL

(* read access routines *)
PROCEDURE "[]"(al..bl BY c1, a2..b2 BY c2: LONGINT): Matrix;
PROCEDURE "[]"(al..bl BY c1, i: LONGINT): Vector;
PROCEDURE "[]"(i, a2..b2 BY c2: LONGINT): Vector;
(* write access routines *)
PROCEDURE "[]"(al..bl BY c1, a2..b2 BY c2: LONGINT; VAR A: Matrix);
PROCEDURE "[]"(al..bl BY c1, i: LONGINT; VAR A: Vector);
PROCEDURE "[]"(i, a2..b2 BY c2: LONGINT; VAR A: Vector);
END SparseMatrix;

Fig. 18. Custom array type definition II

Operators Generic operators can also be defined for custom array types. As
mentioned, operators must be defined within the array type module scope. At
least one of the operands must be part of the current scope. The definition
of overloaded operators follows the current Active Oberon convention. For the
SparseMatrix example, operators would typically be defined as in Fig. 19.

PROCEDURE ":=" (VAR dest: ARRAY [..,..] OF REAL; src: SparseMatrix);
PROCEDURE "*" (srcl,src2: SparseMatrix): ARRAY [..,..] OF REAL;
PROCEDURE "*" (1: SparseMatrix; r: REAL): SparseMatrix;

PROCEDURE "+x" (1,r: SparseMatrix): REAL;

Fig. 19. Overloading operators for custom array types

3.3 Notes on Implementation

The implementation of the compiler modifications necessary for providing all
language constructs presented in this paper is, at the time of submission, still
work in progress. Nevertheless, in this paragraph we comment on some imple-
mentation specific details. For the built-in array types we decided — notionally -
for a consistent memory representation that does not depend on array allocation
kind such as dynamic, semi-dynamic, open or static. Since a special array is of
value type, it at least consist of an array descriptor that includes the informa-
tion about the array shape. An empty array A is characterized by LEN(A)=0. A
schematic view of the memory structure is displayed in Fig. 20. The increment
fields in the array descriptor are necessary for the sub-domain operations.

adr offset description

type descriptor

+0 base address of data, points to dataaddr if array is on stack
+4 increment of dimension d-1

+8 length of dimension d-1

+8-(d—1)+4 increment of dimension 0
+8-(d—1) 4+ 8 length of dimension 0

(padding)

+dataaddr data base-address if array is on stack

Fig. 20. Schematic memory layout of built-in arrays

We give a short example of how range-valued indices are implemented: consider
the assignment A[a..b] :=Bl[c,a..b]. Both range valued indices A[a..b] and
Blc,a..b] are of (one dimensional) array type; After range checks, correspond-
ing increments I; = Inc(4,0) and Iy = Inc(4,1), lengths Ly = Ly = b —a + 1,
and base addresses My = Adr(4) 4+ a-Inc(A,0) and My = Adr(B) + ¢+ Inc(B,0) +
a - Inc(B, 1) are computed (according to the designators) and the two array de-
scriptors are pushed on the stack. These are then used as arguments for the copy
operation.

Note that it is not assumed that Inc(i) < Inc(j) for ¢ < j. This permits an ar-
bitrary assignment of the contiguous part in the memory to a particular index,
which is potentially useful for avoidance of cache missing. By introducing addi-
tional fields for an offset in each dimension, it would have easily, and without
significant loss of efficiency, been possible to offer customizable lower bounds in
arrays. However, for the given reasons (cf. Sect.2), we decided against them.
Note that the displayed memory structure is only a very slight modification of
the memory structure of classical arrays in Oberon. This can be regarded as
confirmation of our maxims simplicity and efficiency.

4

Conclusion

The presented extension of the programming language Oberon is a further step
in the direction of more intuitive and efficient mathematical programming. The
introduction of a more flexible built-in array concept, including range-valued
indices, leads to more compact and readable notation for computing with vectors,
matrices etc. Being still safe it also has a high potential w.r.t. efficiency for the
reasons of block-wise operations and the possible avoidance of cache missing.
Flexibility and extensibility is granted by the introduction of custom array types
that can be specified by the programmer and are syntactically compatible with
the built-in array constructs.

References

1.

10.
11.

12.

13.

14.

R. Clint Whaley, Antoine Petitet. Minimizing development and maintenance costs
in supporting persistently optimized BLAS, Software: Practice and Experience, Vol
35, No 2, (2005), pp. 101-121, John Wiley & Sons (2005)

R. Clint Whaley, Antoine Petitet, Jack J.Dongarra, Automated empirical opti-
mizations of software and the ATLAS project, Parallel Computing 27 (1-2), 2001,
pp. 3-35, Elsevier Science Publishers B.V. (North Holland): Amsterdam-London-
New York-Oxford-Paris-Shannon-Tokyo

Bradford L.Chamberlain, Lawrence Snyder, Array language support for parallel
sparse computation, Proceedings of the 15th international conference on Super-
computing, Sorrento, Italy, pp. 133 - 145 (2001), ACM Press New York
Specification of the Programming language Chapel, from
http://chapel.cs.washington.edu/.

Bradford L. Chamberlain. The Design and Implementation of a Region-Based Par-
allel Language, PhD thesis, University of Washington (2001).

Malik Silva and Richard Wait, Cache Aware Data Layouts, IITC2000, Colombo,
January 2001

Malik Silva and Richard Wait, Go for Both types of Data Locality!, HPCAsia,
Bangalore, December 2002

Alik Silva, Sparse matriz storage revisited, Proceedings of the 2nd conference on
Computing frontiers, pp.230-235, Ischia, Italy (2005)

MATLAB documentation web site.
http://wuw.mathworks.com/access/helpdesk/help/techdoc/

R Language Definition and Introduction on http://www.r-project.org.

Peter Januschke, Oberon-XSC — FEine Programmiersprache und Arithmetikbiblio-
thek fiur das Wissenschaftliche Rechnen, PhD Thesis, Universitat Karlsruhe, 1998.
Robert Griesemer, A Programming Language for Vector Computers, PhD Thesis,
ETH Ziirich, 1993.

Bernd Moésli,A Comparison of C++, FORTRAN 90 and Oberon-2 for Scientific
Programming, GISI 95, editors: Friedbert Huber-Wéschle, Helmut Schauer, Peter
Widmayer Berlin, Springer, p. 740-748, 1995.

Michael Baumgartner, Erweiterung des Active Oberon Compilers und Software En-
twicklungssystems im Hinblick auf die Ausnutzung der Intel SSE2 Vektoroperatio-
nen fiir mathematische Anwendungen, Diploma Thesis, ETH Ziirich, 2003.

15.

16.

Roberto Morelli, Integration of OberonX in Oberon, Diploma Thesis, ETH Ziirich,
1997.

Gilnther Sawitzki, FExtensible Statistical Software: On a Voyage to Oberon,
J.Computational and Graphical Statistics, 5(3):263-283,1996.

