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Abstract. Many algorithms in image processing rely on the computation of sums of pixel values
over a large variety of subsets of the image domain. This includes the computation of image moments
for pattern recognition purposes, or adaptive smoothing and regression methods, such as wedgelets.

In the first part of the paper, we present a general method which allows the fast computation
of sums over a large class of polygonal domain. The approach relies on the idea of considering
polygonal domains with a fixed angular resolution, combined with an efficient implementation of a
discrete version of Green’s theorem.

The second part deals with the application of the new methodology to a particular computa-
tional problem, namely wedgelet approximation. Our technique results in a speedup of O(103) by
comparison to preexisting implementations. A further attractive feature of our implementation is
the instantaneous access to the full scale of wedgelet minimizers. We introduce a new scheme that
replaces the locally constant regression underlying wedgelets by basically arbitrary local regression
models. Due to the speedup obtained by the techniques explained in the first part, this scheme
is computationally efficient, and at the same time much more flexible than previously suggested
methods such as wedgelets or platelets.

In the final section we present numerical experiments showing the increase in speed and flexibility.
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1. Introduction. This paper presents a new technique for the rapid compu-
tation of sums over varying image domains. The algorithms are particularly useful
whenever sums of greyvalues over a large number of different image domains are
needed, for a fixed image. Techniques for this type of problem have been considered
in the past mainly for the computation of image moments, see e.g. [1, 2, 3, 4, 5].
These papers mostly deal with specific moments (such as geometric, Legendre or
Zernike moments), and often only for binary images, hence the algorithms usually
depend on specific properties of the moments and cannot be directly adapted to our
problem. However, a recurring theme in these papers which also plays a role here is
the observation that the complexity of the algorithm may be reduced by appealing to
a discrete version of Green’s theorem. Recall that Green’s theorem relates integration
of a given function on a twodimensional (suitably regular, connected and simply con-
nected) domain to the integration of associated functions over the boundary of the
domain. In the discrete setting, one expects the reduction in dimension to result in a
reduction of computational complexity.

Our approach is based on the simple observation that for polygonal domains, the
integration step boils down to a summation over the vertices of the polygon, once
certain auxiliary functions are known. The discretisation of this scheme relies on
precomputed functions containing integrals over suitably chosen domains. Basically,
each auxiliary function corresponds to a possible angle of an edge with the standard
coordinate axis. This way, the angular resolution of the polygons which may be treated
after the precomputation step can be prescribed in a direct and convenient way, this
at linear cost, for both computational and memory requirements. As an example,
discussed briefly in Remark 2.5 below, after computing the auxiliary functions for the
angles 0, π/2, integrals over arbitrary rectangles are computable in constant time.
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Remark 2.5 illustrates that the use of Green’s theorem for summation purposes
is based on cancellation. To make this effect prevail in the discrete context, a care-
ful treatment of discrete lines and polygons is necessary. The design and efficient
treatment of these discrete lines turns out to be the keystone of our approach.

The second half of our paper deals with the application of our techniques to
wedgelet approximations. We present an implementation of an algorithm suggested
by Donoho [6], and demonstrate that our techniques result in a drastic speedup,
by comparison to the only publicly available implementation as part of the package
BeamLab [25]. In a sense we solve a problem that had been left open in [6]: Wedgelet
approximations are piecewise constant approximations of an image, where the pieces
– the wedges – are obtained by splitting dyadic squares along straight lines. Approx-
imations which minimise a certain functional are of particular interest (see Section 3
below for details). Donoho proposed an algorithm for the rapid computation of the
minimisers, resting on an assumption that was not further addressed in [6] – nor, to
our knowledge, anywhere else in the literature. The assumption was that constant
regression over arbitrary wedges could be efficiently implemented. Since constant
regression depends on the image moments of orders zero, it is obvious that our tech-
niques can be brought to bear on this problem. Hence we obtain a very efficient
and transparent implementation of Donoho’s algorithm, again with a conveniently
prescribable angular resolution at linear cost. This implementation is available at
[24].

Moreover, our implementation allows to discuss other regression models than
piecewise constant functions. The observation that Donoho’s model can be extended
to include piecewise approximation by (e.g.) affine functions has already been made
by Willett and Nowak [7]. Our discussion below includes a quite general discussion
of such schemes. The reason we present this generalisation, which in itself is quite
straightforward and may be considered by some as being of purely theoretical interest,
is that we want to point out the potential of wedgelet methodology combined with our
techniques. While with BeamLab, even piecewise constant approximation of moderate
size images is rather time-consuming, the speedup due to our techniques allows to
design more involved models, which can also be implemented efficiently.

2. Discrete Green’s theorem and rapid summation over polygonal do-
mains. The use of discrete versions of Green’s theorem for image analysis purposes
can be traced back to Tang [8]. We first recall this theorem, and its application to our
central problem, for the continuous setting. Mathematically speaking, the following
subsection is not necessary for the following, but it serves as motivation and template
of the definitions and results presented for the discrete case.

2.1. The continuous case. We restrict the discussion to bounded domains
contained in the positive quadrant Q+ = R+×R+; its boundary ∂Q+ = ({0}×R+)∪
(R+×{0}) will also play a prominent role. Given a measurable function F : R2 → R,
and continuously differentiable φ : [a, b] → R2 written as φ(t) = (φ1(t), φ2(t)), let∫

φ

Fdx =
∫ b

a

F (φ(t))φ′1(t)dt ,

and ∫
φ

Fdy =
∫ b

a

F (φ(t))φ′2(t)dt .
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The definition extends to piecewise differentiable curves in the obvious way. The
following version of Green’s theorem is relevant to our purposes.

Theorem 2.1. Let Ω ⊂ Q+ be a bounded compact domain, with piecewise con-
tinuously differentiable boundary ∂Ω. Assume that F ∈ L∞(Ω) is real-valued, and
define Q : Q+ → R as

Q(x, y) =
∫ y

0

F (x, t)dt . (2.1)

Then ∫
Ω

F (x, y)dxdy =
∫

∂Ω

Qdx . (2.2)

For purposes of rapid integration methods, the key feature of Green’s formula
is that it reduces the dimension of the integration domain by one. Let us describe
how the formula simplifies further in the case of polygonal domains. Assume from
now on that ∂Ω is a polygon, with nodes z1, . . . , zn, zn+1 = z1 ∈ R2. As Ω is simply
connected, the polygon does not intersect itself. Given z, z̃ ∈ R2, we let [z, z̃] denote
the straight line segment from z to z̃, parameterised by t 7→ z + t(z̃ − z), t ∈ [0, 1].

For an angle ϑ ∈]−π/2, π/2], define vϑ = (cos(ϑ), sin(ϑ)). The convention−π/2 <
ϑ ≤ π/2 entails that vϑ points to the right. Given z ∈ Q+, let Iϑ(z) denote the
intersection of the halfline z + R−vϑ with ∂Q+.

We define an auxiliary function Kϑ on Q+ by

Kϑ(z) =
∫

[Iϑ(z),z]

Qdx . (2.3)

The following lemma is then easily verified:
Lemma 2.2. Let z, z̃ ∈ Q+, with z − z̃ ∈ R · vϑ. Then∫

[z,ez]

Qdx = sign(〈z̃ − z, vϑ〉) · (Kϑ(z̃)−Kϑ(z)) . (2.4)

We note that for the degenerate case ϑ = π/2, Kϑ = 0. Plugging our definitions into
Green’s theorem yields

Corollary 2.3. Let Ω be a simply connected domain with the boundary given by
a polygon through z1, . . . , zn, zn+1 = z1. For ϑ ∈] − π/2, π/2] define Kϑ as in (2.3).
Then, if ϑi denotes the angle between the x-axis and zi+1 − zi, we have∫ ∫

Ω

F (x, y)dxdy =
n∑

i=1

sign(〈zi+1 − zi, vϑi
〉) · (Kϑi

(zi+1)−Kϑi
(zi)) . (2.5)

Note that the evaluation of the right-hand side involves O(n) operations, supposing
the Kϑi

are known. This simple observation makes little sense in the continuous
setting, but it contains the key to the algorithm which we will derive for the discrete
setting.

A geometrically intuitive understanding of the corollary can be obtained by use
of the following, easily verified, observation.

Lemma 2.4. For z ∈ Q+ and ϑ ∈]− π/2, π/2], let Ωϑ(z) denote the compact set
bounded by ∂Q+, the line segment [Iϑ(z), z] and the vertical line through z. Then

Kϑ(z) =
∫

Ωϑ(z)

f(x, y)dxdy . (2.6)
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Fig. 2.1. Left: Illustration of the cancellation principle for the black rectangle, with use of
formula 2.7.

The lemma also covers the degenerate case ϑ = π/2, as Ωϑ(z) is then a line segment,
a set of measure zero.

Remark 2.5. Using the lemma we can recognize Green’s theorem as an elegant
and efficient way of handling cancellation: For illustration purposes, let us consider
rectangles. Denote the four corners of the rectangular domain Ω by p1, . . . , p4, num-
bered as in Figure 2.1. We claim that by the previous lemma,∫

Ω

f(x, y)dxdy = K0(p2)−K0(p1)−K0(p3) + K0(p4) . (2.7)

To see this observe that Ω is obtainable by subtracting Ω0(p2) ∪ Ω0(p3) from Ω0(p1).
However, by subtracting the integrals accordingly, the integral over the intersection
Ω0(p2) ∩ Ω0(p3) = Ω0(p4) is subtracted twice, hence needs to be added again. On the
other hand, observing that Kπ/2 = 0, we see that (2.7) is a special case of (2.5).

Naïvely one might expect that more complex –simply connected– domains could
entail increasingly more complicated forms of cancellation. However Corollary 2.3
offers a simple and general way of handling all of them; in particular the complexity
is linear in the number of the vertices, regardless of the shape. The following section
is dedicated to the description of a discrete analog.

2.2. The discrete case. In this section we assume that f : Q+ ∩ Z2 → R is
given, and describe versions of Green’s theorem that allow the quick summation of
function values over certain finite discrete domains Ω ⊂ Q+ ∩Z2. In the following we
restrict the presentation to simple domains, which are defined in 2.11. This restriction
considerably simplifies the arguments and notations, while still covering the wedgelet
case treated below. Note however that similar results can be formulated and proved
for general simply connected domains (see [26]) , and should also be useful in the
general setting.

The key to an efficient discretisation of the scheme described in the previous
subsection consists in a suitable definition of straight lines, as follows:

Definition 2.6. Let α ∈] − π/4, 3π/4] be given and let dx := cos α and dy :=
sinα. Define

δα := max{|dx|, |dy|} and v⊥α =:

{
(−dy, dx) if |dx| ≥ |dy|
(dy,−dx) otherwise.
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The digital line through the origin in direction α is then defined as

L0
α := {p ∈ Z2 : −δα

2
< 〈p, v⊥α 〉 ≤

δα

2
}. (2.8)

Moreover, we define Ln
α for n ∈ Z as

Ln
α := {p ∈ Z2 : (n− 1

2
)δα < 〈p, v⊥α 〉 ≤ (n +

1
2
)δα}. (2.9)

We call n the line number of the digital line Ln
α.

Let in the following the mapping Round : R → Z be defined by

Round(x) = max{i ∈ Z : i ≤ x + 1/2}.

The choice α ∈]− π/4, 3π/4] leads to the following result:
Lemma 2.7. If a digital line Ln

α is a
(a) flat line, i.e. dx ≥ dy, then with yα(x) := Round(x · dy/dx) it holds that

Ln
α = (0, n) + {(x, yα(x)) : x ∈ Z} (2.10)

and if it is a
(b) steep line, i.e. dy > dx, then with xα(y) := Round(y · dx/dy) it holds that

Ln
α = (n, 0) + {(xα(y), y) : y ∈ Z}. (2.11)

Proof. We prove (a) first. If dx ≥ dy then, by α ∈] − π/4, 3π/4] it holds that
|dx| ≥ |dy|, dx > 0 and

Ln
α = {(x, y) : (n− 1

2
)dx < −dy · x + dx · y ≤ (n +

1
2
)dx}

= {(x, y) : y ≤ x · dy

dx
− n +

1
2

< y + 1}

= (0, n) + {(x, y) : y ≤ x · dy

dx
+

1
2

< y + 1}.

For (b) the proof can be done the same way.
In other words, Ln

α is obtained by shifting L0
α by n in the vertical direction for

flat lines and by shifts in the horizontal direction for steep lines. We remark that this
definition of discrete lines is not new; they arise as output of the Bresenham algorithm
used in computer graphics [9].

The following lemma notes the central property of digital lines: The digital lines
corresponding to a fixed angle provide a partition of the image domain. In view of
the observation, made in Remark 2.5, that Green’s theorem – at least in the form
discussed here – is primarily about cancellation, this simple fact will be crucial.

Lemma 2.8. Let α ∈]− π/4, 3π/4] be given. The lines (Ln
α)n∈Z partition Z2, i.e.

Z2 =
⋃•

n∈Z Ln
α.

Proof. The statement follows from (2.9), equivalently Ln
α = {p ∈ Z2 : 〈p, v⊥α 〉 ∈

](n− 1/2)δα, (n + 1/2)δα)]}, since the intervals (](n− 1/2)δα, (n + 1/2)δα)])n∈Z form
a disjoint union of R.

We next want to define the discrete analogs of the auxiliary functions Kϑ. For
this purpose we number the points on a digital line Ln

α, in such a way that following
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Fig. 2.2. A flat and a steep discrete line.

the points in ascending order, starting at the points numbered by zero, corresponds
to going through Ln

α in direction (dx, dy), starting at a suitable element of Ln
α ∩ ∂Q+.

Let (x0, y0) ∈ Z2 and let for flat lines the line number given by n = y0 − yα(x0)
and for steep lines by n = x0−xα(y0), then (x0, y0) ∈ Ln

α. Therefore the set of pixels
on the line starting at x = 0 for flat lines and at y = 0 for steep lines and ending in
p = (x0, y0) is given by

[◦, p]α :=

{
(0, y0 − yα(x0)) +

⋃x0
x=0{(x, yα(x))} if dx ≥ dy

(x0 − xα(y0), 0) +
⋃y0

y=0{(xα(y), y)} otherwise.

Fig. 2.3. A line segment [◦, p]α.

Let in the following the set of pixels below some pixel p = (x0, y0) be given
by C(p) := {(x0, y)}y=0,...,y0 . Moreover, consider the set of points between the line
segment [◦, p]α and the x-axis defined by

Wα(p) :=
⋃

q∈[◦,p]α

C(p).

Now for rectangular subsets S = {0, . . . , w} × {0, . . . , h} (w, h ∈ N) of Z2, let
image data f ∈ RS , f = (f(p))p∈S be given. We denote the corresponding sum
of values in columns below the point p = (x0, y0) by C(p) :=

∑y0
y=0 f((x0, y)), in

rectangles left and below p = (x0, y0) by R(p) :=
∑x0

x=0 C((x, y0)) and below the
piece of line Wα(p) by

Wα(p) :=
∑

q∈Wα(p)

f(q).
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The following computation rules hold for columns and rectangles

C((x, y + 1)) = C((x, y)) + f((x, y + 1)) (2.12)
R((x + 1, y)) = R((x, y)) + C((x + 1, y)). (2.13)

Fig. 2.4. Summation rule for columns and rectangles.

For the sums below a piece of line we obtain the following results. Let p = (x, y) ∈
S. For flat lines, i.e. dx ≥ dy, with p+ = (x + 1, y − yα(x) + yα(x + 1)) it holds that

Wα(p+) = Wα(p) ∪̇ C(p+)

and therefore, if p+ ∈ S,

Wα(p+) = Wα(p) + C(p+). (2.14)

For steep lines, i.e. dy > dx, with p+ = (x− xα(y) + xα(y + 1), y + 1) it holds that

Wα(p+) = Wα(p) ∪̇

{
C(p+) if xα(y) 6= xα(y+)
{p+} if xα(y) = xα(y+)

and thus, if p+ ∈ S,

Wα(p+) = Wα(p) +

{
C(p+) if xα(y) 6= xα(y+)
f(p+) if xα(y) = xα(y+).

(2.15)

Note that the computation rules for the sums C and R are special cases of the one
for Wα, namely the ones with α = π/2 and α = 0.

The computation rules for C,R and Wα immediately lead to the following result:
Lemma 2.9. The matrices C, R and Wα can be computed in O(|S|).
Proof. For the computation of C note that C(p) = f(p) for all points p with

py = 0. The rest of C can be computed using C(x, y) = C(x, y − 1) + f(x, y) in
O(|S|). Each line Ln

α that intersects S has at least one point on the lower or left
boundary of S. Therefore there are at most w+h such lines. For each line, the left or
lower intersecting point p can be computed in O(1), then Wα(p) = C(p). Using the
rules (2.14) or (2.15), the values of Wα can then for each point on each line successively
be computed in O(1). Since the lines partition S this operation has to be performed
|S| times and thus the computation of Wα(p) can be done in O((w+h)+ |S|) = O(|S|)
steps.
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Fig. 2.5. Summation rule for digital trapezes.

Lemma 2.10. Let two points p, q ∈ Z2 be given. Then there exists n ∈ Z and
α ∈]− π/4, 3π/4] such that p, q ∈ Ln

α.
Proof. For instance we consider the angle α corresponding to (dx, dy) = (qx −

px, qy − py). We can restrict ourselves to the case of a flat line, the steep case being
similar. Let r denote the point (0, ry) ∈ R2, such that r lies on the continuous line
through p and q. If we consider n = Round(ry), we have n − ry = yα(px) − px =
yα(qx)− qx, then p, q ∈ Ln

α.
Note that the discrete line Ln

α through two points p and q is in general not unique.
Let p, q ∈ Z2, α ∈ [−π/4, 3π/4[ and n ∈ Z be given such that p, q ∈ Ln

α. Assume
that p is ‘before’ q on the line, i.e. assume that px ≤ qx if α ∈ [−π/4, π/4[, and that
py ≤ qy if α ∈]π/4, 3π/4]. The discrete line segment between p and q, i.e. the set of
points between p and q (including p and q) on the line Ln

α, is then given by

[p, q]α := [◦, q]α \ [◦, p]α ∪ {p}.

Accordingly, by Wα(p, q) we denote the digital trapezoid under [p, q]α, i.e. the set
of points below this piece of line,

Wα(p, q) =
⋃

r∈[p,q]α

C(r).

For the sum over values of points below the piece Lα(p, q) it holds that∑
r∈Wα(p,q)

f(r) = Wα(q)−Wα(p) + C(p).

Fig. 2.6. Segment [p, q]α.
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Now let two arbitrary points p, q on a line Ln
α, α ∈] − π/4, 3π/4], be given. We

denote the sum of values below the piece of line between p and q by

Wα(p, q) :=


Wα(q)−Wα(p) + C(p) if px ≤ qx and α ∈]− π/4, π/4]
Wα(q)−Wα(p) + C(p) if py ≤ qy and α ∈]π/4, 3π/4]
Wα(p)−Wα(q) + C(q) otherwise.

(2.16)

Fig. 2.7. Summation over wedges.

The next definition describes the class of domains to which we apply the summa-
tion techniques. In a first step, this is done by prescribing the upper boundary as a
union of line segments and using the x-axis as lower boundary. More general lower
boundaries can then be introduced by considering the set-theoretic difference of two
such sets. See Figure 2.2 for an example.

Definition 2.11. Let p0 . . . , pn ∈ Q∩Z2 and α1, . . . , αn ∈]−π/4, 3π/4] be given
with the following properties:

1. px
0 < px

1 < . . . < px
n.

2. For each 1 ≤ i ≤ n there is some ki ∈ Z such that pi−1, pi ∈ Lki
αi

.
3. [pi−1, pi]αi

∩ [pi, pi+1]αi+1 = {pi} for all 1 ≤ i < n.
We then define the set D(pi, αi; i = 0, . . . , n) by

D(pi, αi; i = 0, . . . , n) =
n⋃

i=1

Wαi(pi−1, pi) . (2.17)

We call Ω ⊂ N2 simple polygonal domain of order n if there exist Ω1 = D(pi, αi; i =
1, . . . ,m) and Ω2 = D(qi, ϑi; i = 1, . . . , k) with n = k+m, px

0 = qx
0 , px

m = qx
k , Ω2 ⊂ Ω1

and Ω = Ω1 \ Ω2.
Now the following discrete Green’s theorem is easily proved.
Theorem 2.12. Let Ω be a simple domain of order n with Ω = Ω1(pi, αi, i =

1, . . . ,m) \ Ω2(qi, ϑi, i = 1, . . . , k). Then∑
r∈Ω

f(r) =
m∑

i=1

Wαi
(pi−1, pi)−

m−1∑
i=1

C(pi)−
k∑

i=1

Wϑi
(qi−1, qi) +

k−1∑
i=1

C(qi). (2.18)

Proof. Firstly, since Ω = Ω1 \ Ω2 and Ω2 ⊂ Ω1,∑
r∈Ω

f(r) =
∑
r∈Ω1

f(r)−
∑
r∈Ω2

f(r).

Secondly, Ω1 =
⋃m

i=1Wαi
(pi−1, pi). By px

i < px
i+1 only neighboring line segments

intersect. It holds that

Wαi
(pi−1, pi) ∩Wαi+1(pi, pi+1) =

⋃
r∈[pi−1,pi]αi

C(r) ∩
⋃

s∈[pi,pi+1]αi+1

C(s) = C(pi).
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Fig. 2.8. A simple polygonal domain.

To see this observe that [pi−1, pi]αi
∩[pi, pi+1]αi+1 = {pi} for all 1 ≤ i < n and therefore

C(pi) is clearly contained in the intersection. If this inclusion were strict, then there
would exist some v ∈ Z2 with vy > py

i , vx = px
i with v ∈ [pi−1, pi]αi ∩ [pi, pi+1]αi+1 , a

contradiction to [pi−1, pi]αi
∩ [pi, pi+1]αi+1 = {pi}. Therefore

∑
r∈Ω1

f(r) =
m∑

i=1

Wαi(pi−1, pi)−
m−1∑
i=1

C(pi).

The equivalent result holds for the sum concerning Ω2.

2.3. Implementation. We now summarise the results of the previous section
with respect to implementation. Assume that we work on greylevel images f ∈ RS

defined over rectangular domains S = [1, . . . , N1] × [1, . . . , N2]. We are interested
in the computation of sums

∑
i∈Ω f(i) over simple polygonal domain Ω. To utilise

Theorem 2.12 for a fast computation, we require the set of angles of Ω to stem from
a finite set Θ ⊂ [−π/4, 3π/4]. The main required ingredients are

(i) computation and storage of the auxiliary matrices C and Wϑ for all angles
ϑ ∈ Θ,

(ii) determination of vectors (pi−1,pi,ϑi), 1 ≤ i ≤ n defining the edges of the
domain Ω,

(iii) use formula (2.18) for the computation of
∑

i∈Ω f(i).
According to Lemma (2.9) step (i) has complexity O(|S| · |Θ|), both in running time
and memory consumption. Execution of step (ii) is only required if the parameters
(pi−1,pi,ϑi) (1 ≤ i ≤ n) are not explicit. For example, in our applications of wedge
divisions of a rectangle (cf. next section), we specify a wedge W by an intersection of
a line Ln,ϑ with a rectangle R. To apply (iii) to the corresponding simple domain W
the intersection points of R and Ln,ϑ on the boundary of R are required. According
to Theorem 2.12, step (iii) requires no more than 2n additions, provided that the
matrices from step (i) are known.

The following corollary summarises the findings of this section.
Corollary 2.13. Let f : [1, . . . , N1] × [1, . . . , N2] → R be given. Let Θ ⊂

] − π/4, 3π/4] be finite. After a preprocessing step of complexity O(|S| · |Θ|), both in
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time and memory, the sum ∑
i∈Ω

f(i)

can be computed in O(n), for any simple polygonal domain Ω of order n with angles
in Θ.

We close this section by pointing out that our scheme is exact. Clearly, for large
images and/or greyvalue ranges, overflow handling will have to be addressed, but the
necessary length of the mantissa can easily be estimated.

3. Wedgelet approximations. In this section we apply the concepts described
in Section 2 to the specific case of wedgelet approximation. We are concerned first
with the case of locally constant functions over dyadic wedgelet partitions. These
have been first proposed by Donoho [6], who derived approximation rates and showed
asymptotic optimality of the wedgelet estimator, for functions of the horizon class
and starlike domains. These functions are essentially characteristic functions of image
subdomains with smooth boundary. It is also shown in [6] how the hierarchic structure
of quadtrees allows fast computation of minimisers.

Let us fix some notations. A digital image f is a mapping from a finite rectangular
domain S ⊂ Z2, into R and for each pixel s ∈ S, f(s) denotes the associated greyscale
value.

3.1. Dyadic square wedge partitions. In this subsection, we present the
wedgelet partitions based on dyadic squares. For the sake of simplicity we restrict
ourselves to discrete dyadic square domains of the form, S = [1, . . . , N ] × [1, . . . , N ]
with N = 2p.

We adopt the standard definition for a partition of the set S, as a set P =
{Ak}k∈K , Ak ⊂ S,

⋃
k∈K

Ak = S and Ai ∩ Aj = ∅, if i 6= j. A subset Ak ⊂ P is called

atom of the partition.
The set of dyadic square partitions Q can be defined with the following rules.

(1) P0 = {S} ∈ Q.
(2) If P ∈ Q, A ∈ P and |A| > 1 then P \ {A} ∪i {Ai} ∈ Q.
where Ai, i = 1, . . . , 4 are formed by splitting A into four equally sized squares Ai.
Since the image domain is a dyadic square, the atoms of a dyadic partition are also
dyadic squares, of the form [(k− 1)2i +1, k2i]× [(l− 1)2i +1, l2i], i ∈ {1, . . . , p}, k, l ∈
{1, . . . , 2p−i} . Let S be the set of dyadic squares. Then Q consists of all partitions
P of S such that P ⊂ S.

Now we introduce our discrete wedge splitting. This discretisation scheme is a
keystone for the development of efficient algorithms. The use of nonoverlapping lines
allows an efficient implementation of discrete sums.

Definition 3.1. Let A ∈ S be a dyadic square and Ln
ϑ be a line with (n, ϑ) ∈

Z2×]− π/4, 3π/4] such that Ln
ϑ ∩A 6= ∅ and Ln+1

ϑ ∩A 6= ∅. A wedge splitting of A is
the partition into two wedge subdomains {W 1

n,ϑ(A),W 2
n,ϑ(A)} (respectively the lower

and upper wedges) defined by

W 1
n,ϑ(A) =

⋃
k≤n

Lk
ϑ ∩A

W 2
n,ϑ(A) =

⋃
k>n

Lk
ϑ ∩A.

Note that a wedge is a convex discrete polygon, which is a special case of simple
domains in the sense of 2.11, with at most 5 vertices. Indeed we can distinguish three
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cases: the wedge has either 5 vertices, or is a trapeze, or is a triangle. Thus the
computation of one moment requires 6 auxiliary function values in the two first cases,
and 4 function values in the triangular case.

It is now possible to properly define a dyadic wedge partition.
Definition 3.2. A dyadic wedge partition W is a subdivision of a dyadic square

partition {Ak}k∈K of the domain S, obtained by a discrete wedge splitting of some of
its atoms Ak, replaced by a wedge split,

{W 1
nk,ϑk

(Ak),W 2
nk,ϑk

(Ak)},

where ϑk ∈]− π/4, 3π/4].

3.2. Wedgelet approximation. Like in [6], we are interested in piecewise con-
stant approximations of an image f over a class of dyadic wedge partitions. We follow
a variational approach, with a balancing of segmentation complexity versus approx-
imation accuracy. Here, we measure the complexity by the number of atoms in the
partition.

More precisely, let W be a set of dyadic wedgelet partitions of S. For λ ∈ R we
select a partition Ŵλ(f) from W which satisfies

Ŵλ ∈ argmin
W∈W

{‖f − f̂W‖22 + λ|W|}, (3.1)

where f̂W =
∑

W∈W fW , and

fW = 1W
1
|W |

∑
i∈W

f(i)

denotes the function equal to the average of f over the atom W (which is either a
pure wedge or a square), and 0 elsewhere.

Note that the pair (Ŵλ, fŴλ
) minimizes (W, g) 7→ ‖f − g‖22 + λ|W|, where a pair

(W, g) is such that g is piecewise constant over W. It is a particular property of
the chosen functional that the minimisation can be split up into a minimisation over
the partition class and (local) minimisation on each segment. (Recall that fW is the
classical least square local approximation of ‖f − g‖22 over W .)

3.3. Algorithm. Let us now describe the algorithm for efficient minimisation
of (3.1) for a given partition class W. As we manipulate huge sets W, finding the
optimal partition among this set may lead to high computational costs. These costs
are dramatically reduced by exploiting the recursive structure of the dyadic partitions.
Nevertheless, still a huge number of sums (‘moments’) over polygonal domains have
to be computed when minimizing over the class of dyadic wedge partitions. In order
to handle this, we introduce an algorithm which employs the principles of Section 2
for efficient moment computation on the wedge domains.

We work now with a finite set Θ ⊂]− π/4, 3π/4] of angles. This means that the
condition ϑ ∈]− π/4, 3π/4] is replaced by the condition ϑ ∈ Θ. In order to treat the
horizontal lines, it is required that 0 ∈ Θ. Since dyadic partitions are obtained by
successive division of squares into four squares, each dyadic partition P can uniquely
be mapped to a quad tree T . Each node N of the tree T corresponds to a dyadic
square Q ⊂ S and the four child-nodes of N (if any) correspond to the four squares
generated by a quad split of Q. Each terminal node of the tree T corresponds to a
square in P and vice versa. Each quad tree is obtained as a pruning of the finest
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quad tree whose leaves correspond to the pixels of S; in implementation the pruning
is coded by marking nodes as terminal.

The minimisation of the functional consists of two steps: First, computation of the
optimal wedge split for each dyadic square, i.e. for each node in the tree. Second, for
given parameter λ ≥ 0 the computation of the minimiser Ŵλ by recursively pruning
the quad tree, using the optimal wedge splits obtained in the first step. Here, it is
important to note that only the second step depends on λ, and, as will be seen below,
its complexity does not depend on the number of angles used in step one.

The heuristics for the second step can be explained as follows. Given λ ≥ 0, there
are three possible cases to consider for the optimal wedge partition Ŵλ.

1. Ŵλ = {S}
2. Ŵλ = {W1,W2} for the optimal two wedges W1,W2 stored at the root node
3. Ŵλ =

⋃
i=1...4 Ŵi

λ, where each Ŵi
λ is the optimal wedge partition of the

dyadic subsquare Qi, and Q1, . . . , Q4 are obtained by a quad split of S.
Hence a minimisation algorithm consist in comparing the scores induced by the three
cases; in the first case the score is local approximation error plus λ, in the second
case it is local approximation error plus 2λ, and in the third case it is the sum of
the four scores for Ŵi

λ, i = 1, . . . , 4. Observe that the third case requires a recursive
application of the minimisation algorithm.

In more precise terms the full minimisation algorithm is described as follows:
1. Create empty tree. Initialise each node with approximation error = ∞.
2. Computation of optimal wedge splits:

(a) Compute the vertical sum matrix C using 2.12 and W 0 using 2.16
(b) For each ϑ ∈ Θ

i. compute the auxiliary matrix Wϑ using 2.16
ii. for each dyadic square Q and each n compute the approximation

error ε and associated mean values obtained by splitting Q along
the line Ln

ϑ. If the induced approximation error is below the stored
value at the corresponding node N , then store mean, error, angle ϑ
and line number n at node N .

3. Computation of the minimiser Ŵλ, and the associated score, for instance
using a straightforward recursive implementation of the above procedure. For
a bottom-up version of the algorithm see [6]. In any case, the algorithm
crucially relies on the availability of the optimal wedge splits of all dyadic
squares, as provided by step 2.

4. Generalisations. In this section we show how the algorithm described in
section 3 can be easily generalised to much larger classes of approximation models for
which the computational complexity remains of the same order.

4.1. Wedge partitions with local regression models. The protoype model
presented in section 3 was proposed first in a somewhat academic context: the goal
was to get optimal approximations for some classes of piecewise constant functions
with Hï£¡der regular boundaries. For natural images, however, piecewise constant
models lead to undesired block artefacts, especially for the low resolutions, although
these latter are often the target resolutions. Models based on richer local regression
offer a first answer to this problem.

Instead of just considering optimal constant approximation on each atom of the
dyadic wedge partition, we consider a finite set Φ = (ϕj)j∈R of r linearly independent
functions, ϕj : S → [0, 1]. Defining the set Φ globally and not locally is motivated
by the computation of the moments on many overlapping atoms of several partitions.
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The functionalities are somewhat separated: the extraction of geometrical information
is performed by the partitioning, whereas the local representation of the function is
done by the regression on each atom (we recall that in our case, an atom consist
merely of a wedge or of a square). There is no theoretical restriction for the choice of
Φ. In practice however, discrete projections of some regular functions should be used.
This requirement is connected to the the idea of piecewise smooth approximation.

If W is a dyadic wedge partition and A ∈ W an atom of this partition, we obtain
the approximation f̂Φ,W of the image as the sum of the projections of the local images
fA onto ΦA = Spanϕj,A. The minimisation problem reads now, for an image f and
λ ≥ 0,

Ŵλ,Φ(f) = argmin
W∈W

{‖f − f̂Φ,W‖22 + λ|W|}. (4.1)

Since W is a partition, f̂Φ,W can be written as the sum of the solutions of the local
regression minimisation problems over each atom of W,

f̂W =
∑

A∈W
f̂A =

∑
A∈W

∑
j∈R

α̂A,jϕA,j .

For a given atom, this is a classical least square minimisation with some functions of
the coordinates as regressing variables. The existence and uniqueness of the solution is
then ensured, provided that the local family (ϕj,A)j∈R is linearly independent. When
it is not the case, the uniqueness is forced by choosing a subset Φ′ ⊂ Φ, so that the
family (ϕA)ϕ∈Φ′ is linearly independent.

Thus the local minimisation problem over A is performed by the solution of a
linear system, which essentially requires the computation of the r(r+1)

2 local moments
< ϕi, ϕj >A, and of the r additional moments < f,ϕi >A. Finally we also need the
moment < f, f >A in order to get the corresponding error measure

EA(f) = ‖fA − f̂A‖2. (4.2)

Solving the r × r linear system can be achieved in O(r3) flops with a classical
solution method for symmetrical linear systems. In practice r should be small enough
to maintain the advantage of very fast computation of the local regression parameters
(typically smaller than 10), provided that the abovementioned moments are given.

Finally, for the step 2(b)ii of the algorithm described in subsection 3.3 it just
remains to store the set of optimal parameters (αj)j∈R instead of the mean.

4.2. Locally adaptive regression models. The model described in the previ-
ous subsection allows rich classes of local approximating functions. It remains however
limited by its global definition. Since a natural image can be viewed as highly non
stationary signal, a further extension of our schemes consists in combining a finite
number of local regression models in the same partition. In each atom an optimal
model is selected according to its local relevance, i.e. it is the model for which the
according reconstruction error is minimal. Formally, we consider a finite family M
of regression models. If W ∈ W is a partition, for each atom A ∈ W, let Φ̂(A) ∈ M
denote an optimal local model, given by

f̂Φ̂(A),A = min
Φ∈M

‖fA − f̂Φ,A‖22.
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We can now define for any partition W, the global approximation f̂W,M, optimal
according to the local models

f̂W,M =
∑

A∈W
f̂Φ̂(A),A

In this case, the minimisation problem can be read

Ŵλ,M = argmin
W∈W

‖f − f̂W,M‖22 + λ
∑

A∈W
|Φ̂(A)|, (4.3)

In what regards the algorithm of subsection 3.3, it should only be remarked that
in the step 2(b)ii, we now need to store for each dyadic square the index for the
selected model in M and the error defined by

EA = min
Φ∈M

EA,Φ.

Note that the step 3 is unchanged and hence the computational complexity of
this step is independent on the size of the model. This ensures the real time access
to every optimal solution to the locally adaptive regression problem, with varying λ,
provided the optimal local models have been computed (step 2).

4.3. General penalisation functions. In functionals (3.1) or (4.1), the term
|W| is merely the simplest example for penalising the complexity of the model. In
fact a larger class of suited penalisation functions, describing the characteristics of our
local approximation model can be considered to which our schemes can be applied.
To fix the ideas, we treat the most general case of functional (4.3). We consider a
function gM defined for convenience on any subpartition of W ∈ W. We only require
that it is additive, which means that it satisfies

gM(W) = gM(W1) + gM(W2), for any (W1,W2) such thatW = W1∪̇W2.

An important example of such a function is the penalisation according to the
coding length required for each partition according to some coding scheme (or in
practical cases an estimate of this length). This might take into account not only the
size of a partition, but also, for instance its depth, or some correlation structure. Such
a penalisation function would enable rate-distortion optimisation, for the purpose of
compression schemes of images based on partition regression representations.

5. Experiments and results. This section is devoted to some experimental re-
sults. They illustrate the efficiency of our scheme in terms of computational time, and
shows the flexibility allowed for the choice of the underlying approximation assump-
tions. The implementation of the algorithms described in the previous sections has
been made in Oberon programming language. Executable files of this implementation
can be downloaded at [24].

5.1. Examples with locally adaptive models. In Section 4.2, we treated the
case where the optimal coefficients are selected locally, as well as the model itself.
With the notations of this section, we present here some specific instances for the set
of possible models M.

An elementary set of models is formed by the set of bivariate polynomials of
degree less than d, represented by their canonical basis (xiyj)i+j≤d, and denoted with
Φd. For d respectively equal to 0, 1, 2, we obtain the so called constant, linear, and
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Fig. 5.1. Barbara, 256×256. Quadtree with no wedges. Left: Linear model, 14682 coefficients,
PSNR: 25.96 dB. Right: Linear model, combined with a generic sine model, 14484 coefficients,
PSNR: 28.97 dB.

quadratic regression models, with respective sizes 1, 3 and 6. Consider the quadtree-
wedgelet scheme with the set of models Φ0,Φ1,Φ2. These models are nested (Φ0 ⊂
Φ1 ⊂ Φ2)and thus the computation of the moments reduces to those necessary for Φ2.
If we use the additional multiplicative properties (for example < x, y2 >=< xy, y >),
we can even reduce to the computation of 22 moments instead of 28.

The previous models present a nice theoretical framework, leading to what could
be called "discontinuous splines" over wedge partitioning. In practice however, they
may suffer from numerical instabilities, especially for big images and for d bigger than
2. This drawback mainly comes from the fact that orthogonality is not conserved by
local projection over atoms A, and locally, the angles between some functions can be
too small for numerical purpose.

Other constructions, based on sinusoidal functions, present a much more station-
ary behaviour, while still adapting locally to the image contents. Such functions avoid
some blocking artefacts occurring, for example, with the use of a mere linear model.
Heuristically, the aim of such a model is to combine a model for texture by the locally
adaptive models with a pure geometrical method (optimal wedges) to detect the sig-
nificant contours between patterns in the image. Consider, for instance, the following
set of parameterised models M = Φϑi,ai ∪ Φ1, where Φϑ,a is the local regression set
composed of three functions defined by

Φϑ,a(z) = (1, cos(< z, vϑ >), sin(< z, vϑ >)).

Remark that in order to keep coherence for non textured areas, we still keep addi-
tionally the mode Φ1, also consisting of three functions.

We applied this model to the standard image Barbara, which presents many
textured areas. We performed this method with the following set of parameters
(ϑ, a) ∈ {−π/4, 0, π/4, π/2} × {1, 1/2, 1/4}. In Figures 5.1, 5.2 and 5.3, we com-
pare, for a similar number of coefficients, an approximation provided by a simple
linear model with an approximation provided by the set of models M = Φϑi,ai

. Al-
though the comparison is not completely fair (for each piece an additional information
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Fig. 5.2. Barbara, 256 × 256. Model with 8 possible angles. Left: Linear model, 14730
coefficients, PSNR: 27.79 dB. Right: Linear model, combined with a generic sine model, 14511
coefficients, PSNR: 33.29 dB.

Fig. 5.3. Baboon, 512 × 512. Model with 8 possible angles. Left: Linear model, 27150 coef-
ficients, PSNR: 24.44 dB. Right: Linear model, combined with a generic sine model, 26574 coeffi-
cients, PSNR: 27.44 dB.

indicating the model selected locally has to be added) this shows the adaptivity of the
scheme: with a set of models chosen in a heuristic way, it is possible to improve dra-
matically the approximation, both in terms of PSNR, and in terms of visual quality
(rendering of the details, precision of the textured patterns).

5.2. Runtime comparison. The very fast runtimes of our software can be
shown by comparison with another library for computation of wedge segmentations,
‘BeamLab’[25]. BeamLab is a package running on MatLab. It contains routines for
constant wedgelet segmentations of images with exclusively dyadic dimensions. We
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Fig. 5.4. PSNR versus number of pieces needed for the image Barbara.

used MatLab version 6 and BeamLab as loaded from the webpage on the 8.6.2004,
see [25]. For the runtime comparison displayed in the following table, we used a 2.8
GHz Pentium IV machine. We append approximate runtimes for a wedgelet model
in our approach with different number of angles. An adaptive model removes half of
the angles when entering the next depth in the quad tree. The ‘equivalent’ model is
an adaptive model with a number of 1024, 512, . . . , 32 angles corresponding to image
sizes 512×512, 256×256, . . . , 16. This should be roughly equivalent with considering
every wedgelet in the image.

Image size 16× 16 32× 32 64× 64 128× 128 256× 256 512× 512
BeamLab 6.72s 45.34s 330.41s 2676.3s 27918s > 12h

≈ 5.5min ≈ 44.6min ≈ 7h45min

dyadic wedge < 0.02s 0.05s 0.2s 1.2s 8s 59s
equivalent

dyadic wedge 1s 2s 8s 37s 140s 722s
1024 angles

dyadic wedge 0.2s 0.3s 1.6s 6s 24s 120s
180 angles

dyadic wedge < 0.01s < 0.01s 0.04s 0.2s 1s 10s
4 angles

dyadic square < 0.01s < 0.01s < 0.01s 0.04s 0.5s 6s

6. Conclusion. In this paper, we proposed a new efficient algorithm for rapid
moment computation over polygonal domains. It provides a very efficient and flexible
tool, enabling comparative experiments between many different bases on arbitrary
adaptive local regression functions. A very useful property of our scheme is the
possibility to compute optimal solutions for many different parameters λ very rapidly:
in particular it enables computation of rate-distortion curves in very reasonable time.
It also allows to easily perform tests with diverse sets of parameterised models.
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