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Abstract

We present fast algorithms for the exact computation of estimators for time series,
based on a simple variational approach. The functionals behind are complexity pe-
nalised loglikelihood- or M -functions. We emphasize optimisation simultaneously in
all model parameters. The algorithms cover a broad range of estimators, including all
those commonly adopted in the literature. This is illustrated by a series of examples.

1 Introduction

In this paper we present algorithms for the fast computation of complexity penalised M -
estimators for time series. Complexity penalised likelihood functions appear in the literature
in various contexts. We start with a brief motivation by way of example.

Penalised sums of squared deviations are classical models of the form

Pγ : Rn × Rn −→ R, (x, y) 7−→ γ · |J(x)|+
n∑

i=1

(yi − xi)2, γ ≥ 0. (1)

Let us make this precise. There is a finite set T = {1, . . . , n} of time points. Elements of
Rn are interpreted as time series or signals x = (x1, . . . , xn). For each time series x, the set
of jumps is J(x) = {i = 1, . . . , n − 1 : xi 6= xi+1}, and their number is denoted by |J(x)|.
The time series y = (y1, . . . , yn) ∈ Rn is interpreted as measurement or data, and each x
is a candidate for the representation of data subject to the (soft) restrictions imposed by
the functional. An estimate is a signal which minimises Pγ(·, y). These estimates enjoy an
optimal tradeoff between fidelity to data, measured by the sum of squares, and complexity,
measured by the number of jumps.
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From a Bayesian point of view, these functionals are negative posterior loglikelihood
functions with an improper prior. Minimal points of Pγ(·, y) correspond to the respective
maximum a posteriori estimates.

The following reformulation is convenient. Each signal x ∈ Rn can be described by the
family P of those maximal discrete intervals I ⊂ T on which it is constant, and by the
values µI ∈ R which it takes on I. Then (1) can be rewritten as

P̃γ : (P, (µI)I∈P) 7−→ γ(|P| − 1) +
∑
I∈P

∑
i∈I

(yi − µI)2.

Taking minima yields

min
(P,(µI)I∈P)

P̃γ(P, (µI)I∈P)

= min
P

(γ(|P| − 1) +
∑
I∈P

min
µI

∑
i∈I

(yi − µI)2) = min
P

(γ(|P| − 1) +
∑
I∈P

∑
i∈I

(yi − ȳI)2)

with the empirical means ȳI = (
∑

i∈I yi)/|I|. For sums of absolute deviations the mean is
replaced by the median. Note that partitions in which the minima are attained consist of
maximal intervals on which the signal is constant.

This is an example for a general reduction principle, which applies to a large class of
functionals. It can be exploited whenever the minimal values µI on the righthand side
are known. Then the original optimisation problem on Rn boils down to one on the finite
set of partitions. Unfortunately, the cardinality of this set is still 2n−1 and thus grows
exponentially in the sample size. In order to develop fast optimisation algorithms we will
exploit ideas from dynamic programming.

One of the main problems - appearing in almost all similar situations - is the identifica-
tion of the smoothing or hyper parameter γ. It should depend on the actual data and must
be adapted to the aims of the concrete statistical analysis. To attack this problem, it is
desired, and in fact very helpful, to have the estimates for all parameters γ. Our theoretical
findings, originating from O. Wittich et al. (2005), paved the way to the development of
an algorithm which computes all desired estimates together in time complexity better than
O(n3). It is reported in Section 4 below.

Before we proceed with more general estimates, let us point out that the estimators
for constant local regression are themselves of considerable interest. For example, they are
especially useful for the detection of (multiple) change points in time series, see P. Bhat-
tacharya (1994), M. Csörgö and L. Horváth (1997), H.-G. Müller (1992) or C. R.
Loader (1996). Moreover, they can be used as a preprocessing step in order to partition
the region of interest into homogeneous parts. Afterwards, any kind of smoothers or other
filters can be applied to the single subregions. For multidimensional signals this aspect is
addressed in D. Geman et al. (1987).

If we insist on a penalty proportional to the number of pieces into which a signal is
decomposed there remain two directions of generalization. One is to modify the distance
between signal and data: Sums of squared deviations belong to Gaussian white noise. The
algorithms below apply to a much wider class of degradations. The most popular, and more
robust, alternative is double exponential white noise; sums of squares are then replaced
by sums of absolute deviations. The algorithms lend themselves also to M -estimators of
location, which in general do not allow for a likelihood in the strict sense, and also to even
more general estimators. A second possibility of generalization is to replace the constant
local regressors for example by polynomials or splines, or by functions with prescribed
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morphological properties like monotonicity or their number of modes. We will illustrate the
indicated wide range of applications by a series of typical examples in Sections 5 and 6.

Originally, the authors developed algorithms, similar to those reported below, for func-
tionals of the type in (1). The initiative came from data with either little or no ground
truth behind, or where there was strong evidence that meaningful and interpretable esti-
mates should be piecewise constant. Such examples, from the analysis of gene expression
data (cf. Fig. 5), and from brain mapping of responses to boxcar shaped stimuli, are
reported in G. Winkler et al. (2005) or A. Kempe (2004), and A. Kempe et al. (2005)

Motivated on these grounds, the authors of the present paper, jointly with others, stud-
ied the model (1) in a series of papers. V. Liebscher and G. Winkler (1999) introduced
the basic scheme of the algorithms. G. Winkler and V. Liebscher (2002), A. Kempe
(2004), and O. Wittich et al. (2005) discussed deterministic properties. V. Liebscher
et al. (2004) embedded the model into a family of functionals including the (continuous
time) Mumford-Shah functional. In A. Kempe (2004) and L. Boysen et al. (2005), sta-
tistical aspects like consistency and rates of convergence were addressed.

Functionals with a complexity penalty appear in many papers; let us mention just a
few ‘classical’ ones. The penalty itself was introduced in R. Potts (1952) as the energy
function of a spin system with finitely many states. In S. Geman and D. Geman (1984)
such functionals are mentioned in the context of signals with discrete values, with focus on
multidimensional ‘images’; in A. Blake (1983) and A. Blake and A. Zisserman (1987)
they are extreme cases of what is nowadays called Blake-Zisserman models. Complexity
penalised likelihoods have developed into a standard tool in nonparametric statistics, see
for example L. Györfi et al. (2002) for an account. D. Donoho (1999) studies these
functionals in two dimensions restricting the class of partitions to those which consist of
elements with wedge-shape, so-called wedgelets. For an up-to-date account of this circle of
ideas see H. Führ et al. (2006).

Finally, we sketch briefly the plan of this paper. The general optimisation problem
will be formulated in Section 2. In Section 3 we will describe an algorithm for single
parameters γ, and in Section 4, we will compute minimising time series for all parameters
simultaneously. In Section 5, we apply the general scheme to special functionals and data,
mainly with loglikelihoods in `p. In the last Section 6, we indicate the flexibility of the
present approach, and argue that it applies to a wide variety of situations. Modifications
are mainly in the computation of the quantities d∗I substituting

∑
i∈I(yi − ȳI)2 in the

reduction principle.

2 Formulation of the Problem

We are now going to formulate the general variational problem. The key to the construction
of fast algorithms is the reduction of the minimisation problem on Rn to one on a finite set.
To this end, we describe signals x ∈ Rn in terms of segmentations, i.e. by intervals I in T
on which x has characteristic properties.

To make the latter precise, we associate to each interval I a space FI of functions
µI : I → R. For some applications, we adopt the usual setting from approximation theory,
where µI(i) = f(ti), i ∈ I, for functions f on R with prescribed smoothness properties, and
design points ti ∈ R. The functions f may, for example, be constant like in the Introduc-
tion, polynomials of higher degree, or splines. In another class of examples, morphological
properties like monotonicity, uni- or multi-modality are in the focus. One can even use
templates of special shape which the estimated time series should resemble.
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A partition of T is a collection P of mutually disjoint discrete intervals I ⊂ T with union
T . The set of partitions will be denoted by P. A pair (P, µ) with

P ∈ P and µ = (µI)I∈P ∈
∏
I∈P

FI

will be called a segmentation, and the set of segmentations will be denoted by S. In these
terms, we define functionals

Hγ : S× Rn −→ R, ((P, µ), y) 7−→ γ · (|P| − 1) +D((P, µ), y), (2)

where γ ≥ 0 is the control parameter of the penalty. Concerning D, we will only assume
that it is the sum of independent contributions from single intervals. Hence we consider
data terms of the form

D((P, µ), y) =
∑
I∈P

dI(yI , µI), P ∈ P, µ = (µI)I∈P ∈
∏
I∈P

FI , y ∈ Rn, (3)

with yI = (yi)i∈I ∈ RI and functions dI : RI × FI → R. Let us point out once more
that there are two main aspects inherent in these models: morphological or smoothness
properties of the local regression, made precise by the choice of the function spaces FI , and
the local distances dI between data and representations. We illustrate this by way of two
simple examples.

Although rather simple, piecewise constant regression in the first example is important.

Example 1 Suppose that each function space FI consists of the constant functions. If
constant functions are identified with their unique value µI ∈ R. For sums of squared
deviations, one gets dI(yI , µI) =

∑
i∈I(yi − µI)2. With the the same spaces FI , but the

sum dI(yI , µI) =
∑

i∈I |yi − µI | of absolute deviations, estimation becomes more robust.

The second example addresses basic morphological features.

Example 2 Let FI be the union of all de- or increasing time series on I. This corresponds
to locally monotone regression. Locally, it is either antitone or isotone, depending on the
better fit to data. Unless x has monotonously increasing regions with sudden jumps down
(or vice versa for decreasing shape), the penalty |P|−1 measures the number of local modes,
cf. Fig. 1. Here we assumed tacitly, that the intervals are maximal in the sense that if the
signal increases (decreases) on two adjacent intervals then it does not increase (decrease)
on their union. It turns out that minimal points fulfil this property. The computation of
estimates in this case and for explicitly penalised modes will both be indicated in Section
6.

q q q q q
q q q q q q q q q q q q

q q q q q q q
q q

Figure 1: Sudden jump down with one and
two modes near the jump

Throughout the paper, we will assume that the contributions of single intervals can be
minimised separately, and hence we require:
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Hypothesis 1 For each interval I ⊂ T , the function dI(yI , ·) : FI → R, yI ∈ RI , attains
a minimum. A function µ∗I ∈ FI in which dI(yI , ·) is minimal, as well as the value d∗I =
dI(yI , µ

∗
I), are stored.

Under these hypotheses, the formulations (2) and (3) of the variational problem pave the
way to a considerable simplification. In fact, the minimisation of (2) can be split into
the minimisation in µ for each of the partitions P, followed by the minimisation over all
partitions. Formally, this reads

min
(P,µ)∈S

Hγ((P, µ), y) = min
P∈P

(
γ(|P| − 1) +

∑
I∈P

d∗I

)
. (4)

We will call this identity the reduction principle. It is very much at the heart of the algo-
rithms to be developed below. One reads off from the righthand side that under Hypothesis
1 the minima exist.

Due to the reduction principle and given the quantities d∗I , the following optimisation
problem remains to be solved:

minimise H̃γ : P −→ R, P 7−→ γ(|P| − 1) +
∑
I∈P

d∗I (5)

After an optimal partition P∗ for this functional is determined, an optimal segmentation
for (2) is obtained piecing together the corresponding optimal signal segments µ∗I , I ∈ P∗.

3 The Basic Algorithm

Let, for the present, data y and a parameter γ be given. To formulate the recursive algo-
rithms below, we must restrict partitions and segmentations to subintervals of T . Let left
and right bounds l, r ∈ N with 1 ≤ l ≤ r ≤ n be given and let us denote discrete intervals
{l, . . . , r} by [l, r]. The sets of partitions P(r) and segmentations S(r) on intervals [1, r],
r ≥ 1, are defined in the same way as those on T . Let us further introduce the Bellman
functions

B(r) = inf
(P,µ)∈S(r)

(
γ(|P| − 1) +

∑
I∈P

d∗I

)
, r ≥ 1.

Plainly, B(n) is the minimal value of (2). Now we sort the partitions according to their
rightmost interval and set

P(l, r) = {P ∈ P(r) : [l, r] ∈ P}, 1 ≤ l ≤ r ≤ n

Then P(r) =
⋃r

j=1 P(j, r), and therefore

B(r) = min
1≤j≤r

min
P∈P(j,r)

γ(|P| − 1) +
∑
I∈P

d∗I . (6)

This suggests the following fundamental recursion formula.

Lemma 1 Let B(0) = −γ. Then

B(r) = min
1≤j≤r

B(j − 1) + γ + d∗[j,r], r ≥ 1. (7)
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Figure 2: Data structure for one-dimensional partitions used in Algorithm 1

Proof. Choose P ∈ P(j, r), j > 1. Then P = Q ∪ {[j, r]} with a partition Q ∈ S(j − 1).
Therefore we have the decomposition

γ(|P| − 1) +
∑
I∈P

dI(yI , µI)

=
(
γ(|Q| − 1) +

∑
I∈Q

dI(yI , µI)
)

+
(
γ + d[j,k](y[j,k], µ[j,k])

)
.

Taking minima yields the assertion. �

The previous lemma allows one to employ a dynamic programming immediately. The
data structure used for storing one-dimensional partitions is an array p with length n. At
position 1 ≤ r ≤ n, the array p contains a best previous position:

pr = argmin
0≤l<r

(B(l) + γ + d∗[l+1,r]).

The algorithm consists of two procedures and the main part. To avoid an overhead of
technical details, we use ‘global parameters’ in the following pseudo-code representation of
the algorithms. In a modern computer language these globally accessible variables would
typically be wrapped in some composite type such as a ‘record’, ‘class’ or ‘object’ used to-
gether with a pointer mechanism that locates a potential repository for large data. Dynamic
values as - for example - the distance function d∗ or the mean values µI (I ⊂ {1, . . . , n})
would be realised by (type bound) procedures (methods).

The first procedure delivers a best partition:
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Procedure FindBestPartition(γ ∈ R) ∈ Nn

global : data length n ∈ N, distance function d∗[·,·] ∈ Rn × Rn

output: partition stored in p ∈ Nn

local : left and right interval bounds: l, r ∈ N; Bellman values B ∈ Rn; temporary b ∈ R
begin

B0 := −γ (* definition *) ;
for r ← 1 to n do

Br ←∞;
for l← 1 to r do

b← Bl−1 + γ + d∗[l,r];

if b ≤ Br then
Br ← b (* best value at right bound r *) ;
pr ← l − 1 (* best left bound at right bound r *);

end

end

end
return p;

end

The second procedure complements the partition by the values on intervals and delivers a
segmentation:

Procedure SegmentationFromPartition(p ∈ Nn) ∈ Rn

global : data length n ∈ N, local approximations µ∗
I ∈ FI for all intervals I ⊂ {1, . . . , n}

output: approximation y ∈ Rn;
local : left and right interval bounds: l, r ∈ N; temporary t ∈ N
begin

r ← n; l← pr;
while r > 0 do

for t← l + 1 to r do
yt ← µ[l+1,r](t);

end
r ← l; l← pr;

end
return y;

end

Both procedures are combined in the algorithm:
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Algorithm 1: Minimisation of Hγ for fixed γ ≥ 0

global : data length n, distances d∗[l,r] ∈ R, local approximations µ∗
[l,r] ∈ F[l,r] (for all

1 ≤ l ≤ r ≤ n)
input : parameter γ ≥ 0

output: minimiser ŷ ∈ Rn; partition stored in p ∈ Nn

begin

--- minimisation ---

p← FindBestPartition(γ);

--- reconstruction ---

ŷ ← SegmentationFromPartition(p);
end

Remark 1 Algorithm 1 returns the minimising partition that in each single recursion step
chooses the largest possible interval. An algorithm that returns the minimising partition
with the least number of intervals can also be obtained with minor modifications of Algo-
rithm 1.

This algorithm returns the desired result.

Theorem 2 Under Hypothesis 1, the Algorithm 1 terminates and returns a partition of T
which minimises the functional (2). If evaluations of the functions µ[l,r] (1 ≤ l ≤ r ≤ n)
at time points l ≤ x ≤ r take O(n) time and d∗[l,r] can be derived in O(1) time, then the
algorithm works in time complexity O(n2). The spatial complexity of the algorithm is O(n).

Proof. The minimisation part of the algorithm consists of two nested finite for-loops and
therefore terminates. Since by construction pr < r for all 1 ≤ r ≤ n, the reconstruction part
also terminates and therefore the algorithm delivers an output in finite time. Denote the
resulting partition by P, and assume that there is a partition Q of T with H̃γ(Q) < H̃γ(P).
Then there is a least time index r such that P and Q coincide on [r + 1, n] but the last
intervals [p, r] and [q, r], respectively, are different. By construction we have p = qr. Let
now R be the collection of the common intervals to the right of r. Then P and Q are
disjoint unions Pr ∪ R and Qr ∪ R with partitions Pr and Qr of Ir = {1, . . . , r}. The
construction of P implies with C =

∑
I∈R d

∗
I + γ|R| that

B(p− 1) + γ + d ∗[p,r] + C = H̃γ(P) > H̃γ(Q) ≥ B(q − 1) + γ + d ∗[q,r] + C.

We conclude that
B(p− 1) + γ + d ∗[p,r] > B(q − 1) + γ + d ∗[q,r],

which contradicts the construction of p = qr. Hence P is optimal.
Concerning time complexity we note: The procedure FindBestPartition consists of two
nested loops with length ≤ n. Operations within the loops are of O(1) yielding a time com-
plexity of O(n2). In the reconstruction part SegmentationFromPartition an evaluation
of the functions µ[l+1,r] is performed n times. So, if each evaluation is of order O(n) then
Algorithm 1 works with a time complexity of O(n2)

For space consumption inspect the temporary variables used in the algorithm, all with
sizes ≤ n+ 1. Thus the algorithm has linear space complexity O(n). �
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Let us finally indicate some modifications.

Remark 2 In applications we do not need to feed the algorithm with the exact values d∗I of
the functionals. There, the so-called m-estimates which are derived from one Newton step
starting in the median of the data during the optimisation process related to M -estimation,
could easily be plugged in. Since we can handle local medians efficiently (see below), this
approach should prove powerful.

Instead of feeding the algorithm with the values d∗I and µ∗I stored in arrays one can
also use fast evaluation schemes that also work in O(1) and have a memory consumption
of O(n) only. Compare F. Friedrich (2005).

One may also restrict the search space.

Remark 3 Another potentially useful approach is to restrict the class of possible partitions.
For example, we could require that the length of all intervals in the partition is greater than
2 (to avoid single spikes) or to be less than

√
n (to avoid oversmoothing). The corresponding

versions of the Bellman recursion (6) are obvious. Notice that the latter improves the time
complexity to O(n3/2).

4 A Shooting Algorithm

One can compute minimising segmentations for all parameters γ simultaneously with mod-
erate additional effort. This is due to the fact that one can easily determine a finite partition
of the γ-axis into intervals, such that it is sufficient to compute optimal partitions of T on
each of these intervals only once. To formulate this precisely we introduce some additional
notation. First, recall that H̃γ and d∗I do depend on input data y ∈ Rn, which will be
expressed by the index y in the following definitions. Let

Gy : [0,∞) −→ R, γ 7−→ min
P∈P

H̃γ(P),

and set

bk(y) = min
{ ∑

I∈P
d∗I : P ∈ P, |P| = k

}
,

Gk
y : [0,∞) −→ R, γ 7−→ γ(k − 1) + bk(y).

The function Gy is the pointwise minimum of the finitely many affine functions Gk, i.e.

Gy(γ) = min
1≤k≤n

Gk
y(γ) for every γ ≥ 0. (8)

The idea behind the following algorithm is to compute the intersection points γi of the
affine functions Gk contributing to the minimum in (8) using Algorithm 1 for some values of
the parameter γ. If we compute for some γ a minimising partition for H̃γ with cardinality k,
this Gk is determined by the cardinality of the partition. For the two lines corresponding to
the functions Gk and Gk′ extracted from neighbouring γ-values we compute the intersection
point yielding a new candidate value for a γi. This is the reason for the word “shooting” in
the title of this section. If the algorithms stops, we have computed for each γ ≥ 0 partitions
solving (5), see Corollary 2 below. Afterwards, minimising segmentations are obtained by
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Figure 3: G is the pointwise minimum of affine functions Gk

adjoining the values µ∗I . Let us formulate the results more general for a finite set of straight
lines.

Let n ∈ N and Λ ⊂ R2 with |Λ| = n be given. Consider straight lines with slope a and
intercept b, (a, b) ∈ Λ. We are interested in the lowermost line function

F : R → R, s 7→ min
(a,b)∈Λ

s · a+ b.

Let s ∈ R. In the sequel the symbols a∗s and b∗s will denote slope and intercept of a lowermost
line at position s, i.e.

(a∗s, b
∗
s) ∈ argmin

(a,b)∈Λ

s · a+ b.

Lemma 2 The function
F : R → R, s 7→ s · a∗s + b∗s

is concave, continuous and piecewise affine. Given lower and upper bounds −∞ ≤ L < R ≤
∞, there are a natural number 1 ≤ m(Λ) ≤ n and parameters

L = γ0 < γ1 < · · · < γm(Λ) = R, (9)

such that (a∗s, b
∗
s) is well defined and constant for all s ∈ (γi−1, γi) and such that (a∗s, b

∗
s) 6=

(a∗t , b
∗
t ) if s < γi < t, 1 ≤ i ≤ m(Λ).

Let si ∈ (γi−1, γi) for all 1 ≤ i ≤ m(Λ). Then γia
∗
si

+ b∗si
= γia

∗
si−1

+ b∗si−1
and the

mapping i 7→ a∗si
is strictly decreasing.

Remark 4 Note that on the intersection points γi the set argmin(a,b)∈Λ γi · a + b may
consist of more than the two points (a∗si

, b∗si
) and (a∗si−1

, b∗si−1
).

Proof. Clearly, the point-wise minimum of finitely many continuous functions is a contin-
uous function. The minimum of affine functions is concave:

λ · min
(a,b)∈P

[s · a+ b] + (1− λ) · min
(a,b)∈P

[t · a+ b] ≤ min
(a,b)∈P

[λs+ (1− λ)t+ b] .

Let l, r ∈ R with l < r. By definition of a∗ and b∗ the inequalities

r(a∗r − a∗l ) ≤ b∗l − b∗r ≤ l(a∗r − a∗l ) (10)
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hold and consequently a∗l = a∗r implies b∗l = b∗r and a∗l 6= a∗r implies a∗l > a∗r . Therefore the
set

{s ∈ (L,R) : a∗s−ε 6= a∗s+ε for all ε > 0}

is finite. Thus F is piecewise affine with finitely many change points γi, 0 < i < m and the
map i 7→ asi

is strictly decreasing. �

We will now apply the previous lemma to the functional Gy by considering Λ = {(k −
1, bk(y)) : 1 ≤ k ≤ n}. For each k ∈ N we denote the set of partitions with k pieces by
Pk = {P ∈ P : |P| = k} and the subset minimizing the data term by P∗k = {P ∈ Pk :∑

I∈P d
∗
I ≤

∑
I∈Q d

∗
I ∀Q ∈ Pk}. A direct consequence of the previous lemma reads as

follows.

Corollary 1 With notation from the previous lemma, let Λ = {(k− 1, bk(y)) : 1 ≤ k ≤ n},
m(y) := m(Λ), L = 0, R = ∞ and k(i) = asi for all 1 ≤ i ≤ m(y). For the resulting
parameters

0 = γ0 < γ1 < · · · < γm(y) = ∞, (11)

the following holds:

(i) For each i = 1, . . . ,m(y) and each γ ∈ (γi−1, γi) we have argmin H̃γ = P∗k(i).

(ii) For each γi, i = 0, . . . ,m(y) − 1, the set argmin H̃γi
is the union of those P∗k for

which Gy(γi) = Gk
y(γi) and contains both P∗k(i) and, if i ≥ 1, P∗k(i−1).

(iii) For each γ ∈ (γm(y)−1,∞) the functional H̃γ has {T} as unique location of the mini-
mum.

Proof. To see (i) and (ii), replace the function F in Lemma 2 by G displayed in (8). To see
(iii), observe that limγ→∞Gk(γ) = ∞ for all k ≥ 1 and therefore obtain G(γ) = G0(γ) for
large γ. Correspondingly, only partitions P with |P| = 1 can minimise (1). Since |P| = 1
is equivalent to P = T this proves (iii). �

The following lemma provides the keys for the development of a recursive algorithm to
determine the gamma scale (9).

Lemma 3 Let l, r ∈ R with l < r and a∗l 6= a∗r. Then there is an intersection point q with
l ≤ q ≤ r and

a∗l · q + b∗l = a∗r · q + b∗r . (12)

Additionally, one and only one of the following two cases occurs:

(1) q · a∗q + b∗q = q · a∗l + b∗l = q · a∗r + b∗r,

(2) q · a∗q + b∗q < q · a∗l + b∗l = q · a∗r + b∗r.

(1) implies F (s) = s · a∗l + b∗l for all s ∈ (l, q] and F (s) = s · a∗r + b∗r for all s ∈ [q, r).
(2) implies the inequalities l < q < r and a∗l > a∗q > a∗r.

Proof. In the proof of Lemma 2 we found the inequalities r(a∗r−a∗l ) ≤ b∗l −b∗r ≤ l(a∗r−a∗l ).
Since by the same lemma a∗ is decreasing and (12) means (b∗r − b∗l ) = q(a∗r − a∗l ) we obtain
l ≤ q ≤ r. By definition q · a∗q + b∗q ≤ q · a∗s + b∗s for all s ∈ R and therefore only the two
cases (1) and (2) can occur.
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If (1) holds then a convex combination of the inequalities q ·a∗l +b∗l = q ·a∗q+b∗q ≤ q ·a∗s+b∗s
and l · a∗l + b∗l ≤ l · a∗s + b∗s for all s ∈ R implies that s · a∗l + b∗l ≤ s · a∗s + b∗s for all l ≤ s ≤ q.
The same result holds for (a∗r , b

∗
r) and the statement about (1) is proved.

The inequality l < q < r follows immediately from the inequality in (2) and a∗l > a∗q > a∗r
is a consequence of r(a∗r − a∗q) ≤ b∗q − b∗r ≤ l(a∗r − a∗q) and the corresponding inequality for
a∗l and a∗q . �

The following is a recursive procedure used for the computation of the list (9).

Procedure BuildGammaList(al, bl, ar, br ∈ R; List lst)

output: list of values γ ∈ R appended to lst

local : intersection point q ∈ R; line parameters aq, bq ∈ R
begin

q ← br−bl
al−ar

(* intersection point of Gl and Gr *);

(aq, bq)← GetLine(q);

if q · aq + bq = q · al + bl then

Append(lst, q);

else

BuildGammaList(al,bl,aq,bq,lst); BuildGammaList(aq,bq,ar,br,lst);

end

end

Figure 4: γ-shooting: the displayed tree represents the data structure implicitly created
when BuildGammaList is called recursively.
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Algorithm 2: γ-Shooting
input : left and right interval bounds L < R. Procedure GetLine to determine lowermost

line.
output: list lst containing values γ ∈ R
local : line parameters (aL, bL) and (aR, bR)

begin
--- initialisation for γ = 0 ---

(aL, bL)← GetLine(L); (aR, bR)← GetLine(R);

--- build list ---

lst := CreateEmptyList;
if aL 6= aR then

BuildGammaList(aL,bL,aR,bR,lst);
end
if L 6∈ lst then

InsertBefore(L,lst);
end
if R 6∈ lst then

Append(lst, R);
end

end

Theorem 3 Let L,R ∈ R with L < R and M = |{1 ≤ i ≤ m(Λ) : L ≤ γi ≤ R}|. Then
there is a constant c > 0 such that, if there is a number N ∈ N and a procedure GetLine
that for each q ∈ R returns the slope a∗q and intercept b∗q within at most N steps, Algorithm
2 determines the list (9) in c ·N ·M steps.

Proof. Let l < r. By Lemma 3 only one of the following cases can occur, if procedure
BuildGammaList is called with parameters (a∗l , b

∗
l ) and (a∗r , b

∗
r):

(1) The value q is inserted into the list and in the intervals (l, q) and (q, r) the graph of G
is uniquely determined by the two lowermost lines (a∗l , b

∗
l ) and (a∗r , b

∗
r). If l and r are not

lowermost intersection points, then consequently q 6= l and q 6= r.
(2) BuildGammaList is again called with a∗l > a∗q > a∗r , where q is no lowermost intersection
point.
Since only the cases (1) and (2) can occur, the procedure BuildGammaList either terminates
(and enters a value in the list) or it recurses with values a∗l , a

∗
q and a∗q , a

∗
r corresponding to

intervals strictly contained in [a∗l , a
∗
r ]. By the principle of nested intervals the procedure thus

terminates and determines the list of values as described in Lemma 2. The statement about
complexity is also derived from the principle of nested intervals since BuildGammaList is
called with a∗l > a∗q > a∗r . If L or R are lowermost intersection points, then they may or
may not be inserted in the list. This is checked by the two if-statements. �

Now we come back to the Potts functional. The following procedure can be used for
the determination of line parameters associated to data y or more generally, to distances
d∗. We assume that the variables d∗I are accessible as global variables for each interval
I ⊂ {0, . . . , n}.
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Procedure GetPottsLine(γ ∈ R) ∈ R2

output: line parameters (a, b) ∈ R2

global : data length n ∈ N; distances d∗ ∈ Rn × Rn

local : partition vector p ∈ Nn, left and right interval bounds: l, r ∈ N; temporary variable
t ∈ N

begin
if γ =∞ then

a← 1; b← d∗[1,n]

else
p← FindBestPartition(n,γ,d∗);

--- compute cardinality and distance of partition ---

r ← n; l← pr; (a, b)← (0, 0);
while r > 0 do

a← a + 1; b← b + d∗[l+1,r];
r ← l; l← pr;

end

end
return (a, b);

end

Procedure GetPottsLine allows us to determine elements from the set of lines Λ(y)
described at the beginning of this paragraph. Algorithm 2 combined with this procedure can
be used to determine the m(y) := m(Λ(y)) lowermost intersection points γi, 1 ≤ i ≤ m(y):

Corollary 2 Algorithm 2 used with L = 0, R = ∞ and procedure GetLine=GetPottsLine
terminates and computes the intersection points γi in (11). If evaluations of the functions
d∗[l,r] (1 ≤ l ≤ r ≤ n) at time points l ≤ x ≤ r take O(1) steps the algorithm works with a
time complexity O(n2 ·m(y)) and space complexity O(n ·m(y)).

Proof. The statements are direct consequences of Theorem 2 and Theorem 3. �

Remark 5 In applications, the if statement checking for γ = ∞ in procedure GetPottsLine
can be replaced by feeding Algorithm 2 with a very large value for R.

The algorithm is an improvement of one suggested early by some of the authors.

Remark 6 In V. Liebscher and G. Winkler (1999) we reported on a O(n3) time, O(n2)
space, algorithm based solely on dynamic programming. The present algorithm is better
in both aspects. This is clear for the space consumption. As far as time complexity is
concerned, numerous numerical simulations (both on real data and test beds) suggest that
genericallym(y) is considerably smaller than n. Moreover, consider typical time series which
have sound representation with few jumps. Then other segmentations can only survive if γ
is very small. In fact, in simulations the overwhelming number of γ-intervals appear close
to γ = 0.

Skipping these intervals leads to m(y) � n and thus a further significant improvement
over O(n3).
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5 `p-Loglikelihoods

By Corollary 2, the crucial point is to compute all d∗[l,r], 1 ≤ l ≤ r ≤ n, efficiently. So, let us
address optimisation of the distances dI now, in order to illustrate the scope and thereby
underline the relevance of the algorithms. We will restrict ourselves to distances dI of the
form

dI(yI , µI) =
∑
i∈I

%(yi − µI(i)),

with a real function %(u) on R. Clearly, all (negative) loglikelihood functions of location
families are of this type. Minima exist under natural conditions, for example that % be
symmetric around 0, increasing in |u|, and lower semicontinuous.

The most important examples of % are the `p-norms, in particular the common case
p = 2, and p = 1. The latter received increasing interest recently. Other examples are the
convex ‘Huber functions’, which are quadratic in a symmetric neighbourhood around zero,
and linearly increasing outside, or the non-convex ones of the ‘Hampel type’, like truncated
squares, or all other functions appearing in the context of M -estimation of location, cf.
F. Hampel et al. (1986).

To fix the ideas, let us consider the most common example. Suppose we want to minimise

∑
i∈I

%(yi − p(ti)), p(ti) =
l∑

j=0

cjφj(ti), (cj)l
j=1 ∈ Rl, (13)

on an interval I ⊂ T for a system of basis functions φ1, . . . , φl and with distinct design
points ti ∈ R, i ∈ I. Then FI becomes the linear space of the vectors (µI(i) = p(ti) : i ∈ I)
and, to compute µ∗I and d∗I , optimal coefficients c∗j must be determined.

Efficient access to relevant quantities can be based on the following simple observation.

Lemma 4 For every function ψ : T 7→ R there is a O(n)-tabulation from which each of the
values

∑
i∈I ψ(i) for intervals I in T can be computed in O(1).

Proof. The tabulation of the n values
∑k

i=1 ψ(i), k = 1, . . . , n has time complexity O(n).
For each I = [a, b] the values

∑
i∈I

ψ(i) =
b∑

i=1

ψ(i)−
a−1∑
i=1

ψ(i)

are computed in O(1) which completes the proof. �

The `2-case %(u) = u2 is ubiquitous in the literature on regression and approximation theory.
One simply has to solve the normal equations. In the simplest case, where FI consists of
the constant time series, one gets sums

dI(yI , µI) =
∑
i∈I

(yi − µI)2 (14)

of squared deviations from data, and concerning minimisation,

min
µI∈RI

∑
i∈I

dI(yI , µI) = min
aI∈R

∑
i∈I

(yi − aI)2 =
∑
i∈I

(yi − ȳI)2.
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Let us come back to the general `2-case and continue from Lemma 4. The number m(y)
was defined in Corollary 1.

Proposition 1 Let a system of basis functions φ1, . . . , φl, and mutually distinct design
points ti ∈ R, i ∈ T , be given, and consider the regression problems from (13) with

dI(yI , µI) =
∑
i∈I

(yi − p(ti))2. (15)

Then a location of the minimum for the functional (3) can be computed in time complexity
O(n2) for a single γ ≥ 0, and in time complexity O(m(y)n2) for all γ simultaneously, space
complexity is O(n) in either case.

Proof. For each interval I ⊂ T we have to solve the normal equations

∑
i∈I

yiφk(ti) =
l∑

j=1

cj
∑
i∈I

φj(ti)φk(ti), k = 1, . . . , l.

We may resort to any standard numerical method. Given the cumulative moments on both
sides, the algorithms work in time complexity O(l3) which does not depend on the sizes |I|
of intervals. By Lemma 4, the cumulative moments can be computed in O(n). The rest
follows immediately from Theorem 2 and Corollary 2. �

Recall that the regression spaces FI may vary from interval to interval.

Example 3 Consider regression spaces FI of polynomials φI
j with length-dependent max-

imal degrees r(|I|). After tabulations in time O(n2), similar to those sketched above,
solutions can be computed in time complexity O(

∑n
k=1(n − k)r(k)3). Since it does not

make sense to use polynomials of degree higher than n − 2, time complexity is at most
O(n5) both for a single γ, and for all γ > 0 simultaneously. If we decide on polynomials of
degree smaller than a fraction of n, say r(n) = n1/2, time complexity becomes O(n7/2).
Similar arguments apply to unisolvable systems of general basis functions. For an account
we refer to L. Györfi et al. (2002).

We discuss now two examples which are related to piecewise constant `2-regression.

Example 4 Up to now, we considered least squares where the scale of noise is assumed to
be known. Among others, Y.-C. Yao (1988) and Y.-C. Yao and S. Au (1989) studied
estimation of piecewise constant functions degraded by Gaussian white noise with unknown
variance. This case is very important in practice.
Schwarz’ model choice criterion recommends to minimise

γ · |J(x)| − 1
2

ln
n∑

i=1

(yi − xi)2 (16)

for γ = lnn/2. For Akaike’s AIC-criterion the constant is γ = 1.
Because of the nonlinear logarithm, the usual Bellman recursion does not work any more.
Extending the recursion by including the reconstruction complexity as a second parameter,
similar to V. Liebscher and G. Winkler (1999), with a new Bellman function

B(k, l) = inf
(P,µ)∈S(k),#P=l

(
γ(|P| − 1) +

∑
I∈P

d∗I

)
, k ≥ 1, 1 ≤ l ≤ k − 1,
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a double recursion over k and l solves the problem in O(n3) time for all γ simultaneously.
In contrast to this, the heteroscedastic version of the functional (16) can be minimised within
the main scheme of the present paper. Then, for each interval there are two parameters µI

and σ2
I . The Gaussian negative loglikelihood for an interval I reads

dI(µI , σ
2
I , y) =

1
2σ2

I

∑
i∈I

(yi − µI)2 +
1
2

lnσ2
I .

Standard optimisation yields µ∗I = ȳI and (σ2
I )∗ = (1/|I|)

∑
i∈I(yi − ȳI)2 and therefore

d∗I =
1
2

+
1
2

ln
∑
i∈I

(yi − ȳI)2.

If |I| = 1 one has (σ2
I )∗ = 0 and there is no loglikelihood. Therefore, we have to restrict

this procedure to intervals with at least two points, see also Remark 3.
Obviously, computation has the same time and space complexity as in the standard `2-case
in Proposition 1.

Let us now turn to the more robust `1-case and, again, start with spaces FI of constant
functions. Then (14) is replaced by the sums

dI(yI , µI) =
∑
i∈I

|yi − µI | (17)

of total deviations from data. For each interval I, the minimum is attained in the median
of data (yi)i∈I . As a pendant to Proposition 1 we get

Proposition 2 Let each FI consist of all constant functions, and be equipped with the
distance dI in (17). Then a location of the minimum for the functional (2) can be computed
in time complexity O(n2 lnn) for a single γ ≥ 0, and in time complexity O(n3) for all γ
simultaneously. In either case, space complexity is O(n2).

Proof. First we have to determine the local medians. For each single i ∈ T and increasing
j ≥ i, we sort data yk, i ≤ k ≤ j in increasing order. Then their median over I = [i, j]
can be determined in constant time. Furthermore, using so-called red-black trees from
T. Cormen et al. (2001), Chapter 15, we can sort data y[i,j+1] in O(lnn) time if data
y[i,j] are already sorted. Then the median can be retrieved in O(lnn) time too. Hence the
medians of data over all intervals in T can be computed in O(n2 lnn) time.
By Lemma 4, for each j ∈ T and each interval I, the values

∑
i∈I |yi−yj | can be computed in

constant time after a tabulation which needs quadratic time. Afterwards, for each interval
I, one computes the value d∗I in constant time. To complete the procedure, Algorithms 1,
or 2, respectively, are applied.
Space consumption of both procedures is quadratic and the space consumption for tabula-
tion is quadratic too. This completes the proof. �

We conclude the discussion of the `1-case with a final remark.

Remark 7 Concerning regression, the `1-case is much more intricate and unpleasant than
the `2-case. Nevertheless, the `1-theory has historically older roots than the `2-theory;
recent interest in this case is mainly due to questions about robustness. We refer to
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P. Bloomfield and W. Steiger (1983) for a preliminary account. Complexity is usually
connected to that of the simplex algorithm; the cited authors report a rate of O(|I| ln |I|)
instead of the rate O(|I|) in the above `2-case.

Let us as a third and last case briefly mention local absolute deviation, or the `∞-
approach, again for constant regression. We insert for (14) or (17) the expression

dI(yI , µI) = max
i∈I

|yi − µI |.

The minimum is then attained by the midrange

d∗I = (max
i∈I

{yi : i ∈ I} −min
i∈I

{yi : i ∈ I})/2.

Again, we obtain the same complexity results as in the `2 case since (6) is true.
We finally comment briefly on the global `∞-case, for which this recursion is not valid

any more. The functional is determined by

D((P, µ), y) = max
I∈P

max
i∈I

|yi − µI |.

Furthermore, for getting minimal points of this functional, µ∗I need not be a minimal point
of dI . But, the midrange of data yi, i ∈ I, is again one valid choice for a minimiser and
instead of (7) we find

B(k) = min
(

min
1≤j≤k−1

γ + max(B(j), d∗[j+1,k]),
)
, k ≥ 1. (18)

The main difference to (7) is the substition of ‘+’ by ‘max’. Hence we obtain the same
complexities of the recursion parts as above. Tabulation can be done in O(n2) space and
time complexity.

Let us finally sketch an application in molecular biology.

Example 5 We applied the algorithms to fractionation experiments for cDNA-microarrays
established in A. Drobyshev et al. (2003). For each spot on a chip a time series of length
29, called fractionation curve, is recorded. The most informative features are abrupt inten-
sity changes, which characterize if there is (undesired) cross-hybridization or not. Hence
they are valuable indicators of the quality of the single spots. Fig. 5 displays three different
types of fractionation curves, indicating from left to right zero, one, and two jumps down.
With spaces FI of constant functions, the output of the above algorithm for the `2-likelihood
is contrasted to that for the `1-likelihood variant. The change points identified by the two
methods are similar, especially for large γ-values (upper plots). On the other hand, there
is ample evidence that the height of jumps returned by the `1-algorithm is a much more
reliable estimate than that returned by the `2-algorithm.

To illustrate the power of the ideas behind the algorithms, let us conclude with an example
which goes beyond the scope of `p-loglikelihood scores. It is concerned with counting data
governed by generalised linear models.

Example 6 We consider piecewise constant regression under a binomial model. Let (yi)n
i=1

be a sample from independent random variables with binomial distributions of size ni ∈ N
and parameter µI ∈ [0, 1] if i ∈ I. The sample sizes ni are supposed to be known, and the
interval probabilities µI have to be estimated.
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Figure 5: Gene expression data: three different types of fractionation curves, each coloumn
one, data displayed as dots. Output of the `1-algorithm (dashed lines) contrasted to the
`2-algorithm (solid lines), for the respective five rightmost γ-intervals in decreasing order.
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The log-likelihood score is

dI(yI , µI) =
∑
i∈I

yi lnµI +
∑
i∈I

(ni − yi) ln(1− µI).

The maximum likelihood estimate for each interval I from a given partition is

µ∗I =
∑
i∈I

yi

/ ∑
i∈I

ni,

and the corresponding optimal values d∗I can be computed. Again both, Algorithm 1 and
2, apply to the computation of the complexity penalised maximum likelihood estimates.
This yields, due to the efficient computation of local means in Lemma 4, time complexities
O(n2) and O(n3) respectively.

6 Weak and Morphological Constraints

Functionals of seemingly completely different flavour than that of the introductory example
are covered by the framework marked out in Section 2. In this final section, we present a
selection of typical examples.

The first one addresses local weak smoothness constraints. A nowadays classical instance
is the Blake-Zissermann functional. It was proposed in the early 1980th in A. Blake (1983)
and A. Blake and A. Zisserman (1987), and independently in S. Geman and D. Geman
(1984) for discrete intensity values. For time series, the original version has the form

BZγ,τ (x, y) =
n∑

i=1

min{τ2(xi+1 − xi)2, γ)}+
n∑

i=1

(yi − xi)2. (19)

The function min{(τu)2, γ} in the first term is a truncated square function with width
2γ1/2/τ and height γ of the ‘cup’. It appears in (robust) M-estimation where it is introduced
for example in D. F. Andrews et al. (1972). Clearly, the functional (1) is the degenerate
case of (19) for τ →∞.

An equivalent formulation of the associated minimisation problem in the formalism from
(2) and (3) reads as follows: Let FI = RI and define a function of segmentations by

B̃Zγ,τ (P, µ) = γ(|P| − 1) +
∑
I∈P

∑
i,i+1∈I

τ2(µ(i+ 1)− µ(i))2 +
∑
i∈T

(yi − µ(i))2. (20)

This means that, given a partition, there are local sums of squared deviations of neighbour-
ing intensities inside the intervals of the partition, and a penalty γ for each break between
adjacent intervals. Taking minima for both functionals reveals that x∗ is a location of
the minimum for (19) if and only if (P∗, x∗) is one for (20) with P∗ defined by the time
points i ∈ T where |x∗i+1 − x∗i | ≤ γ1/2/τ . This is shown and discussed in connection with
robustness in G. Winkler and V. Liebscher (2002) and G. Winkler et al. (1999).

The functional (20) is of the form (2) with

dI(yI , µI) = 〈µI , (τ2B + Id)µI〉 − 2〈µI , yI〉+ 〈yI , yI〉, (21)
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where 〈· , ·〉 is the Euclidean inner product on RI , and A is the |I| × |I|-bandmatrix

B =


1 −1
−1 2 −1 0

0
. . . 0

0 −1 2 −1
−1 1

 .

The quadratic minimisation problem for (21) has the unique shrinkage-type solution

µ∗I = (τ2B + Id)−1yI .

For the computation of (τ2B + Id)−1 one can use the eigenvalues and -vectors of A. One
derives eigenvalues λk = 2(1− cos((k − 1)π/n) and the kth eigenprojection Prk onto their
eigenspaces spanned by the eigenvectors u1 ≡ 1, and uk, 2 ≤ k ≤ n, with components

sin((k − 1)π/n · i)− sin((k − 1)π/n · (i− 1)), 1 ≤ i ≤ n,

see for example H. Künsch (1994); T. S. Chihara (1978) is a standard reference for the
background.

In contrast to the above scheme, dI(yI , µ
∗
I) now is nonlinear in τ2. In fact, we have

d∗I = dI(yI , µ
∗
I) = 〈yI , (Id− (τ2B + Id)−1)yI〉 =

|I|∑
k=1

τ2λk

τ2λk + 1
〈yI ,Prk yI〉.

Due to this nonlinearity in τ2, it is somewhat harder to implement the scanning of min-
imisers of the functional (20) as a function of both parameters τ2 and γ. Nevertheless, for
constant τ we can employ our algorithms. All what is necessary is to compute the local
moments of y with the functions sin(kπ · /n) and cos(kπ · /n) for k = 1, . . . , n.

This can be done in quadratic tabulation time and the same computational complexities
(quadratic respectively cubic) as computed above. We conclude, that for one dimensional
time this algorithm is a fast, exact, and convenient alternative to the graduated noncon-
vexity algorithm (GNC) proposed by A. Blake and A. Zisserman (1987), not to speak
about simulated annealing.

A completely different way to impose weak constraints is to restrict the function spaces
FI . In nonparametric statistics, in particular if there is little groundtruth, qualitative
features are of special interest. Let us give two examples of morphological features, we
found especially suited for specific data sets, for example from gene expression and brain
mapping. For a thorough discussion cf. G. Winkler et al. (2005).

For the first example, let FI be the set of those time series which either increase or
decrease on I. We will refer to this case as piecewise monotonic regression.

Theorem 4 The complexity penalised piecewise monotonic regression problem of minimis-
ing the functional (15) can be solved in time complexity O(n2) for a single γ ≥ 0, and in
time complexity O(n3) for all γ simultaneously. In both cases, space complexity is O(n2).

Proof. We have to compute both, increasing and decreasing regressions for each interval.
The corresponding pool adjacent violators algorithm (PAVA, see M. Ayer et al. (1955))
computes this regression in linear time. We start this algorithm at each point i ∈ T
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separately. Then in the kth step of PAVA, the increasing and decreasing regressions for
the interval [i, i + k], are already computed. Consequently, the increasing and decreasing
regressions for all intervals [i, j] are computed in O(n2) time by this scheme. In view of
Theorem 2 and Corollary 2 this completes the proof. �

We conclude the discussion of monotone regression by a remark concerning the `1-case.

Remark 8 For `1-monotonic regression there are algorithms similar to the pool adjacent
violators algorithm with complexity O(n lnn), see V. Boyarshinov and M. Magdon-
Ismail (2004). This way, algorithms with similar complexities but with some additional
logarithmic factors can be derived.

There are even more sophisticated examples for morphological penalties.

Example 7 Let us consider mode penalised least squares regression with a penalty count-
ing the number of modes in a signal x instead of its jumps. In P. L. Davies (1995) and
also in P. L. Davies and A. Kovac (2001) the (low) number of modes is a crucial quality
measure for the parsimonious explanation of time series data.
We associate to each partition those signals, which increase and decrease on each pair of
subsequent intervals, or conversely. This restriction requires a modification of the Bellman
equations, which we are going to sketch now. First, we introduce two Bellman functions
B± given by

B±(k) = min
(P,µ)∈S(k),µ∈F±P

(
γ(|P| − 1) +

∑
I∈P

d∗I

)
, k ≥ 1.

The symbol F+
P denotes the space of all signals in [1, k], which are increasing in the last in-

terval of P (under the natural order) and similarly F−P the space of all signals in [1, k], which
are decreasing there. Denoting by d∗,±I the minimal values for increasing and decreasing
regression, we obtain recursion formulae of the form

B±(k) = min
0≤j≤k−1

B∓(j) + γ + d∗,±[j+1,k], k ≥ 1.

Since every minimal point of the functional (15) has to realise either B+(n) or B−(n), these
recursions allow to solve mode penalised least squares regression with the same complexities
as in Theorem 4.

Summarising the above derivations, let us emphasize once more that the dynamic pro-
gramming approach is able to solve a lot of important optimisation problems from complex-
ity penalised M -estimation without need to specify the hyperparameter in advance. This
will prove useful in applications, like indicated in Example 5. Simulations and tests were
performed with the software package AntsInFields; a CD-ROM is attached to G. Win-
kler (2003), free download under F. Friedrich (2003). A partial implementation of the
algorithms is contained in the R package tssegmentation, which can be obtained from
V. Liebscher (2005).
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