A Low Power Configurable SoC for Simulating Delay-based Audio Effects

Ling Liul, Jeremia Bir2, Felix Friedrich?!, Jiirg Gutknecht!

Computer Systems Institute
ETH Ziirich
Ziirich, Switzerland

ling.liu, felix.friedrich, gutknecht}@inf.ethz.ch, *baerj@student.ethz.ch

Abstract—The rapid growth in the capability of modern
FPGA devices allows developers to build a complete system
on a single chip. These types of FPGA-based SoC (System-
On-a-Chip) can normally achieve reduced system power, cost
and size, and at the same time offer users a great deal
of flexibility. The development of such SoCs normally starts
from using a hardware / software co-design methodology in
order to partition system tasks into computation-intensive and
flexibility-demanding parts. Then, dedicated hardware and
software will be implemented to realize these two parts. This
paper presents an example which demonstrates the result of
applying the hardware / software co-design methodology, a
power efficient and performance reliable system architecture
for realizing audio delay effects. Compared to similar imple-
mentations, our system architecture can save 40% of dynamic
power consumption while offering the same data throughput
and user flexibility.

Keywords-low-power SoC, hardware / software co-design,
FPGA, delay-based audio effects.

I. INTRODUCTION

In the field of music, delay-based audio effects simula-
tion systems are widely used to create a sense of space
for listeners. The algorithms for delay-based audio effects
and their realization techniques such as FIR(Finite Impulse
Response), IIR(Infinite Impulse Response) filters, delay lines
and periodical modulators have been studied extensively in
the last fifty years [1], [2], [3], [4], [S]. However, very
few study results have been found in the entire system
architecture, especially with regard to effects on system
power consumption.

For a real-time audio effects simulation system, the per-
formance requirement is that the system can produce outputs
at a sampling rate. Apart from the performance requirement,
it is normally expected that the system allows users to
configure the effect parameters and route the audio stream
during the run time. The goal of our system architecture
design is to meet these performance and programmability
requirements with low power consumption cost. To achieve
this goal, hardware / software co-design methodology is used
in the system development process. The delay-based audio
effects SoC presented here is implemented on an FPGA chip.
In the system, dedicated hardware is used to realize the audio
effects and route the audio stream. A tiny register machine

978-1-4673-2921-7/12/$31.00 ©2012 IEEE

Shiao-Li Tsao®
Department of Computer Science
National Chiao Tung University

Hsinchu, Taiwan
3sitsao@cs.nctu.edu.tw

(TRM) soft-core processor and the software running on top
of it are used to control the parameters of the audio effects
and the routing matrix. Compared to the existing studies
of audio effects SoC implementation [6], [7], the system
architecture presented here has the following characteristics.

o Instead of soft-core-centric design, this paper presents
a distributed on-chip system. That is, the data buffers
required by the audio effects hardware are neither
controlled by the soft-core nor accessed via the software
running on the soft-core. They are implemented in the
dedicated hardware using BRAMs (Block RAMs) on
an FPGA chip. This design reduces the possible perfor-
mance unreliability caused by software and decouples
the hardware from software to allow the hardware
component to run at a much lower clock rate, in our
case, 48KHz.

o Instead of 48MHz or an even higher clock rate, the
audio effects hardware in our SoC runs at a sampling
rate of 48KHz. Therefore, our system can save 40%
dynamic power according to estimation results.

o Instead of software, a switch matrix is implemented to
control the routing of the audio stream. Using dedicated
hardware to control the routing of the audio stream can
avoid unpredictable delay caused by the software and
allow hardware to run at a much lower clock rate.

o Instead of a fully fledged commercial soft-core, such
as MicroBlazer from Xilinx and NIOS from Altera, a
customized soft-core processor TRM is implemented on
the FGPA to minimize the resource and area cost. The
TRM implementation on a Virtex-5 FPGA only uses
728 LUTs, while most commercial soft-core processors
require roughly 2000 LUTs or LEs. Therefore, the
use of a customized soft-core processor dramatically
reduces the area cost of the entire system and, as a
result, also reduces the power consumption of the entire
system.

The system architecture is presented in Section II. The
dedicated hardware for delay-based audio effects and the
routing matrix are introduced in Section III. The parameter
control is described in Section IV. Section V presents the
system evaluation results. Finally, we conclude this paper in

[pe] 0¥

A
[R2e2 codec
T A
=== r v
Il UART | AC97
: controller | controller
I I A [
| | | 48KHz clock domain A :
| 25MHz | | v |
! clock | | |
: domain | | EX1 |--P] |
[|
: I T |
I 1| I
I 11 I
- I Fx2 [P |
| (- Param I
1 I N S— ’
| decoder Routing :
| | | matrix |
: o FX3 [--p| |
I 11 I
| [I Y |
| | | |
| [FX4 [--pf |
_______ a0 |
[|
| |
: 4 |
Virtex-5LX50TFPGA ~ ~ T T T T T T T T T T oo oo !
Xilinx ML505 board

——p Parameter stream ---------- - Audio stream, 48KHz
Figure 1. Block diagram of our delay-based audio effects SoC.
Section VI.

II. SYSTEM ARCHITECTURE

Figure 1 shows that our real-time delay-based audio
effects SoC is implemented on a Virtex-5LX50T chip, which
is used on our target platform - a Xilinx ML505 board. The
board uses an AC’97 compatible audio codec with 48KHz
sampling rate and 20-bit resolutions. Four delay-based audio
effects, i.e. chorus, flanger, reverberation and vibrato, are
realized in the system. These effects are implemented in the
dedicated hardware, and can send and receive a real-time
audio-stream to / from a routing matrix to allow different
audio effects to be dynamically combined. The audio effects
hardware and the routing matrix receive a parameter stream
from the FIFO (First In and Fist Out) connected to the
TRM soft-core processor. The system architecture shown in
Figure 1 can provide reliable performance, i.e. 48K samples
/ second, as required by real-time audio effects with flexible
configurability.

To achieve the reliable performance and system flexibility
with low-power consumption, the system implementation is
divided into two clock domains: a 25MHz clock domain and
a 48KHz sampling clock domain. The 25MHz clock drives
the TRM and a UART (Universal Asynchronous Receiver
and Transmitter) controller. The 48KHz clock drives a
parameter decoder, delay-based audio effects and the routing
matrix hardware to allow the system to produce output
samples at the sampling rate. An asynchronous FIFO is used
to allow communication between these two clock domains.

The reliable performance of the system is ensured by the
dedicated hardware used to realize audio effects and route
the audio stream. The buffer memory required by the audio
effects is implemented using on-chip BRAMs. Therefore,
there is no off-chip memory like SDRAM built in the
system. In addition, the Xilinx ISE library provides various
interfaces of BRAM macros. This allows us to cascade and
combine BRAMs to form different sizes of buffer memory
for each effect. This buffer memory implementation avoids
memory bottleneck and unreliable performance caused by a
global buffer memory accessed via the software running on
a soft-core processor. Together with the dedicated routing
matrix hardware, it finally decouples the software from the
hardware and allows us to use different clock domains to
achieve low-power consumption with ensured performance.

The system flexibility is achieved by the software running
on the soft-core processor TRM. The software receives effect
parameters and routing commands via the UART to control
the audio effects and the routing matrix during the run
time. According to a user’s requirements, a set of simple
commands or a complicated graphical application can be
developed on the user’s desktop or tablet PC. The PC-
side application can send the effect parameters and routing
commands to the target system to allow users to adjust
the effects in real time. A wireless-to-UART adapter can
also be used to allow users to control the target system
in a more convenient way. If another user interface, for
example a MIDI controller, is preferred by end users, simply
replacing the UART controller with another I/O controller
will be sufficient. The performance critical data path will
not be affected at all. Therefore, this system architecture
not only allows end users to easily control the system, but
also allows developers to easily adapt the system to different
I/O interfaces.

The interface between the software and hardware is an
asynchronous FIFO buffer. The TRM processor accesses this
FIFO buffer via memory mapped I/O. The simple interface
between the software and the hardware parts reduces the
area cost. As a result, it also reduces the system power
consumption.

The low-power consumption of the system is mainly
achieved by the low clocking rate used in the dedicated
hardware. In our system, 74% (2302 LUTS out of a toal
3100 LUTS) of the circuitry is used for the dedicated hard-
ware. Considering that our dedicated hardware is running
at 48KHz, the dynamic power consumption of our system
is much less than the existing systems [6], [7]. In addition,
the power consumption of our system is further reduced by
not using off-chip memory, the small footprint of the soft-
core processor and the simple interface between the soft-core
processor and the dedicated hardware.

III. DEDICATED HARDWARE DESIGN

This section introduces the architecture and the config-
urable interfaces of the hardware components in the audio
stream data path. The hardware components and their organi-
zation introduced here take advantage of the DSP support in
modern FPGA devices, such as multipliers, fast carry chains
and BRAMs, to reduce the resource and power costs of the
system.

A. Basic Building Blocks

Delay-based digital audio effects are widely used in
recording studios and live musical events to create differ-
ent interpretations of the sense of space and environment.
This section presents the design and implementation of the
configurable delay-based audio effects.

1) Delay Line: The delay line is an elementary functional
unit which models acoustic propagation delay. It is a funda-
mental building block of both delay-effects processors and
digital-waveguide synthesis models. The function of a delay
line is to introduce a time delay, corresponding to M samples
between its input and output [8].

Our configurable delay line implementation has an input
signal, delaySize, to allow the configuration of the delay
buffer size at the run time. The number of cycles for the
circuitry to react to the new delay size configuration is
[newDelaySize - oldDelaySize|, the difference between the
new delay size and the old delay size. During that time, a
sample value is interpolated into the audio stream. This delay
line implementation can store a maximum of 5K samples.
Because the sampling rate of AC’97 codec is 48KHz, the
longest delay that can be simulated by the delay line imple-
mentation is (1s/48000) - 5120 = 106.7ms. According to
[9], if the delay is in the range between 10 and 25 ms, a quick
repetition called “slapback™ or “doubling” can be heard.
If the delay is greater than 50ms, an echo will be heard.
Therefore, this configurable delay line implementation can
simulate both of these effects according to the value of the
input signal delaySize.

2) Comb Filter: Comb filters are used to simulate acous-
tic echo effects. There are two basic comb-filter types:
feedforward and feedback comb filters. The feedforward
comb filter models a single discrete echo by inserting the
delay line into the feedforward path. The feedback comb
filter models multiple echoes by inserting the delay line
into the feedback loop. Figure 2 shows the schematic of
the feedforward and feedback comb filters. The M samples
delay in the schematic is implemented by the configurable
delay line introduced before. The delay size M and the gain
of the comb filters are input signals and therefore can be
configured at run time. The multiplication is implemented
with DSP slices on the FPGA chip, and uses fixed point
numbers.

R

(a) Feedforward comb filter

x[n yinl

<

(b) Feedback comb filter

Figure 2. Block diagram of comb filters.

3) All-pass Filter: The feedback comb filter is the main
building block for simulating reverberation effects. However,
as Schroeder pointed out [10], the amplitude-frequency
response of the feedback comb filter has the appearance of
a comb with periodic maxima and minima. These periodic
maxima and minima impart the undesired “colored” qual-
ity to the reverberated sound. To eliminate the undesired
“colored” quality and improve the echo density of the
reverberation effect, Schroeder and Logan introduced all-
pass filters, which have amplitude-frequency 1 for each
frequency. In our system, a direct-form-II implementation
[11] of an all-pass filter has been implemented.

B. Delay-based Audio Effects

1) Reverberation: Reverberation refers to the prolonga-
tion of sound by the environment, which is essentially
caused by the reflectivity of surfaces and by the slow speed
of sound in air, only about 345m/s at room temperature
[12]. The characteristics of natural reverberation include the
reverberation time, the dependency of the reverberation time
and the frequency, the time gap between the direct sound
and the reverberation and, finally, the echo density rate. The
reverberation time is the time for a sound to die away to
-60dB, and is also called Tgq. Different audible frequencies
have different reverberation times. In a concert hall, for
example, a low frequency sound tends to fade away last.
The time gap between the direct sound and reverberation
gives the listener a different sensation of the space. For
example, a delay less than 5Sms creates a sensation of a
small space, while a delay greater than 50ms gives a distinct
echo. When sound radiates from a source, it first reaches the
listener along a direct path, then some early reflected and
decayed signals reach the listener, and in the end signals
reflected several times arrive at the listener and give the
sense of very dense echoes. Therefore, the density rate of the
echoes in the reverberation should be high enough to emulate
this last stage of the sound traveling process. Normally, to
obtain a flutter-free reverberation, that is with no distinct
audible echoes, there should be approximately 1000 echoes
per second. To reflect these reverberation characteristics in
a digital reverberator, Schroeder introduced a design that
combines comb filters and all-pass filters. Figure 3 shows the

CombFilter

CombFilter

X[n

y[n]
—@—‘ AllpassFilter H AllpassFilter }—b

CombFilter

i

CombFilter

Figure 3. Block diagram of Schroeder reverberator.
dry gain
I 91
LFO
x[n]] yin]
1 0 delay line » g2 —>
wet gain

<|

feedback gain

Figure 4. Block diagram of time varing delay effects.

block diagram of the Schroeder reverberator implemented in
our system.

The delay line size and the gain of each filter used in
Figure 3 can be configured by users at the run time to reflect
the reverberation time of the environment.

2) Vibrato, Flanger and Chorus: Vibrato, flanger and
chorus effects are all time-varying delay effects designed to
thicken the sound via the manipulating of the frequencies of
the sound over time. When the delay time between the output
signal and the input signal varies periodically, a vibrato
effect is generated. To simulate the periodically varying time
delay, an LFO (low frequency oscillator) is used with a
delay line to change its size periodically. When adding the
periodically delayed signal to the original signal, a flanger
effect is created. The effect was developed in recording
studios in the 1950s by lightly pressing the outer ’flange’ of
one of two synchronized tape machines alternately. When a
number of players perform in unison, the small changes in
the amplitudes and timing between each individual result in
the chorus effect. Figure 4 gives the block diagram of these
three time varying delay effects. Different configurations
of the dry gain, wet gain, feedback gain and delay time
generate different effects. Here, dry signal means the original
signal and wet signal means the delayed signal. Table I
shows different configurations used to generate different
delay effects.

C. Routing Matrix

The routing matrix used to route audio streams between
different effects is implemented using a crossbar intercon-
nect. The 5 inputs of the crossbar are connected to the output

Table I
TYPICAL PARAMETERS FOR TIME VARYING DELAY EFFECTS.

Effect gl g2 g3 LFO LFO LFO
Frquency Amplitude Offset
Chorus 0-1 0-1 0 0.2-2Hz 0-5ms 15-25ms
Flanger 0-1 0-1 0 0.5-5Hz 0-7.5ms 0-15ms
Vibrato 0 1 0 5-15Hz 0-2.5ms 0-2.5ms

audio stream of the AC’97 codec, the output of the chorus
effect, the output of the flanger effect, the output of the
Schroeder reverberator and the output of the Vibrato effect
separately. The 5 outputs of the crossbar are connected to
the input of chorus effect, input of flanger effect, input of
Schroeder reverberator, input of vibrato effect and the input
audio stream to the AC’97 codec.

IV. DYNAMIC CONFIGURATION

The dynamic configuration of the system is achieved via
the software running on a general purpose soft-core proces-
sor, a TRM. This section introduces the TRM architecture
and the software design.

A. Tiny Register Machine (TRM)

The TRM was originally designed and implemented on
Virtex-5 FPGA by Prof. Niklaus Wirth [13]. The instruction
set architecture of TRM is designed to be small but powerful
enough to run a program written in a high level programming
language, in our case, Oberon[14]. To demonstrate that this
design goal is achievable, a multicore processor composed of
12 TRMs and a bus-based interconnect was implemented on
a Virtex-5L.X50 FPGA [15]. TRM is a Harvard architecture
with an 18-bit, 2-address instruction set and 32-bit datapath.
The 18-bit instruction encoding allows each memory unit in
the Virtex-5 FPGA BRAM slice to store two instructions,
Therefore, the scarce memory resource can be fully used.
It has 8 working registers and a program counter register
(PC). Out of the 8 working registers, register R7 is used
in BL(BranchandLink) instruction to store the return
address. By default, a TRM processor is configured with 4K
instruction memory and 2k data memory. The memory size
can be configured to meet the programmers’ requirements.
The 2-stage pipelined implementation of a TRM runs at
116MHz, and takes 2% LUTSs of the Virtex-5XC5VLX50T
FPGA. The multiplication in the TRM takes 5 clock cycles.

B. Software Implementation

The software development for a graphically configurable
system involved two parts: developing software running
on the TRM processor that controls the signal processing
engines on the FPGA and developing a graphical software
running on a host PC which is connected to the client via
some serial interface. The software running on the host
PC can be in principle developed using any off-the-shelf
tools and languages, such as C#, Java or Matlab. In our

Flanger Reverb
Dry/wet GSain Bry/Wiet Gain Reverb ime (s}

— 079 ——0.70 — 2.0

Bepth (ma} B T

Dy Wet Gain

Dapth o)

- 5 4 "

—
Dalay () Eealay) Belay (ma}

- 25] = 10

Frequency {Hz)

| —
Frequancy (Hz) Fraquency (M)

- .0] o —

Figure 5. Configuration GUI running on the host PC.

case, Active Oberon is used to develop a graphical user
interface (GUI) application. This GUI application allows
users to enter configuration parameters and send them to
the FPGA via the UART. Figure 5 shows a typical GUI
scenario. The software running on the TRM reads the data
sent from the host PC, computes the parameters required
by the audio effect hardware and writes them into the
asynchronous FIFO attached to the TRM and the parameter
decoder hardware. The software running on the TRM is also
written in Oberon because an Oberon compiler for the TRM
had been developed in our group [16]. There is no operating
system running on the TRM.

V. SYSTEM EVALUATION

Table II shows the resource usage of the entire system.
Table III shows the power consumption results with re-
gards to different system configurations. We consider three
different configurations: the proposed 25MHz(TRM)with
the 48KHz(Effects) design, and two soft-core-centric ap-
proaches that use the same clock for soft-core and audio
effects. To the best of our knowledge, the clock used in
the existing systems [6], [7] to drive the soft-core and the
effects is equal to or more than 48MHz. Therefore, the
25MHz(TRM) with the 25MHz(Effects) and SOMHz(TRM)
with the SOMHz(Effects) system configurations listed in Ta-
ble IIT are used to estimate the possible power consumption
in the similar systems. The power estimation results shown
in Table III are generated by XPower[17]. The total power
consumption of an FPGA system consists of static power
and dynamic power. The static power which can be derived
by Vbplicakage is decided by the leakage current (Ijcqkage)
from the FPGA chipset with Vpp supply voltage. As can
be seen from Table III, all three configurations consume
the same amount of leakage power. The improvement of
the proposed solution, which optimizes clock domains for
performance-critical hardware components and highly flex-
ible soft-core, comes from the reduction in dynamic power.
The dynamic power can be modeled by ACVpp? f, where
A, C and f denote the activity factor, the capacitance factor of
the FPGA, and the operating clock frequency, respectively.
Although the total power consumption of the system is only
reduced by 6.5%-13.3% by applying the proposed design

Table II
RESOURCE USAGE OF THE SYSTEM ON VIRTEX-5LX50T CHIP.

LUTs
3100 (10%)

BRAMs DSPs
48 (80%) 15 (31%)

idea, we expect that the improvement can increase when
more FPGA resources are utilized, because currently only
10% LUTs are used in our system. Reports indicate that
dynamic power still dominates the total power consumption
of FPGAs and it takes 60%-80% of the total power for the
latest 28-nm FPGA [18], [19] assuming the resources are
fully used.

Dynamic power includes the dynamic power of soft-core,
i.e. TRM, audio effect hardware components, and compo-
nents such as clock managers and I/O terminations, which
are default components in all FPGA designs[20]. Since soft-
core and default components are the same for all three
cases, the dynamic power reduction comes from reducing the
clock rates of audio effect hardware components. Table III
reveals that the proposed design concept can reduce dynamic
power by 22.9%-39.6% compared with the existing soft-
core-centric solutions. After examining the details of the
improvement, we find that the power consumption of 10s
and PLLs remains unchanged for all three designs. This
is because three designs use the same I/Os and the same
PLLs which generate the global clocks for the FPGA. DSP
is energy efficient and its power consumption is almost neg-
ligible in this case study. Clocks and logic reduce dynamic
power consumption by 11.5%-27.3% and 26.1%-63.0%
compared with soft-core-centric solutions. The improvement
is not proportional to the clock frequency since the clock
and logic blocks are mainly consumed by the TRM and
default components. The dynamic power of signal blocks
and block memory (BRAMs) is considerably reduced. The
two components are mainly used in audio effect hardware
components and can reduce dynamic power significantly
by slowing down the clock frequencies from 50MHz and
25MHz to 48KHz. Our experimental measurement of power
consumption on the prototype system using a multimeter
shows a 25%-30% improvement and matches the estimation
results produced by XPower.

VI. CONCLUSION

The low-power audio effect system presented here gives
an example of a heterogeneous architecture for FPGA-
based SoCs. The software / hardware partitioning and the
user interface of this system show that it can offer the
same flexibility as the pure software-based implementation.
The clock domain partitioning and the dedicated hardware
implementation provide the reliable performance required by
a real-time SoC. More importantly, the power consumption
estimation results show that this heterogeneous architecture
is very power efficient.

Table III
COMPARISONS OF POWER CONSUMPTION FOR DIFFERENT SYSTEM
CONFIGURATIONS.

Power consumption item 25MHz(TRM) 25MHz(TRM) 50MHz(TRM)
(unit: mW) 48KHz(Effects) 25MHz(Effects) 50MHz(Effects)
Total power 577.78 617.81 666.08
(6.5%)* (13.3%)*
Leakage power 444.15 44443 44477
Total 133.63 173.38 221.31
(22.9%)* (39.6%)*
Clocks 36.04 40.71 49.55
(11.5%)* (27.3%)*
Logic 0.17 0.23 0.46
(26.1%)* (63.0%)*
Dynamic power Signals 0.62 226 4.24
(72.6%)* (85.4%)*
I0s 6.91 6.91 6.91
(0%)* (0%)*
BRAMs 3.29 36.72 73.45
(91.0%)* (95.5%)*
DSPs 0.07 0.07 0.14
(0%)* (50%)*
PLLs 86.52 86.48 86.56
(0%)* (0%)*

*% power saving compared with the proposed 25MHz(TRM), 48KHz(Effects) design.

ACKNOWLEDGMENT

A substantial part of the work is the result of the project
‘Supercomputer in the Pocket’. We thank the Microsoft
Innovation Cluster for Embedded Software for funding this
project. The authors would also like to thank Professor
Niklaus Wirth for his work with TRM processor design.

REFERENCES

[1] Z. Smekal, J. Schimmel, and P. Krkavec, “Optimizing digital
musical effect implementation for harvard dsp architecture,”
in Proceedings of the COST G-6 Conference on Digital Audio
Effects, ser. DAFx-01, Limerick, Ireland, 2001, pp. 33-38.

[2] T. Choi, Y.-C. Park, and D. H. Youn, “Design of time-
varying reverberators for low memory applications,” IEICE
Transactions, vol. 91-D, no. 2, pp. 379-382, 2008.

[3] F. P. Ling, F. K. Khuen, and D. Radhakrishnan, “An audio
processor card for special sound effects,” in Proceedings of
the 43rd IEEE Midwest Symposium on Circuits and Systems,
Lansing MI, 2000, pp. 730-733.

[4] J. Dattorro, “Effect design: Part 1: Reverberator and other
filters,” Journal of Audio Engineering Society, vol. 45, no. 9,
pp. 660-684, 1997.

[5] N. Juillerat, S. Schubiger-Banz, and S. M. Arisona, “Low
latency audio pitch shifting in the time domain,” in Proceed-
ings of the 43rd IEEE Midwest Symposium on Circuits and
Systems, ser. ICALIP 2008, Shanghai, China, 2008, pp. 29—
35.

[6] M. Pfaff, D. Malzner, J. Seifert, J. Traxler, H. Weber, and
G. Wiendl, “Implementing digital audio effects using a hard-
ware/software co-deisgn approach,” in Proceedings of the
10th International Conference on Digital Audio Effects, ser.
DAFx-07, Bordeaux, France, 2007, pp. 125-132.

(71

(8]

(9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

(20]

R. Trausmuth, C. Dusek, and Y. Orlarey, “Using faust for
fpga programming,” in Proceedings of the 9th International
Conference on Digital Audio Effects, ser. DAFx-06, Montreal,
Canada, 2006, pp. 287-290.

J. O. S. I, Physical Audio Signal Processing. Stanford Uni-
versity: Julius O. Smith III, W3K Publishing, 2010, available
electronically from: https://ccrma.stanford.edu/ jos/pasp/.

U. Zolzer, X. Amatriain, D. Arfib, J. Bonada, G. D.
Poli, P. Dutilleux, G. Evangelista, F. Keiler, A. Loscos,
D. Rocchesso, M. Sandler, X. Serra, and T. Todoroff, Eds.,
DAFX:Digital Audio Effects, 1st ed. The Atrium, Southern
Gate, Chichester West Sussex PO19 8SQ, England: John
Wiley Sons, Ltd, 2002.

M. R. Schroeder, “Natural sounding artificial reverberation,”
Journal of the Audio Engineering Society, vol. 10, no. 3, pp.
219-223, 1962.

J. O. S. 1l Introduction to Digital Filters with Au-
dio Applications. Stanford University: Julius O. Smith
III, W3K Publishing, 2007, available electronically from:
https://ccrma.stanford.edu/ jos/filters/.

V. Vilimiki, J. D. Parker, L. Savioja, J. O. Smith, and J. S.
Abel, “Fifty years of artificial reverberation,” IEEE Trans-
actions on Audio, Speech & Language Processing, vol. 20,
no. 5, pp. 1421-1448, 2012.

N. Wirth, “The Tiny Register Machine (TRM),” ETH Ziirich,
Computer Systems Institute, Tech. Rep. 643, 10 2009.

N. Wirth and J. Gutknecht, Project Oberon : the design of an
operating system and compiler. New York etc.: ACM Press,
1992.

L. Liu, “A 12-core processor implementation on FPGA,” ETH
Ziirich, Computer Systems Institute, Tech. Rep. 646, 10 2009.

F. Friedrich, L. Liu, and J. Gutknecht, “Active cells: A
computing model for rapid construction of on-chip multi-core
systems,” in ACIS-ICIS, 2012, pp. 463—469.

Xilinx, “Xpower,” http://www.xilinx.com/products/design_tools/
logic_design/verification/xpower.htm.

J. Hussein, M. Klein, and M. Hart, “Lowering
power at 28 nm with xilinx 7 series fpgas,”
http://www.xilinx.com/support/documentation/
white_papers/wp389_Lowering_Power_at_28nm.pdf.

Altera, “Reducing power consumption and
increasing bandwidth on 28-nm fpgas,”
http://www.altera.com/literature/wp/wp-01148-stxv-power-
consumption.pdf.

Xilinx, “Xpower estimator user guide,”

http://www.xilinx.com/support/documentation/user_guides/ug440.pdf.

