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Abstract

Bootstrap percolation is a random process that models the spread of
activation on a linked structure. Starting with an initial set of active
vertices, in each round all inactive vertices with at least r active neigh-
bors become and remain active until there are no inactive vertices with
enough active neighbors left.

Due to its numerous applications in modeling of physical processes,
bootstrap percolation has been intensively studied on various (deter-
ministic and random) graph models. The thereby recurringly encoun-
tered sharp threshold phenomenon states that there exists a percolation
threshold such that we typically either have percolation or no percola-
tion, depending on whether the active starting set lies above or below
this value. That is, with high probability either the activation spreads
to almost the whole structure, or the process ceases with almost no
additionally activated vertices.

The main goal of this thesis is to extend the current results for r-neighbor
bootstrap percolation to a model where each vertex i draws its individ-
ual activation threshold ri from a given distribution whose support is
assumed to be independent from the number of vertices. This enhance-
ment is mainly motivated by real-world applications, as for example
neural networks and viral marketing.

We prove the existence of a sharp threshold for an underlying Erdős-
Rényi random graph model and provide estimates for the final set
size and the time until percolation. Moreover, we investigate the boot-
strap percolation process on a directed random graph model with ar-
bitrary degree distribution. Under certain assumptions about the dis-
tribution of the out-degrees we can show a similar sharp threshold
result. Namely, starting below a certain percolation threshold results
with high probability in no percolation, whereas starting above typi-
cally leads to a final active set of linear size in the number of vertices.
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Chapter 1

Introduction

Bootstrap percolation is a random process that models the spread of activa-
tion on a linked structure. Starting with an initial set A(0) of active vertices,
the process evolves in rounds. In r-neighbor bootstrap percolation, in each
round all inactive vertices with at least r active neighbors become and re-
main active. The process continues until there are no inactive vertices with
enough active neighbors left. Based on this local update rule, one analyzes
the typical global behavior of such a process, where the main interest lies in
the size A∗ of the final active set.

Broadbent and Hammersley introduced this problem in 1956 for modeling
the spread of fluid through a medium [18]. Due to its numerous applica-
tions in modeling of physical processes (for an overview see [3]), bootstrap
percolation has been intensively studied on various (deterministic and ran-
dom) graph models, for example on infinite trees [11], Galton-Watson trees
[15], random geometric graphs [17], and random regular graphs [12]. Vallier
adapted the bootstrap percolation process to an Erdős-Rényi random graph
model [46], for which Janson et al. provided a more thorough analysis [30].
We refer to this paper and the references there for a more detailed discussion
of related works.

It is observed for all these underlying linked structures that the bootstrap
percolation process exhibits a sharp threshold behavior, a phenomenon re-
curringly encountered in graph theory. Namely, for a graph with n vertices
there exists a percolation threshold ac = ac(n) such that typically either the
process ceases with almost no additionally activated vertices or the activa-
tion spreads to almost the whole graph, depending on whether the size a of
the starting set lies below or above ac. More precisely, if a ∼ αac for some
α < 1, then we have A∗ < 2a with probability 1− o(1), and if a

ac
≥ 1 + δ for

some δ > 0, then we have A∗ = n− o(n) with probability 1− o(1). In the
former subcritical case, we say that the process does not percolate, and in
the latter supercritical case, we say that the process percolates.
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1. Introduction

Most of the existing literature in this area examines the bootstrap percolation
process under assumption of the same fixed activation threshold r for every
vertex. Some attempts in the direction of variable thresholds have already
been made. Majority percolation, that is, setting the threshold to half of the
degree, has been studied on grids [37] and hypercubes [13]. The regularity
of these graphs, however, still leads to a nearly constant activation thresh-
old. Moreover, Amini studied bootstrap percolation on random graphs with
fixed degree sequences and a fixed threshold function dependent on the
degree [6].

The main goal of this thesis is to extend the current results for r-neighbor
bootstrap percolation to a model where each vertex i draws its individual
activation threshold ri from a given distribution. We assume the support R
of this distribution to be independent from n and suppose that the minimum
possible activation threshold rmin is at least 2. The introduction of individual
activation thresholds seems to be a natural extension and has, besides its
intrinsic relevance, the purpose to enhance current bootstrap percolation
models in order to better adjust to real-world applications. In the following,
we provide two such examples.

One of the main motivations to analyze bootstrap percolation stems from
neuroscience. The suggestion of Abeles to model neural circuits as feed-
forward networks [1, 2] gives rise to use bootstrap percolation as a simpli-
fied model for propagation of activity in a neural network [43, 45]. We refer
to [44] for a thorough discussion of the biological background. In simpli-
fied terms, if the sum of input signals into a neuron surpasses a certain
threshold, a signal is transmitted to all neighboring neurons. Numerous
factors, as for example the diameter of a neuron, can influence this thresh-
old [16, 42]. Therefore, it is reasonable to model neurons with individual
activation thresholds.

Likewise, bootstrap percolation can be used to model the spread of infor-
mation in a (social or real-life) network [25], with applications mainly in
viral marketing [7, 8]. Starting from an initial set, messages are broadcast
to all neighbors. In this case, r-neighbor bootstrap percolation implements
a policy which is analogous to “What I tell you three times is true”, as sug-
gested by Carroll [21]. This rule implies that each vertex in the network
has to be equally gullible or diffident. However, it might be desirable to
enable more credulous and more doubting vertices by allowing individual
activation thresholds, as proposed by Lelarge [32].

In Chapter 3, we provide a general model for bootstrap percolation and
sketch the proof idea for the sharp threshold result. Then, we refine the
bootstrap percolation process model to adapt to the Erdős-Rényi random
graph Gn,p with individual activation thresholds ri in Chapter 4. For n−1 �
p � n−

1
rmin we show a sharp threshold result in Chapter 5, also differenti-
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ating between almost and complete percolation. The percolation threshold
can also be studied in a different way, by fixing a starting size a = a(n)
and determining the percolation threshold pc = pc(n) for the density of the
graph. Precise estimates for pc are provided in Chapter 6. For the supercrit-
ical case, that is, when starting above the percolation threshold, we analyze
the number of rounds τ the process takes until completion in Chapter 7. We
then loosen the assumption on the relation between n and p, thus look at
more sparse and more dense graphs in Chapter 8. When p� n−1, we show
that typically almost no additional activation occurs, as the graph is too
sparse. In the moderately sparse case p = Θ

(
n−1), for a sufficiently large

starting set a = Θ(n) we observe a jump between a small and a large linear
fraction of n as final active set size, depending on an additionally introduced

percolation threshold θcn. In the moderately dense case p = Θ
(

n−
1

rmin

)
, we

either have no percolation or complete percolation, both arising with con-

stant probability. For an even denser graph, that is, for p � n−
1

rmin , we
have complete percolation as long as the starting set is not smaller than the
minimal activation threshold.

The terminology and the proof structure of these results are strongly based
on the work of Janson et al. [30], wherefore we will adopt the proofs ver-
batim and only introduce minor changes to adapt to the new model with
individual activation thresholds. In particular, in order to analyze the boot-
strap percolation process, approximations to the core quantities, namely to
the probability π(t) of a vertex being activated up to the time step t and to
the probability Pr [Yi = k] of a vertex becoming active in one particular step
k, have to be supplied. The idea is to provide two different approximations
for these probabilities, one at the beginning and one at the end of the pro-
cess. In the former case, for π(t) an estimate similar to the one for π(t) in
[30, (8.1)], replacing r by rmin, can be found in (4.21). In the latter case, the ap-
proximation of 1− π(t) in (4.28) is basically the same as the one of 1− π(t),
using rmax := maxR instead of r. Besides the slightly changed error bounds,
only an additional constant factor p(rmin) (or p(rmax)) emerges. Similarly,
Pr [Yi = k] can be approximated by (4.38) in the former and by (4.39) in the
latter case, arising from replacing the constant activation threshold r in [30,
(2.7)] by rmin and rmax, respectively. As these estimates, provided in Section
4.3, are asymptotically very similar to the respective expressions in [30], the
proofs in Chapters 5–8 can be adopted, by letting the minimum value rmin
or the maximum value rmax play the role of r, depending on whether we
perform the analysis of the process at the beginning or at the end.

Even though the Erdős-Rényi graph model is very popular, it does not fit
well many realistic network structures [4, 5], as for example it does neither
exhibit clustering nor scaling. In contrast to the limiting Poisson degree
distribution arising from the Erdős-Rényi graph, naturally evolved graphs

3



1. Introduction

often reveal some heavy-tailed degree distribution [27, 34]. It is found that
the internet and many other networks can be modeled as a graph whose de-
gree distribution follows a power law Pr [deg = d] ∼ d−β [19, 24], yielding
a scale-free network. Amini et al. examined the r-neighbor bootstrap per-
colation process on an undirected power-law random graph with exponent
β ∈ (2, 3), assuming an upper bound on the possible degrees. They proved
the existence of a weak threshold between almost no activation and a linear
final active set size [9, 10].

In Chapter 9, we investigate the bootstrap percolation process with individ-
ual activation thresholds on a directed random graph model with arbitrary
degree distribution. That is, we assume that the out-degree of each ver-
tex follows an arbitrary distribution and that the target vertices are chosen
uniformly at random. The introduction of directed edges captures the fun-
damental asymmetry in the bootstrap percolation process, as for instance
there is an inherent difference between influencing and being influenced.

Under certain assumptions about the degree distribution we can show a
sharp threshold result similar to the above-mentioned by Amini et al., namely
that starting below the percolation threshold leads with high probability to
no percolation whereas starting above typically results in a final active set
of linear size in n. The approach to prove this result again is to find an
approximation for the probability π̂(t) of a vertex being active at a certain
time step t. For t ≈ tc, the estimate provided in (9.12) is very similar to [30,
(8.1)], wherefore the proof works along the same lines.

4



Chapter 2

Basic concepts and notation

In this chapter, we introduce some of the fundamental concepts and notation.
Basic knowledge in probability theory and calculus is assumed. For the sake
of convenience, we often present simplified results and only refer to more
general versions.

2.1 Basic notation

This section aims to introduce some of the basic notation used for probabil-
ity theory, calculus, and asymptotic analysis of sequences of numbers and
random variables.

• We define log+ x := max {0, log x}.
• For a natural number n ∈ N := {1, 2, . . . } we let [n] denote the set
{i ∈N : i ≤ n}.

• For a (random) predicate P we use [P] to denote a (random) indicator
variable for the event P, thus [P] is 1 if P is true and 0, otherwise.

• We use the abbreviation i.i.d. for independent and identically distributed.

• For two random variables X and Y, the notation dTV (X, Y) stands for
the total variation distance between X and Y.

• Landau notation

We adopt the commonly used Landau notation [38]. The terminology
for asymptotic concepts is introduced in detail in [28] and [29]. All
unspecified limits are as n→ ∞.

Let a(n) and b(n) be sequences of numbers for n ∈N.

We write b(n) = O (a(n)) if lim supn→∞

∣∣∣ b(n)
a(n)

∣∣∣ < ∞ and use b(n) =

o (a(n)) to denote that limn→∞
b(n)
a(n) = 0. If lim supn→∞

∣∣∣ b(n)
a(n)

∣∣∣ > 0, we

5



2. Basic concepts and notation

say that b(n) = Ω (a(n)), whereas lim supn→∞

∣∣∣ b(n)
a(n)

∣∣∣ = ∞ is denoted
by b(n) = ω (a(n)). We have b(n) = Θ (a(n)) if bn = O (a(n)) and
an = O (b(n)).

Moreover, b(n) � a(n) if b(n) = o (a(n)), and therefore b(n) � a(n)
if a(n) = o (b(n)).

Further, we say b(n) ∼ a(n) if limn→∞
b(n)
a(n) = 1, and thus b(n) =

a(n) (1 + o(1)).

• Common probability distributions

We use Be(p) to denote the Bernoulli distribution with success proba-
bility p and write Bin(n, p) for the corresponding binomial distribution
with n trials. Moreover, Po(λ) stands for a Poisson distribution with
mean λ and Mul

(
n,
(

pj
)k

j=1

)
for a multinomial distribution with n

trials and success probabilities pj for j ∈ [k].

• Convergence of random variables

Let X(n) for n ∈ N and X be random variables with the cumulative
distribution functions Fn and F, respectively.

The sequence X(n) convergences to X in distribution, denoted by

X(n) d−→ X, if limn→∞ Fn(x) = F(x) for every x ∈ R at which F is
continuous.

If limn→∞ Pr [|X(n)− X| ≥ ε] = 0 for all ε > 0, then X(n)
p−→ X, that is,

X(n) converges to X in probability.

We have almost sure convergence of X(n) to X, denoted by X(n) a.s.−→ X,
if Pr [limn→∞ X(n) = X] = 1.

If an event occurs with probability 1, we say that it happens almost
surely (abbreviated as a.s.), if its probability converges to 1 it is said
to occur asymptotically almost surely (abbreviated as a.a.s.). Note that
a.s.−→ means the same as a.a.s.

• Probability asymptotics

Let a(n) be a sequence of numbers and X(n) a sequence of random
variables for n ∈N. A probabilistic version of O is given by Op, where
X(n) = Op (a(n)) means that for every ε > 0 there exist constants Cε

and nε such that for every n ≥ nε we have Pr [|X(n)| ≤ Cε|a(n)|] >
1− ε. Analogously, the probabilistic version op of o can be defined as

follows. We say that X(n) = op (a(n)) if X(n)
a(n)

p−→ 0.

6



2.2. Tail estimates

We use the abbreviation w.h.p. to denote that the probability of an
event tends to 1 as n → ∞. Note that o(1) w.h.p. is equivalent to op(1)

and
p−→ 0.

The following lemma reveals some more equivalences.

Lemma 2.1 [cf. [28, Lemma 3]] The following statements are equivalent.

(i) X(n) = Op (a(n)).

(ii) For every function ω(n)→ ∞, |X(n)| ≤ ω(n)|a(n)| w.h.p.

(iii) For every function ω(n)→ ∞, |X(n)|
ω(n)|a(n)|

p−→ 0.

2.2 Tail estimates

This section introduces some upper bounds for the probability of a random
variable taking values far away from its mean. For a detailed discussion, we
refer to [41].

2.2.1 Markov’s inequality

The following theorem gives an upper bound on the probability that a non-
negative random variable exceeds some value, depending on its expected
value.

Theorem 2.2 (Markov’s inequality) Let X be a non-negative random variable.
For all x > 0 we have

Pr [X ≥ x] ≤ E [X]

x
.

2.2.2 Chebyshev’s Inequality

In contrast to the preceding result, the next one provides the probability for
a two-sided interval around the mean, depending on the variance.

Theorem 2.3 (Chebyshev’s inequality) Let X be a random variable. We have

Pr [|X−E [X]| ≥ x] ≤ Var [X]

x2

for all x > 0.

2.2.3 Chernoff bounds

For a sum of independent Bernoulli random variables one can supply even
better, exponentially decreasing bounds.

7



2. Basic concepts and notation

Theorem 2.4 (Chernoff bounds) Let X1, . . . , Xn be independent random vari-
ables with Xi ∈ Be (pi) for i ∈ [n]. Then for X := ∑n

i=1 Xi and µ := E [X] =

∑n
i=1 pi we have for all δ ∈ (0, 1]

Pr [X ≥ (1 + δ)µ] ≤ e−
µδ2

3

and

Pr [X ≤ (1− δ)µ] ≤ e−
µδ2

2 .

2.3 Poisson approximation

As some expressions for probability distributions are too involved to com-
pute directly, one often resorts to simpler estimates. The approximation by
a Poisson distribution can be applied in various settings. For a thorough
discussion of Poisson approximations we refer to [14].

2.3.1 Binomial distribution

In the following, we present some basic results for the approximation of
Bin(n, p) by Po(np).

If np→ λ ∈ (0, ∞), then we have Bin(n, p) d−→ Po(np).

The relative error bound

Pr [Bin(n, p) = k] =
(np)k

k!
e−np

(
1 +O

(
np2 +

k2

n− 1

))
,

provided in [14, (1.1)], can be simplified to

Pr [Bin(n, p) = k] =
(np)k

k!
e−np (1 + o(1)) (2.1)

for np� 1, n� 1, and k = O(1).
For the total variation distance we have, see [39],

dTV (Bin(n, p), Po(np)) ≤ np2,

and thus

dTV (Bin(n, p), Po(np)) < p (2.2)

for np < 1.

8



2.4. Stochastic processes

2.3.2 Sum of Bernoulli distributions

For a sum of independent but not identically distributed Bernoulli random
variables one can find a similar result.

Theorem 2.5 (Le Cam) [cf. [20]] Let X1, . . . , Xn be independent random variables
with Bernoulli distribution Xi ∈ Be (pi) for i ∈ [n]. Then

∞

∑
j=0

∣∣∣∣∣Pr

[
n

∑
i=1

Xi = j

]
− λ

j
ne−λn

j!

∣∣∣∣∣ < 2
n

∑
i=1

p2
i ,

where λn := ∑n
i=1 pi.

2.3.3 Multinomial distribution

Let
(
Xj
)k

j=1 (n) ∈ Rk for n ≥ 1 be a sequence of random vectors with a

multinomial distribution Mul
(

n,
(

pj
)k

j=1

)
with pj → yj for j ∈ [k]. Then,

see [33], it follows that
(
Xj
)k

j=1 (n) have a joint Poisson limit,

(
Xj
)k

j=1 (n)
d−→
(
Yj
)k

j=1 ,

where Yj ∈ Po
(
yj
)
.

2.4 Stochastic processes

In this section, we present several frequently used stochastic processes.

2.4.1 Martingale

We formally introduce the notion of a martingale and then provide one
important result applicable to such processes.

Definition 2.6 [cf. [31, Proposition 7.16]] A discrete-time martingale is a discrete-
time stochastic process {M(t)}t∈N that satisfies for any t

E [|M(t)|] < ∞

and
E [M(t + 1) | M(1), . . . , M(t)] = M(t).

A discrete-time reverse martingale is a discrete-time stochastic process {M(t)}t∈N

that satisfies for any t
E [|M(t)|] < ∞

and
E [M(t) | M(t + 1), . . . ] = M(t + 1).

9



2. Basic concepts and notation

Note that, by linearity of conditional expectation, a sum of independent
martingales is a martingale, too.

The following theorem provides an upper bound on the values a martingale
can take over a given time interval T.

Theorem 2.7 (Doob’s norm inequality) [cf. [31, Proposition 7.16]] Let M be a
martingale on an index set T ⊆ N. Then we have for any p, q > 1 with p−1 +
q−1 = 1 and t, t′ ∈ T

‖sup
t≤t′
|M(t)|‖p ≤ q‖M(t′)‖p.

2.4.2 Galton-Watson branching process

The notion of a Galton-Watson process arises from the behavior of extinction
of family names [47].

Definition 2.8 A Galton-Watson process with offspring distribution ξ is a discrete-
time stochastic process {X(t)}t≥0 which evolves according to the recurrence formula

X(0) = 1

and

X(t + 1) =
X(t)

∑
j=1

ξ j,

where {ξ j}j≥0 is a sequence of i.i.d. natural number-valued random variables.

A branching process may either become extinct, that is, X(t) = 0 for some t, or
survive forever. The extinction probability is given by

lim
t→∞

Pr [X(t) = 0] .

We provide a basic result on the extinction probability of a Galton-Watson
process.

Theorem 2.9 Suppose that not X(t) = 1 for all t. Then, if E
[
ξ j
]
≤ 1, the

probability of final extinction is 1, and if E
[
ξ j
]
> 1, the extinction probability is

strictly smaller than 1.

For a more detailed discussion we refer to [26, 22, 35].

2.4.3 Inhomogeneous random walk

A random walk process models a path consisting of independent random
steps.

10



2.5. Miscellaneous

Definition 2.10 An inhomogeneous random walk is a discrete-time stochastic pro-
cess {X(t)}t∈N with X(t) = ∑t

j=1 ξ j, where ξ j for j ∈ N is a sequence of indepen-
dent random variables.

The hitting time
T̃P := min {t ∈N : P (X(t))}

for a predicate P is defined as the minimum time for which this condition P is
satisfied.

A thorough analysis of random walks can be found in [40].

2.5 Miscellaneous

In this section, we list remaining assorted results.

The next theorem shows the uniform convergence of the empirical to the
cumulative distribution function.

Theorem 2.11 (Glivenko-Cantelli) [cf. [31, Proposition 4.24]] Let X(n) for n ∈
N be i.i.d. real random variables, where X(n) ∈ [0, 1], with the common cumulative
distribution function F and empirical distribution functions F̂n given by

F̂n(x) =
1
n

n

∑
i=1

[X(i) ≤ x] .

Then,
lim
n→∞

sup
x

∣∣∣F̂n(x)− F(x)
∣∣∣ = 0 a.s.

The following basic lemma is repeatedly used in the course of the thesis.

Lemma 2.12 [cf. [30, Lemma 8.4]] For r ≥ 2,

min
x≥0

(
xr

r
− r
)
=

1
r
− 1,

attained at x = 1 only.
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Chapter 3

Model and overview

In this chapter, we introduce the formal model used to analyze the bootstrap
percolation process, closely following [30, Section 1–2]. We consider the
percolation process on a general random graph G = (Vn, E) with a random
starting set A(0) of fixed size a, where 0 < a < n. For simplicity, we refer to
a vertex by its index i ∈ [n], using [n] and Vn interchangeably, and assume
that the vertices in the starting set have indices from n− a + 1 to n.

Each vertex i draws its activation threshold ri independently from a given
discrete distribution with probability density function p(r) and finite sup-
port R. We assume that this distribution is identical for each i and indepen-
dent from n, thus, in particular, the minimum value rmin := minR and the
maximum value rmax := maxR are constant. Additionally, we suppose that
rmin ≥ 2. Each vertex i becomes and remains active if at least ri of its neigh-
bors are active. We are mainly interested in the size A∗ of the final active set,
that is, in the number of active vertices at the end of the process, when no
more inactive vertices have enough active neighbors. The process percolates
completely if every vertex is active at the end, thus if A∗ = n. We further
say that the process almost percolates if A∗ = n − o(n), thus if almost all
vertices are active at the end. However, if A∗ 6= n− o(n), the process does
not percolate.

3.1 Two formulations

There are mainly two ways to look at the percolation process. Either, one
proceeds in rounds, beginning with the starting set as active vertices in round
0, and adding, in each consecutive round, the vertices that have enough
neighbors in the preceding rounds. Or one proceeds in steps, where in each
step an active vertex gives a mark to all its neighbors and a vertex i becomes
active if it has received at least ri marks. The former formulation is more
intuitive, similar to how one would observe and explain such a process, the

13



3. Model and overview

latter seems to be more artificial, but is easier to work with. For that reason,
we will mainly focus on the step model, only resorting to the round model
in Chapter 7 to study the time the process takes until completion. The
two formulations lead to the same results, merely the time scale is chosen
differently, as one round subsumes multiple steps.

3.1.1 Step model

We assume some initial ordering of the vertices in the starting set A(0) and
think of newly activated vertices as added in, for example, first-in-first-out
manner. Then in every step the first vertex according to this ordering gives
a mark to each of its neighbors, up to a step T when there is no active
vertex left. For t ∈ {0, . . . , T}, we let A(t) denote the set of active vertices
at time t and A(t) := |A(t)| its size. Note that thus A(0) = a. Further,
let Z(t) be the set of used vertices, that is, the vertices that have already
given marks to its neighbors. We start with Z(0) := ∅ and successively add
vt, the vertex used in step t. Hence, Z(t) = {vs : 1 ≤ s ≤ t} for t ∈ [T].
Since in each step exactly one active vertex is used, we have Z(t) ⊆ A(t)
and Z(t) := |Z(t)| = t. Consequently, A(t) ≥ Z(t) = t. At the end of
the process, all active vertices are used, that is, Z(t) = A(t), and therefore
A(t) = t. Thus, the stopping time T of the percolation process can be
defined as

T := min {t ≥ 0 : A(t)− t = 0} = min {t ≥ 0 : A(t) ≤ t} . (3.1)

Obviously, we have T ≤ n. The size of the final active set is given by

A∗ := A(T) = Z(T) = T.

Let
Ii(s) := [(vs, i) ∈ E]

be the indicator variable for the presence of an edge from the currently used
vertex vs to a certain (inactive) vertex i for s ∈ [T] and i ∈ [n]. We further
define

Mi(t) :=
t

∑
s=1

Ii(s)

as the number of marks a vertex i has received until and including time step
t. Recall that a vertex i becomes active if it has received at least ri marks.
Thus, either i ∈ A(0), or else i ∈ A(t) if and only if Mi(t) ≥ ri.

We define ∆A(t) := {i ∈ Vn \ A(t) : Mi(t) ≥ ri} as the set of inactive vertices
with enough marks to become active, and thus A(t) = A(t − 1) ∪ ∆A(t).
Note that i ∈ Vn \ ∆A(t) for t < ri, since each vertex can receive at most one
mark per time step. We let

Yi := min {t : Mi(t) ≥ ri}

14



3.1. Two formulations

be the time (measured in steps) of activation of a vertex i for i ∈ Vn \ A(0).
Yi = t for t ≤ T means that vt is the vertex that has given i the ri-th mark,
after which i became active. If Yi > T, then i will remain inactive.

The set of activated vertices up to time t is S(t) := {i ∈ Vn \ A(0) : Yi ≤ t},
and thus

S(t) := |S(t)| =
n−a

∑
i=1

[Yi ≤ t] (3.2)

denotes its size. Hence,

A(t) = A(0) + S(t) = S(t) + a. (3.3)

It will be useful to consider the probability that a vertex i has been activated
up to time t, denoted as

πi(t) := Pr [Yi ≤ t] = Pr [Mi(t) ≥ ri] . (3.4)

For simplicity, we define πi(t) := πi (btc) and S(t) := S (btc) for real t ≥ 0.

3.1.2 Round model

We use the notion of generations Gk to denote the vertices that become active
in a certain round k. Generation 0 contains all the initially active vertices,
thus G0 = A(0). In round k, all inactive vertices i with at least ri active
neighbors in generations 0, . . . , k − 1 become active and thus are part of
generation k. The process stops after a round without further activations,
thus if an empty generation occurs. Let τ denote the number of non-empty
generations, hence

τ := max {k ≥ 0 : Gk 6= ∅} = min {k ≥ 1 : Gk = ∅} − 1. (3.5)

In the following, we relate the two models. We inductively define

T0 := 0, Tj+1 := A(Tj) for j ≥ 0.

Thus, we have A(T0) = A(0) = |A(0)| = |G0|, Z(T1) = Z (A(0)) = A(0) =
G0, and Z(T2) = Z (A(T1)) = A(T1) = G0 ∪ G1. All vertices in Gk have been
found and activated at time Tk, and they have been used at time Tk+1 =
A(Tk).

Hence,
k⋃

j=0

Gj = A(Tk) = Z(Tk+1), for k ≥ 0.

In particular, the size of generation k is

|Gk| = |Z(Tk+1) \ Z(Tk)| = Tk+1 − Tk.

Therefore, (3.5) can be rewritten as

τ = max {k ≥ 0 : Tk+1 > Tk} = min {k ≥ 1 : Tk+1 = Tk} − 1.

15



3. Model and overview

f(t)

n− t′

−ac
−a1

f(t)

t′ ntc

n− t′

t

−ac−a2

t′ n
t

tcT

Figure 3.1: At the end of the starting phase, the process faces a bottleneck at t ≈ tc. In
the subcritical case, shown as a = a1, the process dies out at t = T. In the supercritical case,
depicted as a = a2, the process survives this critical stage and grows exponentially up to t ≈ t′.
The last few vertices are activated in the end phase.

3.2 Proof overview

In this section, also see [30, Section 6], we briefly sketch the main idea for
the analysis of such a process, based on the step model.

Note that for u ∈ [n] the percolation process needs at least u steps, that is,
T ≥ u and hence A∗ ≥ u, if and only if the stopping criteria has not been
satisfied in all previous steps, thus if and only if

min {t < u : A(t)− t} = a + min {t < u : S(t)− t} > 0.

Consequently, the process percolates completely if and only if for every t <
n the process has not stopped yet, thus if and only if min {t < n : A(t)− t} >
0, or, equivalently, min {t < n : S(t)− t} > −a. Hence, the discrete-time
stochastic process {min {t < u : S(t)− t}}u∈N completely determines the fi-
nal size A∗. In particular, A∗ = n if and only if min {t < n : S(t)− t} > −a.

As this stochastic process is too difficult to analyze directly, we introduce
some asymptotic approximations. To obtain a deterministic behavior, we
replace the random variable S(t) by its mean E [S(t)] and look for minima
in the resulting function f (t) := E [S(t)]− t, whose behavior is qualitatively
sketched in Figure 3.1. After starting at f (0) = 0, f decreases to a minimum
at t ≈ tc, where tc is defined by (4.22). Then f increases until ≈ n vertices
are active, that is, until a time step ≈ t′ where E [S(t′)] ≈ n, and thus
f (t′) ≈ n− t′. Then no more vertices can become active, and thus f (t) ≈
n − t holds until t = n, so f decreases again in this range to a final value
f (n) = E [S(n)]− n ≈ 0. Hence, there are two possible minima of f , either
at t ≈ tc or at t ≈ n. Whether the process (almost) percolates or not thus
depends on whether S(tc)− tc > −a. As f (tc) = E [S(tc)]− tc ≈ ac, where
ac is defined by (4.24), the percolation threshold for a is ≈ ac.

At t ≈ tc, there are two possibilities. Either, the activation dies out with
A∗ ≈ tc, or the process overcomes this bottleneck and grows fast until A∗ ≈

16



3.2. Proof overview

n. Given, that the percolation process does not cease (due to a too small
starting set), the function value ≈ f (n) distinguishes complete and almost
percolation, thus determines whether there remain some inactive vertices at
the end.

The bootstrap percolation process can be divided into three different phases,
a starting phase up to and including the bottleneck at t ≈ tc, an explosion
phase of double exponential growth after the bottleneck, and finally an end
phase, where the last few vertices may be activated.

We call a process starting with an initial active set size below the threshold,
that is, with a ∼ αac for some α < 1, subcritical, and a process starting above,
hence with a ≥ (1 + δ)ac for some δ > 0, supercritical.

17





Chapter 4

Erdős-Rényi random graph model

This chapter provides approximations for the analysis of a bootstrap per-
colation process in the case of an Erdős-Rényi random graph model with
individual activation thresholds. These results are used the in subsequent
chapters to prove the sharp threshold phenomenon and additional state-
ments, analogously to the proofs in [30] for a fixed activation threshold r.

4.1 Model

We refine the step model for an Erdős-Rényi graph Gn,p = (Vn, E), an undi-
rected graph with n vertices where every edge independently is present in
the graph with the same probability p. We assume that p = p(n) depends
on n such that

n−1 � p� n−
1

rmin . (4.1)

Based on this specific graph model, we can give more concrete expressions
for some of the quantities introduced in Section 3.1.1.

i

Z(t)

p

Figure 4.1: The unused vertices are drawn as circles, and the used ones are depicted as disks,
summarized in the box labeled with Z(t). From the view of vertex i, each of these vertices in
the box is connected to it with the same probability p.
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4. Erdős-Rényi random graph model

We consider the set Z(t) of all active and used vertices at time t, where
by definition, cf. Section 3.1.1, there are exactly t active vertices at time t.
This setting is schematically depicted in Figure 4.1. For one distinguished
inactive vertex i we count the number of edges that lead from Z(t) to this
vertex. Each of these edges is present with probability p. Moreover, the
indicators Ii(s) for s ∈ [T] are independent and identically Be(p)-distributed.
Consequently, Mi(t) ∈ Bin(t, p) for t ≤ T. Using (3.4), we have

πi(t) = Pr [Bin(t, p) ≥ ri] =
t

∑
j=ri

(
t
j

)
pj(1− p)t−j. (4.2)

For the sake of brevity, we define

πx(t) := Pr [Bin(t, p) ≥ x]

as well as
π(t) := E [πri(t)] . (4.3)

Note that πx(t) is a non-negative, monotonically decreasing function in x,
that is, for every t

πx(t) ≥ πy(t) ≥ 0, for x < y. (4.4)

Further, see [30, (8.1)], πx(t) has the following asymptotic behavior

πx(t) =
(

t
x

)
px (1 +O(pt)) =

(pt)x

x!

(
1 +O(pt + t−1)

)
(4.5)

for fixed x and for pt ≤ 1.

Since the ri are independent and identically distributed, we have, recalling
(3.4) and (4.3),

πi(t) = ∑
r∈R

p(r)Pr [Bin(t, p) ≥ r]

= E [Pr [Bin(t, p) ≥ ri]] = π(t).
(4.6)

Therefore,
S(t) ∈ Bin (n− a, π(t)) , (4.7)

what yields
E [S(t)] = (n− a)π(t) (4.8)

and
Var [S(t)] = (n− a)π(t) (1− π(t)) . (4.9)

To simplify calculations, we will sometimes consider

Sn(t) :=
n

∑
i=1

[Yi ≤ t] ,
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4.2. Approximation of S(t) by its mean

a binomial random variable with parameters n and π(t). Therefore,

E [Sn(t)] = nπ(t)

and
Var [Sn(t)] = nπ(t) (1− π(t)) .

We further have, see [30, (2.7)],

Pr [Yi = k] = ∑
r∈R

p(r)
(

k− 1
r− 1

)
pr(1− p)k−r. (4.10)

4.2 Approximation of S(t) by its mean

As mentioned in Section 3.2, it is our goal to approximate S(t) by its mean
E [S(t)] in order to get rid of the randomness of the stochastic process.
Closely following [30, Section 7], we provide different bounds on the error
of this approximation.

First, we give a uniform error bound, based on an argument for empirical
distribution functions.

Lemma 4.1 [cf. [30, Lemma 7.1]] We have

sup
t≥0
|S(t)−E [S(t)]| = op(n).

Proof For n− a <
√

n the result is trivial, since 0 ≤ S(t) ≤ n− a. Note that
(n− a)−1S(t) = (n− a)−1 ∑n−a

i=1 [Yi ≤ t] is the empirical distribution function
of {Yi}n−a

i=1 . The Glivenko-Cantelli theorem, see Theorem 2.11, implies that
supt≥0

∣∣(n− a)−1S(t)− π(t)
∣∣ = op(1), and thus for n − a ≥ √n the claim

follows. �

For small values of t, however, this uniform bound leads to rather poor
results. For that reason, we improve the bound by a martingale argument.

The following lemma shows that the bootstrap percolation process can be
modeled as a martingale.

Lemma 4.2 [cf. [30, Lemma 7.2]] The stochastic process

ξ(t) :=
S(t)−E [S(t)]

1− π(t)
, t ≥ 0 (4.11)

is a martingale, and the stochastic process

ξ̃(t) :=
S(t)−E [S(t)]

π(t)
, t ≥ rmin (4.12)

is a reverse martingale.
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4. Erdős-Rényi random graph model

Proof Note that, by (4.6) and (4.2), we have that Pr [Yi ≤ t] = π(t) is inde-
pendent from i. Thus,

ξ(t) =
n−a

∑
i=1

Xi(t),

where

Xi(t) :=
[Yi ≤ t]− Pr [Yi ≤ t]

1− Pr [Yi ≤ t]
= 1− [Yi > t]

Pr [Yi > t]
(4.13)

and

ξ̃(t) =
n−a

∑
i=1

X̃i(t),

with

X̃i(t) :=
[Yi ≤ t]− Pr [Yi ≤ t]

Pr [Yi ≤ t]
. (4.14)

Since ξ(t) is a sum of n− a i.i.d. processes Xi(t), it suffices to treat each of
these separately, that is, for the first part to show that Xi(t) is a martingale
for each i.

If Yi ≤ t, then Xi(t) = Xi(t + 1) = 1. However, if Yi > t, then Xi(t) =
−π(t)

1−π(t)

either jumps to Xi(t + 1) = 1 or decreases to Xi(t + 1) = −π(t+1)
1−π(t+1) . It follows

from

Pr [Yi = t + 1 | Yi > t] =
π(t + 1)− π(t)

1− π(t)
as well as

Pr [Yi > t + 1 | Yi > t] =
1− π(t + 1)

1− π(t)
that

E [Xi(t + 1) | Yi > t] =
−π(t)

1− π(t)
= Xi(t).

For the second part we similarly find that E
[

X̃i(t)
∣∣∣ X̃i(t + 1), . . .

]
= X̃i(t+

1), what proves the second claim. �

The martingale property allows us to obtain improved error bounds, based
on Doob’s norm inequality.

Lemma 4.3 [cf. [30, Lemma 7.3]] For any t0, we have

E

(sup
t≤t0

|S(t)−E [S(t)]|
)2
 ≤ 16nπ(t0) (4.15)

and

E

(sup
t≥t0

|S(t)−E [S(t)]|
)2
 ≤ 16n (1− π(t0)) . (4.16)
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4.3. Approximation of the mean

Proof First, assume π(t0) ≤ 1
2 . Lemma 4.2 implies that ξ(t) is a martingale,

and Theorem 2.7 yields

E

(sup
t≤t0

|S(t)−E [S(t)]|
)2
 ≤ E

(sup
t≤t0

|ξ(t)|
)2


≤ 4E
[
|ξ(t0)|2

]
= 4

Var [S(t0)]

(1− π(t0))
2

≤ 8nπ(t0),

(4.17)

which proves (4.15) in this case.

Similarly, if π(t0) ≥ 1
2 , then we obtain, using the reverse martingale (4.12),

E

(sup
t≥t0

|S(t)−E [S(t)]|
)2
 ≤ 4

Var [S(t0)]

π(t0)2 ≤ 8n (1− π(t0)) , (4.18)

what shows (4.16) for π(t0) ≥ 1
2 .

Let t1 be the largest integer such that π(t1) ≤ 1
2 . We can apply (4.17) with

t0 = t1 and (4.18) with t0 = t1 + 1, and then, combining these results, we
obtain

E

(sup
t≥0
|S(t)−E [S(t)]|

)2
 ≤ E

(sup
t≤t1

|S(t)−E [S(t)]|
)2


+ E

( sup
t≥t1+1

|S(t)−E [S(t)]|
)2


≤ 8nπ(t1) + 8n (1− π(t1 + 1)) ≤ 8n.

This immediately implies (4.15) for π(t0) >
1
2 and (4.16) for π(t0) <

1
2 . �

4.3 Approximation of the mean

Replacing S(t) by its expected value E [S(t)] indeed derandomizes the pro-
cess. Nevertheless, we lack a simple closed-form expression for f (t) :=
E [S(t)] − t. For that reason, we first provide an approximation for π(t),
and then, based on this, supply a simplified expression for E [S(t)], and
hence for f (t).

Note that, as briefly explained in Section 3.2, we are mainly interested in the
size of the active set at two different time steps, namely for t ≈ tc around the
percolation threshold and for t ≈ n at the end of the process. As we will see
later, this implies that at the first point pt� 1 and t� 1, and at the second
point, by (4.1), pt ≈ pn � 1. Since the behavior of the process at these two
points is substantially different, we need to analyze each case separately.
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4. Erdős-Rényi random graph model

4.3.1 Approximation at the percolation threshold

For tp � 1 and t � 1 we approximate π(t), recalling (4.6), by its first
summand p(rmin)(rmin)πrmin(t). In the following, we present several error
bounds.

Applying (4.4) and (4.5), we can find an upper bound

π(t) ≤ p(rmin)π
rmin(t) + ∑

r∈R\{rmin}
p(r)πrmin+1(t)

= p(rmin)π
rmin(t) + (1− p(rmin))πrmin+1(t)

= p(rmin)π
rmin(t)

(
1 +

1− p(rmin)

p(rmin)

πrmin+1(t)
πrmin(t)

)

= p(rmin)π
rmin(t)

1 +
1− p(rmin)

p(rmin)

(pt)rmin+1

(rmin+1)!

(
1 +O

(
pt + t−1))

(pt)rmin

(rmin)!
(1 +O (pt + t−1))


= p(rmin)π

rmin(t)
(
1 +O(pt + (pt)2 + p)

)
= p(rmin)π

rmin(t)
(

1 +O(pt + t−1)
)

.
(4.19)

Using the non-negativity of probabilities, we can derive a trivial lower bound

π(t) ≥ p(rmin)π
rmin(t). (4.20)

Combining the upper and lower bounds, (4.19) and (4.20), yields, again
using (4.5),

π(t) = p(rmin)π
rmin(t)

(
1 +O

(
pt + t−1

))
= p(rmin)

(pt)rmin

rmin!

(
1 +O

(
pt + t−1

))
.

(4.21)

For pt � 1 and t � 1, it is thus reasonable to approximate E [S(t)] by
np(rmin)

(pt)rmin

rmin! , and hence

f (t) := E [S(t)]− t

by

f (t) := np(rmin)
(pt)rmin

rmin!
− t.

The function f has a unique global minimum on [0, ∞) at, see [30, (3.1)],

tc :=
(

(rmin − 1)!
np(rmin)prmin

) 1
rmin−1

. (4.22)
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It is important to understand that, analogously to [30, (3.4)],

np(rmin)
(ptc)rmin

rmin!
=

tc

rmin
. (4.23)

With this relation we easily can find the minimum value f (tc) = −ac, where,
see [30, (3.2)],

ac :=
(

1− 1
rmin

)
tc. (4.24)

Assumption (4.1) implies that, compare [30, (3.5)],

tc → ∞, ptc → 0,
tc

n
→ 0, ac → ∞,

ac

n
→ 0. (4.25)

Note that for t ≈ tc, we have indeed pt� 1 and t� 1.

The approximation of E [S(t)]− t by f (t) yields, as in [30, (8.2)],

E [S(t)]− np(rmin)
(pt)rmin

rmin!
= O

(
n(pt)rmin

(
pt + t−1 +

a
n

))
. (4.26)

4.3.2 Approximation at the end

For pt � 1, we approximate 1 − π(t) = ∑r∈R p(r) (1− πr(t)) by its last
term p(rmax)Pr [Bin(t, p) < rmax]. We supply a lower and upper bound on
the error.

As both, 1 − πx(t) in x, see (4.4), and (t
j)pj(1 − p)t−j in j for pt ≥ j, are

monotonically increasing, it follows, at least for large n, that

1− π(t) = ∑
r∈R

p(r)Pr [Bin(t, p) < r]

≤ p(rmax)Pr [Bin(t, p) < rmax]

+ (1− p(rmax))Pr [Bin(t, p) < rmax − 1]
≤ p(rmax)Pr [Bin(t, p) < rmax]

+ (1− p(rmax)) (rmax − 1)Pr [Bin(t, p) = rmax − 2]

≤ p(rmax)Pr [Bin(t, p) < rmax]

(
1+

1− p(rmax)

p(rmax)
(rmax − 1)

Pr [Bin(t, p) = rmax − 2]
Pr [Bin(t, p) = rmax − 1]

)

≤ p(rmax)Pr [Bin(t, p) < rmax]

(
1+

1− p(rmax)

p(rmax)
(rmax − 1)

(rmax − 1) (1− p)
(t− rmax + 2)p

)
= p(rmax)Pr [Bin(t, p) < rmax] (1 + o(1)) .

(4.27)
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4. Erdős-Rényi random graph model

The non-negativity property of probabilities yields a trivial lower bound

1− π(t) = ∑
r∈R

p(r)Pr [Bin(t, p) < r]

≥ p(rmax)Pr [Bin(t, p) < rmax] .

Combining these two bounds, we obtain

1− π(t) = p(rmin)Pr [Bin(t, p) < rmax] (1 + o(1)) . (4.28)

Thus, analogously to [30, (3.7)], we have

n−E [Sn(n)] = n (1− π(n)) ∼ b′c, (4.29)

with

b′c := np(rmax)
(np)rmax−1

(rmax − 1)!
(1− p)n. (4.30)

We define, as in [30, (3.3)],

bc := np(rmax)
(np)rmax−1

(rmax − 1)!
e−np. (4.31)

For p� n−
1
2 we have (1− p)n ∼ e−np, and thus, see [30, (3.8)],

n−E [Sn(n)] = n (1− π(n)) ∼ b′c ∼ bc.

For p = Ω
(

n−
1
2

)
both b′c and bc decrease to 0 very fast. Consequently, in all

cases
n−E [Sn(n)] = n (1− π(n)) = bc + o (bc + 1) , (4.32)

as in [30, (3.9)].

Note that (4.1) implies that, also compare [30, (3.5)],

bc

n
→ 0, pbc → 0. (4.33)

Further, by (4.31), for any β ∈ (−∞, ∞) and p ≥ n−1, we have, analogously
to [30, (3.10)],

bc →


∞

e−β

(rmax−1)!

0

⇐⇒ np− (log(np(rmax)) + (rmax − 1) log log n)→


−∞
β

∞
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4.4. Approximation of the probability of activation in a certain step

as well as

bc →


∞

e−β

(rmax−1)!

0

⇐⇒ np− (log(np(rmax)) + (rmax − 1) log log n)→


−∞
β

∞.
(4.34)

We let
b∗ := bcω(n), (4.35)

where ω(n)→ ∞ slowly but otherwise is arbitrary.

4.4 Approximation of the probability of activation in a
certain step

Yi denotes the time of activation of a vertex i for i ≤ n − a. Hence, the
probability of activation in a certain step k is indicated by Pr [Yi = k]. We
are interested in this quantity for k = O(1) and k = Θ(n), to determine the
probability of a vertex becoming active at the beginning and at the end of
the process, respectively. Recalling (4.10), we thus want to approximate

Pr [Yi = k] = ∑
r∈R

p(r)χ(k, r),

where

χ(k, r) :=
(

k− 1
r− 1

)
pr(1− p)k−r.

Note that
χ(k, r + 1)

χ(k, r)
=

p
1− p

k− r
r

,

and thus
χ(k, x) ≥ χ(k, y), for x < y, if k <

r
p

(4.36)

and
χ(k, x) ≤ χ(k, y), for x < y, if k >

r
p

. (4.37)

4.4.1 Approximation at the beginning

For any k = O(1), we have, using (4.36) and p
1−p → 0, at least for large n,

Pr [Yi = k] ≤ p(rmin)χ(k, rmin) + (1− p(rmin)) χ(k, rmin + 1)

= p(rmin)χ(k, rmin)

(
1 +

1− p(rmin)

p(rmin)

χ(k, rmin + 1)
χ(k, rmin)

)
= p(rmin)χ(k, rmin)

(
1 +

1− p(rmin)

p(rmin)

p
1− p

k− rmin

rmin

)
= p(rmin)χ(k, rmin) (1 + o(1)) ,
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4. Erdős-Rényi random graph model

and therefore, using the trivial lower bound

Pr [Yi = k] ≥ p(rmin)χ(k, rmin + 1),

Pr [Yi = k] ∼ p(rmin)

(
k− 1

rmin − 1

)
prmin(1− p)k−rmin

∼ p(rmin)

(
k− 1

rmin − 1

)
prmin .

(4.38)

4.4.2 Approximation at the end

For k = Θ(n), and thus kp � 1, we have, applying (4.37), at least for large
n,

Pr [Yi = k] ≤ p(rmax)χ(k, rmax) + (1− p(rmax)) χ(k, rmax − 1)

= p(rmax)χ(k, rmax)

(
1 +

1− p(rmax)

p(rmax)

χ(k, rmax − 1)
χ(k, rmax)

)
= p(rmax)χ(k, rmax)

(
1 +

1− p(rmax)

p(rmax)

1− p
p

rmax − 1
k− rmax + 1

)
= p(rmax)χ(k, rmax) (1 + o(1)) ,

and hence, again using the trivial lower bound,

Pr [Yi = k] ∼ p(rmax)

(
k− 1

rmax − 1

)
prmax(1− p)k−rmax

∼ p(rmax)

(
k− 1

rmax − 1

)
prmax .

(4.39)

Since the error converges to 0 for any k ≥ εn for some ε > 0 and decreases
with increasing k, we can additionally state that the convergence is uniform
in such k.
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Chapter 5

Sharp threshold

In this chapter, we prove the sharp threshold result for the Erdős-Rényi
random graph with individual activation thresholds, closely following [30,
Section 8]. More precisely, we show that the active set w.h.p. at most dou-
bles, that is, A∗ < 2a, if it is smaller than the percolation threshold at the
beginning, whereas starting with more initially active vertices implies w.h.p.
percolation, thus A∗ = n− o(n).

We first give an error estimate for the approximation of S(t)− t by f (t) and
then discriminate between the subcritical and the supercritical case to prove
the respective results.

Lemma 5.1 [cf. [30, Lemma 8.1]] Suppose that a = o(n). Then

sup
0≤x≤10rmin

∣∣∣∣S(xtc)−
1

rmin
xrmin tc

∣∣∣∣ = op(tc).

Proof First, (4.26) and (4.23) yield, recalling (4.25),

E [S(xtc)] = (n− a)π (xtc) = nπ (xtc) (1 + o(1))

= np(rmin)xrmin
(ptc)rmin

rmin!

(
1 + o

(
1
x

))
= xrmin

tc

rmin

(
1 + o

(
1
x

))
=

xrmin

rmin
tc + o(tc),

uniformly for t−1
c ≤ x ≤ 10rmin.

Further, Lemma 4.3 implies, by (4.21) and (4.23),

sup
0≤x≤10rmin

|S(xtc)−E[S(xtc)]|2 = Op (nπ(10rmintc))

= Op (n(ptc)
rmin) = Op(tc) = op(t2

c),

and the result follows by taking the square root on both sides. �
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5. Sharp threshold

5.1 Subcritical case

In the subcritical case, that is, for a ∼ αac with α < 1, the bootstrap perco-
lation process typically ceases before the threshold value tc is reached. In
order to prove this, we use Lemma 5.1 to find a time step t < tc for which
w.h.p. A(t) ≤ t, and thus the process stops. We further provide an asymp-
totic estimate for the final set size.

Theorem 5.2 [cf. [30, Theorem 3.1(i)]] If a
ac
→ α < 1, then

A∗ =
(

ϕ(α) + op(1)
)

tc,

where ϕ(α) is the unique root in [0, 1] of

rmin ϕ(α)− ϕ(α)rmin = (rmin − 1)α. (5.1)

Further, A∗
a

p−→ ϕ1(α), where

ϕ1(α) :=
rmin

rmin − 1
ϕ(α)

α
, ϕ1(0) := 1. (5.2)

Proof The assumption on a may be written by (4.24) as

a = (α + o(1)) ac =
(

α
(

1− r−1
min

)
+ o(1)

)
tc. (5.3)

Hence, (3.3) and Lemma 5.1, taking x = 1, yield

A(tc)− tc = S(tc) + a− tc =
tc

rmin
+ op(tc) + a− tc

= tc

(
r−1

min + α
(

1− r−1
min

)
− 1 + op(1)

)
.

Since α
(

1− r−1
min

)
< 1− r−1

min, w.h.p. A(tc)− tc < 0. And thus, recalling the
definition of T given in (3.1), we have T < tc.

Applying Lemma 5.1 with x = T
tc

yields S(T) =
(

T
tc

)rmin tc
rmin

+ op(tc). Since
S(T) = A(T)− a = T − a, we find, using (5.3), that

T − α(1− r−1
min)tc = S(T) + o(tc) =

(
T
tc

)rmin tc

rmin
+ op(tc),

and thus

rmin
T
tc
− (rmin − 1)α =

(
T
tc

)rmin

+ op(1). (5.4)

Since the function h(x) := rminx− xrmin is strictly increasing from 0 to rmin−
1 on [0, 1], (5.4) implies, using T

tc
< 1 w.h.p., that T

tc

p−→ y, where y = ϕ(α).
This proves the first assertion, and if α > 0, the second follows.
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5.2. Supercritical case

If α = 0, then a = o(tc), and (4.26) implies that E [S(λa)] = O (n(ap)rmin) =
o(a) for every fixed λ > 0. Hence, for every fixed λ > 1 we have A(λa) =
S(λa) + a = a + op(a), so w.h.p. A(λa) < λa, and thus a ≤ T < λa. Conse-

quently, when α = 0, then T
a

p−→ 1. �

The precise estimate for the final set size can be simplified to provide a
more intuitive upper bound on the number of active vertices at the end of
the process.

Corollary 5.3 Under the same assumption as in Theorem 5.2, we have w.h.p. A∗ <
2a.

Proof As ϕ1 is a continuous, strictly increasing function [0, 1] →
[
1, rmin

rmin−1

]
,

we have w.h.p. A∗ < rmin
rmin−1 a ≤ 2a. �

5.2 Supercritical case

In the supercritical case, that is, when a
ac
≥ 1 + δ for some δ > 0, we prove

that w.h.p. either almost or complete percolation occurs. In a second step, we
profoundly investigate the difference between these two possible outcomes.

We talk about surviving the bottleneck if there are at least 3tc active vertices
and say that the process reached a point of (almost) percolation if there are
at least n− b∗ active vertices, where b∗ is given by Equation (4.35). Note that
other distinguished values could be chosen as well for these definitions.

The following lemma shows that if the bottleneck can be surmounted, the
process continues until (almost) percolation.

Lemma 5.4 [cf. [30, Lemma 8.2]] For any a we have w.h.p. A(t) > t for all t ∈
[3tc, n− b∗].

Proof By (3.3), A(t) = S(t) + a ≥ Sn(t), so it suffices to show that Sn(t) > t.
We proceed by differentiating between several ranges of t.

Case 1: t ∈ [3tc, 8rmintc]. By Lemma 5.1, we have w.h.p. for all such t

Sn(t) ≥
1

rmin

(
t
tc

)rmin

tc − tc ≥
3rmin−1

rmin
t− tc ≥

3
2

t− tc > t.

Case 2: t ∈
[
8rmintc, p−1]. Let tj := 2jrmintc for j ≥ 1, and define J :=

min
{

j ≥ 1 : ptj ≥ 1
}

. For tc ≤ t ≤ p−1, using (4.20), (2.1) and (4.23),

π(t) ≥ p(rmin)π
rmin(t) ≥ p(rmin)Pr [Bin(t, p) = rmin]

= p(rmin)
(pt)rmin

rmin!
e−pt (1 + o(1))

≥ p(rmin)

3
(pt)rmin

rmin!
=

t
3rminn

(
t
tc

)rmin−1

.
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5. Sharp threshold

Hence, for 3 ≤ j ≤ J − 1

E
[
Sn(tj)

]
= nπ(tj) ≥

2j

3
tj ≥

8
3

tj,

and thus, using Chebyshev’s inequality and (4.9), we get

Pr
[
Sn(tj) ≤ 2tj

]
≤ Pr

[
Sn(tj) ≤

3
4

E
[
Sn(tj)

]]
≤ Pr

[∣∣Sn(tj)−E
[
Sn(tj)

]∣∣ ≥ 1
4

E
[
Sn(tj)

]]
≤ Var

[
Sn(tj)

]( 1
4 E
[
Sn(tj)

])2 ≤
16

nπ(tj)
≤ 6

tj
.

Therefore,

Pr [Sn(t) ≤ t for some t ∈ [8rmintc, tJ ]] ≤
J−1

∑
j=3

Pr
[
Sn(tj) ≤ 2tj

]
≤

J−1

∑
j=3

6
tj
<

12
t3

<
2

rmintc

= o(1).

Case 3: t ∈
[
p−1, c1n

]
for a suitable small c1 > 0. Let t′1 :=

⌈
p−1⌉. Then,

recalling (4.20), (8.3), and (8.5),

π(t′1) ≥ p(rmin)Pr
[
Bin(t′1, p) ≥ rmin

]
= p(rmin)Pr

[
Po(t′1 p) ≥ rmin

]
+O(p) ≥ 2c1

for some small c1. Hence, w.h.p. Sn(t′1) > c1n, and consequently
Sn(t) ≥ Sn(t′1) > c1n ≥ t.

Case 4: t ∈
[
c1n, n− p−1]. Let t′2 := bc1nc and t′3 := n− p−1. Then, recalling

(4.27) and (8.2),

1− π(t′2) ≤ p(rmax)Pr
[
Bin(t′2, p) < rmax

]
(1 + o(1))

= O
(
(t′2 p)rmax−1e−t′2 p

)
= O

(
(np)rmax−1e−c1np

)
= o

(
(np)−1

)
.

Thus, E [n− Sn(t′2)] = n (1− π(t′2)) = o
(

p−1), and therefore w.h.p.
n− Sn(t′2) < p−1, that is, Sn(t′2) > t′3.
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5.2. Supercritical case

Case 5: t ∈
[
n− p−1, n− b∗

]
. We have, recalling (4.27),

1− π(t′3) ≤ p(rmax)Pr
[
Bin(bt′3c, p) < rmax

]
(1 + o(1))

= O
(
(t′3 p)rmax−1e−t′3 p

)
= O

(
(np)rmax−1e−np

)
= O

(
bc

n

)
.

Hence, E [n− Sn(t′3)] = n (1− π(t′3)) = O(bc) = o(b∗), and thus
w.h.p. n− Sn(t′3) < b∗, that is, Sn(t′3) > n− b∗. �

Remark 5.5 [cf. [30, Remark 8.3]] The proof of this lemma shows that if the boot-
strap percolation process has reached an active set of size p−1, then it will w.h.p.
grow up to at least n− b∗ active vertices in no more than 3 rounds. Hence, the size
then is n−Op(bc), see Lemma 2.1.

It remains to show that the bottleneck can be escaped in the supercritical
case, that is, A(t) > t for t < 3tc.

Theorem 5.6 [cf. [30, Theorem 3.1(ii)]] If a
ac
≥ 1 + δ for some δ > 0, then A∗ =

n−Op (bc) = n− op(n).

Proof For 0 ≤ t ≤ 3tc we may assume a ≤ 3tc, since otherwise A(t) > t
trivially. In this case, Lemmas 5.1 and 2.12 (with x = t

tc
) yield that w.h.p.,

uniformly in t ≤ 3tc,

A(t) = a + S(t) ≥ (1 + δ)
(

1− r−1
min

)
tc +

1
rmin

(
t
tc

)rmin

tc − o(tc)

≥ δ
(

1− r−1
min

)
tc + t− o(tc) > t.

This and Lemma 5.4 show that w.h.p. A(t) > t for all t ≤ n− b∗, and thus
A∗ > n− b∗. Hence, for any choice of ω(n), w.h.p. n− A∗ < b∗ = bcω(n),
which is by Lemma 2.1 equivalent to n− A∗ = Op (bc). �

We have shown that the process indeed grows up to at least n − b∗ active
vertices. It remains to differentiate between almost and complete percolation.
It is clear that vertices with smaller degree than activation thresholds will
never be activated. For that reason, we first give an estimate for the number
of these vertices.

Remark 5.7 [cf. [30, Remark 3.3]] Let

B := |{v ∈ Vn : deg(v) < rv}| = ∑
v∈Vn

[deg(v) < rv]

be the set of vertices v with degrees less than their activation thresholds rv. Ob-
viously, these vertices only can be active if they are in the initial active set A(0).
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For a = o(n) the probability for such a vertex to be active is thus a
n → 0. Hence,

A∗ ≤ n− |B|
(
1− op(1)

)
. We have, see (4.29) and (4.32),

E [|B|] = E

[
∑

v∈V
[deg(v) < rv]

]
= ∑

v∈Vn

Pr [deg(v) < rv] = ∑
v∈Vn

∑
r∈R

p(r)Pr [deg(v) < r]

= ∑
v∈Vn

E [Pr [deg(v) < rv]] = nE [Pr [Bin(n− 1, p) < rv]]

= n (1− π(n− 1)) ∼ bc + o (bc + 1) .

The next theorem states a concrete condition for almost and complete perco-
lation when a ≤ n

2 .

Theorem 5.8 [cf. [30, Theorem 3.1(iii)]] Under the same assumptions as in Theo-
rem 5.6 and further a ≤ n

2 , we have A∗ = n w.h.p. if and only if bc → 0, that is, if
and only if

np− (log(p(rmax)n) + (rmax − 1) log log n)→ ∞.

Proof If bc → 0, we may choose b∗ = 1. Then w.h.p. n − A∗ < 1, so
A∗ = n. Conversely, if bc 9 0, and thus, cf. Remark 5.7, E [|B|] 9 0, then
the probability that there exists a vertex with degree < rmin is positive, and
thus with probability 1− a

n this vertex will never be activated, so A∗ < n. �

For a = o(n), we provide more detailed results to differentiate between
almost and complete percolation.

Theorem 5.9 [cf. [30, Theorem 3.2]] Suppose that a = o(n) and A∗ = n− op(n).
Then:

(i) If np− (log(p(rmax)n) + (rmax − 1) log log n)→ −∞, so bc → ∞ by (4.34),
then A∗ = n− bc

(
1 + op(1)

)
.

(ii) If np− (log(p(rmax)n) + (rmax − 1) log log n) → ∞, so bc → 0 by (4.34),
then w.h.p. A∗ = n.

(iii) If np − (log(p(rmax)n) + (rmax − 1) log log n) → β for β ∈ (−∞, ∞), so

bc → b > 0 by (4.34), then n− A∗ d−→ Po(b). In particular, Pr [A∗ = n] →
e−b ∈ (0, 1).

Proof Choose b∗ := npbc � bc. By (4.31),

b∗p =
p(rmax)(np)rmax+1e−np

(rmax − 1)!
→ 0.
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5.2. Supercritical case

Hence, (n− b∗) p = np + o(1)→ ∞, and, recalling (4.28),

1− π(n− b∗) ∼ p(rmax)Pr [Bin (bn− b∗c , p) ≤ rmax − 1]

∼ p(rmax)
((n− b∗)p)rmax−1

(rmax − 1)!
(1− p)n−b∗

∼ 1− π(n).

Consequently, see (4.29),

E [A(n)− A(n− b∗)] = E [S(n)− S(n− b∗)]
≤ n (π(n)− π(n− b∗))
= o (n (1− π(n))) = o(b′c).

(5.5)

By assumption and Lemma 5.4, w.h.p. T > n − b∗, and thus A(n − b∗) ≤
A(T) ≤ A(n). Hence, (5.5) implies

A∗ = T = A(T) = A(n) + op
(
b′c
)

. (5.6)

Further,
n− A(n) = n− a− S(n) ∈ Bin (n− a, 1− π(n)) (5.7)

with mean (n− a) (1− π(n)) ∼ b′c, see (4.29).

If bc → ∞, then b′c ∼ bc. Thus, (5.7) implies n − A(n) = bc + op(bc), and
(5.6) yields (i). If bc → b < ∞, then b′c = bc + o(1) → b. Thus, (5.6) gives
A∗ = A(n) + op(1) and hence A∗ = A(n) w.h.p., since the variables are

integer. In this case, (5.7) implies n − A(n) d−→ Po(b), from which (ii) and
(iii) follow. �
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Chapter 6

Probability threshold

Whether the process percolates or not depends mainly on two quantities,
namely the size of the starting set and the density p of the graph. In the
previous chapters we have analyzed the percolation threshold ac for the size
of the starting set a, given a fixed edge probability p = p(n). In this chapter,
we provide the probability threshold pc for percolation, given a fixed size
a = a(n) of the starting set A(0), in the case of an Erdős-Rényi random
graph model. The probability threshold can be interpreted in the following
way. If p ≤ (1− δ)pc for some δ > 0, then A∗ ≤ 2a = o(n) w.h.p., while if
p ≥ (1 + δ)pc, then A∗ = n− o(n) w.h.p.

We only provide some results, as the two percolation thresholds ac and pc are
basically identical. That means that equation (6.1) is the inverse to equation
(4.24) in the sense that the functions a 7→ pc and p 7→ ac are the inverses
of each other. Consequently, the thresholds can be easily transformed into
each other.

The two subsequent corollaries are hence easy consequences from Theorems
5.2, 5.6, and 5.8.

The following corollary provides an estimate for the percolation threshold
pc.

Corollary 6.1 [cf. [30, Theorem 3.4]] Suppose that a → ∞ with a = o(n). Then
the percolation threshold for p is

pc :=

(
(rmin − 1)rmin−1 (rmin − 1)!

p(rmin)r
rmin−1
min

) 1
rmin (

narmin−1
)− 1

rmin . (6.1)

Note that thus n−1 � pc � n−
1

rmin .

The next result states the condition on the threshold for complete percola-
tion.
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6. Probability threshold

Corollary 6.2 [cf. [30, Theorem 3.4]]

Suppose that a → ∞ and p ≥ (1 + δ)pc for some δ > 0. Then w.h.p. A∗ = n if
and only if p = log(p(rmax)n)+(rmax−1) log log n+ω(n)

n for some ω(n)→ ∞.
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Chapter 7

Number of rounds

In this chapter, we analyze the number of rounds τ the bootstrap percolation
process takes until completion in the case of an Erdős-Rényi random graph
model, closely following [30, Chapter 10]. Although one could provide such
results for every size of the starting set, we focus on the supercritical case
only.

In the following, we give upper bounds on the number of rounds needed for
each of the three phases, that is, starting, explosion, and end phase. Example
3.11 in [30] demonstrates that each of these can be the time-dominant one.

Combining the main results of the subsequent sections, we can provide, by
adding the respective upper bounds for each phase, an asymptotic upper
bound on the number of rounds until percolation.

Corollary 7.1 [cf. [30, Theorem 3.10]] Suppose that a = o(n) and a ≥ (1 + δ)ac
for some δ > 0 (so that we have w.h.p. almost percolation according to Theorem
5.6). Then w.h.p.

τ ∼ 1
log rmin

(
1 + log log(np)− log+ log

a
ac

)
+

log (p(rmax)n)
np

+Op(1).

Proof The statement immediately follows from Theorems 7.2, 7.5, and 7.8.�

We define a variable that allows us to express the number of rounds needed
for arbitrary subphases of the bootstrap percolation process. For any m ≤ n
we define

τ(m) := inf
{

j : Tj ≥ m
}

,

with τ(m) = ∞ if this set of j is empty, that is, if m > A∗ = T. Thus, τ(m) is
the number of rounds needed for m steps, or, stated differently, the number
of rounds required to achieve at least m active vertices. Obviously, we have
τ(m) ≤ m, and in fact, we expect τ(m) to be much smaller than m.
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7. Number of rounds

7.1 Starting phase

In the starting phase, the active set grows up to a bottleneck at t ≈ tc, where
the process dies out in the subcritical case. In the supercritical case, however,
there is actually no bottleneck at all. We consider first τ(3tc), that is, the
number of rounds required to survive the bottleneck.

The following theorem shows that in the supercritical case the bottleneck
can be overcome in a constant number of rounds.

Theorem 7.2 [cf. [30, Proposition 10.1]] Assume a ≥ (1 + δ)ac for some δ > 0.
Then w.h.p. τ(3tc) = O(1).

Proof Lemmas 5.1 and 2.12 imply with x = t
tc

that, uniformly for 0 ≤ t ≤
3tc,

A(t)− t = S(t)− t + a =

(
xrmin

rmin
− x
)

tc + a + op(tc)

≥ −ac + (1 + δ)ac + op(ac),

and thus w.h.p.

A(t)− t ≥ δ

2
ac ≥

δ

4
tc.

Hence, in this range, w.h.p. each generation has size at least δ
4 tc, and the

numbers of rounds τ(3tc) required to reach 3tc is thus w.h.p. bounded by
12
δ . �

7.2 Explosion phase

If the bootstrap percolation process has survived the bottleneck, then the
active set size grows, beginning from 3tc, doubly exponentially fast up to a
point where p−1 vertices are active.

In order to show this result, we approximate A(t) by deterministic functions.

Lemma 7.3 [cf. [30, Lemma 10.2]] Given a function F : [0, ∞)→ [0, ∞), we define
the iterates TF

j+1 := F(TF
j ) with TF

0 := 0. Thus, Tj = TA
j .

For every j, if A ≤ F, then Tj ≤ TF
j , and if A ≥ F, then Tj ≥ TF

j .

Proof The proof is identical to the one of Lemma 10.2 in [30], which is why
we omit it here. �

For any δ ∈ R, using (4.23), we define

Fδ(t) := np(rmin)
(pt)rmin

rmin!
(1 + δ) =

(
t
tc

)rmin−1 t
rmin

(1 + δ). (7.1)
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7.2. Explosion phase

The following lemma shows that this function is indeed a good estimate for
A(t).

Lemma 7.4 [cf. [30, Lemma 10.6]] For every δ > 0, there are positive constants ε

and K such that w.h.p. F−δ(t) ≤ A(t) ≤ Fδ(t) for all t ∈
[
K(tc + a), ε

p

]
.

Proof By (4.21) and (7.1), for Ktc ≤ t ≤ ε
p (with ε ≤ 1), if n is large enough

so tc ≥ 1,

π(t) = p(rmin)
(pt)rmin

rmin!

(
1 +O

(
ε + K−1

))
=

1
n

F0(t)
(

1 +O
(

ε + K−1
))

.

We may thus choose ε and K such that for all such t and large n

F− δ
4
(t) ≤ nπ(t) ≤ Fδ

4
(t). (7.2)

For t ≥ K(tc + a), (7.1) implies

F0(t) =
(

t
tc

)rmin−1 t
rmin

≥ Krmin
a

rmin
,

so a ≤ δ
4 F0(t) for all t ∈

[
K(tc + a), ε

n

]
, when choosing K large enough. Thus,

by (7.2),

F− δ
4
(t)− a ≤ E [S(t)] = (n− a)π(t) ≤ Fδ

4
(t) ≤ Fδ

2
(t)− a.

Hence, using Chebyshev’s inequality, (4.9), and (7.2),

Pr
[

A(t) /∈
[

F− 3δ
4 (t), F3δ

4 (t)

]]
= Pr

[
S(t) /∈

[
F− 3δ

4 (t) − a, F3δ
4 (t) − a

]]
≤ nπ(t)(

δF0(t)
4

)2 ≤
Fδ

4
(t)(

δF0(t)
4

)2 =
16
(
1 + δ

4

)
δ2F0(t)

.
(7.3)

Define tj :=
(
1 + δ

5

) j
rmin K(tc + a). Then (7.3) and (7.1) show that, assuming

δ ≤ 1,

∑
j≥0 : tj≤ ε

p

Pr
[

A(tj) /∈
[

F− 3δ
4
(tj), F3δ

4
(tj)
]]
≤ ∑

j≥0

20
δ2F0(tj)

= ∑
j≥0

20
δ2F0(t0)

(
1 +

δ

5

)−j

=
100

(
1 + δ

5

)
δ3F0(t0)

→ 0,
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7. Number of rounds

since, using (7.1) again and (4.25),

F0(t0) = F0 (K(tc + a)) ≥ F0(tc) =
tc

rmin
→ ∞.

Consequently, w.h.p. A(tj) ∈
[

F− 3δ
4
(tj), F3δ

4
(tj)
]

for all j ≥ 0 with tj ≤ ε
p .

However, if tj ≤ t ≤ tj+1, then F0(tj) ≤ F0(t) ≤ F0(tj+1) =
(
1 + δ

5

)
F0(tj), and

it follows that, since both A(t) and F0(t) are monotone, w.h.p.(
1 +

δ

5

)−1

F− 3δ
4
(t) ≤ A(t) ≤

(
1 +

δ

5

)
F3δ

4
(t)

for all t ∈
[

K(tc + a),
(
1 + δ

5

)− 1
rmin ε

p

]
, which, provided δ is small and ε is

replaced by ε
2 , say, yields the result. �

Next, we provide an upper bound on the number of rounds needed for the
explosion phase.

Theorem 7.5 [cf. [30, Proposition 10.7]] Assume a ≥ (1 + δ)ac for some δ > 0.
Then w.h.p.

τ

(
1
p

)
− τ(3tc) =

1
log rmin

(
log log(np)− log+ log

a
ac

)
+O(1).

Proof Choose a fixed 0 < δ < 1, and choose ε and K as in Lemma 7.4. In
this proof, we do not have to let δ → 0, so we can take δ = 1

2 , say. First,
τ (K(tc + a))− τ(3tc), the number of rounds from 3tc to K(tc + a), is w.h.p.
O(1). Indeed, after τ(3tc) rounds we have at least max {3tc, a} active vertices,
and in each of the following rounds until well beyond K(tc + a) the number
is w.h.p. multiplied by at least 1.3, say, by the proof of Lemma 5.1. Similarly,
τ
(

1
p

)
− τ

(
ε
p

)
≤ 1 w.h.p., arguing as in Case 3 of the proof of Lemma 4.26.

Consequently, it suffices to consider τ
(

ε
p

)
− τ (K(tc + a)). We define iterates

TFδ
j as in Lemma 7.3 by TFδ

j+1 := Fδ

(
TFδ

j

)
for j ≥ 0, but now starting with

TFδ
0 := K(tc + a). Further, let

Nδ := min
{

j ≥ 0 : TFδ
j ≥

ε

p

}
.

By Lemma 7.4, we may assume that F−δ(t) ≤ A(t) ≤ Fδ(t) for all t ∈[
K(tc + a), ε

p

]
, and then, by induction as in Lemma 7.3, TF−δ

j ≤ Tj+τ(K(tc+a)) ≤
TFδ

j+1 for all j ≥ 0 with Tj−1+τ(K(tc+a)) ≤ ε
p . Consequently, w.h.p.

N−δ ≥ τ

(
ε

p

)
− τ (K(tc + a)) ≥ Nδ − 1. (7.4)
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7.2. Explosion phase

To find Nδ, we rewrite (7.1) as

Fδ(t)
cδtc

=

(
t

cδtc

)rmin

,

where cδ :=
( rmin

1+δ

) 1
rmin−1 . Iterating, we see that for j ≥ 0

TFδ
j

cδtc
=

(
TFδ

0
cδtc

)rj
min

=

(
K(tc + a)

cδtc

)rj
min

,

and thus

log

 TFδ
j

cδtc

 = rj
min log

(
K(tc + a)

cδtc

)
as well as

j log rmin = log log

 TFδ
j

cδtc

− log log
(

K(tc + a)
cδtc

)
.

Consequently,

Nδ =


log log

(
ε
p

cδtc

)
− log log

(
K(tc+a)

cδtc

)
log rmin

 . (7.5)

In order to simplify this, note that, using (4.22),

log

(
ε
p

cδtc

)
= log

(
1

ptc

)
+O(1) = 1

rmin − 1
log(np) +O(1),

and thus

log log

(
ε
p

cδtc

)
= log log(np) +O(1). (7.6)

Further, the assumption on a implies that a ≥ ac
2 ≥ tc

4 . Hence, log (K(tc + a)) =
log a +O(1) and thus, since also log (cδtc) = log ac +O(1),

log
(

K(tc + a)
cδtc

)
= log a− log ac +O(1) = log

a
ac

+O(1). (7.7)

We may assume that K ≥ ecδ, so log K(tc+a)
cδtc

≥ 1, and then (7.7) yields

log log
K(tc + a)

cδtc
= log+ log

a
ac

+O(1). (7.8)
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7. Number of rounds

Finally, (7.5), (7.6) and (7.8) yield

Nδ log rmin = log log np− log+ log
a
ac

+O(1).

Note that the right-hand side depends on δ only in the error term O(1).
Hence, we have the same result for N−δ, and the result follows by (7.4) and
the comments at the beginning of the proof. �

7.3 End phase

After the explosion phase, p−1 vertices are active. We analyze the number
of rounds needed until percolation.

We assume that b∗ � 1
p , which happens w.h.p. by Theorem 5.6, as pbc → 0

by (4.33). Remark 5.5 implies that τ(n− b∗) ≤ τ
(

1
p

)
+ 3 w.h.p., so it suffices

to consider the evolution when less than b∗ vertices remain.

Lemma 7.6 [cf. [30, Lemma 10.8]] For any t and u with 0 ≤ t ≤ t + u ≤ n
the conditional distribution of A(t + u)− A(t) = S(t + u)− S(t) given A(t) is
Bin (n− A(t), π(t; u)), where

π(t; u) :=
π(t + u)− π(t)

1− π(t)
.

If further n− b∗ ≤ t ≤ t + u ≤ n, then, uniformly in all such t and u,

π(t; u) = pu (1 + o(1)) . (7.9)

Proof Conditioned on A(t), we have that A(t) is a given number, and of
the n − a summands in (3.2), n − A(t) are 0. For any of these terms, the
probability that it changes from 0 at time t to 1 at time t + u is, by (4.3),

Pr [Yi ≤ t + u | Yi > t] =
Pr [t < Yi ≤ t + u]

Pr [Yi > t]
=

π(t + u)− π(t)
1− π(t)

= π(t; u).

Hence, the conditional distribution of S(t+u)−S(t) is Bin (n− A(t), π(t; u)).

To see the approximation (7.9), note first that for n− b∗ ≤ t ≤ n, since we
assume pb∗ → 0, we have b∗ � 1

p � n so t ∼ n. Hence, using again pb∗ → 0,
(4.30), and (4.39),

π(t + 1)− π(t) = Pr [Yi = t + 1] ∼ p(rmax)

(
t

rmax − 1

)
prmax(1− p)t+1−rmax

∼ p(rmax)
nrmax−1

(rmax − 1)!
prmax(1− p)n =

pb′c
n

.
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7.3. End phase

Furthermore, see (4.28) and (4.29), still for n− b∗ ≤ t ≤ n,

1− π(t) ∼ p(rmax)Pr [Bin(t, p) < rmax]

∼ p(rmax)Pr [Bin(t, p) = rmax − 1]

∼ p(rmax)
nrmax−1

(rmax − 1)!
prmax−1(1− p)n =

b′c
n

.

(7.10)

Consequently, recalling the uniform convergence in (4.39),

π(t + u)− π(t) = (1 + o(1))
upb′c

n
(7.11)

and

π(t; u) = (1 + o(1))
upb′c

n
b′c
n

= (1 + o(1)) up. �

The following lemma provides a lower bound on the number of active ver-
tices in the end phase.

Lemma 7.7 [cf. [30, Lemma 10.9]] Suppose that a = o(n). If bc → ∞ and n−
b∗ ≤ t ≤ n, then A(t) = n− bc

(
1 + op(1)

)
. In particular, n− A(t) < 2bc w.h.p.

Proof We have, using (4.8) and (7.10), since bc → ∞ implies b′c ∼ bc,

E [n− A(t)] = n− a−E [S(t)] = (n− a) (1− π(t)) ∼ (n− a)
b′c
n
∼ bc,

and similarly, using (4.9),

Var [n− A(t)] = Var [S(t)] ≤ (n− a) (1− π(t)) ∼ bc.

Thus, using Chebyshev’s inequality, since bc → ∞,

n− A(t) = (1 + o(1)) bc +O
(

b
1
2
c

)
=
(
1 + op(1)

)
bc. �

Finally, the next theorem supplies an upper bound on the number of rounds
needed to activate the last few vertices in the end phase.

Theorem 7.8 [cf. [30, Proposition 10.10]] Suppose that a = o(n). When A∗ ≥
3tc,

τ − τ

(
1
p

)
= (1 + o(1))

log (p(rmax)n)
np

+Op(1).

In particular, if further p ≥ c log(p(rmax)n)
n for some n ≥ 0, then τ− τ

(
1
p

)
= Op(1).

Furthermore, when A∗ = n, w.h.p. τ − τ
(

1
p

)
≤ 3.
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7. Number of rounds

Proof By Remark 5.5, after τ
(

1
p

)
+ 3 rounds, the active size is T

τ
(

1
p

)
+3
≥

n− b∗ w.h.p.

If bc → 0, we can choose b∗ = 1
2 , so w.h.p. T

τ
(

1
p

)
+3

= n and τ ≤ τ
(

1
p

)
+ 3.

More generally, if bc = O(1), we have, by (7.11),

E [S(n)− S(n− b∗)] ≤ n (π(n)− π(n− b∗)) ∼ nb∗
pb′c
n

= pb∗bc = O(pb∗) = o(1).

Hence, w.h.p. S(n) = S(n − b∗), which means that no further activations
occur after n − b∗. Consequently, in this case too, w.h.p. τ = τ(n − b∗) ≤
τ
(

1
p

)
+ 3. In particular, this proves that τ ≤ τ

(
1
p

)
+ 3 w.h.p. when A∗ = n,

since w.h.p. A∗ < n if bc → ∞, by Theorem 5.9.

Further, when bc = O(1), (4.34) implies that np ≥ log (p(rmax)n) for large n,
so log(p(rmax)n)

np ≤ 1, and the result follows in this case.

Now assume that bc → ∞. For convenience, we modify the counting of
rounds and start at t = n− b∗, regarding the active but unused vertices at
n− b∗ as generation 0. We may assume that b∗ is an integer. We recursively
define

T′0 := n− b∗,

T′j+1 := A(T′j ) for j ≥ 0,

∆j := T′j+1 − T′j = A(T′j )− T′j ,

and
τ′ := max

{
j ≥ 0 : ∆j > 0

}
.

Since w.h.p. T
τ
(

1
p

)
−1
≤ max

{
1
p , a
}
< n− b∗ ≤ T

τ
(

1
p

)
+3

, it follows by induc-

tion that T
τ
(

1
p

)
−1+j

≤ T′j ≤ T
τ
(

1
p

)
+3+j

for j ≥ 0, and thus w.h.p.

τ′ + τ

(
1
p

)
− 1 ≤ τ ≤ τ′ + τ

(
1
p

)
+ 3. (7.12)

Consequently, it suffices to estimate τ′.

By Lemma 7.6, conditioned on A
(

T′j
)

, for large n

E
[
∆j+1

∣∣∣ A
(

T′j
)]

=
(

n− A(T′j )
)

π
(

T′j ; ∆j

)
≤
(
n− A(T′0)

)
2p∆j,

and thus, by induction, since ∆0 ≤ n− T′0 = b∗,

E
[
∆j
∣∣ A

(
T′0
) ]
≤
(
2
(
n− A(T′0)

)
p
)j ∆0 ≤

(
2
(
n− A(T′0)

)
p
)j b∗. (7.13)
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7.3. End phase

Further, Lemma 7.7 yields n− A(T′0) = n− A(n− b∗) < 2bc w.h.p. Conse-
quently, (7.13) implies, w.h.p. for all j ≥ 0 simultaneously

E
[
∆j
∣∣ A

(
T′0
) ]
≤ (4pbc)

j b∗. (7.14)

Recall that pbc → 0 by (4.33), so we may assume 4pbc < 1. If j is chosen such
that (4pbc)

j b∗ → 0, then (7.14) implies that w.h.p. ∆j = 0 and thus τ′ < j.
Hence, for any ω′ = ω′(n)→ ∞, w.h.p.

τ′ ≤ log b∗

|log(pbc) + log 4| + ω′(n),

which is, see Lemma 2.1, equivalent to

τ′ ≤ log b∗

|log(pbc) + log 4| +Op(1) =
log b∗

|log(pbc)|
(1 + o(1)) +Op(1). (7.15)

For a lower bound, fix ε with 0 < ε < 1, and define the deterministic num-
bers ∆−j by

∆−j := (1− ε)j+1(pbc)
jb∗. (7.16)

Let ω′′ := 1
pbc
→ ∞. We claim that w.h.p.

∆j ≥ ∆−j for all j ≥ 0 such that ∆−j ≥ ω′′. (7.17)

By our assumption 4pbc < 1, we have
∆−j+1

∆−j
< 1

4 , so ∆−j → 0 geometrically

fast.

By Lemma 7.7 and bc
b∗ → 0, w.h.p.

∆0 = A(T′0)− (n− b∗) = A(T′0)− n + b∗ ≥ b∗ − 2bc ≥ (1− ε)b∗ = ∆−0 ,

so (7.17) holds w.h.p. for j = 0.

Say that j ≥ 0 is good if ∆j ≥ ∆−j and fat if A(T′j ) > n−
(
1− ε

4

)
bc. Let j ≥ 0.

At time T′j we have A(T′j )− T′j = ∆j active but unused vertices. Further, by
Lemma 7.6, we have, conditioned on A

(
Tj
)

(which specifies both T′j and ∆j),

∆j+1 = T′j+2 − T′j+1 = A(T′j + ∆j)− A(T′j ) ∈ Bin
(

n− A(T′j ), π(T′j ; ∆j)
)

.

By Lemma 7.6, π(T′j ; ∆j) = p∆j (1 + o(1)) ≥ p∆j
(
1− ε

4

)
for large n, so if j is

good but not fat,

E
[
∆j+1

∣∣∣ A
(

T′j
)]

=
(

n− A(T′j )
)

π(T′j ; ∆j) ≥
(

1− ε

4

)2
bc p∆j

≥
(

1− ε

2

)
bc p∆−j ≥

(
1 +

ε

2

)
∆−j+1,
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and Chebyshev’s inequality yields, since x 7→ x
(x−a)2 is decreasing for x > a,

Pr
[
∆j+1 < ∆−j+1

∣∣∣ A
(

T′j
)]
≤

Var
[
∆j+1

∣∣∣ A
(

T′j
)]

(
E
[
∆j+1

∣∣∣ A
(

T′j
)]
− ∆−j+1

)2

≤
E
[
∆j+1

∣∣∣ A
(

T′j
)]

(
E
[
∆j+1

∣∣∣ A
(

T′j
)]
− ∆−j+1

)2

≤
(
1 + ε

2

)
∆−j+1(

ε∆−j+1
2

)2 = O
(

1
∆−j+1

)
.

Say that j is bad if j is not good and that j fails if j is fat or bad. Then, by
stopping at the first j that fails, we see that

Pr
[
some j ≤ ω′′ fails

]
≤ Pr

[
some j ≤ ω′′ is fat

]
+ Pr [0 is bad]

+ ∑
j>0 : ∆−j ≥ω′′

Pr [j is bad | j− 1 is good and not fat]

≤ Pr
[

A(n) > n−
(

1− ε

4
bc

)]
+ o(1)

+ ∑
j : ∆−j ≥ω′′

O
(

1
∆−j

)
= o(1),

since A(n) < n−
(
1− ε

4

)
bc w.h.p. by Lemma 7.7. The final sum is O

( 1
ω′′
)
=

o(1) because the terms 1
∆−j

increase geometrically, so the sum is dominated

by its largest (and last) term.

We have shown that w.h.p., if ∆−j ≥ ω, then ∆j ≥ ∆−j > 0 and thus τ′ ≥ j.
Hence, by (7.17) and (7.16), w.h.p.

τ′ ≥

 log
(
(1− ε) b∗

ω′′

)
|log ((1− ε)pbc)|

 =
log b∗

|log(pbc)|
(1 + o(1)) +O(1). (7.18)

Combining the upper bound (7.15) and the lower bound (7.18), we find

τ′ =
log b∗

|log(pbc)|
(1 + o(1)) +O(1). (7.19)

By (4.31), log(pbc) = − (np− rmax log(np) +O(1)) and

log (p(rmax)n) ≥ log b∗ + log p(rmax) ≥ log bc + log p(rmax)

≥ log n− np + log p(rmax)−O(1),
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7.3. End phase

and thus log b∗ = log (p(rmax)n) +O(np). Hence, finally (7.19) yields

τ′ =
log (p(rmax)n) +O(np)

np− rmax log(np) +O(1) (1 + o(1)) +Op(1)

=
log (p(rmax)n)

np
(1 + o(1)) +Op(1).

The result follows from (7.12). �
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Chapter 8

Boundary cases

In this chapter, we treat the cases when the assumption (4.1) does not hold
for an Erdős-Rényi random graph Gn,p. That is, we analyze the bootstrap
percolation process either when p = O

(
n−1), thus for a sparse graph, or

when p = Ω
(

n−
1

rmin

)
, hence for a dense graph. The main observation is that,

at least in the non-trivial boundary cases, a kind of threshold phenomenon
occurs. These results are based on [30, Chapters 5 and 11].

Note that a different strategy has to be applied, since the approximation
provided in Chapter 4 in general do not work anymore.

8.1 Sparse case

The following theorem shows, that in the extremely sparse case, when p �
n−1, the bootstrap percolation process dies out fast.

Theorem 8.1 Suppose that p� n−1 and a = o(n). Then w.h.p. A∗ = o(n).

Proof The expected degree of a vertex i is

E [deg(i)] = (n− 1)p = o(1),

and thus, using Markov’s inequality,

Pr [deg(i) ≥ rmin] ≤
(n− 1)p

rmin
= o(1).

Hence, E [A∗] ≤ a + (n− a)Pr [deg(i) ≥ rmin] = o(n). Consequently, for
every δ(n) > εn with ε > 0 we have, using Markov’s inequality,

Pr [A∗ ≥ δ(n)] ≤ E [A∗]
δ(n)

= o(1),

and the claim follows. �
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8. Boundary cases

In the moderately sparse case, when p ∼ c
n for some c > 0, then tc and ac

are of order n. That is why processes with starting sets significantly smaller
than n will die out for sure. This suggests that the interesting case is when a
positive fraction of all vertices are initially active. Scalia-Tomba [36] showed
for constant activation threshold r and large enough c, thus dense enough
graphs, that there is also a sort of sharp threshold phenomenon. Although
at the end always a linear fraction of vertices will be active, there can be
observed a sudden jump from a small to a large fraction of n as final active
set size.

In the following, we provide an alternative approximation of π(t) by a Pois-
son distribution, which is simpler to analyze. These results are based on [30,
Section 3.2]. We define

π̃r(t) := Pr [Po(tp) ≥ r] = ψ(tp, r) :=
∞

∑
j=r

(pt)j

j!
e−pt (8.1)

for r ≥ 2 and

π̃(t) := ∑
r∈R

p(r)π̃r(t) = ∑
r∈R

p(r)Pr [Po(tp) ≥ r] =: ψ(tp). (8.2)

To warrant readability, we introduce the notation

π̃(t) := π̃rmin(t). (8.3)

Note that ψ (·, r) is a differentiable, increasing function on (0, ∞) and that,
see [30, (3.14)],

d
dt

π̃r(t) = pψ′(tp, r) = p
(pt)r−1

(r− 1)!
e−pt =

prtr−1

(r− 1)!
e−pt (8.4)

for r ≥ 2.

By a standard estimate for the Poisson approximation of a binomial distri-
bution, see (2.2) and [30, (3.15)], we get

|πr(t)− π̃r(t)| ≤ dTV (Bin(t, p), Po(tp)) < p (8.5)

for all r ≥ 2.

This result can easily be extended to an upper bound on the statistical dis-
tance between π(t) and π̃(t).

Lemma 8.2 [cf. [30, (3.15)]] We have
∣∣∣π(t)− π̃(t)

∣∣∣ < p.
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Proof Recalling (4.3) and (8.2), it follows from the triangle inequality and
(8.5) that

∣∣∣π(t)− π̃(t)
∣∣∣ = ∣∣∣∣∣∑r∈R p(r) (πr(t)− π̃r(t))

∣∣∣∣∣ ≤ ∑
r∈R

p(r)|πr(t)− π̃r(t)|

< ∑
r∈R

p(r)p = p.
�

We define

f (x, c, θ) := (1− θ) ∑
r∈R

p(r)Pr [Po(cx) ≥ r] + θ − x

= (1− θ) ∑
r∈R

p(r)
∞

∑
j=r

(cx)j

j!
e−cx − x + θ

= 1− x− (1− θ) ∑
r∈R

p(r)Pr [Po(cx) ≤ r− 1]

= 1− x− (1− θ) ∑
r∈R

p(r)
r−1

∑
j=0

(cx)j

j!
e−cx

(8.6)

for x, c ≥ 0 and θ ∈ [0, 1]. We let x0(θ) be the smallest root x ≥ 0 and x1(θ)
be the largest root in [0, 1] of

f (x, c, θ) = 0. (8.7)

Since f (0, c, θ) = θ ≥ 0 and f (1, c, θ) = −(1− θ)∑r∈R p(r)Pr [Po(c) ≤ r− 1] ≤
0, there is always at least one root in [0, 1], and 0 ≤ x0(θ) ≤ x1(θ) ≤ 1. When
0 < θ < 1, then 0 < x0(θ) ≤ x1(θ) < 1, whereas we have x0(0) = 0 and
x0(1) = x1(1) = 1. With

yc :=
∑r∈R p(r) 1

(r−2)!

∑r∈R p(r) 1
(r−1)!

(8.8)

we also define

cc := yc +
1− ψ(yc)

∑r∈R p(r) yr−1
c

(r−1)! e
−yc

. (8.9)

In the following, we analyze the roots of f (·, c, θ).

Lemma 8.3 [cf. [30, Lemma 5.1]]

(i) If 0 ≤ c ≤ cc, then (8.7) has a unique root x = x0(θ) ∈ [0, 1] for every
θ ∈ [0, 1], and x0(θ) is a continuous strictly increasing function of θ.

(ii) If c > cc, then there exists θ−c = θ−c (c) and θc = θc(c) with 0 ≤ θ−c < θc < 1
such that (8.7) has three roots in [0, 1] when θ ∈ (θ−c , θc) and a unique root
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8. Boundary cases

when θ ∈ [0, θ−c ) or θ ∈ (θc, 1]. If θ = θ−c > 0 or θ = θc, there are
two roots, one of them double. The smallest root x0(θ) is strictly increasing
and continuous on [0, 1] except at θc where it has a jump from x0(θc) to
x1(θc) > x0(θc), where x1(θc) = x0(θ+c ) := limθ↘θc x0(θ) is the other root
for θ = θc. Furthermore, if θ = θc, then f (x, c, θ) ≥ 0 for x ∈ [0, x1(θ)], and
x0(θ) is a double root.

Proof By the implicit function theorem, at least locally, the root x0(θ) is
smooth except at points where

f (x, c, θ) =
δ

δx
f (x, c, θ) = 0. (8.10)

We begin by studying such critical points. Let

g(y) := ∑
r∈R

p(r)Pr [Po(y) ≤ r− 1] = 1− ψ(y),

cf. (8.3) and (8.2). Differentiations yield, see (8.4),

g′(y) = − ∑
r∈R

p(r)Pr [Po(y) = r− 1] = − ∑
r∈R

p(r)
yr−1

(r− 1)!
e−y

and, recalling (8.8),

g′′(y) = −g′(y)− ∑
r∈R

p(r)
yr−2

(r− 2)!
e−y =

(
yc

y
− 1
)

g′(y). (8.11)

We have, see (8.6),

f (x, c, θ) = 1− x− (1− θ)g(cx),

and thus
δ

δx
f (x, c, θ) = −1− c(1− θ)g′(cx).

Hence, (8.10) holds if and only if{
(1− θ)g(cx) = 1− x
c(1− θ)g′(cx) = −1,

which imply g(cx) = −c(1− x)g′(cx) and thus

c = cx− g(cx)
g′(cx)

. (8.12)

Let

h(y) := y− g(y)
g′(y)

for y > 0,
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8.1. Sparse case

so (8.12) says c = h(cx). Then by (8.11),

h′(y) = 1− g′(y)
g′(y)

+
g(y)g′′(y)

g′(y)2 =
yc − y

y
g(y)
g′(y)

.

Since g(y) > 0 and g′(y) < 0 for y > 0, the function h has a global minimum
at y = yc, and the minimum value is, recalling 8.9,

min
y>0

h(y) = h (yc) = cc.

Furthermore, h(y) > y → ∞ as y → ∞, and h(y) → ∞ as y → 0, as then
g(y)→ 1 and g′(y)→ 0.

Consequently, if 0 ≤ c ≤ cc, then (8.12) has no solution x > 0, and thus
there is no critical point. If c = cc, there is exactly one x > 0 satisfying (8.12)
(namely x = yc

cc
), and if c > cc, there are two. Since (8.12) implies c > cx,

these roots are in (0, 1).

To complete the proof, it is perhaps simplest to rewrite (8.7) as θ = ϑ(x),
with

ϑ(x) := 1− 1− x
g(cx)

.

Since g(y) > 0 for y ≥ 0, ϑ is a smooth function on [0, 1], with ϑ(0) = 0
and ϑ(1) = 1. Moreover, f (x, c, θ) = g(cx) (θ − ϑ(x)), which implies that
f (x, c, θ) = δ

δx f (x, c, θ) = 0 if and only if θ = ϑ(x) and ϑ′(x) = 0. Conse-
quently, by the results above, if c < cc, then ϑ′ 6= 0, so ϑ′(x) > 0 for x ≥ 0.
In this case, ϑ is strictly increasing and thus a bijection [0, 1]→ [0, 1], and x0
is its inverse.

If c = cc, then ϑ′ = 0 only at a single point, and it follows again that ϑ is a
strictly increasing function and x0 is its inverse.

If c > cc, then ϑ′(x) = 0 at two values x1 and x2 with 0 < x1 < x2 < 1
and cx1 < cc < cx2. It can be seen, for example, using (8.11), that ϑ′′(x1) <
0 < ϑ′′(x2), and thus ϑ is decreasing on the interval [x1, x2]. The result
follows with θc = ϑ(x1), θ−c = max {ϑ(x2), 0} and x0(θc) = x2. Note that
ϑ(x2) = minx∈[0,1] ϑ(x) < 0 if c is large enough. �

The next lemma provides a probabilistic upper bound on the number of
activated vertices at the beginning of the process in the moderately sparse
case.

Lemma 8.4 [cf. [30, Lemma 11.2]] Suppose that p = O( 1
n ) and pt = o(1). Then

S(t) = op(t).

Proof Note that S(t) = 0 for t < rmin. We may assume 1 ≤ t ≤ 1
p . Then

π(t) = O ((pt)rmin) = o(pt) by (4.21), and thus the number of activated
vertices is E [S(t)] = (n− a)π(t) = o(npt) = o(t). �
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8. Boundary cases

The next theorem shows the modified sharp threshold result. That is, if the
starting set is a positive fraction of n, then the final active set grows to a
bigger linear factor but does not percolate, not even almost. If the starting
set is negligibly small compared to n, then there will never be a linear factor
activated. The jump in the final size, and thus the threshold, is at θcn.

Theorem 8.5 [cf. [30, Theorem 5.2]] Suppose that p ∼ c
n and a ∼ θn for some

constants c ≥ 0 and θ ≥ 0.

(i) If θ = 0, and thus a = o(n), then A∗
a

p−→ 1.

(ii) If c = 0, and thus p = o( 1
n ), then A∗

a
p−→ 1.

(iii) If 0 ≤ c ≤ cc, then A∗
n

p−→ x0(θ) (which is the unique non-negative root of
f (·, c, θ)).

(iv) If c > cc and θ 6= θc(c), then A∗
n

p−→ x0(θ) (which is the smallest non-negative
root of f (·, c, θ)).

Proof First, in (i) and (ii), ap → θc = 0. Let ε > 0. Taking t = (1 + ε)a in
Lemma 8.4, we find w.h.p. S ((1 + ε)a) < εa and thus

A ((1 + ε)a) = a + S ((1 + ε)a) < (1 + ε)a,

whence A∗ = T < (1 + ε)a. Consequently, 1 ≤ A∗
a < 1 + ε w.h.p., proving (i)

and (ii).

Next, by (3.3), Lemma 4.1 and (4.8), uniformly for all t ≥ 0,

A(t) = a + S(t) = a + E [S(t)] + op(n) = (n− a)π(t) + a + op(n),

and thus, using also (8.2),

n−1A(t) = (1− θ)π(t) + θ + op(1) = (1− θ)π̃(t) + θ + op(1).

Substituting t = xn, we find by (8.2) and (8.1), since pt = xc + o(x), uni-
formly in all x ≥ 0,

n−1A(xn) = (1− θ) ∑
r∈R

p(r)Pr [Po(tp) ≥ r] + θ + op(1)

= (1− θ) ∑
r∈R

p(r)Pr [Po(cx) ≥ r] + θ + op(1).

Further, recalling (8.6), still uniformly in x ≥ 0,

n−1 (A(xn)− xn) = f (x, c, θ) + op(1). (8.13)

Let ε > 0. Since f (x, c, θ) > 0 for x ∈ [0, x0(θ)), and thus by compactness
f (·, c, θ) is bounded from below on [0, x0(θ) − ε], (8.13) implies that w.h.p.
A(xn)− xn > 0 on [0, x0(θ)− ε], and thus T > (x0(θ)− ε) n. Furthermore,
both in (iii) and (iv) with θ 6= θc, we have δ

δx f (x0(θ), c, θ) 6= 0 and thus, if
ε > 0 is small enough, f (x0(θ) + ε, c, θ) < 0, so (8.13) implies that w.h.p.
A ((x0(θ) + ε) n) < (x0(θ) + ε) n, and thus T < (x0(θ) + ε) n. �
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8.2. Dense case

8.2 Dense case

In this section, we analyze the bootstrap percolation process in the case of a

dense graph, that is, first when p = Θ
(

n−
1

rmin

)
, and then when p� n−

1
rmin .

The former assumption implies that tc and ac are constant, what suggests
that the first few steps determine whether the process will die out immedi-
ately or grow very quickly. It happens with constant probability bounded
away from 0 and 1 that a starting set of constant size leads to complete
percolation.

The next lemma shows that if ω(n) vertices are active, then the activation
spreads w.h.p. to all vertices. To prove this, we will resort to a graph Gn,p̂
where p̂ satisfies (4.1), and thus for which Lemma 5.4 applies.

Lemma 8.6 [cf. [30, Lemma 11.4]] Suppose that p ≥ cn−
1

rmin for some c > 0. If
ω(n)→ ∞, then w.h.p. A(t) > t for all t with ω(n) ≤ t ≤ n− 1.

Proof Let p̂ := ω(n)−
1

2rmin n−
1

rmin . We may assume ω(n) ≤ n and then

n−1 � p̂ � n−
1

rmin , so p̂ < p, at least for large n, and we may further as-
sume that Gn,p̂ ⊆ Gn,p. We consider bootstrap percolation on Gn,p̂ and Gn,p
simultaneously, with the same initial set A(0) of size a. We use ̂ to denote
variables for Gn,p̂ and start with families of i.i.d. random indicator variables
Îi(s) ∈ Be( p̂) and Ii(s) ∈ Be(p), where we may assume Îi(s) ≤ Ii(s). Then
Ŝ(t) ≤ S(t) and Â(t) ≤ A(t). The critical time is, recalling (4.22),

t̂c = O
(
(np̂rmin)

− 1
rmin−1

)
= ω(n)

1
2(rmin−1) = o (ω(n)) .

Further, p̂ ≥ n−
3

2rmin ≥ n−
3
4 , so by (4.31) b̂c → 0 and we may choose b̂∗ → 0.

Hence, Lemma 5.4, applied to Gn,p̂, shows that w.h.p. A(t) ≥ Â(t) > t for

t ∈
[
3t̂c, n− b̂∗

]
, and the result follows because 3t̂c ≤ ω(n) for large n and

n− b̂∗ > n− 1. �

The next theorem provides limits for the probability of complete percolation.
Because Lemma 8.6 implies that once this threshold ω(n) is reached, the pro-
cess w.h.p. percolates completely, it only remains to show that the process
activates ω(n) vertices with a probability in (0, 1) for that purpose.

Theorem 8.7 [cf. [30, Theorem 5.6]] Suppose that p ∼ cn−
1

rmin for a constant
c > 0.

(i) If a ≥ rmin is fixed, then

Pr [A∗ = n]→ ζ(a, c)
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8. Boundary cases

for some ζ(a, c) ∈ (0, 1). Furthermore, there exist numbers ζ(a, c, k) > 0
for k ≥ a such that Pr [A∗ = k] → ζ(a, c, k) for each fixed k ≥ a, and
∑∞

k=a ζ(a, c, k) + ζ(a, c) = 1.

(ii) If a→ ∞, then Pr [A∗ = n]→ 1, that is, A∗ = n w.h.p.

Proof For (ii), we apply Lemma 8.6 (if necessary with a smaller c). Taking
ω(n) = a, we see that w.h.p. A(t) > t for all t ∈ [a, n− 1]. Since also
A(t) ≥ a, we have A(t) > t for all t ≤ n− 1, and thus A∗ = T = n.

For (i), suppose p ∼ cn−
1

rmin and let a ≥ rmin be some constant. We consider
the probability that a vertex is activated at a given time k. Note that the
estimate 4.4 still applies. Hence, by (4.38),

Pr [Yi = k] ∼ p(rmin)

(
k− 1

rmin − 1

)
prmin(1− p)k−rmin

∼ p(rmin)

(
k− 1

rmin − 1

)
crmin

n
.

(8.14)

For any fixed K the random variables

Xk := A(k)− A(k− 1) = S(k)− S(k− 1) =
n−a

∑
i=1

[Yi = k]

for k ∈ [K] form together with

XK+1 := n− a− A(K) =
n−a

∑
i=1

[Yi > K]

a random vector with the multinomial distribution Mul
(

n− a, (pk)
K+1
k=1

)
with pk := Pr [Yi = k] for k ≤ K and pK+1 := Pr [Yi ≥ K + 1]. By (8.14),
(n− a)pk → p(rmin)(

k−1
rmin−1)c

rmin for k ≤ K, and it follows, see Section 2.3.3,
that Xk for k ≤ K have a joint Poisson limit

(Xk)
K
k=1

d−→ (ξk)
K
k=1 with ξk ∈ Po

(
p(rmin)

(
k− 1

rmin − 1

)
crmin

)
independent.

(8.15)

The limiting probabilities can be expressed as hitting probabilities of an in-
homogeneous random walk, see Section 2.4.3 and [30, Remark 5.7]. For
independent ξk ∈ Po

(
p(rmin)(

k−1
rmin−1)c

rmin

)
for k ∈N and with the notation

S̃k :=
k

∑
j=1

(
ξ j − 1

)
and

T̃ := min
{

k ≥ 1 : a + S̃k = 0
}
∈N∪ {∞},
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8.2. Dense case

we have

ζ(a, c) = Pr
[

T̃ = ∞
]
= Pr

[
a + S̃k ≥ 1 for all k ≥ 1

]
as well as ζ(a, c, k) = Pr

[
T̃ = k

]
. Consequently, Theorem 8.7(i) is equivalent

to dTV

(
A∗, min

(
T̃, n

))
→ 0.

We obtain

A(k) d−→ a +
k

∑
j=1

ξ j = a + k + S̃k for k ∈ [t] jointly,

and thus Pr [T = k]→ Pr
[

T̃ = k
]

for k ≤ K, and Pr [T > K]→ Pr
[

T̃ > K
]
.

Since K is arbitrary, we have shown Pr [A∗ = k] = Pr [T = k]→ Pr
[

T̃ = k
]
=

ζ(a, c, k) for every finite k ≥ 1. Furthermore, Pr [T > K]− Pr
[

T̃ > K
]
→ 0

for any fixed K, and a standard argument shows that there exists a sequence
Kn → ∞ such that Pr [T > Kn]− Pr

[
T̃ > Kn

]
→ 0, and thus Pr [T > Kn] →

Pr
[

T̃ = ∞
]
. On the other hand, Lemma 8.6 with ω(n) = Kn shows that

Pr [Kn ≤ T < n] → 0. Consequently, Pr [T = n] = Pr [T > Kn] + o(1) →
Pr
[

T̃ = ∞
]
= ζ(a, c).

It is clear that ζ(a, c, k) = Pr
[

T̃ = k
]
> 0 for every k ≥ a. To see that also

ζ(a, c) = Pr
[

T̃ = ∞
]
> 0, note that, see (8.15), E [ξk] = p(rmin)(

k−1
rmin−1)c

rmin →
∞ as k→ ∞. Hence, there is some K0 such that E [ξK0 ] > 1. Since ξk stochas-
tically dominates ξK0 for k ≥ K0, it follows that if the process reaches K0
without stopping, the continuation dominates (up to a change of time) a
Galton-Watson branching process with offspring distribution ξK0 , which is
supercritical and thus has a positive probability of living forever, see Section
2.4.2. Hence, Pr

[
T̃ = ∞

]
> 0. �

Under the assumption that p � n−
1

rmin , we show that the initial set perco-
lates as long as a ≥ rmin.

Theorem 8.8 [cf. [30, Theorem 5.8]] Suppose that p � cn−
1

rmin and a ≥ rmin.
Then A∗ = n w.h.p.

Proof It suffices to consider a = rmin. Thus assume a = rmin and consider
the vertices activated in the first round, that is, at time t = rmin. There are
S(rmin) ∈ Bin (n− rmin, pr

min) such vertices. Note that, see (4.3), π(rmin) =

∑r∈R p(r)Pr [Bin (rmin, p) = rmin] = prmin . Consequently, E [S(rmin)] = (n−

59



8. Boundary cases

rmin)prmin → ∞. Let ω(n) = E[S(rmin)]
2 , so ω(n) → ∞. It follows from the

Chernoff bounds that

Pr [S(rmin) ≤ ω(n)] ≤ e−
(n−rmin)prmin

6 → 0,

that is, w.h.p. S(rmin) > ω(n). Hence, w.h.p. for all t ∈ [rmin, ω(n)], we
have A(t) ≥ A(rmin) > S(rmin) > ω(n) ≥ t. Together with the trivial
A(t) ≥ a = rmin > t for t < rmin and Lemma 8.6, this shows that w.h.p.
A(t) > t for all t ≤ n− 1, and thus A∗ = T = n. �

60



Chapter 9

Other random graph models

In this chapter, we analyze the bootstrap percolation process for a different
underlying random graph model, namely a directed random graph with an
arbitrary distribution for the out-degrees. First, we refine the step model
introduced in Section 3.1.1 to adapt to this specific graph model and then,
under the assumptions listed in Section 9.2, provide approximations for the
relevant quantities to model the bootstrap percolation process, similar to the
ones in Chapter 4.3, in Section 9.3. Using these estimates, we prove a slightly
modified sharp threshold result in Section 9.4.

9.1 Model

We introduce the formal model for the bootstrap percolation process with
an underlying directed random graph Gn = (Vn, E), where the direction of
an edge indicates the course of spread of activation.

Each vertex i ∈ Vn independently draws its expected out-degree d(i) from
a certain distribution. Then it selects each vertex independently with proba-
bility pd(i) := d(i)

n−1 as its neighbor, also see [34]. Let µ := E [d(i)] be the mean
and D ⊆ {0, 1, . . . , n− 1} be the support of the degree distribution, and use
p(d) to denote the corresponding probability density function. We partition
the set of active, used vertices Z(t) into sets of vertices with equal degrees,
as illustrated in Figure 9.1. Let

Zd(t) := {v ∈ Z(t) : deg(v) = d}

denote the set of all active vertices with degree d and Zd(t) := |Zd(t)| its
size. Note that (Zd(t))d∈D, recalling Z(t) = t, are multinomial-distributed
with parameters t and (p(d))d∈D. Consequently,

E [Zd(t)] = tp(d) (9.1)
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9. Other random graph models

Z0(t)

Z1(t)

Zn−1(t)

Z2(t)
i

p1

p2

p0

pn−1

Z(t)

Figure 9.1: The unused vertices are drawn as circles, and the used ones are depicted as disks,
summarized in box Z(t). We subdivide this box into smaller boxes Zd(t) of vertices with the
same degree d. Exponents of these groups are drawn as larger disks. From the view of vertex i,
each vertex in the subbox Zd(t) is connected to it with the same probability pd := d

n−1 .

and ∑d∈D Zd(t) = t. Let Xd(t) ∈ Bin
(

Zd(t), d
n−1

)
be the number of edges

from Zd(t) to an inactive vertex. Then the total number of edges to a vertex
i originating from Z(t) can be expressed as

Mi(t) = ∑
d∈D

Xd(t).

The probability that vertex i is active in step t is thus given by

π̂i(t) := Pr [Mi(t) ≥ ri] .

To simplify notation, we define

π̂r(t) := Pr [Mi(t) ≥ r] .

Analogously to the calculation in (4.6) we can get rid of the dependence on
i, thus write

π̂i(t) = ∑
r∈R

p(r)π̂r(t) = π̂(t),

where π̂(t) := E [π̂ri(t)]. Hence,

S(t) ∈ Bin (n− a, π̂(t)) . (9.2)

9.2 Assumptions

In this section, we state the assumptions we make about the probability
distribution for the out-degrees of the vertices. To simplify notation, we
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9.3. Approximations

first introduce some definitions and then list the conditions the probability
distribution has to satisfy.

For a d0 ∈ D, define D< := {d ∈ D : d ≤ d0} and D> := D \ D<. We
introduce the set

D+ :=
{

d ∈ D< : p(d)d ≥ εµ

d0

}
(9.3)

for some ε > 0 and let D− := D \D+. Further, we define S< := ∑d∈D<
p(d)d

and analogously the sets S>, S+, and S− based on D>, D+, and D−, respec-
tively.

We assume that
1� µ� n

rmin−1
rmin (9.4)

and that there exists a distinguished degree d0 ∈ D such that 1� d0 � n,

S< � S>, (9.5)

∑
d∈D+

Zd(t) = t− o(t), (9.6)

and
(log d0)

2 d2
0µ = O (n) . (9.7)

Note that (9.6) implies that we can assume w.h.p. ∑d∈D+
Zd(t) = t0 for

t0 ∈ [t− o(t), t], which, put simply, means that almost all used vertices have
degrees from D+. We denote this event that ∑d∈D+

Zd(t) = t0 for some
t0 = t (1 + o(1)) by ξt0 .

9.3 Approximations

In the following, we first derive an estimate for Mi(t) under the assumptions
stated in Section 9.2, and then approximate π̂(t) by a Poisson distribution.
Because of the similarity of (4.7) and (9.2), the approximations in Section 4.2
work analogously, replacing π(t) by π̂(t), wherefore we omit the proofs and
just state that Lemmas 4.1, 4.2, and 4.3 also hold in the case of a graph with
arbitrary degree distribution.

To simplify calculations, we introduce some notation that will be used through-
out the subsequent sections. We define

p :=
1

n− 1 ∑
d∈D+

p(d)d, (9.8)

and λ(t) := pt. Further, we let

tc(r) :=
(
(r− 1)!

npr

) 1
r−1

. (9.9)
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9. Other random graph models

9.3.1 Restriction to a subset of all possible degrees

In this section, we prove some properties of the set D+, defined by (9.3),
which allow us to only consider degrees in D+ in order to analyze the
asymptotic behavior of the bootstrap percolation process.

The following lemma shows that the mean of the degree distribution is dom-
inated by the degrees in D+.

Lemma 9.1 We have S+ = Θ(µ).

Proof Assumption (9.5) implies that S< = µ − S> = µ − o (µ). Hence,
S+ + S− = S< = µ (1− o(1)). Recalling the definition of D+ in (9.3), we get
that S− < ∑d∈D−

εµ
d0

= εµ|D−|
d0

< εµ and thus S+ > µ (1− ε− o(1)). Therefore
S+ = Θ(µ). �

The preceding lemma and (9.8) yield

p = Θ
(µ

n

)
. (9.10)

Next, we show that for all contributing degrees in D+ the number of active,
used vertices with this degree typically is highly concentrated around the
expected number of such vertices.

Lemma 9.2 We have w.h.p. for all d ∈ D+ that Zd(t) = (1 + o(1)) tp(d).

Proof We first show that E [Zd (t)] = ω(1) for all d ∈ D+ and t = Θ (tc(r)).
Recalling (9.9) and using (9.10), we have

tc(r) = Θ

((
1

prn

) 1
r−1
)

= Θ

(nr−1

µr

) 1
r−1

 = Θ

(
n

µ
r

r−1

)
,

and thus, with (9.3), (9.7), and maxD+ ≤ d0,

tp(d) = Θ

(
n

µ
r

r−1
p(d)

)
= Ω

(
n

d2
0µ

1
r−1

)
= ω

(
n

d2
0µ

)
= ω((log d0)

2). (9.11)

Recalling (9.1), this yields E [Zd(t)] = ω
(
(log d0)2). Conditioned on the

event ξt0 , we have

Pr [Zd(t) = zd(t) | ξt0 ] = Pr [Bin (t0, p(d)) = zd(t)]
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9.3. Approximations

for all d ∈ D+. Using the Chernoff bounds, we get for all δd(n) = o(1) with
δd(n)� 1√

log(d0)
a lower bound

1− Pr [Zd(t) ≤ (1− δd(n)) t0 p(d) | ξt0 ]− Pr [Zd(t) ≥ (1 + δd(n)) t0 p(d) | ξt0 ]

= 1− Pr [Bin (t0, p(d)) ≤ (1− δd(n)) t0 p(d)]
− Pr [Bin (t0, p(d)) ≥ (1 + δd(n)) t0 p(d)]

≥ 1− e−
t0 p(d)δd(n)

2

2 − e−
t0 p(d)δd(n)

2

3 = 1− o
(

1
d0

)
for Pr [Zd(t) = (1 + δd(n)) t0 p(d) | ξt0 ], since t0 p(d)δd(n)2 = ω (log d0), by
(9.11) and the choice of δd(n). Applying the union bound yields a lower
bound

1−
d0

∑
d=0

Pr [Zd(t) 6= (1 + δd(n)) t0 p(d) | ξt0 ] = 1− d0o
(

1
d0

)
= 1− o(1)

for the probability

Pr [∀d ∈ D+ : Zd(t) = (1 + δd(n)) t0 p(d) | ξt0 ] .

As the event ξt0 occurs with probability 1− o(1), the claim follows. �

The preceding lemma implies that we can assume w.h.p.

Zd(t) = tp(d) (1 + o(1))

for all d ∈ D+. Conditioned on values

zd(t) ∈ [tp(d) (1− δd(n)) , tp(d) (1 + δd(n))]

for all d ∈ D+, the values Xd are independent. We denote the event that
values from these intervals are taken by ξ. Note that this happens with
probability 1− o(1).

9.3.2 Approximation of the mean

In this section, we first present a simplified expression for the number of
edges leading from active, used vertices to an inactive vertex and then pro-
vide an approximation for π̂, and hence for E [S(t)]. By (9.10) and our
assumption (9.4), p, defined by (9.8), satisfies (4.1), which suggests that the
previous proof structures can be adopted.

Recall that Mi(t) is a sum of dependent random variables with binomial
distributions Bin

(
Zd(t), d

n−1

)
. However, once the random variables Zd(t)
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9. Other random graph models

take a fixed value zd(t), the summands become independent, and thus Le
Cam’s theorem applies. For some r ≥ rmin and t = Θ (tc(r)), we have w.h.p.

π̂r(t) =
t

∑
j=r

Pr [Mi(t) = j]

<

(
t

∑
j=r

λ(t)je−λ(t)

j!
+ 2 ∑

d∈D+

tp(d) (1 + o(1))
(

d
n− 1

)2
)
(1 + o(1))

≤
t

∑
j=r

λ(t)je−λ(t)

j!

1 +
2 ∑d∈D+

(1 + o(1))
(

d
n−1

)2

λ(t)re−λ(t)

r!


≤

t

∑
j=r

λ(t)je−λ(t)

j!

1 +O

 d0
n ∑d0

d=0 tp(d) d
n(

∑d0
d=0 tp(d) d

n

)r




=
t

∑
j=r

λ(t)je−λ(t)

j!

(
1 +O

(
d0

n (pt)r−1

))

=
t

∑
j=r

λ(t)je−λ(t)

j!
(1 +O (d0 p))

=
t

∑
j=r

λ(t)je−λ(t)

j!
(1 + o(1)) =

t

∑
j=r

λ(t)j

j!
(1 + o(1)) ,

using Theorem 2.5, λ(t) = o(1), (pt)r−1 = Θ
(

1
np

)
, t � 1, and d0 p =

Θ
(

d0µ
n

)
= o(1), by (9.10) and (9.7).

Analogously, we get for t = Θ (tc) w.h.p.

π̂r(t) ≥
t

∑
j=r

λ(t)j

j!
(1 + o(1)) .

Combining these two bounds yields w.h.p.

π̂r(t) =
t

∑
j=r

λ(t)j

j!
(1 + o(1)) .

As in (4.19), since t� 1 and λ(t) = pt = o(1), we can approximate π̂(t) by

π̂(t) = ∑
r∈R

p(r)π̂r(t) = p(rmin)
t

∑
j=rmin

λ(t)j

j!
(1 + o(1)) ,

and thus, analogously to (4.21), we have w.h.p.

π̂(t) = p(rmin)
(pt)rmin

rmin!
(1 + o(1)) (9.12)
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9.4. Sharp threshold result

for tp � 1. Hence, w.h.p. the bootstrap percolation process on the directed
random graph can be approximated, at least around the threshold, by the
same deterministic function as the one on the Erdős-Rényi graph. This leads
w.h.p. to the same estimates ac and tc for the threshold. Moreover, Lemma
5.1 can be proved analogously.

9.4 Sharp threshold result

In this section, we prove a modified sharp threshold result. That is, we show
that a subcritical starting set leads to no percolation w.h.p., whereas a linear
fraction of the vertices are active at the end in the supercritical case.

As mentioned above, the findings from Section 4.2, especially Lemma 4.3,
and also Lemma 5.1 can be adopted. This implies that the proof of the
sharp threshold result is very similar to the one of Theorems 5.2 and 5.6.
Note, however, that we only provide approximations for t ≈ tc and not for
t ≈ n, wherefore we get a weaker result.

9.4.1 Subcritical case

We show that a starting set below the threshold, that is, a ∼ αac for some
α < 1, implies that w.h.p. the process does not percolate, as with the Erdős-
Rényi random graph model.

Theorem 9.3 [cf. Theorem 5.2] If a
ac
→ α < 1, then A∗ =

(
ϕ(α) + op(1)

)
tc,

where ϕ(α) is the unique root in [0, 1] of (5.1). Further, A∗
a

p−→ ϕ1(α), where ϕ1(α)
is given by (5.2).

Proof The proof is very similar to the one of Theorem 5.2. �

9.4.2 Supercritical case

In the supercritical case, when a > (1 + δ)ac, we have w.h.p. at least a linear
fraction of active vertices at the end of the bootstrap percolation process.

Theorem 9.4 [cf. Lemma 5.1 and Theorem 5.6] If a
ac
≥ 1+ δ, for some δ > 0, then

A∗ = Ω(n).

Proof An argument similar to the one in the proof of Lemma 5.4, but omit-
ting Case 4 and 5, yields that for any a w.h.p. A(t) > t for all t ∈ [3tc, cn],
with c > 0 a constant. Then, as at the beginning of the proof of Theorem 5.6,
we show that A(t) > t, uniformly in t ≤ 3tc. Combining these results, we
have A(t) > t for all t ≤ cn, and thus A∗ > cn. �
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Chapter 10

Conclusion

In this thesis, we prove that there is no fundamental difference between
fixed and individual activation thresholds concerning the sharp threshold
phenomenon on an Erdős-Rényi random graph model. The variability of the
thresholds leads to the qualitatively same results, only minor quantitative
alterations have to be made.

The additional introduction of a directed random graph model, which en-
ables us to model an asymmetric bootstrap percolation process, yields sim-
ilar findings. We present a sharp threshold result between no percolation
with almost no additionally activated vertices and quasi percolation, where
at least a linear fraction of all vertices is active at the end.

The straight-forward adaptability to individual activation thresholds is not
that surprising, since we only consider a constant range of possible values.
However, if we would allow the activation threshold to depend on the num-
ber of vertices, presumably a different behavior would arise. In particular,
the existence of large degrees would inevitably prevent complete percola-
tion and surely decelerate the percolation process. Likewise worthwhile to
analyze is the influence of time-varying thresholds.

A further extension, mainly motivated by neuroscience, considers not only
activating (excitatory), but also inhibitory vertices, which leads to a weaken-
ing of the spread of information. This idea is currently examined by Einars-
son et al. on different graphs with fixed activation thresholds [23]. They
succeeded in proposing a model that leads to a behavior completely differ-
ent from a sharp threshold phenomenon. It would be interesting to enhance
this model to permit individual activation thresholds.
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Appendix A

Declaration of originality
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