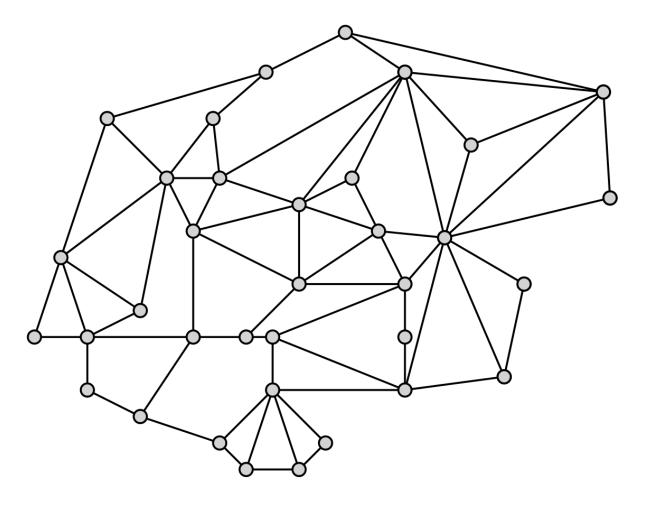
Sublogarithmic Distributed Algorithms for Lovász Local Lemma, and the Complexity Hierarchy

> Manuela Fischer, Mohsen Ghaffari ETH Zurich

LOCAL Model Linial [FOCS'87]

- undirected graph G = (V, E), n nodes, maximum degree Δ
- synchronous message-passing rounds
- unbounded message size
- unbounded computation
- Round Complexity: number of rounds to solve the problem



Any algorithm for an LCL problem on bounded-degree graphs with round complexity $o(\log n)$ can be **automatically sped up** to run in $O(T_{LLL}(n))$ rounds.

Any algorithm for an LCL problem on bounded-degree graphs with round complexity $O(\log n)$ can be **automatically sped up** to run in $O(T_{LLL}(n))$ rounds.

Any algorithm for an LCL problem on bounded-degree graphs with round complexity $O(\log n)$ can be **automatically sped up** to run in $O(T_{LLL}(n))$ rounds.

Any algorithm for an LCL problem on bounded-degree graphs with round complexity $o(\log n)$ can be **automatically sped up** to run in $O(T_{LLL}(n))$ rounds.

Naor, Stockmeyer '95 Locally Checkable Labeling (LCL) solution checkable in O(1) rounds

Lovász Local Lemma (LLL) Erdős, Lovász '75

Lovász Local Lemma (LLL) Erdős, Lovász '75

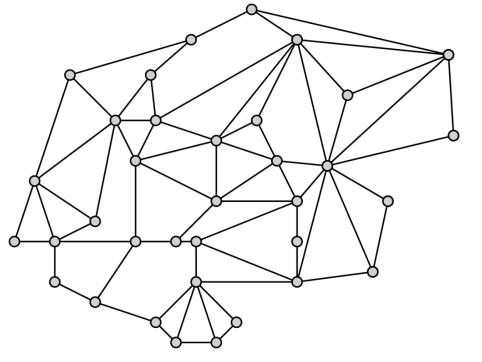
independent variables \mathcal{V} (w.l.o.g. fair coins)

Not too likely bad events:

n bad events \mathcal{X} with $vbl(A) \subseteq \mathcal{V}$ for all $A \in \mathcal{X}$ $\Pr[A] \leq p$ for all $A \in \mathcal{X}$

Not too many dependencies:

dependency graph $G = (\mathcal{X}, E)$ $E = \{(A, B): vbl(A) \cap vbl(B) \neq \emptyset\}$ maximum degree d



If local union bound (with some slack) is satisfied, then all bad events can be avoided! If epd ≤ 1 , then $\Pr[\bigcap_{A \in \mathcal{X}} \overline{A}] > 0$. Lovász Local Lemma (LLL) Erdős, Lovász '75

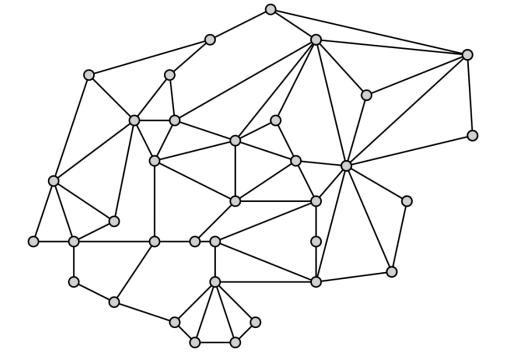
independent variables \mathcal{V} (w.l.o.g. fair coins)

Not too likely bad events:

n bad events \mathcal{X} with $vbl(A) \subseteq \mathcal{V}$ for all $A \in \mathcal{X}$ Pr[A] $\leq p$ for all $A \in \mathcal{X}$

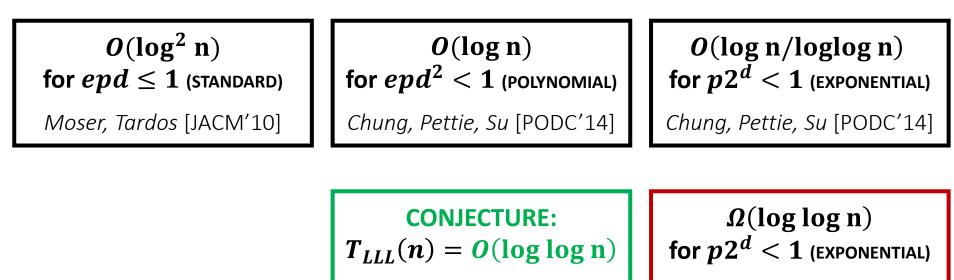
Not too many dependencies:

dependency graph $G = (\mathcal{X}, E)$ $E = \{(A, B): vbl(A) \cap vbl(B) \neq \emptyset\}$ maximum degree d



If local union bound (with some slack) is satisfied, then all bad events can be avoided! If epd ≤ 1 , then $\Pr[\bigcap_{A \in \mathcal{X}} \overline{A}] > 0$.

LOCAL Complexity of the Lovász Local Lemma



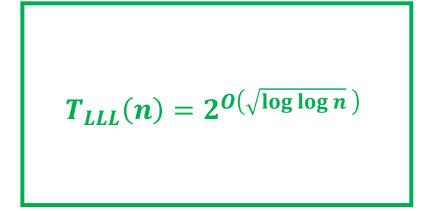
Chang, Pettie [FOCS'16]

Brandt et al. [STOC'16]

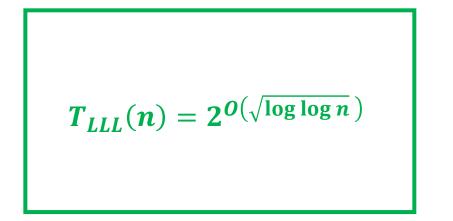
Our Results

$$T_{LLL}(n) = 2^{O(\sqrt{\log \log n})}$$

Our Results



Our Results



Gap in Distributed Complexity Hierarchy

for LCLs on bounded-degree graphs

 $o(\log n) \rightarrow 2^{O(\sqrt{\log \log n})}$

 $o(\log \log n) \rightarrow O(\log^* n)$

Other Applications

 $2^{O(\sqrt{\log \log n})}$ - round Graph Coloring Algorithms

- f-defective $O\left(\frac{\Delta}{f}\right)$ -coloring
- β -frugal 120 $\Delta^{1+\frac{1}{\beta}}$ -coloring
- List-vertex-coloring

Previously best known $O(\log n)$ by Chung, Pettie, Su [PODC'14]

Algorithm for Lovász Local Lemma

BASE ALGORITHM
$$O(d^{2}) + \lambda \cdot \log^{\frac{1}{\lambda}} n \cdot 2^{O(\sqrt{\log \log n})} \text{ rounds}$$
$$\text{under } p(e \cdot d)^{4\lambda} < 1$$

under polynomial criterion $\lambda = O(1)$: $\gg 2^{O(\sqrt{\log \log n})}$ rounds

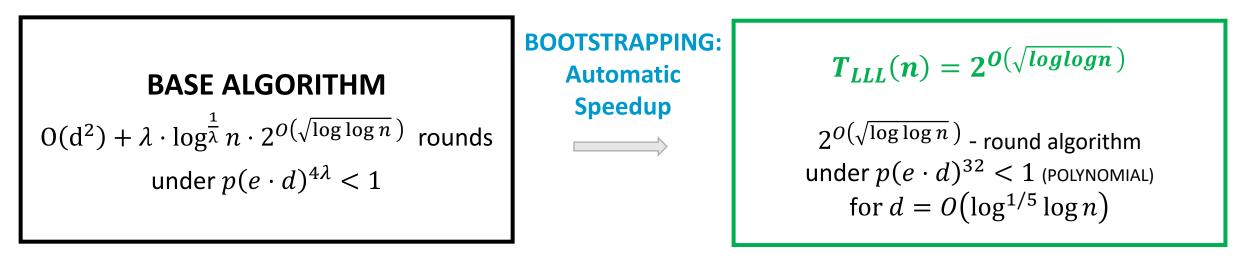
Algorithm for Lovász Local Lemma

BASE ALGORITHM

$$O(d^2) + \lambda \cdot \log^{\frac{1}{\lambda}} n \cdot 2^{O(\sqrt{\log \log n})}$$
 rounds
under $p(e \cdot d)^{4\lambda} < 1$
BOOTSTRAPPING:
Automatic
Speedup

under polynomial criterion $\lambda = O(1)$: $\gg 2^{O(\sqrt{\log \log n})}$ rounds

Algorithm for Lovász Local Lemma



under polynomial criterion $\lambda = O(1)$: $\gg 2^{O(\sqrt{\log \log n})}$ rounds

 $O(d^2) + \lambda \cdot \log^{\frac{1}{\lambda}} n \cdot 2^{O(\sqrt{\log \log n})}$ rounds under $p(e \cdot d)^{4\lambda} < 1$

Shattering Technique, rooted in breakthrough LLL algorithm of Beck [RSA'91]

 $O(d^2) + \lambda \cdot \log^{\frac{1}{\lambda}} n \cdot 2^{O(\sqrt{\log \log n})}$ rounds under $p(e \cdot d)^{4\lambda} < 1$

Shattering Technique, rooted in breakthrough LLL algorithm of Beck [RSA'91]

I. PARTIAL SAMPLING

assign values to subset of variables such that remainder graph

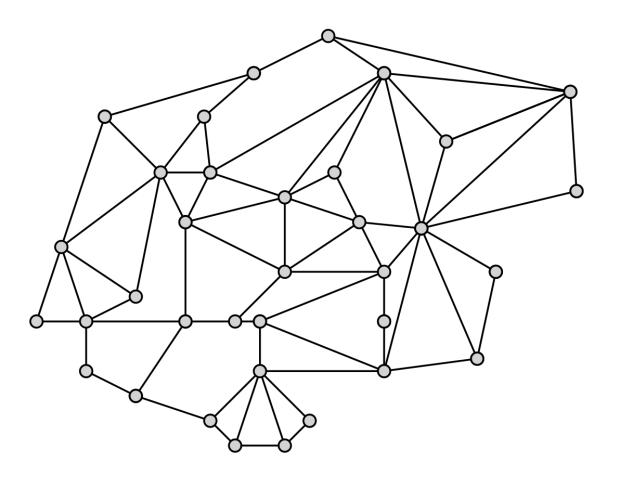
- 1) satisifes polynomial criterion
- 2) consists of "small" components

 $O(d^2) + \lambda \cdot \log^{\frac{1}{\lambda}} n \cdot 2^{O(\sqrt{\log \log n})}$ rounds under $p(e \cdot d)^{4\lambda} < 1$

Shattering Technique, rooted in breakthrough LLL algorithm of Beck [RSA'91]

I. PARTIAL SAMPLING

assign values to subset of variablessuch that remainder graph1) satisifes polynomial criterion2) consists of "small" components

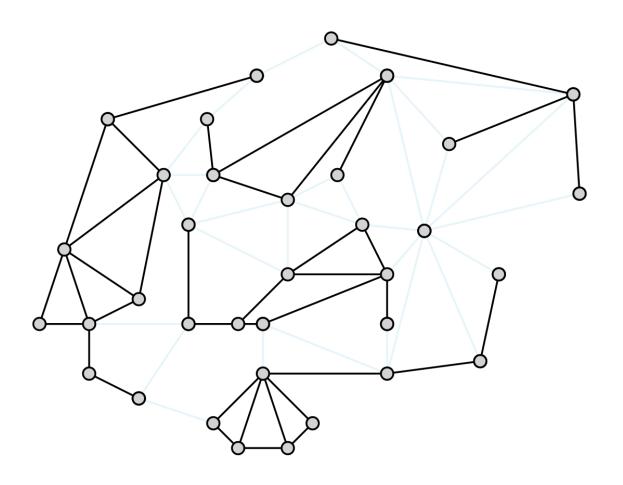


 $O(d^2) + \lambda \cdot \log^{\frac{1}{\lambda}} n \cdot 2^{O(\sqrt{\log \log n})}$ rounds under $p(e \cdot d)^{4\lambda} < 1$

Shattering Technique, rooted in breakthrough LLL algorithm of Beck [RSA'91]

I. PARTIAL SAMPLING

assign values to subset of variables
such that remainder graph
1) satisifes polynomial criterion
2) consists of "small" components

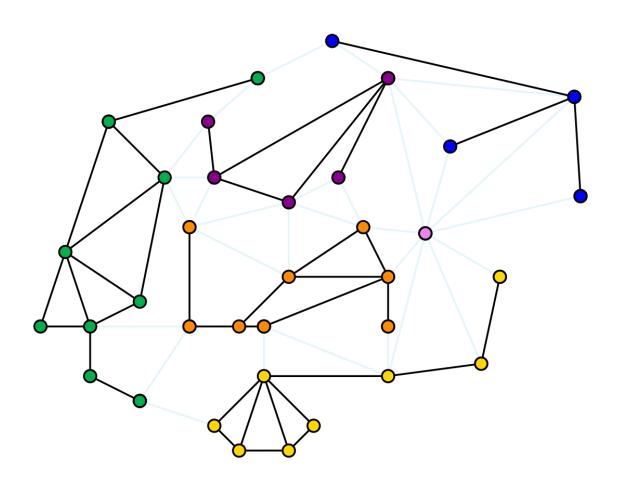


 $O(d^2) + \lambda \cdot \log^{\frac{1}{\lambda}} n \cdot 2^{O(\sqrt{\log \log n})}$ rounds under $p(e \cdot d)^{4\lambda} < 1$

Shattering Technique, rooted in breakthrough LLL algorithm of Beck [RSA'91]

I. PARTIAL SAMPLING

assign values to subset of variables
such that remainder graph
1) satisifes polynomial criterion
2) consists of "small" components

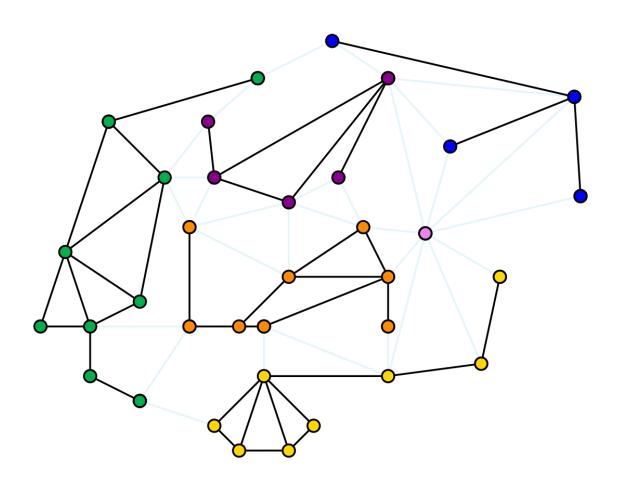


 $O(d^2) + \lambda \cdot \log^{\frac{1}{\lambda}} n \cdot 2^{O(\sqrt{\log \log n})}$ rounds under $p(e \cdot d)^{4\lambda} < 1$

Shattering Technique, rooted in breakthrough LLL algorithm of Beck [RSA'91]

I. PARTIAL SAMPLING

assign values to subset of variables
such that remainder graph
1) satisifes polynomial criterion
2) consists of "small" components



 $O(d^2) + \lambda \cdot \log^{\frac{1}{\lambda}} n \cdot 2^{O(\sqrt{\log \log n})}$ rounds under $p(e \cdot d)^{4\lambda} < 1$

Shattering Technique, rooted in breakthrough LLL algorithm of Beck [RSA'91]

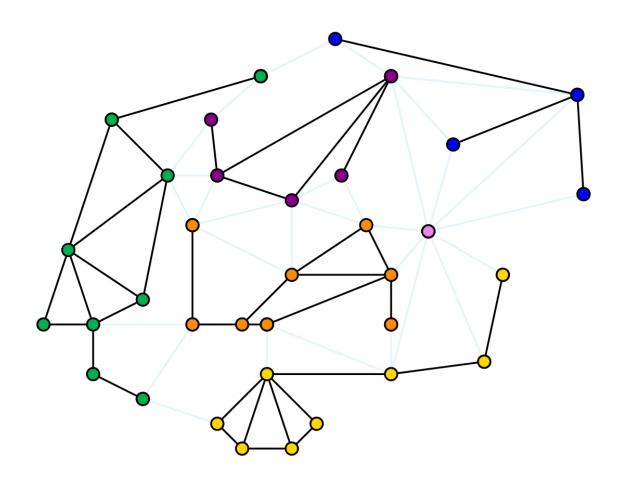
I. PARTIAL SAMPLING

assign values to subset of variables
such that remainder graph
satisifes polynomial criterion
consists of "small" components

in $O(d^2 + \log^* n)$ under $p(e \cdot d)^{4\lambda} < 1$

II. DETERMINISTIC LLL ALGORITHM

$$\lambda \cdot n^{\frac{1}{\lambda}} \cdot 2^{O(\sqrt{\log n})}$$
 under $p(e \cdot d)^{4\lambda} < 1$



I. PARTIAL SAMPLING in $O(d^2 + \log^* n)$ under $p(e \cdot d)^{4\lambda} < 1$ s.t. remainder 2) has "small" components

Inspired by Molloy and Reed's Sequential Partial Sampling [STOC'98] Inspired by Molloy and Reed's Sequential Partial Sampling [STOC'98]

SEQUENTIAL PARTIAL SAMPLING

```
iteratively, for unblocked v \in \mathcal{V}
```

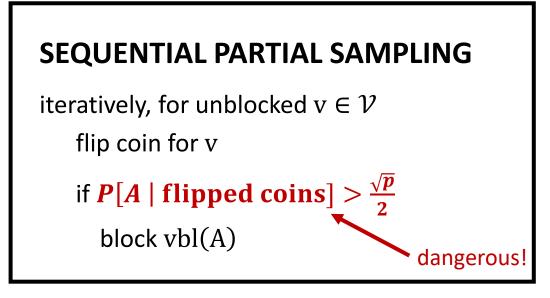
flip coin for v

if
$$P[A \mid \text{flipped coins}] > \frac{\sqrt{p}}{2}$$

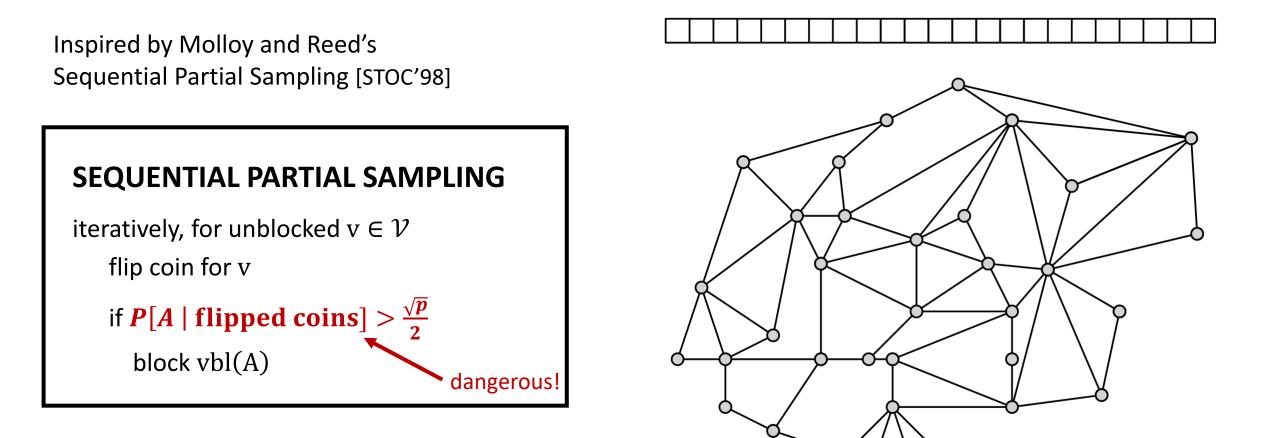
block vbl(A)

I. PARTIAL SAMPLING in $O(d^2 + \log^* n)$ under $p(e \cdot d)^{4\lambda} < 1$ s.t. remainder 2) has "small" components

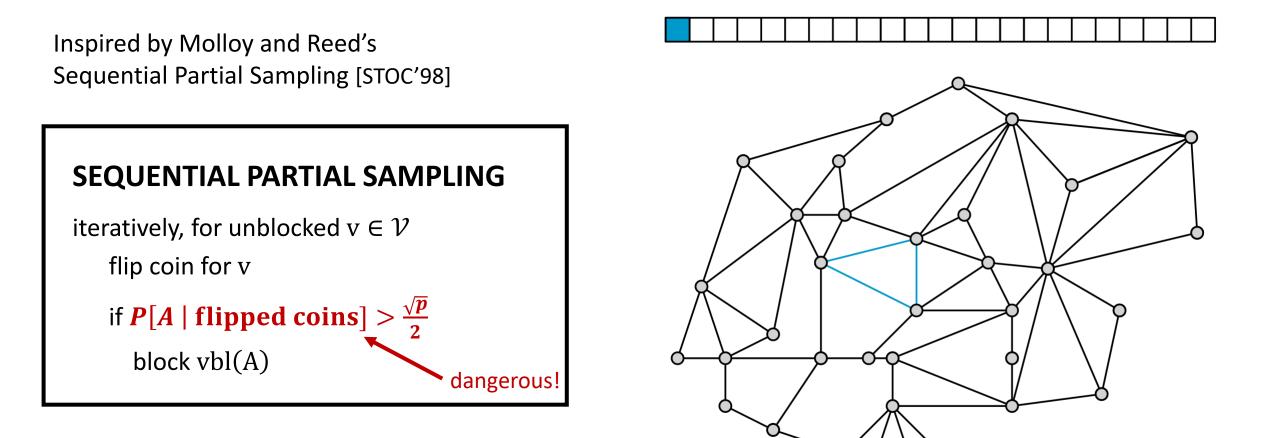
Inspired by Molloy and Reed's Sequential Partial Sampling [STOC'98]



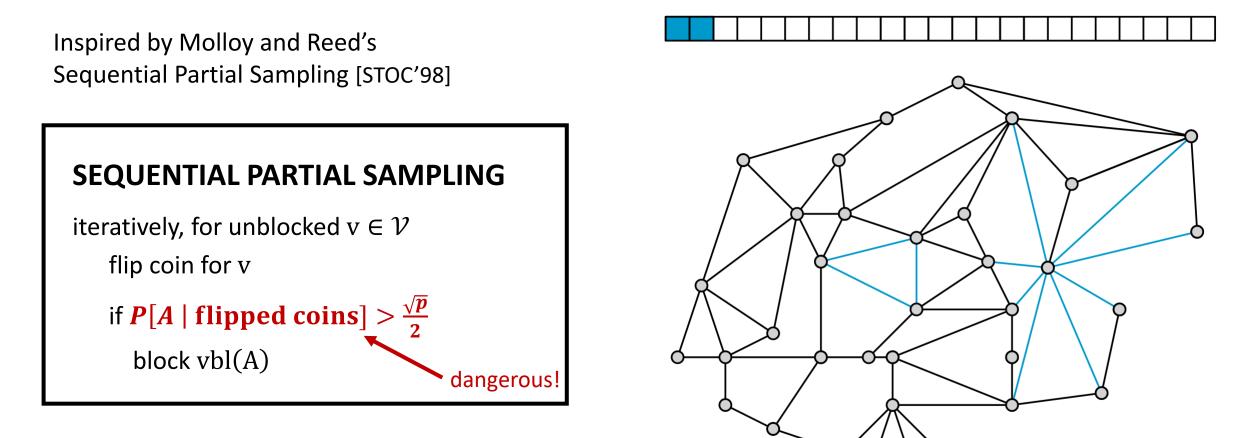
I. PARTIAL SAMPLING in $O(d^2 + \log^* n)$ under $p(e \cdot d)^{4\lambda} < 1$ s.t. remainder 2) has "small" components



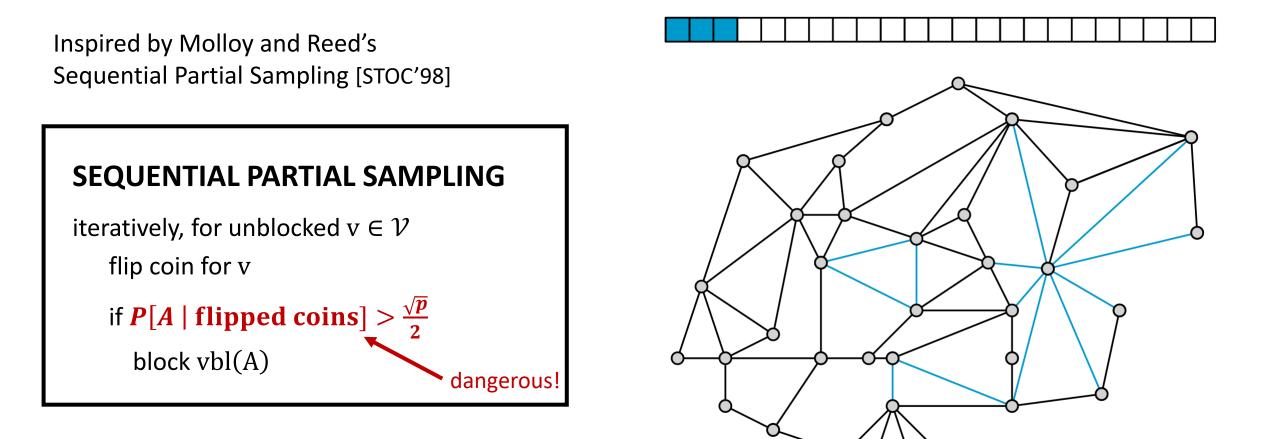
I. PARTIAL SAMPLING in $O(d^2 + \log^* n)$ under $p(e \cdot d)^{4\lambda} < 1$ s.t. remainder 2) has "small" components



I. PARTIAL SAMPLING in $O(d^2 + \log^* n)$ under $p(e \cdot d)^{4\lambda} < 1$ s.t. remainder 2) has "small" components

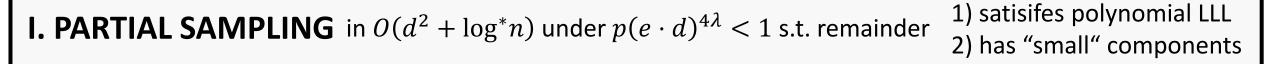


I. PARTIAL SAMPLING in $O(d^2 + \log^* n)$ under $p(e \cdot d)^{4\lambda} < 1$ s.t. remainder 2) has "small" components



I. PARTIAL SAMPLING in $O(d^2 + \log^* n)$ under $p(e \cdot d)^{4\lambda} < 1$ s.t. remainder 2) has "small" components

Inspired by Molloy and Reed's Sequential Partial Sampling [STOC'98] **SEQUENTIAL PARTIAL SAMPLING** iteratively, for unblocked $v \in \mathcal{V}$ flip coin for v if $P[A | flipped coins] > \frac{\sqrt{p}}{2}$ block vbl(A) dangerous!



dangerous!

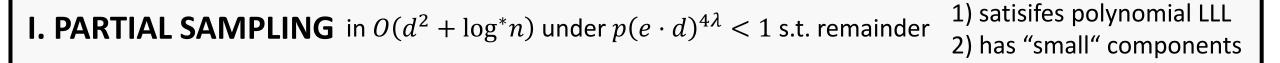
Inspired by Molloy and Reed's Sequential Partial Sampling [STOC'98]

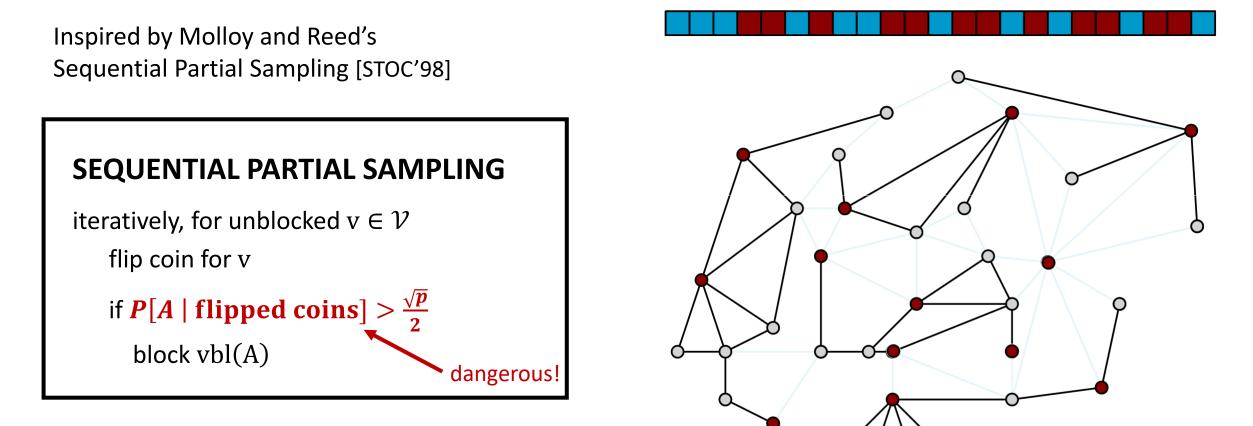
SEQUENTIAL PARTIAL SAMPLING

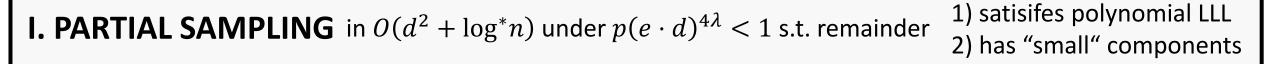
iteratively, for unblocked $v \in \mathcal{V}$

flip coin for v

if $P[A | flipped coins] > \frac{\sqrt{p}}{2}$ block vbl(A)







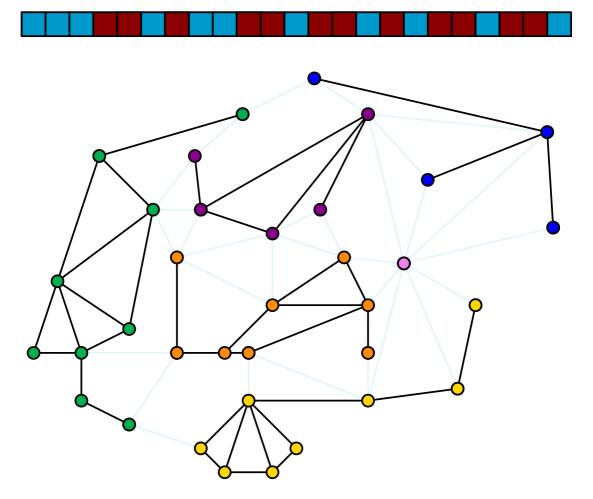
Inspired by Molloy and Reed's Sequential Partial Sampling [STOC'98]

SEQUENTIAL PARTIAL SAMPLING

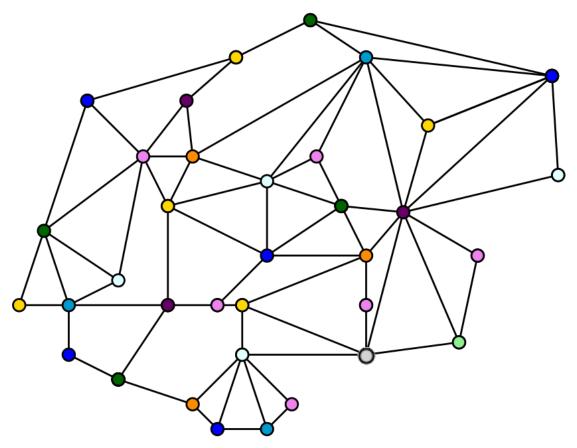
iteratively, for unblocked $v \in \mathcal{V}$

flip coin for v

if $P[A | flipped coins] > \frac{\sqrt{p}}{2}$ block vbl(A) dangerous!



Inspired by Molloy and Reed's Sequential Partial Sampling [STOC'98]



OBSERVATIONS:

• $P[A \mid \text{flipped coins}] \leq \sqrt{p}$ satisfies polynomial LLL

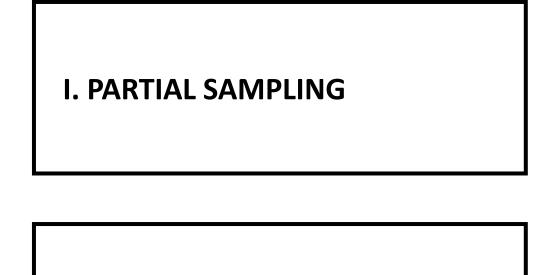
•
$$P[A \text{ dangerous }] \leq \frac{p}{\sqrt{p}} = 2\sqrt{p}$$

•
$$P[A \text{ remains}] = O(d)P[A \text{ dangerous}] \le O(d\sqrt{p}) = \frac{1}{poly d}$$

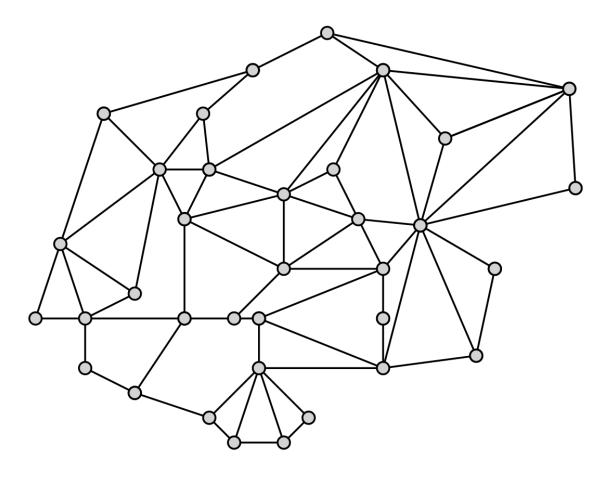
A and B at distance > 2 remain independently

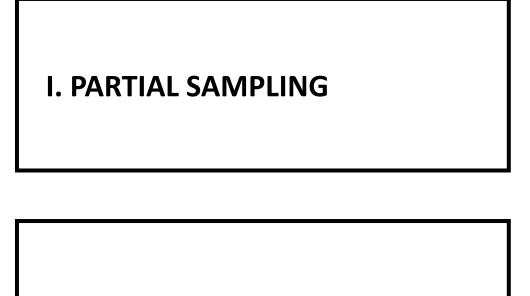
by Shattering Lemma: small components (see, e.g., Barenboim, Elkin, Pettie, Schneider [FOCS'12])

• can be parallelized using a $(d^2 + 1)$ - coloring of G^2 consistent with one sequential global order

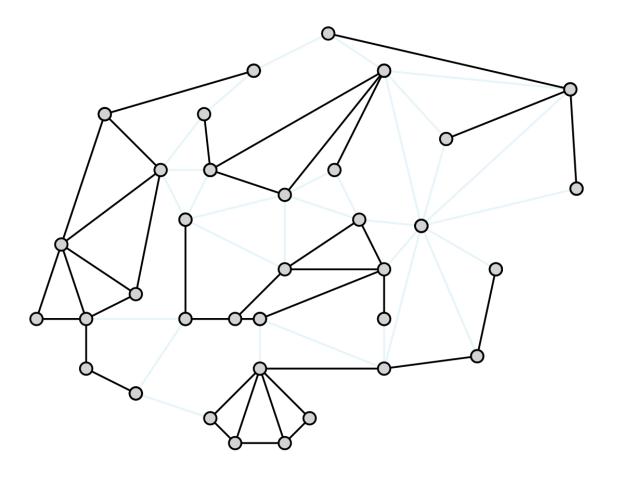


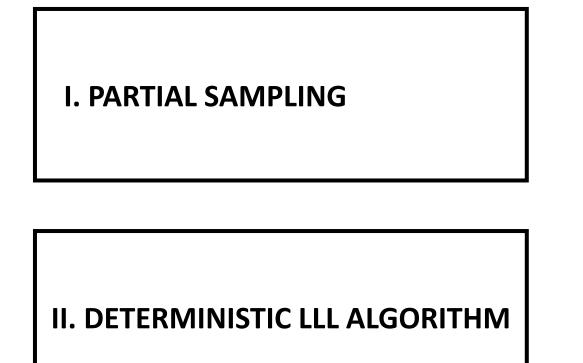
II. DETERMINISTIC LLL ALGORITHM

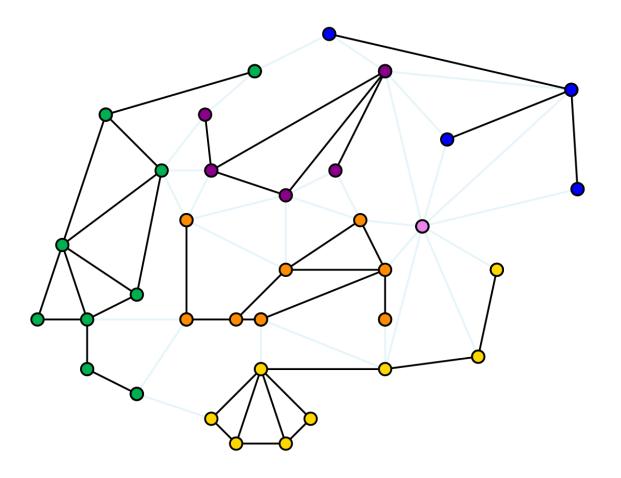




II. DETERMINISTIC LLL ALGORITHM





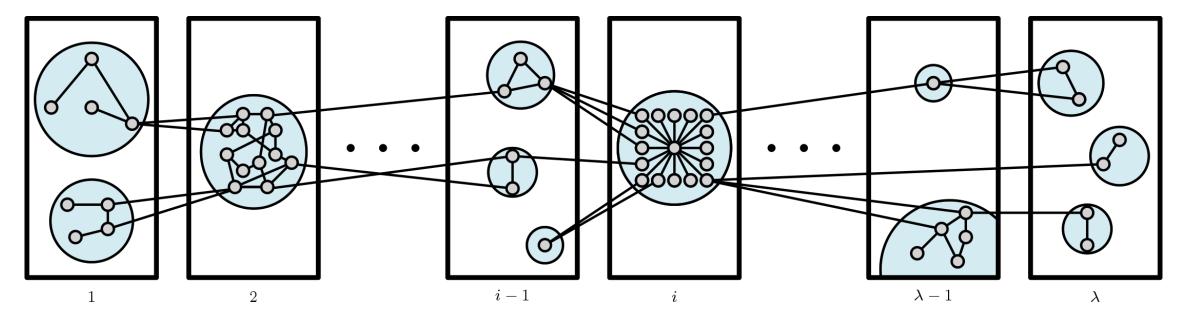


1. $(\lambda, \tilde{O}(n^{1/\lambda}))$ -network decomposition of G^2 in $\lambda \cdot n^{\frac{1}{\lambda}} \cdot 2^{O(\sqrt{\log n})}$ combining approaches by Awerbuch and Peleg [FOCS'90], Panconesi and Srinivasan [STOC'92], and Awerbuch, Luby, Goldberg, Plotkin [FOCS'89]

2. Iterative Assignment

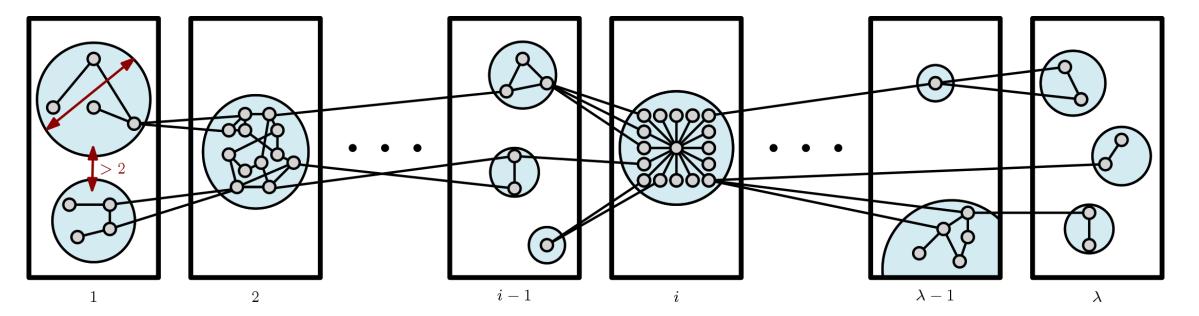
1. $(\lambda, \tilde{O}(n^{1/\lambda}))$ -network decomposition of G^2 in $\lambda \cdot n^{\frac{1}{\lambda}} \cdot 2^{O(\sqrt{\log n})}$ combining approaches by Awerbuch and Peleg [FOCS'90], Panconesi and Srinivasan [STOC'92], and Awerbuch, Luby, Goldberg, Plotkin [FOCS'89]

2. Iterative Assignment



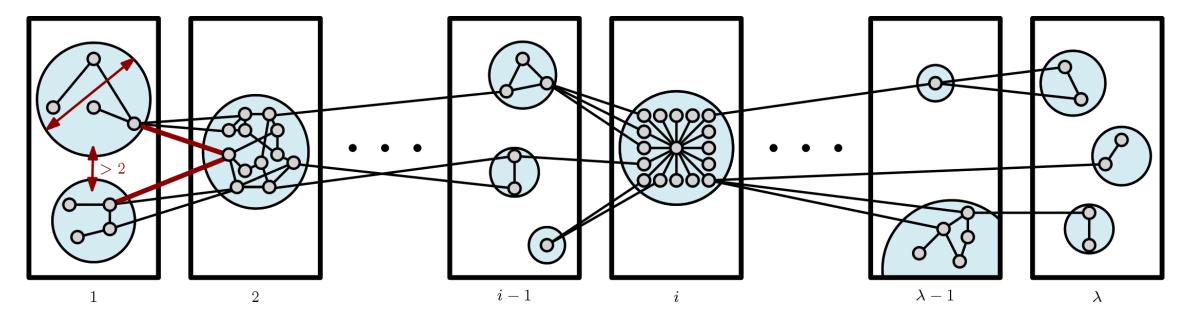
1. $(\lambda, \tilde{O}(n^{1/\lambda}))$ -network decomposition of G^2 in $\lambda \cdot n^{\frac{1}{\lambda}} \cdot 2^{O(\sqrt{\log n})}$ combining approaches by Awerbuch and Peleg [FOCS'90], Panconesi and Srinivasan [STOC'92], and Awerbuch, Luby, Goldberg, Plotkin [FOCS'89]

2. Iterative Assignment



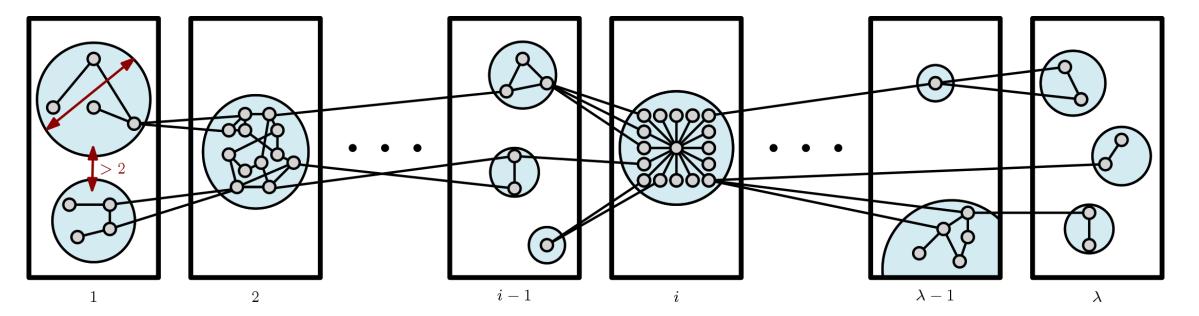
1. $(\lambda, \tilde{O}(n^{1/\lambda}))$ -network decomposition of G^2 in $\lambda \cdot n^{\frac{1}{\lambda}} \cdot 2^{O(\sqrt{\log n})}$ combining approaches by Awerbuch and Peleg [FOCS'90], Panconesi and Srinivasan [STOC'92], and Awerbuch, Luby, Goldberg, Plotkin [FOCS'89]

2. Iterative Assignment



1. $(\lambda, \tilde{O}(n^{1/\lambda}))$ -network decomposition of G^2 in $\lambda \cdot n^{\frac{1}{\lambda}} \cdot 2^{O(\sqrt{\log n})}$ combining approaches by Awerbuch and Peleg [FOCS'90], Panconesi and Srinivasan [STOC'92], and Awerbuch, Luby, Goldberg, Plotkin [FOCS'89]

2. Iterative Assignment



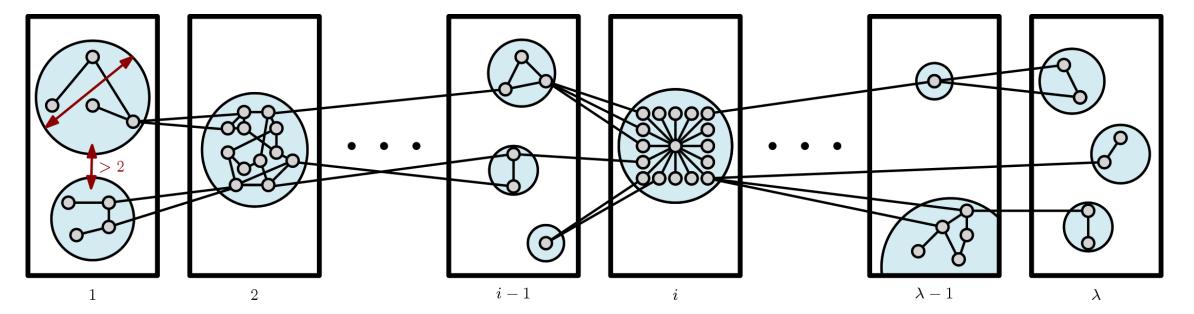
1. $(\lambda, \tilde{O}(n^{1/\lambda}))$ -network decomposition of G^2 in $\lambda \cdot n^{\frac{1}{\lambda}} \cdot 2^{O(\sqrt{\log n})}$ combining approaches by Awerbuch and Peleg [FOCS'90], Panconesi and Srinivasan [STOC'92], and Awerbuch, Luby, Goldberg, Plotkin [FOCS'89]

2. Iterative Assignment

 $\begin{array}{l} \mbox{Inductively, } P[A \mid \mathcal{V}_{\leq i}] \leq p(e \cdot d)^i \\ \mbox{Eventually, } P[A \mid \mathcal{V}_{\leq \lambda}] = P[A \mid \mathcal{V}] \leq p(e \cdot d)^\lambda < 1 \end{array}$

LLL for step i

event $B_{A,i}$: $P[A | \mathcal{V}_{\leq i}] > p(e \cdot d)^i$ probability: $\leq \frac{1}{e \cdot d}$



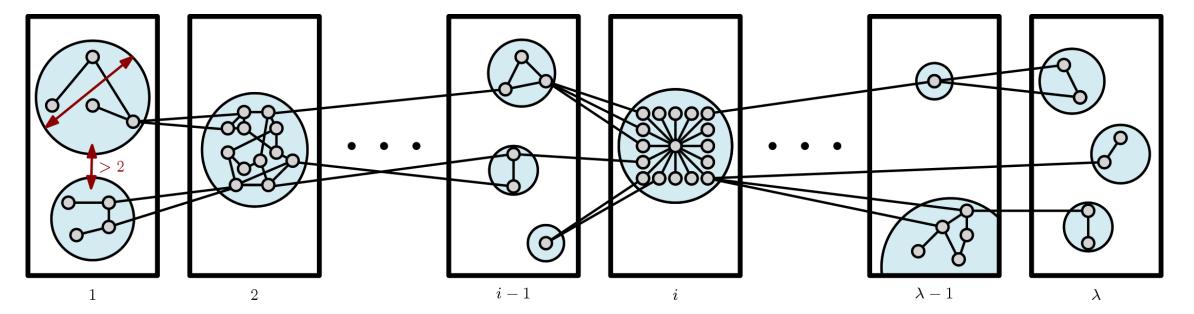
1. $(\lambda, \tilde{O}(n^{1/\lambda}))$ -network decomposition of G^2 in $\lambda \cdot n^{\frac{1}{\lambda}} \cdot 2^{O(\sqrt{\log n})}$ combining approaches by Awerbuch and Peleg [FOCS'90], Panconesi and Srinivasan [STOC'92], and Awerbuch, Luby, Goldberg, Plotkin [FOCS'89]

2. Iterative Assignment

 $\begin{array}{l} \mbox{Inductively, } P[A \mid \mathcal{V}_{\leq i}] \leq p(e \cdot d)^i \\ \mbox{Eventually, } P[A \mid \mathcal{V}_{\leq \lambda}] = P[A \mid \mathcal{V}] \leq p(e \cdot d)^\lambda < 1 \end{array}$

LLL for step i

event $B_{A,i}$: $P[A | \mathcal{V}_{\leq i}] > p(e \cdot d)^i$ probability: $\leq \frac{1}{e \cdot d}$

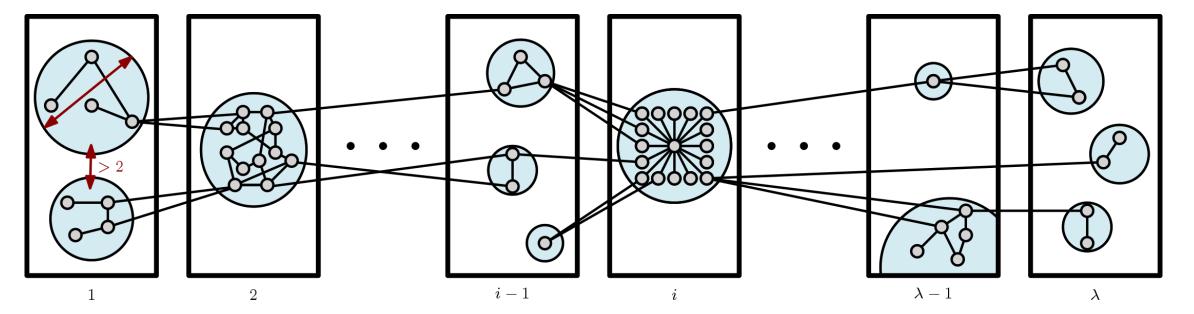


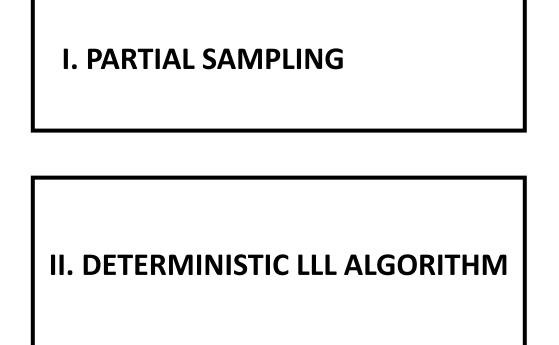
1. $(\lambda, \tilde{O}(n^{1/\lambda}))$ -network decomposition of G^2 in $\lambda \cdot n^{\frac{1}{\lambda}} \cdot 2^{O(\sqrt{\log n})}$ combining approaches by Awerbuch and Peleg [FOCS'90], Panconesi and Srinivasan [STOC'92], and Awerbuch, Luby, Goldberg, Plotkin [FOCS'89]

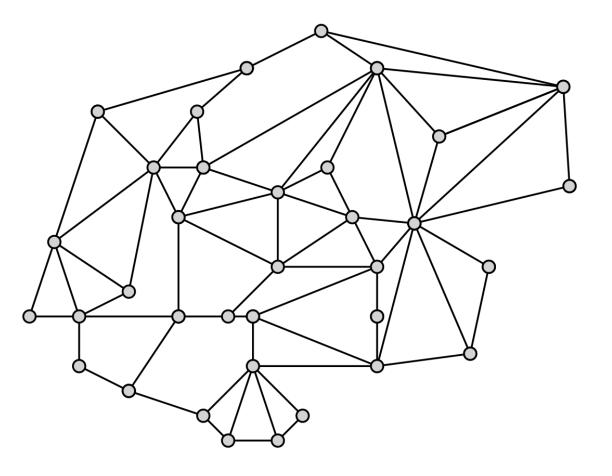
2. Iterative Assignment

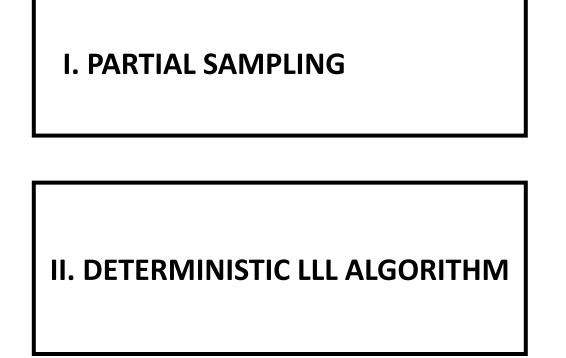
 $\begin{array}{l} \mbox{Inductively, } P[A \mid \mathcal{V}_{\leq i}] \leq p(e \cdot d)^i \\ \mbox{Eventually, } P[A \mid \mathcal{V}_{\leq \lambda}] = P[A \mid \mathcal{V}] \leq p(e \cdot d)^\lambda < 1 \end{array}$

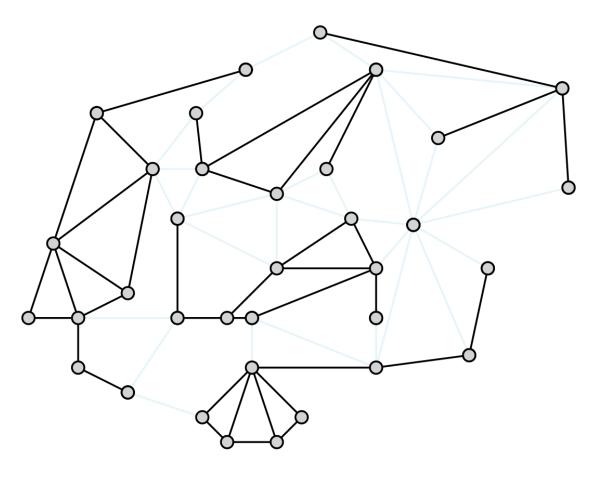
LLL for step isatisfies standard LLL criterionevent $B_{A,i}$: $P[A | \mathcal{V}_{\leq i}] > p(e \cdot d)^i$ probability: $\leq \frac{1}{e \cdot d}$

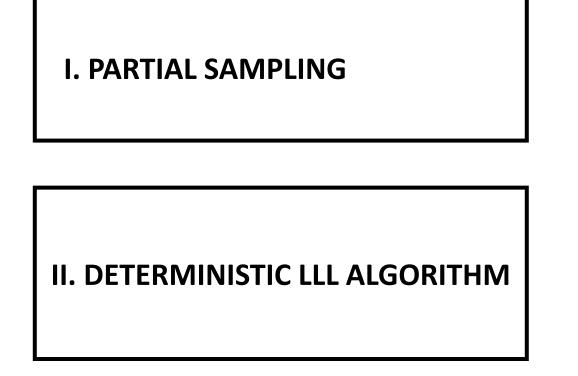


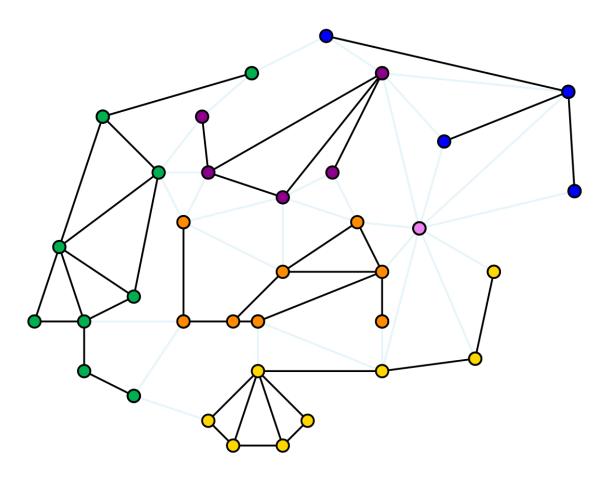












BASE ALGORITHM	BOOTSTRAPPING (Speed-Up)	$T_{LLL}(n) = 2^{O(\sqrt{\log \log n})}$

BASE ALGORITHMBOOTSTRAPPING
(Speed-Up) $T_{LLL}(n) = 2^{O(\sqrt{loglogn})}$

CONJECTURE: $T_{LLL}(n) = O(\log \log n)$

BASE ALGORITHM

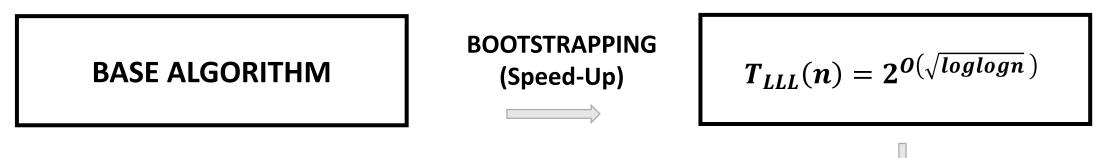
BOOTSTRAPPING (Speed-Up)

 $T_{LLL}(n) = 2^{O(\sqrt{loglogn})}$

CONJECTURE: $T_{LLL}(n) = O(\text{poly log log } n)$

Chang, Pettie [FOCS'16]

CONJECTURE: $T_{LLL}(n) = O(\log \log n)$

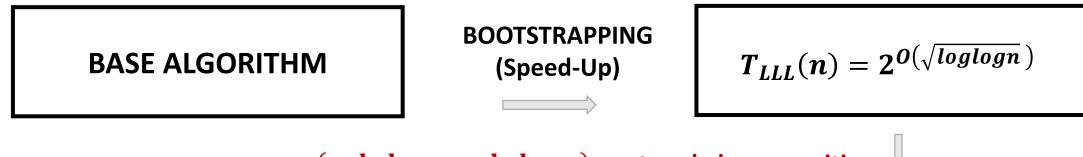


 $(poly \ log \ n, poly \ log \ n) \ \text{-} \ network \ decomposition$

CONJECTURE: $T_{LLL}(n) = O(\text{poly log log } n)$

Chang, Pettie [FOCS'16]

CONJECTURE: $T_{LLL}(n) = O(\log \log n)$



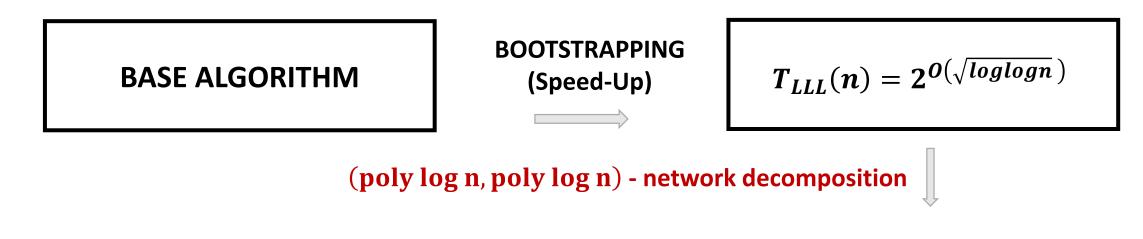
(poly log n, poly log n) - network decomposition

- Devise a faster deterministic algorithm.
- Devise a faster algorithm under weaker LLL condition.

CONJECTURE: $T_{LLL}(n) = O(\text{poly log log } n)$

Chang, Pettie [FOCS'16]

CONJECTURE: $T_{LLL}(n) = O(\log \log n)$



- Devise a faster deterministic algorithm.
- Devise a faster algorithm under weaker LLL condition.

CONJECTURE: $T_{LLL}(n) = O(\text{poly log log } n)$

Chang, Pettie [FOCS'16]

CONJECTURE: $T_{LLL}(n) = O(\log \log n)$

Chang, Pettie [FOCS'16]

Chang, Pettie [FOCS'17]

Completeness of Lovász Local Lemma for Sublogarithmic Bounded-Degree LCL Problems