Sublogarithmic Distributed Algorithms
for Lovasz Local Lemma,
and the Complexity Hierarchy

Manuela Fischer, Mohsen Ghaffari
ETH Zurich

LOCAL Model Linial [FOCS'87]

 undirected graph G = (V,E),
n nodes, maximum degree A

* synchronous message-passing rounds

* unbounded message size

e unbounded computation

* Round Complexity:
number of rounds to solve the problem

Chang, Pettie [FOCS'17]
Completeness of Lovasz Local Lemma

for Sublogarithmic Problems

Chang, Pettie [FOCS'17]
Completeness of Lovasz Local Lemma

for Sublogarithmic Problems

Any algorithm for an LCL problem on bounded-degree graphs with round complexity 0(10g n)
can be automatically sped up torunin O (T (n)) rounds.

Chang, Pettie [FOCS'17]
Completeness of Lovasz Local Lemma

for Sublogarithmic Problems

Any algorithm for an LCL problem on bounded-degree graphs with round complexity 0(10g n)
can be automatically sped up torunin O(Ty;; (n)) rounds.

T;;;.(n) = round complexity of Lovasz Local Lemma
on n events/nodes

under pd¢ < 1 for some constant c,
ford = 0(1)

Chang, Pettie [FOCS'17]
Completeness of Lovasz Local Lemma

for Sublogarithmic Problems

Any algorithm for an LCL problem on bounded-degree graphs with round complexity 0(10g n)
can be automatically sped up torunin O (T (n)) rounds.

T;;;.(n) = round complexity of Lovasz Local Lemma
on n events/nodes
under pd¢ < 1 for some constant c,

ford = 0(1) ™\

polynomial criterion

Chang, Pettie [FOCS'17]
Completeness of Lovasz Local Lemma

for Sublogarithmic Problems

Any algorithm for an LCL problem on bounded-degree graphs with round complexity 0(10g n)
can be automatically sped up torunin O(Ty;; (n)) rounds.

Naor, Stockmeyer ‘95 T ;. (n) = round complexity of Lovdsz Local Lemma

Locally Checkable Labeling (LCL) on n events/nodes

solution checkable in O(1) rounds under pd® < 1 for some constant c,
ford = 0(1)\

polynomial criterion

Lovasz Local Lemma (LLL) Erdds, Lovdsz 75

Lovasz Local Lemma (LLL) Erdés, Lovdsz '75

independent variables V (w.l.0.g. fair coins)

Not too likely bad events:
n bad events X with vbl(A) € VforallA e X
Prl[A] < pforallA e X

Not too many dependencies:
dependency graph G = (X, E)

E ={(A,B): vbl(A) nvbl(B) # @}
maximum degree d

If local union bound (with some slack) is satisfied, then all bad events can be avoided!
If epd < 1,then Pr[N A] > 0.

Lovasz Local Lemma (LLL) Erdés, Lovdsz '75

independent variables V (w.l.0.g. fair coins)

Not too likely bad events:
n bad events X with vbl(A) € VforallA e X
Prl[A] < pforallA e X

Not too many dependencies:
dependency graph G = (X, E)

E ={(A,B): vbl(A) nvbl(B) # @}
maximum degree d

If local union bound (with some slack) is satisfied, then all bad events can be avoided!
If epd < 1,then Pr[N A] > 0.

standard criterion

LOCAL Complexity of the Lovasz Local Lemma

O(log? n)
for epd < 1 (s1ANDARD)

Moser, Tardos [JACM’10]

O(logn)
for epd? < 1 (poLynOMIAL)

Chung, Pettie, Su [PODC’14]

O(log n/loglog n)
for pZd < 1 (EXPONENTIAL)

Chung, Pettie, Su [PODC’14]

CONJECTURE:
Tp(n) = O(loglogn)
Chang, Pettie [FOCS’16]

N(loglogn)
for pZd < 1 (EXPONENTIAL)

Brandt et al. [STOC’16]

T;;;(n) = round complexity of Lovasz Local Lemma

on n events/nodes

under pd¢ < 1 for some constant c,

ford = 0(1)

Our Results

T, (n) = 20(/loglogn)

T;;;(n) = round complexity of Lovasz Local Lemma
on n events/nodes

under pd¢ < 1 for some constant c,
ford = 0(1)

Our Results

Automatic
TLLL(n) & ZO(W) Speedup

T;;;(n) = round complexity of Lovasz Local Lemma
on n events/nodes

under pd¢ < 1 for some constant c,
ford = 0(1)

Our Results

T, (n) = 20(/loglogn)

Automatic
Speedup

T;;;(n) = round complexity of Lovasz Local Lemma

on n events/nodes

under pd¢ < 1 for some constant c,

ford =0(1)

Gap in Distributed Complexity Hierarchy
for LCLs on bounded-degree graphs

o(log n) S 20(,/log logn)

o(loglogn) —» 0O(log™n)

Other Applications

20(Jloglogn) _ round Graph Coloring Algorithms

* f-defective O (?)-coloring

1
 B-frugal 120 A B-coloring

e List-vertex-coloring

Previously best known O(logn) by Chung, Pettie, Su [PODC’14]

Algorithm for Lovasz Local Lemma

BASE ALGORITHM
0(d?) + A - log% n - 20(loglogn) roynds
under p(e - d)** < 1

under polynomial criterion A = 0(1):

> 20(/loglogn) rounds

Algorithm for Lovasz Local Lemma

BOOTSTRAPPING:

BASE ALGORITHM Automatic
Speedup

1
0(d?) + 2 - logan - 20(Wloglogn) rqynds
under p(e - d)** < 1

under polynomial criterion A = 0(1):

> 20(/loglogn) rounds

Algorithm for Lovasz Local Lemma

BOOTSTRAPPING:

BASE ALGORITHM Automatic Ty (n) = 20(/loglogn)
1 Speedup
0(d?) + 4 -logrn- 20(Jloglogn) roynds 20(yloglogn) _ .sund algorithm
under p(e - d)** <1 under p(e - d)3% < 1 (poynomiAL)

for d = 0(log/5logn)

under polynomial criterion A = 0(1):

> 20(/loglogn) rounds

BASE ALGORITHM 0(d?) +1- log% n - 20(Jloglogn) rounds under p(e - d)** < 1

Shattering Technique, rooted in breakthrough LLL algorithm of Beck [RSA’91]

BASE ALGORITHM 0(d?) +1- log% n - 20(Jloglogn) rounds under p(e - d)** < 1

Shattering Technique, rooted in breakthrough LLL algorithm of Beck [RSA’91]

|. PARTIAL SAMPLING

assign values to subset of variables
such that remainder graph

1) satisifes polynomial criterion

2) consists of “small” components

in 0(d? + log*n) under p(e - d)** < 1

BASE ALGORITHM 0(d?) +1- log% n - 20(Jloglogn) rounds under p(e - d)** < 1

Shattering Technique, rooted in breakthrough LLL algorithm of Beck [RSA’91]

|. PARTIAL SAMPLING

assign values to subset of variables
such that remainder graph

1) satisifes polynomial criterion

2) consists of “small” components

in 0(d? + log*n) under p(e - d)** < 1

BASE ALGORITHM 0(d?) +1- log% n - 20(Jloglogn) rounds under p(e - d)** < 1

Shattering Technique, rooted in breakthrough LLL algorithm of Beck [RSA’91]

|. PARTIAL SAMPLING

assign values to subset of variables
such that remainder graph

1) satisifes polynomial criterion

2) consists of “small” components

in 0(d? + log*n) under p(e - d)** < 1

e
s

BASE ALGORITHM 0(d?) +1- log% n - 20(Jloglogn) rounds under p(e - d)** < 1

Shattering Technique, rooted in breakthrough LLL algorithm of Beck [RSA’91]

|. PARTIAL SAMPLING

assign values to subset of variables
such that remainder graph

1) satisifes polynomial criterion

2) consists of “small” components

in 0(d? + log*n) under p(e - d)** < 1

P
s

BASE ALGORITHM 0(d?) +1- log% n - 20(Jloglogn) rounds under p(e - d)** < 1

Shattering Technique, rooted in breakthrough LLL algorithm of Beck [RSA’91]

|. PARTIAL SAMPLING

assign values to subset of variables
such that remainder graph

1) satisifes polynomial criterion

2) consists of “small” components

in 0(d? + log*n) under p(e - d)** < 1

P
s

BASE ALGORITHM 0(d?) +1- log% n - 20(Jloglogn) rounds under p(e - d)** < 1

Shattering Technique, rooted in breakthrough LLL algorithm of Beck [RSA’91]

|. PARTIAL SAMPLING

assign values to subset of variables
such that remainder graph

1) satisifes polynomial criterion

2) consists of “small” components

in 0(d? + log*n) under p(e - d)** < 1

Il. DETERMINISTIC LLL ALGORITHM

P
s

1
A-n2 -20(108n) ynder p(e - d)** < 1

I. PARTIAL SAMPLING in 0(d? + log*n) under p(e - d)** < 1 s.t. remainder

1) satisifes polynomial LLL
2) has “small“ components

Inspired by Molloy and Reed’s
Sequential Partial Sampling [STOC’98]

I. PARTIAL SAMPLING in 0(d? + log*n) under p(e - d)** < 1 s.t. remainder

1) satisifes polynomial LLL
2) has “small“ components

Inspired by Molloy and Reed’s
Sequential Partial Sampling [STOC’98]

SEQUENTIAL PARTIAL SAMPLING

iteratively, for unblocked v € V
flip coin for v

if P|A | flipped coins] >
block vbl(A)

N

I. PARTIAL SAMPLING in 0(d? + log*n) under p(e - d)** < 1 s.t. remainder

1) satisifes polynomial LLL
2) has “small“ components

Inspired by Molloy and Reed’s
Sequential Partial Sampling [STOC’98]

SEQUENTIAL PARTIAL SAMPLING

iteratively, for unblocked v € V
flip coin for v

if P|A | flipped coins] > g

block vbl(A) N

dangerous!

I. PARTIAL SAMPLING in 0(d* + log*n) under p(e -

d)** < 1 s.t. remainder

1) satisifes polynomial LLL

2) has “smal

Ill

components

Inspired by Molloy and Reed’s
Sequential Partial Sampling [STOC’98]

SEQUENTIAL PARTIAL SAMPLING

iteratively, for unblocked v € V
flip coin for v

if P|A | flipped coins] > g

block vbl(A) N

dangerous!

I. PARTIAL SAMPLING in 0(d? + log*n) under p(e - d)** < 1 s.t. remainder

1) satisifes polynomial LLL

2) has “smal

Ill

components

Inspired by Molloy and Reed’s
Sequential Partial Sampling [STOC’98]

SEQUENTIAL PARTIAL SAMPLING

iteratively, for unblocked v € V
flip coin for v

if P|A | flipped coins] > g

block vbl(A) N

dangerous!

I. PARTIAL SAMPLING in 0(d? + log*n) under p(e - d)** < 1 s.t. remainder

1) satisifes polynomial LLL

2) has “smal

Ill

components

Inspired by Molloy and Reed’s
Sequential Partial Sampling [STOC’98]

SEQUENTIAL PARTIAL SAMPLING

iteratively, for unblocked v € V
flip coin for v

if P|A | flipped coins] > g

block vbl(A) N

dangerous!

I. PARTIAL SAMPLING in 0(d? + log*n) under p(e - d)** < 1 s.t. remainder

1) satisifes polynomial LLL

2) has “smal

Ill

components

Inspired by Molloy and Reed’s
Sequential Partial Sampling [STOC’98]

SEQUENTIAL PARTIAL SAMPLING

iteratively, for unblocked v € V
flip coin for v

if P|A | flipped coins] > g

block vbl(A) N

dangerous!

I. PARTIAL SAMPLING in 0(d? + log*n) under p(e - d)** < 1 s.t. remainder 1) satls{lfes p(ilynomlal LLL
2) has “small“ components

Inspired by Molloy and Reed’s
Sequential Partial Sampling [STOC’98]

SEQUENTIAL PARTIAL SAMPLING

iteratively, for unblocked v € V
flip coin for v

if P|A | flipped coins] > g

block vbl(A) N

dangerous!

I. PARTIAL SAMPLING in 0(d? + log*n) under p(e - d)** < 1 s.t. remainder

1) satisifes polynomial LLL
2) has “small“ components

Inspired by Molloy and Reed’s
Sequential Partial Sampling [STOC’98]

SEQUENTIAL PARTIAL SAMPLING

iteratively, for unblocked v € V
flip coin for v

if P|A | flipped coins] > ‘/75

block vbl(A) N

dangerous!

I. PARTIAL SAMPLING in 0(d? + log*n) under p(e - d)** < 1 s.t. remainder

1) satisifes polynomial LLL
2) has “small“ components

Inspired by Molloy and Reed’s
Sequential Partial Sampling [STOC’98]

iteratively, for unblocked v € V
flip coin for v

if P|A | flipped coins] > g

block vbl(A) N

dangerous!

SEQUENTIAL PARTIAL SAMPLING M
/¢

I. PARTIAL SAMPLING in 0(d? + log*n) under p(e - d)** < 1 s.t. remainder

1) satisifes polynomial LLL
2) has “small“ components

Inspired by Molloy and Reed’s
Sequential Partial Sampling [STOC’98]

SEQUENTIAL PARTIAL SAMPLING

iteratively, for unblocked v € V

dangerous!

flip coin for v O
if P|A | flipped coins] > g
block vbl(A) N

1) satisifes polynomial LLL
2) has “small“ components

I. PARTIAL SAMPLING in 0(d? + log*n) under p(e - d)** < 1 s.t. remainder

Inspired by Molloy and Reed’s OBSERVATIONS:
Sequential Partial Sampling [STOC’98]

« P[A|flipped coins | < /p
satisfies polynomial LLL
- =2yp
2
* P[Aremains] = 0(d)P[A dangerous] < 0(d/p) =

* A and B at distance > 2 remain independently

« P[Adangerous] <

SlE

1
poly d

by Shattering Lemma: small components
(see, e.g., Barenboim, Elkin, Pettie, Schneider [FOCS’12])

can be parallelized using a (d% + 1) - coloring of G*
consistent with one sequential global order

BASE ALGORITHM

|. PARTIAL SAMPLING

Il. DETERMINISTIC LLL ALGORITHM

BASE ALGORITHM

|. PARTIAL SAMPLING

Il. DETERMINISTIC LLL ALGORITHM

II. DETERMINISTIC LLL ALGORITHM 1 na 226557 roUinds Under ple - d)** < 1

1

1 (A, ﬁ(nl/l))-network decomposition of G* in A -na - 20(ylogn)

combining approaches by Awerbuch and Peleg [FOCS'90], Panconesi and Srinivasan [STOC’92],
and Awerbuch, Luby, Goldberg, Plotkin [FOCS'89]

2. [terative Assignment
Inductively, P[A | V<;] < p(e-d)
Eventually, P[A| V<, 1 =P[A|l V1<ple-d)* < 1

II. DETERMINISTIC LLL ALGORITHM 1 na 226557 roUinds Under ple - d)** < 1

~ 1
1. (A, O(nl/l))-network decomposition of G? inA-nx - 20(logn)
combining approaches by Awerbuch and Peleg [FOCS'90], Panconesi and Srinivasan [STOC’92],
and Awerbuch, Luby, Goldberg, Plotkin [FOCS'89]

2. [terative Assignment
Inductively, P[A | V<;] < p(e-d)
Eventually, P[A| V<, 1 =P[A|l V1<ple-d)* < 1

)

7{’

¢,

V
|
l\
&

5
\

Il. DETERMINISTIC LLL ALGORITHM

1
A-nx - 20(10gn) rounds under p(e - d)** < 1

1 (A, O(n'/ A))-network decomposition of G2

1

inA-nx - 20(Jlogn)

combining approaches by Awerbuch and Peleg [FOCS'90], Panconesi and Srinivasan [STOC’92],

and Awerbuch, Luby, Goldberg, Plotkin [FOCS'89]

Iterative Assignment
Inductively, P[A | Vg]
Eventually, P[A | V<,]

< p(e-d)’

P[Al V]<ple-d)* <1

(Shamt T
L Lo
® o‘-—"’"v S »Z

4
@

?"};’r

6

N

Il. DETERMINISTIC LLL ALGORITHM

1
A-nx - 20(10gn) rounds under p(e - d)** < 1

1 (A, O(n'/ A))-network decomposition of G2

1

inA-nx - 20(Jlogn)

combining approaches by Awerbuch and Peleg [FOCS'90], Panconesi and Srinivasan [STOC’92],

and Awerbuch, Luby, Goldberg, Plotkin [FOCS'89]

Iterative Assignment
Inductively, P[A | Vg]
Eventually, P[A | V<,]

< p(e-d)’

P[Al V]<ple-d)* <1

‘ @\\
ORERL | T
4&!...%?""‘ —
O o“-—' A

4
@

?"};’r

6

N

Il. DETERMINISTIC LLL ALGORITHM

1
A-nx - 20(10gn) rounds under p(e - d)** < 1

1 (A, O(n'/ A))-network decomposition of G2

1

inA-nx - 20(Jlogn)

combining approaches by Awerbuch and Peleg [FOCS'90], Panconesi and Srinivasan [STOC’92],

and Awerbuch, Luby, Goldberg, Plotkin [FOCS'89]

Iterative Assignment
Inductively, P[A | Vg]
Eventually, P[A | V<,]

< p(e-d)’

P[Al V]<ple-d)* <1

(Shamt T
L Lo
® o‘-—"’"v S »Z

4
@

?"};’r

6

N

Il. DETERMINISTIC LLL ALGORITHM

1
A-na - 2001081) rounds under p(e - d)** < 1

1 (2&, O(n'/ A))-network decomposition of G2

inA-nx - 20(/Iogn)

combining approaches by Awerbuch and Peleg [FOCS'90], Panconesi and Srinivasan [STOC’92],

and Awerbuch, Luby, Goldberg, Plotkin [FOCS'89]

Iterative Assignment
Inductively, P[A | Vg]
Eventually, P[A | V<,]

< p(e-d)’

P[Al V]<ple-d)* <1

LLL for step i

event By;: P[A| V] >p(e-d)

. 1
probability: < -a

(2
. .‘ S <N
6-"-"-'.3-] S
4.[12*/21-—- —1 (7
O —"’v ~

I

Il. DETERMINISTIC LLL ALGORITHM

1
A-na - 2001081) rounds under p(e - d)** < 1

1 (2&, O(n'/ A))-network decomposition of G2

inA-nx - 20(/Iogn)

combining approaches by Awerbuch and Peleg [FOCS'90], Panconesi and Srinivasan [STOC’92],

and Awerbuch, Luby, Goldberg, Plotkin [FOCS'89]

Iterative Assignment
Inductively, P[A | Vg]
Eventually, P[A | V<,]

< p(e-d)’

P[Al V]<ple-d)* <1

LLL for step i

event By;: P[A| V] >p(e-d)

. 1
probability: < -a

(2
. .‘ S <N
6-"-"-'.3-] S
4.[12*/21-—- —1 (7
O —"’v ~

I

Il. DETERMINISTIC LLL ALGORITHM

1
A-na - 2001081) rounds under p(e - d)** < 1

1 (2&, O(n'/ A))-network decomposition of G2

1

inA-nx - 20(Jlogn)

combining approaches by Awerbuch and Peleg [FOCS'90], Panconesi and Srinivasan [STOC’92],

and Awerbuch, Luby, Goldberg, Plotkin [FOCS'89]

Iterative Assignment
Inductively, P[A | Vg]
Eventually, P[A | V<,]

< p(e-d)’

P[Al V]<ple-d)* <1

. satisfies standard LLL criterion

LLL for step i

event By;: P[A| V] >p(e-d)

. 1
probability: < -a

)

i

¢,

BASE ALGORITHM

|. PARTIAL SAMPLING

Il. DETERMINISTIC LLL ALGORITHM

BASE ALGORITHM

|. PARTIAL SAMPLING

Il. DETERMINISTIC LLL ALGORITHM

Summary and Open Problems

BASE ALGORITHM

BOOTSTRAPPING
(Speed-Up)

Ty (n) = 20(/leglogn)

Summary and Open Problems

BASE ALGORITHM

BOOTSTRAPPING
(Speed-Up)

Ty (n) = 20(/leglogn)

CONJECTURE:
Ty (n) = O(loglogn)
Chang, Pettie [FOCS'16]

Summary and Open Problems

BASE ALGORITHM

BOOTSTRAPPING
(Speed-Up)

Ty (n) = 20(/leglogn)

CONIJECTURE:
Ty (n) = O(poly loglogn)
Chang, Pettie [FOCS'16]

CONJECTURE:
Ty (n) = O(loglogn)
Chang, Pettie [FOCS'16]

Summary and Open Problems

BASE ALGORITHM

BOOTSTRAPPING
(Speed-Up)

T, (n) = 20(Jloglogn)

(poly log n, poly log n) - network decomposition

CONIJECTURE:
Ty (n) = O(poly loglogn)
Chang, Pettie [FOCS'16]

CONJECTURE:
Ty (n) = O(loglogn)
Chang, Pettie [FOCS'16]

Summary and Open Problems

BASE ALGORITHM

BOOTSTRAPPING
(Speed-Up)

T, (n) = 20(Jloglogn)

(poly log n, poly log n) - network decomposition

Devise a faster deterministic algorithm.

Devise a faster algorithm under weaker LLL condition.

CONIJECTURE:
Ty (n) = O(poly loglogn)
Chang, Pettie [FOCS'16]

CONJECTURE:
Ty (n) = O(loglogn)
Chang, Pettie [FOCS'16]

Summary and Open Problems

BASE ALGORITHM

BOOTSTRAPPING
(Speed-Up)

T, (n) = 20(Jloglogn)

(poly log n, poly log n) - network decomposition

 Devise a faster deterministic algorithm.

 Devise a faster algorithm under weaker LLL condition.

Chang, Pettie [FOCS'17]

CONIJECTURE:
Ty (n) = O(poly loglogn)
Chang, Pettie [FOCS'16]

CONJECTURE:
Ty (n) = O(loglogn)
Chang, Pettie [FOCS'16]

Completeness of Lovasz Local Lemma for Sublogarithmic Bounded-Degree LCL Problems

