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LOCAL Model Linial [FOCS'87]

 undirected graph G = (V,E),
n nodes, maximum degree A

* synchronous message-passing rounds

* unbounded message size

e unbounded computation

* Round Complexity:
number of rounds to solve the problem
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Chang, Pettie [FOCS'17]
Completeness of Lovasz Local Lemma

for Sublogarithmic Problems

Any algorithm for an LCL problem on bounded-degree graphs with round complexity 0(10g n)
can be automatically sped up torunin O(Ty;; (n)) rounds.

Naor, Stockmeyer ‘95 T ;. (n) = round complexity of Lovdsz Local Lemma

Locally Checkable Labeling (LCL) on n events/nodes

solution checkable in O(1) rounds under pd® < 1 for some constant c,
ford = 0(1)\

polynomial criterion



Lovasz Local Lemma (LLL) Erdds, Lovdsz 75



Lovasz Local Lemma (LLL) Erdés, Lovdsz '75

independent variables V (w.l.0.g. fair coins)

Not too likely bad events:
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Prl[A] < pforallA e X
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maximum degree d
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Not too likely bad events:
n bad events X with vbl(A) € VforallA e X
Prl[A] < pforallA e X

Not too many dependencies:
dependency graph G = (X, E)

E ={(A,B): vbl(A) nvbl(B) # @}
maximum degree d

If local union bound (with some slack) is satisfied, then all bad events can be avoided!
If epd < 1,then Pr[N A ] > 0.

standard criterion



LOCAL Complexity of the Lovasz Local Lemma

O(log? n)
for epd < 1 (s1ANDARD)

Moser, Tardos [JACM’10]

O(logn)
for epd? < 1 (poLynOMIAL)

Chung, Pettie, Su [PODC’14]

O(log n/loglog n)
for pZd < 1 (EXPONENTIAL)

Chung, Pettie, Su [PODC’14]

CONJECTURE:
Tp(n) = O(loglogn)
Chang, Pettie [FOCS’16]

N(loglogn)
for pZd < 1 (EXPONENTIAL)

Brandt et al. [STOC’16]

T;;;(n) = round complexity of Lovasz Local Lemma

on n events/nodes

under pd¢ < 1 for some constant c,

ford = 0(1)




Our Results

T, (n) = 20(/loglogn)
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Our Results

Automatic
TLLL(n) & ZO(W) Speedup
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Our Results

T, (n) = 20(/loglogn)

Automatic
Speedup

T;;;(n) = round complexity of Lovasz Local Lemma

on n events/nodes

under pd¢ < 1 for some constant c,

ford =0(1)

Gap in Distributed Complexity Hierarchy
for LCLs on bounded-degree graphs

o(log n) S 20(,/log logn)

o(loglogn) —» 0O(log™n)




Other Applications

20(Jloglogn) _ round Graph Coloring Algorithms

* f-defective O (?)-coloring

1
 B-frugal 120 A B-coloring

e List-vertex-coloring

Previously best known O(logn) by Chung, Pettie, Su [PODC’14]



Algorithm for Lovasz Local Lemma

BASE ALGORITHM
0(d?) + A - log% n - 20(loglogn) roynds
under p(e - d)** < 1

under polynomial criterion A = 0(1):

> 20(/loglogn) rounds
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Algorithm for Lovasz Local Lemma

BOOTSTRAPPING:

BASE ALGORITHM Automatic Ty (n) = 20(/loglogn)
1 Speedup
0(d?) + 4 -logrn- 20(Jloglogn ) roynds 20(yloglogn) _ .sund algorithm
under p(e - d)** <1 under p(e - d)3% < 1 (poynomiAL)

for d = 0(log/5logn)

under polynomial criterion A = 0(1):

> 20(/loglogn) rounds
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Shattering Technique, rooted in breakthrough LLL algorithm of Beck [RSA’91]

|. PARTIAL SAMPLING

assign values to subset of variables
such that remainder graph

1) satisifes polynomial criterion

2) consists of “small” components

in 0(d? + log*n) under p(e - d)** < 1

Il. DETERMINISTIC LLL ALGORITHM

P
s

1
A-n2 -20(108n) ynder p(e - d)** < 1
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1) satisifes polynomial LLL
2) has “small“ components

Inspired by Molloy and Reed’s
Sequential Partial Sampling [STOC’98]

SEQUENTIAL PARTIAL SAMPLING

iteratively, for unblocked v € V

dangerous!

flip coin for v O
if P|A | flipped coins] > g
block vbl(A) N




1) satisifes polynomial LLL
2) has “small“ components

I. PARTIAL SAMPLING in 0(d? + log*n) under p(e - d)** < 1 s.t. remainder

Inspired by Molloy and Reed’s OBSERVATIONS:
Sequential Partial Sampling [STOC’98]

« P[A|flipped coins | < /p
satisfies polynomial LLL
- =2yp
2
*  P[Aremains] = 0(d)P[A dangerous] < 0(d/p) =

* A and B at distance > 2 remain independently

« P[Adangerous] <

SlE

1
poly d

by Shattering Lemma: small components
(see, e.g., Barenboim, Elkin, Pettie, Schneider [FOCS’12])

can be parallelized using a (d% + 1) - coloring of G*
consistent with one sequential global order
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event By;:  P[A| V] >p(e-d)

. 1
probability: < -a
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