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LOCAL Model Linial [FOCS’87]

• undirected graph 𝐺 = 𝑉, 𝐸 , 
n nodes, maximum degree Δ

• synchronous message-passing rounds 

• unbounded message size 

• unbounded computation

• Round Complexity: 
number of rounds to solve the problem



Chang, Pettie [FOCS’17]
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Completeness of Lovász Local Lemma
for Sublogarithmic Problems 

Naor, Stockmeyer ’95
Locally Checkable Labeling (LCL)
solution checkable in 𝑂(1) rounds

𝑻𝑳𝑳𝑳 𝒏 = round complexity of Lovász Local Lemma
on n events/nodes 
under 𝑝𝑑𝑐 < 1 for some constant 𝑐,
for 𝑑 = 𝑂(1)
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Lovász Local Lemma (LLL) Erdős, Lovász ’75

independent variables 𝒱 (w.l.o.g. fair coins)

Not too likely bad events:

𝑛 bad events 𝒳 with 𝑣𝑏𝑙 𝐴 ⊆ 𝒱 for all 𝐴 ∈ 𝒳

Pr 𝐴 ≤ 𝑝 for all 𝐴 ∈ 𝒳

Not too many dependencies:

dependency graph 𝐺 = 𝒳,𝐸

𝐸 = 𝐴, 𝐵 : 𝑣𝑏𝑙 𝐴 ∩ 𝑣𝑏𝑙 𝐵 ≠ ∅

maximum degree 𝑑

If local union bound (with some slack) is satisfied, then all bad events can be avoided!
If epd ≤ 1, then Pr 𝐴∈𝒳ځ

ҧ𝐴 > 0.
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maximum degree 𝑑

If local union bound (with some slack) is satisfied, then all bad events can be avoided!
If epd ≤ 1, then Pr 𝐴∈𝒳ځ

ҧ𝐴 > 0.

standard criterion



LOCAL Complexity of the Lovász Local Lemma

𝑶(𝐥𝐨𝐠𝟐 𝐧)
for 𝒆𝒑𝒅 ≤ 𝟏 (STANDARD)

Moser, Tardos [JACM’10]

𝑶(𝐥𝐨𝐠 𝐧)
for 𝒆𝒑𝒅𝟐 < 𝟏 (POLYNOMIAL)

Chung, Pettie, Su [PODC’14]

𝜴 𝐥𝐨𝐠 𝐥𝐨𝐠 𝐧
for 𝒑𝟐𝒅 < 𝟏 (EXPONENTIAL)

Brandt et al. [STOC’16]

𝑶 𝐥𝐨𝐠 𝐧/𝐥𝐨𝐠𝐥𝐨𝐠 𝐧
for 𝒑𝟐𝒅 < 𝟏 (EXPONENTIAL)

Chung, Pettie, Su [PODC’14]

CONJECTURE:
𝑻𝑳𝑳𝑳 𝒏 = 𝑶 𝐥𝐨𝐠 𝐥𝐨𝐠 𝐧

Chang, Pettie [FOCS’16]

𝑻𝑳𝑳𝑳 𝒏 = round complexity of Lovász Local Lemma
on n events/nodes 
under 𝑝𝑑𝑐 < 1 for some constant 𝑐,
for 𝑑 = 𝑂(1)
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Our Results

𝑻𝑳𝑳𝑳 𝒏 = 𝟐𝑶 𝐥𝐨𝐠 𝐥𝐨𝐠 𝒏
o 𝐥𝐨𝐠 𝒏 → 𝟐𝑶 𝐥𝐨𝐠 𝐥𝐨𝐠 𝐧

Gap in Distributed Complexity Hierarchy

Automatic
Speedup 

o 𝐥𝐨𝐠 𝐥𝐨𝐠 𝒏 → 𝑶 𝐥𝐨𝐠∗𝒏

for LCLs on bounded-degree graphs

𝑻𝑳𝑳𝑳 𝒏 = round complexity of Lovász Local Lemma
on n events/nodes 
under 𝑝𝑑𝑐 < 1 for some constant 𝑐,
for 𝑑 = 𝑂(1)



Other Applications

Previously best known 𝑂 log 𝑛 by Chung, Pettie, Su [PODC’14]

𝟐𝑶 𝐥𝐨𝐠 𝐥𝐨𝐠 𝐧 - round Graph Coloring Algorithms

• 𝑓-defective O
Δ

𝑓
-coloring

• 𝛽-frugal 120 Δ
1+

1

𝛽-coloring

• List-vertex-coloring



Algorithm for Lovász Local Lemma

BASE ALGORITHM

O d2 + 𝜆 ⋅ log
1

λ 𝑛 ⋅ 2𝑂 log log 𝑛 rounds

under 𝑝 𝑒 ⋅ 𝑑 4𝜆 < 1

under polynomial criterion 𝝀 = 𝑶(𝟏): 

≫ 𝟐𝑶 𝐥𝐨𝐠 𝐥𝐨𝐠 𝒏 rounds 
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Algorithm for Lovász Local Lemma
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Shattering Technique, rooted in breakthrough LLL algorithm of Beck [RSA’91]
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I. PARTIAL SAMPLING 1) satisifes polynomial LLL
2) has “small“ components

in 𝑂 𝑑2 + log∗𝑛 under 𝑝 𝑒 ⋅ 𝑑 4𝜆 < 1 s.t. remainder

Inspired by Molloy and Reed’s
Sequential Partial Sampling [STOC’98]

by Shattering Lemma: small components
(see, e.g., Barenboim, Elkin, Pettie, Schneider [FOCS’12])

satisfies polynomial LLL 

consistent with one sequential global order

SEQUENTIAL PARTIAL SAMPLING 

iteratively, for unblocked v ∈ 𝒱

flip coin for v

if 𝑷 𝑨 𝐟𝐥𝐢𝐩𝐩𝐞𝐝 𝐜𝐨𝐢𝐧𝐬] >
𝒑

𝟐

block vbl A

OBSERVATIONS: 

• 𝑃 𝐴 flipped coins ] ≤ 𝑝

• 𝑃 𝐴 dangerous ≤
𝑝
𝑝

2

= 2 𝑝

• 𝑃[𝐴 remains] = 𝑂(𝑑)𝑃[𝐴 dangerous] ≤ 𝑂 𝑑 𝑝 =
1

𝑝𝑜𝑙𝑦 𝑑

• A and B at distance > 2 remain independently

• can be parallelized using a (d2 + 1) - coloring of 𝐺2



I. PARTIAL SAMPLING

II. DETERMINISTIC LLL ALGORITHM

BASE ALGORITHM



I. PARTIAL SAMPLING

II. DETERMINISTIC LLL ALGORITHM

BASE ALGORITHM



I. PARTIAL SAMPLING

II. DETERMINISTIC LLL ALGORITHM

BASE ALGORITHM



II. DETERMINISTIC LLL ALGORITHM 𝜆 ⋅ 𝑛
1

𝜆 ⋅ 2𝑂 log 𝑛 rounds under 𝑝 𝑒 ⋅ 𝑑 4𝜆 < 1

1. 𝛌, ෩𝐎 𝐧𝟏/𝛌 -network decomposition of 𝐆𝟐 in λ ⋅ n
1

λ ⋅ 2O log n

combining approaches by Awerbuch and Peleg [FOCS’90], Panconesi and Srinivasan [STOC’92], 
and Awerbuch, Luby, Goldberg, Plotkin [FOCS’89] 

2. Iterative Assignment

Inductively, 𝑃 𝐴 𝒱≤𝑖 ≤ 𝑝 𝑒 ⋅ 𝑑 𝑖

Eventually, 𝑃 𝐴 𝒱≤𝜆 = 𝑃[ 𝐴 ∣ 𝒱 ] ≤ 𝑝 𝑒 ⋅ 𝑑 𝜆 < 1
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