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(2Δ − 1)-Edge-Coloring

Maximal Independent Set

Unified Formulation as Hypergraph Maximal Matching Problem

Maximal Matching

(Δ + 1)-Vertex-Coloring

cast classic LOCAL graph problems as hypergraph maximal matching problems (LOCAL reductions)

smooth interpolation between maximal matching and maximal independent set

rank 2 rank 3 

rank Δ + 1rank Δ
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Conclusion & Open Problems

• (𝟐𝜟 − 𝟏)-Edge-Coloring is efficient: 𝑶(𝐥𝐨𝐠𝟖 𝒏)

• Linial’s Question from the 1980s: 

Is there an efficient deterministic algorithm for Maximal Independent Set?

• Generality of Hypergraph Maximal Matchings

• Devise or rule out a poly 𝑟 ⋅ log 𝑛 -round deterministic algorithm 

for rank-r-hypergraph maximal matching.

• Key Problem: Efficient Deterministic Rounding

• Completeness of Rounding (Ghaffari, Kuhn, Maus [STOC’17]) 

Rounding as the only obstacle for efficient deterministic LOCAL graph algorithms

• Devise a more general deterministic rounding method. 

𝐩𝐨𝐥𝐲 𝐫 ⋅ 𝐥𝐨𝐠𝐎 𝐥𝐨𝐠 𝒓 𝜟 ⋅ 𝐥𝐨𝐠 𝐧 rounds


