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Open Problem 11.4:

Devise or rule out a deterministic
(24 — 1)-edge-coloring algorithm
that runs in polylogarithmic time.
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nified Formulation as Hypergraph Maximal Matching Problem

Maximal Independent Set (A 4+ 1)-Vertex-Coloring
A rank A - rank A + 1
U U
Maximal Matching (2A — 1)-Edge-Coloring
rank 2 rank 3

cast classic LOCAL graph problems as hypergraph maximal matching problems (LOCAL reductions)

smooth interpolation between maximal matching and maximal independent set
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Iterative Refilling
Invariant: O (1) loss, kept using refilling iterations
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Conclusion & Open Problems
* (24 — 1)-Edge-Coloring is efficient: 0(log® n)

e Linial’s Question from the 1980s:

Is there an efficient deterministic algorithm for Maximal Independent Set?

e Generality of Hypergraph Maximal Matchings poly r - 10g®!°8™) 4 - log n rounds
* Devise or rule out a poly (r - log n)-round deterministic algorithm
for rank-r-hypergraph maximal matching.

 Key Problem: Efficient Deterministic Rounding
 Completeness of Rounding (Ghaffari, Kuhn, Maus [STOC’17])
Rounding as the only obstacle for efficient deterministic LOCAL graph algorithms

* Devise a more general deterministic rounding method.



